

SCHOOL OF POLYTECHNIC (GREATER NOIDA ,

UTTAR PRADESH)

 PROJECT - II (DPCS9999) REPORT ON EncDoc

By

 LAKSHY SHARMA

&

MOHD ABDULLAHA

 Admission no.

19GPTC4060011(LAKSHY SHARMA)

19GPTC4060015(MOHD ABDULLAHA)

 In partial fulfillment of requirements for the award of the degree

DIPLOMA IN COMPUTER SCIENCE &

ENGINEERING

 (Under the guidance of Er. Anand Dohare and Er. Nutan Gusain)

 CERTIFICATE

This is to certify that Mohd Abdullaha(19GPTC4060015)/Lakshy sharma (19GPTC4060011), student

of Diploma in Computer Science & Engineering ,Six Semester, Department of Computer

Science of Galgotias University, has pursued the Major Project titled “ENCDOC” under the

supervision of Er. Anand Dohare, Head Of Department (HOD) and Assistance Professor Er. Nutan

Gusain and the report has been submitted in partial fulfillment of requirements for the award of the degree,

Diploma in Computer Science & Engineering by Galgotias University in the Year 2021.

Er. Nutan Gusain

Assistance Professor

Er. Anand Dohare Head of

Department (HOD)

ACKNOWLEDGEMENT

I express my sincere regard and indebtedness to my project internal guide Er. Anand Dohare and

Er. Nutan Gusain , for his valuable time, guidance, encouragement, support and cooperation

throughout the duration of our project. I would sincerely like to thank IT Department for giving me the

opportunity to work on enhancing my technical skills while undergoing this project. This project was

done under the guidance of Er. Anand Dohare, Head of Department and Er. Nutan Gusain . This

project helped in understanding the various parameters which are involved in the development of a

web application and the working and integration of front end along with the back end to create a

fully functional web application.

I would like to thank Er. Anand Dohare (Head of Department), Er. Nutan Gusain and whole of

department for their constant support.

Lakshy Sharma: (19GPTC4060011)

Enrollment no: (19014060010)

Mohd Abdullaha: (19GPTC4060015)

Enrollment no : (19014060013)

ABSTRACT

The main objective of the EncDoc is to provide Security. All user data is managed under EU guidelines. The

project is totally built at administrative end and thus only the administrator is guaranteed the access. The purpose of the

project is to build an application program to reduce the security and integrity of files. It tracks all the details

about the of file.

5

INDEX

S.No. Index

Chapter 1 INTRODUCTION

1.1 Introduction

1.2 Aim

1.3 Feasibility Study

1.4 Project Work Schedule

1.5 Organisation of Report

1.6 Login & Logout System

1.7 Client Panel

1.8 Admin Panel

Chapter 2 SOFTWARE REQUIREMENTS

SPECIFICATION

2.1 Hardware Requirement

2.2 Software Requirement

Chapter 3 DESIGN & PLANNING

3.1 Software Development Life Cycle Model

3.2 ER Diagram

Chapter 4 IMPLEMENTATION DETAILS

4.1 FRONT END

4.2 BACK END

Chapter 5 TESTING

5.1 UNIT TESTING

5.2 INTEGRATION TESTING

5.3 SOFTWARE VERIFICATION AND

VALIDATION

5.4 Black-Box Testing

5.5 White-Box Testing

5.6 SYSTEM TESTING

Chapter 6 RESULTS

Chapter 7 ADVANTAGES

Chapter 8 CONCLUSION

CHAPTER 1 : INTRODUCTION

1.1 INTRODUCTION

The project EncDoc is a backend and android application that allows user to handle their files and

password.

1.2 AIM

Our proposed system is an EncDoc that enables ease for theuser. It overcomes the disadvantages of

the security threat. Our proposed system is a medium to Encrypt file at finger tip. This project can be

used at production level to generate hash sum of their files to maintain integrity and will be used as

password handler or provider. Our Aim is to make cryptography more usable in daily life.

1.3 FEASIBILITY STUDY

A feasibility study is a high-level capsule version of the entire System analysis and Design Process.

The study begins by classifying the problem definition. Feasibility is to determine if it’s worth doing.

Once an acceptance problem definition has been generated, the analyst develops a logical model of

the system. A search for alternatives is analyzed carefully. There are 3 parts in feasibility study.

