
A Thesis/Project/Dissertation Report

on

Web application based on Food waste management system

Submitted in partial fulfillment of the

 reqruirement for the award of the degree of

Bachelor of Technology in Computer Science And

Engineering

Under The Supervision of

Name of Supervisor: Ms. Ratna Singh

Designation

Submitted By

Vaibhav Prasad - 20SCSE1010316
Ankit Raj - 20SCSE1010122

 Harshita Somya - 20SCSE1010344

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING DEPARTMENT

OF COMPUTER SCIENCE AND ENGINEERING / DEPARTMENT OF

COMPUTERAPPLICATION

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

MONTH, YEAR

SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the thesis/project/dissertation, entitled

“Web application based on food waste management system” in partial fulfillment of the

requirements for the award of the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE

AND ENGINEERING submitted in the School of Computing Science and Engineering of Galgotias

University, Greater Noida, is an original work carried out during the period of JULY – 2021 TO

DECEMBER - 2021, under the supervision of Ms. Ratna Singh, Department of Computer Science

and Engineering/Computer Application and Information and Science, of School of Computing

Science and Engineering , Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for the

award of any other degree of this or any other places.

Vaibhav Prasad - 20SCSE1010316
Ankit Raj - 20SCSE1010122

 Harshita Somya - 20SCSE1010344

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Supervisor

 Ms. Ratna Singh

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of 20SCSE1010122 – ANKIT RAJ,

20SCSE1010316 – VAIBHAV PRASAD, 20SCSE1010344 – HARSHITA SOMYA has been held

on _________________ and his/her work is recommended for the award of BACHELOR OF

TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:

Place:

Abstract

It is a well-known fact that Food Wastage is as common in restaurants as one could

possibly imagine. It seems to be the silliest problem in our day-to-day life, but

regardless of how it seems, it is a major problem. We even have seen some groups

dedicated to reducing this wastage, but on a small scale and only on ground rather

than on internet. The drawback of working only on ground is that it can reach only a

limited amount of people. In this era of dominance of Internet, where lots of people

have access to the Internet, it is nothing but obvious that Food Wastage can easily

and better be monitored and provided to those who need it using the internet.

Having all the group members of our team learn Web Development, it seemed

plausible and apt that we work on something related to web application. We are

creating a web-based application that can monitor the food wastage from different

restaurants in select locations and provide a platform for the needy to get

information on how and where to collect it. The food can be for your cats, dogs, or

any other pets. It can also be collected by anyone who wants to (or knows) someone

who might need it and then deliver it to them through our platform. We plan on

creating different sections for foods with different energy compositions.

Even though there are limitations like some people not having access to the Internet,

we fervently hope that this project will make a difference on some scale. And that’s

what matters the most, making a difference.

Table of Contents

Title Page No.

Candidates Declaration I

Acknowledgement II

Abstract III

Contents IV

List of Table V

List of Figures VI

Acronyms VII

Chapter 1 Introduction 1

 1.1 Introduction 2

 1.2 Formulation of Problem 3

 1.2.1 Tool and Technology Used

Chapter 2 Literature Survey/Project Design 5

Chapter 3 Functionality/Working of Project 9

Chapter 4 Results and Discussion 11

Chapter 5 Conclusion and Future Scope 41

 5.1 Conclusion 41

 5.2 Future Scope 42

 Reference 43

 Publication/Copyright/Product 45

 Acronyms

API Application programming Interface

AVD Android Virtual Device

CSV Comma-separated values

GUI Graphical User Interface

PHP Hypertext Preprocessor

QR Quick Response

SDK Software Development Kit

SQL Structured Query Language

XML Extensible Markup Language

UI User Interface

GPL General Public License

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

PDF Portable Document Format

 CHAPTER-1

Introduction

The prevalence of food waste has been a subject of interest and discussion

in recent years and research are being done to find effective ways to curb

it. It has been identified as a primary issue in the sustainability of food

production and consumption, in addition to the sustainability of food supply

chains. According to Heta-Kaisa, Koivupuro, food waste can be divided into

avoidable and unavoidable waste. Avoidable waste includes edible food

and spoils/damaged edible food, while unavoidable waste consists of the

inedible food like bones, fruit peels, and eggshells among others.

Research shows that in Finland, 5% of purchased food is wasted in

households and an average person wasted about 20-30 kg of food in a

year. The average total amount of food wasted in households yearly is

about 120-160 million kilograms. Household wastage could be intentional

or not. Many of the food wastage in household could be because of

forgetfulness or negligence for the food expiry date. In countries like Finland

with high cost of living, consumers are inclined to buy food nearing its expiry

date due to the discount shop sellers attach periodically.

