
0

 SMART MIRROR USING RASPBERRY PI

 A PROJECT REPORT OF CAPSTONE PROJECT 2

 Submitted by

TATHAGAT SINHA

 (1513101658/15SCSE101346)

In partial fulfilment for the award of the degree

 Of

 BACHELOR OF TECHNOLOGY

 IN

 COMPUTER SCIENCE AND ENGINEERING

 SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

 Under the supervision of

 JAYAKUMAR VAITHIYASHANKAR

APRIL/MAY-2020

1

Certified that this project report “SMART MIRROR USING RASPBERRY

PI” is the bonafide work of “TATHAGAT SINHA(1513101658)” who carried

out the project work under my supervision.

2

Table of Contents
 LIST OF FIGURES 3
 ABSTRACT 4
1. INTRODUCTION 5-7

1.1 WHAT IS SMART MIRROR 5-6
1.2 INTERNET OF THINGS 6
1.3 MAKER CULTURE 6
1.4 HOME AUTOMATION 7
1.5 STRUCTURE FOR THE SMART MIRROR 7

2. LITERATURE SURVEY 8-10
 2.1 MICROSOFT MAGIC MIRROR 8
 2.2 EKKO SMART MIRROR 8
 2.3 APPLE MIRROR 9
 2.4 NUOVO SMART MIRROR 9
 2.5 PERSEUS SMART MIRROR 9
 2.6 NAKED 3D FITNESS TRACKER 9
 2.7 DETAILED COMPARISON OF SMART MIRROR 10
3. PROBLEM STATEMENT 11
4. PROPOSED MODEL 11-12
5. EXISTING MODEL 13-22
 5.1 HARDWARE 13-16
 5.1.1 ONE-WAY MIRROR 14
 5.1.2 DISPLAY 14
 5.1.3 RASPBERRY PI 3 15
 5.1.4 MICROPHONE 15
 5.1.5 ULTRASONIC SENSOR 16
 5.1.6 FRAME AND SUPPORT 16
 5.2 SOFTWARE 16-22
 5.2.1 VOICE ASSISTANCE USING PYTHON 16-19
 5.2.2 FACE RECOGNITION FOR USER 19-20
 5.2.3 RASPBIAN 20
 5.2.4 MIRROROS 20-21
 5.2.5 GESTURE CONTROL 22
6. RESULT 23
7. CONCLUSION 24

REFERENCE 25
APPENDIX 26-38
 APPENDIX 1 26-35
 APPENDIX 2 35
 APPENDIX 3 35-38

3

 LIST OF FIGURES

FIGURE 1: TYPICAL SKETCH OF A SMART MIRROR 7

FIGURE 2: DETAILED COMPARISON OF SMART MIRROR 10

FIGURE 3: SKETCH OF THE HARDWARE DESIGN

REQUIRED FOR THE SMART MIRROR 13

FIGURE 4: ONE-WAY MIRROR 14

FIGURE 5: RASPBERRY PI 3 15

FIGURE 6: MICROPHONE 15

FIGURE 7: ULTRASONIC SENSORS 16

FIGURE 8: LAYERS OF THE SOFTWARE

STACK IN SMART MIRROR 21

FIGURE 9: MIRROROS BOOT SEQUENCE

AND BASIC OPERATIONS 21

4

 ABSTRACT

 This project has been developed within the context of a time where every

day we see more and more connected devices. The Internet transformed our

lives by connecting us more easily to information and other people in the

virtual world. Mobile phones then became smartphones and since then this

concept has erupted and morphed into the Internet of Things, things which

connect us to everyday objects. There are no end of objects that could be

made “smarter”, some being more suited to this than others. Mirrors, for

example, provide a large surface ideal for displaying information and

interacting with. Most people have mirrors at home so the concept of a smart

mirror that you can interact with is attractive and has been fantasized in

many futuristic movies. Smart mirrors, such as Magic Mirror and Home

Mirror have recently started to be developed by people in the Maker

community, with varying degrees of interactivity. However, so far, the

features of these mirrors have been limited. This final year project describes

how a smart mirror was built from scratch using a Raspberry Pi for the

hardware and custom software built on top of Raspbian, a Linux distribution.

The goal of the project was to create a Smart Mirror device that people could

interact with but also to further develop the technology so that it would let

you install and develop your own applications for it. On the whole results

were good because a higher level of interactivity has been achieved by being

able to use voice commands, gestures and smartphones. A few problems

arose in the construction and software side of the project, such as the glass

not being reflective enough and the gesture recognition being unreliable but

these drawbacks can be addressed by doing more tests and trials to further

develop the Smart Mirror.