1) Operational Feasibility

2) Technical Feasibility

3) Economical Feasibility

1.3.1 OPERATIONAL FEASIBILITY

Operational feasibility is the measure of how well a proposed system solves the problems, and takes

advantage of the opportunities identified during scope definition and how it satisfies the

requirements identified in the requirements analysis phase of system development.The operational

feasibility assessment focuses on the degree to which the proposed development projects fits in with

the existing business environment and objectives with regard to development schedule, delivery

date, corporate culture and existing business processes.To ensure success, desired operational

outcomes must be imparted during design and development. These include such design-dependent

parameters as reliability, maintainability, supportability, usability, producibility, disposability, sustainability,

affordability and others. These parameters are required to be considered at the early stages of design

if desired operational behaviours are to be realised. A system design and development requires

appropriate and timely application of engineering and management efforts to meet the previously

mentioned parameters. A system may serve its intended purpose most effectively when its technical

and operating characteristics are engineered into the design. Therefore, operational feasibility is a

critical aspect of systems engineering that needs to be an integral part of the early design phases.

1.3.2 TECHNICAL FEASIBILITY

This involves questions such as whether the technology needed for the system exists, how difficult it

will be to build, and whether the firm has enough experience using that technology. The assessment

is based on outline design of system requirements in terms of input, processes, output, fields,

programs and procedures. This can be qualified in terms of volume of data, trends, frequency of

updating inorder to give an introduction to the technical system. The application is the fact that it

has been developed on windows XP platform and a high configuration of 1GB RAM on Intel

Pentium Dual core processor. This is technically feasible .The technical feasibility assessment is

focused on gaining an understanding of the present technical resources of the organization and their

applicability to the expected needs of the proposed system. It is an evaluation of the hardware and

software and how it meets the need of the proposed system.

1.3.3 ECONOMICAL FEASIBILITY

Establishing the cost-effectiveness of the proposed system i.e. if the benefits do not outweigh the

costs then it is not worth going ahead. In the fast paced world today there is a great need of online social

networking facilities. Thus the benefits of this project in the current scenario make it economically

feasible. The purpose of the economic feasibility assessment is to determine the positive economic

benefits to the organization that the proposed system will provide. It includes quantification and

identification of all the benefits expected. This assessment typically involves a cost/benefits analysis.

1.4 ORGANISATION OF THE REPORT

1.4.1 INTRODUCTION

This section includes the overall view of the project i.e. the basic problem definition and the general

overview of the problem which describes the problem in layman terms. It also specifies the software

used and the proposed solution strategy.

1.4.2 SOFTWARE REQUIREMENTS SPECIFICATION

This section includes the Software and hardware requirements for the smooth running of the

application.

1.4.3 DESIGN & PLANNING

This section consists of the Software Development Life Cycle model. It also contains technical

diagrams like the Data Flow Diagram and the Entity Relationship diagram.

1.4.4 IMPLEMENTATION DETAILS

This section describes the different technologies used for the entire development process of the Front-

end as well as the Back-end development of the application.

1.4.5 RESULTS AND DISCUSSION

This section has screenshots of all the implementation i.e. user interface and their description.

1.4.6 SUMMARY AND CONCLUSION

This section has screenshots of all the implementation i.e. user interface and their description.

1.5 LOGIN & SIGNUP PAGE

Logging in tells the system who you are and what you have permission to do. Likewise, when you finish, you will
log out so that no one else can access your files without permission.

CHAPTER 2 : SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

Number Description

1 PC with 250 GB or more Hard disk.

2 PC with 2 GB RAM.

3 PC with Pentium 1 and Above.

2.2 Software Requirements

Number Description Type

1 Operating System Windows

2 Language Node JS , Dart

3 Database Mongo-db

4 IDE Visual Code, Android Studio

5 Browser Google Chrome

1 NODE JS

Node.js is a server-side platform built on Google Chrome's JavaScript Engine (V8 Engine). Node.js was

developed

 by Ryan Dahl in 2009 and its latest version is v0.10.36.

 −

Node.js is a platform built on Chrome's JavaScript runtime for easily building fast and scalable network

applications. Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient,

perfect for data-intensive real-time applications that run across distributed devices.

Node.js is an open source, cross-platform runtime environment for developing server-side and networking

applications. Node.js applications are written in JavaScript, and can be run within the Node.js runtime on

 OS X,

Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules which simplifies the development

of web

 applications using Node.js to a great extent.

DART

Dart is a programming language designed for client development,[8][9] such as for the web and mobile apps.

 It is developed by Google and can also be used to build server and desktop applications.

