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Introduction

This book is based on lectures delivered at the Tata InstatiFunda-
mental Research, January 1990. Notes of my lectures andimipre
nary manuscript were prepared by R. Sujatha. My interedtensub-
ject of cyclic homology started with the lectures of A. Cosrie the
Algebraic K-Theory seminar in Paris in October 1981 where he intro-
duced the concept explicitly for the first time and showedrtiation
to Hochschild homology. In the year 1984-1985, | collabedatvith
Christian Kassel on a seminar on Cyclic homology at the tintstifor
Advanced Study. Notes were made on the lectures given is¢hisnar.
This project was carried further in 1987-1988 while Kassab\at the
Institute for Advanced Study and in 1988-1989 while | washat Max
Planck Institut fur Mathematik in Bonn. We have a longer amokre
complete book coming on the subject. The reader is familitly func-
tions of several variables or sets mtuples which are invariant under
the full permutation group, but what is special about cytiology is
that it is concerned with objects or sets which only have aariance
property under the cyclic group. There are two importantgXas to
keep in mind. Firstly, a trace on an associative algebsis a linear
form 7 satisfyingr(ab) = r(ba) for all a, b € A. Then the trace of a
product ofn + 1 terms satisfies

7(@...8n) = 7(@+1... @0 ... &).

We will use this observation to construct the Chern charauft& -
theory with values in cyclic homology. Secondly, for a gra@pwe
denote byN(G), the subset oG™! consisting of all ¢o, . . ., gn) with
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Oo...0n = 1. This subset is invariant under the action of the cyclic
group onG™! sincegp...gn = 1 implies thatgi1...0gn0o... g = 1.
This observation will not be used in these notes but can be tesde-
fine the chern character for elements in higher algelifaibeory. This
topic will not be considered here, but it is covered in ourloaith Kas-
sel. This book has three parts organized into seven chaplbesfirst
part, namely chaptes 1 ahb 2, is preliminary to the subjecydic ho-
mology which is related to classical Hochschild homologyalyexact
couple discovered by Connes. In chajifler 1, we survey theopdne
theory of exact couples and spectral sequences neededef@attnes
exact couple, and in chapter 2 we study the question of atiediion
of algebraic objects and how it relates to Hochschild homgmldn the
second part, chaptelb[3, 4, ddd 5, we consider thféereint definitions
of cyclic homology. In chaptdrl 3, cyclic homology is defineg the
standard double complex made from the standard Hochsarilgbiex.
The first result is that an algebraand any algebra Morita equivalent
to A, for example the matrix algebid,(A), have isomorphic cyclic ho-
mology. In chaptefl4, cyclic homology is defined by cyclic @adants
of the standard Hochschild complex in the case of a field ofazttar-
istic zero. The main result is a theorem discovered indegrathd by
Tsygah [1983] and_Loday-Quillen [1984] calculating thenmtive el-
ements in the Lie algebra homology of the infinite Lie algetyféA)

in terms of the cyclic homology oA. In chapteil5, cyclic homology
is defined in terms of mixed complexes and the Coniiegperator.
This is a way, due to Connes, of simplifying the standard tebabm-
plex, and it is particularly useful for the incorporationtbé normalized
standard Hochschild into the calculation of cyclic homgloghe third
part, chaptergl6 arfd 7, is devoted to relating cyclic and sicluld ho-
mology to diferential forms and showing hot€-theory classes have a
Chern character in cyclic homology over a field of charastirizero.
There are two notions of fierential forms depending on the commu-
tativity properties of the algebra. In chaplér 6, we study ¢hassical
Kahler diferential forms for a commutative algebra, outline the proof
of the classical Hochschild-Kostant-Rosenberg theordatimg differ-
ential forms and Hochschild homology, and relate cyclic blogy to
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deRham cohomology. In chapf@r 7 we study non-commutatifferei
ential forms for algebras and indicate how they can be useftfine
the Chern character of ld-theory class, that is, a class of an idempo-
tent element inVIL(A), using diferential forms in cyclic homology. In
this way, cyclic homology becomes the natural home for daharsstic
classes of elements &f-theory for general algebras over a field of char-
acteristic zero. This book treats only algebraic aspecteetheory of
cyclic homology. There are two big areas of application dflicyho-
mology to index theory, for this, see Connes [1990], and ¢éatiyebraic
K-theory of space#\(X) introduced by F. Waldhausen. For references
in this direction, see the papers of Goodwillie.

| wish to thank the School of Mathematics of the Tata Institat
Fundamental Research for providing the opportunity toveelithese
lectures there, and the Haverford College faculty resefanath for sup-
port. | thank Mr. Sawant for thefigcient job he did in typing the
manuscript and David Jabon for his help on internationalsmaission
and corrections. The process of going from the lecturesisovititten
account was made possible due to the continuing interespartati-
pation of R. Sujatha in the project. For her help, | expresswaym
thanks.
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Chapter 1

Exact Couples and the
Connes Exact Couple

In this chapter we review background material on gradedotdjeifer- 1
ential objects or complexes, spectral sequences, and a@h exaples.
Since the Connes’ exact couple relating Hochschild andaydmol-
ogy plays a basic role in the theory of cyclic homology, thiatenial
will serve as background material and as a means of intradumther
technical topics needed in the subsequent chapters. Wasdisice ba-
sic structure of the Connes’ exact couple and the elemeatenglusions
that can be drawn from this kind of exact couple.

1 Graded objects over a category

Given a category we formulate the notion of graded objects tive
category and define the category of graded objects. Therenany
examples of gradings indexed by groupsZ/2Z, Z/8Z, or Z" which
arise naturally. Then, a bigraded object %agraded object, that is, an
object graded by the grou?.

Definition 1.1.Let C be a category an® an abelian group. The cat-
egory Grg(C), also denote®C, of ®-graded objects ovef has for
objectsX = (Xg)eco Where X is a family of objectsXy in C indexed

1



2 1. Exact Couples and the Connes Exact Couple

by @, for morphismsf : X — Y families f = (fy)sce Of morphisms
fg 1 Xo = Yy in C, and compositiorgf of f : X - Yandg:Y — Z
given by @f)y = gofyin C.

The identity onX is the family (%)qce Of identities 3 on Xy. Thus it
is easily checked that we have a category, and the morphisndsfine
a functor of two variables

Homec = Hom : (OC)°P x ©C — (sets)

extending Hom C°P x C — (sets) in the sense that for tv@-graded

objectsX andY we have Homgc(X,Y) = 1_[ Home(Xy, Yy). Note
Z4=(C)

that we do not define graded objects as either products opdogpts,

but the morphism set is naturally a product. This productuetson
leads directly to the notion of a morphism of degree ® such that a
morphism in the category is of degree ®.

Definition 1.2. With the previous notations for two objecksandY in
OC, the set of morphisms of degree= ® from X to Y is Hom,(X,Y) =
l—[ Hom(Xg, Ygio). If f 1 X — Y has degre& andg : Y — Z has
[Z4=(C)]

degrees, then @f)y = Qoio fy is definedgf : X — Z of degreex + 83,
i.e. itis a function €, g) — gf defined

Hom, (X, Y) x Homg(Y, Z) — Hom,.5(X, Z).
Thus this®-graded Hom, denoted Hauris defined
Hom, : (®C)°P x OC — O (Sets)

as a functor of two variables with values in the categor@edraded
sets.

Remark 1.3.Recall that a zero object in a categalyis an object de-
noted 0 orx, such that HomX, 0) and Hom(QX) are sets with one ele-
ment. A category with a zero object is called a pointed categdhe
zero morphism 0 X — Y is the composite&X - 0 — Y.
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Remark 1.4.1f A is an additive (resp. abelian) category, tr@mH is
an additive (resp. abelian) category where the graded hargrism
functor is defined

Hom, : (B.A)°P x O A — B(ab)

with values in the category ad-graded abelian groups. A sequence
X — X — X" is exact in@A if and only if X) — Xy — XJ is exact in
A for eachd € @.

Remark 1.5.0f special interest is the categomk) pf k-modules over a
commutative ringk with unit. This category has an internal Hom functar
and tensor functor defined

®:(Kx (k) — (k) and Hom:Kk)°Px (k) — (k)

satisfying the adjunction formula with an isomorphism
Hom(L ® M, N) ~ Hom(L, Hom(M, N))
as functors ot., M, andN. These functors extend to
®:0(K) x0Kk) — 0K and Hom :0(k)°Px 6k) — O(K)
satisfying the same adjunction formula by the definitions
(LeM)y= || La®Ms and Hom\,N)s = [ [ HomMa, Nas).
a+pB=0 RY=0)

We leave it to the reader to check the adjunction formula, \wed
come back to the question of the tensor product of two monphisf
arbitrary degrees in the next section, for it uses an additistructure
on the group.

Notation 1.6.For certain questions, for example those related to dual-
ity, it can be useful to have the upper index convention foeleamentX

of ®C. This isX? = X_4 and Homg, Y)? = Hom(X, Y)_s. In the clas-
sical case ofd = Z the dfect is to turn negative degrees into positive
degrees. For example in the categdky the graded dual in degree

is Hom(M, k)" = Hom(M, k). The most clear use of this convention is
with cohomology which is defined in terms of the dual of the loégy
chain complex for spaces.
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2 Complexes

To define complexes, we need additional structure on thergyadbelian
group®, and this leads us to the next definition.

Definition 2.1. An oriented abelian grou@ is an abelian grou® to-
gether with a homomorphism: ® — {+1} and an elemente © such
thate(:) = -1.

Definition 2.2. A complex X in a pointed category graded by an ori-
ented abelian grou@ is a pair K, d(X)) whereX is in @y andd(X) =
d : X — Xis a morphism of degree: such thatd(X)d(X) = 0. A
morphismf : X — Y of complexes is a morphism i@y such that
fd(X) = d(Y)f.

The composition of morphisms of complexes is the compasitib
the corresponding graded objects. We denote the categopnyflexes
in y graded by the oriented abelian group@y(y) or simplyC(y).

In order to deal with complexes, we first need some additinest
ture on Homk, Y) for two ®-graded objectsK andY, which are the
underlying graded objects of complexes and second, keanel€oker-
nels, which are used to define the homology functor. To defiaéhb-
mology, the base category must be an abelian categofgr example,
the categoryK) of k-modules. The®A andCg(A) are abelian cate-
gories, and homology will be defined as a fundtbr. Co(A) — OA.
Tha basic tool is the snake lemma which we state now.

Snake Lemma 2.3.Let A be an abelian category, and consider a mor-
phism of exact sequencg@s, u, u”) all of degreev € ®

f f’
L’ L L7 0
u/l ul u//l
0 M — > M —> M”

Then f and g induce morphisméfl : ker(u’) — ker(u) and dg) :
coker(y) — coker{y) and the commutative diagram induces a mor-
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phismé : ker(U”) — coker(/) of degreev such that the following se-
guence, called the sequence of the shake, is exact

ker(u') — ker(u) — ker(u”) 2, coker(/') — coker{s) — coker{s”).

Further, if f is a monomorphism, théwr(’) — ker() is a mono- 5
morphism, and gis an epimorphism, theooker{l) — coker{y’) is an
epimorphism. Finally the snake sequence is natural witheesto mor-
phisms of the above diagrams which give arise to the snakeeseq.
Here a morphism of the diagram is a family of morphisms of a@aeh
spective object yielding a commutative three dimensiotzgrem.

For a proof, see Bourbakflgébre homologique.

Notation 2.4.Let X be a complex irCg(A), and consider the kernel-
cokernel sequence BA of d(x) = d, which has degree:,

0— Z(X) > X 5 X > Z/(X) - 0.

This defines two functorg, Z’ : Ce(A) — OA, and this sequence
is a sequence of functoGg(A) — OA. Sinced(X)d(X) = 0, we derive
three factorizations ad(X) namely

d =d(X):Z/(X) > X, d’ =d’(X) : X > Z(X), and
d = d(X) : Z/(X) - Z(X)

from which we have the following diagram, to which the snagéguence
applies,

X —4 - x Z'(X) 0

T

0——=2Z(X) —= X —=X

and the boundary morphism: ker(’) = H’(X) —» H(X) = coker¢”)
has zero kernel and cokernel. Thus it is invertible of degreeand it
can be viewed as an isomorphism of the fund#drwith H up to the
question of degree.
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The next application of the snake lemmal 2.3 is to a short eseact
quence 0— X’ —» X — X" — 0 of complexes irCg(A) and this is
possible because the following diagram is commutative @stct rows
arising from the snake lemma applied to the morphisitX/), d(X),
d(X”))

Z/(X") Z'(X) Z/(X")—=0
l&(x') l&(X) l&(X”)
0 Z(X) Z(X) Z(X")

SinceH’ is the kernel ofi andH is the cokernel ofi, we obtain the
exact sequence

H/(X") = H/(X) > H/(X") 3 H(X') - H(X) - H(X"),

and using the isomorphisid’ — H, we obtain an exact triangle which
we formulate in the next basic theorem about homology.

Theorem 2.5.Let0 —» X’ - X — X” — 0be a short exact sequence
of complexes in g(A). Then there is a natural morphissn: H(X") —
H(X") such that the following triangle is exact

H(X) H(X)
\ /
H(X")

Here the degree af is —¢, the degree of d.

3 Formal structure of cyclic and Hochschild homol-
ogy

Definition 3.1. An algebraA overk is a triple @A, ¢(A), n(A)) whereA is
ak-module,¢(A) : A® A — Ais a morphism called multiplication, and
n(A) : k — Ais a morphism called the unit which satisfies the following
axioms:
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(1) (associativity) As morphisma® A® A — A we have

H(A)B(A) @ A) = s(A) (A ¢(A))

where as usual denotes both the object and the identity mor-
phism onA.

(2) (unit) As morphism#A® k - Aandk® A — A, the morphisms
d(A)(Aen(A)) and ¢(A)n(A) & A)

are the natural isomorphisms for the ukibf the tensor product.
Let® be an abelian group. A-graded algebra overk is a triple
(A, ¢(A), n(A)) whereAis a®-gradeck-moduleg(A) : AQA — A

is a morphism of®-gradedk-modules, andi(A) : k - Ais a
morphism of®-gradedk-modules satisfying the above axioms (1)
and (2).

A morphismf : A —» A’ of @-graded algebras is a morphism@f
graded modules such thaA')(f ® f) = f¢(A) as morphism&a® A —
A’ and fn(A) = n(A’) as morphism& — A" If f : A - A'andf’ :
A" — A” are two morphisms ab-graded algebras, thefrif : A —» A”
is @ morphism o®-graded algebras. Let Alg denote the category of
O-graded algebras ovér and when® = 0, the zero grading, then we
denote Alg by simply Alg,.

Notation 3.2.For an abelian grou® and a pointed categoly we de-

note by Z x®)*(C) the full subcategory of x ®)(C) determined by all
X. = (Xng) With Xy = = for n < 0 and € x ®)~(C) the full subcategory
determined by alK. = (Xp4) with X,y = = for n > 0. The intersection
(Z x ®)*(C) N (Z x ®)~(C) can be identified witl®(C).

Remark 3.3.As functors, cyclic homology and Hochschild homology,
denoted byHC, andHH, respectively, are defined

HC. : Algg — (Z x©)*(K) and HH, : Algg — (Z x ©)*(K).

This is the first indication of what kinds of functors these.ar
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When he first introduced cyclic homologyC., Connes’ empha-
sised that cyclic homology and Hochschild homology werkdahwith
exact sequences which can be assembled into what is callegaan
couple. We introduce exact couples with very general ggudio de-
scribe this linkage.

Definition 3.4.Let ® be an abelian group with, ¢’, 8 € ® and letA
be a abelian category. An exact couple avewith degree9, ¢, 0" is
a pair of objectsA and E and three morphisms : A — A of degree
0,8 : A — E of degreed’, andy : E — A of degreed” such that the
following triangle is exact.

A4‘1>A
A
E

In particular, we have im) = ker@), im(8) = ker(y), and imf) =
ker(@).

Let (A E,a,8,y)and @, E’,a’,5’,y’) be two exact couples of de-
greed, ¢, . A morphism from the first to the second is pair of mor-
phisms b, f), whereh : A - A'andf : E —» E’ are morphisms of
degree 0 iM®(A) such thaha = o’h, f8 = p’h, hy =y’ f. The compo-
sition of two morphismsH, f) and ¢, f) is (', f)(h, f) = (h'h, f’f)
when defined. Thus we can speak of the catedxZ(A; ©®;0,0,0")
of exact couplesA, E, @, 8, v) in ®(A) of degreew, ¢, 6”.

We can now describe the Cyclic-Hochschild homology linkage
terms of a single functor.

Remark 3.5.The Connes’ exact sequence (or exact couple) is a functor
(HC.,HH,,S,B,1) : Algg x — ExC((K),Z x ©,(-2,0),(1,0),(0,0))

which, incorporating the remarkK(3.3) satisfid€,(A) = 0 = HHy(A)
for n < 0. The special feature of the degrees formally gives two efem
tary results.
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Proposition 3.6. The natural morphism t HHg(A) — HCy(A) is an
isomorphism of functoralgg  — O(K).

Proof. We have an isomorphism since Keris zero for reasons of de-
gree and

im(1) = ker(S : HCyo(A) — HC_»(A)) = HCp(A)
again, due to degree considerations. This proves the gtgpos O

Proposition 3.7. Let f : A — A’ be amorphism ilgg . Then HC(f)
is an isomorphism if and only if HHf) is an isomorphism.

Proof. The direct implication is a generality about morphisthsf{ of
exact couples in any abelian category, namely i§ an isomorphism,
then by the five-lemmad is an isomorphism. Conversely, if we assume
thatHC;(f) is an isomorphism for < nandHH..(f) is an isomorphism,
thenHC,(f) is an isomorphism by the five-lemma applied to the exact
sequence

HC1 = HHpy— HCh = HChp = HHp 1.

The induction begins with the result in the previous propasi
This proves the proposition. In the next section we studycttegory
of exact couples as a preparation for defining Hochschildcgmlic ho-
mology and investigating its properties. We also survey esainthe
classical examples of exact couples. O

4 Derivation of exact couples and their spectral se-
guence

The snake lemm&(d.3) is a kernel-cokernel exact sequentiagdrom
a morphism of exact sequences. There is another basic {cokeinel
exact sequence coming from a composition of two morphismes akly
nounce the result and refer to Bourbakigébre homologiquéor the
proof.
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Lemma4.l.Letf: X - Zand g: Z — Y be two morphisms in an
abelian categoryA. Then there is an exact sequence-

0 — ker(f) — ker(@f) N ker(@) — coker(f) 9, coker@f) — coker@) — O

where f : ker(@f) — ker() isinduced by f, §: coker(f) — coker@f)
is induced by g, and the other three arrows are induced regpryg by
the identitieson X, Z,and Y.

