School of Basic and Applied Sciences

Mathematics ETE - May 2023

Time: 3 Hours Marks: 50

Sem IV - MSCM327 - Measures Theory

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

	Dian float labolou alagramo mioroto filosoccary		
1. 2.	Define σ - Algebra on an arbitrary set X . Let $X=\{a,b,c,d\}$. Find a nontrivial Algebra and σ -Algebra on X .	K2 CO1 (
3. 4. 5.	Give example of two measures on an arbitrary measurable space $(X,P(X))$. Define measurable functions on the measure space $(\mathbb{N},P(\mathbb{N}),\mu)$, where μ is counting measure. Let (X,\mathbb{M},μ) be a measure space and $\phi:X\to[0,\infty]$ be a simple function. Define integration	K3 CO1 (K3 CO2 (K4 CO2 ((2)
6.	of the simple function ϕ . Let (X,\mathbb{M}) be a measure space and $A\subset X$. The characteristic function χ_A is measurable if and only if $A\in\mathbb{M}$.	K3 CO2 ((5)
7.	Let the σ -algebra $\mathbb N$ be generated by $\Re\subseteq P(Y)$. Prove that a function $f:X\to Y$ is measurable with respect to $(\mathbb M,\mathbb N)$ if and only if $f^{-1}(E)\in\mathbb M$ for all $E\in\Re$.	K4 CO3 ((5)
8.	Let X be an uncountable set. A set function $\mu:P(X)\to [0,\infty] \text{ is defined by } \begin{cases} \mu(A)= \begin{cases} n & \text{if A has n elements,} \\ \infty & \text{if A has infinite elements.} \end{cases}$ Prove that μ defines a measure on $P(X)$.	K6 CO2 ((6)
9.	State and discuss Fatou's Lemma. Give an example of a sequence of functions satisfying all the theorem's assumptions.	K4 CO3 ((8)
10.	$\lim_{n\to\infty}\sum_{m=0}^{\infty}\frac{\cos mn}{2^{mn}}$ using dominated convergence theorem.	K4 CO4 ((8)
11.	Let (X,\mathbb{M}) be a measurable space and let $f,g:X\to\mathbb{R}$ be measurable functions. Then	K5 CO3 ((8)

define $h:X \to \mathbb{R}^2$ with h(x)=(f(x),g(x)) . Prove that h is a measurable function.