5

 INTRODUCTION

1.1 What is Smart Mirror?

Everyone knows what a mirror is. It is an object found in most people’s

homes. In mirrors we see our reflections. But what happens when you

combine the idea of a mirror with technology? What possibilities are there

and how smart could a mirror be? These are some of the questions that

inspired my choice of final year project, a project which aimed to develop a

smart mirror and a small operating system to power it. The device was to go

beyond an ordinary mirror, to have a screen inside that you would be able to

interact with by using voice commands, hand gestures and smartphones or

other devices.

Multimedia is a very broad area and I like every aspect of it so it was

difficult to choose a specific area and I had many ideas. However, I finally

decided to build a smart mirror because it is a great combination of many of

the things we have studied: web technologies, electronics, UI design, etc.

The smart mirror is a popular project among DIY enthusiasts and it usually

consists of a one-way mirror with a screen attached to it that displays a static

web page. However, what I wanted to achieve was something you could

interact with. My goal was to learn how a Raspberry Pi worked and to

understand how to combine the software and the hardware components to

create a multimedia project.

I started by obtaining a Raspberry Pi and creating the software. At the same

time, I began documenting everything and I also searched for a suitable one--

way mirror and a computer screen, as well as some sensors to physically

interact with the device. I then spent a long time calibrating the sensors to

work with the software. Once the software was almost finished, I started

designing the frame and finally I built the smart mirror and attached all the

components.

6

Developing this project has been a great experience. I have learned a diverse

range of skills in different fields, such as DIY, Linux, electronics and web

development. To obtain the final result I’ve had to work with many different

technologies. I used Photoshop and Illustrator for the UI designs, web

development tools for the software and electronics for the hardware. Not

sticking to just one field has made this project a really fun one and I would

recommend it to anyone who is passionate about creating things.

1.2 Internet of Things

The Internet of Things is a concept defined as a network of connected

physical objects (Internet of things, 2016). It’s often viewed as the next step

for the internet. Recently it has gained a lot of popularity predicting that in

the future most everyday objects will be connected to each other and will be

able to interact in smart ways. The Smart Mirror will eventually become one

of these connected objects in our households and if we think about it being

able to communicate with other objects the possibilities become endless.

1.3 Maker culture

The maker culture is a contemporary culture derived from DIY culture and

hacker culture(Maker culture, 2016). It focuses in the creation of new

devices as well as modifying existing ones. It often supports and embraces

open-source hardware and software. This culture has been growing rapidly

thanks to tools and technology like the Raspberry Pi, 3D printers and other

hardware that have become increasingly affordable and accessible. The

Internet also plays a big part in the community as it enables people to share

their ideas, blueprints and code.

Smart Mirror is a good example of a Maker culture project.

7

1.4 Home automation

Home automation has been around for a long time and it is all about turning

the house into an intelligent unit with the goal of increasing comfort and

efficiency at home. Some of the typical applications are automatic lights,

intelligent thermostats, alarms, window blinds (Home automation, 2013). In

my project I will not be focusing on home automation since I don't have

access to any smart home devices. However it would be very easy to write an

application to turn on and off the lights using voice commands or gestures on

the mirror or even an application to change the temperature of the room, for

example. These examples are just the tip of the iceberg as there are new

connected devices emerging everyday that could interact with the mirror.

1.5 Structure for the Smart Mirror

 FIG. 1

8

 LITERATURE SURVEY

Today smart homes and virtual assistant are trending among the people.

Amazon, Google and Phillips are presenting their advance technology in the

field of smart home or AmI. People are excited too for their amazing

products and for these futuristic devices. Phillips HomeLab is a leading

company for creating digital home environments. Interactive mirror is one of

their project for home environments. This mirror supports playing music or

videos. This mirror consists a normal mirror on a LED which performs the

playback feature.

There are different kind of smart mirrors that are being proposed or available

in the market. Some of them are discussed below:

2.1 Microsoft’s Magic Mirror

This mirror is proposed by Microsoft in 2016. This smart mirror works on

Windows 10 IoT Core on Raspberry Pi 3. This is powered by Windows Hello

cognitive services. This was an open source project. Its web app was made

open to GitHub repository so that anyone can build its own smart mirror. The

mirror shows traffic updates, weather and supports voice recognition.

