
 

 

 

A Project Report on  

Data Analysis using ML  on 

Geolocational Data  

Submitted in partial fulfillment of the 

requirement for the award of the degree of  

  

Bachelor of Technology in Computer Science and Engineering  

  

  

 
  

  

Under the Supervision of  

Dr . J.N. Singh  

         Assistant Professor  

Department of Computer Science and Engineering  

  

Submitted By :  

Gourang Ajmera - 18SCSE1010669  

Alok Singh - 18SCSE1010135   

  

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING, DEPARTMENT  

OF COMPUTER SCIENCE AND ENGINEERING  ,GALGOTIAS  

UNIVERSITY, GREATER NOIDA, INDIA DECEMBER - 2021  

  

Project Title: DATA  ANALYSIS  USING ML ON GEOLOCATIONAL  

DATA   



 

 

 

 SCHOOL OF COMPUTING SCIENCE AND 
ENGINEERING  

GALGOTIAS UNIVERSITY, GREATER NOIDA  
 

CANDIDATE’S DECLARATION 

 

We hereby certify that the work which is being presented in the project, entitled “CAPSTONE 

PROJECT- DATA ANALYSIS ON ML USING GEOLOCATIONAL DATA” in partial 

fulfillment of the requirements for the award of the B.Tech CSE submitted in the School of 

Computing Science and Engineering of Galgotias University, Greater Noida, is an original work 

carried out during the period of August 2022 to May 2022, under the supervision of Dr. J.N Singh, 

Professor, Department of Computer Science and Engineering/Computer Application and 

Information and Science, of School of Computing Science and Engineering, Galgotias University, 

Greater Noida  

The matter presented in the project has not been submitted by us for the award of any other 

degree of this or any other places. 

                                                                                                     Alok Singh 18SCSE1010235      

                                                                                            Gourang Ajmera 18SCSE1010669  

  

This is to certify that the above statement made by the candidates is correct to the best of my 

knowledge. 

                                                              Supervisor Name                                                                                                   

                  Designation  

 

                                      



 

 

 

CERTIFICATE 

 

The Final Thesis/Project/ Dissertation Viva-Voce examination of Name: Alok Singh & Gourang 

Ajmera with  Admission Nos – 18SCSE1010135 & 18SCSE1010669 respectively has been held 

on _________________ and his/her work is recommended for the award of Name of Degree – 

B.Tech 

 

 

Signature of Examiner(s)                  Signature of Supervisor(s) 

        

 

 

Signature of Project Coordinator                            Signature of Dean  

 

Date:    

Place: Greater Noida      

 

 

 

 

 

 

 

 



 

 

 

 

ABSTRACT:  

Machine learning allows us to feed computer algorithms with large amounts of 

data and make computers analyze and make data-driven decisions and 

recommendations based solely on input data. This project will utilize ML to 

analyze geolocational data and user preferences to make smart recommendations to 

the user . In the fast-paced and busy environment that the average person lives in, it 

often happens that one is too tired to prepare a home-cooked meal. And of course, 

even if you get home cooked meals every day, it is not uncommon for you to want 

to have a good meal every now and then for social / recreational purposes. Now, 

imagine a scenario where someone has just moved to a new location. They already 

have certain preferences, certain tastes. It will save a lot of trouble for the student 

and food suppliers if the student lives near his favorite outlet. The convenience of 

the means better sales and time savings for customers. This project involves the 

utilization of K-Means Clustering to seek out the simplest accommodation for 

students in Bangalore (or the other city of your choice) by classifying 

accommodation for incoming students on the idea of their preferences on 

amenities, budget and proximity to the location.  

  

Keywords:   



 

 

 

. ML  

. Unsupervised Learning   

. Simulation   

.  Smart Recommendations  

. Data-driven approach  

  

Introduction:  

  

  

In the fast-paced and busy environment where the average person lives, it is 

common for people to be too tired to prepare home-cooked meals. And of course, 

even if you eat homemade food every day, it's not unusual if you want to go out to 

eat once in a while for social/recreational purposes. However, it is a commonly  

understood idea that no matter where you live, the food you eat is an important 

aspect  of the lifestyle you live. Now, imagine a scenario where someone has just 

moved to a new location. They already have certain preferences, certain tastes.  

