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Introduction

This book is based on lectures delivered at the Tata Institute of Funda-
mental Research, January 1990. Notes of my lectures and a prelimi-
nary manuscript were prepared by R. Sujatha. My interest in the sub-
ject of cyclic homology started with the lectures of A. Connes in the
AlgebraicK-Theory seminar in Paris in October 1981 where he intro-
duced the concept explicitly for the first time and showed therelation
to Hochschild homology. In the year 1984-1985, I collaborated with
Christian Kassel on a seminar on Cyclic homology at the Institute for
Advanced Study. Notes were made on the lectures given in thisseminar.
This project was carried further in 1987-1988 while Kassel was at the
Institute for Advanced Study and in 1988-1989 while I was at the Max
Planck Institut für Mathematik in Bonn. We have a longer andmore
complete book coming on the subject. The reader is familiar with func-
tions of several variables or sets ofn-tuples which are invariant under
the full permutation group, but what is special about cyclichomology is
that it is concerned with objects or sets which only have an invariance
property under the cyclic group. There are two important examples to
keep in mind. Firstly, a traceτ on an associative algebraA is a linear
form τ satisfyingτ(ab) = τ(ba) for all a, b ∈ A. Then the trace of a
product ofn+ 1 terms satisfies

τ(a0 . . . an) = τ(ai+1 . . .ana0 . . . ai).

We will use this observation to construct the Chern character of K-
theory with values in cyclic homology. Secondly, for a groupG, we
denote byN(G)n the subset ofGn+1 consisting of all (g0, . . . , gn) with
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iv Introduction

g0 . . . gn = 1. This subset is invariant under the action of the cyclic
group onGn+1 sinceg0 . . . gn = 1 implies thatgi+1 . . . gng0 . . .gi = 1.
This observation will not be used in these notes but can be used to de-
fine the chern character for elements in higher algebraicK-theory. This
topic will not be considered here, but it is covered in our book with Kas-
sel. This book has three parts organized into seven chapters. The first
part, namely chapters 1 and 2, is preliminary to the subject of cyclic ho-
mology which is related to classical Hochschild homology byan exact
couple discovered by Connes. In chapter 1, we survey the partof the
theory of exact couples and spectral sequences needed for the Connes
exact couple, and in chapter 2 we study the question of abelianization
of algebraic objects and how it relates to Hochschild homology. In the
second part, chapters 3, 4, and 5, we consider three different definitions
of cyclic homology. In chapter 3, cyclic homology is defined by the
standard double complex made from the standard Hochschild complex.
The first result is that an algebraA and any algebra Morita equivalent
to A, for example the matrix algebraMn(A), have isomorphic cyclic ho-
mology. In chapter 4, cyclic homology is defined by cyclic covariants
of the standard Hochschild complex in the case of a field of character-
istic zero. The main result is a theorem discovered independently by
Tsygan [1983] and Loday-Quillen [1984] calculating the primitive el-
ements in the Lie algebra homology of the infinite Lie algebragℓ(A)
in terms of the cyclic homology ofA. In chapter 5, cyclic homology
is defined in terms of mixed complexes and the Connes’B operator.
This is a way, due to Connes, of simplifying the standard double com-
plex, and it is particularly useful for the incorporation ofthe normalized
standard Hochschild into the calculation of cyclic homology. The third
part, chapters 6 and 7, is devoted to relating cyclic and Hochschild ho-
mology to differential forms and showing howK-theory classes have a
Chern character in cyclic homology over a field of characteristic zero.
There are two notions of differential forms depending on the commu-
tativity properties of the algebra. In chapter 6, we study the classical
Kähler differential forms for a commutative algebra, outline the proof
of the classical Hochschild-Kostant-Rosenberg theorem relating differ-
ential forms and Hochschild homology, and relate cyclic homology to
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deRham cohomology. In chapter 7 we study non-commutative differ-
ential forms for algebras and indicate how they can be used todefine
the Chern character of aK-theory class, that is, a class of an idempo-
tent element inMn(A), using differential forms in cyclic homology. In
this way, cyclic homology becomes the natural home for characteristic
classes of elements ofK-theory for general algebras over a field of char-
acteristic zero. This book treats only algebraic aspects ofthe theory of
cyclic homology. There are two big areas of application of cyclic ho-
mology to index theory, for this, see Connes [1990], and to the algebraic
K-theory of spacesA(X) introduced by F. Waldhausen. For references
in this direction, see the papers of Goodwillie.

I wish to thank the School of Mathematics of the Tata Institute of
Fundamental Research for providing the opportunity to deliver these
lectures there, and the Haverford College faculty researchfund for sup-
port. I thank Mr. Sawant for the efficient job he did in typing the
manuscript and David Jabon for his help on international transmission
and corrections. The process of going from the lectures to this written
account was made possible due to the continuing interest andpartici-
pation of R. Sujatha in the project. For her help, I express mywarm
thanks.
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Chapter 1

Exact Couples and the
Connes Exact Couple

In this chapter we review background material on graded objects, differ- 1

ential objects or complexes, spectral sequences, and on exact couples.
Since the Connes’ exact couple relating Hochschild and cyclic homol-
ogy plays a basic role in the theory of cyclic homology, this material
will serve as background material and as a means of introducing other
technical topics needed in the subsequent chapters. We discuss the ba-
sic structure of the Connes’ exact couple and the elementaryconclusions
that can be drawn from this kind of exact couple.

1 Graded objects over a category

Given a category we formulate the notion of graded objects over the
category and define the category of graded objects. There aremany
examples of gradings indexed by groupsZ, Z/2Z, Z/8Z, or Zr which
arise naturally. Then, a bigraded object is aZ2-graded object, that is, an
object graded by the groupZ2.

Definition 1.1. Let C be a category andΘ an abelian group. The cat-
egory GτΘ(C), also denotedΘC, of Θ-graded objects overC has for
objectsX = (Xθ)θ∈Θ whereX is a family of objectsXθ in C indexed

1



2 1. Exact Couples and the Connes Exact Couple

by Θ, for morphismsf : X → Y families f = ( fθ)θ∈Θ of morphisms
fθ : Xθ → Yθ in C, and compositiong f of f : X → Y andg : Y → Z
given by (g f)θ = gθ fθ in C.

The identity onX is the family (1θ)θ∈Θ of identities 1θ on Xθ. Thus it
is easily checked that we have a category, and the morphism sets define
a functor of two variables

HomΘC = Hom : (ΘC)op× ΘC → (sets)

extending Hom :Cop × C → (sets) in the sense that for twoΘ-graded
objectsX and Y we have HomΘC(X,Y) =

∏

θ′∈Θ

HomC(Xθ′ ,Yθ′). Note

that we do not define graded objects as either products or coproducts,2

but the morphism set is naturally a product. This product description
leads directly to the notion of a morphism of degreeα ∈ Θ such that a
morphism in the category is of degree 0∈ Θ.

Definition 1.2. With the previous notations for two objectsX andY in
ΘC, the set of morphisms of degreeα ∈ Θ from X to Y is Homα(X,Y) =∏

θ′∈Θ

Hom(Xθ,Yθ+α). If f : X → Y has degreeα andg : Y → Z has

degreeβ, then (g f)θ = gθ+α fθ is definedg f : X → Z of degreeα + β,
i.e. it is a function (f , g) 7→ g f defined

Homα(X,Y) × Homβ(Y,Z)→ Homα+β(X,Z).

Thus thisΘ-graded Hom, denoted Hom∗, is defined

Hom∗ : (ΘC)op× ΘC → Θ (Sets)

as a functor of two variables with values in the category ofΘ-graded
sets.

Remark 1.3.Recall that a zero object in a categoryC is an object de-
noted 0 or∗, such that Hom(X, 0) and Hom(0,X) are sets with one ele-
ment. A category with a zero object is called a pointed category. The
zero morphism 0 :X→ Y is the compositeX→ 0→ Y.
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Remark 1.4. If A is an additive (resp. abelian) category, thenΘA is
an additive (resp. abelian) category where the graded homomorphism
functor is defined

Hom∗ : (ΘA)op× ΘA→ Θ(ab)

with values in the category ofΘ-graded abelian groups. A sequence
X′ → X→ X′′ is exact inΘA if and only if X′θ → Xθ → X′′θ is exact in
A for eachθ ∈ Θ.

Remark 1.5.Of special interest is the category (k) of k-modules over a
commutative ringk with unit. This category has an internal Hom functor3
and tensor functor defined

⊗ : (k) × (k)→ (k) and Hom : (k)op× (k)→ (k)

satisfying the adjunction formula with an isomorphism

Hom(L ⊗ M,N) ≃ Hom(L,Hom(M,N))

as functors ofL, M, andN. These functors extend to

⊗ : Θ(k) × Θ(k)→ Θ(k) and Hom :Θ(k)op× Θ(k)→ Θ(k)

satisfying the same adjunction formula by the definitions

(L ⊗ M)θ =
∐

α+β=θ

Lα ⊗ Mβ and Hom(M,N)θ =
∏

α∈Θ

Hom(Mα,Nα+θ).

We leave it to the reader to check the adjunction formula, andwe
come back to the question of the tensor product of two morphisms of
arbitrary degrees in the next section, for it uses an additional structure
on the groupΘ.

Notation 1.6.For certain questions, for example those related to dual-
ity, it can be useful to have the upper index convention for anelementX
of ΘC. This isXθ

= X−θ and Hom(X,Y)θ = Hom(X,Y)−θ. In the clas-
sical case ofΘ = Z the effect is to turn negative degrees into positive
degrees. For example in the category (k) the graded dual in degreen
is Hom(M, k)n

= Hom(Mn, k). The most clear use of this convention is
with cohomology which is defined in terms of the dual of the homology
chain complex for spaces.
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2 Complexes

To define complexes, we need additional structure on the grading abelian
groupΘ, and this leads us to the next definition.

Definition 2.1. An oriented abelian groupΘ is an abelian groupΘ to-4

gether with a homomorphisme : Θ → {±1} and an elementι ∈ Θ such
thate(ι) = −1.

Definition 2.2. A complexX in a pointed categoryχ graded by an ori-
ented abelian groupΘ is a pair (X, d(X)) whereX is in Θχ andd(X) =
d : X → X is a morphism of degree−ι such thatd(X)d(X) = 0. A
morphism f : X → Y of complexes is a morphism inΘχ such that
f d(X) = d(Y) f .

The composition of morphisms of complexes is the composition of
the corresponding graded objects. We denote the category ofcomplexes
in χ graded by the oriented abelian group byCΘ(χ) or simplyC(χ).

In order to deal with complexes, we first need some additive struc-
ture on Hom(X,Y) for two Θ-graded objectsX and Y, which are the
underlying graded objects of complexes and second, kernelsand coker-
nels, which are used to define the homology functor. To define the ho-
mology, the base category must be an abelian categoryA, for example,
the category (k) of k-modules. ThenΘA andCΘ(A) are abelian cate-
gories, and homology will be defined as a functorH : CΘ(A) → ΘA.
Tha basic tool is the snake lemma which we state now.

Snake Lemma 2.3.LetA be an abelian category, and consider a mor-
phism of exact sequences(u′, u, u′′) all of degreeν ∈ Θ

L′

u′

��

f // L

u
��

f ′ // L′′

u′′

��

// 0

0 // M′
g // M

g′ // M′′

Then f and g induce morphisms k( f ) : ker(u′) → ker(u) and c(g) :
coker(u′) → coker(u) and the commutative diagram induces a mor-
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phismδ : ker(u′′) → coker(u′) of degreeν such that the following se-
quence, called the sequence of the snake, is exact

ker(u′)→ ker(u) → ker(u′′)
δ
−→ coker(u′)→ coker(u)→ coker(u′′).

Further, if f is a monomorphism, thenker(u′) → ker(u) is a mono- 5

morphism, and g′ is an epimorphism, thencoker(u) → coker(u′′) is an
epimorphism. Finally the snake sequence is natural with respect to mor-
phisms of the above diagrams which give arise to the snake sequence.
Here a morphism of the diagram is a family of morphisms of eachre-
spective object yielding a commutative three dimensional diagram.

For a proof, see Bourbaki,Algébre homologique.

Notation 2.4.Let X be a complex inCΘ(A), and consider the kernel-
cokernel sequence inΘA of d(x) = d, which has degree−ι,

0→ Z(X)→ X
d
−→ X→ Z′(X)→ 0.

This defines two functorsZ, Z′ : CΘ(A) → ΘA, and this sequence
is a sequence of functorsCΘ(A) → ΘA. Sinced(X)d(X) = 0, we derive
three factorizations ofd(X) namely

d′ = d′(X) : Z′(X)→ X, d′′ = d′′(X) : X→ Z(X), and

d̂ = d̂(X) : Z′(X)→ Z(X)

from which we have the following diagram, to which the snake sequence
applies,

X

d′′

��

d // X

1
��

// Z′(X)

d′

��

// 0

0 // Z(X) // X // X

and the boundary morphismδ : ker(δ′) = H′(X) → H(X) = coker(δ′′)
has zero kernel and cokernel. Thus it is invertible of degree−ι, and it
can be viewed as an isomorphism of the functorH′ with H up to the
question of degree.



6 1. Exact Couples and the Connes Exact Couple

The next application of the snake lemma 2.3 is to a short exactse-
quence 0→ X′ → X → X′′ → 0 of complexes inCΘ(A) and this is
possible because the following diagram is commutative withexact rows6

arising from the snake lemma applied to the morphism (d(X′), d(X),
d(X′′))

Z′(X′)

d̂(X′)
��

// Z′(X)

d̂(X)
��

// Z′(X′′)

d̂(X′′)
��

// 0

0 // Z(X′) // Z(X) // Z(X′′)

SinceH′ is the kernel ofd̂ andH is the cokernel of̂d, we obtain the
exact sequence

H′(X′′)→ H′(X)→ H′(X′′)
δ
−→ H(X′)→ H(X)→ H(X′′),

and using the isomorphismH′ → H, we obtain an exact triangle which
we formulate in the next basic theorem about homology.

Theorem 2.5. Let 0→ X′ → X → X′′ → 0 be a short exact sequence
of complexes in CΘ(A). Then there is a natural morphismδ : H(X′′)→
H(X′) such that the following triangle is exact

H(X′) // H(X)

zzvv
vv

vv
vv

v

H(X′′)

ddIIIIIIIII

Here the degree ofδ is −ι, the degree of d.

3 Formal structure of cyclic and Hochschild homol-
ogy

Definition 3.1. An algebraA overk is a triple (A, φ(A), η(A)) whereA is
ak-module,φ(A) : A⊗ A→ A is a morphism called multiplication, and
η(A) : k→ A is a morphism called the unit which satisfies the following
axioms:
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(1) (associativity) As morphismsA⊗ A⊗ A→ A we have

φ(A)(φ(A) ⊗ A) = φ(A)(A⊗ φ(A))

where as usualA denotes both the object and the identity mor-7

phism onA.

(2) (unit) As morphismsA⊗ k→ A andk⊗ A→ A, the morphisms

φ(A)(A⊗ η(A)) and φ(A)(η(A) ⊗ A)

are the natural isomorphisms for the unitk of the tensor product.
LetΘ be an abelian group. AΘ-graded algebraA overk is a triple
(A, φ(A), η(A)) whereA is aΘ-gradedk-module,φ(A) : A⊗A→ A
is a morphism ofΘ-gradedk-modules, andη(A) : k → A is a
morphism ofΘ-gradedk-modules satisfying the above axioms (1)
and (2).

A morphism f : A→ A′ of Θ-graded algebras is a morphism ofΘ-
graded modules such thatφ(A′)( f ⊗ f ) = fφ(A) as morphismsA⊗ A→
A′ and fη(A) = η(A′) as morphismsk → A′. If f : A → A′ and f ′ :
A′ → A′′ are two morphisms ofΘ-graded algebras, thenf ′ f : A→ A′′

is a morphism ofΘ-graded algebras. Let Alg
Θ,k denote the category of

Θ-graded algebras overk, and whenΘ = 0, the zero grading, then we
denote Alg0,k by simply Algk.

Notation 3.2.For an abelian groupΘ and a pointed categoryC we de-
note by (Z×Θ)+(C) the full subcategory of (Z×Θ)(C) determined by all
X • = (Xn,θ) with Xn,θ = ∗ for n < 0 and (Z ×Θ)−(C) the full subcategory
determined by allX • = (Xn,θ) with Xn,θ = ∗ for n > 0. The intersection
(Z × Θ)+(C) ∩ (Z × Θ)−(C) can be identified withΘ(C).

Remark 3.3.As functors, cyclic homology and Hochschild homology,
denoted byHC∗ andHH∗ respectively, are defined

HC∗ : AlgΘ,k → (Z × Θ)+(k) and HH∗ : AlgΘ,k→ (Z × Θ)+(k).

This is the first indication of what kinds of functors these are.
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When he first introduced cyclic homologyHC∗, Connes’ empha-
sised that cyclic homology and Hochschild homology were linked with
exact sequences which can be assembled into what is called anexact
couple. We introduce exact couples with very general gradings to de-8

scribe this linkage.

Definition 3.4. Let Θ be an abelian group withθ, θ′, θ′′ ∈ Θ and letA
be a abelian category. An exact couple overA with degreesθ, θ′, θ′′ is
a pair of objectsA and E and three morphismsα : A → A of degree
θ, β : A → E of degreeθ′, andγ : E → A of degreeθ′′ such that the
following triangle is exact.

A
α // A

β����
��

��
�

E

γ

__???????

In particular, we have im(α) = ker(β), im(β) = ker(γ), and im(γ) =
ker(α).

Let (A,E, α, β, γ) and (A′,E′, α′, β′, γ′) be two exact couples of de-
greeθ, θ′, θ′′. A morphism from the first to the second is pair of mor-
phisms (h, f ), whereh : A → A′ and f : E → E′ are morphisms of
degree 0 inΘ(A) such thathα = α′h, fβ = β′h, hγ = γ′ f . The compo-
sition of two morphisms (h, f ) and (h′, f ′) is (h′, f ′)(h, f ) = (h′h, f ′ f )
when defined. Thus we can speak of the categoryExC(A;Θ; θ, θ′, θ′′)
of exact couples (A,E, α, β, γ) in Θ(A) of degreesθ, θ′, θ′′.

We can now describe the Cyclic-Hochschild homology linkagein
terms of a single functor.

Remark 3.5.The Connes’ exact sequence (or exact couple) is a functor

(HC∗,HH∗,S, B, I ) : AlgΘ,k → ExC((k),Z × Θ, (−2, 0), (1, 0), (0, 0))

which, incorporating the remark (3.3) satisfiesHCn(A) = 0 = HHn(A)
for n < 0. The special feature of the degrees formally gives two elemen-
tary results.



4. Derivation of exact couples and their spectral sequence 9

Proposition 3.6. The natural morphism I: HH0(A) → HC0(A) is an9

isomorphism of functorsAlgΘ,k→ Θ(k).

Proof. We have an isomorphism since ker(I ) is zero for reasons of de-
gree and

im(I ) = ker(S : HC0(A)→ HC−2(A)) = HC0(A)

again, due to degree considerations. This proves the proposition. �

Proposition 3.7. Let f : A→ A′ be a morphism inAlgΘ,k. Then HC∗( f )
is an isomorphism if and only if HH∗( f ) is an isomorphism.

Proof. The direct implication is a generality about morphisms (h, f ) of
exact couples in any abelian category, namely, ifh is an isomorphism,
then by the five-lemmaf is an isomorphism. Conversely, if we assume
thatHCi( f ) is an isomorphism fori < n andHH∗( f ) is an isomorphism,
thenHCn( f ) is an isomorphism by the five-lemma applied to the exact
sequence

HCn−1
B
−→ HHn

I
−→ HCn

s
−→ HCn−2

B
−→ HHn−1.

The induction begins with the result in the previous proposition.
This proves the proposition. In the next section we study thecategory
of exact couples as a preparation for defining Hochschild andcyclic ho-
mology and investigating its properties. We also survey some of the
classical examples of exact couples. �

4 Derivation of exact couples and their spectral se-
quence

The snake lemma (2.3) is a kernel-cokernel exact sequence coming from
a morphism of exact sequences. There is another basic kernel-cokernel
exact sequence coming from a composition of two morphisms. We an-
nounce the result and refer to Bourbaki,Algébre homologiquefor the
proof.
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Lemma 4.1. Let f : X → Z and g : Z → Y be two morphisms in an
abelian categoryA. Then there is an exact sequence-

0→ ker(f )→ ker(g f)
f ′

−→ ker(g)→ coker(f )
g′

−→ coker(g f)→ coker(g)→ 0

where f′ : ker(g f) → ker(g) is induced by f , g′ : coker(f )→ coker(g f)10

is induced by g, and the other three arrows are induced respectively by
the identities on X, Z, and Y.

We wish to apply this to an exact couple (A,E, α, β, γ) in the cat-
egoryExC(A,Θ; θ, θ′, θ′′) to obtain a new exact couple, called the de-
rived couple. In fact there will be two derived couples one called the
left and the other the right derived couple differing by an isomorphism
of nonzero degree.

