
ATTENDANCE MONITORING SYSYTEM

USING FACE RECOGNITION

Pushkar Kumar

Student, Dept of CSE

Galatia’s University Greater

Noida UP

 ABSTRACT

Face recognition has been a very active research area in the past two

decades. Many attempts have been made to understand the process of

how human beings recognize human faces. It is widely accepted that

face recognition may depend on both componential information (such

as eyes, mouth and nose) and non-componential/holistic information

(the spatial relations between these features), though how these cues

should be optimally integrated remains unclear. This gives an ideal way

of detecting and recognizing human face using Open-CV, and python

which is part of deep learning.

Key Words: Python, Open-CV, Deep Learning, Face detection

 INTRODUCTION

Face recognition is the technique in which the identity of a human

being can be identified using one’s individual face. Such kind of systems

can be used in photos, videos, or in real time machines. The objective of

this is to provide a simpler and easy method in machine technology.

With the help of such a technology one can easily detect the face by the

help of dataset in similar matching appearance of a person. The method

in which with the help of python and Open-CV in deep learning is the

most efficient way to detect the face of the person. This method is

useful in many fields such as the military, for security, schools, colleges

and universities, airlines, banking, online web applications, gaming etc.

this system uses powerful python algorithm through which the

detection and recognition of face is very easy and efficient. A facial

recognition system is a technology capable of matching a human face

from a digital image or a video frame against a database of faces,

typically employed to authenticate users through ID verification

services, works by pinpointing and measuring facial features from a

given image While initially a form of computer application, facial

recognition systems have seen wider uses in recent times on

smartphones and in other forms of technology, such as robotics.

Because computerized facial recognition involves the measurement of a

human's physiological characteristics facial recognition systems are

categorised as biometrics. Although the accuracy of facial recognition

systems as a biometric technology is lower than iris recognition and

fingerprint recognition, it is widely adopted due to its contactless

process. Facial recognition systems have been deployed in advanced

human-computer interaction, video surveillance and automatic

indexing of images. They are also used widely by law enforcement

agencies.

LITERATURE REVIEW

This section is a basic overview of the major techniques used in the face

recognition system that apply mostly to the front face of the human

being. The methods include neural networks, hidden Markov model,

face matching done geometrically and template matching. Eigen-face is

one of the most widely used methods in face recognition and detection

which are broadly called as the principle components in mathematical

terms. The eigenvectors are ordered to represent different amounts of

the variations in the faces. Neural networks are highly used in the face

recognition and detection systems. An ANN (artificial neural network)

Was used in face recognition which contained a single layer Which

shows adaptiveness in crucial face recognition systems. The face

verification is done using a double layer of WISARD in neural networks.

Graph matching is other option for face recognition. The object as well

as the face recognition can be formulated using graph matching

performed by optimization of a matching function. Hidden Markov

Models is the way by which stochastic modeling of non- stationary

vector time series based on HMM model applied to the human face

recognition wherein the faces get divided into parts such as the eyes,

nose, ears, etc. The face recognition and correct matching is 87%

correct as it always gives out the best and right choice of face detection

through stored dataset. Or else the relevant model reveals the identity

of the face. The geometrical feature matching is the technique which is

based on the geometrical shapes of the face. This is one of the

commonly used method of the face recognition and detection. This

system apparently gives satisfactory results. Template matching is one

of the techniques through which the test image is represented as a

two- dimensional array of values which can be compared using

Euclidean distance with single template representing the whole face.

This method can also use more than one face template from different

points of view to represent an individual face.

DIFFERENT APPROACHES OF FACE

RECOGNITION:

 There are two predominant approaches to the face recognition

problem:

Geometric (feature based) and photometric (view based). As researcher

interest in face 5 | P a g e recognition continued, many different

algorithms were developed, three of which have been well studied in

face recognition literature. Recognition algorithms can be divided into

two main approaches:

1. Geometric: Is based on geometrical relationship between facial

landmarks, or in other words the spatial configuration of facial features.

That means that the main geometrical features of the face such as eyes, nose and

mouth are first located and then faces are classified on the basis of various

geometrical distances and angles between features.