Background

The advancement of technology has brought ease to the stressful life of

human beings. The prevalence of mobile technologies enables us to

constantly be in touch with the world. By it, different aspects of our lives

are brought together for easy access. For instance, a person could be

making finishing touches with his presentation for next day, discussing with

his/her spouse about dinner, booking a flight for a weekend trip, to mention

a few, all in the same place and likely simultaneously.

The idea for this project was born with my observation of how easily fellow

students dispose expired food products. Due to the high cost of living, many

students tend to buy food products which are close to their expiry date and

sometimes in large quantity due to their discounted prices, as shops

attempt to get

as much of these products out of their inventory to reduce their losses.

With the proliferation of smartphones, I thought of the feasibility of using

the smartphone as a lifecycle tracker for our food inventory and be

regularly informed of those products whose expiry date is close by. It is

expected that this would help to reduce the amount of food spillage in the

households.

1.1 Objective

The objective of this project was to create a mobile application to assist

users in managing their food inventory. The application would store and

display basic information about the inventory contents and alerts the user

of the food products which are due to expire the next day. Consequentially,

users may take actions to avoid the concerned products get wasted or

spoiled. It is believed that a considerable amount of food waste would be

avoided in households if the occupants are well-informed of the timeline of

their food stocks. Provisions have also been made to allow for the multi-

device use.

Most food management applications available are mainly concerned with

helping users watch their weight and food in-take and generally requires

lots of information from user. The advantage of this project is the use of the

simplest information of food products to monitor the inventory. With an eye

on the future, a demo solution was integrated to show compatibility with

future advancement in food packaging.

Chapter 3 1. INTRODUCTION TO PROJECT TOOLS

This project utilizes various technologies and tools. They are Android, QR

Code, Hypertext Preprocessor (PHP), MySQL database and phpMyAdmin.

2.1 Android

Android is an Open-Source software stack for mobile devices like phones

and tablets and others. The stack comprises of a Linux-based kernel,

middleware, and mobile applications. It is developed by the Open Handset

Alliance spearheaded by Google Inc. It is licensed under the Apache

Software License, 2.0 , which is commonly abbreviated as “Apache 2.0”.

2.1.1 Application Overview

An Android application is usually made of several user interface

components, called Activities. An activity is a component that provides a

screen for user interaction to perform an action, such as take a photo, or

view gallery. Typically, an application often has a main activity by which

other activities are called.

An application may also have non-visual components that are essential to

its operations. These components are Services and Broadcast Receiver. A

service is an Android component used to perform long-running operations

in the background, i.e., not visible to the user, and could also be used by an

application to expose some of its functionality to other applications. It is

registered using the

<service> tag in the AndroidManifest.xml file.

A BroadcastReceiver is an Android component which receives and handles

a broadcast sent by the system or any application. A broadcast is a system

message that is sent when an application or system occurs. For instance,

a broadcast message may be sent by the orientation of the phone, or the

battery status changes.

It is statically registered in an application using the <receiver>

tag in the AndroidManifest.xml file.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Communication between the application components is done using Intents.

Intent is an abstract description of an operation to be performed. It is mostly

used to start an Activity. It can also be used to send a broadcast message

and communicate with Services.

2.1.2 Android Development

An Android application can be developed using an Android SDK and a

compatible software development environment. The Android SDK

provides develops with the necessary set of tools and libraries needed

to build, test and debug applications on the Android platform. It is readily

available for download, along with needed support, on the Android

official website.

This project was built in the Eclipse software development environment,

which supports multiple programming languages and operating systems,

and it is free to use under the Eclipse Public License.

2.1.2.1 AndroidManifest.xml

The requirement for all Android application is to have

the AndroidManifest.xml file in its root directory. It presents vital information

about the application to the Android system that the system requires before

running any code of the application

Some of the information found in the AndroidManifest.xml file includes,

• The unique package name for the application

• The minimum Android API level required for the application.

• Description of the application’s components, i.e., the activities,

services, broadcast receivers and content providers that make up the

application.

• Lists of libraries linked to the application.

• Declaration of permissions needed to access protected API components,

among others.

2.1.3 Android Emulator

The Android SDK provides an emulator, which is a virtual mobile device,

which runs on the computer and enables the user debug and test

applications without a physical device.

The specification of the emulator is defined, and can be edited, by the

developer using the AVD Manager, which is a graphical user interface used

to configure and manage AVDs.

The AVD can be configured as different devices, screen sizes, Android

target levels. For this project, I have configured the AVD as a Nexus device

with a screen size of 4.65 inches with a resolution of 720 by 1280 pixels.

The AVD runs Android Jellybean, version 4.2.2, which is equivalent to API

level 17.

Figure 1.AVD Configuration interface.