We wish to apply this to an exact coupld, €, a,3,y) in the cat-
egoryExC(A, ©;0,,0") to obtain a new exact couple, called the de-
rived couple. In fact there will be two derived couples onbecathe
left and the other the right derived coupldtdiing by an isomorphism
of nonzero degree.

First, observe that : A — A factorizes naturally as the compos-
ite of the natural epimorphistA — cokerfy), an invertible morphism
a” : cokerfy) — ker(8), and the natural monomorphism kg¥(— A.
Secondly, sincegy)(By) = 0, we have an induced morphisgy :
cokerf3y) — ker(8y) whose kernel and cokernel are naturally isomor-
phic toH(E, By) by the snake exact sequence as is usé€dln 2.4. Finally,
there is a natural factorization 8§ : coker3y) — ker(By) as a quotient
¥* : coker3y) — A of y composed with a restrictiof : A — ker(3y)
of 8. Then we have ke = ker(3") and cokerf) = coker¢™). Now
we apply [Z1l) to the factorization g = 5%y and consider the middle
four terms of the exact sequence

H(E, 8y) LN ker(8) > coker() LN H(E, By).

Definition 4.2. We denotéEXC(A, ©; 6,6’,6") by simplyExC(6, ¢, 8").
The left derived couple functor defined

ExC(6,6,0”) — ExC6,6,6" — 6)
assigns to an exact coupld, €, a, 8, v), the exact couple

(COkerél)’ H(E’ﬂ’)/)’ a//lvﬂ/l’ 7/1)
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wherea, = 6o, 8; = 8°, andy; = (a®)~1y°, using the above notations.
The right derived couple functor defined

ExXC(6,6,0”) — ExC,6 —6,0")
assigns to an exact coupl&, g, a, 8, y), the exact couple 11

(ker(3), H(E, By), @, Bps 'Yp)

wherea, = a”, B,(a*)2, andy, = y° using the above notations.
Observe thatd”, H(E, By)) is an invertible morphism

(COkerél)7 H(E7ﬁY)v a’/laﬂ/l? 7/1) - (ker(B)’ H(E’ﬂ’)/)’ apvﬂpv Yp)

which shows that the two derived couple functor§eationly by the de-
gree of the morphism. The only point that remains, is to cleeictness
of the derived couple dtl(E, By), and for this we usd{4.1) as follows.
The composite of

¥* : cokerfy) > A and B*: A — ker(3y)

is By : cokerfBy) — ker(By), and by [41l) we have a six term exact
sequence

0 0
0 — kerg") — H(E) 2 ker(8) > cokerf) 25 H(E) — cokerg?) — 0.

Hence the following two sequences

H(E) 2 cokerfy) < cokery) 25 H(E)

and p
H(E) 2 ker(8) 2 ker(8) 2> H(E).
are exact. It remains to show that the derived couple is extad{E).

For this, we start with the exact sequemge E L Aofthe given exact
couple and observe that i) c im(8) = ker(y) c ker(By). Hence the
sequence cokey] — ker(By)/im(By) = H(E) — ker(B) is exact where
the first arrow ig8° and the second ig°. Using the invertible morphism
o”, we deduce that the left and right derived couples are exagiles.
This completes the discussion of definitibn{4.2). 12
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Remark 4.3.Let Cg _,(A) denote the category of complexes owéy
graded by®, and with diferential of degree-.. We have used the
functor EXC(A,® : 6,6,0") — Cg g9 (A) which assigns to an ex-
act couple A E, a, 8, v) the complex E, By). Further, composing with
the homology functor, we obtaiH (E) which is the second term in the
derived couple of A, E, a, B, 7).

Remark 4.4.Now we iterate the process of obtaining the derived cou-
ple. For an exact coupleA(E) = (A, E,a,8,y) in ExC(6,¢,6"), we
have a sequence of exact coupld$, E") where A E) = (AL EY),
(A", E") is the derived couple of¥ 1, E'~1), andE"*! = H(E", d") with
d" = By". As for degreesA',E") is in ExC(6,6’,8” — (r — 1)) for a
sequence of left derived couples andERrRC(9, ¢’ — (r — 1)0, 8”) for a se-
quence of right derived couples. In either case the comfexd() is in
Co.0+0'—(r-19(A), and the sequence of complex&$,d") is an exam-
ple of a spectral sequence because of the properttihat H(E', d").
We can give a direct formula for the terr&§ as subquotients & = E*.
Firstly, we know that

E? = H(E". By) = ker(3y)/im(8y) = y~*(ker(8)/B(im(y))
=y H(im(a))/B(ker(@)),
and by analogy, the general formula is the following:
E" =y H(im(a"Y)/B(ker@@ ).

We leave the proof of this assertion to the reader.

5 The spectral sequence and exact couple of a fil-
tered complex

The most important example of an exact couple and its agedcipec-
tral sequence is the one coming from a filtered complex.

Definition 5.1. A filtered objectX in a categor is an objeciX together
with a sequence of subobjectsyX or F(X), indexed by the integers
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= FpoiX = FpX — .-+ — X, Amorphismf : X — Y of filtered
objects inC is a morphismf : X — Y in C which factors for eaclp by
Fo(f) : FpX = FpY.

The factorizationF () is unique sincé=,Y — Y is a monomor-
phism. The compositiogf in C of two morphismsf : X — Y and
g: Y — Z of filtered objects is again a morphism of filtered objects.
Thus we can speak of the categéry C of filtered objects ove€.

Remark 5.2.We are interested in the categdfy - Ce(A) of filtered
complexes. In particular we construct a functor

E%: ¥ - Co_(A) = Czxo.(0-)(A)

by assigning to the filtered complex the complexE°(X), called the
associated graded complex, with graded term

Eps = FpXo/Fp-1X
and quotient dferential in the following short exact sequence
0— Fp1X - FpX > Ep - 0

in the categonCeg(A). The homology exact triangle is a sequence of
®-graded exact triangles which can be viewed as a sizgied()-graded
exact triangle and this exact triangle is an exact couple

H. (F.X) < H.(F.X) = AL,

Sl

H.(E)) = EL,

where theZ x @-degree oty is (1, 0), of 8is (0,0), and ofy is (-1, —u).
The theory of the previous section says that we have a speetfaence
(E",d") and the degree af' is (-r,—). Moreover, we have defined a
functor (A", E") on the categony - Co _ (A) — EXC(A,®;(1,0),0, 14
(-r, —1)) such that A™+1, E"*1) is the left derived couple of, E").
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In the case wher® = Z, the group of integers, and= +1, there is a
strong motivation to index the spectral sequence with thatfiibn index
p, as above, and the complementary index 8 — p whered denotes the
total degree of the object. In particular, we h&\l@q(Eo’*) = E[l),q in
terms of the complementary index. The complementary inadgation
is motivated by the Leray-Serre spectral sequence of agmap — B
where the main theorem asserts that there is a spectral remguéth
E2p,q = Hp(B, Hg(F)) coming from a filtration on the chains of the
total spacekE., F being the fibre of the morphisim

Remark 5.3.The filtration on a filtered compleX defines a filtration
on the homologyH (X) of X by the relation that

FoH.(X) = im(H.(FpX) — H.(X)).

Now this filtration has something to do with the ter&s, of the
spectral sequence. We carry this out for the following spezse which
is described by the following definition.

Definition 5.4. A filtered objectX in a pointed category is positive pro-
vided FpX = 0 (cf. (L3)) forp < 0. A filtered®-graded objecK has a
locally finite filtration provided for each € @ there exists integers(6)
andn(6) such that

FoXg=0 for p<m(d) and FpXy=Xy for n(d) <p.

Proposition 5.5. Let X be a locally finite filtere®-graded complex X
over an abelian categoryd. Then for a giver® € ® and filtration index
p, ifr > maxn(8) + 1 — p, p— m(@ - 1)), then we have F@ = EL;} =
... = FpHa(X)/F p-1Ha(X) = EPHg(X).

Proof. We use the characterization of the terElsgiven at the end of

B Y . o
&32). ForArlw S Erlw 5 A%_le_t we form a subquotient using ~* :
1 1 r-1. al 1 1 _
Apﬂ - Ap+r_1’9 andao': Ap_w_L - Ap_w_t WhereApH_w = Hy(X)

andAilH’e_L = 0 under the above conditions on Thus the ternE" =
y~Y(im(a"1))/B(ker(@' 1)) has the form

Epe =7 (im(0))/B(ker(@ ™) = im(8)/B(ker(Ha(F pX) — Ho(X)),
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and this is isomorphic und@rto the quotient
Ao/ (ker(Ho(F pX) = Hg(X) +im(Hg(Fp-1X) = Hg(FpX))).

This quotient is mapped isomorphically by~ to the following
subquotient oHy(X), which is just the associated graded object for the
filtration onH(X) defined in [&.B),

im(Ho(FpX) — Ho(X))/ im(Ha(Fp-1X) = He(X)) = E°Hy(X).
This proves the proposition. ]

This proposition and the next are preliminaries to the spkotap-
ping theorem.

Proposition 5.6. Let f: L - M be a morphism of locally finite filtered
®-graded objects over an abelian category If the morphism of asso-
ciatedZ x®-graded objects &) : E%(L) — E°(M) is an isomorphism,
then f: L — M is an isomorphism.

Proof. ForFplLy = 0, FpMy = 0 if p < m(0) andFpLy = Ly, FpMy =

My if p > n(6) we show inductively orp from m(6) to n(6) thatF,f :
FoLle — FpMg is an isomorphism. To begin with, we note that by
hypothesismg) = ng(e),e) is an isomorphism. If the inductive statement
is true forp — 1, then it is true forp by applying the “5-lemma” to the
short exact sequence

0
O = Fp_l’e — Fp’e i Ep,@ - 0

Since the induction is finished at6), this proves the proposition.16
mi

This proposition is true under more general circumstandeshwve
come back to after the next theorem.

Theorem 5.7. Let f : X — Y be a morphism of locally finite filtered
®-graded complexes over an abelian categgtyf for some r> 0 the
term E(f) : E"(X) — E'(Y) is an isomorphism, then H) : H(X) —
H(Y) is an isomorphism.
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Proof. SinceE™! = H(E") as functors, we see that &l (f) are iso-
morphisms for’ > r. For givend € ® and filtration indexp we know
by (&.3) thatE], , = = EpH, for r large enough. Hencg®H(f) is an iso-
morphism, and by{]516) we deduce th#tf) is an isomorphism. This
proves the theorem. m|

This theorem illustrates the use of spectral sequencest@ phat
a morphism of complexe$ : X — Y induces an isomoprhistd(f) :
H(X) — H(Y). The hypothesis of locally finite filtration is somewhat
restrictive for general cyclic homology, but the generadtem, which
is contained irl_Eilenberg and Maobre [1962], is clearly givertheir
article. The modifications involve limits, injective lingitasp goes to
plus infinity and projective limits ap goes to minus infinity. We ex-
plain these things in the next section on the filtered compated to a
double complex.

6 The filtered complex associated to a double com-
plex

For the theory of double complexes we use the sinZple Z grading
which is all we need in cyclic homology. Firstly, we consiger ex-
tension of [&.B) for filtered objects which are constructexifa graded
object.

Remark 6.1.Let A denote an abelian category with countable products
and countable coproducts. FoZagraded object X, we form the ob-
jectX. = TTXi x [ X with filtration FpX. = [T X;. The definition of

i<a a<i i<p
X.is independent ad. With these definitions the natural morphisms

X. = limX./FpX. and limFpX. - X
<p -p

are isomorphisms. In general for any filtered obj¥cthese natural
morphisms are defined. If the first morphism is an isomorphthenX
is called complete, if the second morphism is an isomorphtien X
is called cocomplete, and if the two morphisms are isomarphj then
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X is called bicomplete. With these definitions we have theofwilhg
extension of[{5J6) not proved here.

Remark 6.2.Let f : L - M be a morphism of bicomplete filtered ob-
jects over an abelian category with countable products apdbducts.

If EO(f) : EO(L) — E°(M) is an isomorphism, thefi : L — M is an
isomorphism of filtered objects.

Now we consider double complexes and their associatedefilter
complexes which will always be constructed so as to be bitetep

Definition 6.3.Let A be an abelian category. A double compléx
over A is aZ x Z-graded object with two morphismd = d’(X),
d’ = d’(X) : X.. —» X.. of degree €£1,0) and (Q—1) respectively
satisfyingd’d’ = 0, d”d” = 0, andd’d” + d”d’ = 0. A morphism of
double complexes : X.. — Y.. is a morphism of graded objects such
thatd’ (Y)f = fd'(X) andd”(Y)f = fd”(X). With the composition of
graded morphisms we define the composition of morphisms aibldo
complexes. We denote the category of double complexes @vby
DC(A).

There are two functorBC(A) — F - C(A) from double complexes
to bicomplete filtered complexes corresponding to a fitratin the first
variable or on the second variable.

Definition 6.4. Let X.. be a double complex over the abelian category
A. We form:

(1) the filtered graded objetK. with 18
Xo= [] Xijx ]_[ X and 'FpXo= [] X,
i+j=nji<a i+j=nji>a i+j=nji<p

(2) the filtered graded objettX. with
X, = l_[ X U Xij and "FpX,= U Xij
i+j=nj<a i+j=n,j>a i+j=n,j<p

and in both cases theftiérential isd = d’+d”, making the filtered
graded objects into bicomplete filtered complexes.
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Remark 6.5.Using the complementary degree indexing notation con-
sidered in[[BR), we see that

ED (' X) = Xpqwith d® = d” andES ("' X) = Xq,p with d® = o,

and theE?! terms are the partial homology modules of the double com-
plex with respect tal” andd respectively. Thel® differentials are in-
duced byd’ andd” respectively, and th&? term is the homology of
(EL,dY), and

B2, = Hp(Hg(X d0").d) and "EZ, = Ho(Hp(X &), d").

These considerations in this section are used in the fuéldpment
of cyclic homology, and they are included here for the sakeafplete-
ness.



Chapter 2

Abelianization and
Hochschild Homology

IN THIS CHAPTER we first consider abelianization in the comgeof 19
associative algebras and Lie algebras together with thmetipn prop-
erties of the related functors. In degree zero, Hochschildl @clic
homology of an algebra are isomorphic and equal to a certain abelian-
ization of A which involves the related Lie algebra structure AanWe
will give the axiomatic definition of Hochschild homology..(A, M)

of A with values in anA-bimodule M, discuss existence and unigue-
ness, and relate in degree zdig(A, A), the Hochschild homology of
A with values in theA-bimodule A, to the abelianization oA. The
k-modulesH..(A, A) are the absolute Hochschild homolokymodules
HH..(A) which were considered formally in the previous chaptermin-c
junction with cyclic homology.

1 Generalities on adjoint functors

Abelianization is defined by a universal property relatvé¢he subcate-
gory of abelian objects. The theory of adjoint functors, ehhive sketch
now, is the formal development of this idea of a universapprty, and
this theory also gives a means for constructing equivakeihetween
categories. We approach the subject by considering manshietween

19
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the identity functor and a composite of two functors.

For an objeciX in a category, we frequently use the sympoalso
for the identity morphismX — X along with I, and similarly, for a
categoryX the identity functor orX is frequently denoted. Let (sets)
denote the category of sets.

Remark 1.1.Let X and Y be two categories an8 : X — Y and
T : Y — X be two functors. Morphisms of functogs: X — TS are in
bijective correspondence with morphisms

b : Homy(S(X), YY) - Homyx (X, T(Y))

as functors ofX in X andY in Y with values in (sets). A morphisis
definesb by the relatiorb(g) = T(g)B(X) andb definess by the relation
b(1s(x)) = B(X) : X = TS(X). In the same way, morphisms of functors
a : ST— Y are in bijective correspondence with morphisms

a: Homy(X, T(Y)) —» Homy(S(X),Y)

as functors oK andY with values in (sets). A morphism definesa by
the relationa(f) = a(Y)S(f), anda definesx by the relation

a(lren) = a(Y) 1 STY) = V.

Definition 1.2. An adjoint pair of functors is a pair of functo&: X —
Y andT : Y — X together with an isomorphism of functors X¥fin X
andY in Y

b : Hom(S(X),Y) — Hom(X, T(Y)),

or equivalently, the inverse isomorphism
a: Hom(X, T(Y)) - Hom(S(X),Y).

The functorS is called the left adjoint of andT is the right adjoint
of S.

This situation is denoteda(b) : S 4 T(X,Y) or justS 4 T.

In terms of the morphismg(X) = b(lsx)) : X — TS(X) and
a(Y) = a(lry)) : ST(Y) — Y we calculate, forf : X — T(Y)

b(s(f)) = T(a(f))B(X) = T(a(Y)TS(H)B(X) = T(a(YV))B(T(YV))f
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andforg: S(X) - Y
a(b(g)) = a(Y)S(b(g)) = a(Y)S T(9)S(B(X)) = ga(S(X))S(B(X))

Remark 1.3.With the above notations we have 21

ba(f)) = f ifandonlyif T(a(Y))B(T(Y)) = 1rxy, and
a(b(@)) =g ifandonlyif a(S(X)SEB(X)) = s).

An adjoint pair of functors can be defined as a pair of funcfrs
X — Y andT : Y — X together with two morphisms of functors

B:X—>TS and a:ST->Y

satisfying(S(Y))S(B(X)) = 1sx) and T ((Y))B(T(Y)) = Llrey). This
situation is denoted(,8) : SH T : (X,Y) orjust @,B) : SHT.

Remark 1.4.1f S : X — VYisthe left adjoint ofT : ¥ — X, then for the
dual categorie$§ : X°P — Y°Pis the right adjoint ofT : Y°P — X°P.

The relation between adjoint functors and universal canttns is
contained in the next proposition.

Proposition 1.5. Let S : X — Y be a functor, and for each object
Y in Y, assume that there exists an objet)tin X and a morphism
a(Y) : S(t(Y)) — Y such that for all g S(X) — Y, there exists a unigque
morphism f: X — t(Y) such thata(Y)S(f) = g. Then there exists a
right adjoint functor T: Y — X of S such that for each object Y
the object TY) is t(Y) and

a: Hom(X, T(Y)) - Hom(S(X),Y)
is given by &f) = a(Y)S(f).

