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Abstract 

 

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses 

on the use of data and algorithms to imitate the way that humans learn, gradually improving its 

accuracy. Supervised learning is the type of machine learning in which machines are trained 

using well "labelled" training data, and on basis of that data, machines predict the output. We 

will be focusing on the following model in particular: Heading Generator using Machine 

Learning using the YouTube trending videos dataset and the Python programming language to 

train a model of text generation language using machine learning, which will be used for the task 

of Heading generator for youtube videos or even for your blogs. Heading generator is a natural 

language processing task and is a central issue for several machine learning, including text 

synthesis, speech to text, and conversational systems. To build a model for the task of Heading 

generator or a text generator, the model should be able to learn the probability of a word 

occurring, using words that have already appeared in the sequence as context. Headline or short 

summary generation is an important problem in Text Summarization and has several 

practical applications.  We present a discriminative learning framework and a rich feature 

set for the headline generation task. Secondly, we present a novel Bleu measure based 

scheme for evaluation of headline generation models, which does not require human 

produced references. We achieve this by building a test corpus using the Google news 

service. We propose two stacked log-linear models for both headline word selection 

(Content Selection) and for ordering words into a grammatical and coherent headline. 

 
 

Tools used – Keras  ,Tensor Flow ,Python ,Machine learning libraries 

https://www.ibm.com/in-en/cloud/learn/what-is-artificial-intelligence
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CHAPTER-1  

Introduction 
 

The Heading generator is a function of Natural Language Processing and is a subject between 

several Machine Learning, including text compilation, text speaking, and discussion programs. 

To create a Heading-generating work model or a text generator, the model must be trained to 

learn whether a word may occur, using words that already appear in sequence as context. Text 

summarization has become a driving application of any information or content 

management system. The explosive growth of worldwideweb which has mostly 

unstructured information and online information services has resulted in an information 

overload problem. Corporations struggle to manage the immense amount of textual 

information they produce on a day to day basis. It is not surprising that vast amounts of 

effort and budget have been devoted both in industry and research towards building 

automated text summarization systems. Within text summarization the focus has almost 

universally been on extractive techniques i.e.  selecting text spans - either  complete 

sentences or  paragraphs from  the  input text.  A major  pitfall of the  extractive 

summarization  techniques  is that they cannot generate effective headline styled 

summaries less than a single .A special application of text summarization is generating 

very short summarizes from input text, or headlines from news articles and documents, and 

is the focus of this work. Headline or head- line styled summaries are distinctively different 

than abstracts of documents. Headlines are terse and convey the singular, most important 

theme of the input text while abstracts use relatively more words and reflect many 

important points in the input text. 

 



 
 Natural Language Processing 

NLP is a branch of data science that consists of systematic processes for analyzing, 

understanding, and deriving information from the text data in a smart and efficient manner. By 

utilizing NLP and its components, one can organize the massive chunks of text data, perform 

numerous automated tasks and solve a wide range of problems such as – automatic 

summarization, machine translation, named entity recognition, relationship extraction, sentiment 

analysis, speech recognition, and topic segmentation etc. 

Before moving further, I would like to explain some terms that are used in the article: 

 Tokenization – process of converting a text into tokens 

 Tokens – words or entities present in the text 

 Text object – a sentence or a phrase or a word or an article 

Natural Language Processing (NLP) is often used for textual segregation activities such as 

spam detection and emotional analysis, text production, language translation, and text 

classification. Text data can be viewed in alphabetical order, word order, or sentence sequence. 

In general, text data is considered a sequence of words in most problems. Here we will enter, a 

process using simple sample data. However, the steps discussed here apply to any NLP activities. 

In particular, we will use TensorFlow2, Keras to obtain text processing which includes: 

https://www.analyticsvidhya.com/blog/2017/01/ultimate-guide-to-understand-implement-natural-language-processing-codes-in-python/


 Tokenization 

 Sequence 

 Padding 

 

 



Natural Language Processing (NLP) is commonly used in text classification tasks such as spam 

detection and sentiment analysis, text generation, language translations and document 

classification. Text data can be considered either in sequence of character, sequence of words or 

sequence of sentences. Most commonly, text data are considered as sequence of words for most 

problems. In this article we will delve into, pre-processing using simple example text data. 