Figure 2.AVD (Scaled to original dimensions)

2.1.4 SQLite Database

SQLite is an in-process library that implements a self-contained, serverless,

zero- configuration, transactional database engine. It is free to use for any

purpose, be it private or commercial. It is compact and lightweight hence it

is easily deployable to any system. It is supported by the many UNIX and

Windows operating systems and can be ported easily to other systems. The

data types supported are TEXT (to hold string values), INTEGER (to hold

integer values) and REAL (to hold precision floating-point values).

Android provides the SQLite database to allow for data storage in an

application. An application in the Android system may have a private

database and this can only be accessed and managed within the

application code.

2.2 Quick Response Code (QR Code)

The QR code is the trademark for a type of two-dimensional bar code.

It is an optical machine-readable label used to store information about

the item it is attached to. It was originally designed for use in the

automotive industry by a Toyota subsidiary in Japan but has become

widely popular for other usages because it is faster to read and have

more storage capacity than standard bar codes.

QR codes are usually used to store contact information, Uniform

Resource Locations (URLs), phone numbers, and text.

Figure 3. Sample QR Code, used for testing in the project.

2.3 PHP: Hypertext Preprocessor (PHP)

PHP is a server-side scripting language primarily designed to produce

dynamic pages. It was created by Rasmus Lerdorf in 1995 and it is now

being developed by the PHP group. PHP is free software released under

the PHP License, which makes it incompatible with the GNU General

Public License (GPL) due to restriction on the use of the term PHP.

It is cross-platform software mostly used in the server-side web

development and it is now being used in the client-side User Interface (UI).

It has been used in the creation of many Web content management

systems like Drupal, WordPress and Moodle.

http://en.wikipedia.org/wiki/Rasmus_Lerdorf

2.4 MySQL

MySQL is a cross-platform open-source relational database management

system (RDBMS). It was created by Michael Widenius, who partly named

it after his daughter, My. It was initially released on the 23rd of May 1995

under the GPL License. It was originally owned by a Swedish firm, MySQL

Ab, which is now owned by Oracle.

It is written in C and C++. For this project, the MySQL database was

managed using phpMyAdmin.

2.5 phpMyAdmin

PhpMyAdmin is a free and open-source GUI tool written in PHP, which is

used for web database administration. It has cross-platform support for

the major operating systems, and it was first released in the 1998 under

the GNU General Public License.

It has an intuitive web interface, and core support for many MySQL features.

It also has data management (including import and export) support for many

formats like CSV, SQL, PDF, XML, among others.

2.6 Facebook Integration

Facebook is a popular social networking platform started in 2004 by Mark

Zuckerberg and couple of his friends. It is regularly expanding and boasts

of 1 billion users as in October 2012. Due to its large user base, Facebook

provides an

Figure 4.Basic PHP syntax

http://en.wikipedia.org/wiki/Michael_Widenius

avenue of services for developers to tap into its wealth of information.

For this project, I have integrated a Facebook login functionality to access

basic information about the users, with their permission, for registration on

the server-side of the project.

3 SYSTEM OVERVIEW

3.1 Choice of Android

Android has been chosen for this project, primarily for the open-source

nature of the platform as well as the ease of development and deployment

with the extensive supports provided on the official Android website and

major

developers’ forums, such as the Stack Overflow website.

It also has the largest market share and has native compatibility with

tablets. It also supports cross platform application development, i.e.,

developers can develop Android application in Mac, Windows, and many

UNIX-based operating systems like Ubuntu.

3.2 Requirements

There are certain requirements the proposed application must fulfill to

meet the objectives of the project.

The requirements on the client-side are:

• It must have a user interface

• It must be compatible with most Android devices.

• It must have Facebook integration.

• It must have QR code reading capabilities.

• It should have the ability to store data in the server

The requirements on the server-side are:

• Database must have a user table

• Database must be dedicated food tables for users.

• Database must be able to communicate with client-side application.

3.3 System Architecture

This application consists of an Android application on the client side and

PHP- MySQL application on the server side. The Android application is the

part visible

to the user and one it interacts with, while the PHP/MySQL-based

server-side component serves as an interface between the Android

application and the database on the server.

The use case for the client-side application is seen in Figure 5 below,

showing all the cases available to the user in the application.

User

Figure 5. Use case for client-side application

Figure 6 below, shows the use case diagram for the server-side component.

System

Android Application

Add new user

Create new food table for user

Register Food

Edit Food

Delete Food

Figure 6. Use case for server-side implementation

4 CLIENT-SIDE DESIGN & IMPLEMENTATION

The client-side application is designed based on the requirements stated

in 3.2.1, using the right sets of libraries, database design and programming

methods while providing a good user experience.

4.1 Development Overview

The mobile application was developed in the Eclipse software using the

Android SDK downloaded from the Android official website. This project

uses three java packages, namely:

• com.olanigan.food

• com.olanigan.data

• com.olanigan.utils

The food package contains all the interface-related classes, while the data

package contains all data management classes. Utility classes are found

under the utils package. The figure below shows the structure of the project

in the Eclipse software.