First, observe thatα : A → A factorizes naturally as the compos-
ite of the natural epimorphismA → coker(γ), an invertible morphism
α# : coker(γ) → ker(β), and the natural monomorphism ker(β) → A.
Secondly, since (βγ)(βγ) = 0, we have an induced morphismβγ :
coker(βγ) → ker(βγ) whose kernel and cokernel are naturally isomor-
phic toH(E, βγ) by the snake exact sequence as is used in 2.4. Finally,
there is a natural factorization ofβγ : coker(βγ)→ ker(βγ) as a quotient
γ# : coker(βγ) → A of γ composed with a restrictionβ# : A→ ker(βγ)
of β. Then we have ker(β) = ker(β#) and coker(γ) = coker(γ#). Now
we apply (4.1) to the factorization ofβγ = β#γ# and consider the middle
four terms of the exact sequence

H(E, βγ)
γ0

−−→ ker(β)
δ
−→ coker(γ)

β0

−−→ H(E, βγ).

Definition 4.2. We denoteExC(A,Θ; θ, θ′, θ′′) by simplyExC(θ, θ′, θ′′).
The left derived couple functor defined

ExC(θ, θ′, θ′′)→ ExC(θ, θ′, θ′′ − θ)

assigns to an exact couple (A,E, α, β, γ), the exact couple

(coker(γ),H(E, βγ), αλ, βλ, γλ)
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whereαλ = δα#, βλ = β0, andγλ = (α#)−1γ0, using the above notations.
The right derived couple functor defined

ExC(θ, θ′, θ′′)→ ExC(θ, θ′ − θ, θ′′)

assigns to an exact couple (A,E, α, β, γ), the exact couple 11

(ker(β),H(E, βγ), αρ, βρ, γρ)

whereαρ = α#δ, βρ(α#)−1, andγρ = γ0 using the above notations.
Observe that (α#,H(E, βγ)) is an invertible morphism

(coker(γ),H(E, βγ), αλ, βλ, γλ)→ (ker(β),H(E, βγ), αρ, βρ, γρ)

which shows that the two derived couple functors differ only by the de-
gree of the morphism. The only point that remains, is to checkexactness
of the derived couple atH(E, βγ), and for this we use (4.1) as follows.
The composite of

γ# : coker(βγ) → A and β# : A→ ker(βγ)

is βγ : coker(βγ) → ker(βγ), and by (4.1) we have a six term exact
sequence

0→ ker(γ#)→ H(E)
γ0

−→ ker(β)
δ
−→ coker(γ)

β0

−→ H(E)→ coker(β#)→ 0.

Hence the following two sequences

H(E)
γλ
−−→ coker(γ)

αλ
−−→ coker(γ)

βλ
−−→ H(E)

and

H(E)
γρ
−−→ ker(β)

αρ
−−→ ker(β)

βρ
−−→ H(E).

are exact. It remains to show that the derived couple is exactat H(E).

For this, we start with the exact sequenceA
β
−→ E

γ
−→ A of the given exact

couple and observe that im(βγ) ⊂ im(β) = ker(γ) ⊂ ker(βγ). Hence the
sequence coker(γ) → ker(βγ)/ im(βγ) = H(E) → ker(β) is exact where
the first arrow isβ0 and the second isγ0. Using the invertible morphism
α#, we deduce that the left and right derived couples are exact couples.
This completes the discussion of definition (4.2). 12
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Remark 4.3.Let CΘ,−ι(A) denote the category of complexes overA,
graded byΘ, and with differential of degree−ι. We have used the
functor ExC(A,Θ : θ, θ′, θ′′) → CΘ,θ′+θ′′(A) which assigns to an ex-
act couple (A,E, α, β, γ) the complex (E, βγ). Further, composing with
the homology functor, we obtainH(E) which is the second term in the
derived couple of (A,E, α, β, γ).

Remark 4.4.Now we iterate the process of obtaining the derived cou-
ple. For an exact couple (A,E) = (A,E, α, β, γ) in ExC(θ, θ′, θ′′), we
have a sequence of exact couples (Ar ,Er) where (A,E) = (A1,E1),
(Ar ,Er) is the derived couple of (Ar−1,Er−1), andEr+1

= H(Er , dr ) with
dr
= βγr . As for degrees (Ar ,Er ) is in ExC(θ, θ′, θ′′ − (r − 1)θ) for a

sequence of left derived couples and inExC(θ, θ′ − (r −1)θ, θ′′) for a se-
quence of right derived couples. In either case the complex (Er , dr ) is in
CΘ,θ′+θ′′−(r−1)θ(A), and the sequence of complexes (Er , dr ) is an exam-
ple of a spectral sequence because of the property thatEr+1

= H(Er , dr ).
We can give a direct formula for the termsEr as subquotients ofE = E1.
Firstly, we know that

E2
= H(E1, βγ) = ker(βγ)/ im(βγ) = γ−1(ker(β)/β(im(γ))

= γ−1(im(α))/β(ker(α)),

and by analogy, the general formula is the following:

Er
= γ−1(im(αr−1))/β(ker(αr−1)).

We leave the proof of this assertion to the reader.

5 The spectral sequence and exact couple of a fil-
tered complex

The most important example of an exact couple and its associated spec-
tral sequence is the one coming from a filtered complex.

Definition 5.1. A filtered objectX in a categoryC is an objectX together13

with a sequence of subobjects,FpX or Fp(X), indexed by the integers
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· · · → Fp−1X → FpX → · · · → X. A morphism f : X → Y of filtered
objects inC is a morphismf : X → Y in C which factors for eachp by
Fp( f ) : FpX→ FpY.

The factorizationFp( f ) is unique sinceFpY → Y is a monomor-
phism. The compositiong f in C of two morphismsf : X → Y and
g : Y → Z of filtered objects is again a morphism of filtered objects.
Thus we can speak of the categoryF · C of filtered objects overC.

Remark 5.2.We are interested in the categoryF · CΘ(A) of filtered
complexes. In particular we construct a functor

E0 : F ·CΘ,−ι(A)→ CZ×Θ,(0,−ι)(A)

by assigning to the filtered complexX the complexE0(X), called the
associated graded complex, with graded term

E0
p,θ = FpXθ/Fp−1Xθ

and quotient differential in the following short exact sequence

0→ Fp−1X→ FpX→ E0
p→ 0

in the categoryCΘ(A). The homology exact triangle is a sequence of
Θ-graded exact triangles which can be viewed as a single (Z×Θ)-graded
exact triangle and this exact triangle is an exact couple

H∗(F∗X) α // H∗(F∗X) = A1
∗,∗

βvvmmmmmmmmmmmm

H∗(E0
∗) = E1

∗,∗

γ

ffNNNNNNNNNNN

where theZ × Θ-degree ofα is (1, 0), of β is (0, 0), and ofγ is (−1,−ι).
The theory of the previous section says that we have a spectral sequence
(Er , dr ) and the degree ofdr is (−r,−ι). Moreover, we have defined a
functor (Ar ,Er ) on the categoryF · CΘ,−ι(A) → ExC(A,Θ; (1, 0), 0, 14

(−r,−ι)) such that (Ar+1,Er+1) is the left derived couple of (Ar ,Er ).
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In the case whereΘ = Z, the group of integers, andι = +1, there is a
strong motivation to index the spectral sequence with the filtration index
p, as above, and the complementary indexq = θ− p whereθ denotes the
total degree of the object. In particular, we haveHp+q(E0

p,∗) = E1
p,q in

terms of the complementary index. The complementary index notation
is motivated by the Leray-Serre spectral sequence of a mapp : E → B
where the main theorem asserts that there is a spectral sequence with
E2p, q = Hp(B,Hq(F)) coming from a filtration on the chains of the
total spaceE •, F being the fibre of the morphismp.

Remark 5.3.The filtration on a filtered complexX defines a filtration
on the homologyH(X) of X by the relation that

FpH∗(X) = im(H∗(FpX)→ H∗(X)).

Now this filtration has something to do with the termsEr
p,∗ of the

spectral sequence. We carry this out for the following special case which
is described by the following definition.

Definition 5.4. A filtered objectX in a pointed category is positive pro-
videdFpX = 0 (cf. (1.3)) forp < 0. A filteredΘ-graded objectX has a
locally finite filtration provided for eachθ ∈ Θ there exists integersm(θ)
andn(θ) such that

FpXθ = 0 for p < m(θ) and FpXθ = Xθ for n(θ) < p.

Proposition 5.5. Let X be a locally finite filteredΘ-graded complex X
over an abelian categoryA. Then for a givenθ ∈ Θ and filtration index
p, if r > max(n(θ) + 1 − p, p−m(θ − ι)), then we have Erp,θ = Er+1

p,θ =

. . . = FpHθ(X)/Fp−1Hθ(X) = E0Hθ(X).

Proof. We use the characterization of the termsEr given at the end of15

(4.4). ForA1
p,θ

β
−→ E1

p,θ

γ
−→ A1

p−1,θ−ι we form a subquotient usingαr−1 :

A1
p,θ → A1

p+r−1,θ andαr−1 : A1
p−r,θ−ι → A1

p−1,θ−ι whereA1
p+r−1,θ = Hθ(X)

andA1
p−r,θ−ι = 0 under the above conditions onr. Thus the termEr

=

γ−1(im(αr−1))/β(ker(αr−1)) has the form

Er
p,θ = γ

−1(im(0))/β(ker(αr−1)) = im(β)/β(ker(Hθ(FpX)→ Hθ(X)),
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and this is isomorphic underβ to the quotient

A1
p,θ/((ker(Hθ(FpX)→ Hθ(X)) + im(Hθ(Fp−1X)→ Hθ(FpX))).

This quotient is mapped isomorphically byαr−1 to the following
subquotient ofHθ(X), which is just the associated graded object for the
filtration onH(X) defined in (5.3),

im(Hθ(FpX)→ Hθ(X))/ im(Hθ(Fp−1X)→ Hθ(X)) = E0Hθ(X).

This proves the proposition. �

This proposition and the next are preliminaries to the spectral map-
ping theorem.

Proposition 5.6. Let f : L→ M be a morphism of locally finite filtered
Θ-graded objects over an abelian categoryA. If the morphism of asso-
ciatedZ×Θ-graded objects E0( f ) : E0(L)→ E0(M) is an isomorphism,
then f : L→ M is an isomorphism.

Proof. For FpLθ = 0, FpMθ = 0 if p < m(θ) andFpLθ = Lθ, FpMθ =

Mθ if p > n(θ) we show inductively onp from m(θ) to n(θ) that Fp f :
FpLθ → FpMθ is an isomorphism. To begin with, we note that by
hypothesisFm(θ) = E0

m(θ),θ is an isomorphism. If the inductive statement
is true for p − 1, then it is true forp by applying the “5-lemma” to the
short exact sequence

0→ Fp−1,θ ⇁ Fp,θ → E0
p,θ → 0.

Since the induction is finished atn(θ), this proves the proposition.16

�

This proposition is true under more general circumstances which we
come back to after the next theorem.

Theorem 5.7. Let f : X → Y be a morphism of locally finite filtered
Θ-graded complexes over an abelian categoryA. If for some r≥ 0 the
term Er ( f ) : Er(X) → Er (Y) is an isomorphism, then H( f ) : H(X) →
H(Y) is an isomorphism.
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Proof. SinceEr+1
= H(Er ) as functors, we see that allEr ′( f ) are iso-

morphisms forr′ ≥ r. For givenθ ∈ Θ and filtration indexp we know
by (5.5) thatEr

p,θ = E0
pHθ for r large enough. HenceE0H( f ) is an iso-

morphism, and by (5.6) we deduce thatH( f ) is an isomorphism. This
proves the theorem. �

This theorem illustrates the use of spectral sequences to prove that
a morphism of complexesf : X → Y induces an isomoprhismH( f ) :
H(X) → H(Y). The hypothesis of locally finite filtration is somewhat
restrictive for general cyclic homology, but the general theorem, which
is contained in Eilenberg and Moore [1962], is clearly givenin their
article. The modifications involve limits, injective limits asp goes to
plus infinity and projective limits asp goes to minus infinity. We ex-
plain these things in the next section on the filtered complexrelated to a
double complex.

6 The filtered complex associated to a double com-
plex

For the theory of double complexes we use the simpleZ × Z grading
which is all we need in cyclic homology. Firstly, we consideran ex-
tension of (5.6) for filtered objects which are constructed from a graded
object.

Remark 6.1.LetA denote an abelian category with countable products
and countable coproducts. For aZ-graded objectS Xp we form the ob-
ject X • =

∏
i≤a

Xi ×
∐
a<i

Xi with filtration FpX • =
∏
i≤p

Xi . The definition of

X • is independent ofa. With these definitions the natural morphisms17

X • → lim
←p

X •/FpX • and lim
→p

FpX • → X.

are isomorphisms. In general for any filtered objectX these natural
morphisms are defined. If the first morphism is an isomorphism, thenX
is called complete, if the second morphism is an isomorphism, thenX
is called cocomplete, and if the two morphisms are isomorphisms, then
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X is called bicomplete. With these definitions we have the following
extension of (5.6) not proved here.

Remark 6.2.Let f : L → M be a morphism of bicomplete filtered ob-
jects over an abelian category with countable products and coproducts.
If E0( f ) : E0(L) → E0(M) is an isomorphism, thenf : L → M is an
isomorphism of filtered objects.

Now we consider double complexes and their associated filtered
complexes which will always be constructed so as to be bicomplete.

Definition 6.3. Let A be an abelian category. A double complexX • •

overA is a Z × Z-graded object with two morphismsd′ = d′(X),
d′′ = d′′(X) : X • • → X • • of degree (−1, 0) and (0,−1) respectively
satisfyingd′d′ = 0, d′′d′′ = 0, andd′d′′ + d′′d′ = 0. A morphism of
double complexesf : X • • → Y• • is a morphism of graded objects such
thatd′(Y) f = f d′(X) andd′′(Y) f = f d′′(X). With the composition of
graded morphisms we define the composition of morphisms of double
complexes. We denote the category of double complexes overA by
DC(A).

There are two functorsDC(A)→ F ·C(A) from double complexes
to bicomplete filtered complexes corresponding to a filtration on the first
variable or on the second variable.

Definition 6.4. Let X • • be a double complex over the abelian category
A. We form:

(1) the filtered graded objectI X • with 18

I Xn =

∏

i+ j=n,i≤a

Xi, j ×
∐

i+ j=n,i>a

Xi, j and I FpXn =

∏

i+ j=n,i≤p

Xi, j ,

(2) the filtered graded objectII X • with
II Xn =

∏

i+ j=n, j≤a

×
∐

i+ j=n, j>a

Xi, j and II FpXn =

∐

i+ j=n, j≤p

Xi, j

and in both cases the differential isd = d′+d′′, making the filtered
graded objects into bicomplete filtered complexes.
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Remark 6.5.Using the complementary degree indexing notation con-
sidered in (5.2), we see that

E0
p,q(I X) = Xp,q with d0

= d′′ andE0
p,q(II X) = Xq,p with d0

= d′,

and theE1 terms are the partial homology modules of the double com-
plex with respect tod′′ andd respectively. Thed1 differentials are in-
duced byd′ andd′′ respectively, and theE2 term is the homology of
(E1, d1), and

I E2
p,q = Hp(Hq(X, d′′), d′) and II E2

p,q = Hq(Hp(X, d′), d′′).

These considerations in this section are used in the full development
of cyclic homology, and they are included here for the sake ofcomplete-
ness.



Chapter 2

Abelianization and
Hochschild Homology

IN THIS CHAPTER we first consider abelianization in the contexts of 19

associative algebras and Lie algebras together with the adjunction prop-
erties of the related functors. In degree zero, Hochschild and cyclic
homology of an algebraA are isomorphic and equal to a certain abelian-
ization of A which involves the related Lie algebra structure onA. We
will give the axiomatic definition of Hochschild homologyH∗(A,M)
of A with values in anA-bimodule M, discuss existence and unique-
ness, and relate in degree zeroH0(A,A), the Hochschild homology of
A with values in theA-bimodule A, to the abelianization ofA. The
k-modulesH∗(A,A) are the absolute Hochschild homologyk-modules
HH∗(A) which were considered formally in the previous chapter in con-
junction with cyclic homology.

1 Generalities on adjoint functors

Abelianization is defined by a universal property relative to the subcate-
gory of abelian objects. The theory of adjoint functors, which we sketch
now, is the formal development of this idea of a universal property, and
this theory also gives a means for constructing equivalences between
categories. We approach the subject by considering morphisms between

19
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the identity functor and a composite of two functors.
For an objectX in a category, we frequently use the symbolX also

for the identity morphismX → X along with 1X, and similarly, for a
categoryX the identity functor onX is frequently denotedX. Let (sets)
denote the category of sets.

Remark 1.1.Let X andY be two categories andS : X → Y and
T : Y → X be two functors. Morphisms of functorsβ : X → TS are in
bijective correspondence with morphisms

b : HomY(S(X),Y)→ HomX(X,T(Y))

as functors ofX in X andY in Y with values in (sets). A morphismβ20

definesb by the relationb(g) = T(g)β(X) andb definesβ by the relation
b(1S(X)) = β(X) : X→ TS(X). In the same way, morphisms of functors
α : S T→ Y are in bijective correspondence with morphisms

a : HomX(X,T(Y))→ HomY(S(X),Y)

as functors ofX andY with values in (sets). A morphismα definesa by
the relationa( f ) = α(Y)S( f ), anda definesα by the relation

a(1T(Y)) = α(Y) : S T(Y)→ Y.

Definition 1.2. An adjoint pair of functors is a pair of functorsS : X →
Y andT : Y → X together with an isomorphism of functors ofX in X
andY in Y

b : Hom(S(X),Y)→ Hom(X,T(Y)),

or equivalently, the inverse isomorphism

a : Hom(X,T(Y))→ Hom(S(X),Y).

The functorS is called the left adjoint ofT andT is the right adjoint
of S.

This situation is denoted (a, b) : S ⊣ T(X,Y) or justS ⊣ T.
In terms of the morphismsβ(X) = b(1S(X)) : X → TS(X) and

α(Y) = a(1T(Y)) : S T(Y)→ Y we calculate, forf : X→ T(Y)

b(s( f )) = T(a( f ))β(X) = T(α(Y))TS( f )β(X) = T(α(Y))β(T(Y)) f
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and forg : S(X)→ Y

a(b(g)) = α(Y)S(b(g)) = α(Y)S T(g)S(β(X)) = gα(S(X))S(β(X))

Remark 1.3.With the above notations we have 21

b(a( f )) = f if and only if T(α(Y))β(T(Y)) = 1T(Y) and

a(b(g)) = g if and only if α(S(X)S(β(X)) = 1S(X).

An adjoint pair of functors can be defined as a pair of functorsS :
X → Y andT : Y → X together with two morphisms of functors

β : X → TS and α : S T→ Y

satisfyingα(S(Y))S(β(X)) = 1S(X) andT(α(Y))β(T(Y)) = 1T(Y). This
situation is denoted (α, β) : S ⊣ T : (X,Y) or just (α, β) : S ⊣ T.

Remark 1.4. If S : X → Y is the left adjoint ofT : Y → X, then for the
dual categoriesS : Xop→ Yop is the right adjoint ofT : Yop→ Xop.

The relation between adjoint functors and universal constructions is
contained in the next proposition.

Proposition 1.5. Let S : X → Y be a functor, and for each object
Y inY, assume that there exists an object t(Y) in X and a morphism
α(Y) : S(t(Y))→ Y such that for all g: S(X)→ Y, there exists a unique
morphism f : X → t(Y) such thatα(Y)S( f ) = g. Then there exists a
right adjoint functor T : Y → X of S such that for each object Y inY
the object T(Y) is t(Y) and

a : Hom(X,T(Y))→ Hom(S(X),Y)

is given by a( f ) = α(Y)S( f ).

Proof. To defineT on moprhisms, we use the universal property. If
v : Y → Y′ is a morphism inY, then there exists a unique morphism
T(v) : T(Y) → T(Y′) such thatαF(Y′)(S(T(v)) = vα(Y) as morphisms
S T(Y) → Y′. The reader can check that this defines a functorT, and
the rest follows from the fact that the universal property asserts thata is
a bijection. This proves the proposition. � 22
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Proposition 1.5∗. Let T : Y → X be a functor, and for each object X
in X assume there exists an object s(X) in Y and a morphismβ(X) :
X → T(s(X)) such that for all f : X → T(Y) there exists a unique
g : s(X) → Y such that T(g)β(X) = f . Then there exists a left adjoint
functor S : X → Y such that for each object X inX the object S(X) is
s(X) and

b : Hom(S(X),Y)→ Hom(X,T(Y))

is given by b(g) = T(g)β(X).

Proof. We deduce (1.5)∗ immediately by applying (1.5) to the dual cat-
egory. �

2 Graded commutativity of the tensor product and
algebras

Let Θ denote an abelian group with a morphismǫ : Θ → {±1}, and
define a corresponding bimultiplicativeǫ : Θ × Θ → {±1}, by the re-
quirement that

ǫ(θ, θ′) =


+1 if ǫ(θ) = 1 or ǫ(θ′) = 1

−1 if ǫ(θ) = −1 andǫ(θ′) = −1.

Definition 2.1. The commuting morphismσ orσǫ of the tensor product
× : Θ(k) × Θ(k)→ Θ(k) relative toǫ is the morphism

σ(L,M) = σ : L ⊗ M → M ⊗ L

defined forx⊗ y ∈ Lθ ⊗ Mθ′ by the relation

σǫ(x⊗ y) = ǫ(θ, θ′)(y⊗ x).

Observe thatσ(M, L)σ(L,M) = L ⊗ M, the identity on the object
L ⊗ M.

