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Chapter 1

Classical harmonic oscillator
in external fieldc:os

Classical simple harmonic oscillator (SHO) is a very important model for many physical

situations. When the potential energy of some interaction possesses a smooth minimum,

then in the vicinity of this minimum interaction energy can be approximated by a parabola

and that corresponds to the potential energy of SHO. This is the reason why SHO is such

an important model and why we start our lectures with the discussion of this model.

1.1 Equation of motion

We consider a one-dimensional harmonic oscillator with mass m, frequency ω0 > 0 and

electric charge q. The forces acting on the oscillator are as follows. The elastic force

Fe = −kx = −mω2
0x obeys Hooke’s law. The friction Ff = −mΓẋ is proportional to

velocity and directed in the opposite direction, this allows us to take Γ ≥ 0. Moreover, we

assume that the oscillator is driven by a classical time–dependent electric field E(t) which

exerts the force Fq = qE(t). The corresponding equation of motion follows immediately

from second law of dynamics and is of the form

mẍ = −mω2
0x−mΓẋ + qE(t). (1.1) os1a

We rewrite Eq. (
os1a
1.1) as

ẍ + Γẋ + ω2
0x = f(t), with f(t) = (q/m)E(t). (1.2) os1b

Equation (
os1b
1.2) is an inhomogeneous one. Whatever the method used for finding its

solution we need initial conditions. We will assume general initial conditions, that is

x(t = 0) = x0, ẋ(t = 0) = v(t = t0) = v0. (1.3) os2

In some particular cases, we shall use more specific initial conditions.

1.2 Solution to homogeneous equation

Solution to Eq. (
os1b
1.2) is a sum of a general solution to the homogeneous equation and of

a particular solution to the inhomogeneous one. Thus, we first consider the homogeneous

S.Kryszewski QUANTUM OPTICS 1



March 4, 2010 1. Classical harmonic oscillator in external field 2

equation, which reads

ẍ + Γẋ + ω2
0x = 0. (1.4) os4

We will seek the solution in the form e−iωt. It is as well possible to look for a solution

in another form, for example eλt. We, however adopt the former form, which is due to

the fact that we will further use the Fourier transform of the Green’s function. The

Fourier components of the time-dependent functions are taken to have time dependence

e−iωt. This explains the adopted form of the solution to the homogeneous equation.

Substituting our ansatz into equation (
os4
1.4) we find the quadratic characteristic equation

−ω2 − iΓω + ω2
0 = 0. (1.5) os6a

The discriminant is equal to 4ω0 − Γ2. At present, we assume that damping is weak,

so that the inequality 1
2
Γ < ω0 is satisfied, and then the discriminant is positive and the

characteristic roots are

ω1,2 = −iΓ

2
± Ω, (1.6) os6d

where we have introduced a new parameter

Ω =

√
ω2

0 −
1

4
Γ2. (1.7) os6e

These roots are discussed in more detail in Auxiliary Chapters (see the corresponding

chapter). There, we will drop the assumption that damping constant is sufficiently small

and discuss the physical consequences of 1
2
Γ ≥ ω0 which entails Ω being purely imaginary

which has quite interesting consequences.
Having found the characteristic roots, we write the solution to the homogeneous equa-

tion as a combination of two (linearly independent) exponentials

x(t) = Ae−iω1t + Be−iω2t = exp
(−1

2
Γt

) [
AeiΩt + Be−iΩt

]
, (1.8) os8

with A and B being the constants to be fixed by initial conditions.
Differentiating relation (

os8
1.8) and using the initial conditions (

os2
1.3) we arrive at the set

of equations for constants A and Bos10

x0 = A + B, (1.9a) os10a

v0 =
(−1

2
Γ + iΩ

)
A +

(−1
2
Γ− iΩ

)
B. (1.9b) os10b

It is a straightforward matter to solve this set of equations. The solutions are

A =
1

2iΩ

[
v0 +

(
1
2
Γ + iΩ

)
x0

]
, B = − 1

2iΩ

[
v0 −

(
1
2
Γ + iΩ

)
x0

]
. (1.10) os11

Substituting the obtained constants into Eq. (
os8
1.8), after minor rearrangement we arrive

at the general solution to the homogeneous equation of motion, which satisfies general

initial conditions and is of the form

x(t) = exp
(−1

2
Γt

) [
x0 cos (Ωt) +

v0 + 1
2
Γx0

Ω
sin (Ωt)

]
. (1.11) os12

This solution corresponds to simple damped oscillations, since the parameter Ω is real.

This is so, because the damping is small, in the sense that 1
2
Γ < ω0.
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1.3 Driven oscillator

1.3.1 General remarks

The oscillator driven by the external electric field is described by the equation of motion

as in (
os1b
1.2), that is

ẍ + Γẋ + ω2
0x = f(t), with f(t) = (q/m)E(t). (1.12) os25

Its general solution is the sum

x(t) = xhom(t) + xinh(t), (1.13) os26

where xhom is a general solution to the homogeneous equation. This solution (for weak

damping which we still assume to be the case so that Ω ∈ R) is given in (
os12
1.11) with

the notation introduced in the previous section. On the other hand xinh is a particular

solution to the inhomogeneous equation and is still unknown. Finding the solution to

the inhomogeneous equation with arbitrary driving force f(t) is certainly possible, but

difficult. The very elegant method to find the solution is to construct and use the Green’s

function for equation (
os25
1.12). However, it is rather a mathematical question, therefore it is

discussed in the Auxiliary chapters where we derive the necessary Green’s function. Here

we will simply employ the results obtained in these chapters.
One can show that the solution to the inhomogeneous equation can be written as

xinh(t) =

∫ ∞

−∞
dt′ g(t− t′) f(t′), (1.14) os28a

Where g(τ) is the Green’s function and is given as

g(τ) = Θ(τ)
1

Ω
exp

(−1
2
Γτ

)
sin (Ωτ) , (1.15) os28b

where Θ(τ) is the Heaviside function, defined as

Θ(τ) =

{
1 for τ ≥ 0,
0 for τ < 0.

(1.16) os28c

The presence of the Heaviside function ensures that the integral in (
os28a
1.14) has the upper

limit actually equal to t and not to infinity. This, in turn, ensures the causality of the

solution, that is xinh(t) depends on the force f(t′) taken at the moments earlier that the

current moment t. (this is discussed in Auxiliary chapters). Then, given the driving force

f(t) we can compute the integral in (
os28a
1.14) thereby finding the sought solution to the

inhomogeneous equation of motion.
We can now construct a general solution to the driven oscillator equation (

os1b
1.2) by

summing the general solution to the homogeneous equation (
os12
1.11) and the solution to the

inhomogeneous equation (
os28a
1.14)) with the Green’s function given in (

os28b
1.15). We restrict our

attention to the case of standard damped oscillations, that is to 1
2
Γ < ω0. The obtained

S.Kryszewski QUANTUM OPTICS 3



March 4, 2010 1. Classical harmonic oscillator in external field 4

solution satisfies arbitrary initial conditions and can be written down for arbitrary driving

force f(t). The obtained result is thus, as follows

x(t) = exp

(
−Γt

2

)[
x0 cos (Ωt) +

v0 + 1
2
Γx0

Ω
sin (Ωt)

]

+
1

Ω

∫ t

−∞
dt′ exp

(
−Γ(t− t′)

2

)
sin (Ω(t− t′)) f(t′). (1.17) os28d

We see that x(t) depends only on the driving force for times earlier than the current

moment. This conforms with the causality requirement.
It is interesting to note, that when the oscillator is initially at rest x0 = 0 and v0 = 0,

then the first term in (
os28d
1.17) vanishes. Only the driving force governs its evolution. In

the general case (arbitrary initial conditions), if time t is sufficiently long then all the

transients depending on initial conditions decay and again the evolution is determined

only by the second term in (
os28d
1.17)). This is a stationary regime which we will discuss in

the next sections. In this regime only the influence of the external force is of interest.

Hence it remains to investigate special cases for which we can take the evolution of the

displacement as

x(t) -
no transients

∫ t

−∞
dt′

1

Ω
exp

(
−Γ(t− t′)

2

)
sin

[
Ω(t− t′)

]
f(t′). (1.18) os28e

Moreover, in most of the practical cases, the electric field is switched on at the moment

t = 0. Thus we take

E(t) =

{
0 for t < 0,

E(t) for t > 0,
(1.19) os28f

with the concrete form of the time dependence of the field to be specified later. If the

driving field satisfies the above requirement, then the driving force f(t) = (q/m)E(t)

has the same property. In such a case the lower limit of the integral in (
os28d
1.17) or (

os28e
1.18)

effectively becomes zero instead of minus infinity.

1.3.2 Harmonic driving force

In the following we will consider a quite special type of the driving force, namely, the

harmonic driving force, that is

f(t) =
qE0

m
cos(ωt) =

qE0

2m

(
eiωt + e−iωt

)
. (1.20) os30

We assume that the force is turned on at t = 0, hence f(t) = 0 for t < 0 as indicated

in (
os28f
1.19), so that the lower limit of integration in (

os28a
1.14) is zero. This case is important

because it corresponds to the oscillator placed in the field of the electromagnetic wave

the time behavior of which is given as above. This especially true when the oscillator is

much smaller than the wavelength, so that the position dependence is unimportant.
It is now straightforward to find the solution to inhomogeneous equation for the

oscillator driven by a harmonic force. Inserting (
os30
1.20) and (

os28b
1.15) into the integral (

os28a
1.14)
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and taking into account the remarks on the limits of integration, we get

xinh(t) =
qE0

2mΩ

∫ t

0

dt′ e−
1
2
Γ(t−t′) sin [Ω(t− t′)]

(
eiωt′ + e−iωt′). (1.21) os31

This relation can be rewritten as

xinh(t) =
f0

Ω

[
I(t) + C.C

]
=

2f0

Ω
Re{I(t)}, (1.22) os32

with f0 = qE0/2m, and where C.C denotes complex conjugation. I(t) is the integral

I(t) =

∫ t

0

dt′ eiωt−1
2
Γ(t−t′) sin [Ω(t− t′)] . (1.23) os33

The problem, as for now, is reduced to the computation of the integral (
os33
1.23). This

computation is not difficult but somewhat tedious. We present the major steps. First

one expresses the sine by complex exponentials, then one changes the integration variable

from t′ to x = t− t′. Thus one has

I(t) = eiωt

∫ t

0

dx e−iωx−1
2
Γx 1

2i

(
eiΩx − e−iΩx

)
. (1.24) os34a

Computation of the integrals is simple. The result is

I(t) =
eiωt

2i


 ei(Ω−ω)t−1

2
Γt − 1

i(Ω− ω)− 1
2
Γ

− e−i(Ω+ω)t−1
2
Γt − 1

−i(Ω + ω)− 1
2
Γ


 . (1.25) os34c

Next one separates terms proportional to eiωt and to e−
1
2
Γt. Using relation (

os6e
1.7) one finds

the final result, which is

xinh(t) =
Ωeiωt

ω2
0 − ω2 + iΓω

− e−
1
2
Γt Ω cos(Ωt) + (1

2
Γ + iω) sin(Ωt)

ω2
0 − ω2 + iΓω

. (1.26) os35

To find the solution xinh(t) according to (
os32
1.22) it remains to find the real part of the

integral (
os35
1.26). This is a simple matter, so we just give the final form of (

os32
1.22). It is

xinh(t) = 2f0
(ω2

0 − ω2) cos(ωt) + ωΓ sin(ωt)

(ω2
0 − ω2)2 + Γ2ω2

− 2f0 e−
1
2
Γt (ω2

0 − ω2) cos(Ωt) + 1
2
(Γ/Ω)(ω2

0 + ω2) sin(Ωt)

(ω2
0 − ω2)2 + Γ2ω2

. (1.27) os38

Examining this expression, we can say that the first term is a driven one, while the second

is the damped one. In the long time limit only the first term survives. We note also that

the full solution to the equations of motion for the oscillator driven by harmonic force is

given by the sum of homogeneous solution (
os12
1.11) and of (

os38
1.27). However, homogeneous

solution does not survive in the long time limit.
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1.4 Stationary behavior

1.4.1 General discussion

Stationary behavior occurs when all the initial transients die out. This certainly occurs

when the time t is long enough. Clearly, from (
os12
1.11) and (

os38
1.27) we see that the damped

motion is the mentioned transient. For t large enough the terms proportional to exp(−1
2
Γt)

become insignificant and do not contribute in the stationary regime. Hence, the long time

behavior means t À Γ−1, and in this regime we conclude that only the first term in the

inhomogeneous solution (
os38
1.27) is of importance. Hence, the evolution of the harmonically

driven oscillator in the stationary regime is given as

xs(t) =
qE0

m

(ω2
0 − ω2) cos(ωt) + ωΓ sin(ωt)

(ω2
0 − ω2)2 + Γ2ω2

, (1.28) os42a

which may be called the stationary solution. It consists of two terms. The first one is

in-phase with the driving force (which is proportional to cos(ωt))

x(in)
s (t) =

qE0

m

(ω2
0 − ω2) cos(ωt)

(ω2
0 − ω2)2 + Γ2ω2

, (1.29) os42b

while the second is shifted in phase by π/2 and has the form

x(out)
s (t) =

qE0

m

ωΓ sin(ωt)

(ω2
0 − ω2)2 + Γ2ω2

, (1.30) os42c

For future purposes it is worth noting that the stationary solution can also be written

as

xs(t) =
qE0

2m

(
eiωt

ω2
0 − ω2 + iΓω

+ C.C

)
, (1.31) os43

It is interesting to note that the stationary solution (
os43
1.31) can be obtained in a much

simpler way. To see this, let us consider a simplified equation of motion

ẍ + Γẋ + ω2
0x = f0e

iωt. (1.32) os44a

We postulate the particular solution in the form Aeiωt, which plugged into the above

equation yields

(−ω2 + iΓω + ω2
0

)
Aeiωt = f0e

iωt. (1.33) os44c

This equation is clearly satisfied when we take

A =
f0

ω2
0 − ω2 + iΓω

. (1.34) os44d

This reasoning reproduces stationary solution (
os43
1.31), since the second term in this relation

follows by replacing ω by −ω in (
os44d
1.34) and by combining corresponding two results.
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1.4.2 Resonance approximation

This approximation consists in the assumption that ω0 ' ω. This allows us to write

ω2
0 − ω2 = (ω0 + ω) (ω0 − ω) ≈ 2ω(ω0 − ω) (1.35) os46

In such a case (
os42a
1.28) gives

xs(t) =
qE0

m

2ω(ω0 − ω) cos(ωt) + ωΓ sin(ωt)

4ω2(ω0 − ω)2 + Γ2ω2
. (1.36) os46x

Some simple rearrangement and substitution of ω0 instead of ω in the common factors

(which is allowed in the resonance approximation) leads to the expression

xs(t) =
qE0

2mω0

(
ω0 − ω

(ω0 − ω)2 + 1
4
Γ2

cos(ωt) +
1
2
Γ

(ω0 − ω)2 + 1
4
Γ2

sin(ωt)

)
. (1.37) os47a

Let us discuss briefly the behavior of the oscillator within the resonance approximation.

We see that the in-phase term (proportional to cos(ωt), as the driving field) has dispersive

character. Its amplitude is

Adisp =
f0

2ω0

ω0 − ωd

(ω0 − ωd)2 + (Γ/2)2
. (1.38) os47b

It is sketched by a broken line in the figure below.

0
-4 -2 0 2 4

Fig. 1.1: Shapes of dispersive (broken line) and absorptive (solid line) curves.
Zero on the horizontal axis corresponds to strict resonance ω = ω0. The units
are arbitrary. It should be noted that the curves are out of proportion.fig:dabs

On the other hand, the out-of-phase term (proportional to sin(ωt)] is absorptive, and its

amplitude is

Aabs =
f0

2ω0

Γ/2

(ω0 − ωd)2 + (Γ/2)2
. (1.39) os47c

Figure
fig:dabs
1.1 (solid line) illustrates the behavior of this amplitude a functions of frequency.

The terminology used here may be somewhat unclear. It will be fully clarified when we
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employ the oscillator model to describe some phenomena which occur in the atomic media

irradiated by electromagnetic waves.
When the damping is weak, then apart from the close vicinity of the resonance we

have
∣∣∣∣
Adisp

Aabs

∣∣∣∣ =

∣∣∣∣
ω0 − ωd

Γ/2

∣∣∣∣ À 1, off resonance. (1.40) 1aaoff

This allows some interesting conclusions.

1. Off resonance, (
os47a
1.37) implies that

xs(t) ≈ x(in)
s (t) = ±

(
qE0

2mω0

) |ω0 − ω|
(ω0 − ω)2 + (Γ/2)2

cos(ωt), (1.41) os47d

where we have plus for ω < ω0 and minus when ωd > ω0. This means that off

resonance the oscillator is in phase with the driving force.

2. Close to the resonance (or just on resonance), the absorptive term dominates, and

in this case we have

xs(t) ≈ x(out)
s (t) =

(
f0

2ω0

)
Γ/2

(ω0 − ωd)2 + (Γ/2)2
sin(ωdt + φ). (1.42) os47e

This indicates, that in resonance the motion of the oscillator is out of phase. It

motion is shifted in phase (with respect to the driving force) by a factor of π/2.

The discussed features of the driven oscillator are useful in the discussion of some

atomic or molecular phenomena.

1.5 Nonlinear perturbation

1.5.1 Description of the problem

Harmonic oscillator models physical situation in which potential energy has a minimum.

It is a good approximation only in the close neighborhood of the minimum. The farther

we get the poorer the approximation and we need to take into account the nonlinear

corrections.
To facilitate further discussion we will now adopt the following model. As previously

we consider weakly damped oscillator driven by two external fields with different ampli-

tudes and different frequencies. But now we will include a small anharmonic (quadratic)

correction to the Hooke’s force. The corresponding equation of motion now becomes

ẍ + Γẋ + ω2
0x + bx2 = F1(t) + F2(t), (1.43) os51a

where b is a small parameter controlling the strength of the nonlinear perturbation. The

force Fk(t) are specified as previously, that is

Fk(t) =
qEk

2m

(
eiωkt + e−iωkt

)
. (1.44) os51b
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From now on we will consider only the stationary solutions, since only they survive in

the long-time limit. Moreover, the nonlinear correction is small so that we can seek

approximate solutions. It is easy to find the stationary solution to the unperturbed case

(b = 0). In such a case equation (
os51a
1.43) is linear so its solution is just the sum of two

solutions each for one of the external force. So, following the results of the previous

section, we can write the unperturbed solution as

x(0)(t) =
f1 eiω1t

ω2
0 − ω2

1 + iΓω1

+
f2 eiω2t

ω2
0 − ω2

2 + iΓω2

+ C.C, (1.45) os53

where fk = qEk/2m, (k = 1, 2). To simplify the equations we denote

αk(t) =
f1 eiω1t

ω2
0 − ω2

1 + iΓω1

, (1.46) os54

so the unperturbed solution (
os53
1.45) is shortly written as

x(0)(t) = α1 + α2 + α∗1 + α∗2. (1.47) os55

1.5.2 Iterative solution

We return to the perturbed case, that is to Eq.(
os51a
1.43). As we noted we treat the nonlinear

correction as a small perturbation. We look for the solution in the form

x(t) = x(0)(t) + y(t), (1.48) os56

where x(0)(t) is the unperturbed solution (
os55
1.47) and y(t) is a small correction due to the

perturbation. Inserting our ansatz into (
os51a
1.43) and moving the nonlinear term to the right

hand side we obtain

ẍ(0) + Γẋ(0) + ω2
0x

(0) + ÿ + Γẏ + ω2
0y = F1(t) + F2(t)− b

(
x(0) + y

)2
. (1.49) os57

Iterative solution of this equation consists in neglecting the correction y(t) in the nonlinear

term. Thus, we approximate (
os57
1.49) by the following equation

ẍ(0) + Γẋ(0) + ω2
0x

(0)ÿ + Γẏ + ω2
0y = F1(t) + F2(t)− b

(
x(0)

)2
. (1.50) os58

Noting that x(0)(t) is the (stationary) solution of the unperturbed equation we see that

the first three terms in the left hand side cancel out with the forces in right hand side.

Therefore, we finally get an equation for correction y(t) only. We get

ÿ + Γẏ + ω2
0y = −b

(
α1 + α2 + α∗1 + α∗2

)2
, (1.51) os59

where auxiliary functions αk(t) are specified in (
os54
1.46) and (

os55
1.47). Performing the multi-

plication an regrouping we find

ÿ + Γẏ + ω2
0y = − b

[ (
α2

1 + C.C
)

+
(

α2
2 + C.C

)
+ 2

(
α1α2 + C.C

)

+ 2
(

α1α
∗
2 + C.C

)
+ 2

∣∣α1

∣∣2 + 2
∣∣α1

∣∣2
]
, (1.52) os60
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This equation looks pretty complicated, but this is misleading. It is sufficient to examine

its structure, to note that it is linear. Linearity implies that we can consider each inho-

mogeneity (the terms in the right hand side) separately. Hence our solution has the form

of the sum

y(t) = y1(t) + y2(t) + y3(t) + y4(t) + y5(t), (1.53) os61

where each of the terms satisfies the equation of motion

ÿk + Γẏk + ω2
0yk = −b

(
Ake

iΩkt + A∗
ke
−iΩkt

)
, k = 1, 2, 3, 4, 5. (1.54) os62

The structure of the rhs follows from inspection of the rhs of (
os60
1.52) compared to the

form of αk’s as they are given in (
os54
1.46). Since we are interested only in the stationary

solutions, we see that we have special cases of equations (
os44a
1.32) to (

os44d
1.34). The only point is

to correctly recognize the amplitudes Ak and frequencies Ωk. Now we will briefly discuss

the particulars.

First term in (
os60
1.52)

The first part of (
os60
1.52) is as follows

ÿ1 + Γẏ1 + ω2
0y1 = −b

(
α2

1 + C.C
)
. (1.55) os65a

By means of (
os54
1.46) we read that

Ω1 = 2ω1, A1 =
f 2

1(
ω2

0 − ω2
1 + iΓω1

)2 . (1.56) os65b

Therefore the first contribution to the correction y(t) is of the form

y1(t) =
−b f 2

1 e2iω1t

(
ω2

0 − ω2
1 + iΓω1

)2(
ω2

0 − 4ω2
1 + 2iΓω1

) + C.C. (1.57) os65d

This corresponds to stationary oscillations with the doubled frequency of the first driving

field. In other words, it can be associated with second harmonic generation.

Second term in (
os60
1.52)

Clearly the second terms differs from the previous one only by the index: 2 instead of 1.

Hence from (
os65d
1.57) we immediately get

y2(t) =
−b f 2

2 e2iω2t

(
ω2

0 − ω2
2 + iΓω2

)2(
ω2

0 − 4ω2
2 + 2iΓω2

) + C.C. (1.58) os66

This terms, thus describes the generation of the second harmonic of the second external

field.
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March 4, 2010 1. Classical harmonic oscillator in external field 11

Third term in (
os60
1.52)

The third contribution to (
os60
1.52) is

ÿ3 + Γẏ3 + ω2
0y3 = −b

(
2α1α2 + C.C

)
. (1.59) os67a

As previously, from (
os54
1.46) we read that

Ω3 = ω1 + ω2, A3 =
2f1f2(

ω2
0 − ω2

1 + iΓω1

)(
ω2

0 − ω2
2 + iΓω2

) . (1.60) os67b

This part of the correction y(t) is, thus, of the form

y3(t) =
−2 b f1 f2 ei(ω1+ω2)t

(
ω2

0 − ω2
1 + iΓω1

)(
ω2

0 − ω2
2 + iΓω2

)[
ω2

0 − (ω1 + ω2)2 + iΓ(ω1 + ω2)
] + C.C.

(1.61) os67c

This describes stationary oscillations with the frequency being the sum of the frequen-

cies of two driving fields. Hence, it can be associated with the so-called sum-frequency

generation.

Fourth term in (
os60
1.52)

The next contribution to (
os60
1.52) follows

ÿ4 + Γẏ4 + ω2
0y4 = −b

(
2α1α

∗
2 + C.C

)
. (1.62) os68a

Due to the presence of α∗2 it differs from the previous case only by replacing +ω2 by −ω2

Therefore (
os67c
1.61) allows us to write

y4(t) =
−2 b f1 f2 ei(ω1−ω2)t

(
ω2

0 − ω2
1 + iΓω1

)(
ω2

0 − ω2
2 + iΓω2

)[
ω2

0 − (ω1 − ω2)2 + iΓ(ω1 − ω2)
] + C.C.

(1.63) os68c

These are stationary oscillations with the frequency being the difference of the frequencies

of two driving fields. Hence, it can be associated with the so-called difference-frequency

generation.

Fifth term in (
os60
1.52)

In this, last, case we have an equation of motion (as it follows from (
os60
1.52))

ÿ5 + Γẏ5 + ω2
0y5 = −b

(
2
∣∣α1

∣∣2+2
∣∣α2

∣∣2 )
. (1.64) os69a

As we see from inspection of (
os54
1.46) rhs in this case is time-independent. It is straightfor-

ward to check the particular solution to the above equation is also constant. Namely it

is

y5(t) = − 2 b

ω2
0

(∣∣α1

∣∣2+
∣∣α1

∣∣2
)

. (1.65) os69b
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March 4, 2010 1. Classical harmonic oscillator in external field 12

Taking α’s from (
os54
1.46) we obtain

y5(t) = − 2 b

ω2
0

(
f 2

1∣∣ω2
0 − ω2

1 + iΓω1

∣∣2 +
f 2

2∣∣ω2
0 − ω2

2 + iΓω2

∣∣2
)

. (1.66) os69c

This term describes a constant shift due to the nonlinearity of the potential energy.

Simple harmonic oscillator has quadratic potential energy, hence symmetric . Introduced

nonlinearity results in the term in potential energy proportional to x3 thereby inducing

asymmetry which entails the constant shift of the stationary oscillations.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 2

Classical electrodynamicsc:ce

It is not our aim to give a lecture on electrodynamics. There is a book by Griffith which

gives an excellent presentation of the subject. We only briefly review the fundamentals

of the subject necessary to perform the quantization in a simple and convenient manner.

This chapter only summarizes the main aspects of classical electrodynamics. Some other

ones, useful in more restricted applications will be dealt with when such a need arises.