Proof. To defineT on moprhisms, we use the universal property. If
v :Y — Y’ is a morphism inY, then there exists a uniqgue morphism
T(V) : T(Y) = T(Y’) such thateF(Y")(S(T(V)) = va(Y) as morphisms
ST(Y) — Y’. The reader can check that this defines a funttoand
the rest follows from the fact that the universal propertyests that is

a bijection. This proves the proposition. o 22
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Proposition 1.5. Let T : Y — X be a functor, and for each object X
in X assume there exists an obje¢X¥sin V and a morphisnB(X) :
X — T(s(X)) such that for all f: X — T(Y) there exists a unique
g: s(X) — Y such that Tg)8(X) = f. Then there exists a left adjoint
functor S: X — Y such that for each object X i the object $X) is
s(X) and

b : Hom(S(X),Y) —» Hom(X, T(Y))

is given by Kg) = T(g)B(X).

Proof. We deduce[{I]15)immediately by applying{1l5) to the dual cat-
egory. i

2 Graded commutativity of the tensor product and
algebras

Let ® denote an abelian group with a morphiem ® — {1}, and
define a corresponding bimultiplicative: ® x ® — {x1}, by the re-
quirement that

+1 ife@)=1ore(@)=1

€0,0) = { ,
-1 ife(f) = -1ande(®’) = -1

Definition 2.1. The commuting morphismr or o of the tensor product
x 1 O(K) x O(k) — O(K) relative toe is the morphism
oclL,M)=c:L®M > ML
defined forx® y € Ly ® My by the relation
Te(x®Yy) = €6, 6)(y® X).

Observe that-(M, L)o (L, M) = L ® M, the identity on the object
L® M.

Definition 2.2. A ®-gradedk-algebraA is commutative (relative te)
providedg(A)o(AA) = ¢(A) : A® A — A. The full subcategory of
Algg « determined by the commutative algebras is denote@ Rigg .
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Remark 2.3.Let A be a®-gradedk-algebra. Foa € Ay andb € Ay the
Lie bracket ofaandbis

[a,b] = ab-— €(0, 8" )ba

which is an element ofy,. Let [A, A] denote the®-gradedk - sub-
module ofA generated by all Lie bracketa,]p] for a, b € A. Observe
that A is commutative if and only ifj, A°] = 0. Let (A, A) denote the
two-sided ideal generated ba[A].

Definition 2.4. A ®-graded Lie algebra overis a pairg together with
a gradedk-linear map []: g® g — g, called the Lie bracket, satisfying
the following axioms:

(1) Forae g, andb e g, we have
[a b] = —€(6,6)[b, a].
(2) (Jacobi identity) fomeg ,beg,  andceg  wehave
€(0,0")[a,[b,c]] + (@, 0)[b,[c,a]] + €@, 0)[c,[ab]] =0.

A morphismf : g —» g of ®-graded Lie algebras ovédris a
gradedk-module morphism such thd{[a, b]) = [f(a), f(b)] for

all a, b € g. Since the composition of morphisms of Lie algebras
is again a morphism of Lie algebras, we can speak of the cate-
gory Lieg x of ®-graded Lie algebras ov&rand their morphisms.
Following the lead from algebras, we define a Lie algabta be
commutative if [] = 0 ong® g, or equivalently, §, g] is the zero
k-submodule whereg] g] denotes thé-submodule generated by
all Lie brackets & b]. The full subcategory of commutative Lie
algebras is denotedLieg y and it is essentially the catego®(k)

of ®-graded modules.

Example 2.5.If Ais a®-gradedk-algebra, ther with the Lie bracket
[a.b] = ab—€(0,0')baforacg ,be 9, is a®-graded Lie algebra24
which we denote by Lie (A). This defines a functor

Lie : Algg — Liegk.
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3 Abelianization of algebras and Lie algebras

In this section we relate several categories by pairs ofiridjonctors.

For completeness, we includgr], the category of groups and group
morphisms together with the full subcategogb) of abelian groups.
Also (ab) and ) are the same categories. We continue to use the nota-
tion of the previous section for the gro@pwhich indexes the grading.

Definition 3.1. Abelianization is the left adjoint functor to any of the
following inclusion functors

CAlgegy — Alggk. Cliegk — Liegk, and @b) — (gr).
Proposition 3.2. Each of the inclusion functors

CAlggx — Algey. Cliegk — Liegx and (ab) — (gr)
have left adjoint functors

Alggy — CAlggy. Liegk — Cliegw and (gr) — (ab).
each of them denoted commonly(B§°.

Proof. If the inclusion functor is denoted hy; then we will apply[LB)

to T = J and form the commutative(A) = A/(A, A), s(L) = L/[L,L]
and s(G)/(G, G) algebra, Lie algebra, and group respectively by divid-
ing out by commutators. In the case of an algeArahe commuta-
tor ideal A, A) is the bilateral ideal generated by, JA] and B(A)

A — J(s(A)) = A/(A, A) is the quotient morphism. For each morphism
f : A — J(B) whereBis a commutative algebr (A, A)) = 0 and hence

it defines a uniqueg : s(A) — B in CAlg, such thatJ(g)B(A) = f.
Hence there exists a left adjoint functSrof J which we denote by
S(A) = A%, The same line of argument applies to Lie algebras where
g?° = g/[g, g] and [g, g] is the Lie ideal of all bracketsa] b] and groups

whereG® = G/(GTG) and G, G) is the normal subgroup @ gener-
ated by all commutatorss(t) = sts't™ of s, t € G. This proves the
proposition. m|
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Now we consider functors from the category of algebras tatte
egory of Lie algebras and the category of groups.

Notation 3.3.We denote the composite of the functor Lie : jlg—
Liegk, Which assigns to an algebrathe same underlying&-module
together with the Lie bracke]b], with the abelianization functor of
this Lie algebra Lief)2?, and denote it byA??. This is just the graded
k-module A, A

We remark that there does not seem to be standard notatioh for
divided by thek-module generated by the commutators, and we have
hence introduced the notatigk?. Note that the quotiemA?” is not an
algebra but an abelian Lie algebra, that is, a gradetbdule.

Remark 3.4.The importance oA% lies in the fact that it is isomor-
phic to the zero dimensional Hochschild homology, as wel Sea in
(6.3)(2), and thus to the zero dimensional cyclic homolsgg 1(3.6).

Remark 3.5.The multiplicative group functor (*): Alg, — (gr) is
defined as the subset consistinguogé A with an inverseu™ € A and
the group law being given by multiplication #. It is the right adjoint
of the group algebra functdq ] : (gr) — Alg, wherek[C] is the free
module with the seB as basis and multiplication given by the following

formula on linear combinations kK G], 26
)2z
teG reG seG \tr=s

The adjunction condition is an isomorphism

Hom(k[G], A) - Hom(G, A").
4 Tensor algebras and universal enveloping

algebras

Adjoint functors are also useful in describing free objemtainiversal
objects with respect to a functor which reduces structurbese€ are
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called structure reduction functors, stripping functarsforgetful func-
tors.

Proposition 4.1. The functor J: Algg  — ©(K) which assigns to the
graded algebra(A, ¢, ) the graded k-module A has a left adjoint:T
0(k) — Algg  Where T(M) is the tensor algebra on the graded module
M.

Proof. From then" tensor poweM™ of a graded modul®. For each
morphismf : M — J(A) of graded modules wherk is an algebra we
have defined,, : M™ — J(A) as f, = ¢n(A) ™, wheregn(A) : A" —
A'is then-fold multiplication.
We giveT(M) = U M"™ the structure of algebrd (M), ¢, ) where
n

n k=M% — T(M) is the natural injection into the coproduct and
$IMP® @ M%® is the natural injection oM(P*9® into T(M) defining¢ :
T(M)® T(M) —» T(M). For a morphismf : M — J(A) the sum of
the f, : M™ — J(A) define a morphisng : T(M) — A of algebras.
The adjunction morphism M) : M — J(T(M)) the natural injection
of M® = M into J(T(M)). Clearly J(g)3(M) = f and this defines the
bijection giving the adjunction from the universal progefthis proves
the proposition. m|

Now we consider the question of abelianization of the teadge-
bra. Everything begins with the commutativity symmetry L@ M —
M ® L of the tensor product.

Algebra abelianization of T(M) 4.2. The abelianizationT (M)2° of
the algebrar (M), like T(M), is of the form[] Sn(M) whereSy(M) =

0<n
(M™)sym, is the quotient of the" tensor power oM by the action of
the symmetric group Sygpermuting the factors with the sigi{6, 6')
coming from the grading. This follows from the fact that tlyensnetric
group Sym is generated by transpositions of adjacent indices, argl thu
(T(M), T(M)) is generated by

X®y—e6,0)y®x for xeMy, ye My

as a two sided ideal.
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Lie algebra abelianization T(M)%8 of T(M). 4.3. We form Lie(T(M))
and divide by the®-graded k-submodule T(M), T(M)] to obtain
T(M)?8, which like T(M) andT(M)22 = S(M), is of the form[] Ln(M)

0<n
whereLn(M) = (M™)cy_ is the quotient of the'™ tensor power oM
by the action of the cyclic group Gypbermuting the factors cyclically
with the signe(d, ) coming from the grading. 1IM"®, we must divide
by elements of the form

[X1®: - ®Xp, Xp+1®- - ®Xn] = X1®- - - ®Xn—€(6,0')Xp11® - @Xn®X1®- - ®Xp

wherex; ® -+ ® Xp € (MP®)g andXp,1 ® - - - ® Xy € (M-P®),, . These
elements generat@ (M), T(M)] and they are exactly the elements map-
ping to zero in the quotient, under the action of the cyclmugr Cy}, on
Mn®,

Proposition 4.4. The functorLie : Alge — Liegx has a left adjoint
functor U: Liegx — Algg -

Proof. The functor Lie starts with the functdrof @) which hasT (g)

as its left adjoint functor. This is not enough becagse T(g) is nota 28
morphism of Lie algebras, so we form the quotia(d) of T(g) by what

is needed to make it a Lie algebra morphism, namely the twexlditeal
generated by all

X®y-—€(0,0)y®x=[xy] for X€g,.yeg,.

The resulting algebrtl (g) has the universal property which follows
from the universal property fofF (M) in (&1). This proves the proposi-
tion. O

Definition 4.5. The algebral(g) is called the universal enveloping al-
gebra of the Lie algebrg.

Example 4.6.The abelianizationU(g)** = U(g*) while U(g)* is
U(G)y the universal quotient where the actiongodn U(g) is trivial.

Example 4.7.The abelianizatiork[G]2® = k[G2] while K[G]* is
K[G]g, the universal quotient where the action®@fon k[G] is trivial.
This is just a free module on the conjugacy classes.of
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5 The category ofA-bimodules

Let Abe a®-graded algebra ovérwith multiplicationg(A) : AQA — A
and unitp(A) : k — A.

Definition 5.1. A left A-moduleM is a®-gradedk-moduleM, together
with a morphismp(M) : AQ@ M — M such that

(1) (associativity) as morphisms® A®@ M — M we havep(M)(A®
¢(M)) = ¢(M)(¢(A) ® M), and

(2) (unit property) the composité(M)(7(A)® M) is the natural mor-
phismk® M — M.

A morphismf : M — M’ of left A-modules is a gradekt-linear
morphism satisfyingf (M) = ¢(M")(A® f). The composition of two
morphisms of leftA-modules agk-modules is a morphism of lefA-
modules. Thus we can speak of the categokjod of left A-modules
and their morphisms.

Definition 5.2. A right A-modulelL is a®-gradedk-modulelL together
with a morphismy(L) : L ® A —» M satisfying an associativity and unit
property which can be formulated to say thabgether withp(L)o (A, L)

is a left A°P-module whereA®P = (A, ¢(A)o (A, A), n(A)). A morphism
of right A-modules is just a morphism of the corresponding Fft-
modules, and composition &flinear morphisms induces composition
of right A-modules. Thus we can speak of the category Mofright
A-modules and their morphisms.

We have the natural identification of categorigllod = Modaor)
andacr) Mod = Moda.

Definition 5.3. An A-bimoduleM is a®-gradedk-module together with
two morphismsp(M) : A®@ M — M making M into a left A-module,
and¢’(M) : M® A — M makingM into a right A-module, such that, as
morphismsA® M ® A — M we have

d(M)(A® ¢'(M)) = ¢'(M)(B(M) @ A).
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A morphism of A-bimodulesf : M — M’ is ak-linear morphism
which is both a leftA-module morphism and a righ&-module mor-
phism. The composition dslinear morphisms is the composition &f
bimodules. Thus we can speak of the categoioda of A-bimodules.

We have the natural identification of categoriglloda = ag(acr)
Mod = Mod(aor)ea in terms of left and right modules ovér tensored
with its opposite algebra®®.

Definition 5.4. Let M be anA-bimodule. Let A, M] denote the graded
k-submodule generated by all elements of the form

[a, X] = ax—€(6, 0 )xa

wherea € Agx € My. As a gradeck-module we denote b =
M/[A, M].

If f: M — M is amorphism ofA-bimodules, thef([A,M]) c 30
[A,M’] and f induces on the quotient”” : M% — M’%, and this
defines a functog Moda — ©(K) which is the largest quotient of ak
bimoduleM such that the left and right actions are equal. It is a kind of
abelianization, in the sense that for thdimoduleA the resultA/[A, A]
is just the abelianization of the Lie algebra LAg¢(

Remark 5.5.In fact the abelization functor is just a tensor product. Any
A-bimodule is a leflA® A°P-module andA°P is a rightA® A°P-module.
ThenM is justA°P®(agacr) M, because the tensor product opes A°P

is the quotient oA® M divided by the submodule generatedaiy® x—

a® bxforae A°P, x e M, andb € A® A°P, that is, by relations of the
forma® x— 1@ axanda® x— 1® xa

In fact M — M% is a functor® Bimod — (k). Here® Bimod is
the category of pairsy, M) whereA is ®-graded algebra ovérandM is
anA-bimodule, and the morphisms ateg {) : (A, M) — (A", M”) where
u: A — A is amorphism of algebras arfd: M — M’ is k-linear such
that f¢p(M) = p(M’)(A® f) and f¢’'(M) = ¢'(M’)(f ® A). Observe that
whenu is the identity onA, thenf : M — M’ is a morphisn, Moda.
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Remark 5.6.The abelianization functoM?, being a tensor product,
has the following exactness property.LIl- M — N — 0 is an exact
sequence inMod,, thenL” — M% — N% — 0 is exact in®@(K).
Even ifL —» M is a monomorphism, it is not necessarily the case that
L% — M is a monomorphism.

Since M is only right exact, the functor generates a sequence of
functors of @, M) in ® Bimod, denotedH,,(A, M) and called Hochschild
homology ofA with values in the modul®, such thaHg(A, M) is iso-
morphic toM?. More precisely, in the following section we have a
theorem which gives an axiomatic characterisation of Hcloifg ho-
mology.

6 Hochschild homology

Definition 6.1. An A-bimodule M is called extended provided it is of
the formA® X @ AwhereX is a gradek-module.

Remark 6.2.There is a natural morphism tA-bimodule k-module
Homa(A® X® A, M), denoted

a: HOITI@(k)(X, M) — Hom(A)(A® X® A M),
defined by the relation
a(f) = ¢'(M")(¢(M) @ A)(A® f & A) = g(M')(A® ¢'(M')).

Moreover,a is an isomorphism definin§(X) = A® X ® A as a left
adjoint functor to the stripping functgtModa — ®(k) which deletes
the A-bimodule structure leaving @ gradedk-module. The extended
modules have an additional property, namely that for anteseguence

0O- M ->M->ARXR®RA -0
which isk-split exact, we have the short exact sequence

05 MP 5 MP 5 (A X®A) - 0.
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This follows from the fact that under the hypothesis, we reagplit-
ting of the A-bimodule sequence given by a morphigm® X@ X® A —
M.

The reader can easily check that the projectives in the oateg
Mod, are direct summands of extended modwles X ® A whereX is
a free®@-gradedk-module.

Theorem 6.3. There exists a functor H® Bimod — Z(®(k)) together
with a sequence of morphisnis: Hq(A, M”) — Hg-1(A, M’) in ©(K)
associated to each exact sequence spla(k) of A-module® - M’ —
M — M” — 0 such that

(1) the following exact triangle is exact 32
H..(A, M) H.(A, M)
x /
H..(A, M")

andd is natural in A and the exact sequence,

(2) in degree zero KA, M) is naturally isomorphic to M¥ = M/[A,
M]

(3) if M is an extended A-bimodule, thery(A, M) = 0 for q > O.

Finally two such functors are naturally isomorphic in a wénat the
morphisms) are preserved.

Proof. SinceM? is isomorphic to the tensor produdfP ®agacr M,
the functorH. (A, M) can be defined as T8#4""(A°P, M), not as the ab-
solute T or, but as &k-split relative T or functor. Since this concept is
not so widely understood, we give an explicit version bytstgrwith
a functorial resolution oM by extendedA-bimodules. The first term
is the resolution isA® M ® A — M given by scalar multiplication
andM in A® M ® A viewed as @®-gradedk-module. The next term is
AW(M)®A - AQ M®A, whereW(M) = {(kerA®M®A — M)}, and



33

32 2. Abelianization and Hochschild Homology

the process continues to yield a comp¥xM) — M depending func-
torially on M. We can definéd..(A, M) = H.(Y,(M)%), and to check the
properties, we observe that for an exact sequenéelmodules which
is k-split

O- M>M->M’">0

the corresponding sequence of complexes
0- Y.(M)# S Y, (M)* - Y, (M) -0

is exact, and the homology exact triangle results give ptggd) for
the homologyH..(A, M). The relation (2) thaHo(A, M) = M follows
from the right exactness of the functor. Finally (3) reséitsn the last
statement in[{612). o

The uniqueness of the functbly is proved by induction on using
the technique call dimension shifting. We return to the céred short
exact sequence associated with d&algimoduleM

0->WM)->A®M®A—-> M- 0.

This gives an isomorphisig(A, M) — Hg-1(A, W(M)) for g > 1,
and an isomorphisril1(A, M) — ker(Ho(A, W(M)) —» Ho(ALA®@ M ®
A)). In this way the two theories are seen to be isomorphic Bydtion
on the degree. This proves the theorem.



Chapter 3

Cyclic Homology and the
Connes Exact Couple

WE START WITH the standard Hochschild complex and study the 84
ternal cyclic symmetry in this complex. This leads to thelicybo-
mology double compleC..(A) for an algebraA which is constructed
from two aspects of the standard Hochschild complex and &heral
homological resolution of finite cyclic groups. In terms bfst double
complex, we define cyclic homology as the homology of the dased
single complex, and since the Hochschild homology compdeoni the
vertical edge of this double complex, we derive the Conngatecou-
ple exploiting the horizontal degree 2 periodicity of theide complex.

