

INDUSTRY INTERNSHIP

SUMMARY REPORT

Bootcamp Of AIML

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by: -

Ishan Srivastava

(Admission no. :18SCSE1140007)

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

GREATER NOIDA, UTTAR PRADESH

Winter 2021– 2022

BONAFIDE CERTIFICATE

CERTIFICATE

I hereby certify that the work which is being presented in the Internship

project report entitled “ Bootcamp in AIML “in partial fulfilment for the

requirements for the award of the degree of Bachelor of Technology in the School

of Computing Science and Engineering of Galgotias University , Greater Noida,

is an authentic record of my own work carried out in the industry.

To the best of my knowledge, the matter embodied in the project report has

not been submitted to any other University/Institute for the award of any Degree.

Ishan Srivastava

(Admission no:18SCSE1140007)

 This is to certify that the above statement made by the candidate is correct

and true to the best of my knowledge.

Signature of Internship Coordinator Signature of Dean (SCSE)

Dr.N.Partheeban

Professor & IIIC

School of Computing Science &

Engineering

Galgotias University

Greater Noida.

Dr. MUNISH SABHARWAL

Professor & Dean

School of Computing Science &

Engineering

Galgotias University

Greater Noida.

ABSTRACT

AIML stands for Artificial Intelligence Markup Language. AIML was

developed by the Alicebot free software community and Dr. Richard S. Wallace

during 1995-2000. AIML is used to create or customize Alicebot which is a

chat-box application based on A.L.I.C.E. (Artificial Linguistic Internet

Computer Entity) free software. Machine Learning, as the name suggests, is the

science of programming a computer by which they are able to learn from

different kinds of data. A more general definition given by Arthur Samuel is –

“Machine Learning is the field of study that gives computers the ability to

learn without being explicitly programmed.” They are typically used to solve

various types of life problems.

AIML Tags

<aiml>

Defines the beginning and end of a AIML document.

<category>

Defines the unit of knowledge in Alicebot's knowledge base.

<pattern>

Defines the pattern to match what a user may input to an Alicebot.

<template>

Defines the response of an Alicebot to user's input.

<star>

Used to match wild card * character(s) in the <pattern> Tag.

<srai>

Multipurpose tag, used to call/match the other categories.

<random>

Used <random> to get random responses.

Used to represent multiple responses.

<set>

Used to set value in an AIML variable.

<get>

Used to get value stored in an AIML variable.

<that>

Used in AIML to respond based on the context.

AIML Libraries:

In the older days, people used to perform Machine Learning tasks by manually

coding all the algorithms and mathematical and statistical formula. This made

the process time consuming, tedious and inefficient. But in the modern days, it

is become very much easy and efficient compared to the olden days by various

python libraries, frameworks, and modules. Today, Python is one of the most

popular programming languages for this task and it has replaced many

languages in the industry, one of the reason is its vast collection of libraries.

Python libraries that used in Machine Learning are:

• Numpy

• Scipy

• Scikit-learn

• Theano

• TensorFlow

• Keras

• PyTorch

• Pandas

• Matplotlib

NumPy : is a very popular python library for large multi-dimensional array

and matrix processing, with the help of a large collection of high-level

mathematical functions. It is very useful for fundamental scientific

computations in Machine Learning. It is particularly useful for linear algebra,

Fourier transform, and random number capabilities. High-end libraries like

TensorFlow uses NumPy internally for manipulation of Tensors.

Python code Using Numpy:

import numpy as np

x = np.array([[1, 2], [3, 4]])

y = np.array([[5, 6], [7, 8]])

v = np.array([9, 10])

w = np.array([11, 12])

print(np.dot(v, w), "\n")

print(np.dot(x, v), "\n")

print(np.dot(x, y))

SciPy: is a very popular library among Machine Learning enthusiasts as it

contains different modules for optimization, linear algebra, integration and

statistics. There is a difference between the SciPy library and the SciPy stack.

The SciPy is one of the core packages that make up the SciPy stack. SciPy is

also very useful for image manipulation.

from scipy.misc import imread, imsave, imresize

img = imread('D:/Programs / cat.jpg') # path of the image

print(img.dtype, img.shape)

img_tint = img * [1, 0.45, 0.3]

imsave('D:/Programs / cat_tinted.jpg', img_tint)

img_tint_resize = imresize(img_tint, (300, 300))

imsave('D:/Programs / cat_tinted_resized.jpg', img_tint_resize)

Output Examples:

Scikit-learn : is one of the most popular ML libraries for classical ML

algorithms. It is built on top of two basic Python libraries, viz., NumPy and

SciPy. Scikit-learn supports most of the supervised and unsupervised learning

algorithms. Scikit-learn can also be used for data-mining and data-analysis,

which makes it a great tool who is starting out with ML.

