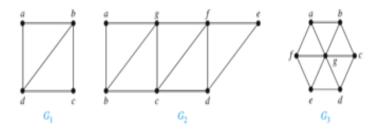
School of Basic and Applied Sciences

Mathematics ETE - May 2023


Time : 3 Hours

Marks : 50

Sem VI - BSCM621 - Mathematical Modelling and Simulation

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

1.		K2 CO1	(2)
	Define Logistic growth population model.		. ,
2.	If the roots of auxillay equations are 1 and -2, write the general solution.	K2 CO2	(2)
3.	Write SIR epidemic mathematical model for the spread of Cholera disease.	K3 CO3	(2)
4.	Define Gravitional potential.	K3 CO4	(2)
5.	What do you mean by a connected graph.	K4 CO5	(2)
6.	Analyze the dynamics of prey-predator system with constant rate of harvesting.	K3 CO1	(5)
7.	Consider the second order linear ordinary differential equation $y'' - 4y' + 4y = 0$ with the initial condition $y'(0) = 1$	K4 CO2	(5)
	y(0) = 1, y'(0) = 1. Find the value of y at $x = 1$.		
8.	Formulate the following situation uisng a system of differential equations: Let S(t) be the density of a species whose growth depends on the availabe biotic resources F(t). The biotic density follows and logistic growth model. Let N(t) be the density of human population in the region on consideration. Assume that human hunt the species with a rate proportional the density of species and human both and consume the biotic resources for their further growth.	K6 CO6	(6)
9.	Classify the following mathematical model with the help of suitable examples: 1. Static vs. dynamic 2. Discrete vs. continuous	K4 CO3	(8)
10.	Find the solution of the given heat equation in an iron rod of leagth 1 unit:	K4 CO4	(8)
	$u_t = 0.003u_{xx}.u(0,t) = u(1,t) = 0,u(x,0) = 50x(1-x).$		
11.	Which graphs shown in the following figure have an Euler path? Explain it	K5 CO5	(8)