2.1 Maxwell’s equations

We will use the SI system of units. In this system, the general Maxwell’s equations in

presence of free charges and currents are as followsce1

div ~D(~r, t) = ρ(~r, t), (Gauss′ law), (2.1a) ce1a

div ~B(~r, t) = 0, (no magnetic monopoles), (2.1b) ce1b

rot ~E(~r, t) = − ∂

∂t
~B(~r, t), (Faraday′s law), (2.1c) ce1c

rot ~H(~r, t) = ~j(~r, t) +
∂

∂t
~D(~r, t), (modified Ampere′s law), (2.1d) ce1d

where ρ and ~j are charge and current densities. The pairs of the fields ~E, ~D and ~B, ~H

are connected by the material relations, which may be written as

Di = εoεijEj, Bi = µoµijHj, with
1

µoεo

= c2. (2.2) ce2

with εo and µo the permeabilities of vacuum. The tensors εij and µij are the dielectric

and magnetic susceptibilities of the medium in which the fields propagate. For linear and

isotropic media these tensors reduce to constants. In general, susceptibilities εij and µij

may be position and time dependent, they may also be the functions of the fields ~E and
~H. In the latter case we arrive at the problems of nonlinear optics, which in itself, can be

a subject of a separate lecture. In this notes, however, we will not address such questions.
Moreover, we note (for linear and isotropic media) that the fields ~D and ~B can be

expressed via the electric polarization and magnetization

~D = εεo
~E = εo

~E + ~P, ~B = µµo
~H = µo(~H + ~M), (2.3) ce3
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Equivalently, polarization and magnetization can be written as

~P = (ε− 1)εo
~E, ~M = (µ− 1)~H =

µ− 1

µµo

~B =
1

µo

~B− ~H. (2.4) ce4

Two additional remarks seem to be in place. Firstly, we note that Maxwell’s equations

automatically account for charge conservation. To see this, let us take the time derivative

of the Gauss’ law (
ce1a
2.1a) (we assume that spatial and temporal derivatives commute)

div
∂

∂t
~D(~r, t) =

∂

∂t
ρ(~r, t). (2.5) ce5a

Then we eliminate time derivative of ~D by employing modified Ampere’s law (
ce1d
2.1d).

Thus, we get

∂

∂t
ρ = div

(
rot ~H−~j

)
. (2.6) ce5b

Since we have the vector identity div rot ≡ 0, it follows that

∂

∂t
ρ + div~j = 0. (2.7) ce6

which is an equation of charge continuity written in a local form. charge conservation

requirement. It is a local law. Its integral counterpart reads
∫

V

d3r
∂

∂t
ρ = −

∫

V

d3r div~j = −
∫

∂V

d~S ·~j, (2.8) ce7

where the Gauss’ theorem was used. Relation (
ce7
2.8) means that the charge within certain

volume may change only due to the current flowing across its surface.
Second remark concerns the so-called displacement current. This is a concept intro-

duced by Maxwell himself. To understand it let us recall that the original Ampere’s law

states that circulation of the magnetic field along a closed contour is equal to the current

flowing across an arbitrary surface spanned on this contour.
∮

d~l · ~H =

∫
d~S ·~j. (2.9) ce11

Then, due to Stokes’ theorem, this can be written in a local form

rot ~H =~j. (2.10) ce12

The term ∂ ~D/∂t is missing. It is just the displacement current introduced by Maxwell.

This is a misnomer, since this term has nothing to do with current – the flow of charges.

∂ ~D/∂t can be nonzero in vacuum, where any charges are absent. Let us see what would

happen if the displacement current were not accounted for, that is if the fourth Maxwell’s

equation were reduced to (
ce12
2.10). Taking divergence of both sides of this equation, we get

0 = div rot ~H = div~j. (2.11) ce13

where the left hand side vanishes identically. On the other hand div~j need not be zero.

For example, where the charges accumulate (capacitors) div~j = −∂ ρ/∂t 6= 0, according

S.Kryszewski QUANTUM OPTICS 14
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to charge conservation. So, Eq.(
ce13
2.11) is wrong, and thus (

ce12
2.10) must be wrong too. This

is why the displacement current is indeed necessary. Obviously, we can correct (
ce13
2.11)

writing

0 = div rot ~H = div~j +
∂ρ

∂t
= div~j + div

∂ ~D

∂t
. (2.12) ce14

”Taking off” the divergence (we note that left hand side can be then nonzero) we get

rot ~H = ~j +
∂ ~D

∂t
. (2.13) ce15

which is exactly the fourth Maxwell’s equation, called also the modified Ampere’s law.

We see that the introduction of the displacement current is indeed necessary.
It is worth noting that there are no such problem with Faraday’s law (

ce1c
2.1c).Indeed,

taking divergence of both sides of (
ce1c
2.1c) we get

0 = div rot ~E = − ∂

∂t
div ~B = 0, (2.14) ce16

due to the second Of Maxwell’s equations.
Finally we note that in vacuum there is no medium, hence polarization and magne-

tization vanish. There is no need to distinguish fields ~D and ~E, ~B and ~H, so we write

Maxwell’s equation for the free space asce17

div ~E(~r, t) =
1

εo

ρ(~r, t), (Gauss′ law), (2.15a) ce17a

div ~B(~r, t) = 0, (no magnetic monopoles), (2.15b) ce17b

rot ~E(~r, t) = − ∂

∂t
~B(~r, t), (Faraday′s law), (2.15c) ce17c

rot ~B(~r, t) =
1

εoc2
~j(~r, t) +

1

c2

∂

∂t
~E(~r, t), (modified Ampere′s law), (2.15d) ce17d

This is the set of fundamental equations with which we will mainly deal in subsequent

discussion.

2.2 Potentials

2.2.1 Introduction and basic definitions

Maxwell’s equations may be formulated in terms of potentials. To define the potentials,

we refer to general Maxwell’s equations (
ce1
2.1). We also recall the identities known from

vector analysis

div rot ≡ 0, rot grad ≡ 0. (2.16) ce21

The second Maxwell’s equation div ~B = 0 is always satisfied, since it signifies that there

are no magnetic monopoles. Hence, due to the first of the identities (
ce21
2.16) we can always

write

~B(~r, t) = rot ~A(~r, t). (2.17) ce22
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We conclude that, when the vector potential ~A is specified so that the magnetic field
~B is determined by Eq.(

ce22
2.17), the Maxwell’s equation (

ce1b
2.1b) is automatically satisfied.

Introducing (
ce22
2.17) into the Faraday’s law (

ce1c
2.1c) we obtain rot ~E = −∂ rot ~A/∂t, which

suggests that the electric field is given as ~E = −∂ ~A/∂t. This is not sufficient, for two

reasons. In the static case, it would imply that ~E = 0, which is clearly wrong – static fields

do exist. Secondly, due to the second of relations (
ce21
2.16) we can always add a gradient of

arbitrary function, writing

~E(~r, t) = − grad φ(~r, t) − ∂

∂t
~A(~r, t), (2.18) ce23

and the Faraday’s equation (
ce1c
2.1c) is still automatically satisfied.

Therefore, we may formulate the problem of specifying the electromagnetic field as

follows. We postulate the existence of a scalar field φ(~r, t) and of a vector field ~A(~r, t)

such that the electric field is determined by Eq.(
ce23
2.18) and the magnetic field by (

ce22
2.17).

Then, we automatically satisfy two out of four Maxwell’s equations (namely, Eqs. (
ce1b
2.1b)

and (
ce1c
2.1c) There are still two other Maxwell’s equations to consider

div ~D = ρ, rot ~H =~j +
∂

∂t
~D, (2.19) ce24

which also must be satisfied. It remains to check what are the conditions imposed on

potentials by equations (
ce24
2.19).

2.2.2 Wave equations for potentials

We now look for the restrictions imposed on the potentials by two remaining Maxwell’s

equations (
ce24
2.19).

We note that there arises a serious problem. Namely, the potentials ~A and φ spec-

ify the fields ~E and ~B, while equations (
ce24
2.19) contain fields ~D and ~H. The latter and

the former fields are connected by material relations (
ce3
2.3). The dielectric and magnetic

susceptibilities may be complicated functions of position, time and also of the fields them-

selves. Thus, equations (
ce24
2.19) after insertion of material relations and potentials can be

expected to be very complicated. To avoid such problems, we shall restrict our atten-

tion to fields in vacuum. The relations between fields ~E, ~B and potentials ~A, φ remain

unchanged, because the second and the third Maxwell’s equations (
ce1b
2.1b) and (

ce1c
2.1c) in

vacuum are the same as in media. On the other hand, equations (
ce24
2.19) become simpler,

and in vacuum they are

div ~E =
ρ

ε0

, rot ~B =
1

ε0c2
~j +

1

c2

∂

∂t
~E, (2.20) ce25

Introducing electric field specified by (
ce24
2.19) into the first of the above equations we get

div

(
−grad φ− ∂ ~A

∂t

)
=

ρ

ε0

=⇒ ∇2φ = − 1

ε0

ρ− ∂

∂t
∇ · ~A, (2.21) ce26

which is the wave equation (in vacuum) for scalar potential. This wave equation is not,

strictly speaking, an equation of motion for φ since it does not include its time derivative.
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It is rather a relation between φ and the time derivative of vector potential ∂ ~A/∂t at a

certain moment of time.
It remains to make use of the second of equations (

ce25
2.20). We replace the fields by the

corresponding expressions for potentials and obtain

rot rot ~A =
1

ε0 c2
~j +

1

c2

∂

∂t

(
−∇ φ− ∂

∂t
~A

)
. (2.22) ce27a

Using the vector analysis identity

∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A, (2.23) ce27b

we get

[
1

c2

∂2

∂t2
−∇2

]
~A =

1

c2 ε0

~j−∇
[
∇ · ~A +

1

c2

∂ φ

∂t

]
. (2.24) ce28

We may conclude, restricting our considerations to vacuum, that the introduction of

potentials by (
ce22
2.17) and (

ce23
2.18) guarantees that two of the Maxwell’s equations (

ce1b
2.1b) and

(
ce1c
2.1c) are automatically satisfied, while the other two are equivalent to wave equations

(
ce26
2.21) and (

ce28
2.24).

2.2.3 Potentials – gauge invariance

We recall the relations between the fields and potentials

~E(~r, t) = −grad φ(~r, t)− ∂

∂t
~A(~r, t), ~B(~r, t) = rot ~A(~r, t). (2.25) ce31

The fields are the true physical quantities measured and observed in a variety of ex-

periments. The role of the potentials is rather auxiliary since they are not uniquely

determined. To see this we recall that rot grad ≡ 0, hence the redefinition (called gauge

transformation) of the vector potential

~A(~r, t) -
gauge

~A′(~r, t) = ~A(~r, t) + ∇ F (~r, t), (2.26) ce32

does not change the magnetic field ~B for arbitrary function F (~r, t). Let us now express

the electric field via a new vector potential

~E(~r, t) = −grad φ(~r, t)− ∂

∂t

[
~A′(~r, t)−∇F

]

= −grad

[
φ(~r, t)− ∂

∂t
F (~r, t)

]
− ∂

∂t
~A′(~r, t). (2.27)

We see that the expression in the square brackets plays a role of a new scalar potential.

We conclude that the joint transformationce34

~A(~r, t) -
gauge

~A′(~r, t) = ~A(~r, t) + ∇F (~r, t), (2.28a) ce34a

φ(~r, t) -
gauge

φ′(~r, t) = φ(~r, t)− ∂

∂t
F (~r, t), (2.28b) ce34b
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leaves the physical quantities, that is the fields ~E and ~B, unchanged. This means that

for ”old” potentials we had relations (
ce31
2.25), while for the ”new” ones we similarly have

~E(~r, t) = −grad φ′(~r, t)− ∂

∂t
~A′(~r, t), ~B(~r, t) = rot ~A′(~r, t). (2.29) ce35

The fields are unchanged though the potentials are. It is straightforward to check that

introducing the ”new” potentials (
ce34
2.28) into relations (

ce35
2.29) we will arrive at the fields

given by (
ce31
2.25).

This fact is called the gauge invariance of the fields. We have some freedom at the

choice of potentials in a convenient way, best suited to particular applications. At present,

we will not discuss this subject. We will only briefly indicate two most commonly used

gauges – methods of choosing the potentials.

2.2.4 Lorentz gauge

Lorentz gauge consists in such a choice of the potentials, that the relation

div ~A(~r, t) +
1

c2

∂

∂t
φ(~r, t) = 0, (2.30) ce37

is satisfied. This requirement still leaves some freedom. Namely, let us assume that the

”old” potentials satisfy the Lorentz gauge (
ce37
2.30). We make a gauge transformation by

adopting ”new” potentials

~A′ = ~A + ∇G, φ′ = φ− ∂

∂t
G, (2.31) ce38

Inserting ”new” potentials into (
ce37
2.30) we obtain

div ~A′ −∇2 G +
1

c2

∂φ′

∂t
+

1

c2

∂2G

∂t2
= 0. (2.32) ce39a

We see that if the function G satisfies the wave equation

∇2G− 1

c2

∂2 G

∂t2
= 0, (2.33) ce39b

then the ”new” potentials still fulfill Lorentz requirement (
ce37
2.30). Conversely, if we assume

that ”new potentials must also satisfy the Lorentz gauge (
ce37
2.30) then we conclude that an

arbitrary function G satisfying (
ce39b
2.33) will preserve Lorentz gauge. This indicates some

arbitrariness in the choice of the gauge function G.
Let us return to wave equations (

ce26
2.21) and (

ce28
2.24). Assuming Lorentz gauge, we getce42 [

∇2 − 1

c2

∂2

∂t2

]
φ(~r, t) = − 1

ε0

ρ(~r, t) (2.34a) ce42a

[
∇2 − 1

c2

∂2

∂t2

]
~A(~r, t) = − 1

ε0 c2
~j(~r, t). (2.34b) ce42b

As a result, we obtain uncoupled, symmetric wave equations for the potentials.
Finally, we note the Lorentz gauge can be shown to be invariant with respect to

Lorentz transformation, and as such is particularly useful in relativistic considerations. It

is not difficult to recast wave equations (
ce42
2.34)) into four-dimensional (space-time) nota-

tion. This is, however, beyond the scope of our present interests.
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2.2.5 Coulomb gauge

Coulomb gauge is specified by the requirement

div ~A(~r, t) = 0. (2.35) ce45

So, there is no conditions imposed on the scalar potential. Unfortunately, relativistic

invariance is thus lost. Nevertheless, this gauge is extremely useful.
In this case wave equations (

ce26
2.21) and (

ce28
2.24) are also simplified and they are of the

formce46

∇2 φ(~r, t) = − 1

ε0

ρ(~r, t), (2.36a) ce46a

[
∇2 − 1

c2

∂2

∂t2

]
~A(~r, t) = − 1

ε0 c2
~j(~r, t) +

1

c2

∂

∂t
grad φ(~r, t). (2.36b) ce46b

The symmetry of the wave equations is lost. Scalar potential must satisfy Poisson’s

equation (
ce46a
2.36a) and it is due to the instantaneous charge distribution. Then we can

write

φ(~r, t) =
1

4πεo

∫
d3r′

ρ(~r ′, t)
|~r−~r ′| (2.37) ce47

as it is known from the course on electrodynamics. This may lead to the conclusion that

there is some kind of an interaction which spreads with infinite velocity. It can be shown,

that this is not really a problem. At present, we only state that the discussion of this

problem can be found elsewhere.

2.3 Longitudinal and transverse fields

2.3.1 Introduction

In many practical applications it is convenient to split vector fields in a longitudinal part,

for which the rotation is zero, and a transverse part, which has a vanishing divergence (it

is a sourceless field). For example, for the electric field we write

~E(~r) = ~E‖(~r) + ~E⊥(~r), and ~E‖ ⊥ ~E⊥, (2.38) ce51

with

∇× ~E‖(~r) = 0, ∇ · ~E⊥(~r) = 0. (2.39) ce52

For any square integrable field such a separation is unique when we also require that the

transverse and longitudinal parts vanish separately at infinity. This statement is known

as Helmholtz’s theorem. The given separation is non-local, in the sense that knowledge

of the values of ~E(~r) at a certain position is not sufficient to determine the values of ~E⊥
and ~E‖ at that position. The differential operators do not specify the field in a unique

way, some integration is necessary.
The separation of the fields into transverse and longitudinal parts seems to be more

transparent in Fourier space – the space of spatial Fourier transforms.We shall, however,

address these problems in the Auxiliary Chapters.
Here we will study the question why do we introduce the concepts of transverse and

longitudinal fields. The answer is – this leads to the separation of Maxwell’s equations.
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2.3.2 Longitudinal Maxwell’s equations

First of all we note that div ~B = div
(

~B⊥ + ~B‖
)

= 0. Since div ~B⊥ = 0 (by definition of

the transverse field) we have div ~B‖ = 0. This is most easily satisfied by demanding

~B‖(~r, t) = 0. (2.40) ce55

This is the first of longitudinal Maxwell’s equations. It simply states that magnetic field

has no longitudinal components. In other words, magnetic field is purely transverse (or

sourceless, its divergence always vanishes).
Then, the Gauss’ law gives

div
(
~E⊥ + ~E‖

)
=

ρ

εo

. (2.41) ce56a

Since div ~E⊥ = 0, we are left with

div ~E‖ =
ρ

εo

, (2.42) ce56b

which is the second longitudinal Maxwell’s equation. By definition rot ~E‖ = 0, so we can

always write

~E‖ = − grad φ, (2.43) ce57

which, together with (
ce56b
2.42) yield

∇2φ = − ρ

εo

, (2.44) ce58

that is the Poisson’s equation as it was the case in the Coulomb gauge (see (
ce46a
2.36a) and

(
ce47
2.37)). Hence, we conclude that the longitudinal electric field is due to instantaneous

charge distribution. In other words, longitudinal Maxwell’s equations reduce toce59

~B‖(~r, t) = 0, (2.45a) ce59a

~E‖(~r, t) =
−1

4πε0

∇
∫

d3r′
ρ(~r ′, t)
|~r−~r ′| =

1

4πε0

∫
d~r′ ρ(~r ′, t)

~r−~r ′

|~r−~r ′|3 . (2.45b) ce59b

2.3.3 Transverse Maxwell’s equations

Now we consider the remaining Maxwell’s equations, that is Faraday’s and Ampere’s laws.

First we write the Faraday’s law

rot
(
~E‖ + ~E⊥

)
= − ∂~B

∂t
. (2.46) ce62

By definition rot ~E‖ = 0, so Faraday’s law is transverse because so is the magnetic field
~B = ~B⊥. Hence we have

rot ~E⊥ = − ∂

∂t
~B⊥, (2.47) ce63
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which is the first of transverse Maxwell’s equations. It contains no information on the

longitudinal fields because longitudinal component of ~E does not contribute to left hand

side, and magnetic field ~B is purely transverse so there is no magnetic longitudinal con-

tribution.
It remains to discuss the modified Ampere’s law (

ce1d
2.1d). We take into account transver-

sality of magnetic field and we have

rot ~B⊥ =
1

εo c2

(
~j‖ +~j⊥

)
+

1

c2

∂

∂t

(
~E‖ + ~E⊥

)
. (2.48) ce64

This equation splits into two parts: the transverse and longitudinal onesce65

rot ~B⊥ =
1

εo c2
~j⊥ +

1

c2

∂

∂t
~E⊥, (2.49a)

0 =
1

εo c2
~j‖ +

1

c2

∂

∂t
~E‖. (2.49b)

We will now argue that equation (
ce65b
2.49b) does not bring any new information, and there-

fore, usually can be discarded. Taking the divergence of (
ce65b
2.49b) we get

0 = div~j‖ + εo div
∂

∂t
~E‖. (2.50) ce66a

But div ~j⊥ = 0, by definition, so transverse component of the current can be added.

Moreover, we use longitudinal equation (
ce56b
2.42) which allows us to write

0 = div~j‖ +
∂

∂t
ρ = div

(
~j‖ +~j⊥

)
+

∂

∂t
ρ. (2.51) ce66b

which is clearly seen to be the charge continuity equation. We conclude that (
ce65b
2.49b) does

not bring any new information. It can indeed be discarded.
Hence, the two transverse Maxwell’s equations are of the formce67

rot ~E⊥ = − ∂

∂t
~B⊥, (2.52a)

rot ~B⊥ =
1

εo c2
~j⊥ +

1

c2

∂

∂t
~E⊥, (2.52b)

It is worth remembering that the longitudinal equation (
ce65b
2.49b) of the modified Ampere’s

law reduces to charge conservation requirement (
ce66b
2.51).

2.3.4 Discussion of the potentials

As we already mentioned the analysis of the longitudinal and transverse parts of the vector

fields seems to be easier and more transparent in the Fourier domain. In this domain it

is straightforward to see that grad F (~r, t) is a purely longitudinal vector (for arbitrary

function F (~r, t)). We shall take this fact for granted and use it in this section.
We start the discussion of potentials with the vector one. From the definition (

ce22
2.17)

we certainly have

~B = ~B⊥ = rot
(

~A‖ + ~A⊥
)

= rot ~A⊥, (2.53) ce71
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since, by definition, rot ~A‖ = 0. The transverse part of vector potential is sufficient to

specify the magnetic field. Moreover, from our discussion of longitudinal and transverse

Maxwell’s equations it follows that

~E⊥ =
∂

∂t
~A⊥, ~E‖ = − grad φ

∂

∂t
~A‖. (2.54) ce72

No gradient (it is purely longitudinal) contributes to ~E⊥. The question is, what is the role

played by the longitudinal vector potential ~A‖? Can we (for simplicity) put ~A‖ = 0. We

shall discuss this problem, but before doing so, we return for a while to wave equations

(
ce26
2.21) and (

ce28
2.24)ce73

∇2φ = − 1

ε0

ρ− ∂

∂t
div ~A‖, (2.55a) ce73a

[
1

c2

∂2

∂t2
−∇2

]
~A =

1

c2 εo

~j− grad

[
div ~A‖ +

1

c2

∂ φ

∂t

]
. (2.55b) ce73b

~A⊥ does not appear in right hand sides because div ~A⊥ = 0, by definition. The gradient

is longitudinal, so Eq.(
ce73b
2.55b) clearly splits into two partsce74 [

1

c2

∂2

∂t2
−∇2

]
~A‖ =

1

c2 εo

~j‖ − grad

[
div ~A‖ +

1

c2

∂ φ

∂t

]
. (2.56a) ce74a

[
1

c2

∂2

∂t2
−∇2

]
~A⊥ =

1

c2 εo

~j⊥. (2.56b) ce74b

In normal space (in contrast to Fourier domain) it is not easy to show that Eq.(
ce74a
2.56a) does

not bring any new information and that it reduces to charge conservation requirement

(
ce66b
2.51). This fact, in the view of previous discussion, should not be really surprising.

This is easily shown in the Fourier space and is presented in Auxiliary chapters. Equation

(
ce74a
2.56a) can be thus discarded and we remain with two wave equations (

ce73a
2.55a) and (

ce74a
2.56a).

Coulomb gauge requirement div ~A = 0 reduces to div ~A‖ = 0. The simplest way to

fulfill this condition is to take ~A‖ = 0. In this case relations (
ce71
2.53) and (

ce72
2.54) still hold,

so the fields remain unchanged. On the other hand, potentials now satisfy the following

wave equationsce77

∇2φ = − 1

εo

ρ, (2.57a) ce77a

[
1

c2

∂2

∂t2
−∇2

]
~A⊥ =

1

c2 εo

~j⊥, (2.57b) ce77b

while the longitudinal current density is connected with charge density by Eq.(
ce66b
2.51).

At the end of our discussion we shall give some additional comments (which are also

discussed in Auxiliary Chapters.

1. Having found the scalar potential (by solving Poisson’s equation (
ce77a
2.57a)) we can find

the longitudinal component of the electric field ~E‖ according to Eq.(
ce72
2.54). Moreover,

it is interesting to note that in Coulomb gauge (with ~A‖ = 0) wave equation (
ce74a
2.56a)

yields

1

εo

~j‖ =
∂

∂t
grad φ = − ∂

∂t
~E‖, (2.58) ce78
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so the longitudinal current density can also be found.

2. The second wave equation (
ce77b
2.57b) gives transverse component of the vector potential

as a function of the transverse part of the current density. It is sufficient to know
~A⊥ to compute transverse components of electric and magnetic fields according to

relations (
ce71
2.53) and (

ce72
2.54).

3. In the Coulomb gauge the transverse ~A⊥ is the only relevant vector potential. Let

us note that it is gauge invariant (this will be discussed in more detail in Auxiliary

Chapters). To see this, we perform gauge transformation (
ce34a
2.28a)

~A -
gauge

~A′ = ~A + ∇ F. (2.59) ce79

Since any gradient is purely longitudinal, the transverse component is unchanged.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 3

Quantization of electromagnetic field
c:fq

3.1 Introductory remarks

We will quantize electromagnetic field in a simple, intuitive manner. We consider the

sourceless electromagnetic field in a cavity with Coulomb gauge, that is the field, for

which the vector potential satisfies the requirement

div ~A = 0. (3.1) fq01

As it follows from the considerations in the previous chapter, the vector potential is

transverse, gauge independent, and since there are no sources, it satisfies the homogeneous

wave equation

1

c2

∂2 ~A⊥
∂t2

−∇2 ~A⊥(~r, t) = 0. (3.2) fq03

Due to the Coulomb gauge and to the absence of the sources we can take the scalar

potential to be identically zero. Then the fields are fully specified by the vector potential

fq05

~E⊥(~r, t) = − ∂

∂t
~A⊥(~r, t), ~E‖(~r, t) = 0, (3.3a) fq05a

~B(~r, t) = ~B⊥ = ∇× ~A⊥(~r, t), (3.3b) fq05b

We will not go into the subtleties of the gauge problems, or other mathematical nuances.

