School of Basic and Applied Sciences Mathematics ETE - Jun 2023

Time: 3 Hours

Marks : 100

	Sem IV - C1UC402T - Real Analysis Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary		
1.	Define the following with example: a. Bounded Set b. Least Upper Bound c. Completeness Property of Real number	K1 CO3	(5)
2. 3.	State and Prove Rolle's Theorem. Give an example for the verification of the theorem. Give the examle of a divergent and a convergent series. Discuss the convergence of auxiliary Series $\Sigma \frac{1}{n^p}$	K1 CO2 K2 CO3	(5) (5)
4.	Cauchy's definition of continuity. Prove that a polynomial function is always a continuous function.	K3 CO3	(10)
	OR		
	Define the sequences and series.	K3 CO1	(10)
	Prove that the series $\Sigma \frac{1}{4^n}$ converges to $\frac{1}{3}$.		
5.	Explain the Absolute Convergence and Conditional Convergence. Check the absolute and conditionally convergence of the series $1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$	K4 CO4	(10)
6.	State and prove darboux theorem.	K2 CO4	(10)
7.	Every bounded sequence of real number contains a convergent sub-sequence.	K3 CO4	(10)
8.	Prove (E \cap F)o=E o \cap Fo and give the example for the same.	K3 CO2	(15)
9.	State and prove Bolzano-Weierstrass theorem for sequences.	K4 CO6	(15)
	OR		
	What is finite and arbitrary interection of the sets. Prove intersection of a finite number of open sets is open. Is it true for arbitrary collection.	K4 CO5	(15)
10.	Test for convergence the series whose nth terms is	K4 CO2	(15)

i.
$$\frac{n^p}{(1+n)^q}$$
ii.
$$\sin \frac{1}{2}$$

ii.
$$\sin \frac{1}{n}$$