Name				Printed Pages:02		
Student Admn. No.:						
School of						
Backlog Examination, June 2023						
[Programme:] [Semester:] [Batch:]						
Course Title: Advanced Structural Analysis			Max Marks: 100			
Course Code: BTCE3014			Time: 3 Hrs.			
Inst	Instructions: 1. All questions are compulsory.					
2. Assume missing data suitably, if any.						
			K	<u> </u>		
		Level	COs	Marks		
SECTION-A (15 Marks) 5 Marks each						
1	Explain the concept of stiffness and its significance in the analysis of structures		K2	CO1	5	
1.						
2.	Define shape factor, load factor, Plastic section modulus. Derive shape factor		K1	CO2	5	
2.	for an I section.					
3.	Explain the steps used in concept of flexibility matrix method.		K2	CO3	5	
SECTION-B (40 Marks) 10 Marks each						
4.	Derive the value of stiffness, when far end is fixed.		K1	CO1	10	
5.	Define moment carrying capacity of steel section with the help of diagram.		K3	CO2	10	
6.	Analyse the beam shown in fig 2, using flexibility matrix method		K4	CO3	10	
	Analyse the beam shown in fig 1, using stiffness matrix method.					
7.	Or		K4	CO4	10	
	Analyse the beam shown in fig 3, using stiffness matrix method.		_			
	SECTION-C (45 Marks) 15 Marks each					
8.	Explain in brief about the distribution factor and carryover factor in mor distribution method.	nent	K5	CO1	15	
9.	Explain in detail about the significance and application of stiffness matrix method.		K5	CO4	15	
	Discuss the steps of analysis followed in substitute frame method.		K5			
10	Or			CO5	15	
	Discuss the steps of analysis for a cantilever method of approximate analysis.					

Note: Figure 1, 2 and 3 on the back side.

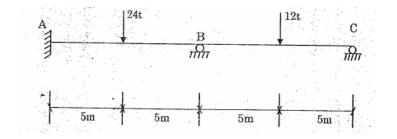
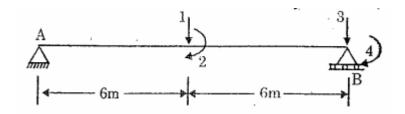



Fig. 1

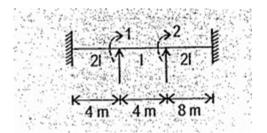


Fig 3