Definition 2.2. A Θ-gradedk-algebraA is commutative (relative toǫ)
providedφ(A)σǫ (A,A) = φ(A) : A ⊗ A → A. The full subcategory of
AlgΘ,k determined by the commutative algebras is denoted byC AlgΘ,k.23
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Remark 2.3.Let A be aΘ-gradedk-algebra. Fora ∈ Aθ andb ∈ Aθ′ the
Lie bracket ofa andb is

[a, b] = ab− ǫ(θ, θ′)ba

which is an element ofAθ+θ′ . Let [A,A] denote theΘ-gradedk - sub-
module ofA generated by all Lie brackets [a, b] for a, b ∈ A. Observe
that A is commutative if and only if [A,Ac] = 0. Let (A,A) denote the
two-sided ideal generated by [A,A].

Definition 2.4. A Θ-graded Lie algebra overk is a pairg together with
a gradedk-linear map [, ] : g⊗ g→ g, called the Lie bracket, satisfying
the following axioms:

(1) Fora ∈ g
θ

andb ∈ g
θ′

we have

[a, b] = −ǫ(θ, θ′)[b, a].

(2) (Jacobi identity) fora ∈ g
θ′

, b ∈ g
θ′

, andc ∈ g
θ′′

we have

ǫ(θ, θ′′)[a, [b, c]] + ǫ(θ′, θ)[b, [c, a]] + ǫ(θ′′, θ′)[c, [a, b]] = 0.

A morphism f : g → g′ of Θ-graded Lie algebras overk is a
gradedk-module morphism such thatf ([a, b]) = [ f (a), f (b)] for
all a, b ∈ g. Since the composition of morphisms of Lie algebras
is again a morphism of Lie algebras, we can speak of the cate-
gory LieΘ,k of Θ-graded Lie algebras overk and their morphisms.
Following the lead from algebras, we define a Lie algebrag to be
commutative if [, ] = 0 ong⊗ g, or equivalently, [g, g] is the zero
k-submodule where [g, g] denotes thek-submodule generated by
all Lie brackets [a, b]. The full subcategory of commutative Lie
algebras is denotedC LieΘ,k′ and it is essentially the categoryΘ(k)
of Θ-graded modules.

Example 2.5.If A is aΘ-gradedk-algebra, thenA with the Lie bracket
[a, b] = ab− ǫ(θ, θ′)ba for a ∈ g

θ′
, b ∈ g

θ′
is aΘ-graded Lie algebra 24

which we denote by Lie (A). This defines a functor

Lie : AlgΘ,k→ LieΘ,k .
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3 Abelianization of algebras and Lie algebras

In this section we relate several categories by pairs of adjoint functors.
For completeness, we include (gr), the category of groups and group
morphisms together with the full subcategory (ab) of abelian groups.
Also (ab) and (Z) are the same categories. We continue to use the nota-
tion of the previous section for the groupΘ which indexes the grading.

Definition 3.1. Abelianization is the left adjoint functor to any of the
following inclusion functors

C AlgΘ,k→ AlgΘ,k, C LieΘ,k→ LieΘ,k, and (ab)→ (gr).

Proposition 3.2. Each of the inclusion functors

C AlgΘ,k→ AlgΘ,k, C LieΘ,k→ LieΘ,k and (ab) → (gr)

have left adjoint functors

AlgΘ,k→ C AlgΘ,k, LieΘ,k → C LieΘ,k′ and (gr)→ (ab).

each of them denoted commonly by( )ab.

Proof. If the inclusion functor is denoted byJ, then we will apply (1.5)∗

to T = J and form the commutatives(A) = A/(A,A), s(L) = L/[L, L]
ands(G)/(G,G) algebra, Lie algebra, and group respectively by divid-
ing out by commutators. In the case of an algebraA, the commuta-
tor ideal (A,A) is the bilateral ideal generated by [A,A] and β(A) :
A→ J(s(A)) = A/(A,A) is the quotient morphism. For each morphism25

f : A→ J(B) whereB is a commutative algebraf ((A,A)) = 0 and hence
it defines a uniqueg : s(A) → B in C Algk such thatJ(g)β(A) = f .
Hence there exists a left adjoint functorS of J which we denote by
S(A) = Aab. The same line of argument applies to Lie algebras where
gab
= g/[g, g] and [g, g] is the Lie ideal of all brackets [a, b] and groups

whereGab
= G/(G,G) and (G,G) is the normal subgroup ofG gener-

ated by all commutators (s, t) = sts−1t−1 of s, t ∈ G. This proves the
proposition. �
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Now we consider functors from the category of algebras to thecat-
egory of Lie algebras and the category of groups.

Notation 3.3.We denote the composite of the functor Lie : Alg
Θ,k →

LieΘ,k, which assigns to an algebraA the same underlyingk-module
together with the Lie bracket [a, b], with the abelianization functor of
this Lie algebra Lie(A)ab, and denote it byAαβ. This is just the graded
k-module [A,A].

We remark that there does not seem to be standard notation forA
divided by thek-module generated by the commutators, and we have
hence introduced the notationAαβ. Note that the quotientAαβ is not an
algebra but an abelian Lie algebra, that is, a gradedk-module.

Remark 3.4.The importance ofAαβ lies in the fact that it is isomor-
phic to the zero dimensional Hochschild homology, as we shall see in
(6.3)(2), and thus to the zero dimensional cyclic homology,see 1(3.6).

Remark 3.5.The multiplicative group functor ( )∗ : Algk → (gr) is
defined as the subset consisting ofu ∈ A with an inverseu−1 ∈ A and
the group law being given by multiplication inA. It is the right adjoint
of the group algebra functork[ ] : (gr) → Algk wherek[G] is the free
module with the setG as basis and multiplication given by the following
formula on linear combinations ink[G], 26


∑

t∈G

att



∑

r∈G

br r

 =
∑

s∈G


∑

tr=s

atbr

 s.

The adjunction condition is an isomorphism

Hom(k[G],A)→ Hom(G,A∗).

4 Tensor algebras and universal enveloping
algebras

Adjoint functors are also useful in describing free objectsor universal
objects with respect to a functor which reduces structure. These are
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called structure reduction functors, stripping functors,or forgetful func-
tors.

Proposition 4.1. The functor J: AlgΘ,k → Θ(k) which assigns to the
graded algebra(A, φ, η) the graded k-module A has a left adjoint T:
Θ(k)→ AlgΘ,k where T(M) is the tensor algebra on the graded module
M.

Proof. From thenth tensor powerMn⊗ of a graded moduleM. For each
morphism f : M → J(A) of graded modules whereA is an algebra we
have definedfn : Mn⊗ → J(A) as fn = φn(A) f n⊗, whereφn(A) : An⊗ →

A is then-fold multiplication.
We giveT(M) =

∐

n

Mn⊗ the structure of algebra (T(M), φ, η) where

η : k = M0⊗ → T(M) is the natural injection into the coproduct and
φ|Mp⊗ ⊗ Mq⊗ is the natural injection ofM(p+q)⊗ into T(M) definingφ :
T(M) ⊗ T(M) → T(M). For a morphismf : M → J(A) the sum of
the fn : Mn⊗ → J(A) define a morphismg : T(M) → A of algebras.
The adjunction morphism isβ(M) : M → J(T(M)) the natural injection
of M1⊗

= M into J(T(M)). Clearly J(g)β(M) = f and this defines the
bijection giving the adjunction from the universal property. This proves
the proposition. �

Now we consider the question of abelianization of the tensoralge-27

bra. Everything begins with the commutativity symmetryσ : L ⊗ M →
M ⊗ L of the tensor product.

Algebra abelianization of T(M) 4.2. The abelianizationT(M)ab of
the algebraT(M), like T(M), is of the form

∏
0≤n

Sn(M) whereSn(M) =

(Mn⊗)Symn
is the quotient of thenth tensor power ofM by the action of

the symmetric group Symn permuting the factors with the signǫ(θ, θ′)
coming from the grading. This follows from the fact that the symmetric
group Symn is generated by transpositions of adjacent indices, and thus
(T(M),T(M)) is generated by

x⊗ y− ǫ(θ, θ′)y⊗ x for x ∈ Mθ, y ∈ Mθ′

as a two sided ideal.
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Lie algebra abelianizationT(M)αβ of T(M). 4.3.We form Lie(T(M))
and divide by theΘ-graded k-submodule [T(M),T(M)] to obtain
T(M)αβ, which likeT(M) andT(M)ab

= S(M), is of the form
∐
0≤n

Ln(M)

whereLn(M) = (Mn⊗)Cyln is the quotient of thenth tensor power ofM
by the action of the cyclic group Cyln permuting the factors cyclically
with the signǫ(θ, θ′) coming from the grading. InMn⊗, we must divide
by elements of the form

[x1⊗· · ·⊗ xp, xp+1⊗· · ·⊗ xn] = x1⊗· · ·⊗ xn−ǫ(θ, θ
′)xp+1⊗· · ·⊗ xn⊗ x1⊗· · ·⊗ xp

wherex1 ⊗ · · · ⊗ xp ∈ (Mp⊗)θ andxp+1 ⊗ · · · ⊗ xn ∈ (M(n−p)⊗)θ′ . These
elements generate [T(M),T(M)] and they are exactly the elements map-
ping to zero in the quotient, under the action of the cyclic group Cyln on
Mn⊗.

Proposition 4.4. The functorLie : AlgΘ,k → LieΘ,k has a left adjoint
functor U : LieΘ,k→ Alg

Θ,k.

Proof. The functor Lie starts with the functorJ of (4.1) which hasT(g)
as its left adjoint functor. This is not enough becauseg→ T(g) is not a 28

morphism of Lie algebras, so we form the quotientu(g) of T(g) by what
is needed to make it a Lie algebra morphism, namely the two sided ideal
generated by all

x⊗ y− ǫ(θ, θ′)y⊗ x = [x, y] for x ∈ g
θ
, y ∈ g

θ′
.

The resulting algebraU(g) has the universal property which follows
from the universal property forT(M) in (4.1). This proves the proposi-
tion. �

Definition 4.5. The algebraU(g) is called the universal enveloping al-
gebra of the Lie algebrag.

Example 4.6.The abelianizationU(g)ab
= U(gab) while U(g)αβ is

U(G)}′ the universal quotient where the action ofg on U(g) is trivial.

Example 4.7.The abelianizationk[G]ab
= k[Gab] while k[G]αβ is

k[G]G, the universal quotient where the action ofG on k[G] is trivial.
This is just a free module on the conjugacy classes ofG.
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5 The category ofA-bimodules

Let A be aΘ-graded algebra overk with multiplicationφ(A) : A⊗A→ A
and unitη(A) : k→ A.

Definition 5.1. A left A-moduleM is aΘ-gradedk-moduleM, together
with a morphismφ(M) : A⊗ M → M such that

(1) (associativity) as morphismsA⊗ A⊗ M → M we haveφ(M)(A⊗
φ(M)) = φ(M)(φ(A) ⊗ M), and

(2) (unit property) the composite (φ(M)(η(A)⊗M) is the natural mor-
phismk ⊗ M → M.

A morphism f : M → M′ of left A-modules is a gradedk-linear
morphism satisfyingfφ(M) = φ(M′)(A ⊗ f ). The composition of two
morphisms of leftA-modules ask-modules is a morphism of leftA-
modules. Thus we can speak of the categoryA Mod of left A-modules
and their morphisms.

Definition 5.2. A right A-moduleL is aΘ-gradedk-moduleL together29

with a morphismφ(L) : L ⊗ A→ M satisfying an associativity and unit
property which can be formulated to say thatL together withφ(L)σ(A, L)
is a left Aop-module whereAop

= (A, φ(A)σ(A,A), η(A)). A morphism
of right A-modules is just a morphism of the corresponding leftAop-
modules, and composition ofk-linear morphisms induces composition
of right A-modules. Thus we can speak of the category ModA of right
A-modules and their morphisms.

We have the natural identification of categoriesA Mod = Mod(Aop)

and(Aop) Mod = ModA.

Definition 5.3. An A-bimoduleM is aΘ-gradedk-module together with
two morphismsφ(M) : A ⊗ M → M making M into a left A-module,
andφ′(M) : M ⊗A→ M makingM into a rightA-module, such that, as
morphismsA⊗ M ⊗ A→ M we have

φ(M)(A⊗ φ′(M)) = φ′(M)(φ(M) ⊗ A).
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A morphism ofA-bimodules f : M → M′ is a k-linear morphism
which is both a leftA-module morphism and a rightA-module mor-
phism. The composition ask-linear morphisms is the composition ofA-
bimodules. Thus we can speak of the categoryA ModA of A-bimodules.

We have the natural identification of categoriesA ModA = A⊗(Aop)

Mod = Mod(Aop)⊗A in terms of left and right modules overA tensored
with its opposite algebraAop.

Definition 5.4. Let M be anA-bimodule. Let [A,M] denote the graded
k-submodule generated by all elements of the form

[a, x] = ax− ǫ(θ, θ′)xa

wherea ∈ Aθ,x ∈ Mθ′ . As a gradedk-module we denote byMαβ
=

M/[A,M].

If f : M → M′ is a morphism ofA-bimodules, thef ([A,M]) ⊂ 30

[A,M′] and f induces on the quotientf αβ : Mαβ → M′αβ, and this
defines a functorA ModA → Θ(k) which is the largest quotient of anA-
bimoduleM such that the left and right actions are equal. It is a kind of
abelianization, in the sense that for theA-bimoduleA the resultA/[A,A]
is just the abelianization of the Lie algebra Lie(A).

Remark 5.5. In fact the abelization functor is just a tensor product. Any
A-bimodule is a leftA⊗Aop-module andAop is a rightA⊗Aop-module.
ThenMαβ is justAop⊗(A⊗Aop) M, because the tensor product overA⊗Aop

is the quotient ofA⊗M divided by the submodule generated byab⊗ x−
a⊗ bx for a ∈ Aop, x ∈ M, andb ∈ A ⊗ Aop, that is, by relations of the
form a⊗ x− 1⊗ axanda⊗ x− 1⊗ xa.

In fact M → Mαβ is a functorΘBimod→ Θ(k). HereΘBimod is
the category of pairs (A,M) whereA isΘ-graded algebra overk andM is
anA-bimodule, and the morphisms are (u, f ) : (A,M)→ (A′,M′) where
u : A→ A′ is a morphism of algebras andf : M → M′ is k-linear such
that fφ(M) = φ(M′)(A⊗ f ) and fφ′(M) = φ′(M′)( f ⊗ A). Observe that
whenu is the identity onA, then f : M → M′ is a morphismA ModA.
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Remark 5.6.The abelianization functorMαβ, being a tensor product,
has the following exactness property. IfL → M → N → 0 is an exact
sequence inA ModA, thenLαβ → Mαβ → Nαβ → 0 is exact inΘ(k).
Even if L → M is a monomorphism, it is not necessarily the case that
Lαβ → Mαβ is a monomorphism.

SinceMαβ is only right exact, the functor generates a sequence of
functors of (A,M) inΘBimod, denotedHn(A,M) and called Hochschild
homology ofA with values in the moduleM, such thatH0(A,M) is iso-
morphic to Mαβ. More precisely, in the following section we have a
theorem which gives an axiomatic characterisation of Hochschild ho-
mology.

6 Hochschild homology

Definition 6.1. An A-bimodule M is called extended provided it is of31

the formA⊗ X ⊗ A whereX is a gradedk-module.

Remark 6.2.There is a natural morphism toA-bimodule k-module
Hom(A)(A⊗ X ⊗ A,M′), denoted

a : HomΘ(k)(X,M
′)→ Hom(A)(A⊗ X ⊗ A,M′),

defined by the relation

a( f ) = φ′(M′)(φ(M′) ⊗ A)(A⊗ f ⊗ A) = φ(M′)(A⊗ φ′(M′)).

Moreover,a is an isomorphism definingS(X) = A⊗ X ⊗ A as a left
adjoint functor to the stripping functorA ModA → Θ(k) which deletes
the A-bimodule structure leaving aΘ gradedk-module. The extended
modules have an additional property, namely that for an exact sequence

0→ M′ → M → A⊗ X ⊗ A→ 0

which isk-split exact, we have the short exact sequence

0→ M′αβ → Mαβ → (A⊗ X ⊗ A)αβ → 0.
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This follows from the fact that under the hypothesis, we havea split-
ting of theA-bimodule sequence given by a morphismA⊗X⊗X⊗A→
M.

The reader can easily check that the projectives in the category A

ModA are direct summands of extended modulesA⊗ X ⊗ A whereX is
a freeΘ-gradedk-module.

Theorem 6.3. There exists a functor H: ΘBimod→ Z(Θ(k)) together
with a sequence of morphisms∂ : Hq(A,M′′) → Hq−1(A,M′) in Θ(k)
associated to each exact sequence split inΘ(k) of A-modules0→ M′ →
M → M′′ → 0 such that

(1) the following exact triangle is exact 32

H∗(A,M′) // H∗(A,M)

xxppppppppppp

H∗(A,M′′)
∂

ggNNNNNNNNNNN

and∂ is natural in A and the exact sequence,

(2) in degree zero H0(A,M) is naturally isomorphic to Mαβ = M/[A,
M]

(3) if M is an extended A-bimodule, then Hq(A,M) = 0 for q > 0.

Finally two such functors are naturally isomorphic in a way that the
morphisms∂ are preserved.

Proof. SinceMαβ is isomorphic to the tensor productAop ⊗(A⊗Aop) M,
the functorH∗(A,M) can be defined as TorA⊗Aop

∗ (Aop,M), not as the ab-
soluteTor, but as ak-split relativeTor functor. Since this concept is
not so widely understood, we give an explicit version by starting with
a functorial resolution ofM by extendedA-bimodules. The first term
is the resolution isA ⊗ M ⊗ A → M given by scalar multiplication
andM in A⊗ M ⊗ A viewed as aΘ-gradedk-module. The next term is
A⊗W(M)⊗A→ A⊗M⊗A, whereW(M) = {ker(A⊗M⊗A→ M)}, and
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the process continues to yield a complexY∗(M) → M depending func-
torially on M. We can defineH∗(A,M) = H∗(Y∗(M)αβ), and to check the
properties, we observe that for an exact sequence ofA-bimodules which
is k-split

0→ M′ → M → M′′ → 0

the corresponding sequence of complexes

0→ Y∗(M
′)αβ → Y∗(M)αβ → Y∗(M

′′)αβ → 0

is exact, and the homology exact triangle results give property (1) for
the homologyH∗(A,M). The relation (2) thatH0(A,M) = Mαβ follows
from the right exactness of the functor. Finally (3) resultsfrom the last33

statement in (6.2). �

The uniqueness of the functorHq is proved by induction onq using
the technique call dimension shifting. We return to the canonical short
exact sequence associated with anyA-bimoduleM

0→W(M)→ A⊗ M ⊗ A→ M → 0.

This gives an isomorphismHq(A,M) → Hq−1(A,W(M)) for q > 1,
and an isomorphismH1(A,M) → ker(H0(A,W(M)) → H0(A,A ⊗ M ⊗
A)). In this way the two theories are seen to be isomorphic by induction
on the degree. This proves the theorem.



Chapter 3

Cyclic Homology and the
Connes Exact Couple

WE START WITH the standard Hochschild complex and study the in- 34

ternal cyclic symmetry in this complex. This leads to the cyclic ho-
mology double complexCC• •(A) for an algebraA which is constructed
from two aspects of the standard Hochschild complex and the natural
homological resolution of finite cyclic groups. In terms of this double
complex, we define cyclic homology as the homology of the associated
single complex, and since the Hochschild homology complex is on the
vertical edge of this double complex, we derive the Connes’ exact cou-
ple exploiting the horizontal degree 2 periodicity of the double complex.

The standard Hochschild complex comes from a simplicial object
which has an additional cyclic group symmetry, formalized by Connes
when he introduced the notion of a cyclic object. As introduction to
cyclic objects is given.

1 The standard complex

In Chapter 2§ 6, we considered an axiomatic characterization of Hochs-
child homology and then remarked that it is a split Tor functor over
A ⊗ Aop. The Tor functors are defined, and in some cases also calcu-
lated, using a projective resolution which in this case is a split projective

33
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resolution made out of extended modules. We consider a particular reso-
lution using the most natural extendedA-bimodules,A⊗Aq⊗⊗A = C′q(A)
made out of tensor powers ofA. The morphisms in the resolution are de-
fined using the extended multiplicationsφi : C′q(A) → C′q−1(A) defined
by

φi(a0 ⊗ · · · ⊗ aq+1) = a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ aq+1 for i = 0, . . . , q.

The A-bimodule structure onC′q(A) is given by the extendedA-
bimodule structure where fora⊗ a′ ∈ A⊗ Aop we have

(a⊗ a′)(a0 ⊗ · · · ⊗ aq+1) = (aa0) ⊗ · · · ⊗ (aq+1a′),

and from this it is clear thatφi is anA-bimodule morphism. Finally, note35

that the morphismφ0 : C′0(A)→ A is the usual multiplication morphism
on A.

Definition 1.1. The standard split resolution ofA as anA-bimodule is
the complex (C′∗(A), b′) → A of A-bimodules overA where with the
above notationsb′ : C′q(A)→ C′q−1(A) is given byb′ =

∑
0≤i≤q

(−1)iφi.

Proposition 1.2. The standard split resolution of A is a split projective
resolution of A by A-bimodules.