The application is configured to a minimum API level of 8 and declares

permissions to use the WAKE_LOCK, INTERNET and CAMERA

functionalities of the system. The figures below show the configuration of the

AndroidManifest.xml file.

All the titles of the application are defined under the <application> tag, along

with the list of components and libraries used. The figure below shows a

breakdown of the application structure.

Figure 7.Overview of project structure in Eclipse

Figure 8.Overview of the AndroidManifest.xml file

Figure 9.Overview of the application structure

4.2 User Interface Classes

The user interface in Android is displayed using classes that extend the

Activity class directly or indirectly. The classes used for user interaction in

this application are MainActivity, NewEntryActivity and FbLoginActivity.

The MainActivity class is the main user interface for the application. It

displays the registered food inventory of the user and has the main menu

by which other activities can be accesses.

The class diagram for the MainActivity is shown below.

Figure 10.MainActivity Class diagram

The NewEntryActivity class handles both the manual entry as well as the

QR code entry of the information about the food to be monitored. It is

called by the MainActivity class and returned to it after the entry is

completed. It displays a form that requests information about the name

of the food, its expiry date and reminder time.

The class displays the result of the QR code scanning initiated after the

user chooses the QR code entry in the MainActivity interface. The

customized QR code used for this project, contains information about the

name of the new food,

and best-before date, and is scanned using the ZBarScannerActivity

class, which is called from an open source QR code scanning library,

ZBarScannerLibrary.

After the user fills in the form completely, the class handles the storing of

the new food data into the database, as well as set an alarm notification to

the user-defined time a day before the expiry date. After the completion of

its task execution, it returns the user to the MainActivity class where the

updated food listing is displayed.

The diagram below shows the class diagram for the NewEntryActivity class.

Figure 11.NewEntryActivity Class Diagram

The FbLoginActivity class is the entry point into the application, and it

handles the login and logout of the user using Facebook authentication.

Unlike the other activities, it extends Fragment Activity and acts as the main

display for three Fragment classes, which are the SplashFragment,

InfoFragment and UserSettingsFragment classes.

The SplashFragment class displays the Facebook-custom login button.

When clicked, the button calls the Facebook login dialog from the

Facebook SDK library. The InfoFragment class is called after a successful

Facebook login by the user. It retrieves basic information about the user

and this information is used

either to register the new user into the application database or to retrieve

the latest food listing from the application database. The InfoFragment class

redirects the user to the MainActivity UI.

The user Settings class displays the Facebook logout button by which

the user exits from the main application and redirects to the Facebook

login page after execution. This class is provided by the Facebook

library.

Figure 12.Application Login Screen

Figure 13.Facebook Login Dialog

4.3 Data Management Classes

4.3.1 Data Modeling

A Food class acts as the model object for the application. It was created to

enable uniformity and ease of data management. The properties of the

model include the

name of the food, its expiry date, and its date of entry as well as the

chosen time to be reminded of its expiry.

The structure of the model is displayed in Figure 14 below.

Figure 14.Food model of application

The table below highlights the attributes of the model.

Table 1.Description of Food model attributes

Attribute Description

Name Name of the food to be stored.

Expiry Date Best-before date of the food product

Entry Date Date of entry of food information

Reminder Time chosen by user to be reminded a day before expiry date

4.3.2 Database Management

Data persistence in an Android application is done primarily with the

SQLite database provided as a library component in the Android system.

Applications that utilize the SQLite database, usually have dedicated

classes to handle the

+getNAME(): String
+setNAME(String NAME): void
+getEXPIRY_DATE(): String
+setEXPIRY_DATE(String EXPIRY_DATE): void
+getENTRY_DATE(): String
+setENTRY_DATE(String ENTRY_DATE): void
+getREMINDER(): String

+setREMINDER(String REMINDER)

management of the database. The DatabaseHelper class was created for

that purpose. It extends the SQLiteOpenHelper class and handles all the

internal database functions of the application including opening and

closing the database, executing queries and handles queries with the Food

model.

It also does operation on the server database using the methods defined in the

UrlHandler class.

DatabaseHelper

+DATABASE_NAME: String = "Thesis"

+FOOD_TABLE: String = "Food"

+DATABASE_VERSION: int = 3

+onCreate(SQLiteDatabase db): void

+onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion): void

+getFoodById(int request_id): Food

+get_last_food(): Food

+addFood(Food newFood): long

+updateFood(Food oldFood, Food newFood): long

+deleteFood(Food food): void

+getAll(): Cursor

+deleteAll(): void

Figure 15.DatabaseHelper Class Diagram

For this project, the database was named “Thesis” and defined in the

DatabaseHelper class as DATABASE_NAME. Also, only one table was

created in the database. The table is named “Food” and defined in the

DatabaseHelper class as FOOD_TABLE. The table is created when the

database is first created and can only be structurally modified when the

database is upgraded. It is used to store the food entries of the user and the

final version of the database is three (3) due to the structural changes it has

undergone during development.