We will consider the electromagnetic field in the cavity of volume V . The procedure we

will describe does not depend on the shape of the cavity, although the proof of this fact

is far from trivial. We will also indicate the limiting procedure allowing the description

of the fields in all space.
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3.2 Expansion into normal modes

3.2.1 Statement of the problem

We seek the solution to the wave equation (
fq03
3.2) in a form with separated variables

~A⊥(~r, t) =

√
1

ε0

∑
n

qn(t) ~un(~r). (3.4) fq07

The index n may have the meaning of the multiindex (the Laplace operator in the wave

equation is usually degenerate). The coefficient in the front is introduced for future

convenience. We will call qn(t) the field amplitudes, while the function ~un(~r) will be called

field modes. At present we will assume that the set of field modes is linearly independent,

and as such can be orthonormalized. This point will be discussed later. Since the fields

are physical observables, we can for present purposes take the field amplitudes and modes

to be real.
Before analyzing the wave equation let us express the fields via the adopted vector

potential. From (
fq05
3.3) and (

fq07
3.4) we getfq09

~E⊥(~r, t) = −
√

1

ε0

∑
n

q̇n(t) ~un(~r), (3.5a) fq09e

~B(~r, t) =

√
1

ε0

∑
n

qn(t) rot ~un(~r) (3.5b) fq09m

Let us also note, that the Coulomb gauge implies the relation

0 = div ~A(~r, t) =

√
1

ε0

∑
n

qn(t) div ~un(~r) (3.6) fq11

We return to the wave equation. Substituting (
fq07
3.4) into the wave equation (

fq03
3.2) we employ

the linear independence of the field modes to obtain

1

c2
q̈n(t)~un(~r) − qn(t) ∇2~un(~r) = 0. (3.7) fq13

We can add and subtract the same quantity. Then we get

1

c2

[
q̈n(t) + ω2

nqn(t)
]
~un(~r) − qn(t)

[ ∇2~un(~r) +
ω2

n

c2
~un(~r)

]
= 0. (3.8) fq15

This procedure is fully equivalent to usual variable separation. This equation must be

satisfied identically for any time instant and at any point within the cavity, therefore,

the coefficients in square brackets must vanish separately. Hence, our wave equation is

equivalent to the set of equationsfq17

q̈n(t) + ω2
n qn(t) = 0, (3.9a) fq17a

∇2 ~un(~r) +
ω2

n

c2
~un(~r) = 0. (3.9b) fq17b
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Equation (
fq17a
3.9a) has dynamical character, while (

fq17b
3.9b) is geometrical. First, we consider

the geometrical one with the reasonable assumption that ωm 6= ωn.
The field within the cavity must satisfy the boundary conditions at the walls of the

cavity. The tangent component of the electric field must vanish, and so must the normal

component of the magnetic field. Since the fields are given via Eqs.(
fq09
3.5), we see that the

geometric equation (
fq17b
3.9b) must be solved with three conditionsfq19

~un(~r)|tangent = 0 on the boundary ∂V, (3.10a) fq19a

rot ~un(~r)|normal = 0 on the boundary ∂V, (3.10b) fq19b

div ~un(~r) = 0 in all volume V. (3.10c) fq19c

The third condition follows from the Coulomb gauge (
fq11
3.6) and must be satisfied within

all volume of the cavity. It can be shown that relations (
fq19a
3.10a) and (

fq19c
3.10c) imply that

the electric field should vanish on the cavity walls. Hence, we can say that ~un|wall = 0.

We will not solve Eq.(
fq17b
3.9b) with the above given conditions. We refer to mathematical

handbooks, and we will only state that such a problem can be solved once the shape of the

cavity is given. Moreover, the obtained cavity modes ~un(~r) can be shown to characterize

the cavity in a unique manner. Such modes are called normal modes of the cavity. Hence,

normal modes fully characterize the geometry of the problem. The dynamical behavior

of the fields is thus described by the amplitudes qn(t). Determination of amplitudes

automatically determines the fields, since the normal (geometrical) modes are fixed once

the cavity shape is given. Therefore we proceed to analyze the field amplitudes qn(t).

3.2.2 Energy of the field in a cavity

The field amplitudes qn(t) are best discussed via the field energy. We recall, that in

classical electrodynamics the energy of the field in cavity (in vacuum) is given by the

integral

E =
ε0

2

∫

V

d~r
[

~E2 + c2~B2
]

(3.11) fq21

Inserting the fields according to relations (
fq09
3.5) we get

E =
1

2

∫

V

d~r

[ ∑
n,m

q̇m(t)q̇n(t) ~um(~r) · ~un(~r)

+
c2

2

∑
m,n

qm(t)qn(t) rot ~um(~r) · rot ~un(~r)

]
. (3.12) fq23

We proceed with the analysis of the second integral, which we denote as

Jmn =

∫

V

d~r rot ~um(~r) · rot ~un(~r), (3.13) fq25

and which is obviously symmetric, that is Jmn = Jnm. We will now transform this integral

so as to make use of the boundary conditions imposed on cavity modes. We use the vector
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analysis identities (rot rot = grad div −∇2),

rot ~a · rot ~b = div
(
~a× rot ~b

)
+ ~a · rot rot ~b

= div
(
~a× rot ~b

)
+ ~a · grad div ~b − ~a · ∇2~b, (3.14) fq27

which allows us to rewrite the integral Jmn

Jmn =

∫

V

d~r
[

div (~um × rot ~un) + ~um · grad div ~un − ~um · ∇2~un

]
. (3.15) fq29

Firstly, we note that the second term in (
fq27
3.14) does not contribute, because the fields are

transverse: div ~un = 0, see (
fq19c
3.10c). Secondly, the functions ~un satisfy Helmholtz equation

(
fq17b
3.9b). Hence, from (

fq29
3.15) we obtain

Jmn =

∫

V

d~r

[
div (~um × rot ~un) +

ω2
n

c2
~um · ~un

]
. (3.16) fq31

The symmetry of the integral Jmn gives Jmn−Jnm = 0, and by subtraction of the equations

of the type of (
fq31
3.16) we obtain

∫

V

d~r [ div (~um × rot ~un) − div (~un × rot ~um)] =
ω2

m − ω2
n

c2

∫

V

d~r ~um · ~un, (3.17) fq33

Now, we consider the integral of the term similar to the ones appearing in the above

formula. First we use the Gauss theorem and transform the volume integral into the

surface one. Then we argue that, for any m and n, the resulting integral vanishes, that is

we have
∫

V

d~r div (~um × rot ~un) =

∮

∂V

d~S · (~um × rot ~un) = 0. (3.18) fq35

The scalar product in the surface integral ”selects” the component of ~um × rot ~un along

the vector d~S which is perpendicular to the surface. This (perpendicular) part of the

vector ~um× rot ~un arises from the components which are parallel (tangent) to the surface,

as it follows from the properties of the vector product of two vectors. But the tangent

component of rot ~un vanishes [see the boundary conditions (
fq19a
3.10a)]. Hence, the normal

component of the vector product vanishes. The integrand is thus zero, and the relation

(
fq35
3.18) is proved. Left-hand side of (

fq33
3.17) is zero, and we arrive at the conclusion that

ω2
m − ω2

n

c2

∫

V

d~r ~um · ~un = 0. (3.19) fq37

Since parameters ωn 6= ωm, we may write
∫

V

d~r ~um · ~un = δmn, (3.20) fq39

because orthogonal functions can be normalized. This fact may be explained in a different

manner. Namely, we can refer to the wave equation (
fq17b
3.9b) and since the laplacian ∇2

is a Hermitian operator, its eigenfunctions belonging to different eigenvalues should be
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orthonormal, which is reflected by (
fq39
3.20). We complete our discussion by returning to the

integral (
fq31
3.16) in which we use relations (

fq35
3.18) and (

fq39
3.20) to get

Jmn = Jnm =

∫

V

d~r rot ~um(~r) · rot ~un(~r) =
ω2

n

c2
δmn. (3.21) fq41

Inserting the obtained results (
fq39
3.20) and (

fq41
3.21) into the expression (

fq23
3.12) for the

energy of the field in the cavity, we obtain

E =
1

2

∑
n

q̇2
n(t) +

c2

2

∑
m,n

qm(t)qn(t)
ω2

n

c2
δmn

=
1

2

∑
n

(
q̇2
n(t) + ω2

n q2(t)
)
. (3.22) fq43

This result confirms that all dynamical information on the fields is included in the field

amplitudes qn(t). The obtained result clearly reminds of the harmonic oscillator. We

may interpret (
fq43
3.22) as the sum of the energies of the so-called field oscillators. This

analogy will be very important, therefore, we will devote some attention to the harmonic

oscillator.

3.2.3 Expansion in normal variables

To proceed further we introduce new, in this case complex, time dependent functions

which reexpress the amplitudes qn and associated momenta pn as

qn =

√
~

2ωn

( an + a∗n ) , pn = q̇n = − i

√
~ωn

2
( an − a∗n ) , (3.23) fq45

where Planck’s constant is introduced for future convenience. These relations are easily

inverted to give

an =
1√

2~ωn

( ωn qn + ipn ) , a∗n =
1√

2~ωn

( ωn qn − ipn ) . (3.24) fq47

The functions an and a∗n are called ”normal variables” of the fields which, as follows from

(
fq05
3.3) and (

fq09
3.5) after substitution of (

fq45
3.23), are now of the formfq49

~A⊥(~r, t) =
∑

n

√
~

2ε0 ωn

(
an + a∗n

)
~un(~r). (3.25a) fq49a

~E⊥(~r, t) = i
∑

n

√
~ωn

2ε0

(
an − a∗n

)
~un(~r), (3.25b) fq49e

~B(~r, t) =
∑

n

√
~

2ε0 ωn

(
an + a∗n

)
rot ~un(~r). (3.25c) fq49m

Energy of the field, given in (
fq43
3.22), can also be given in terms of the normal variables. It

becomes

E =
1

2

∑
n

~ωn

[
ana∗n + a∗nan

]
=

∑
n

~ωn a∗nan, (3.26) fq51
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where the second equality follows from the commutation of classical normal variables.
We have already mentioned analogies to classical harmonic oscillator. The energy of

the field expressed as in (
fq51
3.26) by normal variables brings further associations, but this

time with quantum-mechanical harmonic oscillator.

3.3 Field quantization in a cavity

3.3.1 Field oscillators – harmonic oscillator

We recall some basic facts about quantum mechanical harmonic oscillator. We consider

one-dimensional harmonic oscillator with unit mass, thus we write its Hamiltonian as

Hosc =
1

2
p2 +

1

2
ω2 q2 (3.27) fq53

The position and momentum operators satisfy the well-known canonical commutation

relation [q, p] = i~. It is straightforward to find the Heisenberg equations of motion for

both operatorsfq55

i~ q̇ =
[
q, H

]
=

1

2

[
q, p2

]
= i~p (3.28a) fq55a

i~ ṗ =
[
p, H

]
=

1

2

[
p, ω2 q2

]
= −i~ω2 q (3.28b) fq55b

We see that quantum-mechanical Heisenberg equations yield the same equations as clas-

sical Hamilton equations

q̇ = p =
∂H

∂p
ṗ = − ω2 q = − ∂H

∂p
(3.29) fq57

We know (see the chapter
ac:ac
10) that the variables of the harmonic oscillator can be re-

expressed in terms of the dimensionless annihilation and creation operators. Such a

procedure is called second quantization. We assign the following operators to the position

and momentum ones

q =

√
~
2ω

(
â + â†

)
, p = − i

√
~ω

2

(
â − â†

)
, (3.30) fq59

These relations are easily inverted to give

â =
1√
2~ω

( ω q + ip ) , â† =
1√
2~ω

( ω q − ip ) . (3.31) fq61

So far, we easily see full analogy between quantum-mechanical annihilation and creation

operators and normal variables. The essential difference follows from the canonical com-

mutation relation for position and momentum operators. It implies the canonical com-

mutation relation for annihilation and creation operators

[
â, â†

]
= 1. (3.32) fq63
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The Hamiltonian of the oscillator, rewritten in terms of annihilation and creation opera-

tors is of the form

Hosc = ~ω
(

â†â +
1

2

)
, (3.33) fq65

where the term 1/2 is due to noncommutativity of â and â†.
It is also important to note, than the states of the harmonic oscillator (ie., eigenstates

of the Hamiltonian) are denoted by |n 〉 with n = 0, 1, 2, , . . . . . .. So we have

Hosc|n 〉 = ~ω
(

n +
1

2

) |n 〉 (3.34) fq67

The state with n = 0 is called the vacuum state and it has the property

â | 0 〉 = 0. (3.35) fq69

It is useful to remind that given the vacuum state, we can construct all states |n 〉 by

successive application of the creation operator

|n 〉 =
(â†)n

√
n !

| 0 〉. (3.36) fq71

Obviously, we can also construct the wave functions of the oscillator. For example, in

the position representation we can find the eigenfunctions ψn(q) = 〈 q |n 〉. We refer the

reader to the auxiliary chapter
ac:ac
10.

We can also easily derive the Heisenberg equations of motion for annihilation and

creation operators. This can be done directly by the differentiation of the definitions

(
fq61
3.31) or in a standard way. We getfq73

˙̂a =
1

i~
[
â, Hosc

]
= − iω

[
â, â†â

]
= − iω

[
â, â†

]
â = − iωâ, (3.37a) fq73a

˙̂†a =
1

i~
[
â†, Hosc

]
= − iω

[
â†, â†â

]
= − iωâ†

[
â, â

]
= iωâ†. (3.37b) fq73c

This summarizes all the information on the quantum mechanical harmonic oscillator.

This is relevant for the context of electromagnetic fields in the cavity.

3.3.2 Field quantization

We proceed with the intuitively simple quantization of the electromagnetic field in the

cavity. With each of the field oscillators we associate corresponding annihilation and

creation operators which satisfy the commutation relation

[
âm, â†n

]
= δmn, (3.38) fq75

with all other commutators vanishing. This commutation relation reflects the indepen-

dence of the field modes.
Quantization of the fields consists in replacing the normal variables by corresponding

operators â and â†. Adopting such an equivalence we now have the quantized fields in the
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form identical to (
fq49
3.25) only with normal variables replaced by annihilation and creation

operators. We thus obtain the fields asfq77

~A⊥(~r, t) =
∑

n

√
~

2ε0 ωn

(
ân + â†n

)
~un(~r). (3.39a) fq77a

~E⊥(~r, t) = i
∑

n

√
~ωn

2ε0

(
ân − â†n

)
~un(~r), (3.39b) fq77e

~B(~r, t) =
∑

n

√
~

2ε0 ωn

(
ân + â†n

)
rot ~un(~r) (3.39c) fq77m

Thus, instead of classical functions describing the electromagnetic field we now have

quantum-mechanical field operators. These operators do not commute, since the an-

nihilation and creation operators do not commute. It is important to understand that

the time dependence (or, dynamical behavior) of the fields is hidden in the annihilation

and creation operators. This is evident, if we take into account that in the classical case,

the dynamics was hidden in the field amplitudes q(t), as it can be seen from Eq.(
fq43
3.22).

Since the amplitudes are, in the quantum-mechanical case, replaced by annihilation and

creation operators, they must account for the dynamics of the fields.
Applying the same procedure to the field energy, we reexpress it in terms of the

annihilation and creation operators. Thus, we replace the classical energy of the field by

the quantum mechanical operator

Hfield =
∑

n

~ωn

(
â†n ân +

1

2

)
. (3.40) fq79

The term 1/2, absent in the classical case, now follows from the noncommutativity of the

annihilation and creation operators.
To complete the field quantization we must specify the Hilbert space of the field

eigenstates. We again employ the analogy with the harmonic oscillator. First we define

the vacuum state by the requirement

ân |Ω 〉 = 0, for any mode n. (3.41) fq81

Since the field modes are independent we construct other eigenstates of the field as a

tensor product

|n(1), n(2), . . . , n(k), . . . 〉 = |n(1) 〉 ⊗ |n(2) 〉 ⊗ . . .⊗ |n(k) 〉 ⊗ . . .

=
⊗

(i)

(â†n(i)
)n(i)

√
n(i) !

|Ω 〉 (3.42) fq83

where numbers n(i) are nonnegative integers and index (i) numbers all modes. The states

defined above are called states with n(i) photons in the mode number (i).
We note, that in many practical cases the number of modes in the cavity is infinite.

In such a case the expectation value of the energy of the vacuum state follows form (
fq79
3.40)

〈Ω |Hfield |Ω 〉 =
∑

n

1

2
~ωn (3.43) fq85
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and is infinite. We renormalize the energy by dropping the term 1/2. Thus the free field

hamiltonian is taken to be

Hfield =
∑

n

~ωn â†nân. (3.44) fq87

Omission of the 1/2 term does not change the equation of motion for field operators.

They follow again by the analogy to harmonic oscillator, and we havefq89

˙̂an = −iωân, (3.45a) fq89a

˙̂†an = iωâ†n. (3.45b) fq89c

Hence the time dependence of the field annihilation and creation operators for the case

of free field is simple. By direct integration we get

ân(t) = ân(t0) e−iωn(t−t0), â†n(t) = â†n(t0) eiωn(t−t0), (3.46) fq91

with ân(t0) and â†n(t0) being the initial values. As we already stressed, the dynamics of

the fields is ”hidden” in the annihilation and creation operators. If we insert relations

(
fq91
3.46) into the fields (

fq77
3.39), we see that their time dependence is sinusoidal, as might be

expected due to the oscillator analogy.

3.4 Plane wave representation

3.4.1 Discussion of our results

As we already mentioned, the index n numbering field modes should be understood as a

multiindex. We generalize our results by using an additional index α explicitly. More-

over, the wave equation (
fq17b
3.9b) is real, but in general, it allows complex valued solutions.

Therefore, we generalize the fields (
fq77
3.39) by writingfq93

~A(~r, t) =
∑
n,α

√
~

2ε0 ωn

(
ânα

~fnα(~r) + â†nα
~f∗nβ(~r)

)
, (3.47a) fq93a

~E⊥(~r, t) = i
∑
n,α

√
~ωn

2ε0

(
ânα

~fnα(~r) − â†nα
~f∗nα(~r)

)
, (3.47b) fq93e

~B(~r, t) =
∑
n,α

√
~

2ε0 ωn

(
ânα rot~fnα(~r) + â†nα rot~f∗nα(~r)

)
(3.47c) fq93m

The functions ~fnα(~r) possess similar properties as initial functions ~un. They satisfy the

boundary conditions, are orthonormal, etc. We stress that the form of the fields as above

ensures hermiticity of the field operators, as it should be, because the fields are most

certainly the physically observable quantities.
The annihilation and creation operators satisfy the commutation relation which is an

obvious generalization of (
fq75
3.38), and which reads

[
âmα, â†nβ

]
= δmn δαβ. (3.48) fq95
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Other expressions, as for example the free field Hamiltonian (
fq87
3.44), are also suitably

generalized in an obvious manner. It may be worth noting that our generalization can

be viewed as a unitary transformation of the previous results. Unitary transformation

preserve commutation relations, orthonormality etc., thus, there is no need to discuss this

point in more detail.
As we also mentioned, the specific form of cavity modes ~fnα depends on the geometry

of the cavity. It is possible to discuss cavities of various shapes, symmetries, but we will

focus attention on the simplest, but most widely used case – the plane waves.

3.4.2 Introduction of plane waves

We will now discuss the quantization of fields in a cubic box of volume V . The simplest

set of orthonormal eigenfunctions of such a cavity consists of plane waves

~f~kλ(~x) =
1√
V

~e~kλ ei~k·~x, (3.49) fq97

which are labelled by the wave vector ~k and by an additional index λ (which replace our

multiindex n, α). The wave vector satisfies the dispersion relation

ωk = kc, with k = |~k |, (3.50) fq99

which is a consequence of the requirement that functions ~f~kλ(~x) satisfy the Helmholtz

equation (
fq17b
3.9b). The vectors ~e~kλ called polarization vectors are in general complex and

normalized to unity

||~e~kλ || = 1. (3.51) fq101

In order to discuss these functions we expand the vector potential in terms of them.

Adjusting the summation indices according to the present situation, from (
fq93a
3.47a) we get

~A⊥(~x, t) =
∑

~kλ

√
~

2ε0ωkV

[
~e~kλ a~kλ ei~k·~x + ~e ∗

~kλ
a†~kλ

e−i~k·~x
]
, (3.52) fq103

Vector potential must satisfy the Coulomb gauge (
fq01
3.1), that is we consider a transverse

field ~A ≡ ~A⊥. This requirement applied to expansion (
fq103
3.52) yields

~e~kλ · ~k = ~e ∗
~kλ
· ~k = 0. (3.53) fq105

So, polarization vectors are orthogonal to wave vector, which explains their name. By

analogy to classical electrodynamics we conclude that there are two vectors orthogonal to

the given ~k. Hence the index λ takes on two possible values λ = 1, 2. Two real vectors

~e~kλ correspond to two linear polarizations. When polarization is circular polarization

vectors are complex. Moreover, it is convenient to assume that two polarization vectors

are mutually orthogonal, that is

~e~kλ · ~e~kµ = δλµ. (3.54) fq107
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The boundary conditions imposed on the fields result in the requirements imposed

upon functions ~f~kλ(~x). These requirements may be phrased as periodic boundary condi-

tions

~f~kλ(~x + ~eiL) = ~f~kλ(~x), (3.55) fq109

where L is the length of the edge of the cubic cavity and ~ei is a unit vector directed along

one of the three orthogonal edges. Imposing this condition on the plane waves (
fq97
3.49) we

arrive at the quantization of the wave vector

~k =
2π

L

(
nx~ex + ny~ey + nz~ez

)
, (3.56) fq111

where nx, ny, nz are triples of integers. Hence numbering of the plane wave modes by wave

vector ~k is fully equivalent to numbering by triples of integers. It is, however, important

that the numbering of the modes, as discussed here, should not be mixed with photon

numbers n~kλ which are nonnegative integers and they number the states of the quantized

field in the abstract Hilbert space of states of the type indicated in (
fq83
3.42).

Finally we note that

rot~f~kλ(~x) = i
(

~k×~f~kλ(~x)
)

. (3.57) fq113

which is necessary to express the magnetic induction according to Eq. (
fq93m
3.47c).

3.4.3 Quantization in cubic box of volume V

Having discussed the main features of the plane wave representation of modes in the

cubic cavity we can express the fields in this representation. Although we have already

considered the vector potential (see (
fq103
3.52) we collect all the results which follow from

Eqs.(
fq93
3.47) and from the above given discussion. Vector potential quantized in the cubic

box of volume V isfq115

~A⊥(~x, t) =
∑

~kλ

√
~

2ε0ωkV

[
~e~kλ a~kλ(t) ei~k·~x + ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
, (3.58a) fq1151

=
∑

~kλ

Ek

ωk

[
~e~kλ a~kλ(t) ei~k·~x + ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
. (3.58b) fq1152

Transverse electric field (in Coulomb gauge) in the cubic box of volume V ,fq117

~E⊥(~x, t) = i
∑

~kλ

√
~ωk

2ε0V

[
~e~kλ a~kλ(t) ei~k·~x − ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
, (3.59a) fq1171

= i
∑

~kλ

Ek

[
~e~kλ a~kλ(t) ei~k·~x − ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
. (3.59b) fq1172
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The corresponding magnetic field is of the formfq119

~B(~x, t) = i
∑

~kλ

√
~

2ε0ωkV

[ (
~k× ~e~kλ

)
a~kλ(t) ei~k·~x −

(
~k× ~e ∗

~kλ

)
a†~kλ

(t) e−i~k·~x
]
,

(3.60a) fq1191

= i
∑

~kλ

Ek

ωk

[ (
~k× ~e~kλ

)
a~kλ(t) ei~k·~x −

(
~k× ~e ∗

~kλ

)
a†~kλ

(t) e−i~k·~x
]
. (3.60b) fq1192

In these equations we have introduced a useful and convenient notation

Ek =

√
~ωk

2ε0V
. (3.61) fq121

It is worth noting that operators of the electric field and magnetic induction are related

as

~B =
∑

~kλ

1

ωk

~k× ~E~kλ (3.62) fq123

The Hamiltonian of the field in the plane wave representation has an obvious form

HF =
∑

~kλ

~ωk a†~kλ
a~kλ. (3.63) fq125

The eigenstates of this Hamiltonian are denoted similarly as in (
fq83
3.42) the only difference

being in numbering of the modes

| { n~kλ } 〉 = | . . . , n~kλ, . . . 〉 =
⊗

~kλ

(â†n~kλ
)n~kλ

√
(n~kλ) !

|Ω 〉 (3.64) fq127

For sake of completeness let us write the commutation relation for field operators. It

obviously follows from (
fq75
3.38) and now is of the form

[
a~kλ, a†~k′λ′

]
= δ~k~k′ δλλ′ , (3.65) fq129

where the first Kronecker delta is understood as a product of three deltas with indices

following from the allowed values of the wave vector as in Eq.(
fq111
3.56). The Hamiltonian

(
fq125
3.63) and commutation relations are sufficient to derive the Heisenberg equations of

motion for field operators

d

dt
a~kλ = − i

~
[
a~kλ, HF

]
= − iωk a~kλ. (3.66) fq131

This equation of motion obviously yields the solution

a~kλ(t) = a~kλ(t0) e−iωk(t−t0). (3.67) fq133

Since annihilation and creation operators determine the dynamics (time evolution) of the

fields, we see that after inserting (
fq133
3.67) into expansions (

fq115
3.58)–(

fq119
3.60) we obtain the fields

as the combinations of plane waves.
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3.4.4 Density of the modes

In many practical applications need to perform summations over allowed wave vectors

and polarizations. We will consider this problem in more detail. Let us assume that we

have to compute the sum
∑

~k

∑

λ

( . . . ), (3.68) fq135

of some function of summation variables. Summation is usually difficult, therefore we will

show how to replace summation by integration.
In the ~k-space the allowed wave vectors are specified by points with integer coordinates

(see (
fq111
3.56). The region of the volume of (2π/L)3 around such a point is inaccessible for

other wave vectors. Thus, the given volume determines the elementary cell in the ~k-space.

Hence summation as in (
fq135
3.68) corresponds to counting the number of points in ~k-space

with weights specified by the summed function. The number of such points is equal to

the volume in ~k space divided by the volume of the elementary cell. Thus we can writefq137

∑

~k

∑

λ

( . . . ) =
∑

λ

1

(2π/L)3

∫
d~k ( . . . ) =

∑

λ

V

(2π)3

∫
d~k ( . . . ) (3.69a) fq137a

=
V

8π3

∑

λ

∫ ∞

0

k2 dk

∫
dΩ~k ( . . . ) (3.69b) fq137b

where we expressed the last integral in spherical coordinates. We will apply this result to

some practically important cases.
As a example, which can be easily adopted to practical problems, we consider the

function Gλ(ωk) which depends only on polarizations and the length of the wave vector k =

ωk/c. Then in (
fq137b
3.69b) we can easily integrate over the angles. Changing the integration

variable to ωk we get

∑

~k,λ

Gλ(ωk) −→ V

2π2 c3

∑

λ

∫ ∞

0

ω2
k dωk Gλ(ωk) (3.70) fq139

As the second example, we go further and take the function G(ωk) which depends

only on the field frequency. The sum over polarizations in (
fq139
3.70) can be performed and

yield a factor 2 because there are two polarizations. Hence, we obtain

∑

~k,λ

G(ωk) −→ V

π2 c3

∑

λ

∫ ∞

0

ω2
k dωk Gλ(ωk), (3.71) fq141

which is sometimes written as

∑

~k,λ

G(ωk) −→
∫ ∞

0

dωk V ρ(ωk) G(ωk). (3.72) fq143

The introduced quantity ρ(ωk) is given as

ρ(ωk) =
ω2

k

π2 c3
, (3.73) fq145
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an is called the density of the modes. It gives the number of modes of any polarization

which lie within the frequency interval (ωk, ωk + dωk) per unit volume of the cavity. The

notion of mode density is useful when we have to evaluate the integrals of the type given

in (
fq143
3.72).