Proof. By construction eachC′q(A) is an extendedA-bimodule. Next,
we haveb′b′ = 0 because an easy check shows that

φiφ j = φ j−1φi for i < j,

and this givesb′b′ = 0 by an argument where (q + 1)q terms cancel in
pairs. Finally the complex is split acyclic with the following homotopy
s : C′q(A) → C′q+1(A) given bys(a0 ⊗ · · · ⊗ aq+1) = 1⊗ a0 ⊗ · · · ⊗ aq+1.
Sinceφ0s = 1 andφi+1s = sφi for i ≥ 0, we obtainb′s+ sb′ = 1, the
identity. This proves the proposition. �

To calculate the Hochschild homology with the resolution, we must
apply the functorR, whereR(M) = A⊗(A⊗Aop) M, to the complex of the
resolution. Now, for an extendedA-bimoduleA⊗ X ⊗ A the functor has
the valueR(A⊗ X ⊗ A) = A⊗ X as ak-module.
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Definition 1.3. The standard complexC∗(A) for an algebraA overk is,
with the above notationC∗(A) = R(C′∗(A), b′).

In particular, we haveCq(A) = A(q+1)⊗ and fordi = R(φi) the differ-
ential of the complex isb =

∑
0≤i≤q

(−1)idi wheredi : Cq(A)→ Cq−1(A) is

given by the following formulas

di(a0 ⊗ · · · ⊗ aq) = a0 ⊗ · · · ⊗ (aiai+1) ⊗ · · · ⊗ aq for 0 ≤ i < q

dq(a0 ⊗ · · · ⊗ aq) = (aqa0) ⊗ aq ⊗ · · · ⊗ aq−1.

36

The last formula, the one fordq, reflects how the identification of
A⊗X with R(A⊗X⊗A) is made from the right action ofA onA becoming
the left action onAop. Again we havedid j = d j−1di for i < j.

Further, as a complex overk, we see clearly thatCq(A) = C′q−1(A)

with di = φi for i < q. If b′ =
∑

0≤i<q
(−1)idi : Cq(A) → Cq−1(A), then

from (1.2) we deduce immediately that (C∗(A), b′) is acyclic. In terms
of b′, it is clear thatb = b′ + (−1)qdq.

Remark 1.4.The Hochschild homologyHH∗(A) = H∗(A,A) of A can
be calculated asH∗(C∗(A)), the homology of the standard complex ofA.

2 The standard complex as a simplicial object

Remark 2.1.Besides the operatorsdi on the standard complexC∗(A),
there are operatorssj wheresj : Cq(A)→ Cq+1(A) for 0 ≤ j ≤ q defined
by the following formula

sj(a0 ⊗ · · · aq) = a0 ⊗ · · · ⊗ a j ⊗ 1⊗ a j+1 ⊗ · · · ⊗ aq for 0 ≤ j ≤ q.

With both the operatorsdi and sj, the standard complex becomes
what is called a simplicialk-module. We define now the general concept
of a simplicial object over a category.

Definition 2.2. Let C be a category. A simplicial objectX∗ in the cat-
egory C is a sequence of objectsXq in C together with morphisms
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di : Xq → Xq−1 for q > 0 and sj : Xq → Xq+1 for 0 ≤ i, j ≤ q
satisfying the following relations

(1) did j = d j−1di for 0 < j − 1,

(2) sj si = si sj−1 for 0 < j − i,

(3) di sj =



sj−1di for 0 < j − i ≤ q

identity for − 1 ≤ j − i ≤ 0

sjdi−1 for j − i < −1.

A morphism f : X∗ → Y∗ of simplicial objects over the category37

C is a sequencefq : Xq → Yq of morphisms inC such thatdi f = f di

and sj f = f sj , i.e. a sequence of morphisms commutating with the
simplicial operations. Composition off : X∗ → Y∗ andg : Y∗ → Z∗ is
the sequencegq fq definedg f : X∗ → Z∗.

Simplicial objects in a categoryC, morphisms of simplicial objects,
and composition of morphisms define the category∆(C) of simplicial
objects inC.

Originally, simplicial objects arose in the context of the singular
complex of a space which is an example of a simplicial set, andby
considering thek-module in each degree with the singular simplexes
as basis, we come to a simplicialk-moduleC∗(A) associated with an
algebraA overk.

Already, for the standard simplicialk-moduleC∗(A) we have associ-
ated a positive complex with boundary operator defined in terms of the
operatorsdi . This can be done for any simplicial object over an abelian
category. LetC+(A) denote the category of positive complexes over an
abelian categoryA.

Notation 2.3.For a simplicial objectX∗ in an abelian categoryA we
use the following notations

b = d =
∑

0≤i≤q

(−1)idi

b′ = d′ =
∑

0≤i<q

(−1)idi ,
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s= (−1)qsq : Xq→ Xq+1.

Remark 2.4.The functors which assign to a simplicial objectX∗ in
∆(A) either the complex (X∗, d) or the complex (X∗, d′), and to mor-
phisms in∆(A) the corresponding morphisms of complexes, are each
functors defined∆(A) → C+(A). By a direct calculation,s is a homo-
topy operator ford′ of the identity to zero, that is, 38

d′s+ sd′ = 1.

This means that (X∗, d′) is an acyclic complex or equivalently
H∗(X∗, d′) = 0.

Notation 2.5.We define a filtrationF∗X and two subcomplexesD(X)
andN(X) of the complex (X, d) associated with the simplicial objectX
inA. For the filtration in degreen, we define

FpXn =

⋂

n−p<i≤n,0<i

ker(di).

The subcomplex of degeneraciesDn(X) in degreen is the subobject
of Xn generated by im(si) for i = 0, . . . , n−1, and the Moore subcomplex
Nn(X) in degreen is FnXn. In other words, the Moore subcomplex is the
intersection of the filtrationN(X) =

⋂

q

Fq(X), and the boundaryd is

just d0 : Nq(X)→ Nq−1(X).

The next theorem is proved by retractingFpX into Fp+1X with a
morphism of complexes homotopic to the inclusion morphism of Fp+1X
into FpX. For the proof of the theorem, we refer to MacLane 1963, VIII.
6.

Theorem 2.6. Let X be a simplicial object in an abelian categoryA.
The following composite is an isomorphism

N∗(X)→ X∗ → X∗/D∗(X),

and the induced homology morphisms

H∗(N(X)) → H∗(X) and H∗(X)→ H∗(X/D(X))

are each isomorphisms.
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Normalized standard complex 2.7.Let A be an algebra overk. The
subcomplex of degeneracies in degreeq is DCq(A) and is generated by
all elementsa0 ⊗ · · · ⊗ aq such thatai = 1 for somei, 1 ≤ i ≤ q. Thus39

there is a natural isomorphism ofCq(A) = Cq(A)/DCq(A) with A⊗A
q⊗

.
The gradedk-moduleC∗(A) has a quotient complex structure, and by
(2.6) the quotient morphismC∗(A)→ C∗(A) induces an isomorphism in
homology, i.e.HH∗(A) → H∗(C∗(A)) is an isomorphism. The complex
C∗(A) is called the normalized standard complex. In the case of the
standard complex, the fact thatC∗(A)→ C∗(A) induces an isomorphism
in homology can be seen directly, by noting thatC∗(A) is obtained as
Aop⊗(A⊗Aop) C

′

∗(A) in the quotient resolution of (C∗(A), b′) whereC
′

∗(A)
is defined by

C
′

q(A) = A⊗ A
q⊗
⊗ A.

The normalized complex is useful for comparing Hochschild ho-
mology with differential forms. We treat this in greater detail later.

3 The standard complex as a cyclic object

Remark 3.1.Besides the operators makingC∗(A) into a simplicialk-
module, there is a cyclic permutation operatort : Cq(A) → Cq(A) de-
fined by the following formula

t(a0 ⊗ · · · ⊗ aq) = aq ⊗ a0 ⊗ · · · ⊗ aq−1.

With the simplicial operators and this cyclic permutation in each
degree, the standard complex becomes what is called a cyclick-module.
We now define the general concept of a cyclic object in a category.

Definition 3.2. Let C be a category. A cyclic objectX • in the category
C is a simplicial object together with a morphismtq : Xq→ Xq for each
q ≥ 0 satisfying:

(1) The (q+ 1)th-power (tq)q+1
= Xq, the identity onXq,

(2) As morphismsXq → Xq−1 we havedi tq = tq−1di−1 for i > 0 and
d0tq = dq, and
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(3) As morphismsXq → Xq+1 we havesj tq = tq+1sj−1 for j > 0 and40

s0tq = (tq+1)2sq.

A morphism f : X • → Y• of cyclic objects inC is a morphism of
the simplicial objectsf : X→ Y associated with the cyclic objects such
that tq fq = fqtq as morphisms ofXq → Yq. The composition of cyclic
morphisms as simplicial morphisms is again a cyclic morphism. We
denote the category of all cyclic objects inC and their morphisms by
Λ(C).

For each algebraA, we denote the cyclic object determined by the
standard complex byC •(A). We leave it to the reader to check that the
above axioms (1), (2) and (3) are satisfied. The following discussion is
carried out forC •(A), but in fact, it holds for any cyclic object over an
abelian category.

Notation 3.3.Let T = (−1)qt : Cq(A) → Cq(A), and observe that both
Tq+1 andtq+1 are equal to the identity map onCq(A). Let N : Cq(A) →
Cq(A) be defined byN = 1+T+T2

+· · ·+Tq, and observe thatN(1−T) =
0 = (1 − T)N. In order to prove the next commutativity proposition, it
is handy to have the following operatorJ = d0T : Cq(A) → Cq−1(A),
because it satisfies the relations


T i JT−i−1

= (−1)idi for 0 ≤ i < q

TqJT−q−1
= J

Proposition 3.4. For an algebra A the following diagrams are commu-
tative,

Cq(A)

b
��

N // Cq(A)

b′

��
Cq−1(A) N // Cq−1(A)

Cq(A)

b′

��

1−T // Cq(A)

b
��

Cq−1(A) 1−T // Cq−1(A).

Proof. We first note that

b(1− T) =


q∑

i=0

(−1)idi


(
1− (−1)qtq+1

)
=

q−1∑

i=0

(−1)idi − (−1)q−1
q−1∑

i=0

(−1)itqdi ,
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sincedi tq+1 = tqdi−1 for 0 < i ≤ n andd0tq+1 = dq. But the last expres- 41

sion is just (1− T)b′ proving that the second diagram is commutative.
For the commutativity of the first diagram, we useNTi

= T iN = N
for all i. Using the operatorJ introduced above in (3.3), we have

b′N = JT−1N + T JT−2N + · · · + Tq−1JT−qN

= JN+ T JN+ · · · + Tn−1JN = (1+ T + · · · + Tq−1)JN = NJN,

and similarly

Nb= NJT−1
+ NT JT−2

+ · · · + NTqJT−q−1

= NJT−1
+ NJT−2

+ · · · + NJT−q−1

= NJ(T−1
+ T−2

+ · · · + T−q−1)

= NJN.

This proves the proposition. �

Remark 3.5.This proposition is the basis for forming a double complex
in the next section. Since (C∗(A), b′) is an acyclic complex, we con-
sider two complexes coming from the standard complex and each giving
Hochschild homology. From (3.4) the double complexes with two verti-

cal columns (C∗(A), b)
1−T
←−−− (C∗(A),−b′) and (C∗(A),−b′)

N
←− (C∗(A), b)

where (C∗(A), b) is in horizontal degree 0 have associated total single
complexes with homology equal to Hochschild homology. Using the
spectral sequence of a filtered complex, we see by filtering onthe hori-
zontal degree that we get Hochschild homology for the homology of the
associated total complex becauseE1

0,q = HHq(A) andEq
p,q = 0 other-

wise.

4 Cyclic homology defined by the standard double
complex

Definition 4.1. Let C •(A) denote the cyclic object associated with the
standard complex of an algebraA overk. The standard double complex
CC• •(A) associated with this cyclic object and hence also withA is the
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first quadrant double complex which is the sequence of vertical columns
made up of even degrees by (C∗(A), b) and odd degrees by (C∗(A), b′), 42

with horizontal structure morphisms given by 1− T andN as indicated
in the following display

C∗(A), b
1−T
←−−− C∗(A),−b′

N
←− C∗(A), b

1−T
←−−− C∗(A),−b′

N
←− C∗(A), b← • •

which is periodic of period 2 horizontally to the right, starting with p =
0 in the double complex. The corresponding cyclic complexCC•(A) is
the associated total complex ofCC• •(A).

Observe that by (3.4),CC• •(A) is a double complex, since we have
already remarked that (1− T)N = 0 = N(1 − T). This construction is
made with just the cyclic object structure, and thus can be made for any
cyclic object in an abelian category.

Definition 4.2. Let Abe an algebra overk. The cyclic homologyHC∗(A)
of A is the homologyH∗(CC•(A)) of the standard total complex of the
standard double complex ofA.

Remark 4.3.The standard double complexCC• •(A), its associated total
complexCC•(A), and the cyclic homologyHC∗(A), are all functors ofA
on the category of algebras overk, since the standard cyclic objectC •(A)
is functorial inA from the category of algebras overk to the category of
cyclic k-modulesΛ(k).

Connes’ exact couple 4.4.From the 2-fold periodicity of the double
complexCC• •(A), we have a morphismσ : CC• •(A) → CC•(A) of
bidegree (−2, 0), giving a morphismσ : CC•(A) → CC•(A) of degree
−2 and a short exact sequence of complexes

0→ ker(σ)→ CC•(A)
σ
−→ CC•(A)→ 0.

The homology of ker(σ) was considered in (3.5) and we have

H∗(ker(σ)) = HH∗(A).

The homology exact triangle of this short exact sequence of com- 43
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plexes is the Connes’ exact triangle

HC∗(A) S // HC∗(A)

Byyrrrrrrrrrr

HH∗(A)
I

eeLLLLLLLLLL

whereS = H∗(σ) so deg(S) = −2, deg(B) = +1, and deg(I ) = 0.
Moreover, this defines an functor from the category of algebras over
k to the category of positivelyZ-graded exact couplesExC(−2,+1, 0)
over the category ofk-modules (k).

Remark 4.4.The entire discussion in this chapter could have been car-
ried out withΘ-gradedk-algebrasA. TheΘ-grading plays no role in
any of the definitions. In particular, we have completed the definition
of cyclic homology and the Connes’ exact couple introduced in 1(3.5)
namely

(HC∗,HH∗,S, B, I ) : AlgΘ,k→ ExC((k),Z × Θ, (−2, 0), (1, 0), (0, 0)).

Also, the fact thatI : HH0(A) → HC0(A) is an isomorphism holds,
(see 1(3.6)), and iff : A→ A′ is a morphism of algebras, thenHC∗( f )
is an isomorphism if and only ifHH∗( f ) is an isomorphism, see 1(3.7).

5 Morita invariance of cyclic homology

Let A andB be two algebras, and letA ModB denote the category of bi-
modules withA acting on the left and withB acting on the right. In other
wordsA ModB is the category of leftA⊗Bop-modules or the category of
right Aop⊗ B-modules.

Definition 5.1. A Morita equivalence between two algebrasA andB is
given by two bimodules,P in A ModB andQ in B ModA together with
isomorphisms

wA : P⊗B Q→ A and wB : Q⊗A PA→ B
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in the categoriesA ModA andB ModB respectively. Two algebrasA and44

B are said to be Morita equivalent provided there exists a Morita equiv-
alence betweenA andB.

The bimodulesP andQ define six different functors:

(a) for left modules,φP:B Mod →A Mod andφQ:A Mod →B Mod
defined byφP(M) = P⊗B M andφQ(M′) = Q⊗A M′,

(b) for right modulesψP : ModA → ModB andψQ : ModB → ModA

defined byψQ(L) = L ⊗A P andψQ(L′) = L′ ⊗B Q, and

(c) for bimodulesφP,Q :A ModA →B ModB andφQ,P :B ModB →A

ModA defined byφP,Q(M) = Q ⊗A M ⊗A P andφQ,P(N) = P ⊗B

N ⊗B Q.

Proposition 5.2. Let A and B be two algebras, and let(P,Q,wA,wB) be
a Morita equivalence. Then the following hold:

(1) The functorsφP :B Mod →A Mod andφQ :A Mod →B Mod are
inverse to each other up to equivalence.

(2) The functorsψP : ModA → ModB andψQ : ModB → ModA are
inverse to each other up to equivalence.

(3) The functorsφP,Q :A ModA →B ModB and φQ,P :B ModB →A

ModA are inverse to each other up to equivalence.

Also, there are natural isomorphisms induced by wA and wB between
the functors defined onA ModA×A ModA, namely

φP,Q(M) ⊗B⊗Bop φP,q(N)→ M ⊗A⊗Aop N,

and the corresponding derived functors

TorB⊗Bop

∗ (φP,Q(M), φP,Q(N))→ TorA⊗Aop

∗ (M,N).

Proof. As an indication of the proof, we consider anA-bimodule M.
There is a natural isomorphism

φQ,P(φP,Q(M)) = (P⊗B Q) ⊗A M ⊗A (P⊗B Q)→ A⊗A M ⊗A A = M,
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and similarly there is a natural isomorphismφP,QφQ,P ≃ id. 45

The isomorphism between two bimodule tensor products is just an
associativity law for tensor products. This canonical isomorphism ex-
tends to the derived functors from uniqueness properties ofthe derived
functors. This proves the proposition. �

Corollary 5.3. Morita equivalent algebras A and B have isomorphic
Hochschild homology.

Example 5.4.The algebrasA and the matrix algebraMn(A) are Morita
equivalent. To see this, we observe that the module ofn by q matrices
Mn,q(A) is a left Mn(A) ⊗ Mq(A)op-module and matrix multiplication
factors by a tensor product overMq(A) as follows

Mn,q(A) ⊗ Mq,s(A)

))SSSSSSSSSSSSSSS

matrix multiplication // Mn,s(A)

Mn,q ⊗Mq(A) Mq,s(A)
f

66mmmmmmmmmmmm

Assertion. The morphismf in the previous diagram is an isomorphism
of Mn(A) ⊗ Ms(A)op-modules. Clearlyf is a bimodule morphism. To
see the isomorphism assertion, we can reduce to the casen = s= 1 and
considerf : M1,q(A) ⊗Mq(A) Mq,1(A)→ M1,1(A) = A and calculate

f


(a1, . . . , aq) ⊗



b1
...

bq




= f


(a1, . . . , aq) ⊗



b1 0 . . . 0
. . . . . . . . . . . .

. . . . . . . . . . . .

bq 0 . . . 0




1
0
0




=

= f ((c, 0, . . . , 0)⊗


1
0
0

 = c = a1b1 + · · · + aqbq.

It is clear from this computation thatf is a bijection.
The Morita equivalence betweenA andMq(A) is given by (M1,q(A),

Mq,1(A), f , f ). There is a morphism of cyclic sets from the standard
complex forMn(A) to the standard complex forA.46
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Definition 5.5. The Dennis trace map

Tr : Mn(A)(q+1)⊗ → A(q+1)⊗

is given by

Tr(a(0)⊗ · · · ⊗ a(q)) =
∑

1≤i0,...,iq≤n

ai0i1(0)⊗ · · · ⊗ aiqi0(q).

Theorem 5.6. The Dennis trace map induces isomorphisms HH∗(Mn

(A))→ HH∗(A) and HC∗(Mn(A))→ HC∗(A).

Proof. It is an isomorphism on Hochschild homology by (5.3), and
since this isomorphism is given by a morphism of cyclic objects, the
induced map is an isomorphism on cyclic homology by the criterion
1(3.7). This proves the theorem. �

Remark 5.7. In McCarthy [1988], there is a proof that in general Morita
equivalent algebras have isomorphic cyclic homology.

Reference:Compte Rend Acad Sci, 307 (1988), pp. 211-215.





Chapter 4

Cyclic Homology and Lie
Algebra Homology

CYCLIC HOMOLOGY WAS introduced in the previous chapter using 47

a double complexC∗,∗(A) with columns made up of standard Hochschild
complexes (C∗(A), b) and (C∗(A), b′). The cyclic structure gave a mor-
phism of complexes 1− T : (C∗(A), b) → (C∗(A), b′) which was also
used to define the double complexC∗,∗(A). In the case of characteristic
zero we will show that cyclic homologyHC∗(A) can be calculated in
terms of the homology of coker(1− T) and the homology of ker(1− T).
In this way we recover the original definition of Connes for cyclic co-
homology as the cohomology of the dual of one of these complexes.

Then we sketch the Loday-Quillen and Tsygan theorem which says
that the primitive elements in the homology of the Lie algebra H∗(gl(A))
is isomorphic to the cyclic homology ofA shifted down one degree. This
is one of the main theorems in the subject of cyclic homology.

1 Covariants of the standard Hochschild complex
under cyclic action

We start with a remark about endomorphisms of finite order.

47
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Proposition 1.1. Let T : L → L be an endomorphism of an object
in an additive category such that Tn

= 1, the identity on L. For N=
1+ T + T2

+ · · · + Tn−1 we have the following representation of n times
the identity on L

n = N + (−(T + 2T2
+ · · · + Tn−1))(1− T).

Proof. We apply the differential operatort d
dt to the relation

(1− tn) = (1− t)(1+ t + · · · + tn−1)

to obtain the relation

−ntn = −t(1+ t + · · · + tn−1) + (1− t)(t + 2t2 + · · · + (n− 1)tn−1).