However, the steps discussed here are applicable to any NLP tasks. Particularly, we’ll use 

TensorFlow2 Keras for text pre-processing which include: 

 Tokenization 

 Sequencing 

 Padding 

The figure below depicts the process of text pre-processing along with example outputs. 



 
Step by step text pre-processing example starting from raw sentence to padded sequence 

First, let’s import the required libraries. 

import tensorflow as tf 

from tensorflow.keras.preprocessing.text import Tokenizer 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

Tokenizer is an API available in TensorFlow Keras which is used to tokenize sentences. We have 

defined our text data as sentences (each separated by a comma) and with an array of strings. There 

are 4 sentences including 1 with a maximum length of 5. Our text data also includes punctuations 

as shown below. 



sentences = ["I want to go out.", 

             " I like to play.", 

             " No eating - ", 

             "No play!", 

            ] 

sentences['I want to go out.', ' I like to play.', ' No eating - ', 'No play!'] 

Tokenization 

As deep learning models do not understand text, we need to convert text into numerical 

representation. For this purpose, a first step is Tokenization. The Tokenizer API from TensorFlow 

Keras splits sentences into words and encodes these into integers. Below are hyperparameters 

used within Tokenizer API: 

 num_words: Limits maximum number of most popular words to keep while training. 

 filters: If not provided, by default filters out all punctuation terms (!”#$%&()*+,-

./:;<=>?@[\]^_’{|}~\t\n). 

 lower=1. This is a default setting which converts all words to lower case 

 oov_tok : When its used, out of vocabulary token will be added to word index in the 

corpus which is used to build the model. This is used to replace out of vocabulary words 

(words that are not in our corpus) during text_to_sequence calls (see below). 

 word_index: Convert all words to integer index. Full list of words are available as key 

value property: key = word and value = token for that word 

Let’s use the Tokenizer and print out word index. We have used num_words= 100 which is a lot 

for this data as there are only 9 distinct words and <OOV> string for out of vocabulary token. 

tokenizer = Tokenizer(num_words=100, lower= 1, oov_token="<OOV>") 

tokenizer.fit_on_texts(sentences) 



word_index = tokenizer.word_indexprint(word_index) 

{'<OOV>': 1, 'i': 2, 'to': 3, 'play': 4, 'no': 5, 'want': 6, 'go': 7, 'out': 8, 'like': 9, 'eating': 10} 

As seen above, each word in our sentences has been converted to numerical tokens. For instance, 

“i” has a value of 2. The tokenizer also ignored the exclamation mark after the word. For 

example, there is only one token for the word “play” or “play!” i.e. 4. 

Sequencing 

Next, let’s represent each sentence by sequences of numbers using texts_to_sequences from 

tokenizer object. Below, we printed out raw sentences, word index and sequences. 

sequences = tokenizer.texts_to_sequences(sentences) 

print(sentences) 

print(word_index) 

print(sequences)['I want to go out', ' I like to play', ' No eating - ', 'No play!']{'<OOV>': 1, 'i': 2, 'to': 3, 

'play': 4, 'no': 5, 'want': 6, 'go': 7, 'out': 8, 'like': 9, 'eating': 10}[[2, 6, 3, 7, 8], [2, 9, 3, 4], [5, 10], [5, 4]] 

As shown above, texts are represented by sequences. For example, 

 “I want to go out” — -> [2, 6, 3, 7, 8] 

 “I like to play” — -> [2, 9, 3, 4] 

 “No eating” — -> [5, 10] 

 “No play!” — -> [5, 4] 

Padding 

In any raw text data, naturally there will be sentences of different lengths. However, all neural 

networks require to have inputs with the same size. For this purpose, padding is done. Below, let’s 



use pad_sequences for padding. pad_sequences uses arguments such as sequences, padding, 

maxlen, truncating, value and dtype. 

 sequences: list of sequences that we created earlier 

 padding = ‘pre’ or ‘post (default pre). By using pre, we’ll pad (add 0) before each 

sequence and post will pad after each sequence. 

 maxlen = maximum length of all sequences. If not provided, by default it will use the 

maximum length of the longest sentence. 