This will save students  a lot of trouble and food suppliers if the student lives near 

his or her favorite outlet. This project involves using K-Means Clustering to find the 

best accommodation for   students in Bangalore (or another city of your choice) by 

rating accommodation for incoming students based on  their preferences on facilities, 

budget and proximity to location.  



 

 

 

  

  

  

Literature Review:  

  

There are many algorithms  derived above to determine k automatically. Most of 

these methods are wrappers around kmeans or some other clustering algorithm  for 

fixed k. Use the wrapper method divide and combine the rules for centers to 

increase or decrease the value of k  as the algorithm progresses.After calculating 

the BIC or Bayesian Information Criterion(BIC is a method for scoring and 

selecting a model ) for each clustering model. Apart from BIC, other scoring 

functions are also available. Some researchers use the MDL method to find the best   

k. The researchers also used the Minimum Description Length (MDL) framework, 

where the description length is the measurement value that tells us  how well the 

data  fit  the model. This algorithm starts with a large value for k and removes the 

center (reduces k) each time that selection reduces the length of the description. 

Among the k reduction steps, they used the kmeans algorithm to optimize the fit of 

the model  to the data.  

  

Activity Diagram:  



 

 

 

  

  

Required tools:  

  

● Python  

● For data - numpy and pandas package.  

● For plotting - matplotlib package & seaborn packages  

● For geospatial - geopy, folium.  



 

 

 

● For machine learning - sklearn (preprocessing and cluster) scipy,  

● For deep learning - minisom  

  

  

Feasibility Analysis:  

  

The project  Data Analysis using ML on Geolocational Data is a simple software 

application which is supported on a personal computer  , just like any native 

application. It is a python  based project with the renowned python libraries to 

manage the application.  For an application  as complex as an recommendation 

system using machine learning and AI , this software has simplistic approach and 

does not have many complex features therefore, it can be used at the bare-bones 

level. Sklearn (preprocessing and cluster) , scipy , matplotlib &  seaborn packages , 

pandas packages for python are the other packages that we will be using in this 

application. Python provides us with many different features and services to 

complete our project.The convenient  design of the geopy package for the plotting 

on map and the simple user experience will provide smooth and good experience to 

the user.   

  

Complete work plan layout:  



 

 

 

  

The development of this application software will follow an iterative software 

development model in which the base product is first implemented as a small set of 

software requirements, then iterative enhancements and development releases are 

made until the entire system is implemented and ready for deployment. The first 

step would be collection of data set followed by visualizing the data. Then 

imposing K-Means clustering algorithm on the data. Get geolocational data from 

the resulting data-set and further plotting it on the map.  

  

 
  

Modeling and Prediction with Machine Learning -   

  

The main goal of the entire project is to predict the occurrence of heart disease with 

the highest accuracy. To achieve this, we will test several classification algorithms. 

This section covers all the results obtained from the study and introduces the best 

performer according to the accuracy metric. We have chosen a number of specific 

algorithms to solve supervised learning problems across classification methods.  

First, let's arm ourselves with a handy tool that benefits from the coherence of the 

SciKit Learn library and creates a common task for training our models. The 



 

 

 

reason we display accuracy on both the train and test sets is to allow us to evaluate 

whether the model overfits or underfits the data.  

  

Logistic regression –   

Logistic regression is a classification algorithm used to assign observations to a 

discrete set of classes. Unlike linear regression, which outputs continuous number 

values, logistic regression uses the logistic sigmoid function to transform its output 

to return a probability value that can then be mapped to two or more discrete 

classes.  

   

Types of Logical Regression:  

• binary (pass/fail)  

• multi (cats, dogs, sheep)  

  

Process -  

1. Split the problem into an n+1 binary classification problem (+1 because the 

index starts at 0).  