2. Photometric stereo: Used to recover the shape of an object from

a number of images taken under different lighting conditions. The

shape of the recovered object is defined by a gradient map, which is

made up of an array of surface normals . Popular recognition

algorithms include:

1. Principal Component Analysis using Eigenfaces, (PCA)

2. Linear Discriminate Analysis,

3. Elastic Bunch Graph Matching using the Fisherface algorithm

FACE DETECTION:

 Face detection involves separating image windows into two classes;

one containing faces (tarningthe background (clutter). It is difficult

because although commonalities exist between faces, they can vary

considerably in terms of age, skin colour and facial expression. The

problem is further complicated by differing lighting conditions, image

qualities and geometries, as well as the possibility of partial occlusion

and disguise. An ideal face detector would therefore be able to detect

the presence of any face under any set of lighting conditions, upon any

background. The face detection task can be broken down into two

steps. The first step is a classification task that takes some arbitrary

image as input and outputs a binary value of yes or no, indicating

whether there are any faces present in the image. The second step is

the face localization task that aims to take an image as input and output

the location of any face or faces within that image as some bounding

box with (x, y, width, height). The face detection system can be divided

into the following steps:-

1. Pre-Processing: To reduce the variability in the faces, the images

are processed before they are fed into the network. All positive

examples that is the face images are obtained by cropping images with

frontal faces to include only the front view. All the cropped images are

then corrected for lighting through standard algorithms.

2. Classification: Neural networks are implemented to classify the

images as faces or nonfaces by training on these examples. We use

both our implementation of the neural network and the Matlab neural

network toolbox for this task. Different network configurations are

experimented with to optimize the results.

3. Localization: The trained neural network is then used to search for

faces in an image and if present localize them in a bounding box.

Various Feature of Face on which the work has done on:-Position Scale

Orientation Illumination.

Methodology

The concept of Open CV was put forth by Gary Bradski which had the

ability to perform on multi-level framework. Open CV has a number of

significant abilities as well as utilities which appears from the outset.

The OpenCV helps in recognizing the frontal face of the person and also

creates XML documents for several areas such as the parts of the body.

Deep learning evolved lately in the process of the recognition systems.

Hence deep learning along with the face recognition together work as

the deep metric learning systems. In short deep learning in face

detection and recognition will broadly work on two areas the first one

being accepting the solidary input image or any other relevant picture

and the second being giving the best outputs or the results of the image

of the picture. We would be using dlib facial recognition framework

that would be the easy way to organize the face evaluation. The two

main significant libraries used in the system are dlib and

face_recognition. Python being a very powerful programming

languages and one of the programming languages that are being used

all over the world has proven to give best results in the face recognition

and detection systems. Together face recognition and detection

becomes very easy and fruitful with the help of the python

programming language and Open CV.

 Need of an automated system

 Due to the rising need for the systems which can help in the areas such

as surveillance as well as security this kind of individual authentication

can no longer be done using simple handmade methods hence there is

a rising need of the automated systems that can easily rectify the faults

and process the human face recognition. When the work is done by

machines it can perform tasks efficiently in very less duration of time

and cuts off the major mistakes occurred by humans. A real time GUI

based face recognition system built can ease this work of face detection

and can be achieved in various ways.

 Graphical User Interface

 The graphical user interface (GUI) is the platform that will allow the

inputs from the user ends a kind of interaction with the system. GUI’s

are used in mobiles, media players, games and many others. We can

design visual composition and the temporal behaviour of the GUI in any

of the software application as well as programming in the areas of the

human computer interaction. The GUI for this project will be widely

based on the training and the testing phase which in turn will allow the

capture and train of the image. The minimum requirements for the

software would be python along with Open CV and the required

dataset. The minimum requirements for the hardware would be intel i3

or any processor above it and 4 core CPU. Operating systems of

windows 10 will be sufficient and random access memory 8GB

required. From the user end a computer or laptop active internet

connection and a scanner optional.

System Design

Face recognition is really a series of several related problems. Here are

the steps which we have to follow for making our model. 1. First, look

at a picture and find all the faces in it

2. Second, focus on each face and be able to understand that even if

a face is turned in a weird direction or in bad lighting, it is still the same

person.

3. Third, be able to pick out unique features of the face that you can

use to tell it apart from other people— like how big the eyes are, how

long the face is, etc.

4. Finally, compare the unique features of that face to all the people

you already know to determine the person’s name.

 In order to create this system first we will have to make the datasets.