 truncating = ‘pre’ or ‘post’ (default ‘pre’). If a sequence length is larger than the provided 

maxlen value then, these values will be truncated to the maxlen. ‘pre’ option will truncate at 

the beginning whereas ‘post’ will truncate at the end of the sequences. 

 value: padding value (default is 0) 

 dtype: output sequence type (default is int32) 

Let’s focus on important arguments used in pad_sequences : padding, maxlen and truncating. 

pre and post padding 

Use of ‘pre’ or ‘post’ padding depends upon the analysis. In some cases, padding at the beginning 

is appropriate while not in others. For instance, if we use Recurrent Neural Network (RNN) for 

spam detection, then padding at the beginning would be appropriate as RNN can not learn long 

distance patterns. Padding at the beginning allows us to keep the sequences in the end hence RNN 

can make use of these sequences for prediction of next. However, in any case padding should be 

done after careful consideration and business knowledge. 



Below, the outputs for ‘pre’ followed by ‘post’ padding are shown with default maxlen value of 

maximum length of sequence. 

# pre padding 
pre_pad = pad_sequences(sequences, padding='pre')print("\nword_index = ", word_index) 

print("\nsequences = ", sequences) 

print("\npadded_seq = " ) 

print(pre_pad)word_index =  {'<OOV>': 1, 'i': 2, 'to': 3, 'play': 4, 'no': 5, 'want': 6, 'go': 7, 'out': 8, 'like': 

9, 'eating': 10} 

 

sequences =  [[2, 6, 3, 7, 8], [2, 9, 3, 4], [5, 10], [5, 4]] 

 

padded_seq =  

[[ 2  6  3  7  8] 

 [ 0  2  9  3  4] <---------- 0 Padded at the beginning 

 [ 0  0  0  5 10]  

 [ 0  0  0  5  4]] 

In our example above, the sequence with maximum length is [ 2, 6, 3, 7, 8] which corresponds to 

“I want to go out”. When padding =’pre’ is used, padded value of 0 is added at the beginning of 

all other sequences. Because other sequences have shorter sequence than [ 2, 6, 3, 7, 8], padding 

actually made all other sequences to be of same size with this sequence. 

Whereas, when padding = ‘post’ is used , padded value i.e. 0 is added at the end of the sequences. 

# post padding 
post_pad = pad_sequences(sequences, padding='post') 

print("\nword_index = ", word_index) 

print("\nsequences = ", sequences) 

print("\npadded_seq = " ) 

print(post_pad)word_index =  {'<OOV>': 1, 'i': 2, 'to': 3, 'play': 4, 'no': 5, 'want': 6, 'go': 7, 'out': 8, 'like': 

9, 'eating': 10} 

 

sequences =  [[2, 6, 3, 7, 8], [2, 9, 3, 4], [5, 10], [5, 4]] 

 

padded_seq =  

[[ 2  6  3  7  8] 

 [ 2  9  3  4  0]<---------- 0 Padded at the end 

 [ 5 10  0  0  0] 

 [ 5  4  0  0  0]] 



pre and post padding with maxlen and truncating option 

We can use both padding and truncating argument together if needed. Below we have shown two-

scenarios, 1) pre padding with pre truncation and 2) pre padding with post truncation 

The truncating with ‘pre’ option allows us to truncate the sequence at the beginning. Whereas, 

truncating with ‘post’ will truncate the sequence at the end. 

Let’s look at the example of pre padding with pre truncation. 

# pre padding, maxlen and pre truncation 
prepad_maxlen_pretrunc = pad_sequences(sequences, padding = ‘pre’, maxlen =4, truncating = ‘pre’) 

print(prepad_maxlen_pretrunc)[[ 6  3  7  8]<-----Truncated from length 5 to 4, at the beginning 

 [ 2  9  3  4] 

 [ 0  0  5 10]<---------- Padded at the beginning 

 [ 0  0  5  4]] 

By use of maxlen =4, we are truncating the length of padded sequences to 4. As shown, above, the 

use of maxlen=4 impacted the first sequence [2, 6, 3, 7, 8]. This sequence had length of 5 and is 

truncated to 4. The truncation happened at the beginning as we used truncating = ‘pre’ option. 

Let’s look at the truncation = ‘post’ option. 