2. For each class…  



 

 

 

3. Estimate the probability that the observations will be in that single class. 4. 

prediction = <math>max (probability of classes)  

  

Accuracy score of Logistic Regression is: 85.25%  

Random Forest –   

Random Forest is a supervised learning algorithm. Random forest can be used for 

both classification and regression problems, by using random forest regressor we 

can use random forest on regression problems. But we have used random forest on 

classification in this project so we will only consider the classification part.   

  

Random Forest pseudocode –   

  

• Randomly select “k” features from total “m” features.   

          Where k << m  

• Among the “k” features, calculate the node “d” using the best split point.   

• Split the node into daughter nodes using the best split.   

• Repeat 1 to 3 steps until “l” number of nodes has been reached.   



 

 

 

• Build forest by repeating steps 1 to 4 for “n” number times to create “n” 

number of trees.   

  

Random forest prediction pseudocode –   

  

1. Takes the test features and use the rules of each randomly created decision tree 

to predict the outcome and stores the predicted outcome.  

2. Calculate the votes for each predicted target.   

3. Consider high voted predicted target as final prediction from random forest algo.   

Accuracy score of Random Forest is 86.9%  

  

Naïve Bayes -   

Bayes’ Theorem is stated as:   

P(h|d) = (P(d|h) * P(h)) / P(d)  

  

• P(h|d) is the probability of hypothesis h given the data d. This is called the 

posterior probability.   



 

 

 

  

• P(d|h) is the probability of data d given that the hypothesis h was true.  

  

• P(h) is the probability of hypothesis h being true (regardless of the data).  

This is called the prior probability of h.   

  

• P(d) is the probability of the data (regardless of the hypothesis).  

  

Here, we are interested in calculating the posterior probability of P(h|d) from the 

prior probability p(h) with P(D) and P(d|h). After calculating the posterior 

probability for a number of different hypotheses, we will select the hypothesis with 

the highest probability. This is the maximum probable hypothesis and may 

formally be called the (MAP) hypothesis.   

This can be written as:  

MAP(h) = max(P(h|d))  

Or  

  

MAP(h) = max((P(d|h) * P(h)) / P(d))  



 

 

 

Or  

MAP(h) = max(P(d|h) * P(h))  

  

The P(d) is a normalizing term which allows us to calculate the probability. We can 

drop it when we are interested in the most probable hypothesis as it is constant and 

only used to normalize. Back to classification, if we have an even number of 

instances in each class in our training data, then the probability of each class (e.g., 

P(h)) will be equal. Again, this would be a constant term in our equation, and we 

could drop it so that we end up with -  

  

MAP(h) = max(P(d|h))  

  

Naive Bayes is a classification algorithm for binary (two-class) and multi-class 

classification problems. The technique is easiest to understand when described 

using binary or categorical input values. It is called naive Bayes or idiot Bayes 

because the calculation of the probabilities for each hypothesis are simplified to 

make their calculation tractable. Rather than attempting to calculate the values of 

each attribute value P (d1, d2, d3|h), they are assumed to be conditionally 

independent given the target value and calculated as P(d1|h) * P(d2|H) and so on. 



 

 

 

This is a very strong assumption that is most unlikely in real data, i.e. that the 

attributes do not interact. Nevertheless, the approach performs surprisingly well on 

data where this assumption does not hold.   

  

MAP(h) = max(P(d|h) * P(h))  

  

Gaussian Naïve Bayes -   

  

mean(x) = 1/n * sum(x)  

  

Where n is the number of instances and x are the values for an input variable in 

your training data. We can calculate the standard deviation using the following 

equation - standard deviation(x) = sqrt (1/n * sum(xi-mean(x)^2))  

This is the square root of the average squared difference of each value of x from 

the mean value of x, where n is the number of instances, sqrt() is the square root 

function, sum() is the sum function, xi is a specific value of the x variable for the 

ith instance and mean(x) is described above, and ^2 is the square. Gaussian PDF 



 

 

 

with a new input for the variable, and in return the Gaussian PDF will provide an 

estimate of the probability of that new input value  for that class.   