2.2 Ekko Smart Mirror

This smart mirror runs on their own linux based platform on Raspberry Pi

and it required an installed app on the user’s smartphone. It also has sensors

which could recognize the gestures of the user. Other than highlighting news,

weather and time, the user can also play videos and music.

9

2.3 Apple Mirror (Rafael Dymek)

This smart mirror prototype is based on iOS 10 that mirror the iPhone

display. The mirror can launch all the mobile apps desired by the user. This

mirror sleeps after every 45 seconds of ideal situation. This is a touchscreen

smart mirror.

2.4 Nuovo Smart Mirror

This android based smart mirror required an android application on the user’s

smartphone. The mirror supports music and videos playback. This mirror

also supports features like weather, maps and the social networking like

Twitter, Facebook, etc. The auto sleep mode is also supported by the mirror.

2.5 Perseus Smart Mirror

This smart mirror runs on the separate platform on Raspberry Pi. This mirror

doesn’t require any application on the smartphone. This mirror is available in

different sizes. This mirror supports music, videos and social networking.

2.6 Naked 3d Fitness Tracker

This mirror consists a huge number of sensors which reads a 3d scan of the

body and checks for any formational abnormality. It also senses the area of

the body which is prone to an injury. Its also suggests workout plans to be fit.

10

2.7 A Detailed Comparison of Smart Mirrors

 FIG. 2

11

 PROBLEM STATEMENT

The major problem of any existing mirror is displaying just the object in

front of it or just the human face without having to interact with them. This

project is developed with the intention that people spend quality time in front

of the mirror.

 PROPOSED SYSTEM

We plan to design and develop such kind of futuristic smart mirror which

provides a whole new experience to the user with the flavor of AmI. Our

proposed smart mirror consists a two-way mirror, acrylic glass, monitor

(LED), Raspberry Pi, Raspberry Modules, sensors.

A wooden frame will be prepared with LED attached behind the glass with

all the sensors and the raspberry pi. The power supply is attached to the

raspberry pi which will power the LED monitor and the sensors.

Once the mirror is activated, it will connect to the docker which contains all

api and software needed to run the mirror. This will require internet access

which will be provided by the wi-fi module (LAN can be also used) on the

raspberry pi.

The virtual layout that will be prepared using HTML and CSS will be

displayed on the mirror when it is turned on and will show calendar, weather

and news headlines. The docker will contain the api of Alexa (virtual voice

assistant from Amazon) that will respond to the user’s voice.

The mirror will perform facial recognition which will be helpful for real time

image zoom in and out. This will be one with help of OpenCV and some java

programming.

The proposed smart mirror will perform these tasks:

12

1. A normal two-way mirror and acrylic glass will display real time image.

2. After activation the mirror will display weather, time and news.

3. The mirror can play music and videos.

4. The mirror can zoom in and out real-time images.

5. The mirror will automatically sleep if a person disappears from front with

the help of sensors.

6. The mirror can be used as displaying moving images and animations in

case of ideal situation with the help of sensors which will detect the presence

and absence of any person in front of the mirror.

7. Through Uber api, the mirror can book a ride on Uber.

8. All the social networking websites or apps can be accessed with the voice.

9. The mirror can perform real time photo editing.

10. The mirror can be synced with other devices which leads to the home

automation.

11. The mirror also supports multiple user’s profile.

12. YouTube videos are also supported by the mirror.

13

 EXISTING SYSTEM

5.1 HARDWARE

For the hardware I used a 24” LG computer monitor, a 50x90x0.5cm

one-way mirror a Raspberry Pi 2, two USB microphones and two ultrasonic

sensors. Everything was put together in a wooden frame.

These are the final sketches for the hardware design:

 FIG. 3

The device has two wooden parts. The back part holds the display and the

Raspberry Pi and is used to support the device so that it can be hung on a

wall. The frame is attached to the glass by two small wooden slats and it has

four holes, two on each side, that contain the ultrasound sensors. The frame

can be attached and detached from the back part so it’s easy to change the

14

glass or even the whole frame. See appendices 1 and 2. A breakdown of

each of the main parts of the smart mirror (the one-way mirror glass, display,

Raspberry Pi 2, microphones, ultrasonic sensors and frame) and how they

were used is described in the following sections:

5.1.1 One-way mirror

This is probably the most important part of the hardware because it’s

responsible for creating the futuristic effect and is the biggest part of the

smart mirror. Wikipedia provides the following definition:

A one-way mirror, sometimes called two-way mirror, is a mirror that is

partially reflective and partially transparent. When one side of the mirror is

brightly lit and the other is dark, it allows viewing from the darkened side but

not vice versa.