# pre padding, maxlen and post truncation 
prepad_maxlen_posttrunc = pad_sequences(sequences, padding = 'pre', maxlen =4, truncating = 'post') 

print(prepad_maxlen_posttrunc)[[ 2  6  3  7]<-----Truncated from length 5 to 4, at the end 

 [ 2  9  3  4] 

 [ 0  0  5 10]<---------- Padded at the beginning 

 [ 0  0  5  4]] 

The truncation happened at the end as we used truncating = ‘post’ option. When the post 

truncation was applied, it impacted the first sequence [ 2, 6, 3, 7, 8] and truncated to length 4 

resulting in the sequence [ 2, 6, 3, 7]. 

 



 
 
 
 
 

CHAPTER-2  

Literature Survey 
 

As mentioned, often the application at hand requires generation of headline styled 

summaries from text. Such summaries are typically not more than 10-15 words in length. 

The headline of a text, especially a news article is a compact, grammatical and coherent 

representation of important pieces of information in the news article. Headlines help readers 

to quickly identify information that is of interest to them. Although newspaper articles are 

usually accompanied by headlines, there are numerous other types of news text sources, 

such as transcripts of radio and television broadcasts and machine translated texts where 

such summary information is missing. 

A system that  can automatically  generate  headline styled  summaries  can  be useful in 

the following potential applications. 

 

• Summarizing emails, web pages for portable wireless devices, WAP enabled 

mobile phones and PDAs which have limited display and bandwidth. 

• Generating a table of contents styled summary for machine generated texts or 

machine translated documents. 

• To present compressed descriptions of search result web pages in search 

engines 

 

Headlines extracted from search result web pages can be used to augment a user search 

query. The resultant query can be used to further re-rank and improve upon the search 

results. 

 

The advantage of Summarization approaches is that it alleviates the need to treat head- line 

generation as a special problem and one can simply take an existing text summarization 

system and request it to generate highly compressed summaries as headlines. But the problem 

with resorting to summarization approaches for headline generation is that, for summarization 

systems when the compression rate falls below 10%, the quality of generated summaries is 

poor. Since headlines are typically no more than 10-15 words, the compression ratio is in fact 

far less than 10% for many news articles. This would mean that text summarization methods 

will create poor headlines. Another problem with summarization approaches is that most of the 



techniques we discussed above are extractive in nature which constrains their use in headline 

generation in other ways. For example: approaches that treat a full sentence as the minimum 

unit for a summary may result in longer than required headlines. Another problem is that 

extractive techniques would pick only the phrases and words present in the article for inclusion 

in the headline. But often we see that headlines do not borrow the exact same words as present 

in the news article. The example below makes the point clear where the words attacks and 

fighters are not present in the article but are used to refer to the act of striking and insurgents 

respectively.   Given we train our model on sufficiently large corpora we can learn the attacks 

is a good substitution for words like struck and that insurgents can also be referred to as 

fighters. 

Finally, another scenario where extractive summarization approaches are not suitable 

is cross-lingual headline generation in which news articles are present in one language and 

headlines need to be generated in a different language. But statistical or corpus based techniques 

can be used without any specific changes for cross-lingual headline generation just as they are 

used in the routine scenario. Cross-lingual headline generation can indeed be very useful in 

cases where say a native language A (English) speaker is looking for language B (French) 

news articles on a specific topic or event. 

 

 

STEPS TO FOLLOW 

Importing the necessary libraries Building the Machine Learning Model for Heading 

Generation 

Importing libraries before we start working on them. Here using Keras and TensorFlow as the 

main libraries for our model as it is a highly productive interface for solving such problems, with 

a deep learning approach. 

 

 

Now process the data so that we can use this data to train our machine learning model with the 

task of making a topic. 



Generating sequences for Building the Machine Learning Model for Heading Generation 

Natural language processing operations require data entry in the form of a token sequence. The 

first step after data purification is to generate a sequence of n-gram tokens. 

N-gram is the closest sequence of n elements of a given sample of text or vocal corpus. Items can 

be words, letters, phonemes, letters, or base pairs. In this case, n-gr is a sequence of words in the 

corpus of titles. 

The tokenizer is an API found in TensorFlow Keras that is used to make sentences into a token. 