3.4.5 Quantization in free space

Fields given above in terms of the plane waves in a cubic box by Eqs.(
fq115
3.58)–(

fq119
3.60), are

in fact Fourier series. There is no difficulty in transforming Fourier series in the bounded

region into Fourier integrals in the whole space. The quantity (2π/L)3 = 8π3/V deter-

mines the elementary cell in the ~k-space (see the discussion in the previous section). This

implies that the functions orthonormalized to Kronecker delta in the box by a constant

1/
√

V and summed over discrete ~k will in the whole space be normalized by a factor

1/(2π)3/2 to Dirac delta and integrated over whole space of wave vectors. This procedure

allows us to rewrite the above discrete expansions of the fields into Fourier integrals over

whole ~k-space.
Vector potential quantized in free space with plane waves

~A⊥(~x, t) =
∑

λ

∫
d3k√
(2π)3

√
~

2ε0ωk

[
~e~kλ a~kλ(t) ei~k·~x + ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
,

=
∑

λ

∫
d3k√
(2π)3

E ′k
ωk

[
~e~kλ a~kλ(t) ei~k·~x + ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
. (3.74) fq147

Electric field (in Coulomb gauge) in this case is

~E⊥(~x, t) = i
∑

λ

∫
d3k√
(2π)3

√
~ωk

2ε0

[
~e~kλ a~kλ(t) ei~k·~x − ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
,

= i
∑

λ

∫
d3k√
(2π)3

E ′k
[
~e~kλ a~kλ(t) ei~k·~x − ~e ∗

~kλ
a†~kλ

(t) e−i~k·~x
]
. (3.75) fq149

Corresponding magnetic field

~B(~x, t) = i
∑

λ

∫
d3k√
(2π)3

√
~

2ε0ωk

[ (
~k× ~e~kλ

)
a~kλ(t) ei~k·~x

−
(
~k× ~e ∗

~kλ

)
a†~kλ

(t) e−i~k·~x
]
,

= i
∑

λ

∫
d3k√
(2π)3

E ′k
ωk

[ (
~k× ~e~kλ

)
a~kλ(t)e

i~k·~x

−
(
~k× ~e ∗

~kλ

)
a†~kλ

(t)e−i~k·~x
]
, (3.76) fq151

We have also introduced a useful notation

E ′k =

√
~ωk

2ε0

. (3.77) fq153

The relation between the electric field and magnetic induction (
fq123
3.62) still holds, but

the sum is replaced by the integral. Similarly the commutation relation for annihilation
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and creation operators now reads

[
a~kλ, a†~k′λ′

]
= δ(~k− ~k′) δλλ′ , (3.78) fq155

The Hamiltonian of the field in the plane wave representation has now the integral form

Hfield =

∫
d~k ~ωk a†~kλ

a~kλ. (3.79) fq157

The eigenstates of this Hamiltonian are denoted as in (
fq127
3.64) only the tensor product is

now performed over the continuous variable.

3.5 Equations of motion – Maxwell’s equations

We work in the Coulomb gauge, that is div ~A = 0. This ensures that two homogeneous

Maxwell’s equations (for vacuum, in absence of sources)

div ~B = 0, div ~E = 0, (3.80) fq159

are automatically satisfied, which is due to the definitions (
fq05
3.3). It remains to check that

two other Maxwell’s equations are satisfied.
Let us first check that rot ~E = −∂~B/∂t. We first calculate rotation of the electric

field. Taking the field as in (
fq1172
3.59b), using relation (

fq113
3.57) and its complex conjugate, we

get

rot ~E⊥(~x, t) = −
∑

~kλ

Ek

[ (
~k× ~e~kλ

)
a~kλ ei~k·~x +

(
~k× ~e ∗

~kλ

)
a†~kλ

e−i~k·~x
]
. (3.81) fq161

On the other hand, computing the time derivative of ~B we take Eq.(
fq119
3.60) and we see that

the only time dependence in the right-hand side may enter via annihilation and creation

operators. Then using Eq.(
fq131
3.66) and its hermitian conjugate we obtain

∂ ~B

∂t
= i

∑

~kλ

Ek

ωk

[ (
~k× ~e~kλ

) (−i ωk a~kλ

)
ei~k·~x −

(
~k× ~e ∗

~kλ

) (
i ωk a†~kλ

)
e−i~k·~x

]
,

=
∑

~kλ

Ek

[ (
~k× ~e~kλ

)
a~kλ ei~k·~x +

(
~k× ~e ∗

~kλ

)
a†~kλ

e−i~k·~x
]
. (3.82) fq163

Comparing rhs of the last two equations we see that the Maxwell’s equation rot ~E⊥ =

−∂ ~B/∂t is indeed satisfied.
Thus it remains to check the fourth Maxwell’s equation, namely

∂ ~E⊥
∂t

= c2 rot ~B (3.83) fq165

We compute left-hand side by differentiating Eq.(
fq117
3.59) over time and taking into account

relations (
fq131
3.66). We get, similarly as in (

fq163
3.82):

∂ ~E⊥(~x, t)

∂t
= c2

∑

~kλ

Ek

ωk

k2
[
~e~kλ a~kλ ei~k·~x + ~e ∗

~kλ
a†~kλ

e−i~k·~x
]
, (3.84) fq167
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where we have used the dispersion relation: ωk = ck. Now we proceed to compute the

rotation of the magnetic induction.

rot ~B(~x, t) = i
∑

~kλ

Ek

ωk

rot
[ (

~k× ~e~kλ

)
a~kλ ei~k·~x −

(
~k× ~e ∗

~kλ

)
a†~kλ

e−i~k·~x
]
, (3.85) fq169

To find the rotation we need the expression rot
[(

~k× ~e~kλ

)
ei~k·~x]. So we compute it.

rot
[(

~k× ~e~kλ

)
ei~k·~x]

a
= εabc ∂b

[(
~k× ~e~kλ

)
c

ei~k·~x]

= εabcεcmn ∂b

[
km

(
~e~kλ

)
n

ei~k·~x]

=
(
δam δbn − δan δbm

)
i km

(
~e~kλ

)
n

kb ei~k·~x

= i
[
ka

(
~k · ~e~kλ

)
− (

~e~kλ

)
a

(
~k · ~k

)]
]ei~k·~x. (3.86) fq171

Since polarization vectors and wave vector are orthogonal, the first term vanishes, and we

finally obtain

rot
[(

~k× ~e~kλ

)
ei~k·~x]

a
= −i ~e~kλ k2 ei~k·~x (3.87) fq173

We use the obtained relation and its complex conjugate in (
fq169
3.85), this yields rotation of

the magnetic induction

rot ~B(~x, t) =
∑

~kλ

Ek

ωk

k2
[
~e~kλ a~kλ ei~k·~x + ~e ∗

~kλ
a†~kλ

e−i~k·~x
]

(3.88) fq175

Comparing Eqs.(
fq167
3.84) and the last one we see that the Maxwell’s equation (

fq165
3.83) is indeed

satisfied.
We conclude this section by stating that the Maxwell’s equations are satisfied by the

quantized field (in the cubic cavity). Checking that this is so also in a general case is

much more tedious, but nevertheless can be done along the same lines. On the other hand

Maxwell’s equations are equivalent to Heisenberg equations of motion for field operators.

This follows, since we used (
fq131
3.66) in the derivation, and the latter equations are just the

Heisenberg ones for annihilation and creation operators.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 4

States of quantized electromagnetic
fieldsc:fs

Quantization of the electromagnetic field has led us to the so-called Fock space (
fq127
3.64),

that is to the states

| { n~kλ } 〉 = | . . . , n~kλ, . . . 〉 =
⊗

~kλ

(â†n~kλ
)n~kλ

√
(n~kλ) !

|Ω 〉 (4.1) f1s01

where |Ω 〉 is a vacuum state specified by a sequence of zeroes – no photons in any of the

allowed modes, which are numbered by the wave vector ~k and polarization index λ = 1, 2.

Each of such states is specified by a sequence of nonnegative integers. Obviously, these

photon number states are the eigenstates of the Hamiltonian HF given in (
fq125
3.63).

4.1 Introduction and general discussion

4.1.1 Vacuum state

It is natural to consider the vacuum state |Ω 〉 as the first one. Since vacuum state

can be defined by the relation a~kλ|Ω 〉 = 0 or 〈Ω |a†~kλ
= 0, we easily see that the vacuum

expectation values of the vector potential ~A⊥ (
fq115
3.58), electric field ~E⊥ (

fq117
3.59) and magnetic

field ~B (
fq119
3.60) all vanish

〈Ω | ~A⊥ |Ω 〉 = 0, 〈Ω | ~E⊥ |Ω 〉 = 0, 〈Ω | ~B |Ω 〉 = 0. (4.2) f1s04

On the other hand, expectation values of the intensities, that is of the squares of the fields

do not vanish in the vacuum state. Let us compute the expectation value of the square

of the electric field (which is a Hermitian operator). Using (
fq117
3.59) we get

〈Ω | ~E2
⊥ |Ω 〉 = −

∑

~kλ

∑

~k′λ′

~√ωkωk′

2ε0V
〈Ω |

(
~e~kλ â~kλ ei~k·~x − ~e∗~kλ

â†~kλ
e−i~k·~x

)

(
~e~k′λ′ â~k′λ′ e

i~k′·~x − ~e∗~k′λ′ â
†
~k′λ′

e−i~k′·~x
)
|Ω 〉. (4.3) f1s5a
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We stress that the fields ~E⊥ are both taken at the same space-time point (~x, t). By

straightforward multiplication we get

〈Ω | ~E2
⊥ |Ω 〉 = −

∑

~kλ

∑

~k′λ′

~√ωkωk′

2ε0V
〈Ω |

{
~e~kλ · ~e~k′λ′ â~kλ â~k′λ′ e

i(~k+~k′)·~x

− ~e~kλ · ~e∗~k′λ′ â~kλ â†~k′λ′ e
i(~k−~k′)·~x

− ~e∗~kλ
· ~e~k′λ′ â

†
~kλ

â~k′λ′ e
−i(~k−~k′)·~x

+ ~e∗~kλ
· ~e∗~k′λ′ â

†
~kλ

â†~k′λ′ e
−i(~k+~k′)·~x

}
|Ω 〉. (4.4) f1s5b

The first term vanishes, since each of the annihilation operators acting on |Ω 〉 yields zero.

The same applies to the last (fourth) term (only it acts on the right, that is on 〈Ω |). So

the nonzero contribution is at most due to two terms only, and we get

〈Ω | ~E2
⊥ |Ω 〉 =

∑

~kλ

∑

~k′λ′

~√ωkωk′

2ε0V
〈Ω |

{
~e~kλ · ~e∗~k′λ′ â~kλ â†~k′λ′ e

i(~k−~k′)·~x

+ ~e∗~kλ
· ~e~k′λ′ â

†
~kλ

â~k′λ′ e
−i(~k−~k′)·~x

}
|Ω 〉. (4.5) f1s5c

The diagonal terms behave differently than off-diagonal. Let us discuss the latter ones

first. If ~k 6= ~k′ and/or λ 6= λ′ then operators â~kλ and â†~k′λ′ commute. So we can move

annihilation operators to the right and then these operators act on vacuum state giving

zeroes. The conclusion is that all off-diagonal terms vanish, do not contribute. Non-zero

contribution may arise only due to diagonal terms with ~k = ~k′ and λ = λ′. The double

sum reduces to a single one. Thus (
f1s5c
4.5) reduces to

〈Ω | ~E2
⊥ |Ω 〉 =

∑

~kλ

~ωk

2ε0V
〈Ω |

{
a~kλa

†
~kλ

+ a†~kλ
a~kλ

}
|Ω 〉, (4.6) f1s5d

because exponential factors give unity and so do the products of polarization vectors (see

(
fq107
3.54). Due to canonical commutation relation we finally arrive at an expression

〈Ω | ~E2
⊥ |Ω 〉 =

∑

~kλ

~ωk

2ε0V
〈Ω |

{
2a†~kλ

a~kλ + 1
}
|Ω 〉, =

∑

~kλ

~ωk

2ε0V
. (4.7) f1s5f

Very similar calculation can be performed for the magnetic field ~B specified in (
fq119
3.60). The

only difference consists in different vectorial factors. The argument about annihilation

and creation operators in diagonal and off-diagonal terms remains unchanged. The sum

reduces to a single one and we have to consider the vector products. It is easy to show

that

(~k× ~e~kλ)
2 = ~k2 ~e2

~kλ
− (~k · ~e~kλ)

2 = ~k2, (4.8) f1s6a

where the second term vanishes due to transversality of the field (
fq105
3.53), so the vectorial

products reduces to ~k2. Therefore, the expectation value of the square of the magnetic

field follows in exactly the same manner as that for electric field, yielding

〈Ω | ~B2 |Ω 〉 =
∑

~kλ

~~k2

2ε0ωkV
=

∑

~kλ

~ωk

2ε0V c2
, (4.9) f1s6b
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because (see (
fq99
3.50)) we have the dispersion relation ωk = |~k| c. Due to dispersion relation,

both quantities 〈Ω | ~E2
⊥ |Ω 〉 and 〈Ω | ~B2 |Ω 〉, in principle, diverge with growing ~k.

In our considerations we use nonrelativistic approach, so we do not allow for creation

or destruction of material particles. Hence the energy range in which we work must

be restricted to energies less than mec
2, where me is the electron rest mass. Or, in

other words, nonrelativistic approach becomes invalid for frequencies approaching ωM =

mec
2/~. Hence we can limit the energies by introducing the frequency cut-off equal to ωM .

Adopting such a limit we see that our expressions (
f1s5f
4.7) and (

f1s6b
4.9) contain summations over

all modes but concern the functions of frequency only. Thus we can use the summation

prescription (
fq143
3.72) and we can expressed the obtained expectation values as

〈Ω | ~E2
⊥ |Ω 〉 = c2 〈Ω | ~B2 |Ω 〉 =

∫ ωM

0

dω
ω2

π2c3

~ω
2ε0

. (4.10) f1s7

Hence, the these expectation values diverge as ω4
M . Since the averages (

f1s04
4.2) vanish, the

corresponding variances are equal to the expectation values (
f1s7
4.10), so the variances are

also divergent as ω4
M . This is typical (purely quantum) problem with vacuum fields. The

procedure of renormalization is aimed at removal of the divergencies, but it is a subject

which we will not consider here.

4.1.2 Photon number states

The states (
f1s01
4.1) introduced previously are called photon number states. So they are the

eigenstates of the hamiltonian (
fq125
3.63) with eigenvalues E~kλ =

∑
~kλ ~ωkn~kλ. It is easy to

argue that when the field is in the photon number state the expectation values of the field

operators (
fq115
3.58)–(

fq119
3.60) are

〈 {n~kλ} | ~A | {n~kλ} 〉 = 〈 {n~kλ} | ~E⊥ | {n~kλ} 〉 = 〈 {n~kλ} | ~B | {n~kλ} 〉 = 0, (4.11) f1s11

which follows directly from the fact that â~kλ lowers and a†~kλ
raises the number of photons,

while states with different photon numbers (different eigenstates of HF ) are orthogonal.
The expectation values of the squares of the fields can be computed in an exactly the

same manner as for vacuum state. Computation for the average of ~E2
⊥ in the vacuum

state was, up to the first part of eq.(
f1s5f
4.7), done in a quite a general manner. Thus, it is

sufficient to replace |Ω 〉 by | {n~kλ} 〉, and we get

〈 {n~kλ} | ~E2
⊥ | {n~kλ} 〉 =

∑

~kλ

~ωk

2ε0V
〈 {n~kλ} |

{
2a†~kλ

a~kλ + 1
}
| {n~kλ} 〉,

=
∑

~kλ

~ωk

2ε0V
(2n~kλ + 1). (4.12) f1s12

We note that terms such as a~kλa~kλ do not contribute in this case due to orthonormality

of the states with unequal photon numbers. Obviously the expression for the expectation

value of ~B2 is the same as (
f1s12
4.12) only divided by an additional factor c2. We shall return

to the discussion of this results in a more specific case of a single mode field.
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At present we will add only several comments. The variances of the fields follow

immediately from two previous formulas. We obtain

σ2(~E⊥) =
∑

~kλ

~ωk

2ε0V
(2n~kλ + 1) = c2 σ2(~B) (4.13) f1s14

Certainly, we encounter here the same problems with divergencies, so again we can con-

sider the cut-off frequency ωM . Finally, we note that photon number states (eigenstates

of HF ) are stationary ones. Therefore, all expectation values are time independent. This

is strictly nonclassical, because in the classical picture the fields are quantities oscillating

in time. We can view the photon number states as states of well-defined amplitude of

the oscillations, but with completely undetermined phase, hence the fields average out to

zero as in (
f1s11
4.11).

4.1.3 Single mode field

It is possible to consider a multimode field, just as we have done in the previous section,

that is a field in which many modes specified by (~k, λ) are occupied – many numbers n~k,λ

are nonzero. However, the field may be viewed as a Fourier series, or linear combination

of many modes. Thus, it is frequently sufficient to consider only one (single) mode, while

the generalizations to many modes usually poses no difficulties.
For these reason, and also for reason of simplicity, we will now consider only a single

mode of the quantized electromagnetic field. Hence, we drop the indices denoting the

modes and from (
fq115
3.58)–(

fq119
3.60) we have the fields given by single terms, asf2s01

~A⊥(~x, t) =

√
~

2ε0ωV
~e

[
â ei~k·~x + â† e−i~k·~x

]
, (4.14a) f2s01a

~E⊥(~x, t) = i

√
~ω

2ε0V
~e

[
â ei~k·~x − â† e−i~k·~x

]
, (4.14b) f2s01b

~B(~x, t) = i

√
~

2ε0ωV
(~k× ~e)

[
â ei~k·~x − â† e−i~k·~x

]
, (4.14c) f2s01c

where we assumed the polarization vector ~e to be real.
The physical state of the field is specified by the n-photon state |n 〉. We note that the

vacuum state |Ω 〉 corresponds to n = 0. The results of previous section can be specified

to fit the present needs. In particular, the expectation values for the field follow from

(
f1s11
4.11) and in this special case they are

〈n | ~A⊥ |n 〉 = 〈n | ~E⊥ |n 〉 = 〈n | ~B |n 〉 = 0, (4.15) f2s02

where n = 0, corresponding to vacuum, is also allowed. Similarly, for the expectation

value of the square of the field, from (
f1s12
4.12) we get

〈n | ~E2
⊥ |n 〉 =

~ω
2ε0V

(2n + 1) (4.16) f2s03

This is not unexpected. The expression ε0〈 ~E2 〉/2 gives half of the energy density of the

field. Since we use oscillator analogy, we see that result (
f2s03
4.16) is indeed proportional to
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energy density. However, for the field in the n-state the expectation value of the field

amplitude is zero (see (
f2s02
4.15)). This may be explained by saying that photons can have

any phases, so that the field averages out to zero. Energy is phase independent, hence

the non-zero result (
f2s03
4.16).

Before proceeding, let us recall the identifications (
fq59
3.30), namely

q =

√
~
2ω

(
â + â†

)
, p = − i

√
~ω

2

(
â − â†

)
, (4.17) f2s04

which immediately yield expectation values in n-state

〈 q 〉n = 〈n | q |n 〉 = 0, 〈 p 〉n = 〈n | p |n 〉 = 0. (4.18) f2s05

The expectation values of the squares are also easy to compute, and we getf2s06

〈 q2 〉n = 〈n | q2 |n 〉 =
~
2ω

〈n | (
â + â†

)2 |n 〉 =
~
2ω

(2n + 1) (4.19a) f2s06a

〈 p2 〉n = 〈n | p2 |n 〉 = − ~ω
2
〈n | (

â− â†
)2 |n 〉 =

~ω
2

(2n + 1) (4.19b) f2s06b

The quantum averages (
f2s05
4.18) vanish, so the above expectations are equal to variances,

eg. σ2
n(q) = 〈 q2 〉n, and similarly for p. Therefore the product of variances becomes

σ2
n(q) σ2

n(p) =
~2

4
(2n + 1)2 ≥ ~2

4
(4.20) f2s08

Since [ q, p ] = i~, the last inequality follows from Heisenberg uncertainty relation for

noncommuting observables. We see that even for the vacuum state (n = 0) the product

of variances satisfies the uncertainty principle, which for n ≥ 1 is satisfied as a ”real–

sharp” inequality.
Therefore, an important question arises: can we construct fields such, that the uncer-

tainty principle is minimized ?

4.2 Coherent states (single mode)

Coherent states are the states which answer to the given question. We shall introduce

these states in a formal manner and we will investigate their properties.
The coherent state | z 〉 is defined as the normalized eigenstate of the annihilation

operator

â| z 〉 = z| z 〉, z ∈ C, 〈 z | z 〉 = 1. (4.21) f2s10

Annihilation operator is not hermitian, so we do not a priori know whether states | z 〉
and | ξ 〉 are orthogonal.

4.2.1 Expansion in n-photon states

Fock states, that is n-photon states, are complete and orthonormal (they are eigenstates

of hermitian operator n̂ = â†â). Thus, any state can be expanded as

| z 〉 =
∞∑

n=0

|n 〉〈n | z 〉 =
∞∑

n=0

|n 〉 Cn(z). (4.22) f2s11
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Cn(z) are probability amplitudes, that for the field in coherent state | z 〉 we will find it in

the n-photon state. Applying the annihilation operator to both sides we get

â | z 〉 =
∞∑

n=0

√
n |n− 1 〉 Cn(z) =

∞∑
n=0

√
n + 1 |n 〉 Cn+1(z), (4.23) f2s12

where in the second equality we have renumbered the series. On the other hand, from

(
f2s11
4.22) we obtain

â | z 〉 = z | z 〉 =
∞∑

n=0

z |n 〉 Cn(z). (4.24) f2s13

Comparing rhs of two last formulas we arrive at the recurrence relation

Cn+1(z) =
z√

n + 1
Cn(z), (4.25) f2s14

which easily gives the probability amplitude

Cn(z) =
zn

√
n!

C0(z), (4.26) f2s15

so it remains to compute C0(z). This is done by invoking the normalization requirement.

From expansion (
f2s11
4.22) after insertion of (

f2s15
4.26) we have

1 = 〈 z | z 〉 = |C0(z)|2
∞∑

m,n=0

(z∗)mzn

√
n! m!

〈m |n 〉

= |C0(z)|2
∞∑

n=0

|z|2n

n!
= |C0(z)|2 e|z|

2

, (4.27) f2s16

where we used orthonormality of the n-states. Adopting zero phase we get C0(z) =

exp(−|z|2/2). Hence, the final form of the expansion of the coherent state | z 〉 in the

n-states becomes

| z 〉 = exp(−|z|2/2)
∞∑

n=0

zn

√
n!

|n 〉. (4.28) f2s17

We note that the vacuum state |Ω 〉 is the coherent state corresponding to z = 0. The

expansion coefficients give probability

Pn(z) = |Cn|2 = exp(−|z|2) |z|2n

n!
, (4.29) f2s18

which is the Poisson distribution with mean 〈n 〉z = |z|2. Indeed, it is straightforward to

check that the average number of photons for the field in the coherent state | z 〉 is given

as

〈n 〉z = 〈 z | â†â | z 〉 = ‖ â| z 〉 ‖2 = |z|2, (4.30) f2s19

as it follows from the definition (
f2s10
4.21).
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4.2.2 Scalar product 〈 z | ξ 〉
Employing expansions (

f2s17
4.28) for two coherent states we can write

〈 z | ξ 〉 = exp

(
−|z|

2

2
− |ξ|2

2

) ∞∑
m,n=0

(z∗)nξm

√
m! n!

〈n |m 〉, (4.31) f2s20a

and due to orthonormality of n-states we get

〈 z | ξ 〉 = exp

(
−|z|

2

2
− |ξ|2

2
+ z∗ξ

)
. (4.32) f2s20b

The obtained relation immediately entails

|〈 z | ξ 〉|2 = exp
(−|z|2 − |ξ|2 + z∗ξ + zξ∗

)
= exp

(−|z − ξ|2 )
. (4.33) f2s21

The bigger the difference between two complex numbers z and ξ, two coherent states

become ”more orthogonal”.

4.2.3 Completeness of coherent states

Complex numbers which parameterize coherent states span a two-dimensional space with

continuous variable. Thus it seems natural to investigate the operator

∫
d2z | z 〉〈 z | =

∫
d2z e−|z|

2
∞∑

m,n=0

(z∗)nzm

√
m! n!

|m 〉〈n |

=
∞∑

m,n=0

|m 〉〈n |√
m! n!

∫
d2z e−|z|

2

(z∗)nzm (4.34) f2s22

Taking the polar coordinates in the complex plane, we transform the integral and we

obtain
∫

d2z e−|z|
2

(z∗)nzm =

∫ ∞

0

dr rm+n+1 e−r2

∫ 2π

0

dϕ ei(m−n)ϕ

= 2π δmn

∫ ∞

0

dr rm+n+1 e−r2

= π δmn n! (4.35) f2s23

Using this result in the operator (
f2s22
4.34) we express it as

∫
d2z | z 〉〈 z | = π

∞∑
n=0

|n 〉〈n | = π1̂. (4.36) f2s24

Hence, we arrived at the completeness relation for coherent states, which can be written

as

1

π

∫
d2z | z 〉〈 z | = 1̂. (4.37) f2s25

Since coherent states are not orthogonal (see (
f2s20b
4.32)) but complete, it is possible to expand

one coherent state |α 〉 in terms of all other ones. This means, that the coherent states
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constitute, the so called, overcomplete set. The obtained relation allows us to write for

an arbitrary (single mode) state |ψ 〉 of the radiation field

|ψ 〉 =
1

π

∫
d2z | z 〉〈 z |ψ 〉. (4.38) f2s25b

It seems tempting to call 〈 z |ψ 〉 the wave function of state |ψ 〉 in the coherent state

representation. This, is, however, incorrect, because 〈 z |ψ 〉 is a function of two real

variables which have the sense of phase space variables, so can be interpreted (considered)

as position and momentum.