 FIG.4

5.1.2 Display

The monitor is much smaller than the mirror so a black sticker was used to

cover the parts of the glass which are not covered by the display. An

HDMI cable was used to connect the display to the Raspberry Pi for video

and audio.

15

5.1.3 Raspberry Pi 3

The Raspberry Pi is a single-board computer developed by the Raspberry Pi

foundation in the UK. It has become the most popular computer of it’s kind

thanks to great support and a big community behind it as well as an

inexpensive price. The Pi does not work out of the box. It lacks a hard drive

and it does not come with a preinstalled operating system. To install an OS

you need a microSD card prepared with an OS image. And because the

software that will be running on the mirror will be coded on the same device

at least a screen, a keyboard and a mouse are required.

 FIG. 5

5.1.4 Microphones

One mode of interaction with the smart mirror is through microphones. Two

microphones were used to power the voice recognition capabilities of the

device. USB microphones had to be used because the Raspberry Pi does not

have a regular microphone input. The first microphone is a

cheap simple one connected through a USB sound card to the Pi.

The voice recognition system works by listening for someone to clap with

the first microphone and once that happens the second, higher quality

microphone is triggered to listen for a voice command.

 FIG. 6

16

5.1.5 Ultrasonic sensors

The ultrasonic sensors are the second way to interact with the smart mirror.

An ultrasonic sensor has two main parts, a speaker and a microphone. It

works by sending an ultrasound with the speaker and returning the time it

takes to capture the echo with the microphone. With the time it takes and the

speed of sound we can then calculate the distance of an object from the

sensor.

 FIG. 7

5.1.6 Frame and support

The frame is made of wood and it provides the support for the mirror and all

the other components. It frames the glass and provides a way for hanging the

mirror on a wall.

5.2 SOFTWARE

5.2.1 Voice Assistance Using Python Library

As we know Python is a suitable language for script writers and developers.

Let’s write a script for Voice Assistant using Python. The query for the

assistant can be manipulated as per the user’s need. Speech recognition is the

process of converting audio into text. This is commonly used in voice

assistants like Alexa, Siri, etc. Python provides an API called speech

recognition to allow us to convert audio into text for further processing. In

this article, we will look at converting large or long audio files into text using

17

the speech recognition API in python. Many others modules are also used

with Speech recognition to develop the voice assistant. Some of them are

described below:

• Subprocess: This module is used for getting system subprocess details

which are used in various commands i.e Shutdown, Sleep, etc. This module

comes buit-in with Python.

• Wolframalpha: It is used to compute expert-level answers using

Wolfram’s algorithms, knowledgebase and AI technology. To install this

module type the below command in the terminal.

• Pyttsx3: This module is used for conversion of text to speech in a program

it works offline. To install this module type the below command in the

terminal.

• Tkinter: This module is used for building GUI and comes inbuit with

Python. This module comes buit-in with Python.

• Wikipedia: As we all know Wikipedia is a great source of knowledge just

like GeeksforGeeks we have used Wikipedia module to get information

from Wikipedia or to perform Wikipedia search. To install this module

type the below command in the terminal.

• Speech Recognition: Since we’re building an Application of voice

assistant, one of the most important things in this is that your assistant

recognizes your voice (means what you want to say/ ask). To install this

module type the below command in the terminal.

18

• Web browser: To perform Web Search. This module comes built-in with

Python.

• ES capture: To capture images from your Camera. To install this module

type the below command in the terminal

• Pyjokes: Pyjokes is used for collection Python Jokes over the Internet. To

install this module type the below command in the terminal.

• Datetime: Date and Time is used to showing Date and Time. This module

comes built-int with Python.

• Twilio: Twilio is used for making call and messages. To install this module

type the below command in the terminal.

• Requests: Requests is used for making GET and POST requests. To install

this module type the below command in the terminal.

• BeautifulSoup: Beautiful Soup is a library that makes it easy to scrape

information from web pages. To install this module type the below

command in the terminal.

In this program I have tried to cover most of the functions that has to be

performed by the smart mirror by using voice assistance this program runs

after the successful face recognised by the user. Functions performed by the

voice assistance are:

• Weather at your location.