We defined our text data as sentences (each with a comma) and with multiple strings. 

Since in-depth reading models do not understand the text, we need to convert the text into a 

numerical representation. For this purpose, the first step is to make tokens. The Tokenizer API 

from TensorFlow Keras divides sentences into words and converts these into 

numbers. Tokenization is the process of issuing tokens from a corpus: 

 

1. A Quick Rundown of Tokenization 

2. The True Reasons behind Tokenization 

3. Which Tokenization (Word, Character, or Subword) Should we Use? 

4. Implementing Tokenization– Byte Pair Encoding in Python 

  

A Quick Rundown of Tokenization 

Tokenization is a common task in Natural Language Processing (NLP). It’s a fundamental step 

in both traditional NLP methods like Count Vectorizer and Advanced Deep Learning-based 

architectures like Transformers. 

Tokens are the building blocks of Natural Language. 

Tokenization is a way of separating a piece of text into smaller units called tokens. Here, tokens 

can be either words, characters, or subwords. Hence, tokenization can be broadly classified into 3 

types – word, character, and subword (n-gram characters) tokenization. 

For example, consider the sentence: “Never give up”. 

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/?utm_source=blog&utm_medium=what-is-tokenization-nlp


The most common way of forming tokens is based on space. Assuming space as a delimiter, the 

tokenization of the sentence results in 3 tokens – Never-give-up. As each token is a word, it 

becomes an example of Word tokenization. 

Similarly, tokens can be either characters or subwords. For example, let us consider “smarter”: 

1. Character tokens: s-m-a-r-t-e-r 

2. Subword tokens: smart-er 

But then is this necessary? Do we really need tokenization to do all of this? 

The True Reasons behind Tokenization 

As tokens are the building blocks of Natural Language, the most common way of processing the 

raw text happens at the token level. 

For example, Transformer based models – the State of The Art (SOTA) Deep Learning 

architectures in NLP – process the raw text at the token level. Similarly, the most popular deep 

learning architectures for NLP like RNN, GRU, and LSTM also process the raw text at the token 

level. 

 

Working of Recurrent Neural Network 



As shown here, RNN receives and processes each token at a particular timestep. 

Hence, Tokenization is the foremost step while modeling text data. Tokenization is performed on 

the corpus to obtain tokens. The following tokens are then used to prepare a vocabulary. 

Vocabulary refers to the set of unique tokens in the corpus. Remember that vocabulary can be 

constructed by considering each unique token in the corpus or by considering the top K 

Frequently Occurring Words. 

Creating Vocabulary is the ultimate goal of Tokenization. 

One of the simplest hacks to boost the performance of the NLP model is to create a vocabulary 

out of top K frequently occurring words. 

Now, let’s understand the usage of the vocabulary in Traditional and Advanced Deep Learning-

based NLP methods. 

 Traditional NLP approaches such as Count Vectorizer and TF-IDF use vocabulary as 

features. Each word in the vocabulary is treated as a unique feature: 

 

Traditional NLP: Count Vectorizer 

 In Advanced Deep Learning-based NLP architectures, vocabulary is 
used to create the tokenized input sentences. Finally, the tokens of these 
sentences are passed as inputs to the model 



  

Which Tokenization Should you use? 

As discussed earlier, tokenization can be performed on word, character, or 

subword level. It’s a common question – which Tokenization should we use 

while solving an NLP task? Let’s address this question here. 

  

Word Tokenization 

Word Tokenization is the most commonly used tokenization algorithm. It splits 

a piece of text into individual words based on a certain delimiter. Depending 

upon delimiters, different word-level tokens are formed. Pretrained Word 

Embeddings such as Word2Vec and GloVe comes under word tokenization. 

But, there are few drawbacks to this. 

Drawbacks of Word Tokenization 

One of the major issues with word tokens is dealing with Out Of Vocabulary 

(OOV) words. OOV words refer to the new words which are encountered at 

testing. These new words do not exist in the vocabulary. Hence, these 

methods fail in handling OOV words. 

But wait – don’t jump to any conclusions yet! 