Food

+NAME

+EXPIRY_DATE

+ENTRY_DATE

+REMINDER

+getNAME(): String

+setNAME(String NAME): void

+getEXPIRY_DATE(): String

+setEXPIRY_DATE(String EXPIRY_DATE): void

+getENTRY_DATE(): String

+setENTRY_DATE(String ENTRY_DATE): void

+getREMINDER(): String

+setREMINDER(String REMINDER)

UrlHandler

+is: InputStream

+jObj: JSONObject

+jArray: JSONArray

+UrlResponse: String

+bool: boolean = false

+httpClient: HttpClient

+getHttpClient(): HttpClient

+doPost(String url, ArrayList<NameValuePair> postParameters): String

+getArray(String url, List<NameValuePair> params): JSONArray

+SendToUrl(String url, List<NameValuePair> params): String

+JSONFromUrl(String url, List<NameValuePair> params): JSONObject

+getFoodList(String facebook_id): JSONArray

+loginUser(String facebook_id): JSONObject

+registerUser(String facebook_id, String first_name, String last_name, String location): JSONObject

+urlAddFood(String facebook_id, String food_name, String category, String expiry_date, String reminder): String

+urlDeleteFood(String facebook_id, String food_name, String category, String expiry_date): void

4.4 Server Communication Classes

Data communication between the application and external server is handled

by the UrlHandler class. Its operations include retrieving and registering user

and food inventory information.

The class has numerous functions which sends HTTP request to the

server. The requests consist of the URL address of the index.php file on

the server and parameters that contain the information of the user and

food entries. The table below highlights the common parameters used in

the request.

Figure 16.UrlHandler Class Diagram

Table 2.Description of Parameters used in HTTP request to server

HTTP Parameters Description

tag Tag for different operation

facebook_id ID of user from Facebook server

first_name First name of user

last_name Last name of user

location Primary location of user

food_name Name of the food to be stored.

expiry _date Best-before date of the food product

entry_date Date of entry of food information

reminder Time chosen by user to be reminded a

day before expiry date

The number of parameters that accompany a request differs depending on

the desired operation to be performed on the server. However, the tag

parameter is the primary parameter that informs the server what operation

to perform. In this application, a list of tags was created as string and the

outline of these tags can be found in the table below.

Table 3.Description of different tag types

Tag Name Value (string) Description of requested operation

list_tag list Return the list of all food entries by

current user

login_tag login Check if user information exists in

database

register_tag register Register new user and create dedicated

table for user in the database

add_tag add Add new food entry to database

delete_tag delete Delete selected food entry from database

Register notification
for

food expiration

NewEntryActivi
ty

Androi
d

Notifie
r

4.5 Utility classes

The Notifier class acts as a Broadcast Receiver for the application. It

inherits a BroadcastReceiver class.

Figure 17.Notifier Class Diagram

The class is notified by the Android system when an alarm WAKE_UP event

occurs after the countdown value set in the NewEntryActivity or

QREntryActivity classes elapses. The onReceive function of the class is

automatically called to handle the event. The setNotification function is then

called to create a new notification in the system notification bar, informing

the user of the name of the food that is expected to expire the next day.

Figure 18.Relationship between NewEntryActivity and Notifier Classes

When preset

Alarm is

triggered

5 SERVER-SIDE DESIGN AND IMPLEMENTATION

This chapter deals with data retrieval and storage from the database,

initiated by HTTP request from the client-side application. PHP is used to

handle the request from the application and performs appropriate tasks on

the MYSQL database. It also informs the application of success or failure

of the application.

5.1 Development Overview

The PHP development was done in the Notepad++ software, which is a

free and open Windows multi-language editor. It provides colored support

for native functions, as well as code indentation. It displays the edited files

in tabs for ease of accessing and editing multiple files simultaneously.

Figure 19.PHP Development in Notepad++ software

The server database was managed by a free PHP-based GUI tool

named phpMyAdmin which was readily available on the server.

5.2 Database Design

The database for the project was designed based on the requirements

listed in chapter 3.2. A table named “users” is created to store the basic

information of users that uses the application. This information includes

the Facebook ID, first name and the last name of the user, which are

provided by the Facebook server via the mobile application.

The table has four columns. They are facebook_id for the Facebook ID

of the users, first_name, last_name for the first and last name of the user

respectively and created_at for the date the user information was stored

in the database. The facebook_id column acts as the primary key for the

table.