It is an object-oriented, class-based, garbage-collected language with C-style syntax.[10] It can compile to

either native code or JavaScript, and supports interfaces, mixins, abstract classes, reified generics and type

inference.[11]

Dart was unveiled at the GOTO conference in Aarhus, Denmark, October 10–12, 2011.[12] The project

 was founded by Lars Bak and Kasper Lund.[13] Dart 1.0 was released on November 14, 2013.[14]

Dart initially had a mixed reception and the Dart initiative has been criticized by some for fragmenting

 the web, due to the original plans to include a Dart VM in Chrome. Those plans were dropped in 2015

with the 1.9 release of Dart to focus instead on compiling Dart to JavaScript.[15]

Dart 2.0 was released in August 2018, with language changes including a sound type system.[16]

Dart 2.6 introduced a new extension, dart2native, which extends native compilation to the Linux, macOS,

 and Windows desktop platforms. Earlier developers could create new tools using only Android or iOS

devices. With this extension it also becomes possible to compose a program into self-contained

executables. According to company representatives, it’s no longer necessary to have the Dart SDK

installed, as the self-contained executables can now start running in a few seconds. The new extension is

 also integrated with the Flutter toolkit, making it possible to use the compiler on small services

(for example,

backend support).

https://code.google.com/p/v8/
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-8
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-8
https://en.wikipedia.org/wiki/Mobile_app
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-10
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Mixin
https://en.wikipedia.org/wiki/Abstract_class
https://en.wikipedia.org/wiki/Reification_(computer_science)
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Type_inference
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-11
https://en.wikipedia.org/wiki/Aarhus
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-12
https://en.wikipedia.org/wiki/Lars_Bak_(computer_programmer)
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-13
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-14
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-VM_cancelled-15
https://en.wikipedia.org/wiki/Dart_(programming_language)#cite_note-16
https://en.wikipedia.org/wiki/Flutter_(software)

MONGO DB

MongoDB is an open source NoSQL database management program. NoSQL is used as an alternative to traditional

 relational databases. NoSQL databases are quite useful for working with large sets of distributed data. MongoDB is a

 tool that can manage document-oriented information, store or retrieve information.

MongoDB supports various forms of data. It is one of the many nonrelational database technologies that arose in the

 mid-2000s under the NoSQL banner -- normally, for use in big data applications and other processing jobs involving

data that doesn't fit well in a rigid relational model. Instead of using tables and rows as in relational databases, the

MongoDB architecture is made up of collections and documents.

Organizations can use Mongo DB for its ad-hoc queries, indexing, load balancing, aggregation, server-side JavaScript

execution and other features.

ANDROID STUDIO

Android Studio is the official Integrated Development Environment (IDE) for Android app development, based on

 IntelliJ IDEA . On top of IntelliJ's powerful code editor and developer tools, Android Studio offers even more features

 that enhance your productivity when building Android apps, such as:

 A flexible Gradle-based build system

 A fast and feature-rich emulator

 A unified environment where you can develop for all Android devices

 Apply Changes to push code and resource changes to your running app without restarting your app

 Code templates and GitHub integration to help you build common app features and import sample code

 Extensive testing tools and frameworks

 Lint tools to catch performance, usability, version compatibility, and other problems

 C++ and NDK support

 Built-in support for Google Cloud Platform, making it easy to integrate Google Cloud Messaging and App

 Engine

This page provides an introduction to basic Android Studio features. For a summary of the latest changes, see

Android Studio release notes.

https://www.techtarget.com/searchdatamanagement/definition/NoSQL-Not-Only-SQL
https://searchsqlserver.techtarget.com/definition/database
https://www.techtarget.com/searchdatamanagement/infographic/NoSQL-database-comparison-to-help-you-choose-the-right-store
https://www.techtarget.com/searchdatamanagement/definition/relational-database
https://www.jetbrains.com/idea/
https://cloud.google.com/tools/android-studio/docs/
https://developer.android.com/studio/releases

 CHAPTER 3 : DESIGN & PLANNING

3.1 Software Development Life Cycle Model

3.1.1WATERFALL MODEL

The waterfall model was selected as the SDLC model due to the following reasons:

Requirements were very well documented, clear and fixed. Technology was

adequately understood.

Simple and easy to understand and use.

There were no ambiguous

requirements.

Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review

process.

Clearly defined stages.

Well understood milestones.Easy to arrange tasks.