  

pdf (x, mean, sd) = (1 / (sqrt (2 * PI) * sd)) * exp (-((x-mean^2) / (2*sd^2)))   

  

Where pdf(x) is the Gaussian Probability Density Function (PDF), sqrt () is the 

square root, mean and sd are the mean and standard deviation calculated above, Pi 

is the numerical constant, exp () is the numerical constant e or Euler’s number 

raised to power and x is the input value for the input variable.  

  

K-Nearest Neighbor –  

  

We can implement a KNN model by following the below steps:   

1. Load the data   

2. Initialize the value of k   

3. For getting predicted class, iterate from 1 to total number of training data points.  



 

 

 

• Calculate the distance between test data and each row of training data. Here 

we will use Euclidean distance as our distance metric since it’s the most 

popular method. The other metrics that can be used are Chebyshev, cosine,  

etc.  

• Sort the calculated distances in ascending order based on distance values.  

• Get top k rows from the sorted array.  

• Get the most frequent class of these row.  

• Return the predicted class.  

  

Pseudocode -  

• Place the best attribute of the dataset at the root of the tree.   

  

• Split the training set into subsets. Subsets should be made in such a way that 

each subset contains data with the same value for an attribute.   

  

• Repeat step 1 and step 2 on each subset until you find leaf nodes in all the 

branches of the tree.   

  



 

 

 

  

Assumptions while creating Decision Tree –   

  

• At the beginning, the whole training set is considered as the root.  

  

• Feature values are preferred to be categorical. If the values are continuous 

then they are discretized prior to building the model.   

  

• Records are distributed recursively on the basis of attribute values.   

  

• Order to placing attributes as root or internal node of the tree is done by 

using some statistical approach.   

  

• The popular attribute selection measures -   

1. Information gain   

2. Gini index  

  

Minimum System Requirements –  



 

 

 

  

Processors - Intel Atom® processor or Intel® Core™ i3 processor   

Disk space - 3 GB or more  

Operating systems - Windows 7 /8.1/ 10, OSX-10.8+  

Python* versions - 2.7.X, 3.6.X   

HDD: 3 GB free space / May vary for different data-sets  

  

Source Code:  

<a href="https://colab.research.google.com/github/AKG1301/Exploratory-Data- 

Analysis-on-Geolocational- 

Data/blob/main/Exploratory_Data_Analysis_on_Geolocational_Data.ipynb" 

target="_parent"><img 

src="https://colab.research.google.com/assets/colabbadge.svg" alt="Open In 

Colab"/></a>  

#Exploratory Analysis of Geolocational Data  

## Data Collection  import pandas as pd 

data=pd.read_csv("/content/drive/MyDrive/  Exploratory Analysis of 

Geolocational Data/food_coded.csv") data  

  



 

 

 

#Data Cleaning  

The process of Extracting the features, (and dealing with different kinds of values 

as well as NaN values) is known as Data Cleaning.  

data.columns column=['cook','eating_out','employment','ethnic_food',  

'exercise','fruit_day','income','on_off_campus','pay_meal_out','sports','veggies_day' 

]  

d=data[column] d  

## Data Exploration and Visualisation  

  

  

  

import seaborn as sns sns.pairplot(d) #Boxplot of 

Dataset import numpy as np   import pandas as pd   

import matplotlib.pyplot as plt   % matplotlib 

inline  ax=d.boxplot(figsize=(16,6)) 

ax.set_xticklabels(ax.get_xticklabels(),rotation=30)  

d.shape s=d.dropna()  

## Run KMeans Clustering on the data  

## for data import 

numpy as np import 



 

 

 

pandas as pd ## for 

plotting import 

matplotlib.pyplot as 

plt import seaborn 

as sns ## for 

geospatial import 

folium import 

geopy ## for 

machine learning 

from sklearn import 

preprocessing, 

cluster import scipy 

## for deep 

learning import 

minisom 

f=['cook','income'] 

X = s[f] max_k = 

10 ## iterations 

distortions = []  for 

i in range(1, 



 

 

 

max_k+1):     if 

len(X) >= i:  

       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0)        model.fit(X)        

distortions.append(model.inertia_) ## best k: the lowest derivative k = 

[i*100 for i in np.diff(distortions,2)].index(min([i*100 for i       in 

np.diff(distortions,2)]))  