4.2.4 Minimalization of uncertainty

In Eqs.(
f2s06
4.19) we have computed the expectation values of operators q and p for the field

in the n-photon state. Here, we shall repeat these calculations for the field in the coherent

state | z 〉.
First we compute the corresponding expectation valuesf2s33

〈 q 〉z = 〈 z |
√
~
2ω

(
â + â†

) | z 〉 =

√
~
2ω

(z∗ + z) (4.39a) f2s33a

〈 p 〉z = 〈 z | i
√
~ω
2

(
â† − â

) | z 〉 = i

√
~ω
2

(z∗ − z) . (4.39b) f2s33b

These relations follow from definition of the coherent state (
f2s10
4.21) and its hermitian con-

jugate: 〈 z |â† = z∗〈 z |. Next we proceed to find the expectation values of the squares q2

and p2. In the calculation we use the canonical commutation relation for annihilation and

creation operators and we obtainf2s35

〈 q2 〉z = 〈 z | ~
2ω

(
â + â†

)2 | z 〉 =
~

2ω

[
(z∗)2 + 2|z|2 + z2 + 1

]
(4.40a) f2s35a

〈 p2 〉z = − 〈 z | ~ω
2

(
â† − â

)2 | z 〉 = − ~ω
2

[
(z∗)2 − 2|z|2 + z2 − 1

]
(4.40b) f2s35b

Variances follow immediately, we easily get the following expressionsf2s37

σ2
z(q) = 〈 z | q2 | z 〉 − 〈 z | q | z 〉2 =

~
2ω

(4.41a) f2s37a

σ2
z(p) = 〈 z | p2 | z 〉 − 〈 z | p | z 〉2 =

~ω
2

. (4.41b) f2s37b

Hence, the product of the variances, for the field in the coherent state | z 〉 is given as

σ2
z(q)σ

2
z(p) =

~2

4
≥ ~2

4
, (4.42) f2s39

so indeed the uncertainty relation is satisfied, but it is minimized, the product of variances

attains the minimum allowed value. Thus, we can say that coherent states minimize the

uncertainty, and as such can be considered to be as close to classical states as it is allowed

by the principles of quantum mechanics. From general course of quantum mechanics we,

for example, know how to construct the minimum uncertainty wave packet. Replacing

the averages of q and p by the expectation values in the coherent state, we may construct

the coherent state wave packet.
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4.2.5 Comments on electric field

The electric field for one mode is given by Eq.(
f2s01b
4.14b). Its expectation value in the coherent

state reads

〈 z | ~E⊥ | z 〉 = i

√
~ω

2ε0V
~e

(
z ei~k·~x − z∗ e−i~k·~x

)
. (4.43) f2s40

We already know that this field corresponds to the state with minimum uncertainty and

as we see it, is of the form of classical plane wave. This is another argument, why the

coherent states are considered to be the closest to the classical ones.
Let us analyze the variance of the photon number for the field in the coherent state.

We have the obvious relations (in the second one we use commutation relation)f2s41

〈n 〉z = 〈 z | â†â | z 〉 = |z|2 (4.44a) f2s41a

〈n2 〉z = 〈 z | (
â†â

)2 | z 〉 = 〈 z | â†(â†â + 1)â | z 〉 = |z|4 + |z|2. (4.44b) f2s41b

Thus, the variance of the photon number in this case is given as

σ2
z(n) = 〈n2 〉z − 〈n 〉2z = |z|2 = 〈n 〉z. (4.45) f2s42

Relative fluctuations of the mean photon number can thus be estimated as

√
σ2

z(n)

〈n 〉z =
1√
〈n 〉z

, (4.46) f2s43

so it becomes very small when the field is strong (with large mean photon number 〈n 〉z =

|z|2). So, if the mode contains (on average) many photons, the fluctuations of 〈n 〉z are

small and the field approaches the classical one.
We continue our discussion of the field in the coherent state and we compute the

variance of the electric field intensity. The average is already given in Eq.(
f2s40
4.43) so we

proceed to find the average of the square

〈 z | ~E2
⊥ | z 〉 =

~ω
2ε0V

〈 z |
(
â† e−i~k·~x − â ei~k·~x

)(
â ei~k·~x − â† e−i~k·~x

)
| z 〉

=
~ω

2ε0V

(
2|z|2 + 1 − (z∗)2 e−2i~k·~x − z2 e2i~k·~x

)
. (4.47) f2s45

Calculation of the variance is now easy, and we get

〈 z | ~E2
⊥ | z 〉 − 〈 z | ~E⊥ | z 〉2 =

~ω
2ε0V

-
~→ 0

0, (4.48) f2s47

because classical limit corresponds to ~ → 0. This limit for the variance is independent

of the field intensity (its energy), in contrast to the n-photon states (see Eqs.(
f2s03
4.16) and

(
f2s02
4.15)). This is an additional argument explaining why coherent states of the field are

closely related to classical ones.
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4.2.6 Time evolution of the coherent state

We still consider one mode field, hence its Hamiltonian is simply HF = ~ω â†â. Let us

assume that the mode was initially in the coherent state

|ψ(t0) 〉 = | z 〉. (4.49) f2s51

We want to find what happens with the mode when time t > t0. Since Hamiltonian is

explicitly time independent, we can invoke general rules of quantum mechanics to write

|ψ(t) 〉 = exp

(
−iHF

~
(t− t0)

)
|ψ(t0) 〉 = exp

(−iωâ†â(t− t0)
) | z 〉. (4.50) f2s53

Expanding the coherent state | z 〉 in n-photon states, as in (
f2s17
4.28) we obtain

|ψ(t) 〉 = exp(−|z|2/2)
∞∑

n=0

zn

√
n!

e−iωn(t−t0) |n 〉. (4.51) f2s54

Additional phase factor e−iω(t−t0) does not change the modulus of number z, thus we can

write rhs of (
f2s54
4.51) as

|ψ(t) 〉 = | z(t) 〉 = | (
z e−iω(t−t0)

) 〉, (4.52) f2s55

which still is a coherent state only with ξ = e−iω(t−t0)z, that is with time dependent

phase. So, free evolution of the coherent state produces a new coherent state, or we may

say equivalently, that an evolving coherent state remains coherent. Let us also note that

this result may be written as

|ψ(t) 〉 = | z(t) 〉 = D
(
z e−iω(t−t0)

) |Ω 〉, (4.53) f2s55x

which agrees with the property (
z2dsim
B.43) of the displacement operator.

For some further discussion, let us denote z(t0) = x0 + iy0. Thus, the time evolution

of z can be written as

z(t) = x0 cos ω(t− t0) + y0 sin ω(t− t0)− ix0 sin ω(t− t0) + iy0 cos ω(t− t0) (4.54) f2s56

Then, the time dependent expectation values of phase space variables are

〈 q(t) 〉 = 〈 z(t) |
√
~
2ω

(
â + â†

) | z(t) 〉

=

√
~
2ω

(z(t) + z∗(t)) =

√
~
2ω

2 Re[z(t)]

=

√
2~
ω

[x0 cos ω(t− t0) + y0 sin ω(t− t0)] . (4.55) f2s57

And similarly, we obtain

〈 p(t) 〉 = −i 〈 z(t) |
√
~ω
2

(
â− â†

) | z(t) 〉

= −i

√
~ω
2

(z(t)− z∗(t)) =

√
~ω
2

2 Im[z(t)]

=
√

2~ω [−x0 sin ω(t− t0) + y0 cos ω(t− t0)] . (4.56) f2s58
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These relations reproduce the evolution of classical harmonic oscillator. We conclude

that a coherent state during its time (free) evolution remains coherent and follows the

trajectory of the classical orbit in the phase space. The uncertainties (variances) σz(q)

and σz(p) remain constant and minimal.

4.2.7 Coherent state as a displaced vacuum

Let us combine expression (
f2s17
4.28) with that for the n state, that is with (

fq71
3.36). As a result

we can write

| z 〉 = exp

(
− |z|2

2

) ∞∑
n=0

zn

√
n!

(â†)n

√
n!

|Ω 〉 = exp

(
− |z|2

2

)
exp

(
zâ†

) |Ω 〉 (4.57) f2s26

Since there holds the relation â|Ω 〉 = 0, then it is obvious that e−z∗â|Ω 〉 = |Ω 〉. There-

fore, we can recast the above relation as

| z 〉 = exp

(
− |z|2

2

)
exp

(
zâ†

)
exp (−z∗â) |Ω 〉. (4.58) f2s27

Using relation (
z2acb
B.27b), ie.: eαâ+βâ† = eβâ† eαâ eαβ/2 with α = −z∗ and β = z we rewrite

the above formula as

| z 〉 = exp
(
zâ† − z∗â

) |Ω 〉 = D(z)|Ω 〉, (4.59) f2s28

where we have introduced an operator, which we will call the displacement operator

D(z) = exp
(
zâ† − z∗â

)
. (4.60) f2s29

The displacement operator is unitary, indeed we have

D†(z) = exp
(
z∗â− zâ†

)
= exp

[−(zâ† − z∗â†)
]

= D(−z), (4.61) f2s30a

and it is evident that

D†(z) = D(−z) = D−1(z), (4.62) f2s30b

which proves that it is unitary, while the operator acting on the vacuum in (
f2s26
4.57) does

not possess such a property. Unitarity is the reason why we have introduced D(z).
Let us also recall relation (

z2sra10
B.37), that is e−αâ−βâ† â eαâ+βâ† = â + β, which allows us

to write

D†(z) â D(z) = ez∗â−zâ† â ezâ†−z∗â = â + z, (4.63) f2s31

which explains the name ”displacement” operator. This is also the reason why we call

the coherent state (see (
f2s28
4.59)) ”the displaced vacuum” state.

It may be worth discussing some analogy with quantum mechanical harmonic oscil-

lator. The hamiltonian of the oscillator is quadratic in momentum and position. If we

add an additional potential energy term (for example coupling of the charged oscillator

with an external, uniform electric field) linear in position, it is then easy to show that the
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wave functions and energies will be displaced. This follows by expressing the hamiltonian

in a canonical form: ax2 + bx = a(x + b/2a)2 − b2/4a. Similar considerations could also

be done for linear shift in momentum. This is so, because position and momentum of the

oscillator both enter the hamiltonian quadratically (they are canonically equivalent). The

given arguments suggest that a displaced state of the oscillator is generated by an oper-

ator proportional to position (or momentum), that is by a combination of annihilation

and creation operators. Requirement of unitarity then leads to the displacement operator

D(z) as given in (
f2s29
4.60). So we see, that the discussed analogy could be used to define a

coherent state via the relation (
f2s28
4.59), which could be then used to prove other properties

of coherent states, including the fact that | z 〉 is an eigenvector of the annihilation oper-

ator. Moreover, this analogy gives additional clarification to the notion of coherent state

as a displaced vacuum state.

4.3 Squeezed states (single mode)

4.3.1 Introduction and basic definition

We know that a quantized mode of the radiation field can be expressed via fields (
f2s01
4.14),

that is via annihilation and creation operators. We will concentrate our attention on the

electric field,

~E⊥(~x, t) = i

√
~ω

2ε0V
~e

[
â ei~k·~x − â† e−i~k·~x

]
. (4.64) f3s01

Discussing the field oscillators and coherent states we have used the phase space operators

q and p (position and momentum operators of the oscillator with unit mass). We will

now introduce two operators

X =
1√
2

(â + â†) Y =
−i√

2
(â− â†), (4.65) f3s02

which, by comparison with (
f2s04
4.17) may be viewed as dimensionless (rescaled) position

and momentum. We shall discuss the importance of the absence of dimensionality later.

At present we note that both operators X and Y are hermitian, and as such, can be

considered observables. The relations (
f3s02
4.65) imply the inverse ones

â =
1√
2

(X + i Y ) â† =
1√
2

(X − i Y ), (4.66) f3s03

in the essentially the same manner as it was done for harmonic oscillator. Moreover, we

note that operators X and Y satisfy an obvious commutation relation

[X, Y ] = i, (4.67) f3s04

which follows immediately from the properties of annihilation and creation operators.
To clarify the physical meaning of the operators X and Y , let us consider the electric

field (
f3s01
4.64). We recall that in the Heisenberg picture â(t) = âe−iωt (as in (

fq133
3.67)), so we

can write

~E⊥(~x, t) = i

√
~ω

2ε0V
~e

[
â eiφ − â† e−iφ

]
, (4.68) f3s05
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where, for brevity, we have denoted φ = ~k · ~r − ωt. Introducing relations (
f3s03
4.66), after

simple manipulations we get

~E⊥(~x, t) = −
√

2

√
~ω

2ε0V
~e [ X sin φ + Y cos φ ] . (4.69) f3s06

Hence, X and Y are amplitudes of the two quadratures of the electric field (
f3s01
4.64) having

a phase difference of π/2.
The commutation relation (

f3s04
4.67) implies that the variances of observables X and Y

satisfy the uncertainty relation

σ2(X) σ2(Y ) ≥ 1

4
. (4.70) f3s07

Before continuing our discussion, it may be worth recalling that the variances of quadra-

tures are:f3s08

• for n− photon state (see(
f2s06
4.19)) : σ2

n(X) = σ2
n(Y ) =

1

2
(2n + 1) (4.71a) f3s08a

• for coherent state (see(
f2s37
4.41)) : σ2

z(X) = σ2
z(Y ) =

1

2
(4.71b) f3s08b

These relations show that we reach the minimum uncertainty (the product of variances

equal to 1/4) for the vacuum state |Ω 〉 = |n = 0 〉 and for a coherent state | z 〉. For

future reference, we also recall that according to Eq.(
f2s05
4.18), for n-photon state we have

the expectation values

〈X 〉n = 〈n |X |n 〉 = 0, 〈Y 〉n = 〈n |Y |n 〉 = 0. (4.72) f3s09a

For the coherent state, these expectations become (see (
f2s33
4.39)f3s09b

〈X 〉z = 〈 z |X | z 〉 =
1√
2

(z + z∗) =
√

2 Re(z), (4.73a) f3so9ba

〈Y 〉z = 〈 z |Y | z 〉 =
−i√
2

(z − z∗) =
√

2 Im(z), (4.73b) f3s09bb

We are now in position to define a squeezed state of the radiation field as such, for which

one of the variances of quadrature operators goes below the vacuum limit 1/2. That is:

Definition: State |ψ 〉 of the radiation field is a squeezed state if either σ2(X) < 1/2 or
σ2(Y ) < 1/2. The product of the variances, however, must still satisfy the
uncertainty relation (

f3s07
4.70).

Sometimes an additional requirement is imposed, namely, that state |ψ 〉 is also a mini-

mum uncertainty state, but this is not necessary. We shall call state |ψ 〉 a squeezed state

when one of the quadratures has less fluctuations than in vacuum or coherent state. The

squeezed state can be called ideal if it is also a state with minimum uncertainty (when in

(
f3s07
4.70) we have equality).

The fact that both quadratures have the same dimension is essential, because then

scaling the dimensions does not change the ratio of the variances. The feature of quantum

fluctuations below vacuum value is most important and it implies the quantum-mechanical

nature of squeezed states.
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4.3.2 Operator approach

Squeeze operator. Introduction

The wave function of the ground state of the harmonic oscillator is (see (
x1vac6
10.57)):

ϕ0(q) =
( mω

π~

)1/4

exp

(
−mωq2

2~

)
, (4.74) f3s11

so it becomes narrower when ω gets larger. The width of this function is governed by the

strength of the potential energy which is quadratic in position. Frequency can be enlarged

by the additional term in the hamiltonian which must be quadratic in position. Hence,

a transformation generated by q2 is expected to narrow the oscillator’s wave function.

This suggests that an operator quadratic in annihilation and creation operators should

”narrow”, or squeeze the states of the radiation field. This reasoning is similar to that

concerning the displacement operator leading to coherent states.
Following this argument, we postulate that an operator

S(ξ) = exp

[
1

2
ξ∗â2 − 1

2
ξ
(
â†

)2
]

, with ξ = ρ eiθ ∈ C, (4.75) f3s12

generates states which can be justified to be called squeezed states of the radiation field.

The simplest candidate for a squeezed state would then be

| 0, ξ 〉 = S(ξ) |Ω 〉, (4.76) f3s13

where |Ω 〉 = |n = 0 〉 is a usual vacuum state. Obviously, we have to prove that the state

(
f3s13
4.76) indeed is a squeezed state, according to the above given definition. Before we do so,

we will study some basic properties of squeeze operator (
f3s12
4.75) which is also investigated

in the Appendix
ap:oid
B. We have shown that S(ξ) is unitary and that it transforms the

annihilation and creation operators asf3s14

S†(ξ) â S(ξ) = â cosh(ρ) − â† eiθ sinh(ρ), (4.77a) f3s14a

S†(ξ) â† S(ξ) = â† cosh(ρ) − â e−iθ sinh(ρ). (4.77b) f3s14b

Since squeezing of the states is defined by quadrature operators, we should devote some

time to study them together with operator S(ξ). But before we do so, let us note that

relations (
f3s14
4.77) immediately imply thatf3s14x

〈 0, ξ | â | 0, ξ 〉 = 〈Ω |S†(ξ) âS(ξ) |Ω 〉
= 〈Ω | (

â cosh(ρ)− â† eiθ sinh(ρ)
) |Ω 〉 = 0, (4.78a) f3s14xa

〈 0, ξ | â† | 0, ξ 〉 = 〈Ω |S†(ξ) â†S(ξ) |Ω 〉
= 〈Ω | (

â† cosh(ρ)− â e−iθ sinh(ρ)
) |Ω 〉 = 0, (4.78b) f3s14xb

due to the fact that annihilation (creation) operator acting on vacuum state |Ω 〉 (〈Ω |)
produces zero.
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Similarity relations for quadratures

To investigate the expectation values of quadrature operators in state | 0, ξ 〉 we obviously

need expressions of the type of S†(ξ)XS(ξ). Hence, we proceed to find such expressions.
From the definition (

f3s02
4.65) of the quadratures and from (

f3s14
4.77) we have

S†(ξ) XS(ξ) =
1√
2

[
â cosh(ρ)− â† eiθ sinh(ρ) + â† cosh(ρ)− â e−iθ sinh(ρ)

]

= X cosh(ρ)− 1√
2

(
â† eiθ + â e−iθ

)
sinh(ρ). (4.79) f3s15a

Expressing the term in brackets by (
f3s03
4.66) we get

â† eiθ + â e−iθ =
√

2 (X cos θ + Y sin θ) . (4.80) f3s15b

Combining the two last equations yields

S†(ξ) XS(ξ) = X (cosh(ρ)− cos θ sinh(ρ))− Y sin θ sinh(ρ). (4.81) f3s15c

In fully analogous manner we easily derive the similarity relation for the second quadrature

operator

S†(ξ) Y S(ξ) = Y (cosh(ρ) + cos θ sinh(ρ))−X sin θ sinh(ρ). (4.82) f3s15f

These relations, though correct are neither illuminating nor convenient. Nevertheless, we

can find the expectation values of the quadratures for the field in the state (
f3s13
4.76):f3s17

〈X 〉 = 〈 0, ξ |X | 0, ξ 〉 = 〈Ω |S†(ξ) XS(ξ) |Ω 〉 = 0, (4.83a) f3s17a

〈Y 〉 = 〈 0, ξ |Y | 0, ξ 〉 = 〈Ω |S†(ξ) Y S(ξ) |Ω 〉 = 0. (4.83b) f3s17b

This is so, because operator S†(ξ) XS(ξ) is expressed by (
f3s15c
4.81), i.e., by a combination of

â and â†. The expectation values of the latter vanish for the field in the vacuum state.

Hence our result (
f3s17
4.83). We can also refer to Eqs.(

f3s14x
4.78), quadratures are combinations of

â and â†, so mentioned equations imply the obtained ones.
Computation of the expectation values of the squares of the quadratures is greatly

inconvenient. It appears that to consider the quadratures further it is useful to introduce

some additional transformations.

Rotated operators

To simplify the above obtained relations it is convenient to introduce new operators

b̂ = â e−iθ/2, b̂† = â† eiθ/2, (4.84) f3s19

which, obviously, satisfy the commutation rule:

[
b̂, b̂†

]
= 1, (4.85) f3s20
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and which means that they are also annihilation and creation operators. Analyzing the

similarity relation (
f3s14
4.77), we almost automatically obtainf3s21

S†(ξ) b̂ S(ξ) = b̂ cosh(ρ) − b̂† sinh(ρ), (4.86a) f3s21a

S†(ξ) b̂† S(ξ) = b̂† cosh(ρ) − b̂ sinh(ρ). (4.86b) f3s21b

Since b̂ and b̂† are annihilation and creation operators we can construct new (hermitian)

quadrature operators in an exactly the same manner as previously. Namely, we introduce

X̃ =
1√
2

(
b̂ + b̂†

)
, Ỹ =

−i√
2

(
b̂ − b̂†

)
, (4.87) f3s22

so the inverse relations read

b̂ =
1√
2

(
X̃ + iỸ

)
, b̂† =

1√
2

(
X̃ − iỸ

)
. (4.88) f3s23

Moreover, we note that new quadratures satisfy the commutation relation

[
X̃, Ỹ

]
= i, (4.89) f3s24a

which is the same one as for old quadratures (
f3s04
4.67). This implies that new quadratures

also satisfy the same uncertainty relation

σ2(X̃) σ2(Ỹ ) ≥ 1

4
, (4.90) f3s24b

where the variances are taken in the arbitrary state of the field. This suggests that we

can look for squeezed state in terms of new quadratures. Before we do so, let us look at

the properties of new quadratures.
First we seek the connection between old and new quadratures. We insert operators

b̂, b̂† given according to (
f3s19
4.84) into Eqs.(

f3s22
4.87), secondly we express old annihilation and

creation operators by old quadratures as in (
f3s02
4.65). Simple manipulation yieldsf3s26

X̃ = X cos(θ/2) + Y sin(θ/2), (4.91a) f3s26a

Ỹ = −X sin(θ/2) + Y cos(θ/2), (4.91b) f3s26b

which is a simple rotation by an angle θ/2. Rotation is an orthogonal transformation,

so automatically unitary. Hence, it is not surprising that new quadratures satisfy com-

mutation relation (
f3s24a
4.89), the same as old quadratures. Moreover, rotational character of

transformation (
f3s26
4.91) enables us to write an inverse onef3s27

X = X̃ cos(θ/2)− Ỹ sin(θ/2) (4.92a) f3s27a

Y = X̃ sin(θ/2) + Ỹ cos(θ/2), (4.92b) f3s27b

which is a rotation by a negative angle −θ/2.
Finally, having specified new quadrature operators, we look for the similarity rela-

tions. We apply operator S†(ξ) on the left and S(ξ) on the right of X̃ and Ỹ . Then
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we use equations (
f3s22
4.87). Applying similarity relations (

f3s21
4.86) and using the properties of

hyperbolic functions, we arrive atf3s29

S†(ξ) X̃ S(ξ) =
1√
2

(
b̂ + b̂†

)
(cosh ρ− sinh ρ) = X̃ e−ρ (4.93a) f3s29a

S†(ξ) Ỹ S(ξ) =
−i√
2

(
b̂− b̂†

)
(cosh ρ + sinh ρ) = Ỹ eρ (4.93b) f3s29b

It is possible to cross-check the consistency of the theory, for example by obtaining equa-

tions (
f3s15c
4.81) and (

f3s15f
4.82) from relations (

f3s29
4.93) by using suitable correspondence between

new and old operators.
Moreover, having specified new quadrature operators we look for their expectation

values in n-photon and coherent states. Thus, from (
f3s26
4.91) and (

f3s09a
4.72) we easily obtainf3s30

〈 X̃ 〉n = 〈n | X̃ |n 〉 = 〈n | (X cos(θ/2) + Y sin(θ/2)) |n 〉 = 0, (4.94a) f3s30a

〈 Ỹ 〉n = 〈n | Ỹ |n 〉 = 〈n | (−X sin(θ/2) + Y cos(θ/2)) |n 〉 = 0. (4.94b) f3s30b

Similarly, for the field in the coherent state | z 〉, using (
f3s09b
4.73) we obtainf3s30x

〈 X̃ 〉z = 〈 z | X̃ | z 〉 = 〈 z | (X cos(θ/2) + Y sin(θ/2)) | z 〉
=
√

2 (cos(θ/2)Re(z) + sin(θ/2)Im(z))

=
√

2 Re
(
z e−iθ/2

)
(4.95a) f3s30xa

〈 Ỹ 〉z = 〈 z | Ỹ | z 〉 = 〈 z | (−X sin(θ/2) + Y cos(θ/2)) | z 〉
=
√

2 (− sin(θ/2)Re(z) + cos(θ/2)Im(z))

=
√

2 Im
(
z e−iθ/2

)
(4.95b) f3s30xb

Having specified some auxiliary quantities, we proceed to investigate the single mode

squeezed state (
f3s13
4.76).