The standard Hochschild complex comes from a simpliciababj
which has an additional cyclic group symmetry, formalizgddmnnes
when he introduced the notion of a cyclic object. As intrdduc to
cyclic objects is given.

1 The standard complex

In ChapteEI§ 6, we considered an axiomatic characterization of Hochs-
child homology and then remarked that it is a split Tor funateer

A ® A°P. The Tor functors are defined, and in some cases also calcu-
lated, using a projective resolution which in this case iglé grojective

33
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resolution made out of extended modules. We consider apkatireso-
lution using the most natural extendéebimodules A A¥®A = C¢(A)
made out of tensor powers Af The morphisms in the resolution are de-
gned using the extended multiplicatiops: C(A) — C(’q_l(A) defined

y

di(a®---®ag1) =a® - @ -a;1®---®ag1 for i=0,...,q

The A-bimodule structure oi€;(A) is given by the extended-
bimodule structure where f@® & € A® A°P we have

(@a®a)(a®---®ag1) = (ag) ® - - ® (8g,1&),

and from this it is clear thag; is anA-bimodule morphism. Finally, note
that the morphisngo : C{(A) — Ais the usual multiplication morphism
onA.

Definition 1.1. The standard split resolution & as anA-bimodule is
the complex € (A),b’) — A of A-bimodules overA where with the
above notation®’ : C{(A) — Ca_l(A) isgivenbyb’ = Y (-1)¢;.

O<i<q
Proposition 1.2. The standard split resolution of A is a split projective
resolution of A by A-bimodules.

Proof. By construction eaclCy(A) is an extended\-bimodule. Next,
we haveb’b’ = 0 because an easy check shows that

did; = pj1¢i for i<,

and this gived’t’ = 0 by an argument where ¢ 1)q terms cancel in
pairs. Finally the complex is split acyclic with the follawg homotopy
s: Cy(A) = C,1(A) given bys(ap® - ® ag+1) = 1® 80 ® - ® ags1.
Sincegps = 1 andgi, 1S = s¢j fori > 0, we obtainb’s + sbf = 1, the
identity. This proves the proposition. o

To calculate the Hochschild homology with the resolutiol, must
apply the functoR, whereR(M) = A®agacr) M, to the complex of the
resolution. Now, for an extendetbimoduleA ® X ® A the functor has
the valueR(A® X ® A) = A® X as ak-module.
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Definition 1.3. The standard comple.(A) for an algebraA overk is,
with the above notatiof,(A) = R(C.(A), b).

In particular, we hav€,(A) = A2 and ford, = R(¢) the difer-

ential of the complex i® = 3 (-1)'d whered; : Cq(A) — Cq-1(A) is
O<i<q
given by the following formulas

d(@a®---®a)=a® -®@a,)® --®ay for 0<i<q
dy(a ® - -- ® ag) = (agap) ® ag ® - - - ® ag-1.

36

The last formula, the one faky, reflects how the identification of
Ax X with RIA® X®A) is made from the right action & on A becoming
the left action omA°P. Again we havedidj = dj_1d; fori < j.

Further, as a complex ové&r we see clearly thaEy(A) = Ca_l(A)
withdj = ¢; fori < q. If b/ = OZ (-1)'di : Cq(A) — Cq-1(A), then

<I<

from (I.2) we deduce immediatel?/ that.(A), b’) is acyclic. In terms
of b, itis clear thab = b’ + (—1)%d,.

Remark 1.4.The Hochschild homolog¥HH..(A) = H.(A, A) of A can
be calculated aHl,(C..(A)), the homology of the standard complexAf

2 The standard complex as a simplicial object

Remark 2.1.Besides the operatod on the standard comple3.(A),
there are operatoig wheres; : Cq(A) — Cg.1(A) for 0 < j < g defined
by the following formula

Sj(@® -ag) =a®---®a;®1lea;1®---®a for 0<j<q

With both the operators ands;, the standard complex becomes
what is called a simplicidk-module. We define now the general concept
of a simplicial object over a category.

Definition 2.2. Let C be a category. A simplicial objec¢t. in the cat-
egory C is a sequence of objects; in C together with morphisms
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di @ Xqg = Xg-1forg > 0ands; : Xg = Xgepfor0 < i, j < q
satisfying the following relations

Q) didj = dj_ldi forO< j-1,
(2) sjs =ssj-1for0O< j—i,

Sj—10i forO<j—-i<q
(3) disj =<identity for—1<j-i<0
sjdi-1  forj—-i<-1

A morphismf : X, — Y, of simplicial objects over the category
C is a sequencdy : Xq — Yq of morphisms inC such thatd; f = fd|
ands;f = fsj, i.e. a sequence of morphisms commutating with the
simplicial operations. Composition df: X, — Y, andg: Y, — Z, is
the sequencgq fq definedgf : X, — Z..

Simplicial objects in a categoky, morphisms of simplicial objects,
and composition of morphisms define the categh(g) of simplicial
objects inC.

Originally, simplicial objects arose in the context of thagslar
complex of a space which is an example of a simplicial set, land
considering thek-module in each degree with the singular simplexes
as basis, we come to a simplicielmodule C,(A) associated with an
algebraA overk.

Already, for the standard simplicigtmoduleC,(A) we have associ-
ated a positive complex with boundary operator defined ims$eof the
operatorgd;. This can be done for any simplicial object over an abelian
category. LeC*(A) denote the category of positive complexes over an
abelian categoryA.

Notation 2.3.For a simplicial objeciX, in an abelian categoryl we
use the following notations

b=d= > (-1)d

O<i<q

b=d = > (-1)d,

O<i<q
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s=(-1)sq: Xq— Xge1-
Remark 2.4.The functors which assign to a simplicial objext in
A(A) either the complexX.,d) or the complex X.,d"), and to mor-
phisms inA(A) the corresponding morphisms of complexes, are each
functors defined\(A) — C*(A). By a direct calculationsis a homo-
topy operator fod’ of the identity to zero, that is, 38

d's+sd =1
This means thatX,,d’) is an acyclic complex or equivalently
H.(X,,d) =0.

Notation 2.5.We define a filtrationF*X and two subcomplexeB(X)
andN(X) of the complex X, d) associated with the simplicial objext
in A. For the filtration in degreg, we define

FPX =[] ker(d).
n—p<i<n,0<i

The subcomplex of degeneracieg(X) in degreen is the subobject
of X, generated by in¥) fori = 0, ...,n—1, and the Moore subcomplex
Nn(X) in degreenis F"X,. In other words, the Moore subcomplex is the
intersection of the filtratiorN(X) = ﬂ F9(X), and the boundard is

justdy : Nq(X) - Nq_l(X).

The next theorem is proved by retractifgX into FP*1X with a
morphism of complexes homotopic to the inclusion morphigmRsX
into FPX. For the proof of the theorem, we refer to MacLane 1963, VIII.
6.

Theorem 2.6. Let X be a simplicial object in an abelian categafy.
The following composite is an isomorphism

N.(X) — X, = X,/D.(X),
and the induced homology morphisms
H.(N(X)) —» H.(X) and H.(X) - H.(X/D(X))

are each isomorphisms.
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Normalized standard complex 2.7.Let A be an algebra ovet. The
subcomplex of degeneracies in deggge DCy(A) and is generated by
all elementsay ® - - - ® ag such thatg; = 1 for somei, 1 <i < . Thus
there is a natural isomorphism Gf(A) = C4(A)/DCq(A) with A A™.
The gradedk-moduleC.(A) has a quotient complex structure, and by
(Z8) the quotient morphis@,(A) — C.(A) induces an isomorphism in
homology, i.eHH,(A) — H,(C.(A)) is an isomorphism. The complex
C.(A) is called the normalized standard complex. In the case &f th
standard complex, the fact thaf(A) — C.(A) induces an isomorphism
in homology can be seen directly, by noting ti&(A) is obtained as
AP @(aznon C.(A) in the quotient resolution ofZ,(A), b') whereC_(A)
is defined by

CyA =AcAT g A

The normalized complex is useful for comparing Hochschitd h
mology with diferential forms. We treat this in greater detail later.

3 The standard complex as a cyclic object

Remark 3.1.Besides the operators makiy(A) into a simplicialk-
module, there is a cyclic permutation operatorCqy(A) — Cq(A) de-
fined by the following formula

t(a® - ®3) =ag®a ® - ®ag-1.

With the simplicial operators and this cyclic permutationeach
degree, the standard complex becomes what is called a &yimdule.
We now define the general concept of a cyclic object in a cayego

Definition 3.2.Let C be a category. A cyclic objec. in the category
C is a simplicial object together with a morphidg: X; — Xq for each
g > 0 satisfying:

(1) The @+ 1)"-power ;)™ = X, the identity onX,

(2) As morphismsX; — X;-1 we havedity = tq_1di_4 for i > 0 and
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(3) As morphismsXq — Xg:1 We havesjty = tg18j-1 for j > 0 and
Sotq = (tg+1)°Sg.

A morphismf : X. — Y. of cyclic objects inC is a morphism of
the simplicial objectd : X — Y associated with the cyclic objects such
thattyfq = fqtq as morphisms oKy — Yq. The composition of cyclic
morphisms as simplicial morphisms is again a cyclic monphisiVe
denote the category of all cyclic objectsdhand their morphisms by
A(C).

For each algebrd, we denote the cyclic object determined by the
standard complex b€.(A). We leave it to the reader to check that the
above axioms (1), (2) and (3) are satisfied. The followingwksion is
carried out forC.(A), but in fact, it holds for any cyclic object over an
abelian category.

Notation 3.3.Let T = (-1)% : C4(A) — C4(A), and observe that both
T+ andtd! are equal to the identity map @y(A). LetN : Cq(A) —
Cq(A) be defined bN = 1+T+T?%+---+T9 and observe thal(1-T) =

0 = (1 - T)N. In order to prove the next commutativity proposition, it
is handy to have the following operatdr= doT : C4(A) — Cg-1(A),
because it satisfies the relations

TIT 1= (-1)d for 0<i<q
TIT 1=

Proposition 3.4. For an algebra A the following diagrams are commu-
tative,

Cq(A) —L = Cy(A) Cq(A) —=L~ Cq(A)
b o4 o4 b
Ca-1(A) —> Cqa(A) Ca-1(A) 5 Cq1(A).

Proof. We first note that

q R &
b(1-T) = (Z(—l)idi) (1= (-1 tger) = D (1) = (-7 3 (- D)'tgch,
i=0 i=0 =0
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sinceditg,1 = tqdi—1 for 0 < i < nanddoty,1 = dg. But the last expres- 41

sion is just (1- T)b’ proving that the second diagram is commutative.
For the commutativity of the first diagram, we us@ = T'N = N

for all i. Using the operatad introduced above i .(3.3), we have

N =JTIN+TIT2N+---+ TH1ITIN
=IN+TIN+-- +T"IN=Q+ T+ +THFHIN = NIN

and similarly

Nb=NJIT 1+ NTJIT?+... 4+ NTIIT o1
=NJIT 1+ NJIT 2+ .+ NJT 1
=NJT L +T24...4T7%Y
= NJN

This proves the proposition. m|

Remark 3.5. This proposition is the basis for forming a double complex
in the next section. SinceC((A),b’) is an acyclic complex, we con-
sider two complexes coming from the standard complex ankl giging
Hochschild homology. Froni(3.4) the double complexes with Yerti-

cal columns C.(A), b) &—_ (C.(A), -b') and C..(A), =b) - (C.(A), b)
where C.(A),b) is in horizontal degree 0 have associated total single
complexes with homology equal to Hochschild homology. ddime
spectral sequence of a filtered complex, we see by filterindp@mori-
zontal degree that we get Hochschild homology for the hogyold the
as_sociated total complex becaLE@q = HHg(A) and Eg’q = 0 other-
wise.

4 Cyclic homology defined by the standard double
complex

Definition 4.1.Let C.(A) denote the cyclic object associated with the
standard complex of an algebkeoverk. The standard double complex
CC..(A) associated with this cyclic object and hence also witis the
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first quadrant double complex which is the sequence of & rtmumns
made up of even degrees b9.(A), b) and odd degrees b¥C((A),b’), 42
with horizontal structure morphisms given by-II' andN as indicated

in the following display

C.(A), b &L C.(A), -b & C.(A),b &=L C.(A), -1 &~ C.(A), b ..

which is periodic of period 2 horizontally to the right, stag with p =
0 in the double complex. The corresponding cyclic com@€x(A) is
the associated total complex GL..(A).

Observe that by[{314;C..(A) is a double complex, since we have
already remarked that @ T)N = 0 = N(1 — T). This construction is
made with just the cyclic object structure, and thus can baenfiar any
cyclic object in an abelian category.

Definition 4.2. Let Abe an algebra ovédx The cyclic homologyHC..(A)
of A is the homologyH..(CC.(A)) of the standard total complex of the
standard double complex &t

Remark 4.3.The standard double compl&C..(A), its associated total
complexCC.(A), and the cyclic homologiiC.(A), are all functors oA
on the category of algebras oversince the standard cyclic objeCt(A)
is functorial inA from the category of algebras oveto the category of
cyclic k-modulesA(K).

Connes’ exact couple 4.4 From the 2-fold periodicity of the double
complexCC..(A), we have a morphisma- : CC..(A) — CC.(A) of
bidegree £2,0), giving a morphismr : CC.(A) — CC.(A) of degree
—2 and a short exact sequence of complexes

0 — ker(o) — CC.(A) 5 CC.(A) — 0.
The homology of kekf) was considered ii(3.5) and we have
H.(ker()) = HH.(A).

The homology exact triangle of this short exact sequencewf-c 43



42 3. Cyclic Homology and the Connes Exact Couple
plexes is the Connes’ exact triangle

HC.(A) S HC.(A)

T

HH.(A)

whereS = H,(o) so degf) = -2, degB) = +1, and ded() = O.
Moreover, this defines an functor from the category of algshwver
k to the category of positivelg -graded exact coupleExC(-2, +1, 0)
over the category df-modules K).

Remark 4.4.The entire discussion in this chapter could have been car-
ried out with ®-gradedk-algebrasA. The ®-grading plays no role in
any of the definitions. In particular, we have completed te&nition

of cyclic homology and the Connes’ exact couple introduced ({B.5)
namely

(HC.,HH., S, B, 1) : Alge — EXC((K), Z x ©, (~2,0),(1,0), (0, 0)).

Also, the fact that : HHp(A) — HCp(A) is an isomorphism holds,
(see 1(3.6)), and if : A — A’ is a morphism of algebras, thétC,.(f)
is an isomorphism if and only #H..(f) is an isomorphism, see 1(3.7).

5 Morita invariance of cyclic homology

Let A andB be two algebras, and lgtModg denote the category of bi-
modules withA acting on the left and witB acting on the right. In other
wordsa Modg is the category of lefA® B°P-modules or the category of
right A°°? @ B-modules.

Definition 5.1. A Morita equivalence between two algebrasndB is
given by two bimodulesP in o Modg andQ in g Moda together with
isomorphisms

Wa:PegQ—>A and wg:Q®aPa— B
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44 in the categorieg Moda andg Modg respectively. Two algebra& and
B are said to be Morita equivalent provided there exists a td@guiv-
alence betweeA andB.

The bimoduled? andQ define six diferent functors:

(a) for left modules¢p.e Mod —a Mod and¢g.aMod —g Mod
defined bypp(M) = P®g M and¢g(M’) = Q®a M/,

(b) for right modulesyp : Moda — Modg andyq : Modg — Moda
defined byyg(L) = L ®a Pandyg(L’) = L’ ®s Q, and

(c) for bimodulesppg :o Moda —g Modg and¢gp g Modg —a
Moda defined byppo(M) = Q®a M ®a P andggp(N) = P ®p
N ®g Q.

Proposition 5.2. Let A and B be two algebras, and [@& Q, wa, wg) be
a Morita equivalence. Then the following hold:

(1) The functorspp :g Mod —a Mod and¢g :o Mod —g Mod are
inverse to each other up to equivalence.

(2) The functorsyp : Mody — Modg andyq : Modg — Moda are
inverse to each other up to equivalence.

(3) The functorsppg :ao Moda —p Modg and ¢gp 8 Modg —a
Moda are inverse to each other up to equivalence.

Also, there are natural isomorphisms induced hyamnd ws between
the functors defined ogModa xa Moda, namely

¢p.(M) ®pgror ppg(N) — M ®agacr N,
and the corresponding derived functors
Tor?* (¢po(M), ¢p(N)) — Tor* (M, N).

Proof. As an indication of the proof, we consider @bimodule M.
There is a natural isomorphism

pap(@ra(M)) = (P2 Q) @A M®A (P2 Q) > A®AMOAA=M,
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and similarly there is a natural isomorphigiaoggp = id. 45
The isomorphism between two bimodule tensor products tsgjuis
associativity law for tensor products. This canonical isgohism ex-
tends to the derived functors from uniqueness propertiégeoéierived
functors. This proves the proposition. m|

Corollary 5.3. Morita equivalent algebras A and B have isomorphic
Hochschild homology.

Example 5.4.The algebrag\ and the matrix algebr#,(A) are Morita

equivalent. To see this, we observe that the module lmf g matrices

Mng(A) is a left Mp(A) ® My(A)°P-module and matrix multiplication
factors by a tensor product ovity(A) as follows

matrix multiplication

Mnq(A) ® Mg s(A)

T

Mn.q ®Mm,(A) Mg s(A)

Mn,s(A)

Assertion. The morphismf in the previous diagram is an isomorphism
of Mp(A) ® Mg(A)°P-modules. Clearlyf is a bimodule morphism. To
see the isomorphism assertion, we can reduce to thencase= 1 and
considerf : My q(A) ®wmya) Mq1(A) — M11(A) = Aand calculate

by by 0 ... O

1
] ] R e
by by O 0)'\0
1
:f((C,O,...,O)@[O]:C:a1b1+...+aqbq.
0

It is clear from this computation thdtis a bijection.
The Morita equivalence betwednandMg(A) is given by My q(A),
Mq1(A), f, f). There is a morphism of cyclic sets from the standard
46  complex forMu(A) to the standard complex fex.
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Definition 5.5. The Dennis trace map
Tr @ Mp(A) @92 Ala+le
is given by

Tr@0)@---®a@) = Y 8y (0)®: - @ ay(Q).