SubstitutingT for t and usingTn
= 1 andTN = N = NT we obtain48

the stated result. This proves the proposition. �

Recall that in the cyclic homology double complex for an algebraA
the horizontal rows going in the negative direction in degree q = n − 1
are of the form

. . .
N
−→ An⊗ 1−T

−−−→ An⊗ N
−→ An⊗ 1−T

−−−→ An⊗ → 0

whereT(a1 ⊗ · · · ⊗ an) = (−1)n−1an ⊗ a1 ⊗ · · · an−1. Now when the
ground ringk is a Q-algebra, so that then in the previous proposition
can be inverted, we have the identity

1 =
1
n

N + θ(1− T) where θ = −
1
n

(T + 2T2
+ · · · + (n− 1)Tn−1).

This leads to the following proposition.

Proposition 1.2. Let A be an algebra over a ring k which is aQ-
algebra. Let(An⊗)1−T = coker(1− T), in other words, the coinvariants
of the action of the cyclic groupZ/nZ acting through T on An⊗. Then
the following sequence of k-modules is exact

. . .
N
−→ An⊗ 1−T

−−−→ An⊗ N
−→ An⊗ 1−T

−−−→ A→ (An⊗)1−T → 0,

and the following sequence of complexes over k is exact

. . .
1−T
−−−→ C∗(A), b

N
−→ C∗(A), b′

1−T
−−−→ C∗(A), b→ C∗(A)1−T′b→ 0.
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Proof. Every thing follows from the homotopy formula forN and 1−T,
1 = 1

nN + θ(1 − T), except for the observation that 1− T and N are
morphisms of complexes and this is contained in 3(3.4). Thisproves the
proposition. �

Remark 1.3.The sequence of complexes in (1.2) being exact leads to
the following isomorphism involving (C∗(A)1−T , b) namely

(C∗(A)1−T , b)→ im(N) ⊂ (C∗(A), b′).

Further, we have a morphism of the assembled double complex into 49

the complex of covariants

CC∗(A)→ C∗(A)1−T , b

which also maps the double complex filtration arising from the vertical
grading into the degree filtration. In other words for

FpCCn(A) =
∐

i≤p,i+ j=n

Ci(A)→ FpCn(A)1−T

where

FpCn(A)1−T =


Cn(A)1−T for p ≤ n

0 for p > n.

For these filtrations, looking at the associated gradedE0, we arrive
at the quotient morphismE0

p,0CCp(A)→ E0
p,0Cp(A)1−T . The differential

d0 is zero in both complexes whileE1 of the mapping of the complexes
is just the horizontal exact sequence inCC∗∗(A). Thus by (1.2) we have
an isomophism of theE2-terms which is the homology of theE1-terms.
By the basic mapping theorem on spectal sequences, see 1(5.7), we have
te following theorem.

Theorem 1.4. Let A be an algebra over a ring k which is aQ-algebra.
The quotient morphism of complexes

CC∗(A)→ C∗(A)1−T , b
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induces an isomorphism

HC∗(A) = H∗(CC∗(A))→ H∗(C∗(A)1−T , b)

of cyclic homology onto the homology of the standard complexwith the
cyclic action divided out.

2 Generalities on Lie algebra homology

From an algebraic point of view, cyclic homology is important for its50

relation to Hochschild homology and also Lie algebra homology. In-
deed in Chapter 2,§ 3 we showed how both concepts were related to
abelianization.

Definition 2.1. Let g be a Lie algebra overk with universal enveloping
algebraU(g). The homologyH∗(g,M) of g with values in theg-module
M is the Tor functor

H∗(g,M) = Tor
U(g)
∗ (k,M).

The absolute Lie algebra homology isH∗(g) = H∗(g,M).
Recall that ag-module or representation ofg is just aU(g)-module

by the universal property of the universal enveloping algebra U(g).

Remark 2.2. In degree zero, Lie algebra homology is just

H0(g,M) = k ⊗U(g) M = M/[g,M]

where [g,M] is thek-submodule ofM generated by all [u, x] whereu ∈
g, x ∈ M. In particularH0(g) = k. Moreover it is the case thatH1(G) =

gab
= g/[g, g] which is easily seen from the following resolution which

can be used to calculate Lie algebra homology.

Standard complex 2.3.Let g be a Lie algebra andM a g-module. The
standard complexC∗(g,M) for g with values inM as a gradedk-module
isΛ∗(g)⊗M whereΛ∗(g) is the graded exterior algebra on thek-module
g together with the differential given by the formula

d((u1 ∧ . . . ∧ un) ⊗ x) =
∑

1≤i≤n

(−1)i (u1 ∧ . . . ∧ ûi ∧ . . . ∧ un) ⊗ ui x+
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+

∑

1≤i< j≤n

(−1)i+ j+1([ui , u j ] ∧ u1 ∧ . . . ûi ∧ . . . ∧ û j ∧ . . . ∧ un) ⊗ x.

We leave it to the reader to check thatd2
= 0 by direct computation

using the Jacobi law and [u, v]x = u(vx)−v(ux). In Cartan and Eilenberg,
Chapter XIII, (7.1) it is proved thatH∗(C∗(g,M)) = H∗(g,M) which is 51

defined by the Tor functor.
We will be primarily interested in the case whereM = k. Then the

standard complex is denoted by justC∗(g), and as a gradedk-module it
is the exterior moduleΛ∗(g) with differential given by

d(u1∧ . . .∧un) =
∑

1≤i< j≤n

(−1)i+ j+1[ui , u j ]∧u1∧ . . . ui ∧ . . .∧u j ∧ . . .∧un

sinceu1 = 0 in theg-modulek.

Remark 2.3.The exteriork-moduleΛ∗(V) has both an algebra structure
given by exterior multiplication and a coalgebra structuregiven by

∆(u1 ∧ . . . ∧ un) = (u1 ∧ . . . ∧ un) ⊗ 1

+

∑

1≤i≤n−1

(u1 ∧ . . . ∧ ui) ⊗ (ui+1 ∧ . . . ∧ un)

+ 1⊗ (u1 ∧ . . . ∧ un).

The algebra structure is not compatible with the differential onΛ∗(g)
since, for example, [u, v] = d(u∧ v), and it would have to equal

d(u∧ v) = du∧ v− u∧ dv= 0

in order to have a differential algebra structure. On the other handC∗(g)
with the exterior coalgebra structure is compatible withd makingC∗(g)
into a differential coalgebra. In the case wherek is a field or more gen-
erally H∗(g) is k-flat so that the Künneth morphism is an isomorphism,
the Lie algebra homologyH∗(g) is a commutative coalgebra overk.

Concerining the calculations given in (2.2), we observe that d = 0
onC0(g) andC1(g) while d(u∧ v) = [u, v]. ThusH0(g) = 0 and

H1(g) = coker(d : C2(g)→ C1(g)) = G/[g, g] = gab.
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3 The adjoint action on homology and reductive al-
gebras

52
Notation 3.1.Let Rep(g) denote the category ofg-modules. On the
tensor productL ⊗ M over k of two g-modulesL and M we have a
naturalg-module structure given by the relation

u(x⊗ y) = (ux) ⊗ y+ x⊗ (uy) for u ∈ g, x ∈ L, and y ∈ M.

Hence tensor powers, symmetric powers, and exterior powersof g-
modules have naturalg-module structures. For example onΛqM the
g-module structure is given by the relation

u(x1 ∧ . . . ∧ xq) =
∑

1≤i≤q

x1 ∧ . . . ∧ (uxj) ∧ . . . ∧ xq.

Example 3.2.Thek-moduleg is ag-module with the action called the
adjoint action, denotedad(u) : g→ g for u ∈ g, where

ad(u)(x) = [u, x] for u, x ∈ g.

Observe that the Jacobi identity gives theg-module condition

ad([u, v])(x) = ad(u)(ad(v)(x)) − ad(v)(ad(u)(x))

or [[u, v], x] = [u, [v, x]] − [v, [u, x]] for u, v, x ∈ g.

Combining the previous two considerations, we see thatg acts on
the graded moduleC∗(g) = Λ∗(g) of the standard Lie algebra complex.
Each elementu ∈ g defines a grading preserving map

ad(u) : C∗(g)→ C∗(g),

and by exterior multiplication, a morphism of degree+1 denotede(u) :
C∗(g)→ C∗(g) defined by

e(u)(x1 ∧ . . . ∧ xq) = u∧ x1 ∧ . . . ∧ x1.

The relation of the differentiald onC∗(g) to the adjoint actionad(u)53

and the exterior multiplicatione(u) are contained in the next proposition.
The details of this proposition are left to the reader.
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Proposition 3.3. For u ∈ g the adjoint action ad(u) commutes with d,
that is,(ad(u))d = d(ad(u)) so that C∗(g) is a complex of g-modules and
for exterior product e(u) we have

ad(u) = de(u) + e(u)d. (*)

In low degreesd : C2(g) → C1(g) commutes withad(u) by the
Jacobi identity, and the homotopy formula (*) holds onC1(g) by the
relationad(u)(x) = [u, x] = de(u)(x) and onC2(g) by the Jacobi formula.

The action ofg on the standard complexC∗(g) induces an action
on H∗(g). In view of the homotopy formula (*) this actionad(u) is
homotopic to zero, and this gives the following corollary.

Corollary 3.4. The action of gon H∗(g) is zero, that is, the homology
g-module is the trivial module.

Definition 3.5. A g-moduleM is simple or irreducible provided the only
submodules are the trivial ones 0 andM. A g-moduleM is semisimple
or completely reducible if it satisfies the following equivalent condi-
tions:

(a) M is a direct sum of simple modules,

(b) M is a sum of simple submodules, and

(c) every submoduleL of M has a direct summand, i.e. there is an-
other submoduleL, with L ⊕ L′ isomorphic toM.

The above definition applies to any abelian category, for example,
all representations of a group. For a proof of the equivalence of (a), (b),
and (c) see Cartan and Eilenberg.

We will not make a definition in a nonstandard form, but it is exactly 54

what is needed for applications.

Definition 3.6. A Lie subalgebrag of a Lie algebras is reductive in
s provided all exterior powersΛqs are semisimple asg-modules with
the exterior power of the adjoint action ofg on s. A Lie algebrag is
reductive providedg is reductive in itself.
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Proposition 3.7. Let gbe a reductive Lie subalgebra of a Lie algebra s.
Then the quotient morphism

C∗(s)→ C∗(s) ⊗U(g) k = C∗(s)g

is a homology isomorphism.

Proof. The kernel of the quotientC∗(s)→ C∗(s)g onto theg - coinvari-
ants is the direct sum of an acyclic complex and one with zero differen-
tial. The factor with the zero differential must be zero by (3.4). Hence
the kernel is acyclic, and the morphism is a homology isomorphism.
This proves the proposition. �

Example 3.8.Let A be ak-module, and letgℓn(A) denote the Lie algebra
overk of n matrices with entries inA with the usual Lie bracket [u, v] =
uv− vu for u, v ∈ gℓn(A). Then the Lie subalgebragℓn(k) is reductive
in gℓn(A), and in particular,gℓn(k) is a reductive Lie algebra. This is the
basic example for the relation between the cyclic homology of A and
the Lie algebra homology ofgℓ(A) = lim

−−→
gℓn(A). We have to be a little

careful with the limits becausegℓ(k) is not reductive ingℓ(A). On the
other hand we have the following result by passing to limits.

Proposition 3.9. Let A be an algebra over k, a field of characteristic
zero. Then the quotient morphism of complexes

θA : C∗(gℓ(A))→ C∗gℓ(A))gℓ(k)

induces an isomorphism in homology.

4 The Hopf algebra H∗(gℓ(A), k) and additive alge-
braic K-theory

The algebra structure onH∗(gℓ(A)) comes from the direct sum of matri-55

ces namely the morphisms of Lie algebras

gℓ
n
(A) ⊕ gℓ

n
(A)→ gℓ

2n
(A)→ gℓ(A).
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The natural isomorphismC∗(g1
) ⊗C∗(g2

)→ C∗(g1
⊗ g

2
) composes

with the induced morphism of the inclusion to give a morphismof dif-
ferential coalgebras

C∗(gℓn
(A)) ⊗C∗(gℓn

(A))→ C∗(gℓ2n
(A))

which in the limit overn gives a multiplication

C∗(gℓ(A)) ⊗C∗(gℓ(A))→ C∗(gℓ(A)).

Remark 4.1.This multiplication induces a morphism of homology
which when composed with the Künneth morphism yields a multipli-
cationH∗(gℓ(A)) namely

H∗(gℓ(A)) ⊗ H∗(gℓ(A))→ H∗(gℓ(A)).

Now we put together this multiplication and the isomorphismof
(3.9) to obtain the following theorem.

Theorem 4.2. With the coalgebra structure and multiplication on C∗
(gℓ(A)), the quotient morphism induces on C∗(gℓ(A))gℓ(k) a differen-
tial Hop algebra structure and the isomorphism H∗(gℓ(A)) → H∗(C∗
(A)gℓ(k)) shows that the multiplication on C∗(gℓ(A)) induces a Hopf al-
gebra structure on H∗(gℓ(A)).

Proof. The differential coalgebra structure and the multiplication given
by direct sum of matrices is defined on the quotient byθA and can be
seen directly from the definition. The multiplication defined by special
choices of direct sum onC∗(gℓ(A)) is not associative, but in the quotient
these choices all reduce to the same morphism which gives associativity.
This proves the theorem. �

Before going on to the calculation ofH∗(gℓ(A)) using cyclic ho- 56

mology, we indicate how this is an additiveK-theory by analogy with
algebraicK-theory as defined by Quillen. TheK-groupsK∗(A) of a ring
A are the homotopy groups of a certain space

K∗(A) = π∗(BGL(A)+)
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where the spaceBGL(A)+ comes fromA a series of three steps

A 7→ GL(A) 7→ BGL(A) 7→ BGL(A)+

whereGL(A) = lim
−−→

GLn(A) is the infinite linear group,B is the clas-
sifying space of the groupGL(A), and BGL(A)+ is the result of ap-
plying the Quillen plus construction. The mapBGL(A) → BGL(A)+

is a homology isomorphism andπ1(BGL(A)+) is the abelianization of
π1(BGL(A)) = GL(A). From the relations of algebraicK-theory with
extensions of groups, the work of Kassel and Loday 1982 suggested that
there should be an additive analogue ofK-theory using the homology of
Lie algebras.

The analogue for Lie algebras of the three steps in algebraicK-
theory overk is to begin with an algebraA overk and perform the fol-
lowing three steps

A 7→ gℓ(A) 7→ C∗(gℓ(A)) 7→ C∗(gℓ(A))gℓ(k).

The quotient coalgebra constructionC∗(gℓ(A)) → C∗(gℓ(A))gℓ(k) is
like the plus constructionBGL(A)→ BGL(A)+ in the sense that the map
is an isomorphism of the homology coalgebras andC∗(gℓ(A))gℓ(k) has a
Hopf algebra structure where by analogy the plus construction BGL(A)+

is anH-space.
There is no Lie algebra homotopy groups, but the rational homotopy

can be calculated from the homology in the case of anH-space. This is
the basic theorem of Milnor-Moore in rational homotopy.

Theorem 4.3. Let X be a path connected H-space. The rational Hure-
wicz morphismsφ : π∗(X) ⊗ Q → PH∗(X,Q) is an isomorphism of57

graded Lie algebras onto the primitive elements PH∗ in homology.

Remark 4.4.The above considerations together with the Milnor-Moore
theorem led Feigin and Tsygan [1985] to introduce the following defini-
tion of the additiveK-groups of algebrasA over a filedk of characteristic
zero

Kadd
∗ (A) = PH∗(C∗(gℓ(A))gℓ(k)).
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5 Primitive elementsPH∗(gℓ(A)) and cyclic homol-
ogy of A

In this sectionk will always denote a field of characteristic zero. We
begin with two preliminaries. The first is based on Appendix 2of the
rational homotopy theory paper of Quillen [1969].

Proposition 5.1. On the category of cocommutative differential Hopf
algebras A over k, the natural morphism H(P(A)) → P(H(A)) is an
isomorphism where x∈ P(A) means∆(x) = x⊗ 1+ 1⊗ x.

Proof. Quillen proves rather directly that for a differential Lie algebraL
with universal envelopingU(L) differential Hopf algebra thatU(H(L))
→ H(U(L)) is an isomorphism. NowU and P are inverse functors
between differential Lie algebras and cocommutative differential Hopf
algebras by a basic structure theorem of Milnor and moore 1965. This
proves the proposition. �

The second preliminary is basic invariant theory over a fieldof char-
acteristic zero.

Basic invariant theory 5.2. Let V be ann-dimensional vector space
overk, denotegℓ(V) = End(V) as a Lie algebra overk, and denote the
symmetric group onq letters by Symq. There is a mapφ : k[Symq] →
End(Vq⊗) = gℓ(V)q⊗ where

φ(σ)(x1 ⊗ · · · ⊗ xq) = xσ(1) ⊗ · · · ⊗ xσ(q) for σ ∈ Symq .

The basic assertion of invariant theory is the following morphisms 58

are isomorphisms forn = dim(V) ≥ q

k[Symq] → (gℓ(V)q⊗)gℓ(V)
→ (gℓ(V)q⊗)gℓ(V).

The symmetric group Symq acts ongℓ(V)q⊗ by conjugation through
φ and thisφ is Symq equivariant as is seen from a direct calculation.

A basis ofV is equivalent to an isomorphismgℓ(V) → gℓ
n
(k) and

gℓ(V⊗A)→ gℓ(V)⊗A→ gℓ
n
(A) for anyk-algebra. The next proposition

is the first link between Lie algebra chains and certain tensor powers of
A.
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Proposition 5.2. If n = dim(V) ≥ q, then we have an isomorphism of
k-modules,

Λ
q(gℓ(V) ⊗ A)gℓ(V) ≃ (k[Symq] ⊗ Aq⊗) ⊗Symq

(sgn)

whereSymq acts by conjugation on k[Symq] and (sgn) is the one di-
mensional sign representation.

Proof. We can write the exterior power

Λ
q(gℓ(V) ⊗ A)gℓ(V) = [(gℓ(V) ⊗ A)q⊗ ⊗Symq

(sgn)]gℓ(V)

= [(gℓ(V)q⊗)gℓ(V) ⊗ Aq⊗] ⊗Symq
(sgn).

Using (5.2), we tensorφ with Aq⊗ and (sgn) to obtain an isomor-
phism

{k[Symq] ⊗ Aq⊗} ⊗Symq
(sgn)→ {(gℓ(V)q⊗} ⊗Symq

(sgn).

This proves the proposition. �

In terms of this isomorphism we decomposeΛq(gℓ(V)⊗A)gℓ(V) using
the decomposition ofk[Symq] under conjugation. There will be one
factor for each conjugacy class of Symq. The elements of the formx =
[σ] ⊗ a where [σ] is the conjugacy class of the elementσ and a =
a1 ⊗ · · · ⊗ aq with ai ∈ A generate (k[Symq] ⊗ Aq⊗) ⊗Symq

(sgn), and the59

diagonal morphism on this element is given by shuffles as

∆(x) =
∑

{1,...,n}=I
∐

J,σ(I)=I ,σ(J)=J

([σ|I ] ⊗ aI ) ⊗ ([σ|J] ⊗ aJ)

wherex = [σ] ⊗ a, aI = ⊗i∈Iai , andaJ = ⊗ j∈Jaj .

Remark 5.3.An elementx = [σ] ⊗ a is primitive, i.e.∆(x) = x ⊗
1 + 1 ⊗ x if and only if σ ∈ Uq, the conjugacy class of the cyclic
permutation (1, . . . , q). As a Symq-set, the conjugacy classUq is iso-
morphic to Symq /Cylq where Cylq is the cyclic subgroup generated
by (1, . . . , q). Thus we have an isomorphism between the followingk-
modules (k[Uq]⊗Aq⊗⊗Symq

(sgn) and (k[Symq / cylq]⊗Aq⊗)⊗Symq
(sgn).

We can summarize the above discussion with the following calculation
of the primitive elements ofΛ∗(gℓ(V) ⊗ A)gℓ(V) in a given degree.
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Proposition 5.4. The submodule PΛq(gℓ(V) ⊗ A)gℓ(V) of primitive ele-
ments for q≤ n = dim(V) is isomorphic to

Aq⊗ ⊗Cylq (sgn) = Cq−1(A)1−T , the cyclic homology chains.

A further analysis of the isomorphisms involved shows that the dif-
ferential in the Lie algebra homology induces the quotient of the Hochs-
child differential, or the cyclic homology differential. Thus we are led
to the basic result of Tsygan [1983] and Loday-Quillen [1984] in char-
acteristic zero.

Theorem 5.5. The vector space of primitive elements in Lie algebra
homology PHq(C∗(gℓ(A))gℓ(k)) = PHq(gℓ(A)) is isomorphic to the cyclic
homology vector space HCq−1(A).





Chapter 5

Mixed Complexes, the
Connes Operator B, and
Cyclic Homology

THE DOUBLE COMPLEXCC∗,∗(A) has acyclic columns in odd de-60

grees, and this property leads to the concept of a mixed complex. Thus
we effectively suppress part of the cyclic homology complexCC∗(A).
In the second section this new definition is shown to be equivalent to
the old one. Yet another way of simplifying the Connes-Tsygan double
complex is to normalize the Hochschild complexes, and this is consid-
ered in§ 3.