When the image quality becomes favourable different procedures will

take place in the face recognition system the tasks are performed using

the python queries “python encode_faces.py”. The input will be taken

from the dataset which will be received in the “encodings.py”. There

will be precision formatting in the system wherein face embedding for

each face will occur. Secondly a file “recognize_faces_images.py” will

contain all the required methods and the techniques for the process of

identification of the face of the person from the given image of the

dataset. The given file will be executed by the python command

“python recognize_faces_image.py-encodings”. We can resize or turn

the image for a proximity with the goal for getting the desired output.

The present classifier along with Open CV libraries will enhance the

outcome or results in the face recognition system.

Face Recognition — Step by Step

So for the above mention steps, Let’s tackle this problem one step at a

time. We are going to describe all the steps in details for better

understanding of the project and how face recognition works in python.

Step 1: Finding all the Faces

The first step in our pipeline is face detection. Obviously we need to

locate the faces in a photograph before we can try to tell them apart!

Face detection went mainstream in the early 2000's when Paul Viola

and Michael Jones invented a way to detect face that was fast enough

to run on cheap cameras. However, much more reliable solutions exist

now. We’re going to use a method invented in 2005 called Histogram of

Oriented Gradients — or just HOG for short. To find faces in an image,

we’ll start by making our image black and white because we don’t need

color data to find faces: This might seem like a random thing to do, but

there’s a really good reason for replacing the pixels with gradients. If

we analyze pixels directly, really dark images and really light images of

the same person will have totally different pixel values. But by only

considering the direction that brightness changes, both really dark

images and really bright images will end up with the same exact

representation. That makes the problem a lot easier to solve! But

saving the gradient for every single pixel gives us way too much detail.

We end up missing the forest for the trees. It would be better if we

could just see the basic flow of lightness/darkness at a higher level so

we could see the basic pattern of the image. To do this, we’ll break up

the image into small squares of 16x16 pixels each. In each square, we’ll

count up how many gradients point in each major direction (how many

point up, point up-right, point right, etc…). Then we’ll replace that

square in the image with the arrow directions that were the strongest.

The end result is we turn the original image into a very simple

representation that captures the basic structure of a face in a simple

way: To find faces in this HOG image, all we have to do is find the part

of our image that looks the most similar to a known HOG pattern that

was extracted from a bunch of other training faces. With the help of

this technique, we can now easily find faces in any image.

Step 2: Posing and Projecting Faces

 Now, we isolated the faces in our image. But now we have to deal with

the problem that faces turned different directions look totally different

to a computer: To account for this, we will try to wrap each picture so

that the eyes and lips are always in the sample place in the image. This

will make it a lot easier for us to compare faces in the next steps. To do

this, we are going to use an algorithm called face landmark estimation.

There are lots of ways to do this, but we are going to use the approach

invented in 2014 by Vahid Kazemi and Josephine Sullivan. 14 | P a g e

The basic idea is we will come up with 68 specific points (called

landmarks) that exist on every face — the top of the chin, the outside

edge of each eye, the inner edge of each eyebrow, etc. Then we will

train a machine learning algorithm to be able to find these 68 specific

points on any face: Now that we know were the eyes and mouth are,

we’ll simply rotate, scale and shear the image so that the eyes and

mouth are centered as best as possible. We won’t do any fancy 3d

warps because that would introduce distortions into the image. We are

only going to use basic image transformations like rotation and scale

that preserve parallel lines (called affine transformation): Now no

matter how the face is turned, we are able to center the eyes and

mouth are in roughly the same position in the image. This will make our

next step a lot more accurate.

Step 3: Encoding Faces
Researchers have discovered that the most accurate approach is to let

the computer figure out the measurements to collect itself. Deep

learning does a better job than humans at figuring out which parts of a

face are important to measure. The solution is to train a Deep

Convolutional Neural Network. But instead of training the network to

recognize pictures objects, we are going to train it to generate 128

measurements for each face. The training process works by looking at 3

face images at a time:

1. Load a training face image of a known person

2. Load another picture of the same known person

3. Load a picture of a totally different person

 Then the algorithm looks at the measurements it is currently

generating for each of those three images. It then tweaks the neural

network slightly so that it makes sure the measurements it generates

for #1 and #2 are slightly closer while making sure the measurements

for #2 and #3 are slightly further apart.

