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Sem IV - MSCM327 - Measures Theory
Your answer should be specific to the question asked
Draw neat labeled diagrams wherever necessary

1. Define - Algebra on an arbitrary set X
2. Let X = {a.b.c.d} Find a nontrivial Algebra and -Algebra on X .

Give example of two measures on an arbitrary measurable space (X PL{X‘J‘J.
Define measurable functions on the measure space (N, P(N), ) , Where / is counting
measure.

5. Let (X. M. 1) be a measure space and @ X = [0.00]pea simple function. Define integration

of the simple function %.

6. Let (X, M) be a measure space and A1 C X. The characteristic function X4 is measurable if
and only if A € M.

7. Let the 7-algebra I be generated by hC P(]'_]. Prove that a function f : X — ¥ is
s T 1 N
measurable with respect to LI} if and only if /~ (E) € Moran E € R.

8. Let X be an uncountable set. A set function
(A= n If A has n elements,
i P(X) — [0, 00 s defined by'f V' =100 If A has infinite elements.

Prove that # defines a measure on PU{J.

9. State and discuss Fatou's Lemma. Give an example of a sequence of functions satisfying all the
theorem's assumptions.

e )
10. , cos mmn
lim E —_—
n—so0 mn . .
Calculate m=0 - using dominated convergence theorem.

M. et (X, M) be a measurable space and let f g: X — R pe measurable functions. Then
define h : X — B2 with (=) = (f(2).9(x))  Prove that i is a measurable function.
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