1 The operatorBand the notion of a mixed complex

Let A be an algebra overk. The last simplicial operator defines a homo-
topy operators : Cq(A) → Cq+1(A) by the relations = (−1)qsq. It has
the basic property thatsb′ + b′s = 1, and this is a general property of
simplicial objects over an abelian category.

Definition 1.1. Let A be an algebra overk. The Connes operator isB =
(1− T)sN : Cq(A)→ Cq+1(A) on the standard complex.

61
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For any cyclic objectX • the Connes operator is

B = (1− T)sN : Xq→ Xq+1

a morphism of degree+1. The corresponding diagram is

Xq+1 Xq+1
1−Too

s
��

Xq

b′

OO

Xq
Noo

Proposition 1.2. Let X• be a cyclic object over an abelian categoryA.
The Connes operator B of degree+1 and the usual boundary operator
b satisfy the following relations

b2
= 0, B2

= 0, and Bb+ bB= 0.

Proof. The first relation was already contained in 3(2.4), and the second61

BB= (1−T)sN(1−T)sB= 0 sinceN(1−T) = 0 by 3(3.3). For the last
relation we calculate using 3(3.4)

Bb+ bB= (1− T)(sNb+ b(1− T)sN= (1− T)sb′N + (1− T)b′sN

= (1− T)(sb′ + b′s)N = (1− T)N = 0.

This proves the proposition. �

Remark 1.3.For the standard cyclic objectC •(A) associated with an
algebraA, the following formula definesB on an element,

B(a0 ⊗ · · · ⊗ aq) =
∑

(−1)iq(aq−i ⊗ · · · ⊗ aq ⊗ a0 ⊗ · · · ⊗ aq−1−i ⊗ 1)−

−
∑

(−1)(i−1)q(1⊗ aq−i ⊗ · · · ⊗ aq ⊗ a0 ⊗ · · · ⊗ aq−1−i).

This leads to a new structure called a mixed complex which is a
complex with two operators one of degree−1 and one of degree+1
which commute in the graded sense, that is, anticommute in the un-
graded sense. This is the relationBb+bB= 0. Each mixed complex has
homology in the usual sense with its operator of−1. Using the two op-
erators, we can associate a second complex, which can be thought of as
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the total complex of a double complex associated with the mixed com-
plex. The homology of this complex is called the cyclic homology of the
mixed complex. This terminology is justified because the cyclic homol-
ogy of a mixed complex associated with a cyclic object will shown to be
isomorphic to the cyclic homology of the cyclic object as defined in the
previous chapter. A second point justifying the terminology is that there
is a Connes exact couple relating the ordinary and cyclic homology of a
mixed complex.

There are two advantages in considering mixed complexes. The
complex defining cyclic homology of the mixed complex is smaller than
CC• •(X) for a cyclic object. Then there are mixed complexes which do
not come from cyclic objects which are useful, namely the onecor-
responding to the normalized standard complexC∗(A) for Hochschild 62

homology.

2 Generalities on mixed complexes

Definition 2.1. LetA be an abelian category. A mixed complexX is a
triple (X∗, b, B) whereX∗ is aZ-graded object inA, b : X∗ → X∗ is a
morphism of degree−1, andB : X∗ → X∗ is a morphism of degree+1
satisfying the relations

b2
= 0, B2

= 0, Bb+ bB= 0.

A morphism f : X→ Y of mixed complxes is a morphism of graded
objects such thatb f = f b andB f = f B. A mixed complex is positive if
Xq = 0 if q < 0.

Let Mix(A) denote the category of mixed complexes and Mix+(A)
the full subcategory of positive mixed complexes.

Remark 2.2.We have the following functors associated with mixed
complexes. LetA denote an abelian category.

(1) The functor which assigns to a mixed complex (X, b, B) the com-
plex (X, b) is defined Mix(A) → C(A) and it restricts to Mix+

(A)→ C+(A) to the full subcategories of positive objects. When
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it is composed with the homology functorH : C(A) → GrZ(A),
it defines the homologyH(X) of the mixed objectX.

(2) The functor which assigns to a cyclic objectX • the mixed ob-
ject (X, b, B) as in (1.2) is definedΛ(A) → Mix+(A), and when
composed with Mix+(A)→ C+(A) gives the usual simplicial dif-
ferential object whose homology is the ordinary homology ofthe
cyclic object.

(3) Finally the standard cyclic objectC •(A) associated with an alge-
bra A over a ringk is a functor defined Algk → Λ(k) which can
be composed with the above functors to give a positive mixed
complex ofk-modules whose homology is in turn its Hochschild
homology.

Now we wish to define a functor Mix+(A) → C+(A) whose ho-63

mology is to be the cyclic homology. There is a similar construction
for Mix(A) → C(A) which is not given since it is not needed for our
purposes.

Definition 2.3. Let (X, b, B) be a positive mixed complex over an abelian
categoryA. The cyclic complex (X[B], bB) associated with the mixed
complex (X, b, B) is defined as a graded object byX[B]n = Xn⊕Xn−2⊕. . .

which is a finite sum sinceX is positive andbB : X[B]n → X[B]n−1 is
defined using the projectionspi : X[B]n → Xi by the relationpibB =

bpi+1 + Bpi−1. The cyclic homologyHC∗(X) of the mixed complexX∗
is HC∗(X) = H∗(X[B]), the homology of cyclic complex associated with
X∗.

If the abelian categoryA = (k), the category ofk-modules, then
the boundary in the cyclic complex can be described by its image on
elements (xn, xn−2, xn−4, . . .) ∈ X[B]n, and the above definition gives

bB(xn, xn−2, xn−4, . . .) = (b(xn) + B(xn−2), b(xn−2) + B(xn−4), . . .).

Remark 2.4.To (X, b, B), a positive mixed complex over an abelian
complexA, we associate an exact sequence

0→ (X, b)
i
−→ (X[B], bB)→ (s−2X[B], bB)→ 0
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where i : Xn → X[B]n is defined bypni = Xn and pi i = 0 for i <
n. Observe thati is a monomorphism of complexes with quotient of
X[B] equal tos−2X[B] which is X[B] shifted down by 2 degrees. The
exact triangle of this short exact sequence is the Connes exact couple for
mixed complexes

HC∗(X) S // HC∗(X)

yyttttttttt

H∗(X)

eeJJJJJJJJJ

and as usual deg(S) = −2, deg(B) = +1, and deg(I ) = 0.

If we can show that the Connes exact sequence of the previous Re- 64

mark (2.4) is the same as the Connes exact sequence for a cyclic object
in terms ofCC•(X), then we have a new way of calculating cyclic ho-
mology for a cyclic object and hence also for an algebra. Thiswe do in
the next section.

First we remark that the above construction of the complex (X[B],
bB) from a mixed complex (X, b, B) can be viewed as the total complex
of a double complexB(X).

Definition 2.5. Let (X, b, B) be a positive mixed complex over an abelian
categoryA. The Connes double complexB(X) associated withX is
defined by the requirement thatB(X)p,q = Xq−p for p, q ≥ 0 and 0
otherwise, the differentiald′ = B andd′′ = b.

The double complexB(X) is concentrated in the 2nd octant of the
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first quadrant, that is, above the linep = q in the first quadrant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xq

b
��

B
←−

Xq−1

b
��

B
←−

Xq−2

b
��

B
←−

. . . B
←− X1

b
��

B
←− X0

. . .

��

. . . . . .

��

. . . . . .

��

. . . . . . . . .

X2

b
��

B
←− X1

b
��

B
←− X0

X1

b
��

B
←− X0

X0

The associated single complex of the double complexB(X) is just
X[B], bB. Once again one can see the double periodicity which arises
by deleting the first column.

3 Comparison of two definition of cyclic homology
for a cyclic object

65
We have two functors defined on categoryΛ(A) of cyclic objects over
an abelian categoryA with values in the category of positive complexes
C+(A) overA. The first isCC∗(X), the associated complex of the cyclic
homology double complexCC• •(X), and the second isX •[B] whereX •,
b, B is the mixed complex associated withX, see (1.1) and (1.2)

Notation 3.1.For a cyclic objectX • over an abelian categoryA we de-
fine a comparison morphismf : X •[B] → CC∗(X) by the following
relations in degreen. For fn : X •[B]n→ CCn(X) we require that

pri f =


pri for i even

s′N pri−1 for i odd
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where is degreen the diagram takes the form

X •[B]n =
∐

i Xn+2i // ∐
i Xn+i

pri

��
Xn+i .

If X • is a cyclick-module, then this definition can be given in terms
of elements,

f (xn, xn−2, xn−4, . . .) = (xn, s
′Nxn−2, xn−2, s

′Nxn−4, xn−r , . . .).

Lemma 3.2. The graded morphism f: X •[B] → CC∗(X) is a morphism
of differential objects.

Proof. There is a general argument that says that abelian categories can
be embedded in a category of modules. The result is that we cancheck
the commutativity off with boundary morphisms using elements. Now
the differential of

f (xn, xn−2, xn−4, . . .) = (xn, s
′Nxn−2, xn−2, s

′Nxn−4, xn−4x . . .)

is the element 66

(bxn + (1− t)s′Nxn−2′ − b′s′Nxn−2 + Nxn−2, . . .).

If we apply f to the element

bB(xn, xn−2, xn−4, . . .) = (bxn + Bxn−2, bxn−2 + Bxn−4, . . .),

then we obtain

(bxn + Bxn−2, s
′Nbxn−2 + s′NBxn−4, . . .).

A direct inspection shows that the differential of f (xn, xn−2, . . .) and
f (bB(xn, xn−2, . . .)) have the same even coordinates. For the odd indexed
coordinates, we calculate

s′Nbxn−2 + s′NBxn−4 = s′Nbxn−2 + s′N(1− t)s′Nxn−4
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= s′b′Nxn−2

= Nxn−2 − b′s′Nxn−2.

This shows thatf is a morphism of complexes and proves the lemma.
�

The following result shows that the two definitions of cyclichomol-
ogy are the same.

Theorem 3.3. Let X• be a cyclic object in an abelian categoryA. The
above comparison morphism f: X •[B] → CC∗(X) induces an isomor-
phism H( f ) : H∗(X •[B]) → HC∗(X).

Proof. The first index of the double complexX • • determines a filtration
FpCC∗(X) onCC∗(X) where

FpCCn(X) =
∐

i+ j=n,i≤p

Xi, j

and there is a related filtrationFpX •[B] on X •[B]

FpX •[B]n =

∐

2i≤p

Xn−2i .

From the definition off , we check thatf is filtration preserving.67

The morphismE0( f ) is a monomorphism andd0
= b with E0

2k,∗( f ) and

isomorphism,E0
2k+1,∗X •[B] = 0, andE0

2k+1,∗CC(X) acyclic. ThusE1( f )
is an isomorphism. By 1(5.6) the induced morphismH∗( f ) is an iso-
morphism. This proves the theorem. �

Remark 3.4.The morphismf considered above can be viewed asf :
B(X)∗ = X •[B] → CC∗(X). These complexes come from double com-
plexes with a periodic structure. The first vertical column of B(X) maps
to the total subcomplex ofCC∗(X) determined by the first two verti-
cal columns ofCC• •(X). The resulting subcomplexes have homology
equal to Hochschild homology while the quotient complexes have the
form of B(X)∗ andCC∗(X) respectively. We arrive at a sharper form
of the isomorphism in (3.3), namely thatf induces an isomorphism of
the Connes’ exact couple defined by mixed complexes onto the Connes’
exact couple defined by the cyclic homology double complex.
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4 Cyclic structure on reduced Hochschild complex

In 3(2.6), we remarked that for a simplicialk-moduleX, the subcomplex
D(X) generated by degenerate elements was contractible, and thus the
quotient morphism induces an isomorphism on homology

H∗(X)→ H∗(X/D(X)).

For the standard complexC∗(A) of an algebraA the quotient com-
plexC∗(A)/DC∗(A) is the reduced standard complexC∗(A) where

Cq(A) = A⊗ A
q⊗

as noted in 3(2.7). To study the cyclic homologyHC∗(A) with the re-
duced standard complex, we use the mixed complex construction and
the following formula for the Connes’ operatorB.

Proposition 4.1. The operators b and B on the standard complex C∗(A) 68

define operators b and B on the quotient reduced standard complex
C∗(A) given by the formulas

b(a0 ⊗ · · · ⊗ aq) = a0a1 ⊗ a2 ⊗ · · · ⊗ aq

+

∑

0<i<q

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq

(−1)qaqa0 ⊗ a1 ⊗ · · · ⊗ aq−1

where the ambiguity in a0a1 and in aqa0 is cancelled with the terms i= 1
and i= q− 1 respectively in the sum and

B(a0 ⊗ · · · ⊗ aq) =
∑

1≤i≤q

(−1)iq1⊗ ai ⊗ · · · ⊗ aq ⊗ a0 ⊗ · · · ⊗ ai−1.

Proof. The first formula is just a quotient of the usual formula, and for
the second we calculate immediately that

sN(a0 ⊗ · · · ⊗ aq) =
∑

1≤i≤q

(−1)iq1⊗ ai ⊗ · · · ⊗ aq ⊗ a0 ⊗ · · · ⊗ ai−1.

The statement follows from the fact thattsN(a0 ⊗ · · ·aq) = 0 in the
reduced complex with 1 in the nonzero place giving a degenaracy and
the formulaB = (1− t(sN• This proves the proposition. �
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Now we rewrite theb, B double complex for the reduced standard
complexC∗(A) whereCq(A) = A ⊗ A

q⊗
. It is in this form that we will

compare it with complexes of differential forms in the next two chapters.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A⊗ A
(q+1)⊗

b
��

B
←− A⊗ A

q⊗

b
��

B
←− A⊗ A

(q−1)⊗

b
��

B
←−

B
←− A⊗ A

b
��

B
←− A

. . .

b��

. . . . . .

b��

. . . . . .

b
��

. . . . . . . . . A

A⊗ A
2⊗

b
��

B
←− A⊗ A

b
��

B
←− A

A A



Chapter 6

Cyclic Homology and de
Rham Cohomology for
Commutative Algebras

THIS CHAPTER DEALS with the relations between Hochschild ho- 69

mology and de Rham cohomology for commutative algebras. In the
case of algebras over a field of characteristic zero, we can gofurther to
prove that the de Rham cohomology groups occur as componentsin a di-
rect sum expression for cyclic homology. We begin with a discussion of
differential forms and show how closely related they are to Hochschild
homology. Then we introduce a product structure onHH∗(A) in the spe-
cial case whereA is commutative. This gives us a comparison morphism
between graded algebras, and then we sketch the Hochschild-Kostant-
Rosenberg theorem which says that this morphism is an isomorphism
for smooth algebras. We then calculate the cyclic homology of smooth
algebras over a filed of characteristic zero. This is a case where the first
derived couple of the Connes’ exact couple splits and the first differen-
tial is the exterior differential of forms.

Finally, we continue with a discussion of the algebraA = C∞(M)
of smooth functions on a manifold and prove Connes’ theorem,which
says roughly that this smooth case is parallel to the algebracase.

71



72 6. Cyclic Homology and de Rham Cohomology for...

1 Derivations and differentials over a commutative
algebra

In this section, letA denote a commutative algebra overk.

Definition 1.1. Let M be anA-module. A derivationD of A with values
in M is ak-linear mapD : A→ M such that

D(ab) = aD(b) + bD(a) for a, b ∈ A.

Let Derk(A,M) or just Der(A,M) denote thek-module of all deriva-
tions ofA with values inM.

The module Der(A,M) has a leftA-module structure wherecD is70

defined by (cD)(a) = cD(a) for c, a ∈ A. For M = A the k-module
Der(A,A) has the structure of a Lie algebra overk, where the Lie bracket
is given by [D,D′] = DD′−D′D for D, D′ ∈ Der(A,A). A simple check
shows that [D,D′] satisfies the derivation rule on products.

Definition 1.2. TheA-module of Kähler differentials is a pair, (Ω1
A/k, d)

whereΩ1
A/k, orΩ1

A or simplyΩ1, is anA-module andd : A→ Ω1
A/k is a

derivation such that for any derivationD : A→ M, there exists a unique
A-linear morphismf : Ω1

A/k→ M with D = f d.

The derivationd defines anA-linear morphism

HomA(Ω1
A/k,M)→ Derk(A,M)

by assigning tof ∈ HomA(Ω1
A/k,M) the derivationf d ∈ Derk(A,M).

The universal property is just the assertion that this morphism is an iso-
morphism ofA-modules. The universal property shows that two pos-
sible A-modules of differentials are isomorphic with a unique isomor-
phism preserving the derivationd.

There are two constructions of the module of derivationsΩ1
A/k. The

first one as the first Hochschild homologyk-module ofA and the second
by a direct use of the derivation property.
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Construction of Ω1
A/k

1. 1.3.Let I denote the kernel of the multiplica-

tion morphismφ(A) : A⊗ A→ A. To show that

Ω
1
A/k = I/I2

= HH1(A),

we giveI/I2 anA-module structure byax= (1⊗a)x = (a⊗1)x, observ-
ing that 1⊗ a− a⊗ 1 ∈ I and (1⊗ a− a⊗ 1)x ∈ I2 for a ∈ A, x ∈ I . We
define

d : A→ I/I2 by d(a) = (1⊗ a− a⊗ 1)modI2 for a ∈ A,

and check that it is a derivation by 71

d(ab) = 1⊗ ab− ab⊗ 1

= (1⊗ a)(1⊗ b− b⊗ 1)+ (b⊗ 1)(1⊗ a− a⊗ 1)

= ad(b) + bd(a).

To verify the universal property, we consider a derivationD : A→
M, and note thatf (a⊗ b) = aD(b) defined onA⊗ A restricts toI . Since
D(1) = 0, we see thatf (d(a)) = f (1 ⊗ a − a ⊗ 1) = D(a) or f d = D.
The uniqueness off follows from the fact thatI , and hence alsoI/I2, is
generated by the image ofd. This is seen from the following relation,

∑

i

ai ⊗ bi =

∑

i

(ai ⊗ 1)(1⊗ bi − bi ⊗ 1) =
∑

i

aidbi

which holds for
∑

i

ai⊗bi ∈ I or equivalently if
∑

i

aibi = 0 in A. Finally,

we note thatf (I2) = 0 by applying f to (
∑

i

ai ⊗ bi)(1 ⊗ c − c ⊗ 1) to

obtain

f


∑

i

ai ⊗ bic−
∑

i

aic⊗ bi

 =
∑

i

aiD(bic) −
∑

i

aicD(bi )

=


∑

i

aibi

 D(c) = 0.
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Thusd : A→ I/I2 is a module of differentials.

Construction of Ω1
A/k

II. 1.4. Let L be theA-submodule ofA ⊗ A

generated by all 1⊗ ab− a⊗ b− b⊗ a for a, b ∈ A where theA-module
structure onA⊗A is given byc(a⊗b) = (ca)⊗b for c ∈ A, a⊗b ∈ A⊗A.
Next, we defined : A→ (A⊗A)/L by d(b) = (1⊗b)modL and from the
nature of the generators ofL, it is clearly a derivation. Further, ifD ∈
Derk(A,M), then f : (A⊗A)/L → M defined byf (a⊗bmodL) = aD(b)
is a well-defined morphism ofA-modules, and it is the unique one with
the property thatf d = D.

Remark 1.5. In the first construction, we saw thatΩ1
A/k = HH1(A) and

in the second construction we see that

Ω
1
A/k = coker(b : C2(A) = A⊗3→ A⊗2

= C1(A))

in the standard complex for calculating Hochschild homology. Now we72

introduce the algebra of all differential forms in order to study the higher
Hochschild homology modules in terms of differential forms.

Definition 1.6. The algebra of differential forms over an algebraA is
the graded exterior algebraΛ∗AΩ

1
A over A, denotedΩ∗A or Ω∗A/k. The

elements ofΩq
A = Λ

q
AΩ

1
A are called differential forms of degreeq, or

simply q-forms overA.

A q-form is a sum of expressions of the forma0da1 . . . daq where
a0, . . . , aq ∈ A. If Ω1

A is a freeA-module with basisda1, . . . , dan, then
Ω

q
A/k has a basis consisting of

dai(1) . . .dai(q) for all i(1) < . . . < i(q)

as anA-module.

Remark 1.7.The algebraΩ∗A/k is strictly commutative in the graded
sense. This means that

(1)ω1ω2 = (−1)pqω2ω1 for ω1 ∈ Ω
p
A/k, ω2 ∈ Ω

q
A/k
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(this is commutativity in the graded sense), and

(2)ω2
= 0 for ω of odd degree

(this is strict commutativity).

Moreover, the exterior algebra is universal for strictly commutative
algebras, in the sense that iff : M → H1 is ak-linear morphism of a
k-module into the elements of degree 1 in a strictly commutative algebra
H, then there exists a morphism of graded algebrash : Λ∗M → H with
the property thatf = h|M = Λ

1M → H1.
SinceΩ1

A/k → HH1(A) is a natural isomorphism by (1.2), we wish
to define a strictly commutative algebra structure onHH∗(A) for any
commutative algebraA. We do this in the next section, and before that,
we describe the exterior derivative which also arises from the universal 73

property of the exterior algebra.

Proposition 1.8. There exists a unique morphism d of degree+1 defined
Ω
∗
A/k→ Ω

∗
A/k satisfying

(a) d2
= 0

(b) d is a derivation of degree+1, that is,

d(ω1ω2) = (dω1)ω2 + (−1)pω1(dω2) for ω1 ∈ Ω
p
A/k, ω2 ∈ Ω

q
A/k.