## plot fig, ax = plt.subplots() ax.plot(range(1, 

len(distortions)+1), distortions) ax.axvline(k, ls='--', 

color="red", label="k = "+str(k)) ax.set(title='The Elbow 

Method', xlabel='Number of clusters',         

ylabel="Distortion") ax.legend() ax.grid(True) plt.show()  

  

## Get Geolocational Data from 

pandas.io.json import json_normalize 

import folium  

from geopy.geocoders import Nominatim  import 

requests  

CLIENT_ID =  

"KTCJJ2YZ2143QHEZ2JAQS4FJIO5DLSDO0YN4YBXPMI5NKTEF" # your  



 

 

 

Foursquare ID  

CLIENT_SECRET =  

"KNG2LO22BPLHN1E3OAHWLYQ5PQBN14XYZMEMAS0CPJEJKOTR" #  

your Foursquare Secret  

VERSION = '20200316' LIMIT 

= 10000  

url =  

'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v 

={}&ll={},{}&radius={}&limit={}'.format(  

    CLIENT_ID,   

    CLIENT_SECRET,   

    VERSION,   

    17.448372, 78.526957,  

    30000,      LIMIT) results = 

requests.get(url).json() results 

venues = 

results['response']['groups'][0]['

items'] nearby_venues = 

json_normalize(venues)  

## Adding two more Columns Restaurant and Others  



 

 

 

1. Restaurant: Number of Restaurant in the radius of 20 km  

2. others:Number of Gyms, Parks,etc in the radius of 20 km  

  

resta=[] oth=[] for lat,long in 

zip(nearby_venues['venue.location.lat'],nearby_venues['venue.location.lng']):  

    url =  

'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v 

={}&ll={},{}&radius={}&limit={}'.format(  

      CLIENT_ID,   

      CLIENT_SECRET,        

VERSION,   

      lat,long,       

1000,   

      100)  

    res = requests.get(url).json()     venue = 

res['response']['groups'][0]['items']     

nearby_venue = json_normalize(venue)     

df=nearby_venue['venue.categories']  

  



 

 

 

    g=[]     for i in 

range(0,df.size):  

      g.append(df[i][0]['icon']['prefix'].find('food'))     

co=0     for i in g:       if i>1:         co+=1     

resta.append(co)     oth.append(len(g)-co)  

  

nearby_venues['restaurant']=resta 

nearby_venues['others']=oth 

nearby_venues ## Changing the 

Column Name 

lat=nearby_venues['venue.location.lat'] 

long=nearby_venues['venue.location.l

ng']  

## Install the minisom library using pip  

  

MiniSom is a minimalistic and Numpy based implementation of the Self 

Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to 

convert complex, nonlinear statistical relationships between high-dimensional data 

items into simple geometric relationships on a low-dimensional display. Minisom 



 

 

 

is designed to allow researchers to easily build on top of it and to give students the 

ability to quickly grasp its details.  

pip install minisom  

## Run K Means clustering on the dataset, with the optimal K value using Elbow  

Method  

  

A fundamental step for any unsupervised algorithm is to determine the optimal 

number of clusters into which the data may be clustered. The Elbow Method is one 

of the most popular methods to determine this optimal value of k.  

f=['venue.location.lat','venue.location.lng'] 

X = nearby_venues[f] max_k = 10  

## iterations  

distortions = []  for i in 

range(1, max_k+1):     if 

len(X) >= i:  

       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0)        model.fit(X)        

distortions.append(model.inertia_) ## best k: the lowest derivative k = 

[i*100 for i in np.diff(distortions,2)].index(min([i*100 for i       in 

np.diff(distortions,2)]))  



 

 

 

## plot fig, ax = plt.subplots() ax.plot(range(1, 

len(distortions)+1), distortions) ax.axvline(k, ls='--', 

color="red", label="k = "+str(k)) ax.set(title='The Elbow 

Method', xlabel='Number of clusters',         

ylabel="Distortion") ax.legend() ax.grid(True) plt.show() city 

= "Hyderabad"  