• Current time and date

• News Headlines

19

• Business News, Technology News, World News, Sports News

• Calender

• Play music, videos, documents , etc

• Quotes

• Activates spy camera

Below is the code of the voice-assistance program which you can see in

appendix 1.

5.2.2 Face Recognition for User

Recognize and manipulate faces from Python or from the command line with

the world's simplest face recognition library. Built using dlib's state-of-the-

art face recognition built with deep learning. The model has an accuracy of

99.38% on the Labeled Faces in the Wild benchmark. This also provides a

simple face-recognition command line tool that lets you do face recognition

on a folder of images from the command line!

This is the default program in which when the mirror senses someone near

him through ultrasonic sensors, the mirror automatically execute this task

and automatically ask the user whether he can take the photograph for unlock

the features of the mirrors. When successfully recognised automatically

http://dlib.net/
http://vis-www.cs.umass.edu/lfw/

20

voice assistance starts to work further and we are ready to give the

commands as per as our needs.

Below is the code for face-recognition program which you can see in

appendix 2

5.2.3 Raspbian

Raspbian is the recommended operating system for normal use on a

Raspberry Pi. Raspbian is a free operating system based on Debian,

optimised for the Raspberry Pi hardware. Raspbian comes with over 35,000

packages: precompiled software bundled in a nice format for easy

installation on your Raspberry Pi. Raspbian is a community project under

active development, with an emphasis on improving the stability and

performance of as many Debian packages as possible.

5.2.4 MirrorOS

MirrorOS is the software created for the Smart Mirror’s interface and it runs

on top of Raspbian and on top of Electron. In the following figure you can

see the layers of the software stack.

21

 FIG. 8

MirrorOS has three main services:

1.The voice input service, used to handle all the voice recognition process usi

ng2.The gesture input service, used to handle gesture recognition using the

ultrasonic sensors.

3.A socket server which is in charge of communicating with smartphones or

 other devices.

 FIG. 9

22

5.2.5 gesture control

In this module I had tried to work with the ultrasonic sensors i.e when the

user come near the smart mirror it will automatically open the face

recognition program and ask the user to recognise the face. This feature is

only used for on/off the smart mirror. But later on we will try to do gesture

control from fingers.

Below is the gesture-control code which you can see in appendix 3

23

 RESULT

As we had seen in the comparison table that every mirror is working on

different technologies and platforms. These mirrors also differ in

functionalities and users. We had proposed a mirror which works on common

architecture and also had all the required functions for the user.

24

 CONCLUSION

We had proposed the comparative study and a design of a futuristic smart

mirror which could be great device for ambient home services. Speech

recognition is one of the major advantages of the mirror. Live animations

will make the bathroom more fashionable. The proposed smart can be easily

extended for some other frameworks like making phone calls. In future this

mirror can be used to build smart home network with devices such as lights,

virtual assistant, TV, music system, refrigerators, etc. can be integrated

together. This would lead to real smart home.

25

REFERENCE

1.https://www.github.com/MichMich/MagicMirror

2. https://www.github.com/aishmittal/Smart-Mirror

3. https://www.geeksforgeeks.org/voice-assistant-using-python/?ref=rp

4. 1. D.K.Mittal – a comparative study and a new model for smart mirror-

International journal of scientific research in computer science and engineering

volume 5.

5. ekko smart mirror

6. Apple mirror

7. Nuovo smart mirror

8. Perseus smart mirror

9. Naked 3d fitness trackeR

10. Microsoft Smart Mirror

https://www.geeksforgeeks.org/voice-assistant-using-python/?ref=rp

26

 APPENDIX

APPENDIX 1

Voicerecognition.py

import subprocess

import wolframalpha

import pyttsx3

import json

import random

import speech_recognition as sr

import datetime

import wikipedia

import webbrowser

import os

import winshell

import pyjokes

import smtplib

import ctypes

import time

import requests

import shutil

from urllib.request import urlopen

engine = pyttsx3.init('sapi5')

voices = engine.getProperty('voices')

engine.setProperty('voice', voices[1].id)

def speak(audio):

 engine.say(audio)

 engine.runAndWait()

def wishMe():

 hour = int(datetime.datetime.now().hour)

 if hour>= 0 and hour<12:

 speak("Good Morning Sir !")

 elif hour>= 12 and hour<18:

 speak("Good Afternoon Sir !")

 else:

 speak("Good Evening Sir !")

