Name.			Printed Pages:01			
Student Admn. No.:						
School of Basic and Applied Sciences Backlog Examination, June 2023						
[Programme: B.Tech] [Semester: II] [Batch:]						
Course Title: Engineering Chemistry				Max Marks: 100		
Course Code: CHEM1001				Time: 3 Hrs.		
Instructions: 1. All questions are compulsory.						
	2. Assume missing data suitably, if any.					
			K Level	COs	Marks	
SECTION-A (15 Marks) 5 Marks each						
1.	Explain Rutherford model and his observation with gold foil experim Write its major limitations?	nents.	K2	CO-1	5	
2.	Explain Black body radiation and UV catastrophe?		K2	CO-1	5	
3.	Explain the concept of nuclear fission and nuclear fusion with sui examples?	table	K2	CO-2	5	
SECTION-B (40 Marks) 10 Marks each						
4.	Explain the concept of hybridization and its rules. Draw the geometry of and XeF ₄ ?	ClF ₃	K2	CO-3	10	
5.	Develop the concept and differentiate between Valence band theory Molecular Orbital Theory with suitable example?	and	К3	CO-3	10	
6.	Simplify and draw the MO diagrams of O ₂ and N ₂ ⁺ . Calculate their	bond	K4	CO-4	10	
	order and predict their magnetic character? Simplify the concept of hydrogen bonding. Distinguish the terms intra inter-molecular hydrogen bonding with example and explain why densi water is maximum at 4°C?				10	
7.	OR Simplify Half- life of a radioactive material? Examine and drive rel between decay constant and number of particles left at time 't'. Show the a radioactive decay, the half-life of the material is independent of its it concentration?	at for nitial	K4	CO-3		
SECTION-C (45 Marks) 15 Marks each						
8.	Simplify the principle of carbon dating. How we can find out the age of carbon containing objects. Calculate the age of a piece of wood from archaeological source shows ¹⁴ C activity which is 60% of the activity f today. (half-life period for C-14 is 5770 years)?	m an	K3	CO-5	15	
9.	Determine the first law of thermodynamics with its various special forms. Derive a relation between heat, internal energy and work done by the sys. What is the sign convention for heat and work? Calculate the change in the internal energy of a system which absorbs 500J of heat, and does work equivalent to 200 J on the surroundings?	tem.	K5	CO-5	15	
10	Determine an integrated rate equation for a first order reaction. Show that half-life of a first order reaction is independent of the initial concentration the reactant? OR Explain nucleic acid and structure of DNA and RNA?		K5	CO-5	15	