## get location locator = 

geopy.geocoders.Nominatim(user_agent="MyCoder") location 

= locator.geocode(city) print(location)  

## keep latitude and longitude only location = 

[location.latitude, location.longitude] 

print("[lat, long]:", location) 

nearby_venues.head() nearby_venues.columns  

##Data Cleaning Process for Extracting Necessary Columns in the Dataset 

n=nearby_venues.drop(['referralId', 'reasons.count', 'reasons.items', 'venue.id',  

       'venue.name',   

       'venue.location.labeledLatLngs', 'venue.location.distance',  

       'venue.location.cc',   

       'venue.categories', 'venue.photos.count', 'venue.photos.groups',  

       'venue.location.crossStreet', 'venue.location.address','venue.location.city',  



 

 

 

       'venue.location.state', 'venue.location.crossStreet',  

       'venue.location.neighborhood',  'venue.venuePage.id',        

'venue.location.postalCode','venue.location.country'],axis=1)  

n.columns  

  

## Dropping Nan Values from Dataset n=n.dropna() n = 

n.rename(columns={'venue.location.lat': 'lat', 'venue.location.lng': 'long'}) n  

###Convert Every Row of Column ***'venue.location.formattedAddress'*** from 

List to String n['venue.location.formattedAddress'] spec_chars = ["[","]"] for char 

in spec_chars:  

  n['venue.location.formattedAddress'] = 

n['venue.location.formattedAddress'].astype(str).str.replace(char, ' ')  

#Plot the clustered locations on a map x, y 

= "lat", "long" color = "restaurant" size = 

"others" popup = 

"venue.location.formattedAddress" data = 

n.copy()  

  

## create color column  



 

 

 

lst_colors=["red","green","orange"] lst_elements 

= sorted(list(n[color].unique()))  

  

## create size column (scaled) scaler = 

preprocessing.MinMaxScaler(feature_range=(3,15)) 

data["size"] = scaler.fit_transform(                

data[size].values.reshape(-1,1)).reshape(-1)  

  

## initialize the map with the starting location map_ = 

folium.Map(location=location, tiles="cartodbpositron",  

                  zoom_start=11)  

## add points data.apply(lambda row: 

folium.CircleMarker(            

location=[row[x],row[y]],popup=row[popup],            

radius=row["size"]).add_to(map_), axis=1) X = 

n[["lat","long"]] max_k = 10 ## iterations 

distortions = []  for i in range(1, max_k+1):  

    if len(X) >= i:  

       model = cluster.KMeans(n_clusters=i, init='k-means++', max_iter=300, 

n_init=10, random_state=0)        model.fit(X)        



 

 

 

distortions.append(model.inertia_) ## best k: the lowest derivative k = 

[i*100 for i in np.diff(distortions,2)].index(min([i*100 for i in 

np.diff(distortions,2)]))  

## plot fig, ax = plt.subplots() ax.plot(range(1, 

len(distortions)+1), distortions) ax.axvline(k, ls='--', 

color="red", label="k = "+str(k)) ax.set(title='The Elbow 

Method', xlabel='Number of clusters',         

ylabel="Distortion") ax.legend() ax.grid(True) plt.show()  

  

k = 6 model = cluster.KMeans(n_clusters=k, init='k-

means++') X = n[["lat","long"]] ## clustering dtf_X = 

X.copy() dtf_X["cluster"] = model.fit_predict(X)  

## find real centroids closest, distances = 

scipy.cluster.vq.vq(model.cluster_centers_,                       

dtf_X.drop("cluster", axis=1).values) dtf_X["centroids"] = 0 

for i in closest:  

    dtf_X["centroids"].iloc[i] = 1  

## add clustering info to the original dataset 

n[["cluster","centroids"]] = dtf_X[["cluster","centroids"]] n ## plot 

fig, ax = plt.subplots() sns.scatterplot(x="lat", y="long", data=n,                  



 

 