1Sio,...,iq§n

Theorem 5.6. The Dennis trace map induces isomorphisms.. i,
(A)) — HH..(A) and HC.(Mn(A)) — HC.(A).

Proof. It is an isomorphism on Hochschild homology Hy {5.3), and
since this isomorphism is given by a morphism of cyclic otgethe
induced map is an isomorphism on cyclic homology by the oite
1(3.7). This proves the theorem. O

Remark 5.7.1n McCarthy [1988], there is a proof that in general Morita
equivalent algebras have isomorphic cyclic homology.

Reference:Compte Rend Acad Sci, 307 (1988), pp. 211-215.






Chapter 4

Cyclic Homology and Lie
Algebra Homology

CYCLIC HOMOLOGY WAS introduced in the previous chapter ugira7
a double complek.. .(A) with columns made up of standard Hochschild
complexes C.(A), b) and C.(A),b’). The cyclic structure gave a mor-
phism of complexes £ T : (C.(A),b) — (C.(A),b’) which was also
used to define the double compléx.(A). In the case of characteristic
zero we will show that cyclic homologiiC.(A) can be calculated in
terms of the homology of cokerdT) and the homology of ker(2 T).
In this way we recover the original definition of Connes foclay co-
homology as the cohomology of the dual of one of these coreplex
Then we sketch the Loday-Quillen and Tsygan theorem whigh sa
that the primitive elements in the homology of the Lie algabr(gl(A))
is isomorphic to the cyclic homology @fshifted down one degree. This
is one of the main theorems in the subject of cyclic homology.

1 Covariants of the standard Hochschild complex
under cyclic action

We start with a remark about endomorphisms of finite order.

a7
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Proposition 1.1. Let T : L — L be an endomorphism of an object
in an additive category such that"T= 1, the identity on L. For N=
1+T+T?+---+T"! we have the following representation of n times
the identity on L
Nn=N+(—(T+2T2+--- +T")@@-T).
Proof. We apply the dierential operatotd% to the relation
A-t)=Q-t)A+t+---+t"D
to obtain the relation
—nt"= —t@+t+ ")+ @O+ 2%+ -+ (= 1T,

SubstitutingT for t and usingT" = 1 andTN = N = NT we obtain
the stated result. This proves the proposition. m|

Recall that in the cyclic homology double complex for an algeA
the horizontal rows going in the negative direction in degre= n— 1
are of the form

N 1-T N 1-T
N An® An® — An® An® N O

whereT(ay ® ---® a,) = (-1)"ta, ® a1 ® ---ap_1. Now when the
ground ringk is a Q-algebra, so that the in the previous proposition
can be inverted, we have the identity

1
n
This leads to the following proposition.

1
1=-N+6(1-T) where 9:—E(T+2T2+---+(n—1)T”‘1).

Proposition 1.2. Let A be an algebra over a ring k which is @-
algebra. Let(A™);_1 = coker(1- T), in other words, the coinvariants
of the action of the cyclic groug/nZ acting through T on . Then
the following sequence of k-modules is exact

» i An® i An® i An® i A > (An®)l__|_ N 0’
and the following sequence of complexes over Kk is exact

. 5 CA),b S CL(A), B =5 C.(A),b - C.(A) b — O,
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Proof. Every thing follows from the homotopy formula fotand 1-T,
1= r—l]N + 6(1 - T), except for the observation that-1T andN are
morphisms of complexes and this is contained in 3(3.4). ptoses the
proposition. O

Remark 1.3.The sequence of complexes [0 {1.2) being exact leads to
the following isomorphism involvingQ..(A)1-T, b) namely

(C*(A)l—T7 b) - Im(N) c (C*(A)’ b/)

Further, we have a morphism of the assembled double conmuiex 49
the complex of covariants

CC*(A) - C*(A)l_T, b

which also maps the double complex filtration arising from tertical
grading into the degree filtration. In other words for

FiCChA = || Gi(A) = FoCa(A)rr

i<pi+j=n

where
Cn(A)l—T for psn

FoCn(A)1T =
pCnlA)s-7 {O forp>n.

For these filtrations, looking at the associated grdﬂ%d/ve arrive
at the quotient morphiSIEg’OCCp(A) - Eg’OCp(A)l_T. The diferential
d is zero in both complexes whilg! of the mapping of the complexes
is just the horizontal exact sequenced@...(A). Thus by [T.2) we have
an isomophism of th&2-terms which is the homology of tHe!-terms.
By the basic mapping theorem on spectal sequences, sei W& [fave
te following theorem.

Theorem 1.4. Let A be an algebra over a ring k which isxalgebra.
The quotient morphism of complexes

CC*(A) - C*(A)]__T, b
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induces an isomorphism
HC.(A) = H.(CC.(A)) = H.(C.(A)1-T,b)

of cyclic homology onto the homology of the standard compléxthe
cyclic action divided out.

2 Generalities on Lie algebra homology

From an algebraic point of view, cyclic homology is impottéor its
relation to Hochschild homology and also Lie algebra homgyloin-
deed in Chaptdrl 2§ @ we showed how both concepts were related to
abelianization.

Definition 2.1. Let g be a Lie algebra ovet with universal enveloping
algebral(g). The homologyH.(g, M) of g with values in theg-module
M is the Tor functor B B B

H.(g, M) = Tor, @ (k, M).

The absolute Lie algebra homologyHs(g) = H.(g, M).
Recall that ag-module or representation gfis just aU(g)-module
by the universal property of the universal enveloping aigwg)

Remark 2.2.In degree zero, Lie algebra homology is just
where p, M] is thek-submodule oM generated by alll, x] whereu €
g.x € M. In particularHo(g) = k. Moreover it is the case that,(G) =

gab = g/[g, g] which is easily seen from the following resolution which
can be used to calculate Lie algebra homology.

Standard complex 2.3.Let g be a Lie algebra ant ag-module. The
standard compleg. (g, M) for g with values inM as a grade#-module
is A*(g)® M whereA*(g) is the graded exterior algebra on thenodule
g together with the dferential given by the formula

dl(uuA...AU)®X) = Z(l)(ul/\ AT A LA Up) ® U X+

1<i<n
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+ O EY)TI (UL U AW A LG AL AT AL AU @ X,

1<i<j<n

We leave it to the reader to check tht= 0 by direct computation
using the Jacobi law and,[v]x = u(vX)—v(ux). In Cartan and Eilenberg,
Chapter XIlIl, (7.1) it is proved thatl,.(C.(g, M)) = H.(g, M) which is 51
defined by the Tor functor. a a

We will be primarily interested in the case whdve= k. Then the
standard complex is denoted by j@sKg), and as a gradekkmodule it
is the exterior modulé*(g) with differential given by

duA... AU = Z (1) U, U AULA LU AL AU AL AR

1<i<j<n

sinceul =0in theg-modulek.

Remark 2.3. The exteriokk-moduleA* (V) has both an algebra structure
given by exterior multiplication and a coalgebra structgiken by

AU A...AU) =(ULA...AU)®1L

+ Z (UL A...AU)® Uiz A... AUp)
1<i<n-1

+1® (U A...AUp).

The algebra structure is not compatible with thiéetential onA™(g)
since, for example U v] = d(u A v), and it would have to equal

duAv)=duAav—-uAdv=0

in order to have a dlierential algebra structure. On the other h&n(h)

with the exterior coalgebra structure is compatible witmakingC.(g)

into a diferential coalgebra. In the case whéris a field or more gen-

erally H..(g) is k-flat so that the Klinneth morphism is an isomorphism,

the Lie algebra homologhl.(g) is a commutative coalgebra over
Concerining the calculations given ii{R.2), we observée tha 0

on Co(g) andC4(g) while d(u A V) = [u, V]. ThusHg(g) = 0 and

H1(g) = coker@ : Ca(g) — Cu(9)) = 6/[9. 9] = g™
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3 The adjoint action on homology and reductive al-
gebras

Notation 3.1.Let Rep@) denote the category aj-modules. On the
tensor product ® M over k of two g-modulesL and M we have a
naturalg-module structure given by the relation

uxey) = (U ey+x®(uy for uegxel, and yeM.

Hence tensor powers, symmetric powers, and exterior powfays
modules have naturg-module structures. For example &ifM the
g-module structure is given by the relation

U(XL A ... A Xq) = Z Xy A A (UX) AL A X

1<i<q

Example 3.2.Thek-moduleg is ag-module with the action called the
adjoint action, denotedd(u) : g — g for u € g, where

ad(u)(x) =[u,x] for uxeg.
Observe that the Jacobi identity gives tenodule condition
ad([u, V)(X) = ad(u)(ad(v)(x)) — ad(v)(ad(u)(x))
or [[u,v], { = [u, [v, X]] = [V, [u, x]] for u, v, X € g.

Combining the previous two considerations, we see ghatts on
the graded modul€.(g) = A*(g) of the standard Lie algebra complex.
Each elementi € g defines a grading preserving map

ad(u) : C.(g) — C.(9),
and by exterior multiplication, a morphism of degret denotedu) :
C.(g9) — C.(g) defined by
BU(XLA...AXg) =UAXLA ... A X

The relation of the dierentiald on C.(g) to the adjoint actiomd(u)
and the exterior multiplicatiog(u) are contained in the next propaosition.
The details of this proposition are left to the reader.
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Proposition 3.3. For u € g the adjoint action afl) commutes with d,
that is, (ad(u))d = d(ad(u)) so that C(g) is a complex of gnodules and
for exterior product u) we have B

ad(u) = de(u) + eu)d. *)

In low degreed : Cy(g) — Ci(g) commutes withad(u) by the
Jacobi identity, and the homotopy formula (*) holds 6n(g) by the
relationad(u)(X) = [u, X] = deg(u)(x) and onC»(g) by the Jacobi formula.

The action ofg on the standard compleR.(g) induces an action
on H.(g). In view of the homotopy formula (*) this actioad(u) is
homotopic to zero, and this gives the following corollary.

Corollary 3.4. The action of gon H.(g) is zero, that is, the homology
g-module is the trivial module.

Definition 3.5. A g-moduleM is simple or irreducible provided the only
submodules are the trivial ones 0 ald A g-moduleM is semisimple
or completely reducible if it satisfies the following equiat condi-
tions:

(@) M is adirect sum of simple modules,
(b) M is a sum of simple submodules, and

(c) every submodulé of M has a direct summand, i.e. there is an-
other submodulé, with L & L’ isomorphic toM.

The above definition applies to any abelian category, fomple,
all representations of a group. For a proof of the equivaaida), (b),
and (c) see Cartan and Eilenberg.

We will not make a definition in a nonstandard form, but it isetky 54
what is needed for applications.

Definition 3.6. A Lie subalgebrag of a Lie algebras is reductive in
s provided all exterior powera9s are semisimple ag-modules with
the exterior power of the adjoint action gfon s. A Lie algebrag is
reductive providedy is reductive in itself. a
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Proposition 3.7. Let gbe a reductive Lie subalgebra of a Lie algebra s
Then the quotient morphism

C.(9) — Cu(g) ®u(g k=C.(9)g
is a homology isomorphism.

Proof. The kernel of the quotier@.(s) — C.(s)g onto theg - coinvari-
ants is the direct sum of an acyclic complex and one with zeferén-
tial. The factor with the zero flierential must be zero b{f{3.4). Hence
the kernel is acyclic, and the morphism is a homology isomism.
This proves the proposition. m|

Example 3.8.Let A be ak-module, and let)t,(A) denote the Lie algebra
overk of n matrices with entries if with the usual Lie brackeu[v] =
uv—vufor u, v e gfn(A). Then the Lie subalgebrgl,(k) is reductive
in gtn(A), and in particulargés(K) is a reductive Lie algebra. This is the
basic example for the relation between the cyclic homolofgyA and
the Lie algebra homology af?(A) = I|m gtn(A). We have to be a little
careful with the limits becausg/(k) is s not reductive ingf(A). On the
other hand we have the following result by passing to limits.

Proposition 3.9. Let A be an algebra over k, a field of characteristic
zero. Then the quotient morphism of complexes

O C(9U(A) — C.9l(A)ge

induces an isomorphism in homology.

4 The Hopf algebra H*(g_f(A), k) and additive alge-
braic K-theory

The algebra structure dt. (g¢(A)) comes from the direct sum of matri-
ces namely the morphisms of Lie algebras

9 (A B (A) — g, (A) — gl(A).
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The natural isomorphisrﬁ*(gl) ® C*(QZ) - C*(gl ® 92) composes
with the induced morphism of the inclusion to give a morphusdlif-
ferential coalgebras

C.(g¢ (A) ® C.(gl, (A) - C.(gL, (A)
which in the limit ovem gives a multiplication
C.(gl(A) ® C.(gl(A)) — C.(gl(A).

Remark 4.1.This multiplication induces a morphism of homology
which when composed with the Kiinneth morphism yields a ipli4lt
cationH.(gf(A)) namely

H..(g(A) ® H.(gf(A)) — H.(gl(A)).

Now we put together this multiplication and the isomorphisi
39) to obtain the following theorem.

Theorem 4.2. With the coalgebra structure and multiplication on C
(9f(A)), the quotient morphism induces on.(G/(A))gex) @ diferen-
tial Hop algebra structure and the isomorphism.(8(A)) — H.(C.
(A)gev)) shows that the multiplication on @((A)) induces a Hopf al-
gebra structure on Hgt(A)). o

Proof. The diferential coalgebra structure and the multiplication given
by direct sum of matrices is defined on the quotient9hyand can be
seen directly from the definition. The multiplication defingy special
choices of direct sum o8..(gf(A)) is not associative, but in the quotient
these choices all reduce to the same morphism which givesiaisity.
This proves the theorem. O

Before going on to the calculation &1.(gf(A)) using cyclic ho- 56
mology, we indicate how this is an additive-theory by analogy with
algebraicK-theory as defined by Quillen. Thé-groupsk.(A) of a ring
A are the homotopy groups of a certain space

K.(A) = 7.(BGL(A)")
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where the spacBGL(A)* comes fromA a series of three steps
A GL(A) » BGL(A) » BGL(A)*

whereGL(A) = IiLn)GLn(A) is the infinite linear groupB is the clas-
sifying space of the groufL(A), and BGL(A)* is the result of ap-
plying the Quillen plus construction. The m&GL(A) - BGL(A)*
is a homology isomorphism aney(BGL(A)*) is the abelianization of
m1(BGL(A)) = GL(A). From the relations of algebralk€-theory with
extensions of groups, the work of Kassel and Loday 1982 stgdéhat
there should be an additive analogueketheory using the homology of
Lie algebras.

The analogue for Lie algebras of the three steps in algelitaic
theory overk is to begin with an algebra overk and perform the fol-
lowing three steps

A gl(A) - C.(9l(A) — C.(9l(A)gew-

The quotient coalgebra constructi@(gt(A)) — C.(9¢(A))geqq iS
like the plus constructioBGL(A) — BGL(A)T in the sense that the map
is an isomorphism of the homology coalgebras @n(h((A))q«x) has a
Hopf algebra structure where by analogy the plus constm&sG L(A)*
is anH-space.

There is no Lie algebra homotopy groups, but the rationaldtopy
can be calculated from the homology in the case dflaspace. This is
the basic theorem of Milnor-Moore in rational homotopy.

Theorem 4.3. Let X be a path connected H-space. The rational Hure-
wicz morphismsp : m.(X) ® Q — PH.(X Q) is an isomorphism of
graded Lie algebras onto the primitive elements.RtHhomology.

Remark 4.4. The above considerations together with the Milnor-Moore
theorem led Feigin and Tsvgedn [1885] to introduce the failhgudefini-
tion of the additiveK-groups of algebra& over a filedk of characteristic
zero

K2YA) = PH.(C.(g0(A))gew)-
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5 Primitive elements PH.(g/(A)) and cyclic homol-
ogy of A

In this sectionk will always denote a field of characteristic zero. We
begin with two preliminaries. The first is based on Appendiaf 2he
rational homotopy theory paperlof Quillen [1969].

Proposition 5.1. On the category of cocommutativeffdiential Hopf
algebras A over k, the natural morphism(lP{A)) — P(H(A)) is an
isomorphism where & P(A) meansA(X) = X® 1+ 1® X.

Proof. Quillen proves rather directly that for affirential Lie algebrd
with universal envelopindJ (L) differential Hopf algebra thad (H(L))
— H(U(L)) is an isomorphism. NowJ and P are inverse functors
between dferential Lie algebras and cocommutativéfeliential Hopf
algebras by a basic structure theorem of Milnor and moor&.196is
proves the proposition. O

The second preliminary is basic invariant theory over a fiélchar-
acteristic zero.

Basic invariant theory 5.2. Let V be ann-dimensional vector space
overk, denotegf(V) = End(V) as a Lie algebra oves, and denote the
symmetric group om letters by Syrg. There is a map : K[Symy] —
EndV®) = gf(V)*® where

) (X1 ® - ®X) = Xo(1) ® - ® Xy(q) fOr o € Sym,.

The basic assertion of invariant theory is the following piasms 58
are isomorphisms fan = dim(V) > q

KISymyl — (@f(V)®)EY) — (ge(V)®)gqv).

The symmetric group Sypracts ong_f(V)q@’ by conjugation through
¢ and thisg is Syn]q equivariant as is seen from a direct calculation.

A basis ofV is equivalent to an isomorphisgt(V) — g€ (k) and
g(VeA) — gl(V)®A — gt’ (A) for anyk-algebra. The nextp proposmon
is the first link between Lie algebra chains and certain tepswers of
A.
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Proposition 5.2. If n = dim(V) > q, then we have an isomorphism of
k-modules,

ANGV) ® A)grvy = (KISymy] ® A*) @sym, (sgn)

where Sym, acts by conjugation on[8ym,] and (sgr) is the one di-
mensional sign representation.

Proof. We can write the exterior power

ANGUV) ® A)gev) = [(9E(V) @ AT @sym, (S9N]grv)
= [(9E(V)*)ge(V) ® A%] @sym, (sgN.