Figure 21.Entity diagram for users table

Each user is expected to have a dedicated table in the database to store

food entries. To have this, a dynamic naming convention is used for these

tables. The Facebook ID of the user is used as an underscore suffix to

the word,

Figure 20.phpMyAdmin interface on the server

hence the name of each food table is in the format food [Facebook ID]. For

instance, if the Facebook ID of a user is 12345, the food table for this user

would be named “food_12345”.

The table has five columns; id column which acts as the primary key,

food_name column for the name of the food, expiry_date and entry_date

columns for the expiry date as well as the date of entry for the food, and

the reminder column for the time set by the user to be reminded the day

before the expiry date.

Figure 22.Entity diagram for food table

5.3 PHP Classes/Files

Three PHP files were created to handle the logical and data

management operations. The main PHP file is the index.php file which

handles the HTTP requests from the application. The other files are the

functions.php file, which contains the declaration of the functions used

in the index.php file, and the connect.php file which contains the login

details for authorized access to the database. These files were stored in

my student account on the cc.puv.fi server.

5.3.1 Connect PHP file

The connect.php file contains the administrative configuration of the

MySQL database required to do operations on it. Due to the administrative

rights granted by this file, the user application may make changes to the

content of the database.

Figure 23.MySQL configuration

The figure shows that the MySQL used for this project is hosted on

mysql.cc.puv.fi which is the official MySQL server for VAMK University of

Applied Sciences. The server is only accessible locally. For this project, I

have used my student account on the server and a VPN connection to

allow access to the PHP files as well as managing the database remotely.

The file also defines the Connect class which handles connection to the

database. The figures below shows the class diagram as well as the PHP

code for the Connect class.

.

Figure 24.Connect class diagram

The class has a defined constructor and destructor. A class constructor is a

method defined to be called when a new instance of the class is created and

in the Connect class, it calls the connect method. Therefore, a connection is

made to the database whenever an instance of the Connect class is created.

When a class is no longer referenced, the destructor method is called.

The destructor of this class calls the close method, which closes

connection to the database.

+_construct(): function
+_destruct(): function

+connect(): function

+close(): function

Figure 25.Constructor and destructor for Connect class

In the connect method, the native MySQL function, mysql_connect is used

to connect to the database server using the pre-defined configuration values

and the function, mysql_select_db is used to select the specific database

for this project, as shown in line 25 and 27 of the figure below.

The close function is defined to close the database connection by

calling the native MySQL function, mysql_close.

Figure 26.connect and close methods for Connect class

5.3.2 Functions PHP file

The functions.php file defines the DbFunctions class. The DbFunctions class

defines methods for database operations which are called from the index.php

based on the value of the tag parameter in the HTTP request. The figure

below shows the class diagram for the class.

Figure 27.DbFunctions Class Diagram

A global variable db is declared and used as an instance of the Connect

class. The assignment of the variable db as a new instance of Connect class

is done in the constructor method of the class, and the connect.php was

included to achieve this. The class has no defined destructor method.

Figure 28.Global variable and constructor method

The class has five methods defined for database operation, namely: isUserExist,

storeUser, getFoodById, storeFood and deleteFood. The isUserExist method is

used to check if a user exists using its unique Facebook ID as an argument. The

method calls a MySQL query that selects the facebook_id column from the users

table with a conditional statement to check if the Facebook ID of the user exists in

the column.

Figure 29.Code for isUserExist method

The storeUser method is used to store information about a new user in the

users table, and used to create a dedicated food table for the user using a

dynamic naming system. It takes three arguments, namely: the Facebook

ID, first name and the last name of the user. It first stores the new user

information in the users table, and on successful completion, it creates a

new table for the user using the Facebook ID.

Figure 30. Code for storeUser method

The getFoodById method is used to retrieve all the food entries of a

particular user using the Facebook ID of the user as argument.

Figure 31. Code for getFoodById method

The storeFood method is defined to store food entries from the mobile

application to the server. It takes five (5) arguments, one of which is the

Facebook ID of the user which is used to determine the table to store the

entry into based on the dynamic table naming system. The other arguments

are the food information provided by the mobile application. They include

the name of the food, its expiry date, its entry date and reminder time for

the food.

Figure 32. Code for storeFood method

The deleteFood method is defined to delete a particular food entry. It takes

three arguments which are the Facebook ID of the user, the name of the

food and its expiry date. The Facebook ID is used to select the table and

the other arguments are used to select the specific entry to delete. The

name of the food and its expiry date are together distinctive of each food

entry. The ID of the table was not used for the deletion due to the possibility

of being different from its corresponding value in the client-side application.

Figure 33. Code for deleteFood method

5.3.3 Index PHP file

This file that handles communication between the mobile application and

the server database. It performs logical operations based on the value of

the tag parameter of the HTTP request and encodes the response in JSON

format, which is handled by the mobile application. It uses the DbFunctions

class, defined in the functions.php file, to perform operation on the

database.

