Name			Printed Pages:01			
Student Admn. No.:						
	School of Basic & Appli Backlog Examination,					
	[B.Sc. Mathematics] [Sen	nester: IV]				
[Batch:] Course Title: Ring Theory				Max Marks: 100		
Course Code: BSCM423			Time: 3 Hrs.			
Instructions: 1. All questions are compulsory.						
	2. Assume missing data suitably, if any.					
			K Level	COs	Marks	
	SECTION-A (15 Marks)	5 Marks eac	h			
1.	Find the basis of $Q(\sqrt{3},\sqrt{5})$ over Q.				5	
2.	2. Give an example of a subring S of a ring R such that S and R have different unity (multiplicative identity).				5	
3.	Show that the abarateristic of an integral domain is either 0 or prime				5	
	SECTION-B (40 Marks)	10 Marks eac	h			
4.	Show that the sum of two subrings of a ring R may not be a subring of R.				10	
5.	Find all the ring homomorphisms from Z to Z.				10	
6.	Prove that every Euclidean domain is a Principal ideal domain. Is the converse true?				10	
7.	Find the g.c.d. of x^6+x^3+x+1 and x^2+1 in $\mathbf{Q}[x]$. OR Describe the splitting field of x^3-2 over \mathbf{Q} , the field of rational numbers.				10	
	SECTION-C (45 Marks)	15 Marks eac	ch			
8.	Show that the polynomial $x^2 + x + 2$ is irreducible over $F = \{0, 1, 2\} \mod 3$. Use it to construct a field of 9 elements.				15	
9.	Define a Euclidean Domain. Further, show that \mathbf{Z} , the set of integers is a Euclidean domain.				15	
10	Prove that a finite extension is an algebraic extension. Is the converse true? OR Show that $\sqrt{-5}$ is a prime element in $\mathbb{Z}[\sqrt{-5}]$, while 3 is not. Also check whether 3 is an irreducible element or not.				15	