Nar	ne	Printed Pages:02			
Stu	dent Adm				
		School of Basic and Applied Sciences Backlog Examination, June 2023			
		[Programme: B. Tech] [Semester:] [Batch:]			
Cou	irse Title:	Max Marks: 100			
Cot	irse Code:	MATH3010		Time:	3 Hrs.
Inst	tructions:	1. All questions are compulsory.			
		2. Assume missing data suitably, if any.			
			K		Monte
			Leve	COs	Mark
			1		S
		SECTION-A (15 Marks) 5 Marks	each		
1.		x^{yz} and errors in x, y, z be 0.01, compute the maximum absolute and ror in u, when $x = 1, y = 1, z = 1$	K1	CO-1	5
2.		following system of linear equations by Gauss elimination method: =9, $2x-3y+4z=13$, $3x+4y+5z=40$	K2	CO-2	5
3.	-	the divided difference table for $f(x) = x^2 + 4x + 5$ for x=	K1	CO-1	5
	1,0,0,0,7	SECTION-B (40 Marks) 10 Marks	each		
4.	Using Sec four iterat	cant method, compute the real root of $\cos x - xe^x = 0$. Perform ions.	K3	CO-3	10
		following system of equations is diagonally dominant and hence			10
5.	iterations		K4	CO-4	
	20x + y	z = 54, $x + 20y + z = 27$, $x + y + 20z = 24$. nge-Kutta fourth order method, find y(1), where $\frac{dy}{dx} = -xy$ and			10
6.		. Use h=0.5.	K3	CO-2	
7.	chemistry like the fo	gas law PV = nRT is a basic concept covered in introductory classes. More accurate P–V–T relationships of gases are available- blowing Beattie–Bridgeman equation $P = \frac{RT}{V} + \frac{a_1}{V^2} + \frac{a_2}{V^3} + \frac{a_3}{V^4}$ value of V if for a particular gas, a1 = -1.06, a2 = 0.057, a3 = - and RT=24.03, P=25.		CO-3	10
	Using Eu	OR ler's method, find an approximate value of y corresponding to x=2, $\frac{dy}{dx} = x + 2y$ and $y(1) = 1$.	K4		
	8- 01 thu	$\frac{1}{dx} = x + 2y \text{ and } y(1) = 1.$ SECTION-C (45 Marks) 15 Marks	each		
	The veloc	ity distribution of a fluid near a flat surface is given below:			
8.	x: 0.1	0.3 0.5 0.7 0.9 1.81 2.73 3.47 3.98.	17.7	CO-2	15
	x is the di	stance from the surface(cm) and v is the velocity(cm/sec). Using a	K5		

	suitable Interpolation formula Compute the velocity at $x=0.2$ and $x=0.8$.			
9.	Using Romberg Integration, evaluate $\int_0^1 \frac{dx}{1+x}$ correct upto 4 decimal places.	K4	CO-3	15
10	A train is moving at the speed of 30m/s suddenly the brakes are applied. The speed of the train per second after t seconds is given by (Time t): 0 5 10 15 20 25 30 35 40 45 (speed v): 30 24 19 16 13 11 10 8 7 5 Apply Simpson 3/8 Rule to determine the distance covered by the train in 45 seconds. OR Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by Simpson's 1\3 rd rule.	K6	CO-4	15