 

palette=sns.color_palette("bright",k),                 hue='cluster', 

size="centroids", size_order=[1,0],                 legend="brief", 

ax=ax).set_title('Clustering (k='+str(k)+')') th_centroids = 

model.cluster_centers_  

ax.scatter(th_centroids[:,0], th_centroids[:,1], s=50, c='black',             

marker="x") model = cluster.AffinityPropagation()  

  

k = n["cluster"].nunique() sns.scatterplot(x="lat", y="long", 

data=n,                  palette=sns.color_palette("bright",k),                 

hue='cluster', size="centroids", size_order=[1,0],                 

legend="brief").set_title('Clustering (k='+str(k)+')') x, y = "lat", 

"long" color = "cluster" size = "restaurant" popup = 

"venue.location.formattedAddress" marker = "centroids" data = 

n.copy() ## create color column lst_elements = 

sorted(list(n[color].unique())) lst_colors = ['#%06X' % 

np.random.randint(0, 0xFFFFFF) for i in                

range(len(lst_elements))] data["color"] = 

data[color].apply(lambda x:                  

lst_colors[lst_elements.index(x)])  



 

 

 

## create size column (scaled) scaler = 

preprocessing.MinMaxScaler(feature_range=(3,15)) 

data["size"] = scaler.fit_transform(                

data[size].values.reshape(-1,1)).reshape(-1) ## initialize the 

map with the starting location map_ = 

folium.Map(location=location, tiles="cartodbpositron",  

                  zoom_start=11)  

## add points data.apply(lambda row: 

folium.CircleMarker(            location=[row[x],row[y]],             

color=row["color"], fill=True,popup=row[popup],            

radius=row["size"]).add_to(map_), axis=1)  

## add html legend legend_html = """<div style="position:fixed; bottom:10px; 

left:10px; border:2px solid black; z-index:9999; font-

size:14px;">&nbsp;<b>"""+color+""":</b><br>""" for i in lst_elements:  

     legend_html = legend_html+"""&nbsp;<i class="fa fa-circle       fa-

1x" style="color:"""+lst_colors[lst_elements.index(i)]+"""">  

     </i>&nbsp;"""+str(i)+"""<br>"""  

legend_html = legend_html+"""</div>""" 

map_.get_root().html.add_child(folium.Element(legend_html))  



 

 

 

## add centroids marker lst_elements = 

sorted(list(n[marker].unique())) 

data[data[marker]==1].apply(lambda row:   

           folium.Marker(location=[row[x],row[y]],             

draggable=False,  popup=row[popup] ,                   

icon=folium.Icon(color="black")).add_to(map_), axis=1) 

Results:  

 
   

  



 

 

 

 
 

 

 
  



 

 

 

 
  

  

  

GROUP ID- BT4122  

Team Members:                                   

GOURANG AJMERA     

(18SCSE1010669, 18021011893,   

gourang_ajmera.scsebtech@galgotiasuniversity.edu.in)  

  

ALOK SINGH  

             

(18SCSE1010135,18021011382,  

alok_singh.scsebtech@galgotiasuniversity.edu.in)  

 

 



 

 

 

Citations and References  

 

[1 ] Bao, Jie & Zheng, Yu. (2017). Location-Based 

Recommendation Systems. 10.1007/978-3-319-17885- 

1_1580. 

[2] Li, Youguo & Wu, Haiyan. (2012). A Clustering Method Based on K-Means 

Algorithm. Physics Procedia. 25. 1104-1109. 10.1016/j.phpro.2012.03.206. 

[3] S. Na, L. Xumin and G. Yong, "Research on k-means Clustering Algorithm: 

An Improved k-means Clustering Algorithm," 2010 Third International 

Symposium on Intelligent Information Technology and Security Informatics, 2010, 

pp. 63-67, doi: 10.1109/IITSI.2010.74. 

[4] C.S. ReVelle, H.A. Eiselt,Location analysis: A synthesis and survey,European 

Journal of Operational Research, 

Volume 165, Issue 1,2005,ISSN 0377-2217, 

[5] Barnes, T. J. (2003) ‘The place of locational analysis: a selective and 

interpretive history’, Progress in Human Geography, 27(1), pp. 69–95. doi: 

[6]RajeshKumar,D.,&Shanmugam,A.(2017).AHyperHeuristicLocalizationBasedCl

onedNodeDetectionTechniqueUsingGSABasedSimulatedAnnealingin. 