Figure 34. Validity check for the tag parameter

All the logical operations are enclosed in an IF conditional statement which

ensures that tag parameter is set and it is not empty, as shown on line 3 of

the figure above. The tag parameter is used to select which operation the

application intends to perform on the database whenever it sends an HTTP

request while holding the value of the Facebook ID of the user provided by

the Facebook server.

All HTTP requests must have the tag and facebook_id parameters. Lines

5 and 6 show the storing of the values of these parameters in their

corresponding variables.

Figure 35. Inclusion of DbFunctions class

The require once statement on line 10 is used to include the functions.php file in

the code and ensures it is only included once. The variable dbFunctions is

declared on line 11, as an instance of DbFunctions class declared in the

functions.php file.

Figure 36. Declaration of the response array

Line 13 shows the declaration of the response variable. It is declared as an

array and primarily contains the value of the tag parameter in the HTTP

request and varying values of success and error, which are determined at

the end of each tag- based logical operation. The values of the success and

error tags are both zero (0) by default, and only one of these tags changes

its value to one (1) after the execution of the tag-based operations. The

value of the success tag changes to one

(1) if the operation was executed successfully. Otherwise, the value of

the error tag changes to one (1).

Figure 37. Code for handling login tag

In the case when the mobile application sends an HTTP request with the

login tag, the request would only contain the tag and facebook_id

parameters. The facebook_id variable is used on line 19, as an argument

in the isUserExist function of the DBFunctions class to check if the

information about the user’s Facebook ID exists in the database. If the user

information is present, a success message is sent back as response as

shown on line 22 or else, an error message is returned as shown on line

26. All the response messages are encoded using the JSON format.

Figure 38. Code for handling register tag

If the user application wants to register a new user, an HTTP request is

made with the register tag. This request contains the default parameter as

well as the first_name and last_name parameters which represent the first

name and the last name of the user respectively. This information is

provided by the Facebook server to the mobile application.

The isUserExist function is used to check if the user already exists in the

database on line 36. If the user already exists, an error message is returned.

Otherwise, the new user information is stored in the database using the

storeUser function on line

43. On line 44, a conditional statement is used in check if registration was

successful and if it was, a success message is returned as shown on line

51. If the registration failed, an error message is returned as shown on line

53.

.

Figure 39.Code for handling add tag

An HTTP request containing the add tag, is an intent to add a new food

entry to the database. This request includes parameters for the name of

the food, its entry date, its expiry date as well as the user-set reminder

time, alongside the default parameters.

The storeFood function of the DbFunctions class is called to add the

information about the new entry in the database as shown on line 65. All the

parameters of the HTTP, except the tag parameter, supply the values of the

required arguments for the storeFood function. The conditional statement

on line 67 is used to check for successful database entry. A success

message is returned if a new entry was made and returns an error message

to the user application if the entry failed.

Figure 40. Code for handling delete tag

If the end user intends to delete a food entry, the application sends an

HTTP request with the delete tag. This request contains the name of the

food and the expiry date which are stored in the food_name and entry_date

parameters respectively. The deleteFood function of the DbFunctions class

is called to delete a certain food entry whose name and expiry date are

provided, as shown on line

85. The outcome of the operation is used to check its success or failure

with an IF conditional statement, as displayed on line 87 and either a

success message or an error message is sent back to the user application

as appropriate.

Figure 41. Code for handling list tag

The list tag is used if the application intends to get the list of all the food

entries for a specific user from the database. The HTTP request only

contains the tag and facebook_id parameters. The getFoodById function is

called with the Facebook ID of the concerned user as its argument. The

function then returns the query result which has the current food listings of

the user stored on a dedicated table.

An array named records and a while statement are used to reorganise

the query result into an array, which is then sent to application using

JSON encoding.

The table below shows the relationship between the various kinds of

tag parameter used in the HTTP request from the mobile application

and the PHP classes on the server.

Table 4. Methods employed to handle different tag values

Tag Name

(From

HTTP

request)

Value

(Handled by

index.php)

Methods called from DBFunctions class

(in functions.php)

list_tag list getFoodById ()

login_tag login isUserExist()

register_tag register isUserExist(),storeUser()

add_tag add storeFood()

delete_tag delete deleteFood()

6 TESTING

6.1 Client-Side Testing

Testing on the mobile application was done primarily with the Android

Virtual Device (AVD), provided by the Android SDK. It was used to test all

the functionalities of the mobile application except the QR code reading

functionality which was done using an Android device. The client-side

testing was done primarily within the virtual device.

Figure 42.Application sequence for adding new entry.

The figure above depicts the sequence of registering a new entry. Sequence

1 shows the menu dialog that appears when the “Add New Entry” button is

clicked. It displays the option of adding the entry either through scanning a

QR code or using a manual entry. Sequences 2 and 3 show the path taken

if the user decides to scan the QR code. Sequence 2 invokes the

ZBarScannerLibrary to scan the QR code and the outcome, if successful, is

shown in the NewEntryActivity UI in stage 3.