 A small trick can rescue word tokenizers from OOV words. The trick is 
to form the vocabulary with the Top K Frequent Words and replace the rare 
words in training data with unknown tokens (UNK). This helps the model to 
learn the representation of OOV words in terms of UNK tokens 

https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/?utm_source=blog&utm_medium=what-is-tokenization-nlp
https://www.analyticsvidhya.com/blog/2020/03/pretrained-word-embeddings-nlp/?utm_source=blog&utm_medium=what-is-tokenization-nlp


 So, during test time, any word that is not present in the vocabulary will 
be mapped to a UNK token. This is how we can tackle the problem of OOV in 
word tokenizers. 

 The problem with this approach is that the entire information of the word 
is lost as we are mapping OOV to UNK tokens. The structure of the word 
might be helpful in representing the word accurately. And another issue is that 
every OOV word gets the same representation 

 

Another issue with word tokens is connected to the size of the vocabulary. 

Generally, pre-trained models are trained on a large volume of the text 

corpus. So, just imagine building the vocabulary with all the unique words in 

such a large corpus. This explodes the vocabulary! 

This opens the door to Character Tokenization. 

  

Character Tokenization 

Character Tokenization splits apiece of text into a set of characters. It 

overcomes the drawbacks we saw above about Word Tokenization. 



 Character Tokenizers handles OOV words coherently by preserving the 
information of the word. It breaks down the OOV word into characters and 
represents the word in terms of these characters 

 It also limits the size of the vocabulary. Want to talk a guess on the size 
of the vocabulary? 26 since the vocabulary contains a unique set of 
characters 

  

Drawbacks of Character Tokenization 

Character tokens solve the OOV problem but the length of the input and 

output sentences increases rapidly as we are representing a sentence as a 

sequence of characters. As a result, it becomes challenging to learn the 

relationship between the characters to form meaningful words. 

This brings us to another tokenization known as Subword Tokenization which 

is in between a Word and Character tokenization. 

  

Subword Tokenization 

Subword Tokenization splits the piece of text into subwords (or n-gram 

characters). For example, words like lower can be segmented as low-er, 

smartest as smart-est, and so on. 

Transformed based models – the SOTA in NLP – rely on Subword 

Tokenization algorithms for preparing vocabulary. Now, I will discuss one of 

the most popular Subword Tokenization algorithm known as Byte Pair 

Encoding (BPE). 

  



Welcome to Byte Pair Encoding (BPE) 

Byte Pair Encoding (BPE) is a widely used tokenization method among 

transformer-based models. BPE addresses the issues of Word and Character 

Tokenizers: 

 BPE tackles OOV effectively. It segments OOV as subwords and 
represents the word in terms of these subwords 

 The length of input and output sentences after BPE are shorter 
compared to character tokenization 

BPE is a word segmentation algorithm that merges the most frequently 

occurring character or character sequences iteratively. Here is a step by step 

guide to learn BPE. 

  

Steps to learn BPE 

1. Split the words in the corpus into characters after appending </w> 
2. Initialize the vocabulary with unique characters in the corpus 
3. Compute the frequency of a pair of characters or character sequences 

in corpus 
4. Merge the most frequent pair in corpus 
5. Save the best pair to the vocabulary 
6. Repeat steps 3 to 5 for a certain number of iterations 

We will understand the steps with an example. 

Consider a corpus:  



1a) Append the end of the word (say </w>) symbol to every word in the 

corpus: 

 

1b) Tokenize words in a corpus into characters: 

 

2. Initialize the vocabulary: 

 

Iteration 1: 

3. Compute frequency: 



 

4. Merge the most frequent pair: 

 

5. Save the best pair: 

 

Repeat steps 3-5 for every iteration from now. Let me illustrate for one more 

iteration. 

Iteration 2: 

3. Compute frequency: 

 



4. Merge the most frequent pair: 

 

5. Save the best pair: 

 

After 10 iterations, BPE merge operations looks like: 

 

Pretty straightforward, right? 

  

Applying BPE to OOV words 

But, how can we represent the OOV word at test time using BPE learned 

operations? Any ideas? Let’s answer this question now. 

At test time, the OOV word is split into sequences of characters. Then the 

learned operations are applied to merge the characters into larger known 

symbols. 