Using (5.2), we tensog with A% and (sgn to obtain an isomor-
phism

{k[Symy] ® AT} @sym, (59N — ((9¢(V)™®} @sym, (sN.
This proves the proposition. m|

In terms of this isomorphism we decompas®g((V)®A)g(v) using
the decomposition ok[Sym,] under conjugation. There will be one
factor for each conjugacy class of SynThe elements of the form =
[0] ® a where pr] is the conjugacy class of the elemaentanda =
& ®- - ®agwith g € AgenerateK[Symy] ® A®) ®sym, (sgn, and the
diagonal morphism on this element is given by f#les as

A = > (ol @ a)® (o] © a)
(1,...n}=I [[ o ()=1,0(I)=d

wherex = [0] ® & & = ®ic&, anday = BjeJq;-

Remark 5.3.An elementx = [o] ® a is primitive, i.e.A(X) = X®
1+ 1@ xif and only if o € Ug, the conjugacy class of the cyclic
permutation (1...,q). As a Sym-set, the conjugacy cladsy is iso-
morphic to Syrg/ Cyl, where Cy}, is the cyclic subgroup generated
by (1,...,0). Thus we have an isomorphism between the followkng
modules K[Uq] ® A%¥ ®@sym, (sgn) and K[Symy, / cylg] @ A®) @sym, (sgn.
We can summarize the above discussion with the followingutation
of the primitive elements ak*(gf(V) ® A)g(v) In @ given degree.
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Proposition 5.4. The submodule R(g((V) ® A)ge(v) Of primitive ele-
ments for g< n = dim(V) is isomorphic to N

A% ®cyi, (S9N = Cq-1(A)1-7, the cyclic homology chains.

A further analysis of the isomorphisms involved shows thatdif-
ferential in the Lie algebra homology induces the quotidtihe Hochs-
child differential, or the cyclic homology filerential. Thus we are led
to the basic result af Tsygan [1983] and Loday-Quillen_[1]984char-
acteristic zero.

Theorem 5.5. The vector space of primitive elements in Lie algebra
homology PH(C..(9¢(A)ge) = PHq(gl(A)) is isomorphic to the cyclic
homology vector space HG (A).






Chapter 5

Mixed Complexes, the
Connes Operator B, and
Cyclic Homology

THE DOUBLE COMPLEXCC, .(A) has acyclic columns in odd de60
grees, and this property leads to the concept of a mixed eomphus
we dfectively suppress part of the cyclic homology compER..(A).

In the second section this new definition is shown to be etprivao
the old one. Yet another way of simplifying the Connes-Tsydauble
complex is to normalize the Hochschild complexes, and thionsid-
ered in§ 3.

1 The operator B and the notion of a mixed complex

Let A be an algebra ové«¢. The last simplicial operator defines a homo-
topy operators : Cyq(A) — Cq:1(A) by the relations = (—1)%s,. It has
the basic property thaly + b’s = 1, and this is a general property of
simplicial objects over an abelian category.

Definition 1.1. Let A be an algebra ovée. The Connes operator B=
(1-T)sN: Cy(A) — Cqr1(A) on the standard complex.

61
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For any cyclic objecKX. the Connes operator is
B=(1-T)sN: Xy — Xg1

a morphism of degreel. The corresponding diagram is

Xq+1 '<i Xq+1

||
N
Xg<——%q
Proposition 1.2. Let X. be a cyclic object over an abelian categqfy,

The Connes operator B of degred and the usual boundary operator
b satisfy the following relations

b>=0,B2=0, and Bb+bB=0.

Proof. The first relation was already contained in 3(2.4), and tkerse
BB=(1-T)sSN(1-T)sB=0sinceN(1-T) = 0 by 3(3.3). For the last
relation we calculate using 3(3.4)

Bb+bB = (1 - T)(sNb+b(1-T)sN=(1-T)sEN + (1 - T)b'sN
= (1-T)(sH +b'9N = (L-T)N = 0.

This proves the proposition. m|

Remark 1.3.For the standard cyclic obje€.(A) associated with an
algebraA, the following formula define® on an element,

B(a0®...®aq) :Z(—l)iq(aq—i®"'®aq®a0®"'®aq—l—i®l)_
— Z(_l)(ifl)CI(]_@ ag-i ®...®%®%®...®%717i).

This leads to a new structure called a mixed complex which is a
complex with two operators one of degred and one of degreel
which commute in the graded sense, that is, anticommuteeruth
graded sense. This is the relatiBb+ bB = 0. Each mixed complex has
homology in the usual sense with its operator-&f Using the two op-
erators, we can associate a second complex, which can bghthofuas
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the total complex of a double complex associated with theechbom-
plex. The homology of this complex is called the cyclic hoogyl of the
mixed complex. This terminology is justified because thdicymmol-

ogy of a mixed complex associated with a cyclic object withwh to be
isomorphic to the cyclic homology of the cyclic object as defl in the
previous chapter. A second point justifying the terminglagthat there
is a Connes exact couple relating the ordinary and cyclicdiogy of a
mixed complex.

There are two advantages in considering mixed complexee Th
complex defining cyclic homology of the mixed complex is derahan
CC..(X) for a cyclic object. Then there are mixed complexes which do
not come from cyclic objects which are useful, namely the ocoe
responding to the normalized standard complekA) for Hochschild 62
homology.

2 Generalities on mixed complexes

Definition 2.1. Let A be an abelian category. A mixed complExs a
triple (X, b, B) where X, is aZ-graded object inA, b : X, —» X, is a
morphism of degree 1, andB : X, — X, is a morphism of degreel
satisfying the relations

b’ =0,B%2=0,Bb+bB=0.

A morphismf : X — Y of mixed complxes is a morphism of graded
objects such thaif = fbandBf = fB. A mixed complex is positive if

Xq=0ifg<0.

Let Mix(:A) denote the category of mixed complexes and i)
the full subcategory of positive mixed complexes.

Remark 2.2.We have the following functors associated with mixed
complexes. LetA denote an abelian category.

(1) The functor which assigns to a mixed compl&xk, B) the com-
plex (X,b) is defined Mix(A) — C(A) and it restricts to Mix
(A) - C*(A) to the full subcategories of positive objects. When
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it is composed with the homology functét : C(A) — Grz(A),
it defines the homologid (X) of the mixed objecKX.

(2) The functor which assigns to a cyclic objext the mixed ob-
ject (X, b, B) as in [I:2) is defined\(A) — Mix*(A), and when
composed with MiX(A) — C*(A) gives the usual simplicial dif-
ferential object whose homology is the ordinary homologyhef
cyclic object.

(3) Finally the standard cyclic obje€.(A) associated with an alge-
bra A over a ringk is a functor defined Alg — A(k) which can
be composed with the above functors to give a positive mixed
complex ofk-modules whose homology is in turn its Hochschild
homology.

Now we wish to define a functor MiXA) — C*(A) whose ho-
mology is to be the cyclic homology. There is a similar camgion
for Mix(A) — C(A) which is not given since it is not needed for our
purposes.

Definition 2.3. Let (X, b, B) be a positive mixed complex over an abelian
categoryA. The cyclic complex X[B], bg) associated with the mixed
complex K, b, B) is defined as a graded object ¥{B], = Xn®Xn_2®. ..
which is a finite sum sinc&X is positive andog : X[B]n — X[B]n-1 is
defined using the projectiong : X[B], — X by the relationpibg =
bp.1 + Bp_1. The cyclic homologyHC.,(X) of the mixed compleX.

is HC..(X) = H..(X[B]), the homology of cyclic complex associated with
X,

If the abelian categoryd = (k), the category ok-modules, then
the boundary in the cyclic complex can be described by itganan
elements Xn, Xn-2, Xn—4, . . .) € X[B]n, and the above definition gives

be(Xn, Xn-2, Xn-4. - . .) = (B(Xn) + B(Xn-2), b(Xn-2) + B(Xn-4), .. .).

Remark 2.4.To (X, b, B), a positive mixed complex over an abelian
complexA, we associate an exact sequence

0— (X, b)—> (X[B], bg) — (s 2X[B], bg) — 0
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wherei : X, — X[B]n is defined bypni = X, andpji = 0 fori <

n. Observe that is a monomorphism of complexes with quotient of
X[B] equal tos?X[B] which is X[B] shifted down by 2 degrees. The
exact triangle of this short exact sequence is the Connes exaple for
mixed complexes

S

HC.(X) HC.(X)

~,

H..(X)

and as usual de§j = -2, degB) = +1, and degd() = 0.

If we can show that the Connes exact sequence of the previeuseR
mark [Z4) is the same as the Connes exact sequence for a et
in terms of CC.(X), then we have a new way of calculating cyclic ho-
mology for a cyclic object and hence also for an algebra. Weiglo in
the next section.

First we remark that the above construction of the comp¥B],
bg) from a mixed complexX, b, B) can be viewed as the total complex
of a double comples3(X).

Definition 2.5. Let (X, b, B) be a positive mixed complex over an abelian
categoryA. The Connes double comple&(X) associated withX is
defined by the requirement th&(X)pq = Xq-p for p, g > 0O and 0
otherwise, the dierentiald’ = Bandd” = b.

The double comples(X) is concentrated in the"? octant of the
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first quadrant, that is, above the lipe= g in the first quadrant.

X
Tw
=
Tw
£
Tw
Tw
=
Tw

Xo

<—'Z<<—:<—

(=

The associated single complex of the double comg@éx) is just
X[B], bg. Once again one can see the double periodicity which arises
by deleting the first column.

3 Comparison of two definition of cyclic homology
for a cyclic object

We have two functors defined on categadyA) of cyclic objects over
an abelian categoryl with values in the category of positive complexes
C*(A) overA. The first isCC,(X), the associated complex of the cyclic
homology double complegC..(X), and the second iX.[B] where X.,

b, B is the mixed complex associated with see[[T11) and(1l.2)

Notation 3.1.For a cyclic objecX. over an abelian categorfl we de-
fine a comparison morphisrh : X.[B] —» CC,(X) by the following
relations in degrea. For f, : X.[B], — CCy(X) we require that

pri fori even
prif = .
SN pri_1 foriodd
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where is degrea the diagram takes the form

X.[B]n = i Xne2i — LLi Xnsi

lpn

Xnsi-

If X.is a cyclick-module, then this definition can be given in terms
of elements,

f(an Xn—2, Xn—4, .. ) = (Xn, S,N Xn—2, Xn—2, S,N Xf'l—4’ Xn—r, . )

Lemma 3.2. The graded morphism :fX.[B] — CC,(X) is a morphism
of differential objects.

Proof. There is a general argument that says that abelian categatie
be embedded in a category of modules. The result is that weleok
the commutativity off with boundary morphisms using elements. Now
the diterential of

f(Xn, Xn-2, Xn-4, . . .) = (Xn, SNX-2, Xn-2, SNXq-4, Xq-4X. . )
is the element 66
(bX% + (L —t)S'NX_2 —b'SNX_2 + NXy_2,...).
If we apply f to the element
be(Xn, Xn-2, Xn-4, - - -) = (0% + BXy-2,0%-2 + BXy4,.. ),
then we obtain
(6%, + BX_2, SNbX%_2 + SNBX_4,...).

A direct inspection shows that theflidirential of f (Xn, X_2,...) and
f(bs(Xn, Xn_2, . . .)) have the same even coordinates. For the odd indexed
coordinates, we calculate

S’NbX]_z + S’NB)§1_4 = S’NbX]_z + S’N(l—t)S’NXn_4
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= S’b/NXn_z
= NXy2 — b’S’NXn_z.

This shows thaff is a morphism of complexes and proves the lemma.
i

The following result shows that the two definitions of cydiizmol-
ogy are the same.

Theorem 3.3. Let X. be a cyclic object in an abelian catego. The
above comparison morphism:fX.[B] — CC,(X) induces an isomor-
phism Hf) : H.(X.[B]) — HC.(X).

Proof. The first index of the double complek. determines a filtration
FpCC.(X) onCC,(X) where

FiCC(X) = || X

i+j=ni<p

and there is a related filtratidh, X.[B] on X.[B]

FpX[Bln= | [ Xna.
2i<p
From the definition off, we check thatf is filtration preserving.
The morphismE(f) is a monomorphism and® = b with EJ () and
isomorphismEj, ., . X.[B] = 0, andEj], ,, ,CC(X) acyclic. ThusE*(f)
is an isomorphism. By 1(5.6) the induced morphisihx(f) is an iso-
morphism. This proves the theorem. m|

Remark 3.4.The morphismf considered above can be viewedfas
B(X). = X.[B] = CC,.(X). These complexes come from double com-
plexes with a periodic structure. The first vertical colunirBoX) maps

to the total subcomplex oEC,.(X) determined by the first two verti-
cal columns ofCC..(X). The resulting subcomplexes have homology
eqgual to Hochschild homology while the quotient complexagehthe
form of B(X). and CC.(X) respectively. We arrive at a sharper form
of the isomorphism in{313), namely th&tinduces an isomorphism of
the Connes’ exact couple defined by mixed complexes onto dhe€s’
exact couple defined by the cyclic homology double complex.
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4 Cyclic structure on reduced Hochschild complex

In 3(2.6), we remarked that for a simpliciamoduleX, the subcomplex
D(X) generated by degenerate elements was contractible, aadHé
quotient morphism induces an isomorphism on homology

H.(X) = H.(X/D(X)).

For the standard comple3.(A) of an algebraA the quotient com-
plexC.(A)/DC.(A) is the reduced standard compléx(A) where

Cy(A) = A A”

as noted in 3(2.7). To study the cyclic homolog{.(A) with the re-
duced standard complex, we use the mixed complex construatid
the following formula for the Connes’ operatBr

Proposition 4.1. The operators b and B on the standard comple} 68
define operators b and B on the quotient reduced standard lexmp
C.(A) given by the formulas

blag®---®ag) =apa®a®- - ®ay
+ Y (e eaaa e ea
O<i<q
(-D%qao®a ® - ® ag-1
where the ambiguity inga; and in &ag is cancelled with the terms4 1
and i= q - 1respectively in the sum and

Bao®- - ®ag) = Z (-1)91@a® -®a;0a® - ®a 1.
1<i<q
Proof. The first formula is just a quotient of the usual formula, aod f
the second we calculate immediately that
sN(@p ® - - ® ag) = Z (-1)91®a® - ®a®a® - ©a 1.
1<i<q
The statement follows from the fact thatN(ap ® - - - aq) = 0 in the

reduced complex with 1 in the nonzero place giving a degegaaad
the formulaB = (1 — t(sN. This proves the proposition. O
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Now we rewrite theb, B double complex for the reduced standard
complexC, (A) whereCy(A) = A® A™. Itis in this form that we will
compare it with complexes of filerential forms in the next two chapters.

AgATYE B AgA¥ B

lb lb ib - Tb
cee e eee e A
lb lb

AR® B AgA B A

lb b

A A



Chapter 6

Cyclic Homology and de
Rham Cohomology for
Commutative Algebras

THIS CHAPTER DEALS with the relations between Hochschild he9
mology and de Rham cohomology for commutative algebras.hén t
case of algebras over a field of characteristic zero, we cdartieer to
prove that the de Rham cohomology groups occur as components-
rect sum expression for cyclic homology. We begin with auston of
differential forms and show how closely related they are to Hzdhts
homology. Then we introduce a product structurd-ath, (A) in the spe-
cial case wherd@ is commutative. This gives us a comparison morphism
between graded algebras, and then we sketch the Hoch&astdnt-
Rosenberg theorem which says that this morphism is an iquson

for smooth algebras. We then calculate the cyclic homoldgnmoth
algebras over a filed of characteristic zero. This is a casremine first
derived couple of the Connes’ exact couple splits and thedifieren-
tial is the exterior dierential of forms.

Finally, we continue with a discussion of the algelira= C*(M)
of smooth functions on a manifold and prove Connes’ theorghich
says roughly that this smooth case is parallel to the algedsa.

71
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1 Derivations and differentials over a commutative
algebra

In this section, lefA denote a commutative algebra oker

Definition 1.1. Let M be anA-module. A derivatiorD of A with values
in M is ak-linear mapD : A — M such that

D(ab) = aD(b) + bD(a) for abeA.

Let Del(A, M) or just Der@, M) denote thé-module of all deriva-
tions of A with values inM.

The module Det§, M) has a leftA-module structure whereD is
defined by ¢D)(a) = cD(a) for ¢, a € A. ForM = A the k-module
Der(A, A) has the structure of a Lie algebra okewhere the Lie bracket
is given by D, D’] = DD’ -D’D for D, D’ € Der(A, A). A simple check
shows thatD, D’] satisfies the derivation rule on products.

Definition 1.2. The A-module of Kahler dierentials is a pair,Qi/k, d)
WhereQ'lA/k, or Q% or simplyQ?, is anA-module andd : A — Q}A/k is a
derivation such that for any derivatidh: A — M, there exists a unique

A-linear morphismf : Q}Vk — M with D = fd.

The derivationd defines arA-linear morphism
Homa(Qy . M) — Deri(A, M)

by assigning tof € HomA(Q/le, M) the derivationfd € Der(A, M).
The universal property is just the assertion that this mismlis an iso-
morphism ofA-modules. The universal property shows that two pos-
sible A-modules of diferentials are isomorphic with a unique isomor-
phism preserving the derivatiah

There are two constructions of the module of derivatiﬂj%. The
first one as the first Hochschild homolokymodule ofA and the second
by a direct use of the derivation property.
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Construction of 9; I(1. 1.3.Let | denote the kernel of the multiplica-
tion morphismg(A) : A® A — A. To show that

Qp = /17 = HHy(A),

we givel /12 anA-module structure bgx = (1® a)x = (a® 1)x, observ-
ingthat lea-a®leland (l®ea-a® l)xel?forac A xel. We
define

d:A-1/1? by d@)=(1®a-a®l)modl? for acA,
and check that it is a derivation by 71

d(ab) =1@ab-ab®1
=(1l®a)(leb-bel)+(bel)(l®a-a®l)
= ad(b) + bd(a).

To verify the universal property, we consider a derivation A —
M, and note thaf (a® b) = aD(b) defined onA® A restricts tol. Since
D(1) = 0, we see thaf(d(a)) = f(l®a—a®1l) = D(a) or fd = D.
The uniqueness dof follows from the fact that, and hence alsby1?, is
generated by the image df This is seen from the following relation,

Q,aeb=) (@el)(leb-bol)= ) ady

which holds forZa; ®b; € | or equivalently ifZaibi = 0inA. Finally,
i i

we note thatf(1%) = 0 by applyingf to (Za; b)lec-cel)to
i

obtain
i[> aebc- > ace bi) = > aD(bio) - > acD(b)
- [Z abi]D(c) =0.
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Thusd : A — 1/12is a module of dierentials.

Construction of Q}A/k II. 1.4. Let L be theA-submodule ofA ® A
generated by all ®ab—a®b - b® afor a, b € Awhere theA-module
structure orA® Ais given byc(a®b) = (ca)@bforce A, a®b € A®A.
Next, we define : A - (A® A)/L by d(b) = (L®@b)modL and from the
nature of the generators &f it is clearly a derivation. Further, D €
Der(A, M), thenf : (A® A)/L — M defined byf (a® bmodL) = aD(b)

is a well-defined morphism o&-modules, and it is the unique one with
the property thatd = D.