1
2

4 3

5

Sequence 4 shows an empty form on the NewEntryActivity UI for user to

fill, and Sequence 5 shows the new listing on the MainActivity UI.

6.2 Server-side Testing

The testing of the server-side was done on a web browser, by making

HTTP calls to the server. A new PHP file, named test.php, was written

specifically for testing purposes. It includes the functions.php file to allow

access to the methods defined for the DbFunctions class. Only the user tag

is used for testing.

The user tag is used here for testing user login and registration. It is used

alongside three other parameters which acts as a demo for the user

information retrieved from the Facebook server. The Google Chrome

browser was used for the tests.

Below are figures for the testing code as well as test results displayed

on the browser and the phpMyAdmin interface.

Figure 43.Code for testing user tag

Figure 44.First Test, Web browser showing an HTTP request to the server

Figure 45.phpMyAdmin interface showing the list of tables.

Figure 46.Second test, Web browser showing an HTTP request to the server.

Figure 47.phpMyAdmin interface showing the result of second test.

Figure 48.Content of users table after the tests.

6.3 Overall Testing

To test the client-side and the server-side simultaneously, a dummy user

profile created in the server-side test was used for testing. The Guest mode

in the mobile application was turned off, to allow the application interact with

the server. The figure below shows the sequence of testing new food entry

and other functionalities were tested likewise.

Figure 49. Application sequence for adding new entry locally and to server

Sequence 1 shows the transition to the new entry screen. Sequence 2 and

3 show the new entry updated both in the mobile application and in the

database on the server. It should be noted that users are expected to have

internet connection when making new entries in user mode.

1 2

3

CHAPTER-2 Introduction

Reference

Publication/ Screen Shots

7 CONCLUSION

7.1 Challenges

A major problem faced by developers for applications like this, is how to

effectively manage data between the mobile devices and the server. As

previously mentioned, data persistence could be done both locally and

externally, hence the issue of synchronizing data while minimizing

resources used becomes a serious concern.

This was resolved in this application by giving users the right to choose

either to store the information locally on their devices or ability to access it

on various devices by storing the information on the server. An internet

connection is a requirement for the latter. Hence, it is expected that the

user who chooses this option has an internet connection.

It is possible that multiple users have access to a single device. Hence, the

dilemma over naming the database table in local application arose.

Provision was made on the server to create separate food inventory tables

for users, but that is expected for the database on the server.

It is expected that smartphones and tablets are personal items, hence

there does not seem to be a need to create separate tables for each user

that logs in into the application on a device, as this would be a rarity.

Therefore, a single name has been chosen for the table on the mobile

application, while a dynamic naming convention is applied on the server.

However, if multiple users do use the application on a single device with

separate login details, the application deletes the food inventory table

when the user logs out and is able to retrieve pre-stored information on

the server when the user logs in again.

Possible Improvements

The solution presented in this project is useful enough to combat food

waste through expiration. However, it may appear cumbersome for

many users to register their inventories manually into the application.

At the time of writing, there was no standard food information system on

food packages that gives the user the information of both the name of the

food, as well as its expiry date. The viable improvement would be get the

food name from the product bar code and read the expiry date using OCR

tools. However, the level of ease of using this option is only slightly greater

than using the manual option of filling the food information.

Some companies have started trials with using QR code on their food

packages to provide detailed information. Notwithstanding, there is still lot

of hurdles to pass for it to become a standard. But for the meantime, this

application presents a viable and effective solution.

REFERENCES

/1/ Koivupuro, Heta-Kaisa 2011, FOODSPILL – Food wastage and environmental

impacts, Henvi Seminar Series, Food and Environment – Sustainable food cycle,

MTT Agrifood Research Finland

/2/ Service. Official Android Developer Reference website, 5th March 2013,

http://developer.android.com/reference/android/app/Service.html.

/3/ Intent. Official Android Developer Reference website, 5th March 2013,

http://developer.android.com/reference/android/content/Intent.html.

/4/ Official website for Android SDK, 5th March 2013,

http://developer.android.com/sdk/index.htm.

/5/ The AndroidManifest.xml File, Official Android API Guides website, 6th

March 2013, http://developer.android.com/guide/topics/manifest/manifest-

intro.html.

/6/ About SQLite, Official SQLite website, 6th March 2013,

http://www.sqlite.org/about.html

/7/ GNU Operating System, GPL-Incompatible Free Software Licenses, 6th March

2013,

http://www.gnu.org/licenses/license-list.html#GPLIncompatibleLicenses

/8/ Official phpMyAdmin website, 6th March 2013, http://www.phpmyadmin.net/