4.3.3 Squeezed vacuum states

Calculation of expectation values for quadratures

As we already mentioned the state (
f3s13
4.76), that is | 0, ξ 〉 = S(ξ) |Ω 〉 is suspected to be

a squeezed state of the electromagnetic single mode field. We suggested the construction

of this state by reasoning stemming from harmonic oscillator, expecting that squeezing

occurs due to displacement quadratic in annihilation and creation operators. We recall

that the state |ψ 〉 is called squeezed if the variance of one of the quadratures goes below

1/2 – its vacuum value. So we have to check whether the discussed state | 0, ξ 〉 satisfies

this definition. We need to find the variances of the quadratures, and in Eqs.(
f3s15c
4.81) and

(
f3s15f
4.82) we found that old quadratures are inconvenient. Therefore, we will consider the

expectation values and variances of new quadratures X̃ and Ỹ .
First we compute simple averages – expectation values. From similarities (

f3s29
4.93) we

obtain

〈 X̃ 〉 = 〈 0, ξ | X̃ | 0, ξ 〉 = 〈Ω |S†(ξ)X̃S(ξ) |Ω 〉 = 〈Ω | X̃ |Ω 〉 e−ρ, (4.96) f3s32a
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and similarly for the second quadrature Ỹ . Next, we express new quadratures by the old

ones, as in (
f3s26
4.91) and since the averages of old quadratures vanish in vacuum state, [see

(
f3s09a
4.72)], we finally obtain

〈 X̃ 〉 = 〈 0, ξ | X̃ | 0, ξ 〉 = 0, 〈 Ỹ 〉 = 〈 0, ξ | Ỹ | 0, ξ 〉 = 0, (4.97) f3s33

Computation of the expectation values of the squares of the quadratures is a bit

lengthy, but rather straightforward. We illustrate the procedure by considering X̃2. By

definition, in state | 0, ξ 〉 we have

〈 X̃2 〉 = 〈 0, ξ | X̃2 | 0, ξ 〉 = 〈Ω |S†(ξ)X̃S(ξ) S†(ξ)X̃S(ξ) |Ω 〉, (4.98) f3s34a

due to unitarity of S(ξ).Next, from (
f3s29
4.93) we get

〈 X̃2 〉 = 〈Ω | X̃2 |Ω 〉 e−2ρ, (4.99) f3s34b

Expressing new quadratures by the old ones, according to (
f3s26
4.91) (remembering that

quadratures do not commute) we have

〈 X̃2 〉 = e−2ρ
[ 〈Ω |X2 |Ω 〉 cos2(θ/2) + 〈Ω |Y 2 |Ω 〉 sin2(θ/2)

+ 〈Ω | (XY + Y X) |Ω 〉 sin(θ/2) cos(θ/2)] . (4.100) f3s34c

The first two matrix elements correspond to vacuum expectations, each of which due to

(
f3s08a
4.71a) gives 1/2. Thus,

〈 X̃2 〉 = e−2ρ

[
1

2
+ 〈Ω | (XY + Y X) |Ω 〉 sin(θ/2) cos(θ/2)

]
. (4.101) f3s34x

The remaining matrix element can be simplified with the aid of the commutation relation

(
f3s24a
4.89), which yields

〈 X̃2 〉 = e−2ρ

[
1

2
+ i sin(θ/2) cos(θ/2)

+ 2 〈Ω |Y X |Ω 〉 sin(θ/2) cos(θ/2)
]
. (4.102) f3s36a

So we have to calculate the matrix element 〈Ω |Y X |Ω 〉. We invoke definitions (
f3s02
4.65)

and we write

〈Ω |Y X |Ω 〉 = − i

2
〈Ω | (â− â†)(â + â†) |Ω 〉

= − i

2
〈Ω | [

â2 +
(
1 + â†â

)− â†â− (â†)2
] |Ω 〉, (4.103) f3s36b

where in the second term we used the commutation relation for â and â†. We easily see

that operator terms do not contribute, and only term with unity survives, so we have

〈Ω |Y X |Ω 〉 = − i

2
〈Ω | 1 |Ω 〉 = − i

2
. (4.104) f3s36bx
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Finally, we see that two last terms in (
f3s34x
4.101) cancel out and we have for the expectation

value of the square of the first quadrature

〈 X̃2 〉 = 〈 0, ξ | X̃2 | 0, ξ 〉 = 〈Ω |S†(ξ) X̃2S(ξ) |Ω 〉 =
1

2
e−2ρ. (4.105) f3s37

Calculation of the expectation value for Ỹ 2 goes along exactly the same lines, so we give

the final result, which is of the form

〈 Ỹ 2 〉 = 〈 0, ξ | Ỹ 2 | 0, ξ 〉 = 〈Ω |S†(ξ) Ỹ 2S(ξ) |Ω 〉 =
1

2
e2ρ. (4.106) 3y2h

Thus, summarizing our results we can say that for the state of the radiation field which

is generated by the operator S(ξ)

| 0, ξ 〉 = S(ξ) |Ω 〉 (4.107) 3vs2

the expectation values of quadratures vanish (see Eqs.(
f3s33
4.97)), while the expectation values

of the squares of quadratures are given by (
f3s37
4.105) and (

3y2h
4.106). This means that the

corresponding variances are

σ2(X̃) =
1

2
e−2ρ, σ2(Ỹ ) =

1

2
e2ρ, (4.108) 3vsv

so that the product of variance follows as

σ2(X̃) σ2(Ỹ ) =
1

4
. (4.109) 3vsvp

We see that the uncertainty relation (
f3s24b
4.90) is minimalized and variance of quadrature X̃

is reduced with respect to its vacuum value, while the variance of Ỹ is correspondingly

enhanced.

Squeezed vacuum states

The state | 0, ξ 〉 = S(ξ) |Ω 〉 is a minimum uncertainty state, for which variance of one

quadrature is enhanced, while variance of the second one is reduced below the so-called

vacuum limit (equal to 1/2). By definition, this state is a squeezed state, which we

can call a vacuum squeezed state. We also note, that the expectation values of the

quadratures themselves give zero (see (
f3s33
4.97), which is characteristic for a vacuum state.

As a consequence, since the field ~E⊥(~x, t) is linear in quadratures (see (
f3s06
4.69)), relations

(
f3s33
4.97) imply that the expectation value of the field in the squeezed vacuum state vanishes

〈 ~E⊥ 〉 = 〈 0, ξ | ~E⊥ | 0, ξ 〉 = 〈Ω |S†(ξ) ~E⊥ S(ξ) |Ω 〉 = 0, (4.110) 3avee

similarly as in the n-photon state, but differently from a coherent state.
Next, let us compute the expectation value of the number of photons in the squeezed

vacuum state. We then have

〈 â†â 〉 = 〈 0, ξ | â†â | 0, ξ 〉 = 〈Ω |S†(ξ) â†â S(ξ) |Ω 〉
= 〈Ω |S†(ξ) â† S(ξ)S†â S(ξ) |Ω 〉. (4.111) 3sqnf1
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Using similarity relations (
f3s14
4.77) we further get

〈 â†â 〉 = 〈Ω | (
â†â cosh2(ρ)− (â†)2 eiθ sinh(ρ) cosh(ρ)

−â2 e−iθ sinh(ρ) cosh(ρ) + ââ† sinh2(ρ)
) |Ω 〉. (4.112) 3sqnf2

It is obvious that three first terms do no contribute (give zeroes), while due to commuta-

tion rule, the term ââ† = â†â + 1 contributes unity, so we have

〈 â†â 〉 = 〈 0, ξ | â†â | 0, ξ 〉 = sinh2(ρ). (4.113) 3sqnf3

So, the squeezed vacuum state has nonzero expectation value of photon number. The

averages of the quadratures, however, remain zero, as it is in a ”normal vacuum”. This

explains why we keep the word ”vacuum”, calling the state | 0, ξ 〉 – squeezed vacuum.

The states | 0, ξ 〉 are made out of ”real vacuum”, but may be arbitrarily intense.

Time evolution of squeezed vacuum state

The squeezed vacuum state | 0, ξ 〉 evolves freely according to usual rules of quantum

mechanics, that is

|ψsq(t) 〉 = exp

[
− i

~
HF t

]
| 0, ξ 〉 = e−iωâ†âtS(ξ)|Ω 〉. (4.114) 3sqe1

Obviously we can write

|ψsq(t) 〉 = e−iωâ†âtS(ξ)eiωâ†ât e−iωâ†ât|Ω 〉
= S

(
ξe−2iωt

) |Ω 〉 = | 0, ξe−2iωt 〉, (4.115) 3sqe2

where in the second line we have used similarity relation(
z2squ10
B.54) from the appendix, while

in the last step we applied a definition of the squeezed vacuum state with time-shifted

(time-dependent) argument. Since the number ξ = ρ eiθ, we may say that the angle θ is

a time dependent function with

θ(t) = θ0 − 2ωt, (4.116) 3sqth|

which corresponds to a clockwise rotation with angular frequency 2ω, We shall return to

the discussion of this point in more geometric context in next sections.

4.3.4 Fluctuations of photon number in squeezed vacuum state

To investigate the fluctuations of photon number we need the variance of photon number

and thus we need 〈 (â†â)2 〉 = 〈n2 〉
〈n2 〉 = 〈 0, ξ | (â†â)2 | 0, ξ 〉 = 〈Ω |S†(ξ) â†â S(ξ) S†(ξ) â†â S(ξ) |Ω 〉. (4.117) 3fpn1

We can use the operator appearing in (
3sqnf2
4.112), so we can write

〈n2 〉 = 〈Ω | [â†â cosh2(ρ)− (â†)2 eiθ sinh(ρ) cosh(ρ)

−â2 e−iθ sinh(ρ) cosh(ρ) + ââ† sinh2(ρ)
]

[
â†â cosh2(ρ)− (â†)2 eiθ sinh(ρ) cosh(ρ)

−â2 e−iθ sinh(ρ) cosh(ρ) + ââ† sinh2(ρ)
] |Ω 〉. (4.118) 3fpn2
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In general, multiplication gives sixteen terms, but those which contain unequal numbers

of â and â† do not contribute. Moreover, the terms having â as the rightmost operator

also vanish. So, out of sixteen terms, the nonzero ones may arise only from three terms.

We thus have

〈n2 〉 = cosh2(ρ) sinh2(ρ) 〈Ω | â†âââ† |Ω 〉
+ cosh2(ρ) sinh2(ρ) 〈Ω | â2(â†)2 |Ω 〉

+ sinh4(ρ) 〈Ω | ââ†ââ† |Ω 〉. (4.119) 3fpn3

Calculations of the remaining three matrix elements is very simple if we take into account

the canonical commutation relation ââ† = 1 + â†â and the fact that â|Ω 〉 = 0. We just

state the results3fpn4

〈Ω | â†âââ† |Ω 〉 = 0, (4.120a) 3fpn4a

〈Ω | â2(â†)2 |Ω 〉 = 2, (4.120b) 3fpn4b

〈Ω | ââ†ââ† |Ω 〉 = 1. (4.120c) 3fpn4c

Inserting results (
3fpn4
4.120) into (

3fpn3
4.119) we obtain

〈n2 〉 = 〈 (â†â)2 〉 = 2 cosh2(ρ) sinh2(ρ) + sinh4(ρ)

= sinh4(ρ) +
1

2
sinh2(2ρ). (4.121) 3fpn5

The variance of the photon number in the vacuum squeezed state follows from (
3fpn5
4.121)

and (
3sqnf3
4.113). It is

σ2(n) = 〈n2 〉 − 〈n 〉2 =
1

2
sinh2(2ρ). (4.122) 3fpn6

Let us now discuss relative fluctuations, as we did it for the field in the coherent state as

in (
f2s43
4.46). In the present case of squeezed vacuum we have

√
σ2(n)

〈n 〉 =
sinh(2ρ)√
2 sinh2(ρ)

=
√

2
cosh(ρ)

sinh(ρ)
. (4.123) 3fpn7

Since
√
〈n 〉 = sinh(ρ) according to (

3sqnf3
4.113), we can write the relative fluctuations as

√
σ2(n)

〈n 〉 =
√

2
cosh(ρ)√
〈n 〉 >

1√
〈n 〉 . (4.124) 3fpn8

Comparing this result with (
f2s43
4.46) we can say that relative photon number fluctuations in

vacuum squeezed state are larger than in the coherent state, because cosh(ρ) ≥ 1.

4.3.5 Similarity relations for operators â2, (â†)2, â†â

In the main text (see (
f3s14
4.77) and in the appendix (

z2squ9
B.53) we have already used the following

similarity relations for annihilation and creation operatorsx2sac

S†(ξ) â S(ξ) = â cosh(ρ) − â† eiθ sinh(ρ), (4.125a) x2saca

S†(ξ) â† S(ξ) = â† cosh(ρ) − â e−iθ sinh(ρ). (4.125b) x2sacc
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Since operator S(ξ) is a unitary one, it is straightforward to utilize these formulas to

compute other similarity relations. Therefore, we will only give the results, without a

detailed derivation, which in fact, reduces to performing some operator multiplication. We

also note that, when necessary, we use the canonical commutation relation ââ† = 1 + â†â.

The similarities which we will employ in further developments are as follows.
For the square of the annihilation operator

S†(ξ) â2 S(ξ) = S†(ξ) â S(ξ) S†(ξ) â S(ξ)

= â2 cosh2(ρ) − (2â†â + 1) eiθ sinh(ρ) cosh(ρ)

+ (â†)2 e2iθ sinh2(ρ). (4.126) x2saa

Analogous similarity relation for the square of the creation operator follows by hermitian

conjugation and yields

S†(ξ) (â†)2 S(ξ) = S†(ξ) â† S(ξ) S†(ξ) â† S(ξ)

= (â†)2 cosh2(ρ) − (2â†â + 1) e−iθ sinh(ρ) cosh(ρ)

+ (â)2 e−2iθ sinh2(ρ). (4.127) x2scc

Finally, for photon number operator we get

S†(ξ) â†â S(ξ) = S†(ξ) â† S(ξ) S†(ξ) â S(ξ)

= â†â cosh2(ρ) + (â†â + 1) sinh2(ρ)

− [â2 e−iθ + (â†)2 eiθ] sinh(ρ) cosh(ρ). (4.128) x2sca

We shall need these relation in our next steps.

4.3.6 Expectation value for ~E2
⊥ in squeezed vacuum state

Using notation introduced earlier in (
f3s05
4.68) we investigate the expectation value of the

square of the electric field which is in the squeezed vacuum state. Thus, we write

〈 ~E2
⊥ 〉 = 〈 0, ξ | ~E2

⊥ | 0, ξ 〉
= − ~ω

2ε0V
〈 ( â eiφ − â† e−iφ

)2 〉

=
~ω

2ε0V
〈 ( 2â†â + 1− â2 e2iφ − (â†)2 e−2iφ

) 〉 (4.129) x2ee1

from the definition (
f3s13
4.76) of the squeezed vacuum state we have

〈 ~E2
⊥ 〉 =

~ω
2ε0V

{
1 + 2〈Ω |S†(ξ) â†â S(ξ) |Ω 〉
− 〈Ω |S†(ξ) â2 S(ξ) |Ω 〉 e2iφ

− 〈Ω |S†(ξ) (â†)2 S(ξ) |Ω 〉 e−2iφ
}

. (4.130) x2ee2
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We have to consider each of the three matrix elements using similarity relations (
x2saa
4.126)–

(
x2sca
4.128). For the term involving the photon number operator we get

〈Ω |S†(ξ) â†â S(ξ) |Ω 〉 = 〈Ω |{â†â cosh2(ρ) + (â†â + 1) sinh2(ρ)

− [â2 e−iθ + (â)2 eiθ] sinh(ρ) cosh(ρ)
} |Ω 〉

= sinh2(ρ). (4.131) x2elm1

The next term includes the square of the annihilation operator. For this term we get

〈Ω |S†(ξ) â2 S(ξ) |Ω 〉 = 〈Ω |{â2 cosh2(ρ) − (2â†â + 1) eiθ sinh(ρ) cosh(ρ)

+ (â†)2 e2iθ sinh2(ρ)
} |Ω 〉

= − eiθ sinh(ρ) cosh(ρ). (4.132) x2elm2

The last term with the square of creation operator follows by hermitian conjugation of

the previous one

〈Ω |S†(ξ) (â†)2 S(ξ) |Ω 〉 = − e−iθ sinh(ρ) cosh(ρ). (4.133) x2elm3

Inserting the obtained matrix elements into Eq.(
x2ee2
4.130) we express the expectation value

of the square of the field as

〈 ~E2
⊥ 〉 =

~ω
2ε0V

{
1 + 2 sinh2(ρ)

+ eiθ sinh(ρ) cosh(ρ) e2iφ + e−iθ sinh(ρ) cosh(ρ) e−2iφ
}

=
~ω

2ε0V

{
1 + 2 sinh2(ρ) + 2 sinh(ρ) cosh(ρ) cos(θ + 2φ)

}
. (4.134) x2ee3

Due to well-known properties of the hyperbolic functions we have 2 sinh(ρ) cosh(ρ) =

sinh(2ρ) and 1 + 2 sinh2(ρ) = cosh(2ρ). Therefore we obtain

〈 ~E2
⊥(~x, t) 〉 =

~ω
2ε0V

[cosh(2ρ) + sinh(2ρ) cos(θ + 2φ)] .

=
~ω

2ε0V

[
e−2ρ + sinh(2ρ) (1 + cos(θ + 2φ))

]
. (4.135) x2ee4

First of all, we note that in the absence of squeezing, that is when ρ = 0, formula (
x2ee4
4.135)

exactly reproduces the expectation value (
f1s5f
4.7) which is characteristic for the pure vacuum

state |Ω 〉. Next, we recall that φ = ~k · ~x − ωt. Therefore, we conclude that there exist

such space-time points in which the cosine in (
x2ee4
4.135) equals minus unity. Then, we have

〈 ~E2
⊥ 〉 =

~ω
2ε0V

[cosh(2ρ) − sinh(2ρ)] =
~ω

2ε0V
e−2ρ. (4.136) x2ee5

This relation may be interpreted as showing that in certain regions of space-time the field

is squeezed, while in some other ones it is not necessarily the case. We will not present a

detailed investigation of the temporal and/or spatial dependencies of squeezing. It suffices

to realize, that squeezing may occur only in some regions of space-time, not necessarily

everywhere.
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4.4 Squeezed coherent states

4.4.1 Introductory remarks

We have already investigated the squeezed vacuum states (
f3s13
4.76) defined as | 0, ξ 〉 =

S(ξ)|Ω 〉. We also know that a displacement operator D(z) = exp(zâ†−z∗â) when applied

to the vacuum state |Ω 〉 produces a coherent state | z 〉 = D(z)|Ω 〉. Thus we see that we

have two alternatives to construct new quantum-mechanical states of the radiation field,

namely3cvs

|α, ξ 〉 = D(α)S(ξ)|Ω 〉, (4.137a) 3scsa

| z, ξ 〉 = S(ξ)D(z)|Ω 〉. (4.137b) 3scsz

The question is whether these two possible definitions are equivalent or not. To answer

this question we refer to Appendix. In eq.(
z2squ13
B.57) we have shown that

D(α) S(ξ) = S(ξ) D(z), (4.138) 3ddss

where ξ = ρ eiθ as previously, while α and z are complex numbers connected by the

relations3za

z = α cosh(ρ) + α∗eiθ sinh(ρ) (4.139a) 3zaz

α = z cosh(ρ)− z∗eiθ sinh(ρ), (4.139b) 3zaa

which can be written equivalently, as3zac

Re
(
z e−iθ/2

)
= eρ Re

(
α e−iθ/2

)
, (4.140a) 3zacr

Im
(
z e−iθ/2

)
= e−ρ Im

(
α e−iθ/2

)
. (4.140b) 3zaci

These relations allow discussion of two possible definitions of the coherent squeezed states

(
3cvs
4.137). Therefore we conclude that the states (

3scsa
4.137a) and (

3scsz
4.137b) are the same, pro-

vided relations (
3za
4.139) or, equivalently, (

3zac
4.140) are met.

We can say that squeezing of vacuum (done by S(ξ)) followed by displacement (per-

formed by D(α)) leads to a squeezed coherent state |α, ξ 〉 = D(α)S(ξ)|Ω 〉. This has the

same effect as a displacement (by D(z)) of the vacuum state followed by squeezing S(ξ),

provided the parameters α and z are connected by relations (
3za
4.139) or (

3zac
4.140). So we can

consider either the state |α, ξ 〉, or the | z, ξ 〉. Due to relations (
3za
4.139)– (

3zac
4.140) we can

easily transform results concerning |α, ξ 〉 into those corresponding to | z, ξ 〉 or vice versa.

The choice between the two states is rather a matter of convenience, and less of physics.
We note, that we have used the name ”squeezed coherent state” not really knowing

whether the discussed states are indeed squeezed or not. Hence we proceed to investigate

the properties of these states and to validate the name associated with them.

4.4.2 Expectation values for | z, ξ 〉
Here, we choose to investigate the expectation values for various operators, for the case

when the radiation field is in the state

| z, ξ 〉 = S(ξ)D(z)|Ω 〉 = S(ξ)| z 〉. (4.141) 3csc1
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According to our discussion above, we shall then transform our results to describe the other

state: |α, ξ 〉 = D(α)S(ξ)|Ω 〉. The subsequent calculations are rather straightforward, so

we only indicate main steps.
First, we compute the expectation value of the annihilation operator.

〈 â 〉 = 〈 z, ξ | â | z, ξ 〉 = 〈Ω |D†(z)S†(ξ)âS(ξ)D(z) |Ω 〉 = 〈 z |S†(ξ)âS(ξ) | z 〉. (4.142) 3scea1

By similarity relation (
f3s14a
4.77a) we get

〈 â 〉 = 〈 z | (
â cosh(ρ)− â† eiθ sinh(ρ)

) | z 〉 = z cosh(ρ)− z∗ eiθ sinh(ρ). (4.143) 3scea2

As the second expectation value, we consider the one for photon number operator.

Thus, we calculate as follows

〈 â†â 〉 = 〈 z, ξ | â†â | z, ξ 〉
= 〈Ω |D†(z)S†(ξ) â†â S(ξ)D(z) |Ω 〉
= 〈 z |S†(ξ) â† S(ξ) S†(ξ) â S(ξ) | z 〉
= 〈 z | (

â† cosh(ρ)− â e−iθ sinh(ρ)
) (

â cosh(ρ)− â† eiθ sinh(ρ)
) | z 〉, (4.144) 3scfn1

where we used the similarity relations (
f3s14
4.77). Performing the multiplications and using

the commutation relation for annihilation and creation operators, we get

〈 â†â 〉 = 〈 z | [
â†â cosh2(ρ) +

(
â†â + 1

)
sinh2(ρ)

−â2 e−iθ sinh(ρ) cosh(ρ)− (â†)2 eiθ sinh(ρ) cosh(ρ)
]
| z 〉

= |z|2 (
cosh2(ρ) + sinh2(ρ)

)
+ sinh2(ρ)

− z2 e−iθ sinh(ρ) cosh(ρ) − (z∗)2 eiθ sinh(ρ) cosh(ρ)

=
(
z cosh(ρ) − z∗ eiθ sinh(ρ)

) (
z∗ cosh(ρ) − z e−iθ sinh(ρ)

)
+ sinh2(ρ)

=
∣∣z cosh(ρ) − z∗ eiθ sinh(ρ)

∣∣2 + sinh2(ρ) (4.145) 3scfn2

We calculate the expectation value of the quadrature operator X̃ as the third one. In

the similar manner we obtain

〈 X̃ 〉 = 〈 z, ξ | X̃ | z, ξ 〉
= 〈Ω |D†(z)S†(ξ) X̃ S(ξ)D(z) |Ω 〉
= 〈 z | X̃ e−ρ | z 〉, (4.146) 3scx1

where we used similarity relation (
f3s29a
4.93a). Employing also the connection between old and

new quadratures (
f3s26a
4.91a) we have

〈 X̃ 〉 = e−ρ 〈 z | (X cos(θ/2) + Y sin(θ/2)) | z 〉. (4.147) 3scx2

Next, taking into account expectation values (
f3s09b
4.73) taken in the coherent state | z 〉 we

get

〈 X̃ 〉 = e−ρ
√

2 [ Re(z) cos(θ/2) + Im(z) sin(θ/2)]

= e−ρ
√

2 Re
(
z e−iθ/2

)
(4.148) 3scx3
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The fourth expectation value to consider is the one for the second quadrature. In this

case we can calculate along the same lines as for X̃, but we will present a little different

approach. At first, we start as for X̃, and using (
f3s29b
4.93b) we get

〈 Ỹ 〉 = 〈 z, ξ | Ỹ | z, ξ 〉 = 〈Ω |D†(z)S†(ξ) Ỹ S(ξ)D(z) |Ω 〉
= 〈 z | Ỹ eρ | z 〉, (4.149) 3scy1

Next, we express the quadrature Ỹ via operators b̂ and b̂† according to (
f3s22
4.87), then we

use (
f3s17
4.83) to arrive at the expression with old annihilation and creation operators. This

yields

〈 Ỹ 〉 = eρ 〈 z | −i√
2

(
b̂− b̂†

)
| z 〉

=
−i√

2
eρ 〈 z | â e−iθ/2 − â† eiθ/2 | z 〉, (4.150) 3scy2

Then, by simple properties of usual coherent states we obtain

〈 Ỹ 〉 = eρ −i√
2

(
z e−iθ/2 − z∗ eiθ/2

)

= eρ
√

2 Im
(
z e−iθ/2

)
(4.151) 3scy3

In order to estimate the uncertainties we need also the expectation values of the

squares of the quadratures. So we compute them. First we consider X̃2, obtaining

〈 X̃2 〉 = 〈 z, ξ | X̃2 | z, ξ 〉 = 〈Ω |D†(z)S†(ξ) X̃2 S(ξ)D(z) |Ω 〉
= 〈 z |S†(ξ) X̃ S(ξ) S†(ξ) X̃ S(ξ) | z 〉 = e−2ρ 〈 z | X̃2 | z 〉, (4.152) 3scxx1

where we used similarity (
f3s29a
4.93a). Expressing the quadrature via b̂ and b̂† we get

〈 X̃2 〉 =
1

2
e−ρ 〈 z |

(
b̂ + b̂†

)2

| z 〉

=
1

2
e−ρ 〈 z |

(
b̂2 + (b̂†)2 + 2b̂†b̂ + 1

)
| z 〉 (4.153) 3scxx2

where we used the commutation relation (
f3s20
4.85). Going to old annihilation and creation

operators as in (
f3s17
4.83) we get

〈 X̃2 〉 =
1

2
e−2ρ 〈 z | (

â2 e−iθ + (â†)2 eiθ + 2 â†â + 1
) | z 〉

=
1

2
e−2ρ

(
z2 e−iθ + (z∗)2 eiθ + 2|z|2 + 1

)

=
1

2
e−2ρ

[(
z e−iθ/2 + (z∗) eiθ/2

)2
+ 1

]

=
1

2
e−2ρ

[
1 + 4

(
Re(z e−iθ/2)

)2
]
. (4.154) 3scxx3

Finally, we need the expectation value of the second quadrature. Since the calculation

goes along exactly the same lines as for X̃2 we now give only the final result

〈 Ỹ 2 〉 = 〈 z, ξ | Ỹ 2 | z, ξ 〉 = 〈Ω |D†(z)S†(ξ) Ỹ 2 S(ξ)D(z) |Ω 〉
=

1

2
e2ρ

[
1 + 4

(
Im(z e−iθ/2)

)2
]
. (4.155) 3scyy1
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Having computed the necessary expectation values we are in position to write down

the corresponding variances. From (
3scx3
4.148) and (

3scxx3
4.154) for the first quadrature, from

(
3scy3
4.151) and (

3scyy1
4.155) for the second one we get the variances3scv

σ2(X̃) = 〈 X̃2 〉 − 〈 X̃ 〉2 = e−2ρ/2, (4.156a) 3scvx

σ2(Ỹ ) = 〈 Ỹ 2 〉 − 〈 Ỹ 〉2 = e2ρ/2. (4.156b) 3scvy

To summarize, we have considered states of the radiation field which arise by first

displacing and then squeezing of the vacuum state | z, ξ 〉 = S(ξ)D(z)|Ω 〉. We may also

view this state as squeezing of the coherent state | z, ξ 〉 = S(ξ)| z 〉. The expectation

values of the quadratures (
3scx3
4.148) and (

3scy3
4.151) can be written as

〈 X̃ 〉 =
√

2 Re
(
e−ρ z e−iθ/2

)
, 〈 Ỹ 〉 =

√
2 Im

(
eρ z e−iθ/2

)
. (4.157) 3scq

Comparing these results with Eqs.(
f3s30x
4.95) we can say that they indeed correspond to some

specific coherent state. Moreover, we see that the considered state is a minimum uncer-

tainty state, since the product of variances equals 1/4. On the other hand, one of the

variances is reduced below 1/2 – the vacuum limit, and the second is correspondingly en-

hanced. Thus, we see that we indeed can call the state | z, ξ 〉 = S(ξ)D(z)|Ω 〉 a coherent

squeezed state.