27

 assname =("Jarvis 1 point o")

 speak("I am your Assistant")

 speak(assname)

def usrname():

 speak("What should i call you sir")

 uname = takeCommand()

 speak("Welcome Mister")

 speak(uname)

 columns = shutil.get_terminal_size().columns

 print("#####################".center(columns))

 print("Welcome Mr.", uname.center(columns))

 print("#####################".center(columns))

 speak("How can i Help you, Sir")

def takeCommand():

 r = sr.Recognizer()

 with sr.Microphone() as source:

 print("Listening...")

 r.pause_threshold = 1

 audio = r.listen(source)

 try:

 print("Recognizing...")

 query = r.recognize_google(audio, language ='en-in')

 print(f"User said: {query}\n")

 except Exception as e:

 print(e)

 print("Unable to Recognizing your voice.")

 return "None"

 return query

def sendEmail(to, content):

 server = smtplib.SMTP('smtp.gmail.com', 587)

 server.ehlo()

 server.starttls()

 # Enable low security in gmail

28

 server.login('tathagatsinha254@gmail.com', 'wisemanschool')

 server.sendmail('tathagatsinha254@gmail.com',

'tathagatsinha@rediffmail.com', 'content')

 server.close()

if __name__ == '__main__':

 clear = lambda: os.system('cls')

 # This Function will clean any

 # command before execution of this python file

 clear()

 wishMe()

 usrname()

 while True:

 query = takeCommand().lower()

 # All the commands said by user will be

 # stored here in 'query' and will be

 # converted to lower case for easily

 # recognition of command

 if 'wikipedia' in query:

 speak('Searching Wikipedia...')

 query = query.replace("wikipedia", "")

 results = wikipedia.summary(query, sentences = 3)

 speak("According to Wikipedia")

 print(results)

 speak(results)

 elif 'open youtube' in query:

 speak("Here you go to Youtube\n")

 webbrowser.open("youtube.com")

 elif 'open google' in query:

 speak("Here you go to Google\n")

 webbrowser.open("google.com")

 elif 'open stackoverflow' in query:

 speak("Here you go to Stack Over flow.Happy coding")

 webbrowser.open("stackoverflow.com")

 elif 'play music' in query or "play song" in query:

 speak("Here you go with music")

29

 # music_dir = "G:\\Song"

 music_dir = "E://Songs"

 songs = os.listdir(music_dir)

 print(songs)

 random = os.startfile(os.path.join(music_dir, songs[1]))

 elif 'the time' in query:

 strTime = datetime.datetime.now().strftime("%H:%M:%S")

 speak(f"Sir, the time is {strTime}")

 elif 'email to galgotiasuniversity' in query:

 try:

 speak("What should I say?")

 content = takeCommand()

 to = "Receiver email address"

 sendEmail(to, content)

 speak("Email has been sent !")

 except Exception as e:

 print(e)

 speak("I am not able to send this email")

 elif 'send a mail' in query:

 try:

 speak("What should I say?")

 content = takeCommand()

 speak("whome should i send")

 to = takeCommand()

 sendEmail(to, content)

 speak("Email has been sent !")

 except Exception as e:

 print(e)

 speak("I am not able to send this email")

 elif 'how are you' in query:

 speak("I am fine, Thank you")

 speak("How are you, Sir")

 elif 'fine' in query or "good" in query:

 speak("It's good to know that your fine")

 elif "change my name to" in query:

 query = query.replace("change my name to", "")

30

 assname = query

 elif "change name" in query:

 speak("What would you like to call me, Sir ")

 assname = takeCommand()

 speak("Thanks for naming me")

 elif "what's your name" in query or "What is your name" in query:

 speak("My friends call me")

 speak(assname)

 print("My friends call me", assname)

 elif 'exit' in query:

 speak("Thanks for giving me your time")

 exit()

 elif "who made you" in query or "who created you" in query:

 speak("I have been created by Tathagat.")

 elif 'joke' in query:

 speak(pyjokes.get_joke())

 elif "calculate" in query:

 app_id = "K58RW2-PJY7LTPJ54"

 client = wolframalpha.Client(app_id)

 indx = query.lower().split().index()

 query = query.split()[indx + 1:]

 res = client.query(' '.join(query))

 answer = next(res.results).text

 print("The answer is " + answer)

 speak("The answer is " + answer)

 elif 'search' in query or 'play' in query:

 query = query.replace("search", "")

 query = query.replace("play", "")

 webbrowser.open(query)

 elif "who i am" in query:

 speak("If you talk then definately you are human.")