Python Code:

from sklearn import datasets

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

dataset = datasets.load_iris()

model = DecisionTreeClassifier()

model.fit(dataset.data, dataset.target)

print(model)

expected = dataset.target

predicted = model.predict(dataset.data)

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

Output:

DecisionTreeClassifier(class_weight=None, criterion='gini',

max_depth=None,

 max_features=None, max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, presort=False, random_state=None,

 splitter='best')

0 1.00 1.00 1.00 50

 1 1.00 1.00 1.00 50

 2 1.00 1.00 1.00 50

 micro avg 1.00 1.00 1.00 150

 macro avg 1.00 1.00 1.00 150

weighted avg 1.00 1.00 1.00 150

[[50 0 0]

 [0 50 0]

 [0 0 50]]

Theano :

is a popular python library that is used to define, evaluate and optimize

mathematical expressions involving multi-dimensional arrays in an efficient

manner. It is achieved by optimizing the utilization of CPU and GPU. It is

extensively used for unit-testing and self-verification to detect and diagnose

different types of errors. Theano is a very powerful library that has been used

in large-scale computationally intensive scientific projects for a long time but

is simple and approachable enough to be used by individuals for their own

projects.

Python Code:

import theano

import theano.tensor as T

x = T.dmatrix('x')

s = 1 / (1 + T.exp(-x))

logistic = theano.function([x], s)

logistic([[0, 1], [-1, -2]])

Output:

array([[0.5, 0.73105858],

 [0.26894142, 0.11920292]])

TensorFlow is a very popular open-source library for high performance

numerical computation developed by the Google Brain team in Google. As the

name suggests, Tensorflow is a framework that involves defining and running

computations involving tensors. It can train and run deep neural networks that

can be used to develop several AI applications. TensorFlow is widely used in

the field of deep learning research and application.

Python Code:

import tensorflow as tf

x1 = tf.constant([1, 2, 3, 4])

x2 = tf.constant([5, 6, 7, 8])

result = tf.multiply(x1, x2)

sess = tf.Session()

print(sess.run(result))

sess.close()

Output:

[5 12 21 32]

Keras is a very popular Machine Learning library for Python. It is a high-level

neural networks API capable of running on top of TensorFlow, CNTK, or

Theano. It can run seamlessly on both CPU and GPU. Keras makes it really

for ML beginners to build and design a Neural Network. One of the best thing

about Keras is that it allows for easy and fast prototyping.

For more details refer to documentation.

PyTorch is a popular open-source Machine Learning library for Python based

on Torch, which is an open-source Machine Learning library which is

implemented in C with a wrapper in Lua. It has an extensive choice of tools

and libraries that supports on Computer Vision, Natural Language

Processing(NLP) and many more ML programs. It allows developers to

perform computations on Tensors with GPU acceleration and also helps in

creating computational graphs.

Python Code:

import torch

dtype = torch.float

device = torch.device("cpu")

device = torch.device("cuda:0") Uncomment this to run on GPU

N is batch size; D_in is input dimension;

H is hidden dimension; D_out is output dimension.

N, D_in, H, D_out = 64, 1000, 100, 10

Create random input and output data

x = torch.random(N, D_in, device = device, dtype = dtype)

y = torch.random(N, D_out, device = device, dtype = dtype)

Randomly initialize weights

w1 = torch.random(D_in, H, device = device, dtype = dtype)

w2 = torch.random(H, D_out, device = device, dtype = dtype)

learning_rate = 1e-6

for t in range(500):

 # Forward pass: compute predicted y

 h = x.mm(w1)

 h_relu = h.clamp(min = 0)

 y_pred = h_relu.mm(w2)

 # Compute and print loss

 loss = (y_pred - y).pow(2).sum().item()

 print(t, loss)

 # Backprop to compute gradients of w1 and w2 with respect to loss

 grad_y_pred = 2.0 * (y_pred - y)

 grad_w2 = h_relu.t().mm(grad_y_pred)

 grad_h_relu = grad_y_pred.mm(w2.t())

 grad_h = grad_h_relu.clone()

 grad_h[h < 0] = 0

 grad_w1 = x.t().mm(grad_h)

 # Update weights using gradient descent

 w1 -= learning_rate * grad_w1

 w2 -= learning_rate * grad_w2

Output:

0 47168344.0

1 46385584.0

2 43153576.0

...