4.4.3 Expectation values for |α, ξ 〉
Now, we proceed to investigate the similar expectation values, but for the state of the

radiation field defined as

|α, ξ 〉 = D(α)S(ξ)|Ω 〉, (4.158) 3sqal

which is first squeezed and then displaced. Due to relations (
3za
4.139) and (

3zac
4.140) we have

an easy connection between two types of squeezed coherent states. So in principle we can

just rewrite previous results with suitable replacements of z by α, as indicated in (
3za
4.139)

and (
3zac
4.140).

However, the direct computation may be of interest. The reason is as follows. Cal-

culation with | z, ξ 〉 = S(ξ)D(z)|Ω 〉 = S(ξ)| z 〉, was simplified since in fact we have

dealt with the coherent state | z 〉. We only had to consider similarity transformations

induced by squeeze operator. In the present case we also need the similarities induced by

a displacement operator D(α). Therefore, we first consider such similarities.
First we recall already used similarity relations3dad

D†(α) â D(α) = â + α (4.159a) 3dada

D†(α) â† D(α) = â† + α∗. (4.159b) 3dadc

Other similarity relations for combinations of annihilation and creation operators follow

from the two given above. For example, we evidently have for the photon number operator

D†(α) â†â D(α) = â†â + αâ† + α∗â + |α|2. (4.160) 3daad
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Since old quadratures X and Y are combinations of â and â† (
f3s02
4.65) we easily find that

D†(α) X D(α) =
1√
2

D†(α)(â + â†)D(α) =
1√
2

(
â + α + â† + α∗

)

= X +
√

2 Re(α). (4.161) 3dxd

In completely analogous manner we get

D†(α) Y D(α) = Y +
√

2 Im(α). (4.162) 3dyd

Since new quadratures are linear combinations of the old ones (
f3s26
4.91) we obtain3dxyd

D†(α) X̃ D(α) = X̃ +
√

2 Re
(
α e−iθ/2

)
, (4.163a) 3dxydx

D†(α) Ỹ D(α) = Ỹ +
√

2 Im
(
α e−iθ/2

)
. (4.163b) 3dxydy

Having collected auxiliary relations we can proceed to calculations of various expectation

values for the state |α, ξ 〉 = D(α)S(ξ)|Ω 〉. As previously, we start with the annihilation

operator. Using similarity relation (
3dada
4.159a) we simply get

〈 â 〉 = 〈α, ξ | â |α, ξ 〉 = 〈Ω |S†(ξ)D†(α) â D(α)S(ξ) |Ω 〉
= 〈Ω |S†(ξ)(â + α)S(ξ) |Ω 〉 = α + 〈Ω |S†(ξ) â S(ξ) |Ω 〉 = α. (4.164) 3aaav

The remaining matrix element vanished due to (
f3s14x
4.78) – it reproduces the corresponding

expectation value for the squeezed vacuum. If we take into account the relation (
3zaa
4.139b)

then we see that (
3aaav
4.164) reproduces exactly (

3scea2
4.143), as it should.

The next expectation value concerns photon number operator. Employing (
3daad
4.160) we

get

〈 â†â 〉 = 〈α, ξ | â†â |α, ξ 〉 = 〈Ω |S†(ξ)D†(α) â†â D(α)S(ξ) |Ω 〉
= 〈Ω |S†(ξ) (

â†â + αâ† + α∗â + |α|2) S(ξ) |Ω 〉
= |α|2 + 〈Ω |S†(ξ) â†â S(ξ) |Ω 〉 (4.165) 3safn

because terms linear in annihilation and creation operators do not contribute, as it was

the case with squeezed vacuum state [see (
f3s14x
4.78). The last term is the same as for squeezed

vacuum, hence from (
3sqnf3
4.113) we get

〈 â†â 〉 = |α|2 + 〈 0, ξ | â†â | 0, ξ 〉 = |α|2 + sinh2(ρ). (4.166) 3safn1

Noting that (
3zaa
4.139b) holds, we see that the above relation exactly reproduces (

3scfn2
4.145), as

it should.
To study squeezed states we must investigate the expectation values of quadratures.

So we proceed to do that. The expectation value of the first of the new quadratures is

found by using similarity relation (
3dxydx
4.163a) and it is

〈 X̃ 〉 = 〈α, ξ | X̃ |α, ξ 〉 = 〈Ω |S†(ξ)D†(α) X̃ D(α)S(ξ) |Ω 〉
= 〈Ω |S†(ξ)

(
X̃ +

√
2 Re(α e−iθ/2)

)
S(ξ) |Ω 〉

=
√

2 Re(α e−iθ/2) + 〈Ω |S†(ξ) X̃ S(ξ) |Ω 〉
=
√

2 Re(α e−iθ/2), (4.167) 3sxt1
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where the last result follows from (
f3s30a
4.94a) or from (

f3s33
4.97) for the squeezed vacuum state.

Due to connection (
3zacr
4.140a) we see that the obtained formula (

3sxt1
4.167) reproduces (

3scx3
4.148).

In the exactly the same manner we obtain the expectation value of the second quadra-

ture. The result is

〈 Ỹ 〉 = 〈α, ξ | Ỹ |α, ξ 〉 =
√

2 Im(α e−iθ/2), (4.168) 3syt1

which in turn, reproduces (
3scy3
4.151) when we take into account (

3zaci
4.140b). Comparing the

obtained expectation values with (
f3s30x
4.95) we see that we indeed have the expectations for

a coherent state.
To estimate the variances we also need the expectation values of the squares of the

quadratures. Hence, using the square of the similarity (
3dxydx
4.163a) we get

〈 X̃2 〉 = 〈α, ξ | X̃2 |α, ξ 〉 = 〈Ω |S†(ξ)D†(α) X̃2 D(α)S(ξ) |Ω 〉
= 〈Ω |S†(ξ)

(
X̃ +

√
2 Re(α e−iθ/2)

)2

S(ξ) |Ω 〉
= 2

[
Re(α e−iθ/2)

]2
+ 〈Ω |S†(ξ) X̃2 S(ξ) |Ω 〉, (4.169) 3sxxt1

because due to (
f3s33
4.97), the term linear in X̃ does not contribute. The remaining matrix

element is identical to the one for squeezed vacuum (
f3s37
4.105), so we obtain

〈 X̃2 〉 = 〈α, ξ | X̃2 |α, ξ 〉 =
1

2
e−2ρ + 2

[
Re(α e−iθ/2)

]2
, (4.170) 3sxxt2

which, together with (
3zacr
4.140a) is clearly identical to (

3scxx3
4.154), as it is expected to be. Com-

putation of the expectation value of Ỹ 2 is evidently similar and it yields

〈 Ỹ 2 〉 = 〈α, ξ | Ỹ 2 |α, ξ 〉 =
1

2
e2ρ + 2

[
Im(α e−iθ/2)

]2
, (4.171) 3syyt2

which coincides with (
3scyy1
4.155), when we replace α by z according to (

3zaci
4.140b).

Corresponding variances follow immediately from Eqs.(
3sxxt2
4.170), (

3sxt1
4.167), (

3syyt2
4.171) and

(
3syt1
4.168). We easily obtain3scvv

σ2(X̃) = 〈 X̃2 〉 − 〈 X̃ 〉2 =
1

2
e−2ρ, (4.172a) 3scvvx

σ2(Ỹ ) = 〈 Ỹ 2 〉 − 〈 Ỹ 〉2 =
1

2
e2ρ, (4.172b) 3scvvy

We conclude that we can in fact repeat the comments given after Eqs.(
3scq
4.157). Both states

| z, ξ 〉 = S(ξ)D(z)|Ω 〉 and |α, ξ 〉 = D(α)S(ξ)|Ω 〉 are indeed squeezed states and since

the expectation values of quadratures correspond to coherent state, they can be called

coherent squeezed states.

4.5 Squeezed photon number states

4.5.1 New role of squeezed vacuum state

The vacuum state |Ω 〉 is an eigenstate of the annihilation operator belonging to the

eigenvalue zero. On the other hand, the squeeze operator S(ξ) is a unitary one. Therefore

we can write

0 = â|Ω 〉 = âS†(ξ)S(ξ)|Ω 〉 = âS†(ξ)| 0, ξ 〉, (4.173) 3sqn1
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where | 0, ξ 〉 is the squeezed vacuum state defined in (
f3s13
4.76). The obvious conclusion from

this relation is

S(ξ)âS†(ξ)| 0, ξ 〉 = 0. (4.174) 3sqn2

The operators on the left do not have a typical form of the similarity relation, so we may

ask a question: what kind of an operator is the one appearing in the lhs of (
3sqn2
4.174). The

answer is simple, if we notice that S(ξ) is unitary and S†(ξ) = S−1(ξ) = S(−ξ). Thus,

we can define the operator

ĉ = S(ξ)âS†(ξ) = S†(−ξ)âS(−ξ). (4.175) 3cdef

Recalling similarity relation (
f3s14a
4.77a) we note that −ξ = −ρ eiθ and that sinh is an odd

function. Therefore we get3cc

ĉ = S†(−ξ)âS†(−ξ) = â cosh(ρ) + â† eiθ sinh(ρ), (4.176a) 3cca

ĉ† = S†(−ξ)â†S†(−ξ) = â† cosh(ρ) + â e−iθ sinh(ρ), (4.176b) 3ccc

Definition of ĉ operators allows us to check the commutation relation

[
ĉ, ĉ†

]
=

[
â cosh(ρ) + â† eiθ sinh(ρ), â† cosh(ρ) + â e−iθ sinh(ρ)

]

= cosh2(ρ)− sinh2(ρ) = 1, (4.177) 3ccom

which shows that operators ĉ and ĉ† are also annihilation and creation operators. Thus

relation (
3sqn2
4.174) is equivalent to

ĉ| 0, ξ 〉 = 0. (4.178) 3sqnv

We can interpret this expression as follows. The vacuum squeezed state | 0, ξ 〉 plays the

role of the vacuum state for the annihilation operator ĉ. This clearly suggest the following

definition of the new states of a single mode electromagnetic field

|n, ξ 〉 =
(ĉ†)n

√
n!

| 0, ξ 〉, (4.179) 3sndef

and tempts us to call these states – squeezed photon number states. This, however,

requires some discussion, we have to see if these states have the necessary properties.

Obviously they are number states for operators ĉ and ĉ†, so we can write3scan

ĉ |n, ξ 〉 =
√

n |n− 1, ξ 〉 (4.180a) 3scana

ĉ† |n, ξ 〉 =
√

n + 1 |n + 1, ξ 〉 (4.180b) 3scanc

ĉ†ĉ |n, ξ 〉 = n |n, ξ 〉 (4.180c) 3scann

So our next steps should be aimed at investigation of the properties of the newly

introduced quantum states of the field.
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4.5.2 Squeezed photon number states

Firstly, we study the definition (
3sndef
4.179). Expressing ĉ† according to the hermitian conju-

gate of (
3cdef
4.175) and using the definition of the vacuum squeezed state we get

|n, ξ 〉 =
(ĉ†)n

√
n!

| 0, ξ 〉 =

[
S(ξ) â† S†(ξ)

]n

√
n!

S(ξ) |Ω 〉

=
1√
n!

S(ξ) (â†)n S†(ξ)S(ξ) |Ω 〉 = S(ξ)
(â†)n

√
n!

|Ω 〉 = S(ξ)|n 〉, (4.181) 3sqn3

which, at least partly, justifies the name ”squeezed photon number state”. Nevertheless,

it remains to check whether this state is indeed squeezed, in the sense defined earlier. To

do so we need to study the variances of quadratures of the field.
So we investigate the expectation values of the new quadratures X̃ and Ỹ . The simple

averages follow from (
3sqn3
4.181) and from (

f3s17
4.83)3snq

〈 X̃ 〉 = 〈n, ξ | X̃ |n, ξ 〉 = 〈n |S†(ξ) X̃ S(ξ) |n 〉 = 0, (4.182a) 3snqx

〈 Ỹ 〉 = 〈n, ξ | Ỹ |n, ξ 〉 = 〈n |S†(ξ) Ỹ S(ξ) |n 〉 = 0. (4.182b) 3snqy

The expectation values of the quadratures vanish, as it is the case for a usual photon

number state |n 〉. So we proceed to compute the expectation values of the squares of the

quadratures. We start with the X̃ quadrature

〈 X̃2 〉 = 〈n, ξ | X̃2 |n, ξ 〉 = 〈n |S†(ξ)X̃2S(ξ) |n 〉 = 〈n |
(
S†(ξ) X̃ S(ξ)

)2

|n 〉 (4.183) 3snxx1

In this case we have to be more careful, since we deal with product of operators. We shall

proceed similarly as in (
3scxx1
4.152)-(

3scxx3
4.154). The present case differs from the previous one

only by the presence of photon number states instead of coherent ones. So we can write

〈 X̃2 〉 =
1

2
e−2ρ 〈n | (

â2 e−iθ + (â†)2 eiθ + 2 â†â + 1
) |n 〉. (4.184) 3snxx2

The two first terms do not contribute, hence we have

〈 X̃2 〉 =
1

2
e−2ρ (2n + 1) . (4.185) 3snxx3

Clearly, the similar calculation for the second quadrature yields

〈 Ỹ 2 〉 = 〈n, ξ | Ỹ 2 |n, ξ 〉 =
1

2
e2ρ (2n + 1) . (4.186) 3snyy3

The averages (
3snq
4.182) and the expectation values of the squares of quadratures allow us

to write the corresponding variances

σ2(X̃) =
1

2
e−2ρ (2n + 1), σ2(Ỹ ) =

1

2
e2ρ (2n + 1). (4.187) 3snvar

The product of these variances is

σ2(X̃) σ2(Ỹ ) =
1

4
(2n + 1)2 ≥ 1

4
, (4.188) 3snun

which is characteristic for the photon number states. State |n, ξ 〉 is not minimalizing

the uncertainty relation. Nevertheless, for given (but arbitrary) n we can choose the real

number ρ in such a way that one of the variances will attain a value less than 1/2, that is

below the magnitude which is characteristic for the vacuum state. Thus, we see that the

name squeezed number state, for the state |n, ξ 〉, may be considered justified.
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4.6 Expansion of squeezed vacuum state into

n-photon states

Considering the coherent states, we have expanded the coherent state | z 〉 into n-photon

ones in Eq.(
f2s17
4.28). We now intend to find a similar expansion for the squeezed vacuum

state, that is we look for series

| 0, ξ 〉 =
∞∑

n=0

An(ξ) |n 〉. (4.189) 3svn1

Finding this expansion means finding the explicit expression for coefficients An(ξ). In

order to do so, we recall that the squeezed vacuum state | 0, ξ 〉 is a vacuum for the

operator ĉ as in (
3sqnv
4.178), with annihilation operator ĉ related to ”usual” ones by (

3cca
4.176a).

Now, we apply operator ĉ to both sides of (
3svn1
4.189) obtaining

0 =
∞∑

n=0

An(ξ) ĉ |n 〉. (4.190) 3svn2

Expressing operator ĉ via (
3cca
4.176a) we get

0 = cosh(ρ)
∞∑

n=0

An(ξ) â |n 〉 + eiθ sinh(ρ)
∞∑

n=0

An(ξ) â† |n 〉. (4.191) 3svn3

We know how operators â and â† act on n-photon states. We also note that the term

n = 0 in the first sum vanishes, hence we have

0 = cosh(ρ)
∞∑

n=1

An(ξ)
√

n |n− 1 〉 + eiθ sinh(ρ)
∞∑

n=0

An(ξ)
√

n + 1 |n + 1 〉. (4.192) 3svn4

In the first sum we change the summation index n → m = n − 1, with m = 0, 1, 2, . . .,

and we take the term m = 0 out of the sum. In the second sum we also introduce a new

summation index n → m = n + 1, with m = 1, 2, 3, . . .. Then from (
3svn4
4.192) we get

0 = cosh(ρ)A1(ξ) | 0 〉 + cosh(ρ)
∞∑

m=1

Am+1(ξ)
√

m + 1 |m 〉

+ eiθ sinh(ρ)
∞∑

m=1

Am−1(ξ)
√

n |m 〉. (4.193) 3svn5

This relation obviously implies that

A1 ≡ 0. (4.194) 3svn6

Moreover, the kets |n 〉 are the basis of the space of state vectors of the field. Thus, all

the coefficients must be equal to zero. Therefore, we arrive at the relation

cosh(ρ)
√

m + 1 Am+1(ξ) = − eiθ sinh(ρ)
√

m Am−1(ξ), (4.195) 3svn7
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which is equivalent to the recurrence relation

Am+1(ξ) = − eiθ tanh(ρ)

√
m

m + 1
Am−1(ξ), for m = 1, 2, 3, . . . (4.196) 3svn8

This recurrence is valid for m > 1, so we conclude that A0 is the first unknown coefficient.

Since A1 = 0, we see that only coefficients with even index are nonzero. In other words,

all coefficients with odd index are equal to zero.
Putting m = 2k + 1 in recurrence relation (

3svn8
4.196) we rewrite it as

A2k+2(ξ) = − eiθ tanh(ρ)

√
2k + 1

2k + 2
A2k(ξ), for k = 0, 1, 2, . . . (4.197) 3svn9

Writing down several first coefficients, we can easily generalize the recurrence relation,

which enables us to write

A2k(ξ) = (−1)k eikθ tanhk(ρ)

√
(2k − 1)!!

(2k)!!
A0(ξ), for k = 1, 2, 3, . . . (4.198) 3svn10

It is straightforward to check (by induction) that the expression (
3svn10
4.198) agrees with the

recurrence relation (
3svn8
4.196). The coefficient A0(ξ) is unknown, and must be determined

from the requirement of normalization of the vacuum squeezed state | 0, ξ 〉. Before we do

so, let us consider the term with factorials. It is evident that

(2k)!! = 2kk!, and (2k)! = (2k)!!(2k − 1)!!, (4.199) 3svn11

Which implies that

(2k − 1)!!

(2k)!!
=

(2k)!

[(2k)!!]2
=

(2k)!

(2kk!)2
, (4.200) 3svn12

which, after inserting into (
3svn10
4.198) gives

A2k(ξ) = (−1)k eikθ

k!

(
tanh(ρ)

2

)k √
(2k)! A0(ξ), for k = 1, 2, 3, . . . (4.201) 3svn13

We use the obtained coefficients in the expansion (
3svn1
4.189), we also account for the fact

that odd terms are absent, and we have

| 0, ξ 〉 = A0(ξ)
∞∑

k=0

(−1)k eikθ

k!

(
tanh(ρ)

2

)k √
(2k)! | 2k 〉. (4.202) 3svn14

It remains to find the coefficient A0(ξ) from the normalization requirement. Since the

n-photon states are orthonormal, we easily obtain

1 = 〈 0, ξ | 0, ξ 〉 = |A0(ξ)|2
∞∑

k=0

(2k)!

(k!)2

(
tanh(ρ)

2

)2k

. (4.203) 3svn15
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So it is necessary to perform the remaining summation. This not an easy task. To do

so, we first note that from the definition of Hermite polynomials we have for ones of even

order

H2k(x) = (2k)!
k∑

m=0

(−1)m (2x)2k−2m

m! (2k − 2m)!
, (4.204) 3herm1

so, for x = 0 only the term with m = k does not vanish. Hence, we have

H2k(x = 0) = (2k)!
(−1)k

k!
. (4.205) 3herm2

This allows us to reexpress the terms under summation in (
3svn15
4.203), which is therefore

rewritten as

1 = |A0(ξ)|2
∞∑

k=0

1

(k!)

(
− tanh2(ρ)

4

)k

H2k(x = 0). (4.206) 3svn16

Since tanh2(ρ) < 1, the sum rule (
z3sh1
C.1) applies. The summation is, thus, performed and

we arrive at the formula

1 = |A0(ξ)|2 1√
1− tanh2(ρ)

= |A0(ξ)|2 cosh(ρ), (4.207) 3svn17

because cosh(ρ) is always positive. Denoting an arbitrary phase by ϕ, we express the last

expansion coefficient as

A0(ξ) =
eiϕ

√
cosh(ρ)

. (4.208) 3svn18

We adopt the overall phase ϕ = 0, then we insert A0 into expansion (
3svn14
4.202) and we get

| 0, ξ 〉 =
1√

cosh(ρ)

∞∑

k=0

(−1)k eikθ

k!

(
tanh(ρ)

2

)k √
(2k)! | 2k 〉. (4.209) 3svn19

If we employ the expression (
3herm2
4.205) we can transform the obtained formula into

| 0, ξ 〉 =
∞∑

k=0

(−1)k eikθ

√
k! cosh(ρ)

(
tanh(ρ)

2

)k √
(−1)kH2k(0) | 2k 〉. (4.210) 3svn20

Combining the powers of (−1) into exponential phase we have

| 0, ξ 〉 =
∞∑

k=0

eik(θ+3π/2)

√
Γ(k + 1) cosh(ρ)

(
tanh(ρ)

2

)k √
H2k(0) | 2k 〉. (4.211) 3svn21

At this point we can generalize this result by noting that Hermite polynomials of odd

order taken at x = 0 are equal to zero, i.e., H2k+1(x = 0) = 0. Therefore, we can include

the odd terms in the sum (
3svn21
4.211) and we can write

| 0, ξ 〉 =
∞∑

n=0

ei(θ+3π/2)n/2

√
Γ(n/2 + 1) cosh(ρ)

(
tanh(ρ)

2

)n/2 √
Hn(0) |n 〉, (4.212) 3svn22
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where the odd terms (with odd n) give the zero contribution, while the even terms (in

which n = 2k) reproduce the sum (
3svn21
4.211). The obtained expression is the sought ex-

pansion of the vacuum squeezed state in the n-photon states. The coefficients of the

expansion are the probability amplitudes. Therefore, we can say that

Pn(ξ) =

∣∣∣∣
1

2
tanh(ρ)

∣∣∣∣
n |Hn(0)|

Γ(n/2 + 1) cosh(ρ)
, (4.213) 3svn23

is the probability that for the field in the vacuum squeezed state | 0, ξ 〉 we find n photons.

We note that this probability is zero for n odd, while for n even, that is for n = 2k it

reads

P2k(ξ) =

∣∣∣∣
1

2
tanh(ρ)

∣∣∣∣
2k |H2k(0)|

Γ(k + 1) cosh(ρ)
=

∣∣∣∣
1

2
tanh(ρ)

∣∣∣∣
2k

1

cosh(ρ)

(2k)!

(k!)2
, (4.214) 3svn24

where we used relation (
3herm2
4.205). The squeezed vacuum state | 0, ξ 〉 = S(ξ)|Ω 〉, and

Pn is the probability that for the field in this state, we find n photons. The fact that

P2k+1(ξ) ≡ 0 seems not to be very surprising. Operator S(ξ) = exp[ξ∗â2/2 − ξ(â†)2/2)],

while operators â2 and (co)2 correspond either to destruction or to creation of two pho-

tons. Hence S(ξ)|Ω 〉 is composed of n-photon states in which photons are created (or

annihilated) in pairs. Therefore, only P2k)(ξ) may be expected to be nonzero.

4.7 Equivalence of coherent squeezed states | z, ξ 〉 and

|α, ξ 〉
Let us consider the coherent squeezed state (

3scsz
4.137b): | z, ξ 〉 = S(ξ)D(z)|Ω 〉 = S(ξ)| 0, ξ 〉,

and expand the coherent state | z 〉 into photon number states according to (
f2s17
4.28). Then

we get

| z, ξ 〉 = S(ξ) exp
(−1

2
|z|2)

∞∑
n=0

zn

√
n!
|n 〉

= exp
(−1

2
|z|2)

∞∑
n=0

zn

√
n!

S(ξ) |n 〉

= exp
(−1

2
|z|2)

∞∑
n=0

zn

√
n!
|n, ξ 〉, (4.215) 3sza1

where we used the definition (
3sqn3
4.181) of the squeezed photon number states. Next we

employ (
3sndef
4.179) to write

| z, ξ 〉 = exp
(−1

2
|z|2)

∞∑
n=0

zn (ĉ†)2

n!
| 0, ξ 〉,

= exp
(−1

2
|z|2) ezĉ† | 0, ξ 〉. (4.216) 3sza2

The state | 0, ξ 〉 is an eigenstate of the annihilation operator ĉ. Thus The above formula

is equivalent to

| z, ξ 〉 = exp
(−1

2
|z|2) ezĉ† e−z∗ĉ | 0, ξ 〉. (4.217) 3sza3
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Operators ĉ† and ĉ are creation and annihilation operators, thus relation (
z2acb
B.27b) (with

α = −z∗ and β = z) applies, and we get

exp
(−1

2
|z|2) ezĉ† e−z∗ĉ = exp

(
zĉ† − z∗ĉ

)
. (4.218) 3sza4

We combine two last equations, and we obtain

| z, ξ 〉 = exp
(
zĉ† − z∗ĉ

) | 0, ξ 〉 = exp
(
zĉ† − z∗ĉ

)
S(ξ)|Ω 〉. (4.219) 3sza5

Next we need to consider the exponent in the leftmost operator. Due to relations (
3cc
4.176)

zĉ† − z∗ĉ = z
(
â† cosh(ρ) + â e−iθ sinh(ρ)

) − z∗
(
â cosh(ρ) + â† eiθ sinh(ρ)

)

= α â† − α ∗ ∗ â, (4.220) 3sza6

where we have denoted α = z cosh(ρ)− z∗ eiθ sinh(ρ). Introducing this new variable into

Eq.(
3sza5
4.2190 we have

| z, ξ 〉 = exp
(
αâ† − α∗â

)
S(ξ)|Ω 〉. (4.221) 3sza7

Recognizing the displacement operator we summarize our calculations by

| z, ξ 〉 = S(ξ)D(z)|Ω 〉 = D(α)S(ξ)|Ω 〉 = |α, ξ 〉 (4.222) 3sza8

provided the complex numbers z and α are connected by the relation

α = z cosh(ρ)− z∗ eiθ sinh(ρ). (4.223) 3sza9

This result is in full agreement with the discussion of two possible squeezed coherent

states. This fact elucidates the sense of the squeezed photon number states. They have

the same relation to squeezed coherent states as the corresponding usual number states

to usual coherent ones. Obviously, the derivation presented here could have been done in

the reversed direction, leading to the same final conclusion.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 5

Atom–field interaction.
Dipole approachc:af

5.1 Hamiltonian of the system

In this chapter we consider an atom interacting with electromagnetic field. Therefore, we

must construct the corresponding hamiltonian. It consists of three terms

H = HA ⊗ 1̂F + 1̂A ⊗HF + HAF , (5.1) i1

where HA is the atomic hamiltonian, HF corresponds to the field hamiltonian, while HAF

describes the interaction between two parts of the system under consideration.