(c) d restricted to A= Ω0 is the canonical derivation d: A→ Ω1.

Proof. The uniqueness follows from the relation

d(a0da1 . . . daq) = da0da1 . . . daq

since the elementsa0da1 . . .daq generateΩq
A = Λ

q
Ω

1
A, and the existence

is established with this formula. �

Definition 1.9. For an algebraA overk, the complex (Ω∗A/k, d) is called
the de-Rham complex ofA, and the cohomology algebraH∗(Ω∗A/k, d),
denotedH∗DR(A), is called the de Rham cohomology ofA overk.
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2 Product structure on HH∗(A)

The basis for a product structure is usually a Künneth morphism and a
Künneth theorem which says when the morphism is an isomorphism.
The Künneth morphism usually comes from the morphismα for the
homology of a tensor productX • ⊗ Y• of two complexes.

Definition 2.1. Let X • andY• be two complexes ofk-modules. The ten-
sor Künneth morphism is

α : H •(X •) ⊗ H •(Y•)→ H •(X • ⊗ Y•)

defined by the relationα(u ⊗ v) = w whereu ∈ Hp(X) is represented
by x ∈ Xp, v ∈ Hq is represented byy ∈ Yq andw is represented by
x⊗ y ∈ (X ⊗ Y)p+q.

If k is a field, thenα is always an isomorphism. Under the assump-74

tion thatX • andY• are flat overk, it follows thatα is an isomorphism if
eitherH •(X •) or H •(Y•) is flat overk.

Remark 2.2.Let B and B′ be two algebras overk. If L is a right B-
module andL′ a right B′-module, thenL ⊗ L′ is a rightB⊗ B′ module,
and if M is a left B-module andM′ a left B′-module, thenM ⊗ M′ is a
left B ⊗ B′-module. Using the natural associativity and commutativity
isomorphisms for the tensor product overk, we have a natural isomor-
phism

θ : (L ⊗B M) ⊗ (L′ ⊗B′ M′)→ (L ⊗ L′)B⊗B′(M ⊗ M′).

If P • → L is a projective resolution ofL over B, and if P′
•
→ L′

is a projective resolution ofL′ over B′, then P • ⊗ P′
•
→ L ⊗ L′ is a

projective resolution ofL ⊗ L′ over B ⊗ B′. This assertion holds in
either the absolute projective ork-split projective cases. Combining the
isomorphism of complexes

(P • ⊗B M) ⊗ (P′
•
⊗B′ M′)→ (P • ⊗ P′) ⊗B⊗B′ (M ⊗ M′)

with the Künneth morphism of (2.1), we obtain the following:
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Künneth morphism for Tor 2.3. Let B and B′ be two algebras with
modulesL and M over B andL′ and M′ over B′. The isomorphismθ
extends to a morphism of functors

α : TorB∗ (L,M) ⊗ TorB
′

∗ (L′,M′)→ TorB⊗B′
∗ (L ⊗ L′,M ⊗ M′)

which we call the Künneth morphism for the Tor functor. Thismor-
phism is defined for both the absolute andk-split Tor functors.

Let A andA′ be two algebras, and form the algebrasAe
= A⊗Aop and

A′e = A′⊗A′op. There is a natural commuting isomorphism (A⊗A′)e→

Ae ⊗ A′e which we combine with the Künneth morphism for the Tor to
obtain:

Künneth morphism for Hochschild homology 2.4. Let M be anA- 75

bimodule, and letM′ be anA′-bimodule. A special case of the Künneth
morphism for Tor is

α : H∗(A,M) ⊗ H∗(A
′,M′)→ H∗(A⊗ A′,M ⊗ M′)

called the Künneth morphism for Hochschild homology. In particular,
we haveα : HH∗(A) ⊗ HH∗(A′)→ HH∗(A⊗ A′).

Definition 2.5. The Künnethmorphisms for Tor and for Hochschild ho-
mology satisfy associativity, commutativity, and unit properties which
we leave to the reader to formulate. Ifk is a field, then the Künneth
morphism is an isomorphism.

We are now ready to define the product structureφ(HH∗(A)) on
HH∗(A) whenA is commutative. Recall that an algebraA is commu-
tative if and only if the structure morphism is a morphism of algebras
A⊗ A→ A.

Definition 2.6. For a commutativek-algebra A the multiplication
φ(HH∗(A)) on HH∗(A) is the compositeHH∗(φ(A))α defined by

HH∗(A) ⊗ HH∗(A)→ HH∗(A⊗ A)→ HH∗(A).

From the above considerationsHH∗(A) is an algebra which is com-
mutative overA = HH0(A) in the graded sense.
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Remark 2.7.Let B→ A be an augmentation of the commutative alge-
bra B. If K∗ → A is a B-projective resolution ofA such thatK∗ is a
differential algebra andK∗ → A is a morphism of differential algebras,
then we have the following morphisms

(A⊗B K∗) ⊗ (A⊗B K∗)→ (A⊗ A) ⊗B⊗B (K∗ ⊗ K∗)→ A⊗B K∗

where the first is a general commutativity isomorphism for the tensor
product and the second is induced by the algebra structures on A, B
andK∗. If the composite is denoted byψ, then the algebra structure on76

TorB(A,A) is the Künneth morphism composed withH(ψ) in

H(A⊗B K∗)⊗H(A⊗B K∗)→ H((A⊗B K∗)⊗ (A⊗B K∗))→ H(A⊗B K∗).

Remark 2.8.There is a naturalA-morphism of the abelianization of
the tensor algebraT(HH1(A)) on HH1(A), viewed as a graded algebra
over A = HH0(A) with HH1(A) in degree 1 definedTA(HH1(A))ab →

HH∗(A). This is a morphism of commutative algebras. Since the square
of every element inHH1(A) is zero, we have in fact a morphism of the
exterior algebra onHH1(A) into HH∗(A),

ψ(A) : ΛA(HH1(A))→ HH∗(A).

Note that ifk is a field of characterisitic different from 2, then the
natural algebra morphismTA(X)ab→ ΛA(X) is an isomorphism whenX
is graded, with nonzero terms in odd degrees.

In this chapter we will show thatψ(A) is an isomorphism, for a large
class of algebrasA which arise in smooth geometry.

We conclude by mentioning another way of defining the producton
HH∗(A) by starting with a product, called the shuffle product, on the
simplicial objectC∗(A). In the commutative caseC∗(A) is a simplicial
k-algebra, i.e. eachCq(A) is ak-algebra and the morphismsdi andsj are
morphisms of algebras.

Definition 2.9. Let R• be a simplicialk-algebra. The shuffle product
Rp⊗Rq→ Rp+q is defined by the following sum forα ∈ Rp, andβ ∈ Rq,

α •β =
∑

µ,ν

ǫ(µ, ν)(sµ(α)(sν(β) in Rp+q
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whereµ, ν is summed over all (q, p) shuffle permutations of [0, . . . , p+
q − 1] of the form (µ1, . . . , µq, ν1, . . . , νp) whereµ1 < . . . < µq and
ν1 < . . . < νp. Also ǫ(µ, ν) denotes the sign of the permutationµ, ν, and 77

the iterated operators are

sµ(α) = sµq(. . . (sµ1(α)) . . .) and sν(β) = sνp(. . . (sν1(β)) . . .).

Remark 2.10.With the shuffle product on a simplicialk-algebraR•, the
differential module (R•, d) becomes a differential algebra overk. If R•

is a commutative simplicial algebra, then (R•, d) is a commutative dif-
ferential algebra. This applies toHH∗(A) for a commutative algebraA,
and again we obtain a natural morphism

Λ
∗HH1(A)→ HH∗(A).

Example 2.11.Forα = (a, x), β = (a′, y) the shuffle product is

α •β = (s0α) · (s1β) − (s1α)(s0β) = (a, x, 1)(a′, 1, y) − (a, 1, x)(a′, y, 1)

= (aa′, x, y) − (aa′, y, x).

Forα j = (a j , x j) where j = 1, . . . , p this formula generalizes to

α1 . . . αp =

∑

α∈Symp

sgn(α)(a1 . . . ap, xα(1), . . . , xα(p)).

3 Hochschild homology of regular algebras

In this section we outline the proof that Hochschild homology is just the
Kähler differential forms for a regulark-algebraA, i.e. thatHHq(A) is
isomorphic toΩq

A/k. We start with some background from commutative
algebra.

Definition 3.1. A sequence of elementsy1, . . . , yd in a commutativek-
algebraB is called regular provided the image ofyi in the quotient alge-
braB/B(y1, . . . , yi−1) is not a zero divisor.
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Let K(b, B) denote the exterior differential algebra on one generator78

x in degree 1 with boundarydx = b ∈ B = K(b, B)0. If y1, . . . , yd is a
regular sequence of elements, then

K(yi , B/B(y1, . . . , yi−1)→ B/B(y1, . . . , yi)

is a free resolution ofB/B(y1, . . . , yi) by B(y1, . . . , yi−1)-modules.

Notation 3.2.Let B be a commutative algebra, and letb1, . . . , bm be el-
ements ofB. We denote byK(b1, . . . , bm) the differential algebra which
is the tensor product

K(b1, . . . , bm; B) = K(b1, B) ⊗B . . . ⊗B K(bm, B).

This algebra is zero in degreesq > m andq < 0 and free of rank
(
n
q

)

in degreeq, further the differential on a basis element is given by

d(xk(1) ∧ . . . ∧ xk(q)) =
∑

1≤i≤1

(−1)i−1bi(xk(1) ∧ . . . ∧ xk(i) ∧ . . . ∧ xk(q)),

and the augmentation is defined byK(b1, . . . , bm; B)→ B/B(b1, . . . , bm).
Filtering K(B1, . . . , bm; B) in two steps with respect to degrees ofK(bm,

B), and looking at the associated spectral sequence, we obtain immedi-
ately the following proposition.

Proposition 3.3. For b1, . . . , bm a sequence of elements in a commuta-
tive algebra B the augmentation morphism induces an isomorphism

H0(K(b1, . . . , bm; B)→ B/B(b1, . . . , bm).

If b1, . . . , bm is a regular sequence, then the augmentation morphism
induces isomorphisms H0(K(b1, . . . , bm; B))→ B/B(b1, . . . , bm) and

K(b1, . . . , bm; B)→ B/B(b1, . . . , bm).

This resolution is called theKoszul resolution of the quotient ofB
by freeB-modules.
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Definition 3.4. An ideal J in a commutativek-algebraB is said to be79

regular if it is generated by a regular sequence. An algebraA is φ-
regular provided the kernelI of φ(A) : A ⊗ A → A is regular in the
algebraB = A⊗ A.

The next theorem is the first case where we identify the Hochschild
homology of a commutative algebra as the exterior algebra onthe first
Hochschild homology module.

Theorem 3.5. If A is a commutativeφ-regular algebra, then the natural
morphisms of algebras

ΛA(HH1(A))→ HH∗(A)

or equivalently
Λ
∗
A(I/I2) = Ω∗A/k→ HH∗(A)

is an isomorphism of graded commutative algebras.

Proof. By (1.5) we have the natural isomorphisms betweenHH1(A),
I/I2 andΩ1

A/k. By hypothesis forB = A ⊗ A the previous proposition
(3.4) applies and we have a resolution ofA = B/I by a differential
algebra of freeB-modulesK∗ = K(b1, . . . , bm; B) → A, such that the
augmentation morphism is a morphism of algebras. HenceHH∗(A) =
H∗(K(b1, . . . , bm; B) ⊗B A since the coefficients in the formula of (3.2)
are inI and the resulting algebra overA is the exterior algebra onI/I2.
This proves the theorem. �

Remark 3.6.The hypothesis of being aφ-regular algebra is rather re-
stricted, except in the local case where it is equivalent to the maximal
ideal being generated by a regular sequence. This means thatthe above
construction applies to a regular local algebra, i.e. a local algebra whose
maximal ideal is generated by a regular sequence.

Definition 3.7. An algebraA over a fieldk is regular provided each lo-
calisationAP at a prime idealP is regular.

These are the algebras with the property that their Hochschild ho- 80
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mology is the algebra of differential forms. This leads to the theorem of
Hochschild, Kostant and Rosenberg.

Theorem 3.8. The natural morphism of graded commutative algebras
Ω
∗
A/k → HH∗(A) is an isomorphism for a regular algebra A over a field

k.

Proof. For each prime idealP in A, the localisation of this morphism in
the statement of the theorem

Ω
∗
AP/k
= (Ω∗A/k)P → HH∗(A)P = HH∗(AP)

is an isomorphism by (3.5). Hence the morphism is an isomorphism by
a generality about localisation at each prime ideal. This proves the main
theorem of this section. �

4 Hochschild homology of algebras of smooth func-
tions

In this section we outline the proof that Hochschild homology is just the
algebra of differential forms for an algebraA of smooth complex valued
functions on a smooth manifoldX.

Remark 4.1.Let X be a smoothn-dimensional manifold, andA =
C∞(X) denote the algebra of smooth complex valued functions onX.
Then the Lie algebra of derivations DerC(C∞(X)) is just the space of
smooth vector fields onX with complex coefficients, andΩ1

A/C = A1(X)
is theA-module of 1-forms andAq(X) is theA-module ofq-forms onX.
This means thatHH1(A) = A1(X), by the characterization ofHH1(A) in
terms of Kähler 1-forms of a commutative algebra. We will outline the
proof thatHHq(A) = Aq(X), the module ofq-forms overA = A0(X), the
algebra of smooth functions onX. Thus we have the same calculation in
degree 1, and following the lead from the previous section, we see that
there must be a resolution of the ideal ker(A0(X)⊗A0(X)→ A0(X)). This
we do by relating this multiplication withA0(X × X) → A0(X) coming
from restriction to the diagonal. Observe that there is an embedding81
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A0(X) ⊗ A0(X)→ A0(X × X)

given by assigning to a tensor product of functions, a function of two
variables and then using the normal bundle to the diagonal inX×X. The
result corresponding to theφ-regular algebra construction is the follow-
ing proposition.

Remark 4.2.Let E → Y be a complex vector bundle with dual bundle
Ê . If s ∈ Γ(Y,E) is a cross section ofE, then its inner product with an
element of a fibre ofÊ defines a scalar varying from fibre to fibre. We
define a morphisms⊢ : Ê → Λ0Ê , the trivial bundle. Thiss⊢ extends
to a complex

. . .
s⊢
−→ Λ2Ê

s⊢
−→ Λ1Ê

s⊢
−→ Λ0Ê → 0

which is exact at all points wheres, 0.

Now assume thatY is a smooth manifold,E is a smooth vector bun-
dle, andX, the set of zeros ofs is transverse to the zero section, and
that the tangent morphismdsy : TyY → Ey is surjective. ThenX is a
submanifold ofY of codimensionq whereq = dimE and the normal
bundle to the zero setX in Y is isomorphic toE|X.

Proposition 4.3. With the above notations the complex of Fréchet spa-
ces

R(Y,E) : . . .→ Γ(Y,ΛqÊ )
s⊢
−→ Γ(Y, Γq−1Ê )→ . . .

. . .
s⊢
−→ Γ(Y,Λ1Ê )

s⊢
−→ Γ(Y)

res
−−→ Γ(X)→ 0

is contractible.

Proof. The first step is to show that if the result holds locally, thenit
holds globally. LetY =

⋃

i∈I

Ui be an open covering with a smooth parti-

tion of unity
∑

i∈I

ηi = 1 whereUi ⊃ closure ofη−1
1 ((0, 1]) andR(Ui ,E|Ui

)

is contractible with contracting homotopyhi for eachi ∈ I . Forπ : E→ 82
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Y the complexR(Y,E) has a retracting homotopy

h(x) =
∑

i∈I

ηi(π(x))hi (x|Ui ).

If N is the normal bundle ofX in Y, then the induced tangent map-
ping dsx : Nx→ Ex is an isomorphism by the transversality hypothesis.
Thus locally the bundle is of the form

Rq × Rq × Rp
= T(Rq) × Rp → Rq × Rp

with projection from the middleRq coordinate orT(Rq) → Rq with
parameters fromRp. �

Remark 4.4.For a submanifoldX of Y and a smooth bundleE overY,
the restriction from the space of cross sections induces an isomorphism
Γ(X)ΩΓ(Y)Γ(Y,E)→ Γ(X,E|X).

Theorem 4.5. For a smooth manifold we have a natural isomorphism
HHq(A0(X))→ Γ(X,ΛqT∗(X)) = Aq(X).

We do not give a proof of this theorem here see Connes [1985].

5 Cyclic homology of regular algebras and smooth
manifolds

We calculate the cyclic homology by comparing the basic standard com-
plex with the complex of differential forms. For this, we consider a ba-
sic morphism from the standard complex to the complex of differential
forms and study to what extent it is a morphism of mixed complexes.

Notation 5.1.The morphismµ is defined in two situations:

(1) Let A be a commutative algebra over a fieldk of characteristic
zero. Denote byµ : A(q+1)⊗ → Ω

q
A/k defined by

µ(a0 ⊗ . . . ⊗ aq) = (1/q!)a0da1 . . .daq.
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(2) Let X be a smooth manifold. Denote byµ : A0(Xq+1) → Aq(X)83

defined by

µ( f (x0, . . . , xq)) = (1/q!)∆∗( f d1 f . . . dq f )

wheredi f (x0, . . . , xq) is the differential of f along thexi variable
in Xq+1 and∆ : X→ Xq+1 is the diagonal map.

Remark 5.2.Both Aq+1⊗ and A0(Xq+1) are the terms of degreeq of
cyclic vector spaces and hence the operatorsb andB are defined. Under
the morphismµ we have the following result.

Proposition 5.3. We have, with the above notations

µb = 0 and µB = dµ

where d is the exterior differential on differential forms.

Proof. Givena0 ⊗ · · · ⊗ aq ∈ A(q+1)⊗, we must show that the following
sum of differentials is zero,

a0a1da2 . . .daq+

∑

0<i<q

(−1)ia0da1 . . .d(aiai+1) . . .daq+ (−1)qaqa0da1 . . .daq+1.

A direct check shows that terms with coefficientsa0ai come in pairs
with opposite signs. Henceµb = 0. Sinceµ factors throughA⊗A

q⊗
, we

can calculate by 5(4.1),

(µB)(a0 ⊗ . . . ⊗ aq) = µ(
∑

0≤i≤q

(−1)iq(1⊗ ai ⊗ . . . ⊗ aq ⊗ a0 ⊗ . . . ⊗ ai+1)

= (1/(q+ 1)!)(q+ 1)da0 . . . daq

= (1/q!)d(a0da1 . . . daq)

= dµ(a0da1 . . .daq).

This shows thatµB = dµ. The above calculation works also forµ in
the smooth manifold case. This proves the proposition. �
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Remark 5.4.The above morphismµ induces a morphism

µ : HHq(A)→ Ωq
A/k

which when composed with the naturalΩq
A/k → HHq(A) on the right 84

is multiplication byq + 1 onΩq
A/k. Thusµ is a morphism of mixed

complexes
µ : (C∗(A), b, B)→ Ω∗(A/k, 0, d)

which induces an isomorphismHH∗(A) → Ω∗A/k. Thus the mixed com-
plex of differential forms (ω∗A/k, 0, d) can be used to calculate the cyclic

homology ofA or A0(X).

Theorem 5.5. Let A be a regular k-algebra over a field k of character-
istic zero. Then the cyclic homology is given by

HCp(A) = Ωp
A/k/dΩ

p−1
A/k ⊕ Hp−2

DR (A) ⊕ Hp−4
DR (A) ⊕ . . .

Let A be theC-algebra of smooth functions on a smooth manifold.
Then the cyclic homology is given by

HCp(A) = Ap(X)/dAp−1(X) ⊕ Hp−2
DR (X) ⊕ Hp−4

DR (X) ⊕ . . .

In both cases, the projection of HCp(A) onto the first term is induced
byµ and in the Connes’ exact sequence, we have:

1. I : HHp(A)→ HCp(A) is the projection of HHp(A), the p-forms,
onto the first factor of HCp(A),

2. S : HCp(A)→ HCp−2(A) is injection of the first factor of HCp(A)
into the second factor Hp−2

DR and the other factors map isomorphi-
cally on the corresponding factor of HCp−2.

3. B : HCp−2(A) → HHp−1(A) is zero on all factors except the first
one where it is d: Ωp−2/dΩp−3→ Ωp−1.

Finally in the first derived couple of the Connes’ exact couple we
have B= 0 and the exact couple is the split exact sequence

0→ HHp→ HHp⊕HHp−2⊕HHp−4⊕. . .→ HHp−2⊕HHp−4⊕. . .→ 0.
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Proof. Everything in this theorem follows from the fact that we can cal-85

culate cyclic homology, Hochschild homology, and the Connes’ exact
couple with the mixed complex (Ω, 0, d) and it is an easy generality on
mixed complexes with the first differential zero. �

6 The Chern character in cyclic homology

Recall that for topologicalK-theory, we have a ring homomorphism

ch : K(X)→ Hev(X,Q)

such thatch⊗ Q is an isomorphism. Here the superscriptev denotes
the homology groups of even degree. We wish to define a sequence
of morphismschm : K0(A) → HC2m(A) for all m such thatS(chm) =
chm−1, in terms ofS : HC2m(A) → HC2m−2(A). In this sectionk is
always a field of characteristic zero.