 elif "why you came to world" in query:

31

 speak("Thanks to Tathagat. further It's a secret")

 elif 'power point presentation' in query:

 speak("opening Power Point presentation")

 power = r"C:\\Users\\GAURAV\\Desktop\\Minor

Project\\Presentation\\Voice Assistant.pptx"

 os.startfile(power)

 elif 'in love' in query:

 speak("It is 7th sense that destroy all other senses")

 elif "who are you" in query:

 speak("I am your virtual assistant created by Tathagat")

 elif 'reason for you' in query:

 speak("I was created as a smart mirror project by Mister

Tathagat ")

 elif 'change background' in query:

 ctypes.windll.user32.SystemParametersInfoW(20,

 0,

 "Location of wallpaper",

 0)

 speak("Background changed succesfully")

 elif 'open bluestack' in query:

 appli =

r"C:\\ProgramData\\BlueStacks\\Client\\Bluestacks.exe"

 os.startfile(appli)

 elif 'news' in query:

 try:

 jsonObj =

urlopen('''https://newsapi.org//v1//articles?source=the-times-of-

india&sortBy=top&apiKey=\\timesofIndiaApikey\\''')

 data = json.load(jsonObj)

 i = 1

32

 speak('here are some top news from the times of

india')

 print('''=============== TIMES OF INDIA

============'''+ '\n')

 for item in data['articles']:

 print(str(i) + '. ' + item['title'] + '\n')

 print(item['description'] + '\n')

 speak(str(i) + '. ' + item['title'] + '\n')

 i += 1

 except Exception as e:

 print(str(e))

 elif 'lock window' in query:

 speak("locking the device")

 ctypes.windll.user32.LockWorkStation()

 elif 'shutdown system' in query:

 speak("Hold On a Sec ! Your system is on its way to

shut down")

 subprocess.call('shutdown / p /f')

 elif 'empty recycle bin' in query:

 winshell.recycle_bin().empty(confirm = False,

show_progress = False, sound = True)

 speak("Recycle Bin Recycled")

 elif "don't listen" in query or "stop listening" in query:

 speak("for how much time you want to stop jarvis from

listening commands")

 a = int(takeCommand())

 time.sleep(a)

 print(a)

 elif "where is" in query:

 query = query.replace("where is", "")

 location = query

 speak("User asked to Locate")

 speak(location)

33

 webbrowser.open("https://www.google.nl / maps / place/" +

location + "")

 elif "restart" in query:

 subprocess.call(["shutdown", "/r"])

 elif "hibernate" in query or "sleep" in query:

 speak("Hibernating")

 subprocess.call("shutdown / h")

 elif "log off" in query or "sign out" in query:

 speak("Make sure all the application are closed before sign-

out")

 time.sleep(5)

 subprocess.call(["shutdown", "/l"])

 elif "write a note" in query:

 speak("What should i write, sir")

 note = takeCommand()

 file = open('jarvis.txt', 'w')

 speak("Sir, Should i include date and time")

 snfm = takeCommand()

 if 'yes' in snfm or 'sure' in snfm:

 strTime =

datetime.datetime.now().strftime("%H:%M:%S")

 file.write(strTime)

 file.write(" :- ")

 file.write(note)

 else:

 file.write(note)

 elif "show note" in query:

 speak("Showing Notes")

 file = open("jarvis.txt", "r")

 print(file.read())

 speak(file.read(6))

 # NPPR9-FWDCX-D2C8J-H872K-2YT43

 elif "jarvis" in query:

 wishMe()

34

 speak("Jarvis 1 point o in your service Mister")

 speak(assname)

 elif "weather" in query:

 # Google Open weather website

 # to get API of Open weather

 api_key = "Api key"

 base_url =

"http://api.openweathermap.org//data//2.5//weather?"

 speak(" City name ")

 print("City name : ")

 city_name = takeCommand()

 complete_url = base_url + "appid =" + api_key + "&q =" +

city_name

 response = requests.get(complete_url)

 x = response.json()

 if x["cod"] != "404":

 y = x["main"]

 current_temperature = y["temp"]

 current_pressure = y["pressure"]

 current_humidiy = y["humidity"]

 z = x["weather"]

 weather_description = z[0]["description"]

 print(" Temperature (in kelvin unit) = "

