Name											Printed Pages:02			
Student Admn. No.:														
School of Basic & Applied Sciences Backlog Examination, June 2023														
[Programme: B.Tech (Civil/CSE)] [Semester: IV] [Batch:All]														
Сог	Course Title: Probability & Statistics											Max Marks: 100		
Course Code: MATH2003											Time: 3 Hrs.			
Inst	Instructions:1. All questions are compulsory.													
2. Assume missing data suitably, if any.														
											K			
											Level	COs	Marks	
SECTION-A (15 Marks) 5 Marks eac										each	h			
A dia is called once, let A he the event that on even number turns up and let D he the										ne	K0	001	5	
1. A die is folied once, let A be the event that an even number turns up and let B be the event that a number divisible by 3 occurs. Find $P(A \cup B)$ and $P(A \cap B)$.											K2	CO1	5	
2.	Let X and Y be two independent random variables and $E(X)=5$, $E(Y)=8$ and $V(X)=2$,									2,	K2	CO2	5	
	 V(Y)=2 respectively. Define a random variable Z = 5X + 2Y. Let a random variable Y have the following p.m.f.: 												5	
	x: 0	om varia	2		e 10110 4	wing p	.m.1.:							5
3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											K3	CO2	
	Find the expected value of $Z = (Y + 1)$.													
			ana			<u> </u>				1036 1				
	1					(arks)		(V)	0	10 Marks	eact	n		
	The joint p						variable	$(\Lambda, 1$) is gi	ven by				
	$\begin{cases} xy, & 0 < x \le y < 1 \end{cases}$											K3	CO3	10
4.	$f(x,y) = \begin{cases} 8xy, & 0 < x \le y < 1\\ 0, & othewise \end{cases}$													10
	Obtain the marginal pdf of X and Y .													
	Show tha	t the lin	e of be	est fit t	o the f	followi	ng dat	a is giv	ven by	Y = -0.5X + 8		K4	CO3	10
5.	X:	6	7	7	8	8	8	9	9	10				
	Y:	5	5	4	5	4	3	4	3	3				
	The probability that a patient recovers from a rare blood disease is 0.4. If 15 people are known to have contracted this disease, what is the probability that (a) at least 10 survive, (b) from 3 to 8 survive?												CO4	10
6.											0	K4		
	The following are the weights, in decagrams, of 10 packages of grass seed													
	distributed by a certain company:													10
	46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0. Find a 95%													
	confidence interval for the mean of the weights of all such packages of grass													
	seed distributed by this company, assuming a normal population													
7.	OR A machinist is making engine parts with axle diameters of 0.700 inch. A random											K4	CO4	
	sample of 10 parts shows a mean diameter of 0.742 inch with a standard deviation of													
	0.040 inch. Compute the statistic you would use to test whether the work is meeting													
	the specifications. Also find the 95% confidence interval in which most of the mean													
	axle diameter lie. [Given that Tabulated $t_{0.05}$ for (10 - 1) i.e., 9 d.f. for two-tailed													
	test is $2 \cdot 26$	52].												

	SECTION-C (45 Marks) 15 Marks ea										ch			
	Suppose the observations of X and Y is given as:													
8.	X:	59	65	45	52	60	62	70	55	45	49		CO4	15
	Y:			55					65	59	61	K4		
	Where, $n = 10$ students, and Y = Marks in Mathematics, X = Marks in Economics.													
	Obtain the rank correlation coefficient in the marks of the students for Mathematics													
	and Economics?											17.5		
9.	The theory predicts the proportion of beans in the four groups A, B, C and D should											K5		
	be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were												CO4	15
	882, 313, 287 and 118. Does the experimental result support the theory? [$\chi 20.05$ for 3 d.f. = 7.815]													
	Let X_1, X_2, \dots, X_n be a random sample of size n from a Poisson population											K5		
	having probability mass function,													
	$f(x,\lambda) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, \dots$													
	<i>w</i> .													
10	Show that the maximum likelihood estimator for λ is the sample mean.												CO5	15
	OR													
	Let ²	$x_1, x_2,$	\dots, x_n	be a rar	ndom sa	mple o	f size n	from a	normal p	opulation	n with			
	parar	neters()	μ, σ^2	Prove t	hat the	distribi	ution of	sample	mean \bar{x}	is also no	ormal with			
	parameters (μ, σ^2) . Prove that the distribution of sample mean \bar{x} is also normal with parameters $(\mu, \sigma^2/n)$.													
	parar	netersv												