...

...

497 3.987660602433607e-05

498 3.945609932998195e-05

499 3.897604619851336e-05

Pandas is a popular Python library for data analysis. It is not directly related

to Machine Learning. As we know that the dataset must be prepared before

training. In this case, Pandas comes handy as it was developed specifically for

data extraction and preparation. It provides high-level data structures and wide

variety tools for data analysis. It provides many inbuilt methods for groping,

combining and filtering data.

Python code:

Python program using Pandas for

arranging a given set of data

into a table

importing pandas as pd

import pandas as pd

data = {"country": ["Brazil", "Russia", "India", "China", "South Africa"],

 "capital": ["Brasilia", "Moscow", "New Delhi", "Beijing", "Pretoria"],

 "area": [8.516, 17.10, 3.286, 9.597, 1.221],

 "population": [200.4, 143.5, 1252, 1357, 52.98] }

data_table = pd.DataFrame(data)

print(data_table)

Output:

Matplotlib is a very popular Python library for data visualization. Like

Pandas, it is not directly related to Machine Learning. It particularly comes in

handy when a programmer wants to visualize the patterns in the data. It is a 2D

plotting library used for creating 2D graphs and plots. A module named pyplot

makes it easy for programmers for plotting as it provides features to control

line styles, font properties, formatting axes, etc. It provides various kinds of

graphs and plots for data visualization, viz., histogram, error charts, bar chats,

etc,

Python Code:

import matplotlib.pyplot as plt

import numpy as np

Prepare the data

x = np.linspace(0, 10, 100)

Plot the data

plt.plot(x, x, label ='linear')

Add a legend

plt.legend()

Show the plot

plt.show()

Output:

AIML project Using Python:

Chat Bot:

Create Standard Startup File

It is standard to create a startup file called std-startup.xml as the main entry

point for loading AIML files. In this case we will create a basic file that matches

one pattern and takes one action. We want to match the pattern load aiml b, and

have it load our aiml brain in response. We will create the basic_chat.aiml file

in a minute.

<aiml version="1.0.1" encoding="UTF-8">

 <!-- std-startup.xml -->

 <!-- Category is an atomic AIML unit -->

 <category>

 <!-- Pattern to match in user input -->

 <!-- If user enters "LOAD AIML B" -->

 <pattern>LOAD AIML B</pattern>

 <!-- Template is the response to the pattern -->

 <!-- This learn an aiml file -->

 <template>

 <learn>basic_chat.aiml</learn>

 <!-- You can add more aiml files here -->

 <!--<learn>more_aiml.aiml</learn>-->

 </template>

 </category>

</aiml>

Creating an AIML File

Above we created the AIML file that only handles one pattern, load aiml b.

When we enter that command to the bot, it will try to load basic_chat.aiml. It

won't work unless we actually create it. Here is what you can put

inside basic_chat.aiml. We will match two basic patterns and respond.

<aiml version="1.0.1" encoding="UTF-8">

<!-- basic_chat.aiml -->

 <category>

 <pattern>HELLO</pattern>

 <template>

 Well, hello!

 </template>

 </category>

 <category>

 <pattern>WHAT ARE YOU</pattern>

 <template>

 I'm a bot, silly!

 </template>

 </category>

</aiml>

Random Responses

You can also add random responses like this. This one will respond randomly

when it receives a message that starts with "One time I ". The * is a wildcard

that matches anything.

<category>

 <pattern>ONE TIME I *</pattern>

 <template>

 <random>

 Go on.

 How old are you?

 Be more specific.

 I did not know that.

 Are you telling the truth?

 I don't know what that means.

 Try to tell me that another way.

 Are you talking about an animal, vegetable or mineral?

 What is it?

 </random>

 </template>

</category>

Use Existing AIML Files

It can be fun to write your own AIML files, but it can be a lot of work. I think it

needs around 10,000 patterns before it starts to feel realistic. Fortunately, the

ALICE foundation provides a number of AIML files for free. Browse the AIML

files on the Alice Bot website. There was one floating around before called std-

65-percent.xml that contained the most common 65% of phrases. There is also

one that lets you play BlackJack with the bot.