After repeating this step millions of times for millions of images of

thousands of different people, the neural network learns to reliably

generate 128 measurements for each person. Any ten different pictures

of the same person should give roughly the same measurements.

Machine learning people call the 128 measurements of each face an

embedding. The idea of reducing complicated raw data like a picture

into a list of computergenerated numbers comes up a lot in machine

learning (especially in language translation).

Encoding our face image

 This process of training a convolutional neural network to output face

embeddings requires a lot of data and computer power. But once the

network has been trained, it can generate measurements for any face,

even ones it has never seen before! So this step only needs to be done

once. So all we need to do ourselves is run our face images through

their pre-trained network to get the 128 measurements for each face.

Here’s the measurements for our test image:

So what parts of the face are these 128 numbers measuring exactly? It

turns out that we have no idea. It doesn’t really matter to us. All that

we care is that the network generates nearly the same numbers when

looking at two different pictures of the same person.

Step 4: Finding the person’s name from the encoding

 This last step is actually the easiest step in the whole process. All we

have to do is find the person in our database of known people who has

the closest measurements to our test image. You can do that by using

any basic machine learning classification algorithm. No fancy deep

learning tricks are needed. We’ll use a simple linear SVM classifier, but

lots of classification algorithms could work. All we need to do is train a

classifier that can take in the measurements from a new test image and

tells which known person is the closest match. Running this classifier

takes milliseconds. The result of the classifier is the name of the

person!

CONCLUSION :

Face recognition systems are currently associated with many top

technological companies and industries making the work of face

recognition easier. The use of python programming and OpenCV makes

it an easier and handy tool or system which can be made by anyone

according to their requirement. The proposed system discussed in this

project will be helpful for many as it is user friendly and cost-efficient

system. Hence by the use of python and Open CV the face recognition

system can be designed for various purposes. Face recognition systems

are part of facial image processing applications and their significance as

a research area are increasing recently. Implementations of system are

crime prevention, video surveillance, person verification, and similar

security activities. The face recognition system implementation will be

part of humanoid robot project at Atılım University. The goal is reached

by face detection and recognition methods. Knowledge-Based face

detection methods are used to find, locate and extract faces in acquired

images. Implemented methods are skin color and facial features. Neural

network is used for face recognition. RGB color space is used to specify

skin colorvalues, and segmentation decreases searching time of face

images. Facial components on face candidates are appeared with

implementation of LoG filter. LoG filter shows good performance on

extracting facial compoments under different illumination conditions.

Reference:

:Adelson, E. H., and Bergen, J. R. (1986) The Extraction of Spatio-

Temporal Energy in Human and Machine Vision, Proceedings of

Workshop on Motion: Representation and Analysis (pp. 151-155)

Charleston, SC; May 7-9 AAFPRS(1997). A newsletter from the American

Academy of Facial Plastic and Reconstructive Surgery. Third Quarter

1997, Vol. 11, No. 3. Page 3. Baron, R. J. (1981). Mechanisms of human

facial recognition. International Journal of Man Machine Studies,

15:137-178 Beymer, D. and Poggio, T. (1995) Face Recognition from

One Example View, A.I. Memo No. 1536, C.B.C.L. Paper No. 121. MIT

Bichsel, M. (1991). Strategies of Robust Objects Recognition for

Automatic Identification of Human Faces. PhD thesis, Eidgenossischen

Technischen Hochschule, Zurich. Brennan, S. E. (1982) The caricature

generator. M.S. Thesis. MIT. Brunelli, R. and Poggio, T. (1993), Face

Recognition: Features versus Templates. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 15(10):1042- 1052 Craw, I., Ellis, H.,

and Lishman, J.R. (1987). Automatic extraction of face features. Pattern

Recognition Letters, 5:183-187, February. Deffenbacher K.A., Johanson

J., and O'Toole A.J. (1998) Facial ageing, attractiveness, and

distinctiveness. Perception. 27(10):1233-1243 Dunteman, G.H. (1989)

Principal Component Analysis. Sage Publications. Frank, H. and Althoen,

S. (1994). Statistics: Concepts and applications. Cambridge University

Press. p.110 Gauthier, I., Behrmann, M. and Tarr, M. (1999). Can face

recognition really be dissociated from object recognition? Journal of

Cognitive Neuroscience, in press.