Remark 1.5.In the first construction, we saw thﬁt}w = HH;(A) and
in the second construction we see that

Qp i = Cokerp : Co(A) = A% — A% = Cy(A)

in the standard complex for calculating Hochschild homplddow we
introduce the algebra of allflerential forms in order to study the higher
Hochschild homology modules in terms oftérential forms.

Definition 1.6. The algebra of dferential forms over an algebra is
the graded exterior algebra,Q; over A, denotedQ;, or Q} . The
elements ol’QqA = A“AQ}A are called dterential forms of degreq, or

simply g-forms overA.

A g-form is a sum of expressions of the forapda, ... dag where
ag,...,ag € A If Q,lA is a freeA-module with basigla, ..., da,, then
QqA/k has a basis consisting of

da)...dag forall i(1)<...<i(q)
as anA-module.

Remark 1.7.The algebra(l;/k is strictly commutative in the graded
sense. This means that

(l) wiwo = (—1)pqcu2a)1 for wp e Q‘K/k’ wy € QqA/k
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(this is commutativity in the graded sense), and
(2 w?>=0 for w ofodd degree
(this is strict commutativity).

Moreover, the exterior algebra is universal for strictlyrooutative
algebras, in the sense thatfif: M — Hj is ak-linear morphism of a
k-module into the elements of degree 1 in a strictly comnmudatigebra
H, then there exists a morphism of graded algebraa*M — H with
the property thaf = h,, = A’M — H™.

SinceQ/le — HH3(A) is a natural isomorphism b{{1.2), we wish
to define a strictly commutative algebra structuretdH.(A) for any
commutative algebrA. We do this in the next section, and before that,
we describe the exterior derivative which also arises froenuniversal 73

property of the exterior algebra.
Proposition 1.8. There exists a unique morphism d of degrdalefined
Q,*A/k - Q;/k satisfying

(@) d?=0

(b) dis a derivation of degreel, that is,

d(wiwy) = (dwr)wz + (-1)Pwi(dwy) for ws € Qﬁ/k, wy € Qi/k.

(c) d restricted to A= Q0 is the canonical derivation dA — Q.

Proof. The uniqueness follows from the relation

d(aody, . .. dag) = dagday . .. dag

since the elementgyd, . .. dag generateﬂqA = AqﬁlA, and the existence
is established with this formula. O

Definition 1.9. For an algebraA overk, the complex s(z;/k, d) is called

the de-Rham complex @&, and the cohomology algebra*(QZ/k, d),

denotedH/(A), is called the de Rham cohomology Abverk.
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2 Product structure on HH..(A)

The basis for a product structure is usually a Kiinneth merpland a
Kiinneth theorem which says when the morphism is an isonmrph
The Kunneth morphism usually comes from the morphisrfor the
homology of a tensor produet. ® Y. of two complexes.

Definition 2.1. Let X. andY. be two complexes df-modules. The ten-
sor Kiinneth morphism is

a:H.(X)®H.(Y.) » H.(X.®Y.)

defined by the relatioa(u ® v) = w whereu € Hy(X) is represented
by x € Xp, v € Hq is represented by € Yq andw is represented by
X®Y € (X®Y)psq-

If kis a field, theny is always an isomorphism. Under the assump-
tion thatX. andY. are flat ovelk, it follows thata is an isomorphism if
eitherH.(X.) or H.(Y.) is flat overk.

Remark 2.2.Let B and B’ be two algebras ovet. If L is a right B-
module and.’” a right B’-module, therL ® L’ is a rightB ® B’ module,
and if M is a left B-module andV’” a left B’-module, therM ® M’ is a
left B® B’-module. Using the natural associativity and commutativit
isomorphisms for the tensor product okemwe have a natural isomor-
phism

0:(LegM)®(L'®g M) - (L® L)ggr (M ® M’).

If P. — L is a projective resolution of overB, and if P, — L’
is a projective resolution of’ over B, thenP.@ P, - L® L’ is a
projective resolution oL ® L’ over B ® B’. This assertion holds in
either the absolute projective kisplit projective cases. Combining the
isomorphism of complexes

(P.®s M)® (P.®s M) = (P.® P") ®err (M ® M)

with the Kiinneth morphism of{24.1), we obtain the following
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Kunneth morphism for Tor 2.3. Let B and B’ be two algebras with
modulesL and M over B andL’ and M’ over B’. The isomorphisn®
extends to a morphism of functors

@ Tor¥(L, M) ® Tor®' (L, M") - Tor®*® (Lo L, M@ M)

which we call the Kiinneth morphism for the Tor functor. Thisr-
phism is defined for both the absolute dadplit Tor functors.

Let AandA’ be two algebras, and form the algebA&s= A®A°P and
A = A@A°P. There is a natural commuting isomorphisAg(A’)® —
A% ® A’® which we combine with the Kiinneth morphism for the Tor to
obtain:

Kunneth morphism for Hochschild homology 2.4.Let M be anA- 75
bimodule, and leM’ be anA’-bimodule. A special case of the Kiinneth
morphism for Tor is

@ Hao (A M)® H (A, M) = H (A A, M & M)

called the Kiunneth morphism for Hochschild homology. Imtigalar,
we haver : HH.(A) ® HH.(A") -» HH.(AQ A').

Definition 2.5. The Kiinnethmorphisms for Tor and for Hochschild ho-
mology satisfy associativity, commutativity, and unit peoties which
we leave to the reader to formulate. Kfis a field, then the Kiinneth
morphism is an isomorphism.

We are now ready to define the product structa(elH.(A)) on
HH.(A) when A is commutative. Recall that an algebdas commu-
tative if and only if the structure morphism is a morphism lgfedras
ARA—- A

Definition 2.6.For a commutativek-algebra A the multiplication
¢(HH..(A)) on HH,(A) is the compositéiH..(¢(A))a defined by

HH.(A) ® HH.(A) - HH.(A® A) — HH,(A).

From the above consideratiohkH, (A) is an algebra which is com-
mutative ovelA = HHg(A) in the graded sense.
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Remark 2.7.Let B — A be an augmentation of the commutative alge-
braB. If K, —» Ais aB-projective resolution ofA such thatk, is a
differential algebra and, — A is a morphism of dferential algebras,
then we have the following morphisms

(A®s K,) ® (A®s K.) = (A® A) ®pggs (K. ® K,) > A®g K,

where the first is a general commutativity isomorphism fa tbnsor
product and the second is induced by the algebra structures &
andK.,. If the composite is denoted hy, then the algebra structure on
TorB(A, A) is the Kilnneth morphism composed wit{y) in

H(A®sK,)® H(A®s K,) = H((A®s K.)® (A®s K.)) = H(A®Bs K,).

Remark 2.8.There is a naturaA-morphism of the abelianization of
the tensor algebr&a(HH1(A)) on HH4(A), viewed as a graded algebra
over A = HHg(A) with HH1(A) in degree 1 define@a(HH1(A)® —
HH..(A). This is a morphism of commutative algebras. Since thersqua
of every element irHH1(A) is zero, we have in fact a morphism of the
exterior algebra ol H;(A) into HH..(A),

U(A) : Aa(HH1(A)) —» HH.(A).

Note that ifk is a field of characterisitic fierent from 2, then the
natural algebra morphisifia(X)2® — Aa(X) is an isomorphism wheX
is graded, with nonzero terms in odd degrees.

In this chapter we will show that(A) is an isomorphism, for a large
class of algebras which arise in smooth geometry.

We conclude by mentioning another way of defining the produact
HH..(A) by starting with a product, called the $ia product, on the
simplicial objectC.(A). In the commutative casg.(A) is a simplicial
k-algebra, i.e. eaciy(A) is ak-algebra and the morphisndsands; are
morphisms of algebras.

Definition 2.9.Let R. be a simplicialk-algebra. The shile product
Rp®Ry — Rp.q is defined by the following sum far € Ry, ands € Ry,

af=) euy)(s@)(sB) i Roq
yIR%
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whereu, v is summed over allg, p) shufle permutations of [Q..,p +

g — 1] of the form (u1,...,uq,v1,...,vp) Whereu; < ... < uq and

V1 <...<vp. Alsoe(u,v) denotes the sign of the permutatioyv, and 77
the iterated operators are

§.(@) = S+ (54(@))..) and S,8) = (... (5,(8)...).

Remark 2.10.With the shiifle product on a simplicidt-algebraR., the
differential module R., d) becomes a dlierential algebra ovek. If R.
is a commutative simplicial algebra, theR.(d) is a commutative dif-
ferential algebra. This applies tdH..(A) for a commutative algebra,
and again we obtain a natural morphism

A*HH1(A) > HH.(A).
Example 2.11.Fora = (a, X), 8 = (&, y) the shiffle product is

a.f = (Sa) - (s18) — (s12)(s0B) = (&, x, 1)@, 1y) - (a1, x)(@,y,1)
= (ad,xy) — (ad,y, X).

Foraj = (aj, Xj) wherej = 1,.. ., pthis formula generalizes to

aj...ap = Z Sgr(a)(al .- 8p, X(Y(l)’ T X“(p))'
aeSyrrb

3 Hochschild homology of regular algebras

In this section we outline the proof that Hochschild homglegjust the
Kahler diferential forms for a regulat-algebraA, i.e. thatHHg(A) is
isomorphic tquA/k. We start with some background from commutative
algebra.

Definition 3.1. A sequence of elements, ..., Yyq in @ commutativek-
algebraB is called regular provided the imagepfin the quotient alge-
braB/B(yi,...,Y¥i-1) is hot a zero divisor.
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Let K(b, B) denote the exterior flierential algebra on one generatars
x in degree 1 with boundargix = b € B = K(b,B)g. If y1,...,ygis a
regular sequence of elements, then

K(i, B/B(Y1. ..., Yi-1) = B/B(y1,.... %)
is a free resolution oB/B(yx, . . ., i) by B(yi, . . ., Yi—1)-modules.

Notation 3.2.Let B be a commutative algebra, and et . . ., by, be el-
ements oB. We denote byK(by, ..., by) the diferential algebra which
is the tensor product

K(bl, .o, bm B) = K(bl, B) Rp ... K(bm, B).

This algebra is zero in degregs- mandq < 0 and free of ranky)
in degreqy, further the diferential on a basis element is given by

d(Xk(l) A A Xk(q)) = Z (—1)i_lbi(Xk(1) AN AXG A A Xk(q)),

1<i<1

and the augmentation is definedKgbs, . .., by B) — B/B(b, ..., by).
Filtering K(Bg, . .., bm; B) in two steps with respect to degreeskdbn,
B), and looking at the associated spectral sequence, wendbstaiedi-
ately the following proposition.

Proposition 3.3. For by, ..., b, a sequence of elements in a commuta-
tive algebra B the augmentation morphism induces an isohismp

Ho(K(bl, ceey bm; B) — B/B(bl, ey bm)

If by, ..., bmis aregular sequence, then the augmentation morphism
induces isomorphismsdgK (b, ..., bm; B)) — B/B(by, ..., by) and

K(by, ..., bm: B) — B/B(by,..., bm).

This resolution is called thEoszul resolution of the quotient ofB
by freeB-modules.
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Definition 3.4. An ideal J in a commutativek-algebraB is said to be
regular if it is generated by a regular sequence. An algébia ¢-
regular provided the kernél of ¢(A) : A® A — Alis regular in the
algebraB = A® A.

The next theorem is the first case where we identify the Hdtlsc
homology of a commutative algebra as the exterior algebrénerfirst
Hochschild homology module.

Theorem 3.5. If A is a commutative-regular algebra, then the natural
morphisms of algebras

or equivalently
AA(I/1%) = Q) = HHL(A)

is an isomorphism of graded commutative algebras.

Proof. By (I.H) we have the natural isomorphisms betwédt,(A),
1/12 andQy .. By hypothesis foB = A® A the previous proposition
@32) applies and we have a resolution &f= B/I by a diferential
algebra of freeB-modulesK, = K(by,...,bn; B) — A, such that the
augmentation morphism is a morphism of algebras. Héhide(A) =
H..(K(by, ..., bm; B) ® A since the coficients in the formula of{312)
are inl and the resulting algebra ovéris the exterior algebra oly!2.
This proves the theorem. O

Remark 3.6.The hypothesis of being @éregular algebra is rather re-
stricted, except in the local case where it is equivalenh&rhaximal
ideal being generated by a regular sequence. This mearth¢habove
construction applies to a regular local algebra, i.e. d lalggbra whose
maximal ideal is generated by a regular sequence.

Definition 3.7. An algebraA over a fieldk is regular provided each lo-
calisationAg at a prime ideail is regular.

These are the algebras with the property that their HoclisbioF 80
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mology is the algebra of flierential forms. This leads to the theorem of
Hochschild, Kostant and Rosenberg.

Theorem 3.8. The natural morphism of graded commutative algebras

Q,*A/k — HH.(A) is an isomorphism for a regular algebra A over a field

Proof. For each prime idedp in A, the localisation of this morphism in
the statement of the theorem

Qp k= (Qads = HH.(A)y = HH.(Ag)

is an isomorphism byf(3.5). Hence the morphism is an isomsmphy
a generality about localisation at each prime ideal. Thisgs the main
theorem of this section. m]

4 Hochschild homology of algebras of smooth func-
tions

In this section we outline the proof that Hochschild homglagjust the
algebra of diferential forms for an algebr of smooth complex valued
functions on a smooth manifold.

Remark 4.1.Let X be a smootm-dimensional manifold, and\ =
C*(X) denote the algebra of smooth complex valued functions<on
Then the Lie algebra of derivations REC (X)) is just the space of
smooth vector fields oX with complex coéficients, and2j = A*(X)
is the A-module of 1-forms an@9(X) is the A-module ofg-forms onX.
This means thatiH.(A) = AY(X), by the characterization ¢1H1(A) in
terms of Kahler 1-forms of a commutative algebra. We willlioe the
proof thatHHg(A) = AY(X), the module ofy-forms overA = AS(X), the
algebra of smooth functions o1 Thus we have the same calculation in
degree 1, and following the lead from the previous sectiamsee that
there must be a resolution of the ideal KHE)RA(X) — A°(X)). This
we do by relating this multiplication wit%(X x X) — A%(X) coming
from restriction to the diagonal. Observe that there is aheaxding
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A%(X) ® AP(X) — AO(X x X)

given by assigning to a tensor product of functions, a famctf two
variables and then using the normal bundle to the diagonékiX. The
result corresponding to thieregular algebra construction is the follow-
ing proposition.

Remark 4.2.Let E — Y be a complex vector bundle with dual bundle
E~ If seI'(Y,E) is a cross section d&, then its inner product with an
element of a fibre oE defines a scalar varying from fibre to fibre. We
define a morphisng : E~— AC°E7; the trivial bundle. Thiss™ extends
to a complex

S ANE S AE S AE 0
which is exact at all points whee# 0.

Now assume that is a smooth manifoldk is a smooth vector bun-
dle, andX, the set of zeros o$ is transverse to the zero section, and
that the tangent morphisihs, : T,Y — E, is surjective. TherX is a
submanifold ofY of codimensiong whereq = dimE and the normal
bundle to the zero sein Y is isomorphic tcE|x.

Proposition 4.3. With the above notations the complex of Fréchet spa-
ces

s
RIYVE):... > T(Y,AE) STYLIE) - .

res

s s
.. ST, A'E) S I(Y) = TI(X) > 0
is contractible.

Proof. The first step is to show that if the result holds locally, tlien
holds globally. Lety = U U; be an open covering with a smooth parti-
il
tion of unityZ ni = 1 whereU; > closure ofiy;1((0, 1]) andR(U;, E)
il
is contractible with contracting homotojyfor eachi € I. Forr: E — 82
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Y the complexR(Y, E) has a retracting homotopy
h() = > e (Ny,)-
il

If N is the normal bundle oX in Y, then the induced tangent map-
pingds, : Nx — Ey is an isomorphism by the transversality hypothesis.
Thus locally the bundle is of the form

RIXRIxRP=T(RY) xRP - RIxRP

with projection from the middlRY coordinate ofT(RY) — RY with
parameters fronRRP. m|

Remark 4.4.For a submanifoldX of Y and a smooth bundIE overY,
the restriction from the space of cross sections inducesanarphism
F(X)Qr(y)F(Y, E) i F(X, E|X)'

Theorem 4.5. For a smooth manifold we have a natural isomorphism
HHG(A(X)) — T(X, A9T*(X)) = AY(X).
We do not give a proof of this theorem here see Connes [1985].

5 Cyclic homology of regular algebras and smooth
manifolds

We calculate the cyclic homology by comparing the basicdsteshcom-
plex with the complex of dferential forms. For this, we consider a ba-
sic morphism from the standard complex to the complex fiedéntial
forms and study to what extent it is a morphism of mixed comxgde

Notation 5.1. The morphismu is defined in two situations:

(1) Let A be a commutative algebra over a fidddf characteristic
zero. Denote by : A% — Il defined by

w@o®...®a) = (1/q)agday .. . day.
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83 (2) Let X be a smooth manifold. Denote hy: A%(X%*1) — AJ(X)
defined by

1(f (X0, ... X)) = (L/Q)A*(Fdy f ... dyf)

whered; f(Xo, . . ., Xq) is the diferential off along thex; variable
in X% andA : X — X%1is the diagonal map.

Remark 5.2.Both A%lg and A°(X%1) are the terms of degreg of
cyclic vector spaces and hence the operdia@sdB are defined. Under
the morphismu we have the following result.

Proposition 5.3. We have, with the above notations
ub=0 and uB=du
where d is the exterior ¢ierential on diferential forms.

Proof. Givenay ® - - - ® aq € AG*1®, we must show that the following
sum of diferentials is zero,

apaday ... dag + Z (—1)ia0da1 ...d(@a1) ... dag + (—1)%aga0da; . . . dag1.
O<i<q

A direct check shows that terms with dheientsapa; come in pairs
with opposite signs. Hengeb = 0. Sinceu factors throung@ﬂq®, we
can calculate by 5(4.1),

(,JB)(ao®...®aq):y(Z(—1)iq(1®ai®...®aq®ao®...®a;+1)
O<i<q

= (1/(q+ 1))(q + 1)da . .. dag
= (1/g})d(apday . . . dag)
= du(apday .. . day).