+str(current_temperature)+"\n atmospheric pressure (in hPa unit)

="+str(current_pressure) +"\n humidity (in percentage) = "

+str(current_humidiy) +"\n description = " +str(weather_description))

 else:

 speak(" City Not Found ")

 elif "wikipedia" in query:

 webbrowser.open("wikipedia.com")

 elif "Good Morning" in query:

 speak("A warm" +query)

 speak("How are you Mister")

 speak(assname)

 # most asked question from google Assistant

 elif "will you be my gf" in query or "will you be my bf" in query:

35

 speak("I'm not sure about, may be you should give me some

time")

 elif "how are you" in query:

 speak("I'm fine, glad you me that")

 elif "i love you" in query:

 speak("It's hard to understand")

 # elif "" in query:

 # Command go here

 # For adding more commands

APPENDIX 2

Facerecognition.py

import os

from ecapture import ecapture as ec

import face_recognition

image = ec.delay_imcapture(0, "image", "first.jpg", 2)

image_to_be_matched = face_recognition.load_image_file('first.jpg')

image_encoded =

face_recognition.face_encodings(image_to_be_matched)[0]

current_image = face_recognition.load_image_file('user1.jpg')

current_image_encoded =

face_recognition.face_encodings(current_image)[0]

result =

face_recognition.compare_faces([image_encoded],current_image_encoded)

if result[0] == True:

 os.system('voiceassistance.py')

else:

 print ("try again")

APPENDIX 3

Gesturecontrol.py

36

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BOARD)

 TRIG = 7

 ECHO = 12

 TRIG2 = 35

 ECHO2 = 38

 MIN_DISTANCE = 15

 TARGET_HOLD_COUNT = 8

 GPIO.setup(TRIG,GPIO.OUT)

 GPIO.output(TRIG,0)

 GPIO.setup(ECHO,GPIO.IN)

 GPIO.setup(TRIG2,GPIO.OUT)

 GPIO.output(TRIG2,0)

 GPIO.setup(ECHO2,GPIO.IN)

 time.sleep(0.1)

 prevSensorL = False

 prevSensorR = False

 holdCountL = 0

 holdCountR = 0

 lastInteractionTime = 0

 print ("Starting gesture recognition")

 try: # here you put your main loop or block of code

while True:

 #print "Starting measurement"

 GPIO.output(TRIG,1)

 time.sleep(0.00001)

 GPIO.output(TRIG,0)

 while GPIO.input(ECHO) == 0:

 pass

start = time.time()

while GPIO.input(ECHO) == 1:

pass

stop = time.time()

GPIO.output(TRIG2,1)

time.sleep(0.00001)

GPIO.output(TRIG2,0)

while GPIO.input(ECHO2) == 0:

pass

start2 = time.time()

while GPIO.input(ECHO2) == 1:

pass

37

stop2 = time.time()

interaction = False

distance = (stop - start) * 17000

distance2 = (stop2 - start2) * 17000

sensorR = distance < MIN_DISTANCE

sensorL = distance2 < MIN_DISTANCE

#if prevSensorL and sensorR:

#print "Swipe right"

#if prevSensorR and sensorL:

#print "Swipe left"

if prevSensorL and sensorL:

holdCountL = holdCountL + 1

if holdCountL < TARGET_HOLD_COUNT:

print ("0")

if prevSensorR and sensorR:

holdCountR = holdCountR + 1

if holdCountR < TARGET_HOLD_COUNT:

print ("1")

if holdCountL >= TARGET_HOLD_COUNT:

holdCountL = 0

print ("10")

if holdCountR >= TARGET_HOLD_COUNT:

holdCountR = 0

print ("11")

interaction = sensorL or sensorR

prevSensorL = sensorL

prevSensorR = sensorR

if interaction:

lastInteractionTime = time.time()

elif time.time() - lastInteractionTime > 1:

#print "Resetting"

prevSensorL = False

prevSensorR = False

holdCountL = 0

holdCountR = 0

lastInteractionTime = time.time()

time.sleep(0.1)

except KeyboardInterrupt:

here you put any code you want to run before the program

exits when you press CTRL+C

print ("exiting") except:

this catches ALL other exceptions including errors.

You won't get any error messages for debugging

38

so only use it once your code is working

print ("Other error or exception occurred!")

finally: GPIO.cleanup() # this ensures a clean exit

