Name			Printed Pages:01		
Stu	dent Admn. No.:				
	School of Basic and Applied Science Backlog Examination, June 2023				
[Programme: B.Sc.] [Semester: IV] [Batch:]					
Course Title: SOLID STATE PHYSICS			Max Marks: 100		
Course Code: BSCP2011			Time: 3 Hrs.		
Inst	Instructions: 1. All questions are compulsory.				
	2. Assume missing data suitably, if any.				
		K Level	COs	Marks	
SECTION-A (15 Marks) 5 Marks each					
1.	What is graphene? Draw its structure and write its applications.	K1	CO6	5	
2.	Describe the terms space lattice and crystal structure	K1	CO1	5	
3.	Compare ferromagnetic and diamagnetic materials.	K2	CO3	5	
SECTION-B (40 Marks) 10 Marks each					
4.	Analyze the difference between type 1 and type 2 superconductors.	K2	CO5	10	
	Solve the Miller indices for the shaded region.		CO1	10	
5.	z x x	К3			
6.	Trace the hysteresis curve and highlight the critical points on the curve. What cause the hysteresis curve?	es K4	CO3	10	
7.	Explain the terms (i) Dielectric Polarization, (ii) Polarisability, (iii) Dielectric Constant, (iv) Spontaneous polarization, (v) Electric susceptibility. OR	K3	CO4	10	
Compute the atomic packing fraction of simple cubic cell.					
8.	For BCC, compute the interplanar spacing in Angstrom between the parallel plane of (220). The lattice parameter of iron is 2 866 Angstrom	^s K3	CO1	15	
9.	Determine the Debye theory for specific heat of solids at high temperature	K5	CO2	15	
	Deduce the second nearest neighbor distance for FCC having a side length of b.		CO3		
10	OR Deduce the intensity of magnetization of the bar magnet whose mass; magnetic density, and magnetic moment are 100g, 4gcm-3, and 1 Am2, respectively.	K6		15	