– Neural Machine Translation of Rare Words with Subword Units, 2016 

Here is a step by step procedure for representing OOV words: 

1. Split the OOV word into characters after appending </w> 
2. Compute pair of character or character sequences in a word 
3. Select the pairs present in the learned operations 
4. Merge the most frequent pair 
5. Repeat steps 2 and 3 until merging is possible 

  

Implementing Tokenization – Byte Pair Encoding in Python 

We are now aware of how BPE works – learning and applying to the OOV 

words.  

 



 

Padding the sequences for Building the Machine Learning Model 

for Title Generation 

  

In any raw text data, there will naturally be sentences of different 
lengths. However, all neural networks need to be input in the same size. 
For this purpose, wrapping is done. The use of the ‘pre’ or ‘post’ pad 
depends on the analysis. In some cases, wrapping at first is appropriate 
while not for others. For example, if we use Recurrent Neural Network 
(RNN) to detect spam detection, then initial wrapping may be 
appropriate as RNN can read long-distance patterns. Early wrap allows us 
to keep track of the end which is why RNN can use these sequences to 
predict the next. However, any support should be made after careful 
consideration and business knowledge. 

Since sequences can vary in length, the length of the sequence must be 
proportional. When using neural networks, we usually feed input to the 
network while waiting for the result. In practice, it is better to process 
data in batches than to do one at a time. The pad_sequences() is a 
function in the Keras deep learning library that can be used to pad 
variable-length sequences. 

This is done using matrices [batch length x sequence length], where the 
length of the sequence corresponds to the longest sequence. In this 
case, we complete the sequence with the symbol (frequency 0) to match 
the size of the matrix. This process of filling the token sequence is called 
filling. To enter data from the training model, I need to create 
predictions and labels. 

I will build an n-gram sequence as a prediction and the following n-gram 
word as a label: 

  



 
 

 

 

 

 

LSTM Model 

 
In recurrent neural networks, the activation outputs are 
propagated in both directions, i.e. from input to output and 



outputs to inputs, unlike direct-acting neural networks where 
outputs d activation are propagated in only one direction. This 
creates loops in the architecture of the neural network which 
acts as a “memory state” of neurons. 

As a result, the RNN preserves a state through the stages of 
time or “remembers” what has been learned over time. The 
state of memory has its advantages, but it also has its 
disadvantages. The gradient that disappears is one of them. 

In this problem, while learning with a large number of layers, it 
becomes really difficult for the network to learn and adjust the 
parameters of the previous layers. To solve this problem, a new 
type of RNN has been developed; LSTM (long-term memory). 

Title Generator with LSTM Model 

The LSTM model contains an additional state (the state of the 
cell) which essentially allows the network to learn what to store 
in the long term state, what to delete and what to read. . The 
LSTM of this model contains three layers: 

 Input layer: takes the sequence of words as input 
 LSTM Layer: Calculates the output using LSTM units. 
 Dropout layer: a regularization layer to avoid over fitting 
 Output layer: calculates the probability of the next possible 

word on output. 

now use LSTM Model to build a Heading Generator job model with 
Machine Learning: 
 

RESULTS AND OUTPUT: 

Now that model is ready and trained using data, it is time to predict the title 

based on the input name. The input name is completed first, the sequence is 



completed before being transferred to a trained model to retrieve the predicted 

sequence: 

CODE 

from pandas.core.arrays import categorical 

import pandas as pd 

import string 

import numpy as np 

import json 

from keras.preprocessing.sequence import pad_sequences 

from keras.layers import Embedding, LSTM, Dense, Dropout 

from keras.preprocessing.text import Tokenizer 

from keras.callbacks import EarlyStopping 

from keras.models import Sequential 

from tensorflow.keras.utils import to_categorical 

import tensorflow as tf 

tf.random.set_seed(2) 

from numpy.random import seed 

seed(1) 

import pandas as pd 

 

#load all the datasets  

df1 = pd.read_csv("/content/drive/MyDrive/archive data/USvideos.csv") 

df2 = pd.read_csv("/content/drive/MyDrive/archive data/CAvideos.csv") 

df3 = pd.read_csv("/content/drive/MyDrive/archive data/GBvideos.csv") 

 