Remark 6.1.K-theory is constructed from either vector bundles over
a space or from finitely generated projective modules over a ring. The
vector bundles under consideration are always direct summands of a
trivial bundle. In either case, it is a direct summand which is represented
by an elemente = e2 in a matrix ring Mr(A) over A. Here A is an
arbitrary ring or the algebra of either the continuous functions on the
space or of smooth functions on a smooth base manifold. Our approach
to the Chern character is motivated by differential geometry where a
differential form construction of the Chern character is made from e.
The choice ofe= e2 is not uniquely defined by the element ofK-theory
but it amounts to the choice of a connection on a vector bundle.

Proposition 6.2. If e = e2 ∈ Mr(A) for a commutative ring, then in
MrΩ

1
A/k we have the relations

e(de) = de(1− e) and (de)e= (1− e)de.

In particular, e(de)e = 0 and e(de)2
= (de)2e where Mr(A) acts on 86

MrΩ
1
A/k by matrix multiplication of a matrix valued form with a matrix

valued function on either side.
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Proof. We calculatede = d(e2) = e(de) + (de)e and use this to derive
the relations immediately. �

Remark 6.3.For e = e2 ∈ Mr(A) we denote byΓ(E) = im(e) ⊂ Ar

where we think ofΓ(E) as the cross sections of the vector bundleE
corresponding toe. The related connection isD(s) = edsfor s ∈ Γ(E)
whereeds∈ Γ(E ⊗Ω1

A/k), and the curvature is

D2s= ed(eds) = e(de)2
s.

In order to see how the second formula follows from the first, we
calculate

ed(eds) = ededs= eded(es) = ede(de)s+ e(de)eds= e(de)2s.

Thus the curvature is given byD2
= e(de)2 and this means that

(D2)q
= e(de)2 . . .e(de)2

= e(de)2q

which leads to the following definition by analogy with classical differ-
ential geometry.

Definition 6.4. The Chern character form ofe = e2 ∈ Mr(A) with cur-
vatureD2

= e(de)2 is given by the sum

ch(e) = tr(eD2
) =

∑

q≥0

(1/q!)tr(e(de)2q).

Now we will see how this Chern character form defines a class in
cyclic homology. The guiding observation is the fact that upto a scalar,
tr(e(de)2q) is µ(tr(e(2q+1)⊗)) whereµ was introduced in (5.1) of the pre-
vious section. We have two preliminary results in the cyclichomology
complex.

Proposition 6.5. Let A be an algebra over a field k. For an element87

a ∈ A and a(q+1)⊗ ∈ Cq(A) in the standard complex, we have

(t − 1)(a(q+1)⊗) = −2a(q+1)⊗ for q odd
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= 0 for q even.

For e= e2 ∈ A and e(q+1)⊗ ∈ Cq(A) we have the relation

b(e(q+1)⊗) = eq⊗ for q even

= 0 for q odd.

Proof. The first formula follows from the relationt(a(q+1)⊗) = (−1)q

a(q+1)⊗. Sincee = eethe sumb(e(q+1)⊗) is an alternating sum ofq + 1
termseq⊗, and they either cancel to yield zero or reduce toeq⊗. This
proves the proposition. �

Corollary 6.6. If e = e2 ∈ Mr(A), then the boundary

b(tr(e(2q+1)⊗)) = 0 in C2q−1(A)/ im(1− t).

Thus tr(e(2q+1)⊗) defines a class chq(e) ∈ HC2q(A), for e = e2 ∈

Mr(A) and this is the Chern character form upto a scalar factor. This
was the aim of this section, and we finish with the following summary
assertion.

Theorem 6.7. Let e= e2 ∈ Mr(A) with Chern character form chq(e) =
(1/q!)tr(e(de)2q) in degree2q. Then in degree2q we have

µ(chq(e)) = chq(e) in HC2q(A).

Moreover, under S: HC2q(A)→ HC2q−2(A), we have for this Chern
character class, S(chq(E)) = chq−1(E).





Chapter 7

Noncommutative Differential
Geometry

IN THE PREVIOUS chapter, we developed the close relationship be- 88

tween differential forms and de Rham cohomology on one hand and
Hochschild and cyclic homology on the other hand, for commutative al-
gebras. In this chapter, we explore the relationship in the general case,
using the concept of the bimodule of differential forms, which we de-
note byΩ1(A/k). As before, these forms are related toI , the kernel of
the multiplication mapφ(A) : A ⊗ A → A, and in fact in this case, we
haveΩ1(A/k) = I .

1 Bimodule derivations and differential forms

In this section letA denote an algebra overk.

Definition 1.1. Let M be anA-bimodule. A derivationD of A with
values inM is ak-linear mapD : A→ M such that

D(ab) = aD(b) + D(a)b for a, b ∈ A.

We denote by Derk(A,M) or just Der(A,M) thek-module of all bi-
module derivations ofA with values inM.

91
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Unlike in the commutative case, Der(A,M) has noA-linear struc-
ture, but Der(A,A) is a Lie algebra overk with Lie bracket given by
[D,D′] = DD′ − D′D for D, D′ ∈ Der(A,A).

Definition 1.2. The A-bimodule of bimodule differentials is a pair
(Ω1(A/k), d) whereΩ1(A/k), or simplyΩ1(A) or Ω, is anA-bimodule
and the morphismd : A→ Ω1(A/k) is a bimodule derivation such that,
for any derivationD : A→ M there exists a uniqueA-linear morphism
f : Ω1(A/k)→ M such thatD = f d. The bimodule derivationd defines
ak-linear morphism

HomA(Ω1(A/k),M)→ Derk(A,M)

by assigning to each morphismf ∈ HomA(Ω1(A/k),M) of A-bimodules89

the bimodule derivationf d ∈ Derk(A,M). The universal property is
just the assertion that this morphism is an isomorphism ofA-modules.
As usual, the universal property shows that two possiblek-modules of
differentials are isomorphic with a unique isomorphism preserving the
derivationd. As in the previous chapter, there are two constructions of
the module of derivationsΩ1(A/k). The first usesI = ker(φ(A)) and the
second uses the relations coming directly from the derivation property.
They are tied together with an acyclic standard resolution.

Construction of Ω1(A/k) I. 1.3. Let I denote the kernel of the mul-
tiplication morphismφ(A) : A ⊗ A → A. We defineΩ1(A/k) = I and
d : A → I by d(a) = 1 ⊗ a − a ⊗ 1 for a ∈ A and check that it is a
derivation by

d(ab) = 1⊗ ab− ab⊗ 1

= (1⊗ a)(1⊗ b− b⊗ 1)+ (1⊗ a− a⊗ 1)(b⊗ 1)

= ad(b) + d(a)b

where the left action ofA on I ⊂ A ⊗ A is given byax = (1 ⊗ a)x and
the right action byxb = x(b ⊗ 1) in I for x ∈ I . To verify the universal
property, we consider a derivationD : A → M. If

∑
i ai ⊗ bi ∈ I or in

other words
∑

i aibi = 0, then we have
∑

i

ai(Dbi ) +
∑

i

(Dai )bi = 0
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from the derivation rule, and we definef : I → M by

f


∑

i

ai ⊗ bi

 =
∑

i

aiD(bi ) = −
∑

i

D(ai)bi .

Now f (d(a)) = f (1⊗ a− a⊗ 1) = 1D(a)− aD(1) = D(a), and hence
f d = D. Thus (Ω1(A/k), d) is a module of bimodule differentials.

Construction of Ω1(A/k) II. 1.4. Following the idea of 6(1.4), we
should consider thek-submoduleL of A⊗A⊗A generated by all elements
of the forma0a1 ⊗ a2 ⊗ a3 − a0 ⊗ a1a2 ⊗ a3 + a0 ⊗ a1 ⊗ a2a3 which is
just b′(a0 ⊗ a1 ⊗ a2 ⊗ a3) for the differentialb′ : C3(A) → C2(A) in the 90

standard acyclic complex for the algebraA. Since (C∗(A), b′) is acyclic,
we have a natural isomorphism

A3⊗/L = coker(b′ : A4⊗ → A3⊗)→ ker(b′ = φ(A) : A⊗ A→ A) = I .

To see the universal property ford(a) = 1 ⊗ a ⊗ 1 modL, we note
first thatd is a derivation by the properties of the generators ofL and for
a derivationD : A→ M we define a morphismf : A3⊗/L → M by the
relation f (a⊗ b⊗ cmodL) = aD(b)c.

Remark 1.5.The moduleΩ1(A/k) is generated by elementsadb for a,
b ∈ A with the leftA-module structure given by

a′(adb) = (a′a)db

and the rightA-module structure given by

(adb)a′ = ad(ba′) − (ab)da′

for a, a′, b ∈ A.

Now we proceed to define the bimodule ofq-forms by embedding
Ω

1(A/k) in a kind of tensor algebra derived from theA-bimodule struc-
ture. In this case, we factor tensor products overk as tensor products
over A, but we do not introduce any commutativity properties in the
algebra sinceA is not commutative.
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Definition 1.6. Let M be anA-bimodule. The bimodule tensor algebra
TA(M) is the graded algebra where in degreen

TA(M)n = M ⊗A . . . (n) . . . ⊗A M

with algebra structure overk given by a direct sum of the natural quo-
tientsTA(M)p⊗TA(M)q→ TA(M)p+q. In particularTA(M)n is generated
by elements

x1 ⊗A · · · ⊗A xn = x1 . . . xn for x1, . . . , xn ∈ M,

and in degree zeroTA(M)0 = A.91

2 Noncommutative de Rham cohomology

Now we apply the above constructions, not directly to the algebraA, but
to k ⊕ A viewed as a supplemented algebra with augmentation idealA
itself.

Notation 2.1.Let A♯ denote the algebrak ⊕ A given by inclusionk →
A♯ = k ⊕ A on the first factor. SinceA♯ is supplemented, we have a
splitting s : A♯ → A♯ ⊗ A♯, of the exact sequence

0→ Ω1(A♯)→ A♯ ⊗ A♯ → A♯ → 0

defined bys(a) = a ⊗ 1. Thus there is a natural morphismΩ1(A♯) →
coker(s) and we have the following result.

Proposition 2.2. We have a natural isomorphism

δ : A⊕ (A⊗ A)→ Ω1(A♯)

whereδ(a, 0) = da andδ(0, a ⊗ b) = adb= a(1⊗ b− b⊗ 1). The right
A-module structure is given by(a0da1)a = a0d(a1a) − a0a1da. Now we
define the algebra of all noncommutative forms.

Definition 2.3. The algebra of noncommutative differential forms is the
following tensor algebraT(Ω1(A♯)) over A♯. This is a graded algebra
andd extends uniquely tod on this tensor algebra satisfyingd2

= 0.
More explicitly, we have the following description.
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Proposition 2.4. We have a natural isomorphism

δ : A♯ ⊗ Ap⊗
= Ap⊗ ⊕ A(p+1)⊗ → Ωp(A♯)

whereδ(a1⊗ · · ·⊗ap) = da1 . . .dap andδ(a0⊗ · · ·⊗ap) = a0da1 . . . dap.
The right A♯-module structure onΩp(A♯) is given by the formula

(da1 . . .dap)b = da1 . . . d(apb) − da1 . . . d(ap−1ap)db

+ da1 . . .d(ap−2ap−1)dap + · · · + (−1)pa1da2 . . .dapdb.

Moreover, H∗(Ω∗(A♯)) = k which is illustrated with the following 92

diagram

k A A2⊗ A(p−1)⊗ A⊗p

⊕ ր d ⊕ ր d ⊕ . . . . . . ⊕ ր d ⊕ . . .

A A2⊗ A3⊗ Ap⊗ A(p+1)⊗

Definition 2.5. The noncommutative de Rham cohomology of an al-
gebraA over a field isH∗NDR(A) = H∗(Ω∗(A♯)αβ), the cohomology of
the Lie algebra abelianization of the differential algebra of noncommu-
ative differential forms overA♯. More precisely, forω ∈ Ωp(A♯) and
ω′ ∈ Ωq(A♯) we form the (graded) commutator [ω,ω′] = ω− (−1)pqω′ω

and denote by [Ω∗(A♯),Ω∗(A♯)] the Lie subalgebra generated by all com-
mutators. The Lie algebra abelianization of the algebra of differential
forms is

Ω
∗(A♯)αβ = Ω∗(A♯)/{k⊕ [Ω∗(A♯),Ω∗(A♯)]}.

To obtain an other version ofΩ∗(A♯)αβ, we use the following result.

Proposition 2.6. Let S be a set of generators of an algebra B. For a
B-module M we have[B,M] =

∑

b∈S

[b,M].

Proof. First, we calculate

[bb′, x] = (bb′)x− x(bb′)

= b(b′x) − (b′x)b+ b′(xb) − (xb)b′
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= [b, b′x] + [b′, xb].

Thus it follows that [bb′, x] ∈ [b,M] + [b′,M]. Hence the set of all
b ∈ B with [b,M] ⊂

∑

b∈S

[b,M] is a subalgebra ofB containingS, and

therefore it isB. This proves the proposition. �

Corollary 2.7. The abelianization of the algebra of differential forms is

Ω
∗(A♯)αβ = Ω∗(A♯)/{k+ [A,Ω∗(A♯)] + [dA,Ω∗(A♯)].

Definition 2.8. Let A be an algebra overk. The noncommutative de93

Rham cohomology ofA is

H∗NDR(A) = H∗(Ω∗(A♯)αβ).

SinceΩ∗(A♯)αβ is a functor from the category of algebras overk to
the category of cochain complexes overk, the noncommutative de Rham
cohomology is a gradedk-module, but is does not have any natural al-
gebra structure.

3 Noncommutative de Rham cohomology and cyclic
homology

Now we relate the noncommutative de Rham cohomology with cyclic
homology over a fieldk of characteristic zero following ideas from the
theory of commutative algebras where the morphismµ is used.

Notation 3.1.Again we denote by

µ : Cq(A)→ Ω∗(A♯)αβ

the morphismµ(a0 ⊗ · · · ⊗ aq) = (1/q!)a0da1 . . . daq.

Proposition 3.2. The morphismµ satisfies the following identities

1. µb(a0 ⊗ · · · ⊗ aq+1) = ((−1)q+1/q!)[aq+1, a0da1 . . . daq]

2. µ(1−t)(a0⊗· · ·⊗aq) ≡ (1/q!)[a0da1 . . . daq−1, daq]moddΩq−1(A♯).
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Proof. The compositeµb is zero for a commutative algebra, see 6(5.3),
but this time the sum will not have the same cancellations in the last two
terms. We have

q!µb(a0 ⊗ · · · ⊗ aq+1) = a0a1da2 . . .daq+1+∑

0<i<q+1

(−1)ia0da1 . . . d(aiai+1) . . . daq+1)

+ (−1)q+1aq+1a0da1 . . . daq

= (−1)qa0da1 . . . daqaq+1 + (−1)q+1aq+1a0da1 . . . daq

= (−1)q+1[aq+1, a0da1 . . . daq].

For the second formula we have the calculation 94

µ(1− t)(a0 ⊗ · · · ⊗ aq) = µ(a0 ⊗ · · · ⊗ aq) − (−1)qµ(aq ⊗ a0 ⊗ · · · ⊗ aq−1)

= (1/q!)(a0da1 . . .daq − (−1)qaqda0 . . . daq−1)

≡ (1/q!)(a0da1 . . .daq + (−1)qdaqa0da1 . . .daq−1)moddΩq−1

≡ (1/q!)[a0da1 . . .daq−1, daq]moddΩq−1.

From this proposition we state the following theorem of Connes’
where only the question of injectivity in the first assertionis not covered
by the above proposition. As for the second assertion, this is a deeper
result of Connes which we do not go into, see Connes [1985]. �

Theorem 3.3. The morphismµ induces an isomorphism

µ : A(q+1)⊗/((1− t)A(q+1)⊗
+ bA(q+2)⊗)→ Ωq/(dΩq−1

+ [dA,Ωq−1] + [A,Ωq])

where, as usual,Ωq
= Ω

q(A♯). The left hand side has HCq(A) as a
submodule andµ restricted to the submodule

µ : ker(B) = im(S)→ Hq
NDR(A)

is an isomorphism on the noncommutative de Rham cohomology of A
viewed as a submodule ofΩq/(dΩq−1

+ [dA,Ωq−1] + [A,Ωq]).
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4 The Chern character and the suspension in non-
commutative de Rham cohomology

Example 4.1.Let A = ke wheree = e2 is the identity in the algebra
A and an idempotent inA♯ = k ⊕ ke. ThenΩ1(A♯/k) is free on two
generatorsdeandede, and

Ω
q(A♯/k)αβ = k.e(de)q for q = 2i

= 0 for q odd.

Remark 4.2.With this calculation we can carry out the construction of95

chq(e) for e2
= e ∈ A for an arbitrary algebraA overk. Namely, we map

the universale to the speciale ∈ A, and this lifts toΩ∗(ke♯)→ Ω∗(A♯) as
differential algebras by the universal property of the tensor product and
hence to

Ω
∗(ke♯)αβ → Ω∗(A♯)αβ

as complexes and toH∗NDR(ke) → H∗NDR(A). The image ofd(de)2q/q!
is chq(E). Now we consider theS operator in noncommuative de Rham
theory which has the property that

S(e(de)2q)
q!

=
e(de)2q−2

(q− 1)!

Remark 4.3.The natural isomorphismA → A ⊗ keextends to a mor-
phism of differential algebras

Ω
∗(A♯)→ Ω∗(A♯) ⊗Ω∗(ke♯)

with quotient morphism

Ω
∗(A♯)αβ → Ω∗(A♯)αβ ⊗Ω∗(ke♯)αβ

which on degreeq is given by

Ω
q(A♯)αβ → ⊕iΩ

q−2i(A♯)αβ ⊗Ω2i(ke♯)αβ.

Now we consider the map picking out the coefficient ofe(de)2 which
we callS : Ωq(A♯)αβ → Ωq−2(A♯)αβ. Observe thatS is compatible with
d and we have the following formula.
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Proposition 4.4. For a0da1 . . . daq ∈ Ω
q(A♯)αβ we have

S(a0da1 . . . daq) =
∑

1≤i≤q−1

a0da1 . . .dai−1(aiai+1)dai+2 . . . daq.

Proof. Let τ : Ω2(ke♯)αβ → k be the linear functional such that 96

τ((de)2) = 0 andτ(e(de)2) = 1.

Then

S(a0da1 . . . daq) = (1⊗ τ)[(a0 ⊗ e)(da1 ⊗ e+ a1 ⊗ de) · · ·

(daq ⊗ e+ aq ⊗ de)] + (1⊗ τ)



∑

1≤i≤q−1

a0da1 . . . dai−1(aiai+1)dai+2 . . .daq

 ⊗ e(de)2



=

∑

1≤i≤q−1

a0da1 . . .dai−1(aiai+1)dai+2 . . .daq.

This proves the proposition. �

Corollary 4.5. We have S(chq) = chq−1.

Proof. Using (4.4) we calculate

S(e(de)2q) = e3(de)2q−2
+ e(de)ee(de)2q−2

+ · · ·

= qe(de)2q−2

and hence we have the result indicated above, that

S

(
e(de)2q

q!

)
=

(
e(de)2q−2

(q− 1)!

)
.

This is the statement of the corollary. �
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math 91 (1988), 221-251.

J.-L. Loday and D. Quillen [1984],Cyclic homology and the Lie alge-
bra homology of matrices,Comment. Math. Helvetici 59 (1984), 565-
591.

D. Quillen [1969], Rational homotopy theory, Annals of Math. 90
(1969), 205-285.

-[1985], Superconnections and the Chern character, Topology 24
(1985), 89-95.

-[1989], Algebra cochains and cyclic homology, Publ. Math. IHES,
68 (1989), 139-174.



103

-[1990],Chern Simons forms and cyclic homology, The interface of
mathematics and particle physics, Clarendon Press, Oxford(1990).

B. L. Tsygan [1983],Homology of matrix algebras over rings and
Hochschild homology, Russian Math. Surveys38:2 (1983), 198-199.

-[1986],Homologies of some matrix Lie superalgebras, Funct. Anal.
Appl. 20:2 (1986), 164-165.

M. Wodzicki [1987],Cyclic homology of differential operators, Duke
Math. J. 5 (1987), 641-647.



Index

abelian category, 3
abelianization, 24
additiveK-theory, 54
additive category, 3
adjoint action, 52
adjoint functors, 19
algebra, 6
algebra morphism, 7
algebra, graded, 7
algeraicK-theory, 54
associated graded object, 15

bimodule differentials, 91
bimodules, 29
bimodules abelianization, 29

Chern character, 87, 98
commutative algebra, 22
commutative morphism, 22
complex, 4
Connes’ double complex, 65
Connes’ exact couple, 8
Connes’ exact couple, 63
Connes’ operator B, 61
covariants of the standard Hochschild complex, 47
cyclic homology, 8

104



INDEX 105

cyclic complex associated to a mixed complex, 64
cyclic homology, 40
cyclic object, 38

Dennis trace map, 45
derivation of a commutative algebra, 72
derivation with values in a bimodule, 91
derived exact couple, 10
double complex, 17

exact couple, 9
extended bimodules, 30

filtered object, 13, 14
filtered objects with locally finite filtration, 14

graded objects, 1

Hochschild homology, 8, 34
Hochschild, Kostant, and Rosenberg theorem, 82
homology, 6
homology exact triangle, 8

invariant theory, 57

Kähler differentials, 72
Künneth morphism and isomorphism, 76
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