In Cognitive Computing for Big Data Systems Over IoT (pp. 307–335). Springer 

International Publishing. 

[7]Prasanth,T.,Gunasekaran,M.,&Kumar,D.R.(2018,December).BigdataApplicatio

ns.20184thInternationalConferenceonComputing 

Communication and Automation (ICCCA). 2018 4th International Conference on 

Computing Communication and Automation (ICCCA). 



 

 

 

[8] Al-Omary, Alauddin & Jamil, Mohammad. (2006). A new approach of 

clustering based machine-learning algorithm. Knowledge-Based Systems. 19. 

248-258. 10.1016/j.knosys.2005.10.011. 

[9]Rajesh Kumar D, & ManjupPriya S. (2013, December). Cloud based M-

Healthcare emergency using SPOC. 2013 Fifth International Conference on 

Advanced 

Computing (ICoAC). 2013 Fifth International Conference on Advanced 

Computing (ICoAC). 

[10] Rodriguez MZ, Comin CH, Casanova D, Bruno OM, Amancio DR, Costa 

LdF, et al. (2019) Clustering algorithms: A comparative approach. PLoS 

ONE 14(1): e0210236. 

[11]Soumya Ranjan Jena, Raju Shanmugam, Rajesh Kumar Dhanaraj, Kavita Saini 

Recent Advances and Future Research Directions in Edge Cloud Framework. 

(2019). International Journal of Engineering and Advanced Technology, 9(2), 439–

444. 

[12]Lalitha,K.,Kumar,D.R.,Poongodi,C.,&Arumugam,J.(2021).ToolsandTechnolo

gies.In Blockchain,Internet of Things, and Artificial 

Intelligence (pp. 331–348). Chapman and Hall/CRC. 

[13] Çelik, Özer. (2018). A Research on Machine Learning Methods and Its 

Applications. 10.31681/jetol.457046 

[14]Dhanaraj, R. K. (2020, November 5). Machine learning based Pedantic 

Analysis of Predictive Algorithms in Crop Yield Management. 2020 4th 

International 

ConferenceonElectronics,CommunicationandAerospaceTechnology(ICECA).2020

4thInternationalConferenceon Electronics,Communicationand Aerospace 

Technology (ICECA). 



 

 

 

[15]Dhanaraj, R. K., Rajkumar, K., & Hariharan, U. (2020). Enterprise IoT 

Modeling: Supervised, Unsupervised, and Reinforcement Learning. In Business 

Intelligence 

for Enterprise Internet of Things(pp. 55–79). Springer International Publishing. 

[16]Cynthia,J.,Sankari,M.,Suguna,M.,&kumar,D.R.(2018,December).SurveyonDis

asterManagementusingVANET.20184thInternationalConference 

on Computing Communication and Automation (ICCCA). 2018 4th International 

Conference on Computing Communication and Automation ( 

ICCCA). 

[17]Dhanaraj,R.K.,Shanmugam,A.,Palanisamy,C.,&Natarajan,A.(2016).OptimalCl

oneAttackDetectionModelusinganEnergy-EfficientGSAbased 

Simulated 

AnnealinginWirelessSensorNetworks.AsianJournalofResearchinSocialSciencesand

Humanities,6(11),201. 

[18]Sathya,K.,&Kumar,D.R.(2012,February).Energyefficient 

clusteringinsensornetworksusingClusterManager.2012InternationalConferenceon 

Computing, Communication and Applications. 2012 International Conference on 

Computing, Communication and Applications(ICCCA). 

[19]Lalitha, K., Varadhaganapathy, S., Santhoshi, S., & Kumar, D. R. (2017, 

August). A Literature Review of Spatial Location Analysis for Retail Site 

Selection 

. 2017 Journal of the Association for Information Systems(J ASSOC INF SYST) 

Publisher: Association for Information Systems  

 

 



 

 

 

Publication/ Screen Shots  

 

 

 