#load the datasets containing the category names 

data1 = json.load(open('/content/drive/MyDrive/archive data/US_category_id

.json')) 

data2 = json.load(open('/content/drive/MyDrive/archive data/CA_category_id

.json')) 

data3 = json.load(open('/content/drive/MyDrive/archive data/GB_category_id

.json')) 

def category_extractor(data): 

    i_d = [data['items'][i]['id'] for i in range(len(data['items']))] 

    title = [data['items'][i]['snippet']["title"] for i in range(len(data[

'items']))] 

    i_d = list(map(int, i_d)) 

    category = zip(i_d, title) 

    category = dict(category) 

    return category 



 

#create a new category column by mapping the category names to their id 

df1['category_title'] = df1['category_id'].map(category_extractor(data1)) 

df2['category_title'] = df2['category_id'].map(category_extractor(data2)) 

df3['category_title'] = df3['category_id'].map(category_extractor(data3)) 

#join the dataframes 

df = pd.concat([df1, df2, df3], ignore_index=True) 

 

#drop rows based on duplicate videos 

df = df.drop_duplicates('video_id') 

 

#collect only titles of entertainment videos 

#feel free to use any category of video that you want 

entertainment = df[df['category_title'] == 'Entertainment']['title'] 

entertainment = entertainment.tolist() 

 

#remove punctuations and convert text to lowercase 

def clean_text(text): 

    text = ''.join(e for e in text if e not in string.punctuation).lower() 

     

    text = text.encode('utf8').decode('ascii', 'ignore') 

    return text 

 

corpus = [clean_text(e) for e in entertainment] 

 

tokenizer = Tokenizer() 

def get_sequence_of_tokens(corpus): 

  #get tokens 

  tokenizer.fit_on_texts(corpus) 

  total_words = len(tokenizer.word_index) + 1 

  

  #convert to sequence of tokens 

  input_sequences = [] 

  for line in corpus:token_list = tokenizer.texts_to_sequences([line])[0] 

  for i in range(1, len(token_list)):n_gram_sequence = token_list[:i+1] 

  input_sequences.append(n_gram_sequence) 

  

  return input_sequences, total_words 

inp_sequences, total_words = get_sequence_of_tokens(corpus) 

 

def generate_padded_sequences(input_sequences): 

  max_sequence_len = max([len(x) for x in input_sequences]) 

  input_sequences = np.array(pad_sequences(input_sequences,  maxlen=max_se

quence_len, padding='pre')) 

  predictors, label = input_sequences[:,:-1], input_sequences[:, -1] 



  label = to_categorical(label, num_classes = total_words) 

  return predictors, label, max_sequence_len 

predictors, label, max_sequence_len = generate_padded_sequences(inp_sequen

ces) 

def create_model(max_sequence_len, total_words): 

  input_len = max_sequence_len - 1; 

  model = Sequential() 

  

  # Add Input Embedding Layer 

  model.add(Embedding(total_words, 10, input_length=input_len)) 

  

  # Add Hidden Layer 1 — LSTM Layer 

  model.add(LSTM(100)) 

  model.add(Dropout(0.1)) 

  

  # Add Output Layer 

  model.add(Dense(total_words, activation='softmax')) 

  model.compile(loss='categorical_crossentropy', optimizer='adam') 

  

  return model 

model = create_model(max_sequence_len, total_words) 

model.fit(predictors, label, epochs=20, verbose=5) 

 

def generate_text(seed_text, next_words, model, max_sequence_len): 

  for _ in range(next_words):token_list = tokenizer.texts_to_sequences([se

ed_text])[0] 

  token_list = pad_sequences([token_list], maxlen=max_sequence_len-

1,  padding='pre') 

  predicted = model.predict_classes(token_list, verbose=0) 

  

  output_word = "" 

  for word,index in tokenizer.word_index.items(): 

    if index == predicted: 

      output_word = word  

    break 

  seed_text += ""+ output_word 

  return seed_text.title() 

 

Now let’s take a look at our Heading production model: 
 

print(generate_text(“HAPPY”, 5, model, max_sequence_len)) 

Output:  The Secret Of HAPPY 



 

CONCLUSION AND FUTURE SCOPE: This model concludes that we can 
get a suitable heading easily for anything we are in making. This can help 
to get a better heading in no time.  A model of text generation language 
using machine learning, which will be used for the task of Heading 
generator for youtube videos or even for your blogs. 
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