This shows that:B = du. The above calculation works also f@in
the smooth manifold case. This proves the proposition. O
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Remark 5.4.The above morphism induces a morphism
p: HHg(A) — Q“A/k

which when composed with the natu@ﬂ/k — HHg(A) on the right 84

is multiplication byqg + 1 on QqA/k. Thusu is a morphism of mixed
complexes
1 (C.(A), b, B) —» Q" (A/k,0,d)

which induces an isomorphiskiH..(A) — Q3 . Thus the mixed com-
plex of differential forms ¢, Ko 0, d) can be used to calculate the cyclic

homology ofA or A%(X).

Theorem 5.5. Let A be a regular k-algebra over a field k of character-
istic zero. Then the cyclic homology is given by

— —2 _
HCp(A) = QR /R © HEZ(A) e HEZ (A @ ..

Let A be theC-algebra of smooth functions on a smooth manifold.
Then the cyclic homology is given by

HCp(A) = AP(X)/dAP1(X) @ HE2(X) @ HE(X) @ ...

In both cases, the projection of H(®) onto the first term is induced
by u and in the Connes’ exact sequence, we have:

1. 1 : HHp(A) — HCp(A) is the projection of HH(A), the p-forms,
onto the first factor of HG(A),

2. S: HCp(A) — HCp_»(A) isinjection of the first factor of HG{A)
into the second factor B];f and the other factors map isomorphi-
cally on the corresponding factor of HC,.

3. B: HCp2(A) — HHp_1(A) is zero on all factors except the first
one where itis d QP2/dQP-3 - QP1,

Finally in the first derived couple of the Connes’ exact ceupke
have B= 0 and the exact couple is the split exact sequence

0 — HHp — HHp@HH, 20HH 4@... » HHp 2@HH, 4@... — 0.
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Proof. Everything in this theorem follows from the fact that we cait ¢
culate cyclic homology, Hochschild homology, and the Cahmesact
couple with the mixed complex), 0,d) and it is an easy generality on
mixed complexes with the firstferential zero. O

6 The Chern character in cyclic homology

Recall that for topologicaK-theory, we have a ring homomorphism
ch: K(X) - H*(X, Q)

such thatch® Q is an isomorphism. Here the superscitdenotes

the homology groups of even degree. We wish to define a sequenc
of morphismschy, : Ko(A) — HCyn(A) for all m such thatS(chy) =
chy1, in terms of S : HCom(A) — HCom 2(A). In this sectionk is
always a field of characteristic zero.

Remark 6.1.K-theory is constructed from either vector bundles over
a space or from finitely generated projective modules ovéna The
vector bundles under consideration are always direct surdmaf a
trivial bundle. In either case, it is a direct summand whitepresented
by an elemene = € in a matrix ring M,(A) over A. HereA is an
arbitrary ring or the algebra of either the continuous fiorg on the
space or of smooth functions on a smooth base manifold. Quoaph
to the Chern character is motivated byféiential geometry where a
differential form construction of the Chern character is madefe.
The choice ok = € is not uniquely defined by the elementloftheory
but it amounts to the choice of a connection on a vector bundle

Proposition 6.2. If e = € € M,(A) for a commutative ring, then in

MrQ}&/k we have the relations

ede =dgl-¢e and (dee=(1-e€e)de
In particular, §de)e = 0 and €de)? = (de)?e where M(A) acts on 86

MrQ}A/k by matrix multiplication of a matrix valued form with a madri
valued function on either side.
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Proof. We calculatede = d(€?) = e(de) + (de)e and use this to derive
the relations immediately. m|

Remark 6.3.Fore = & € M(A) we denote by['(E) = im(e) c A"
where we think ofl'(E) as the cross sections of the vector bunBle
corresponding t@. The related connection 3(s) = edsfor s € T'(E)
whereedse I'(E ® Q}Vk), and the curvature is

D?s = edled$ = e(de)2.

In order to see how the second formula follows from the first, w
calculate

eded9 = ededs= edede9 = eddde)s + e(deeds= e(de)’s.
Thus the curvature is given iy’ = e(de)? and this means that
(D?)7 = e(de)® ... (de)® = e(de)™

which leads to the following definition by analogy with clesd differ-
ential geometry.

Definition 6.4. The Chern character form ef= € € M,(A) with cur-
vatureD? = e(de)? is given by the sum

ch(e) = tr(e™) = > (1/a)tr(e(de)™).

=0

Now we will see how this Chern character form defines a class in
cyclic homology. The guiding observation is the fact thatap scalar,
tr(e(de)?) is u(tr(e@+12)) whereu was introduced if{5l1) of the pre-
vious section. We have two preliminary results in the cyhlienology
complex.

Proposition 6.5. Let A be an algebra over a field k. For an element
ae Aand d4D® € Cy(A) in the standard complex, we have

(t — 1)@y = —2a@12 for g odd
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= Ofor q even.
For e = € € A and é™1® € C4(A) we have the relation

b(el@ 12 = &*® for g even
= 0for g odd.

Proof. The first formula follows from the relation@@1®) = (-1)
a2 Sincee = eethe sumb(e@1®) is an alternating sum af + 1
termse®®, and they either cancel to yield zero or reduce®®. This
proves the proposition. O

Corollary 6.6. If e = € € M,(A), then the boundary
b(tr (€24 Y®)) = 01in Cpq_1(A)/im(1 - 1).

Thus t(e@4D®) defines a class ge) € HCyq(A), for e = € ¢
M;(A) and this is the Chern character form upto a scalar factor. sThi
was the aim of this section, and we finish with the followingnsary
assertion.

Theorem 6.7. Let e= € € M,(A) with Chern character form ¢fte) =
(1/ghtr(e(de)?) in degree2q. Then in degre€q we have

(chy(©) = chy(e) in HCxq(A).

Moreover, under S HCyy(A) — HCxq-2(A), we have for this Chern
character class, §&hy(E)) = chy-1(E).






Chapter 7

Noncommutative Differential
Geometry

IN THE PREVIOUS chapter, we developed the close relatignigi- 88
tween diferential forms and de Rham cohomology on one hand and
Hochschild and cyclic homology on the other hand, for conatinvg al-
gebras. In this chapter, we explore the relationship in treegal case,
using the concept of the bimodule offidrential forms, which we de-
note byQ(A/K). As before, these forms are relatedl taghe kernel of

the multiplication maps(A) : A® A — A, and in fact in this case, we
haveQ(A/K) = 1.

1 Bimodule derivations and dfferential forms

In this section leA denote an algebra ovkr

Definition 1.1.Let M be anA-bimodule. A derivationD of A with
values inM is ak-linear mapD : A — M such that

D(ab) = aD(b) + D(a)b for a,b € A.

We denote by DefA, M) or just Der@, M) the k-module of all bi-
module derivations of\ with values inM.

91



89

92 7. Noncommutative Dierential Geometry

Unlike in the commutative case, Dé&¢(M) has noA-linear struc-
ture, but Derf\, A) is a Lie algebra ovek with Lie bracket given by
[D,D’] = DD’ - D’D for D, D’ € Der(A, A).

Definition 1.2.The A-bimodule of bimodule dferentials is a pair
(QY(A/K), d) whereQ(A/K), or simply QY(A) or Q, is anA-bimodule
and the morphisnd : A — QY(A/K) is a bimodule derivation such that,
for any derivationD : A — M there exists a uniquA-linear morphism

f : Q(A/k) — M such thatD = fd. The bimodule derivatiod defines
ak-linear morphism

Homa(QY(A/K), M) — Der(A, M)

by assigning to each morphisime Homa(Q1(A/k), M) of A-bimodules

the bimodule derivatiorfd € Der(A, M). The universal property is
just the assertion that this morphism is an isomorphism-afodules.

As usual, the universal property shows that two posdibteodules of
differentials are isomorphic with a unique isomorphism presgrthe
derivationd. As in the previous chapter, there are two constructions of
the module of derivation®'(A/k). The first uses = ker(p(A)) and the
second uses the relations coming directly from the deawgpiroperty.
They are tied together with an acyclic standard resolution.

Construction of Q1(A/k) I. 1.3. Let | denote the kernel of the mul-
tiplication morphismg(A) : A® A — A. We defineQ'(A/k) = | and
d:A—-lbyd@ =1®a-a®1lforaec Aandcheck that it is a
derivation by

dab)=1@ab-ab®1l
=(1®a)(leb-bel)+(lva-axl)(bel)
= ad(b) + d(@)b
where the left action oA on| c A® Ais given byax = (1 ® a)x and
the right action byxb = x(b® 1) in | for x € I. To verify the universal

property, we consider a derivatidn : A —» M. If 3;a®bj €1 orin
other wordsy’; ajb; = 0, then we have

2.,a(b)+ ) (Da)b =0
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from the derivation rule, and we defirfe: | — M by

f(Za ®bi] = ZaD(bi) = —Z D(a)bi.

Now f(d(a)) = f(l®a-a® 1) = 1D(a) —aD(1) = D(a), and hence
fd = D. Thus Q*(A/K), d) is a module of bimodule ffierentials.

Construction of Q1(A/k) 1. 1.4. Following the idea of 6(1.4), we
should consider thiesubmoduld. of AQA® A generated by all elements
of the formaga; ® ay ® az — ap ® yar ® ag + ag ® a; ® azag which is
justb’(ap ® a1 ® ax ® a3) for the diferentialb’ : C3(A) — C,(A) inthe 90
standard acyclic complex for the algel#&aSince C.(A), ') is acyclic,

we have a natural isomorphism

A%/ = cokerpy : A*® — A%®) S ker( = ¢(A) : ARA > A) = I.

To see the universal property fdfa) = 1® a® 1 modL, we note
first thatd is a derivation by the properties of the generatork ahd for
a derivationD : A — M we define a morphisnfi : A%¥/L — M by the
relation f(a® b® cmodL) = aD(b)c.

Remark 1.5. The moduleQ'(A/K) is generated by elemenasib for a,
b € Awith the left A-module structure given by

a’(adb) = (&’a)db
and the rightA-module structure given by
(adba’ = ad(ba) — (ab)da
fora, a,beA.

Now we proceed to define the bimodule gforms by embedding
QL(A/K) in a kind of tensor algebra derived from thebimodule struc-
ture. In this case, we factor tensor products dvess tensor products
over A, but we do not introduce any commutativity properties in the
algebra sincé\ is not commutative.
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Definition 1.6. Let M be anA-bimodule. The bimodule tensor algebra
Ta(M) is the graded algebra where in degree

TaAM)h=M®a...(n)...0a M

with algebra structure ovéergiven by a direct sum of the natural quo-
tientsTa(M)p®Ta(M)q = Ta(M)piq. In particularT a(M), is generated
by elements

X1 ®A " @aXn=X1...% for Xq,...,X, €M,

and in degree zerda(M)p = A

2 Noncommutative de Rham cohomology

Now we apply the above constructions, not directly to thelatgA, but
to k ® A viewed as a supplemented algebra with augmentation #leal
itself.

Notation 2.1.Let A¥ denote the algebra@ A given by inclusionk —
Af = k& A on the first factor. Sincé¥ is supplemented, we have a
splitting s : A* — A* @ A*, of the exact sequence

05 QYAH S Alg AT 5 AP S 0

defined bys(@) = a® 1. Thus there is a natural morphisi(A*) —
coker() and we have the following result.

Proposition 2.2. We have a natural isomorphism
§:A® (As A) — QYA

whereé(a, 0) = da anddé(0,a® b) = adb=a(1® b - b® 1). The right
A-module structure is given lgpda;)a = agd(a1@) — aga;da. Now we
define the algebra of all noncommutative forms.

Definition 2.3. The algebra of noncommutativefidrential forms is the
following tensor algebra (Q1(Af)) over Af. This is a graded algebra
andd extends uniquely tal on this tensor algebra satisfyirdf = 0.
More explicitly, we have the following description.



2. Noncommutative de Rham cohomology 95

Proposition 2.4. We have a natural isomorphism
5 AF® AP = AP® ¢ APHLE _, OP(AF)

wheref(a1 ®- - -®ap) = day ... day andé(ap®- - -®ap) = apday . . . da.
The right A-module structure o8P(A%) is given by the formula

(dag ...dap)b =day ...d(aph) — da; ...d(ap-1ap)db
+da...d(ap-2ap-1)dap + - + (-1)Parda; . . . daydh.

Moreover, H(Q*(A%) = k which is illustrated with the following 92
diagram

k A A2® Alp-1)e A®P
e /d & /d & - ® Ad ®
A A%® A3® AP® AP+

Definition 2.5. The noncommutative de Rham cohomology of an al-
gebraA over a field isH{ pr(A) = H*(Q*(A¥)?F), the cohomology of
the Lie algebra abelianization of thefidirential algebra of noncommu-
ative diferential forms ove’*. More precisely, forw € QP(A*) and
w' € QY(A¥) we form the (graded) commutatan[w'] = w— (-1)P%’ w
and denote byp* (Af), Q*(A")] the Lie subalgebra generated by all com-
mutators. The Lie algebra abelianization of the algebraiférntial
forms is

Q' (M) = Q' (A)/ (ke [Q"(AF), " (A)]).

To obtain an other version &*(A*)%, we use the following resuilt.

Proposition 2.6. Let S be a set of generators of an algebra B. For a
B-module M we havg, M] = >"[b, M].
beS

Proof. First, we calculate

[bb, x] = (bb)x — x(bk)
= b(b'X) — ('X)b + b/ (xb) — (xb)/
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= [b,b'x] + [1Y, xb].

Thus it follows that bby, X] € [b, M] + [b’, M]. Hence the set of all
b € B with [b,M] c Z[b, M] is a subalgebra oB containingS, and
therefore it isB. Thisbf)?oves the proposition. m]
Corollary 2.7. The abelianization of the algebra offfirential forms is
Q" (AP = Q' (AF)/{k + [A Q°(A)] + [dA Q" (A%)].

Definition 2.8.Let A be an algebra ovet. The noncommutative de
Rham cohomology of is

Hpr(A) = H* Q" (A).

SinceQ*(AH)? is a functor from the category of algebras okdo
the category of cochain complexes okethe noncommutative de Rham
cohomology is a gradekkmodule, but is does not have any natural al-
gebra structure.

3 Noncommutative de Rham cohomology and cyclic
homology

Now we relate the noncommutative de Rham cohomology witticcyc
homology over a fieldk of characteristic zero following ideas from the
theory of commutative algebras where the morphisisused.

Notation 3.1.Again we denote by
p Cq(A) - Q (A
the morphismu(ag ® - - - ® ag) = (1/9")apda; . . . day.
Proposition 3.2. The morphisnu satisfies the following identities
1. pb(ao ® -+~ ® ags1) = ((~1)**/a)[ag1, aoday . . . dag]
2. p(1-t)(a0®- - -®aq) = (1/q!)[aday . . . dag-1, daglmoddQa-1(A%).
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Proof. The composite:b is zero for a commutative algebra, see 6(5.3),
but this time the sum will not have the same cancellationkerdst two
terms. We have

glub(ao ® - - ® agr1) = dpaude . .. dagi1+

> (-1)agdar ... d(@ai.1) . .. dag.)
O<i<g+1

+(-1)%1ag,1a0day . . . day
= (-1)%apday . .. dagag1 + (-1)*tag1a0de . . . dag
= (-1)*[ag.1, aoday . . . dag).

For the second formula we have the calculation 94

ul-N@® - ®ag) =p@® - ®ay) - (-1)lu(agea e - ©ag1)
= (1/q!)(apday . .. dag — (-1)%agdag . . . dag-1)
= (1/9')(aoda . . . dag + (-1)dagaoday . . . dag_1)moddQ*
= (1/gq)[apday . . . dag-1, daglmoddQa.

From this proposition we state the following theorem of Gesin
where only the question of injectivity in the first assertismot covered
by the above proposition. As for the second assertion, shisdeeper
result of Connes which we do not go into, see Cannes [1985]. O

Theorem 3.3. The morphisnu induces an isomorphism
w AR (1 — ) AR 1 pAEF2®) 5 09/(dQI T + [dA QY + [A, Q1)

where, as usualQd = QI(A%). The left hand side has HA) as a
submodule ang restricted to the submodule

p = ker() = im(S) - Hyl Jo(A)

is an isomorphism on the noncommutative de Rham cohomofodly o
viewed as a submodule @ /(dQ9t + [dA Q9] + [A, Q)).
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4 The Chern character and the suspension in non-
commutative de Rham cohomology

Example 4.1.Let A = kewheree = € is the identity in the algebra
A and an idempotent i = k @ ke ThenQ(A*/K) is free on two
generatorsleandede and

QYA /K = k.e(de) for q = 2i
= 0 for g odd.

Remark 4.2.With this calculation we can carry out the construction of
chy(e) for € = e e Afor an arbitrary algebra overk. Namely, we map
the universakto the speciaé € A, and this lifts taQ*(ke') — Q*(A%) as
differential algebras by the universal property of the tensodyprt and
hence to

Q* (k)P - Q*(AfyP

as complexes and tlyyo(ke) — Hypr(A). The image ofd(de/q
is chy(E). Now we consider th& operator in noncommuative de Rham
theory which has the property that

S(e(de?)  e(de)?2
a  (g-1)

Remark 4.3.The natural isomorphism — A ® ke extends to a mor-
phism of diferential algebras

Q*(A) - O (A" ® Q* (ke')
with quotient morphism
Q (AN — QF (AN @ O (ke')*P
which on degregj is given by
QAN 5 Q42 (AN @ O (keh).

Now we consider the map picking out the foeient ofe{de)? which
we callS : QIAH)* — QI-2(AH)E. Observe tha$ is compatible with
d and we have the following formula.
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Proposition 4.4. For apda; ... dag € QYA we have

S(apda; ...dag) = Z agda ... da_1(aa,1)da,2 . .. dag.
1<i<g-1

Proof. Lett : Q%(ke")* — k be the linear functional such that 96
7((de)?) = 0 andr(e(de)?) = 1.
Then

S(apda; ...dag) = (1@ 7)[(ap®e)(day®e+a @de)---
(dyg®e+ag®de] +(1®7)

[[ > ada...day(@a)daz. .. daq] ® e(de)ﬂ

1<i<g-1

= > ada...da 1(aa1)daz. .. day.
1<i<g-1

This proves the proposition. O
Corollary 4.5. We have $hy) = chy-1.
Proof. Using [£.4) we calculate
S(e(de®) = (de)?9? + e(de)eqde)?d? + - ..
= ge(dg®*?
and hence we have the result indicated above, that

[5)- (@)

This is the statement of the corollary. O
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