Install Python AIML Module

http://www.alicebot.org/aiml/aaa/

So far, everything has been AIML XML files. All of that is important and will

make up the brain of the bot, but it's just information right now. The bot needs

to come to life. You could use any language to implement the AIML

specification, but some nice person has already done that in Python.

PYTHON 3

the source code remains exactly the same. You still import the package

as aiml but when installing it with pip you use the name python-aiml. The

source code is available at https://github.com/paulovn/python-aiml.

pip install python-aiml

Simplest Python Program

This is the simplest program we can start with. It creates the aiml object, learns

the startup file, and then loads the rest of the aiml files. After that, it is ready to

chat, and we enter an infinite loop that will continue to prompt the user for a

message. You will need to enter a pattern the bot recognizes. The patterns

recognized depend on what AIML files you loaded.

We create the startup file as a separate entity so that we can add more aiml files

to the bot later without having to modify any of the programs source code. We

can just add more files to learn in the startup xml file.

import aiml

Create the kernel and learn AIML files

kernel = aiml.Kernel()

kernel.learn("std-startup.xml")

kernel.respond("load aiml b")

Press CTRL-C to break this loop

while True:

 print kernel.respond(raw_input("Enter your message >> "))

Speeding up Brain Load

When you start to have a lot of AIML files, it can take a long time to learn. This

is where brain files come in. After the bot learns all the AIML files it can save

its brain directly to a file which will drastically speed up load times on

subsequent runs.

import aiml

import os

https://github.com/paulovn/python-aiml

kernel = aiml.Kernel()

if os.path.isfile("bot_brain.brn"):

 kernel.bootstrap(brainFile = "bot_brain.brn")

else:

 kernel.bootstrap(learnFiles = "std-startup.xml", commands = "load aiml b")

 kernel.saveBrain("bot_brain.brn")

kernel now ready for use

while True:

 print kernel.respond(raw_input("Enter your message >> "))

Reloading AIML While Running

You can send the load message to the bot while it is running and it will reload

the AIML files. Keep in mind that if you are using the brain method as it is

written above, reloading it on the fly will not save the new changes to the brain.

You will either need to delete the brain file so it rebuilds on the next startup, or

you will need to modify the code so that it saves the brain at some point after

reloading. See the next section on creating Python commands for the bot to do

that.

load aiml b

Adding Python Commands

If you want to give your bot some special commands that run Python functions,

then you should capture the input message to the bot and process it before

sending it to kernel.respond(). In the example above we are getting user input

from raw_input. We could get our input from anywhere though. Perhaps a TCP

socket, or a voice-to-text source. Process the message before it goes through

AIML. You may want to skip the AIML processing on certain messages.

while True:

 message = raw_input("Enter your message to the bot: ")

 if message == "quit":

 exit()

 elif message == "save":

 kernel.saveBrain("bot_brain.brn")

 else:

 bot_response = kernel.respond(message)

 # Do something with bot_response

Sessions and Predicates

By specifying a session, the AIML can tailor different conversations to different

people. For example, if one person tells the bot their name is Alice, and the

other person tells the bot their name is Bob, the bot can differentiate the people.

To specify which session you are using you pass it as a second parameter

to respond().

sessionId = 12345

kernel.respond(raw_input(">>>"), sessionId)

sessionId = 12345

Get session info as dictionary. Contains the input

and output history as well as any predicates known

sessionData = kernel.getSessionData(sessionId)

Each session ID needs to be a unique value

The predicate name is the name of something/someone

that the bot knows about in your session with the bot

The bot might know you as "Billy" and that your "dog" is named "Brandy"

kernel.setPredicate("dog", "Brandy", sessionId)

clients_dogs_name = kernel.getPredicate("dog", sessionId)

kernel.setBotPredicate("hometown", "127.0.0.1")

bot_hometown = kernel.getBotPredicate("hometown")

In the AIML we can set predicates using the set response in template.

<aiml version="1.0.1" encoding="UTF-8">

 <category>

 <pattern>MY DOGS NAME IS *</pattern>

 <template>

 That is interesting that you have a dog named <set

name="dog"><star/></set>

 </template>

 </category>

 <category>

 <pattern>WHAT IS MY DOGS NAME</pattern>

 <template>

 Your dog's name is <get name="dog"/>.

 </template>

 </category>

</aiml>

With the AIML above you could tell the bot:

My dogs name is Max

And the bot will respond with

That is interesting that you have a dog named Max

And if you ask the bot:

What is my dogs name?

The bot will respond:

Your dog's name is Max.