3.2 ER Diagram

CHAPTER 4 : IMPLEMENTATION

DETAILS

In this Section we will do Analysis of Technologies to use for implementing the project.

:

DART& FLUTTER

CHAPTER 5 : TESTING

5.1 : UNIT

TESTING

5.1.1Introduction

In computer programming, unit testing is a software testing method by which individual units of

source code, sets of one or more computer program modules together with associated control

 data, usage procedures, and operating procedures, are tested to determine whether

they are fit for use. Intuitively, one can view a unit as the smallest testable part of an application.

In procedural programming, a unit could be an entire module, but it is more commonly an

individual function or procedure. In object-oriented programming, a unit is often an entire interface,

such as a class, but could be an individual method. Unit tests are short code fragments created by

programmers or occasionally by white box testers during the development process. It forms the

basis for component testing. Ideally, each test case is independent from the others. Substitutes

such as method stubs, mock objects, fakes, and test harnesses can be used to assist testing a

module in isolation. Unit tests are typically written and run by software developers to ensure that

code meets its design and behaves as intended.

FRONT END 4.1.

.

5.1.2

The goal of unit testing is to isolate each part of the program and show that the individual parts are

correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it

affords several benefits.

1) Find problems early : Unit testing finds problems early in the development cycle. In test- driven

development (TDD), which is frequently used in both extreme programming and scrum, unit tests

are created before the code itself is written. When the tests pass, that code is considered complete.

The same unit tests are run against that function frequently as the larger code base is developed either

as the code is changed or via an automated process with the build. If the unit tests fail, it is

considered to be a bug either in the changed code or the tests themselves. The unit tests then allow the

location of the fault or failure to be easily traced. Since the unit tests alert the development team of the

problem before handing the code off to testers or clients, it is still early in the development process.

2) Facilitates Change : Unit testing allows the programmer to refactor code or upgrade system

libraries at a later date, and make sure the module still works correctly (e.g., in regression testing).

The procedure is to write test cases for all functions and methods so that whenever a change causes a

fault, it can be quickly identified. Unit tests detect changes which may break a design contract.

3) Simplifies Integration : Unit testing may reduce uncertainty in the units themselves and can be used

in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum

of its parts, integration testing becomes much easier.

4) Documentation : Unit testing provides a sort of living documentation of the system. Developers

looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to

gain a basic understanding of the unit's interface (API).Unit test cases embody characteristics that are

critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of

a unit as well as negative behaviors that are to be trapped by the unit.

5.2 : INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in

software testing in which individual software modules are combined and tested as a group. It occurs

after unit testing and before validation testing. Integration testing takes as its input modules

that have been unit tested, groups them in larger aggregates, applies tests defined in an integration

test plan to those aggregates, and delivers as its output the integrated system ready for system

testing.

5.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and

reliability requirements placed on major design items. These "design items", i.e.,

assemblages (or groups of units), are exercised through their interfaces using black-box testing,

success and error cases being simulated via appropriate parameter and data inputs. Simulated

usage of shared data areas and inter-process communication is tested and individual subsystems are

exercised through their input interface. Test cases are constructed to test whether all the components

within assemblages interact correctly, for example across procedure calls or process activations,

and this is done after testing individual modules, i.e., unit testing. The overall idea is a "building block"

approach, in which verified assemblages are added to a verified base which is then used to support the

integration testing of further assemblages.Software integration testing is performed according to the

software development life cycle (SDLC) after module and functional tests. The cross- dependencies for

software integration testing are: schedule for integration testing, strategy and selection of the tools

used for integration, define the cyclomatical complexity of the software and software architecture,

reusability of modules and life-cycle and versioning management.Some different types of integration

testing are big-bang, top- down, and bottom-up, mixed (sandwich) and risky-hardest. Other Integration

Patterns[2] are: collaboration integration, backbone integration, layer integration, client-server

integration, distributed services integration and high-frequency integration.

5.2.1.1 Big

In the big-bang approach, most of the developed modules are coupled together to form a complete

software system or major part of the system and then used for integration testing. This method is

very effective for saving time in the integration testing process. However, if the test cases and their

results are not recorded properly, the entire integration process will be more complicated and may

prevent the testing team from achieving the goal of integration testing.A type of big-bang integration

testing is called "usage model testing" which can be used in both software and hardware integration

testing. The basis behind this type of integration testing is to run user-like workloads in integrated

user-like environments. In doing the testing in this manner, the environment is proofed, while the

individual components are proofed indirectly through their use. Usage Model testing takes an

optimistic approach to testing, because it expects to have few problems with the individual

components. The strategy relies heavily on the component developers to do the isolated unit testing for

their product. The goal of the strategy is to avoid redoing the testing done by the developers, and

instead flesh-out problems caused by the interaction of the components in the environment.

5.2.1.2 Top-down And Bottom-up

Bottom-up testing is an approach to integrated testing where the lowest level components are tested

first, then used to facilitate the testing of higher level components. The process is repeated until the

component at the top of the hierarchy is tested.All the bottom or low- level modules, procedures or

functions are integrated and then tested. After the integration testing of lower level integrated modules,

the next level of modules will be formed and can be used for integration testing. This approach is

helpful only when all or most of the modules of the same development level are ready. This method also

helps to determine the levels of software developed and makes it easier to report testing progress in the

form of a percentage.Top-down testing is an approach to integrated testing where the top integrated

modules are tested and the branch of the module is tested step by step until the end of the related

module.Sandwich testing is an approach to combine top down testing with bottom up testing.

5.3 : SOFTWARE VERIFICATION AND VALIDATION

5.3.1 Introduction

In software project management, software testing, and software engineering, verification and

validation (V&V) is the process of checking that a software system meets specifications and that it

fulfills its intended purpose. It may also be referred to as software quality control. It is normally the

responsibility of software testers as part of the software development lifecycle. Validation checks that

the product design satisfies or fits the intended use (high-level checking), i.e., the software meets the

user requirements.This is done through dynamic testing and other forms of review.Verification and

validation are not the same thing, although they are often confused. Boehm succinctly

expressed the difference between

Validation : Are we building the right product? Verification :

Are we building the product right?

According to the Capability Maturity Model (CMMI-SW v1.1)

Software Verification: The process of evaluating software to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase.

Software Validation: The process of evaluating software during or at the end of the development

process to determine whether it satisfies specified requirements.

In other words, software verification is ensuring that the product has been built according to the

requirements and design specifications, while software validation ensures that the product meets the

user's needs, and that the specifications were correct in the first place. Software verification ensures that

"you built it right". Software validation ensures that "you built the right thing". Software validation

confirms that the product, as provided, will fulfill its intended use.

From Testing Perspective

Fault – wrong or missing function in the code.

Failure – the manifestation of a fault during execution.

Malfunction – according to its specification the system does not meet its specified
functionality

Both verification and validation are related to the concepts of quality and of software quality

assurance. By themselves, verification and validation do not guarantee software quality; planning,

traceability, configuration management and other aspects of software engineering are

required.Within the modeling and simulation (M&S) community, the definitions of verification,

validation and accreditation are similar:

M&S Verification is the process of determining that a ⦁ computer model, simulation, or

federation of models and simulations implementations and their associated data accurately

represent the developer's conceptual description and specifications.

M&S Validation is the process of determining the degree to which a model, simulation, or

federation of models and simulations, and their associated data are accurate representations

of the real world from the perspective of the intended use(s).

5.3.2 Classification

In mission-critical software systems, where flawless performance is absolutely necessary, formal

methods may be used to ensure the correct operation of a system. However, often for non-mission-

critical software systems, formal methods prove to be very costly and an alternative method of

software V&V must be sought out. In such cases, syntactic methods are often used.

5.3.3 Test Cases

A test case is a tool used in the process. Test cases may be prepared for software verification and

software validation to determine if the product was built according to the requirements of the user.

Other methods, such as reviews, may be used early in the life cycle to provide for software

validation.

5.4 : Black-Box

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually to

every level of software testing: unit, integration, system and acceptance. It typically comprises

most if not all higher level testing, but can also dominate unit testing as well.

5.4.1 Test Procedures

Specific knowledge of the application's code/internal structure and programming knowledge in

general is not required. The tester is aware of what the software is supposed to do but is not aware of

how it does it. For instance, the tester is aware that a particular input returns a certain, invariable output

but is not aware of how the software produces the output in the first place.

5.4.2 Test Cases

Test cases are built around specifications and requirements, i.e., what the application is supposed to

do. Test cases are generally derived from external descriptions of the software, including

specifications, requirements and design parameters. Although the tests used are primarily

functional in nature, non-functional tests may also be used. The test designer selects both valid and

invalid inputs and determines the correct output, often with the help of an oracle or a previous result

that is known to be good, without any knowledge of the test object's internal structure.

5.5 : White-Box

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and

structural testing) is a method of testing software that tests internal structures or workings of an

application, as opposed to its functionality (i.e. black-box testing). In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. The tester

chooses inputs to exercise paths through the code and determine the appropriate outputs. This is

analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at

the unit, integration and system levels of the software testing process. Although traditional testers

tended to think of white-box testing as being done at the unit level, it is used for integration and

system testing more frequently today. It can test paths within a unit, paths between units during

integration, and between subsystems during a system–level test. Though this method of test

design can uncover many errors or problems, it has the potential to miss unimplemented parts of the

specification or missing requirements.

5.5.1 Levels

1) Unit testing : White-box testing is done during unit testing to ensure that the code is working as

intended, before any integration happens with previously tested code. White- box testing during unit

testing catches any defects early on and aids in any defects that happen later on after the code is

integrated with the rest of the application and therefore prevents any type of errors later on.

2) Integration testing : White-box testing at this level are written to test the interactions of each interface

with each other. The Unit level testing made sure that each code was tested and working accordingly in

an isolated environment and integration examines the correctness of the behaviour in an open

environment through the use of white-box testing for any interactions of interfaces that are known to

the programmer.

3) Regression testing : White-box testing during regression testing is the use of recycled white-box

test cases at the unit and integration testing levels.

5.5.2

White-box testing's basic procedures involves the tester having a deep level of understanding of the

source code being tested. The programmer must have a deep understanding of the application to

know what kinds of test cases to create so that every visible path is exercised for testing. Once the

source code is understood then the source code can be analyzed for test cases to be created. These

are the three basic steps that white-box testing takes in order to create test cases:

Input involves different types of requirements, functional specifications, detailed designing

of documents, proper source code, security specifications. This is the preparation stage of

white- box testing to layout all of the basic information.

Processing involves performing risk analysis to guide whole testing process, proper test plan,

execute test cases and communicate results. This is the phase of building test cases to make sure

they thoroughly test the application the given results are recorded accordingly.

Output involves preparing final report that encompasses all of the above preparations and results.

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black-box testing, and as such, should require no knowledge of the inner design of the

code or logic. As a rule, system testing takes, as its input, all of the "integrated" software components

that have passed integration testing and also the software system itself integrated with any applicable

hardware system(s). The purpose of integration testing is to detect any inconsistencies between the

software units that are integrated together (called assemblages) or between any of the

assemblages and the hardware. System testing is a more limited type of testing; it seeks to detect

defects both within the "inter-assemblages" and also within the system as a whole.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing tests not

only the design, but also the behavior and even the believed expectations of the customer.

 Database

 Some Code Screen Shot

CHAPTER 7 : ADVANTAGES

It’s fast, easy and

comfortable. Less hassle for

you.

An online menu is simpler to manage. It’s

just one click away.

CHAPTER 8 : CONCLUSION

We develop test project which help to manage the file and provide cryptography power to

everyone so they can secure their documents and may used

In product for cryptography purpose.

	DIPLOMA IN COMPUTER SCIENCE & ENGINEERING
	CERTIFICATE
	ACKNOWLEDGEMENT
	ABSTRACT
	INDEX
	1.1 INTRODUCTION
	1.2 AIM
	1.3 FEASIBILITY STUDY
	1.3.1 OPERATIONAL FEASIBILITY
	1.3.2 TECHNICAL FEASIBILITY
	1.3.3 ECONOMICAL FEASIBILITY
	1.5 LOGIN & SIGNUP PAGE

	CHAPTER 2 : SOFTWARE REQUIREMENTS SPECIFICATION
	2.1 Hardware Requirements
	Number
	Type
	3.1 Software Development Life Cycle Model 3.1.1WATERFALL MODEL

	CHAPTER 4 : IMPLEMENTATION DETAILS

	DART& FLUTTER
	CHAPTER 5 : TESTING
	5.1 : UNIT TESTING 5.1.1Introduction
	5.1.2
	5.2 : INTEGRATION TESTING
	5.2.1.1 Big
	5.2.1.2 Top-down And Bottom-up
	5.3 : SOFTWARE VERIFICATION AND VALIDATION
	5.3.2 Classification
	5.3.3 Test Cases
	5.4 : Black-Box
	5.4.1 Test Procedures
	5.4.2 Test Cases
	5.5 : White-Box
	5.5.1 Levels
	Database

	CHAPTER 7 : ADVANTAGES
	CHAPTER 8 : CONCLUSION