5.1.1 Atomic hamiltonian

~R

N

~r

e

~x

S

Fig. 5.1: Positions of atomic nu-
cleus and its electron in arbitrary
coordinate frame. f:i1

We consider a simple one-electron atom. The center

of an atom (its nucleus) is positioned at the point de-

noted by the vector ~R. The electron, with respect

to the nucleus has radius vector ~r, while with respect

to the point S – the center of the coordinate system,

electron’s position is given by a vector ~x. The atom as

a single whole may perform a uniform motion. Such

a case of a moving atom, if time permits, will be con-

sidered later (in next chapters). Then its position
~R will be a time-dependent function varying (usually

linearly) with time. Transforming our description to

the center-of-mass frame we can separate the kinetic

energy of an atom as a whole from its internal degrees

of freedom. The latter ones are then given in the rel-

ative coordinates. Then, atomic kinetic energy is just

a constant in the hamiltonian and as such can be ne-

glected. So, we consider the electron motion in the

center-of-mass frame. We denote by m the electron’s

reduced mass, which is very close to the well-known electron mass (the nucleus is much

heavier than the electron). We assume that in the center-of-mass frame the Hamilto-
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nian HA of the atom may be diagonalized, that is the necessary stationary Schrödinger

equation can be solved. We denote the eigenstates of HA by | a 〉 and the corresponding

energies by ~ωa. Therefore, the standard hamiltonian of a free atom can be written as

HA =
~p2

2m
+ V (r) = ~

∑
a

ωa| a 〉〈 a |. (5.2) i2a

By definition states | a 〉 are the eigenstates of the atomic hamiltonian:

HA| a 〉 = ~ωa | a 〉, (5.3) i2b

and are orthonormal and complete:

〈 a | b 〉 = δab, and
∑

a

| a 〉〈 a | = 1. (5.4) i2c

The set of vectors {| a 〉} is numbered by index a which may consists of several quantum

numbers (as it is the case for the hydrogen-like atom). Eigenfrequencies ωa are allowed

to be degenerate, that is, it may happen that ωa = ωb for different indices a and b.

5.1.2 Field hamiltonian

As we know from previous considerations, the hamiltonian of the quantized electromag-

netic field is od the form

HF =
∑

~kλ

~ωka
†
~kλ

a~kλ, (5.5) i5

where a†~kλ
and akl are annihilation and creation operators corresponding to the field mode

specified by wave vector ~k and polarization λ. The states of the field belong to the Fock

space and are of the form

|ψF 〉 = ⊗~k,λ|n~k,λ 〉, (5.6) i6

where numbers n~k,λ are nonnegative integers. We also recall that the wave vector ~k and

the frequency satisfy the dispersion relation

ωk = c
∣∣~k

∣∣. (5.7) i7

5.1.3 Interaction hamiltonian

Interaction hamiltonian HAF is essential in our considerations. Due to the analogy to

classical physics, we take the interaction hamiltonian in the following form

HAF = −~d · ~E(~R, t), (5.8) i11

where ~d = e~r is the electric dipole moment of the atom, and ~E(~R, t) the electric field

of the incident electromagnetic field taken at the position of the atomic nucleus (center

of mass). This hamiltonian is called a dipole-interaction one. The given name has two
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explanations. Firstly, there appears the dipole moment of an atom which will be discussed

later. Secondly, it must be noted that the electric field is taken in the center of the atom
~R, and not at the position ~x of the electron. This is clearly an approximation justified by

the following argument. The influence of the incident light on the atom will be appreciable

if its frequency ωk has the same order of magnitude as some of the atomic frequencies

ωa. The statement that ωa ≈ ωk leads to appreciable effects can be supported, for

example, by simple time-dependent perturbation theory. This is a notion of resonance

– the nonresonant events are quite improbable. Atomic frequencies are typically within

optical range, then field frequencies must also lie in this region. This means that the

wavelength λ of light is of the order of 500 nm. The size of an atom is smaller roughly

by three orders of magnitude. Therefore |~r| ¿ λ. As a conclusion we can say that ~R ≈ ~x

which explains why we used ~R instead of ~x in the definition (
i11
5.8). This approximation is

called a dipole one and explains the name of the interaction hamiltonian.
Electric field of the incident light is written as

~E =
∑

~kλ

[
~E

(+)
~k,λ

+ ~E
(−)
~k,λ

]
, (5.9) i12

where we have denotedi13

~E
(+)
~k,λ

= i

√
~ωk

2ε0V
~e~kλa~kλ exp

(
i~k · ~R

)
, (5.10a) i13a

~E
(−)
~k,λ

= −i

√
~ωk

2ε0V
~e ∗

~kλ
a†~kλ

exp
(
i~k · ~R

)
, (5.10b) i13b

according to our discussion in the previous chapters. Let us, however, stress that the

quantized electromagnetic field is a dynamic quantity. The time dependence is ”hidden”

in the annihilation and creation operators. Combining relations (
i11
5.8) and (

i12
5.9) we write

the interaction hamiltonian as

HAF = −
∑

~kλ

~d ·
[

~E
(+)
~k,λ

+ ~E
(−)
~k,λ

]
. (5.11) i14

In priciple, the summation runs over all modes. It may lead to the divergences (as

discussed earlier). Hence, in practical case some care might be necessary.

5.1.4 Atomic dipole moment and interaction hamiltonian

It remains to specify the electric dipole moment of the atom. We use eigenstates of the

hamiltonian (
i2b
5.3), which allows us to write

~d =
∑

a

| a 〉〈 a | ~d
∑

b

| b 〉〈 b | =
∑

a,b

| a 〉〈 b | ~dab, (5.12) i16a

where ~dab is the matrix element defined as

~dab = 〈 a | ~d | b 〉 =

∫
d3r 〈 a |~r 〉〈~r | ~d | b 〉. (5.13) i16b
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In the position representation we have ~d = q~r, hence we can write (due to principles of

quantum mechanics)

~dab = 〈 a | ~d | b 〉 = q

∫
d3r ψ∗a(~r) ~r ψb(~r). (5.14) i16c

In many typical atoms wave functions possess the property of parity, then diagonal ele-

ments of the atomic dipole vanish

~daa = 0. (5.15) i16d

Usually
∣∣ψa(~r)

∣∣2 is an even function, so that the integrand in (
i16c
5.14) is odd and the integral

yields zero. In other words, we consider atoms which do not have any permanent dipole

moment.
Introducing Eq.(

i16a
5.12) into hamiltonian (

i14
5.11) we obtain

HAF = −
∑

~kλ

∑

a,b

| a 〉〈 b |~dab ·
[

~E
(+)
~k,λ

+ ~E
(−)
~k,λ

]
. (5.16) i17

This hamiltonian (as any quantum-mechanical observable) must be hermitian. To see

that this the case, lest us split expression (
i17
5.16) and write

HAF = −
∑

~kλ

∑

a,b

{
| a 〉〈 b | ~dab · ~E(+)

~k,λ
+ | a 〉〈 b | ~dab · ~E(−)

~k,λ

}
. (5.17) i18a

The sum over (a, b) runs over all atomic states (the case ~daa = 0 is allowed), hence in the

second term we can interchange indices a ↔ b, moreover, since ~dba = ~d∗ab we get

HAF = −
∑

~kλ

∑

a,b

{
| a 〉〈 b | ~dab · ~E(+)

~k,λ
+ | b 〉〈 a | ~d∗ab · ~E(−)

~k,λ

}
, (5.18) i18c

which is clearly hermitian, as it should be. This hamiltonian will be employed in a variety

of applications. Obviously, its specific form will have to be adapted to particular physical

situations.

5.1.5 Semiclassical approximation

Semiclassical approximation consists in quantum-mechanical description of an atom but

in the classical treatment of the field. In such a case annihilation and creation operators

in (
i13
5.10) are replaced by classical amplitudes a~kλ → α~k,λ exp [−iωkt]. As a result we take

~E
(±)
~k,λ

= ~E
(±)
~k,λ

(0) exp
[
±i

(
~k · ~R− ωkt

)]
, (5.19) i21

where ~E
(±)
~k,λ

(0) are classical field amplitudes (given vectors). Field energy, in the classical

case is well-defined and, as such can be omitted in the total hamiltonian. Moreover, we

can write

HAF = −
∑

~kλ

∑

a,b

{
| a 〉〈 b | ~dab · ~E(+)

~k,λ
+ | b 〉〈 a | ~d∗ab · ~E(−)

~k,λ

}
, (5.20) i22

with fields specified in Eq.(
i21
5.19).
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5.2 Hamiltonian for two–level atom in radiation field

5.2.1 The two-level atom. Free hamiltonian

| 2 〉

| 1 〉

h̄ω21

Fig. 5.2: The level scheme of a
two-level atom.4f:tla

In many practical cases the electromagnetic field irra-

diating an atom is closely tuned to one of the atomic

resonances and has a relatively narrow spectral band-

width equal to ∆ωL. In such a case only two atomic

levels with energy separation ~ω21 close to the cen-

tral frequency ωL of the field, are strongly coupled to

the incoming radiation. Moreover, if the other levels

are separated by much more than ∆ωL, we can safely

disregard all other levels, except those two coupled to

the field. Then we may say that we deal with a two-

level approximation to the real atom. We shall still

make an additional simplifying assumption. Namely,

we will assume that the considered two levels do not

exhibit spatial degeneracy. This means, that we do not consider the angular momen-

tum issues, which reduces the atomic basis just to two states, and two quantum numbers

(numbering the levels) are sufficient to fully describe the state of the atom. The Hilbert

space of these states is, thus, two-dimensional. It may be worth noting, that it is possible

to prepare such states of real atoms that are indeed well described by a two-level model.

Moreover, investigations of two-level atom give excellent insights in the phenomena oc-

curring in real atoms.
So, we restrict our attention to the simplest two-level atom (TLA) model, and we

denote upper (excited) state of a TLA by | 2 〉 and lower (ground) state by | 1 〉. The space

spanned by the states | 1 〉 and | 2 〉 is two-dimensional, it is isomorphic to the space of

the eigenstates of spin 1/2 states. Therefore, (for future purposes) we make a natural

identification

| 2 〉 =

(
1
0

)
, | 1 〉 =

(
0
1

)
. (5.21) i31

The hamiltonian of the free TLA may be then written as it follows from (
i2a
5.2), that is

HA = ~ω1| 1 〉〈 1 |+ ~ω2| 2 〉〈 2 |. (5.22) i32a

This form is fairly self-evident. We can, however, select other forms of the Hamiltonian

for TLA, depending on the choice of the zero on the energy scale. When we take zero

energy at the ground level, then we can write

HA = ~ω21| 2 〉〈 2 |. (5.23) i32b

Another possibility consists in choosing the zero of energy midway between the levels.

Then, we can rewrite hamiltonian (
i32a
5.22) as

HA =
1

2
~ω21

[
| 2 〉〈 2 | − | 1 〉〈 1 |

]
= ~ω21S3, (5.24) i32c
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where S3 is the third component of the quasi–spin operator (for the details see the corre-

sponding appendix). Since the space of | 1 〉 and | 2 〉 is two-dimensional, the corresponding

operators can be associated with 2 × 2 matrices, and are expressible by Pauli matrices.

These operators can also be expressed by the so-called pseudo-spin operators introduced

and discussed in appendix. We will use pseudo-spin operators without reference to par-

ticular formulas given in that appendix, which should be consulted if necessary.

5.2.2 Interaction hamiltonian. Rotating wave approximation

Obviously, the total hamiltonian of TLA-light system contains three terms as in (
i1
5.1).

The interaction hamiltonian should be, however, transformed to suit our current needs.

Moreover, as is was already discussed, we will take

~d11 = ~d22 = 0. (5.25) i34

The specific form of the interaction hamiltonian follows from general expression (
i18c
5.18),

which (due to (
i34
5.25)) gives

HAF = −
∑

~kλ

{
| 1 〉〈 2 | ~d12 · ~E(+)

~k,λ
+ | 2 〉〈 1 | ~d∗12 · ~E(−)

~k,λ

+ | 2 〉〈 1 | ~d21 · ~E(+)
~k,λ

+ | 1 〉〈 2 | ~d∗21 · ~E(−)
~k,λ

}
. (5.26) i35

Let us carefully discuss all four terms which appear in the above given expression.

• Operator | 1 〉〈 2 | corresponds to the transition | 2 〉 → | 1 〉 (downwards). We expect

the photon to be emitted. The field term ~E
(+)
~k,λ

contains annihilation operator –

photon disappears.

• Operator | 2 〉〈 1 | corresponds to the transition | 1 〉 → | 2 〉 (upwards). We expect

the photon to be absorbed. The field term ~E
(−)
~k,λ

contains creation operator – a new

photon appears.

• Operator | 2 〉〈 1 | corresponds to the transition | 1 〉 → | 2 〉 (upwards). We expect

the photon to be absorbed. The field term ~E
(+)
~k,λ

contains annihilation operator –

the photon disappears.

• Operator | 1 〉〈 2 | corresponds to the transition | 2 〉 → | 1 〉 (downwards). We expect

the photon to be emitted. The field term ~E
(−)
~k,λ

contains creation operator – a new

photon appears.

This discussion shows that two first terms in (
i35
5.26) are, so to speak, nonresonant. Intu-

itively speaking, they do not satisfy the principle of energy conservation. For example, the

first term describes the process in which an atom losses energy (transition | 2 〉 → | 1 〉) and

also the energy of the field decreases (one photon is annihilated). This heuristic argument

justifies the possibility to neglect the first two terms in the hamiltonian (
i35
5.26). This is

clearly an approximation, which is called rotating wave approximation (RWA). It can be

shown, that the neglected terms lead to small corrections called Bloch-Siegert shifts.
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Another argument supporting RWA follows from the notions of time-dependent per-

turbation theory. From this theory we know that nonresonant terms give negligibly small

transition probabilities. Thus nonresonant terms may be neglected and droped out of

consideration. Thus, we adopt RWA and write our interaction hamiltonian

HAF = −
∑

~kλ

{
| 2 〉〈 1 | ~d21 · ~E(+)

~k,λ
+ | 1 〉〈 2 | ~d∗21 · ~E(−)

~k,λ

}
, (5.27) i36

with the fields given by Eqs.(
i13
5.10). Let us remind, that the dynamical (time) dependence

is ”hidden” in the annihilation and creation operators.

5.2.3 Semiclassical approximation

The fundamental ideas behind semiclassical approximation were discussed earlier. Here,

we only need to adapt what was said before to the present needs. We replace the field

operators ~E
(±)
~k,λ

appearing in the hamiltonian (
i36
5.27) by classical functions (

i21
5.19)

HAF = −
∑

~kλ

{
| 2 〉〈 1 | ~d21 · ~E(+)

~k,λ
(0) ei(~k·~R−ωkt) + | 1 〉〈 2 | ~d12 · ~E(−)

~k,λ
e−i(~k·~R−ωkt)

}
, (5.28) i43

It is convenient to introduce the following notation

~
2

Ω~k,λ = ~d21 · ~E(+)
~k,λ

(0), or, equivalently Ω~k,λ =
2

~
~d21 · ~E(+)

~k,λ
(0), (5.29) i44

where quantities Ω~k,λ are called Rabi frequencies. Then, hamiltonian (
i43
5.28) is rewritten

as

HAF = −~
2

∑

~kλ

{
| 2 〉〈 1 | Ω~k,λ ei(~k·~R−ωkt) + | 1 〉〈 2 | Ω∗

~k,λ
e−i(~k·~R−ωkt)

}
, (5.30) i45

Let us also denote another notational abbreviation, namely

Φ = −~k · ~R, (5.31) i46

which will allow some generalizations. So finally, the semiclassical interaction hamiltonian

for a two-level atom, with rotating wave approximation, attains its final form

HAF = −~
2

∑

~kλ

{
| 2 〉〈 1 | Ω~k,λ e−i(Φ+ωkt) + | 1 〉〈 2 | Ω∗

~k,λ
ei(Φ+ωkt)

}
, (5.32) i47

which will be used in the next sections.

5.3 Application: Rabi oscillations

5.3.1 Introduction

We will concentrate on the following model. We still consider a two-level atom interacting

with the electromagnetic field. However, we will adopt following simplifications. First of
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all we will assume that the considered atom is at rest. Hence we can take ~R = 0 (this

depends only on the proper choice of the coordinate frame. Moreover, this implies Φ = 0.

Finally, we shall assume that the external field can be treated classically (semiclassical

approximation) and that it consists of a single monochromatic plane wave. Thus, we

deal with a single well-specified mode, so that the indices (~k, λ) and summation over the

modes are not necessary. In the light of these remarks we can write the total hamiltonian

as a sum of the atomic one (
i32c
5.24) and the interaction one (

i47
5.32). So we have

H =
1

2
~ω21

[
| 2 〉〈 2 | − | 1 〉〈 1 |

]
− ~

2

[
| 2 〉〈 1 | Ω e−iωt + | 1 〉〈 2 | Ω∗ eiωt

]
, (5.33) i51

where ω denotes the frequency of the mode. Identifications (
i31
5.21) allow us to write

matrices

| 2 〉〈 2 | − | 1 〉〈 1 | =
(

1 0
0 −1

)
. (5.34) i52a

Similarly, we get

| 2 〉〈 1 | =
(

0 1
0 0

)
, | 1 〉〈 2 | =

(
0 0
1 0

)
. (5.35) i52b

With the aid of these matrices, hamiltonian (
i51
5.33) gets the following matrix form

H =
~ω21

2

(
1 0
0 −1

)
− ~

2

(
0 Ω e−iωt

Ω∗ eiωt 0

)

=
~
2

(
ω21 −Ω e−iωt

−Ω∗ eiωt −ω21

)
. (5.36) i53

Our aim is to solve the time dependent Schrödinger equation for the state of two-level

atom interacting with a monochromatic (classical) mode of the electromagnetic field.

5.3.2 Schrödinger equation

As we have already mentioned, the space of the states of a two-level atom is two dimen-

sional. The state of an atom is thus described by the vector

|ϕ(t) 〉 =

(
ϕ2(t)
ϕ1(t)

)
, (5.37) i56

according to identifications (
i31
5.21). Obviously, quantity ϕk(t), k = 1, 2, is the probability

amplitude of finding the atom in the state | k 〉. Time-dependent Schrödinger equation is,

certainly, of the form

i~
∂

∂t
|ϕ(t) 〉 = H|ϕ(t) 〉, (5.38) i57

where the total hamiltonian is given in (
i53
5.36). In order to solve this equation in a unique

way we need initial conditions. We shall simply take

|ϕ(0) 〉 =

(
ϕ2(0)
ϕ1(0)

)
, (5.39) i58
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which must satisfy the normalization condition
∣∣ϕ2(0)

∣∣2 +
∣∣ϕ1(0)

∣∣2 = 1. (5.40) i58b

Formal Schrödinger equation (
i57
5.38) can be written in the matrix form, which follows from

(
i53
5.36) and is as follows

i~
∂

∂t

(
ϕ2(t)
ϕ1(t)

)
=
~
2

(
ω21 −Ω e−iωt

−Ω∗ eiωt −ω21

)(
ϕ2(t)
ϕ1(t)

)
. (5.41) i59a

We see that ~ cancels out. Multiplying both side by (−i) we obtain an equivalent set of

equations (we discard an obvious time argument)i62

ϕ̇2 = − iω21

2
ϕ2 +

iΩ

2
e−iωt ϕ1, (5.42a) i62a

ϕ̇1 =
iΩ∗

2
eiωt ϕ2 +

ω21

2
ϕ1. (5.42b) i62b

It is a set of the linear, first-order coupled differential equations with time-dependent

coefficients. Solution to this set may be sought in several different ways. We will present

just one of the methods.

5.3.3 An auxiliary transformation

First of all we intend to get rid of the time-dependent coefficients. This may be achieved

by the transformation

ϕ2(t) = c2(t) e−iωt/2, ϕ1(t) = c1(t) eiωt/2. (5.43) i63

Let us note that ”new” amplitudes fulfil the same initial conditions

ϕk(0) = ck(0), k = 1, 2. (5.44) i63b

Introducing substitutions (
i63
5.43) into Eqs.(

i62
5.42) we get a set of equations where the time-

dependent factors e±iωt cancel out. As a result we geti65

ċ2 = − i

2

(
ω21 − ω

)
c2 +

iΩ

2
c1, (5.45a) i65a

ċ1 =
iΩ∗

2
c2 +

i

2

(
ω21 − ω

)
c1. (5.45b) i65b

Now, we introduce the detuning

∆ = ω − ω21, (5.46) i66

due to which the set of equations (
i65
5.45) becomesi67

ċ2 =
i∆

2
c2 +

iΩ

2
c1, (5.47a) i67a

ċ1 =
iΩ∗

2
c2 − i∆

2
c1. (5.47b) i67b

This is still a set of linear, coupled differential equations, but with time-independent

coefficients.

S.Kryszewski QUANTUM OPTICS 85



March 4, 2010 5. Atom–field interaction. Dipole approach 86

5.3.4 Solution to the evolution equations

Let us differentiate the first equation of the set (
i67
5.47) with respect to time. We obtain a

second-order equation

c̈2 =
i∆

2
ċ2 +

iΩ

2
ċ1. (5.48) i68a

Then, with the aid of the second equation, we eliminate ċ1 obtaining

c̈2 =
i∆

2
ċ2 +

iΩ

2

(
iΩ∗

2
c2 − i∆

2
c1

)

=
i∆

2
ċ2 − |Ω|2

4
c2 − i∆

2
· iΩ

2
c1. (5.49) i68b

Now, from (
i67a
5.47a) we have

iΩ

2
c1 = ċ2 − i∆

2
c2. (5.50) i68c

Using this relation in (
i68b
5.49) we obtain

c̈2 =
i∆

2
ċ2 − |Ω|2

4
c2 − i∆

2

(
ċ2 − i∆

2
c2

)

= − 1

4

(|Ω|2 + ∆2
)

c2. (5.51) i68d

Introducing the so-called generalized Rabi frequency

ΩR =
√
|Ω|2 + ∆2, (5.52) i69

we see, that equation (
i68d
5.51) is an equation of the type of harmonic oscillator

c̈2 +

(
ΩR

2

)2

c2 = 0, (5.53) i70

with an obvious solution

c2(t) = A sin

(
ΩRt

2

)
+ B cos

(
ΩRt

2

)
. (5.54) i71

Arbitrary constants A and B should be determined from the initial condition (
i63b
5.44). Be-

fore we do so, let us compute amplitude c1(t). It follows from relation (
i68c
5.50). Performing

the necessary differentiations, we obtain

c1 = −∆

Ω

[
A sin

(
ΩRt

2

)
+ B cos

(
ΩRt

2

)]

− iΩR

Ω

[
A cos

(
ΩRt

2

)
− B sin

(
ΩRt

2

)]

=

(
−∆

Ω
A +

iΩR

Ω
B

)
sin

(
ΩRt

2

)
+

(
−∆

Ω
B − iΩR

Ω
A

)
cos

(
ΩRt

2

)
(5.55) i72
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Summarizing the obtained results we write down the amplitudes of the evolving two-level

atomi73

c2(t) = A sin

(
ΩRt

2

)
+ B cos

(
ΩRt

2

)
, (5.56a) i73a

c1(t) = − 1

Ω

(
∆A− iΩRB

)
sin

(
ΩRt

2

)
− 1

Ω

(
∆B + iΩRA

)
cos

(
ΩRt

2

)
. (5.56b) i73b

This ends the formal solution to the Schrödinger equation, what remains is the determi-

nation of constants A and B from initial conditions.
Due to relations (

i63b
5.44) and to solutions (

i73
5.56) we arrive at the set od equations for

constants A and Bi74

ϕ2(0) = B, (5.57a) i74a

c1(0) = − 1

Ω

(
∆B + iΩRA

)
. (5.57b) i74b

Solution to this set of equations is a straightforward matter. They readi75

A =
iΩ

ΩR

ϕ1(0) +
i∆

ΩR

ϕ2(0), (5.58a) i75a

B = ϕ2(0). (5.58b) i75b

Plugging the constants A and B into solutions (
i73
5.56) after simple transformations we

obtaini77

c2(t) = ϕ2(0) cos

(
ΩRt

2

)
+

i

ΩR

[
Ωϕ1(0) + ∆ϕ2(0)

]
sin

(
ΩRt

2

)
, (5.59a) i77a

c1(t) = ϕ1(0) cos

(
ΩRt

2

)
+

i

ΩR

[
Ωϕ2(0)−∆ϕ1(0)

]
sin

(
ΩRt

2

)
. (5.59b) i77b

Finally, we have to take into account transformation (
i63
5.43). Then, we can write down the

solutions to the considered problem,asi78

ϕ2(t) = ϕ2(0) cos

(
ΩRt

2

)
e−iωt/2 +

i

ΩR

[
Ωϕ1(0) + ∆ϕ2(0)

]
sin

(
ΩRt

2

)
e−iωt/2,

(5.60a) i78a

ϕ1(t) = ϕ1(0) cos

(
ΩRt

2

)
eiωt/2 +

i

ΩR

[
Ωϕ2(0)−∆ϕ1(0)

]
sin

(
ΩRt

2

)
eiωt/2.

(5.60b) i78b

This is the end of the procedure of finding the solutions to the Schrödinger equation for

a two-level atom interacting with (a classical) single, monochromatic mode of light. The

initial conditions are fully arbitrary, they only must satisfy the normalization condition

(
i58b
5.40).

5.3.5 Specific initial conditions

Let us now assume, that the atom was initially in the ground state. This corresponds to

the initial conditions

ϕ2(0) = 0, and ϕ1(0) = 1, (5.61) i81
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which clearly satisfy the normalization requirement. In such a case, from general solutions

(
i78
5.60) we obtaini82

ϕ2(t) =
iΩ

ΩR

sin

(
ΩRt

2

)
e−iωt/2, (5.62a) i82a

ϕ1(t) = cos

(
ΩRt

2

)
eiωt/2 − i∆

ΩR

sin

(
ΩRt

2

)
eiωt/2. (5.62b) i82b

Having the amplitudes, we easily compute the corresponding probabilities of finding the

atom in the excited state and in the ground statei83

P2(t) =
|Ω|2
Ω2

R

sin2

(
ΩRt

2

)
, (5.63a) i83a

P1(t) = cos2

(
ΩRt

2

)
+

∆2

Ω2
R

sin2

(
ΩRt

2

)
. (5.63b) i83b

Since Ω2
R = |Ω|2 + ∆2 the obtained probabilities sum up to unity for any moment T , as

it should be. Next, we use the simple trigonometric identities

cos2
(α

2

)
=

1

2

(
1 + cos α

)
, sin2

(α

2

)
=

1

2

(
1− cos α

)
, (5.64) i84

With the aid of these relations, from (
i83
5.63) we geti85

P2(t) =
|Ω|2
2 Ω2

R

· [1− cos (ΩRt)] , (5.65a) i85a

P1(t) =
1

2
[1 + cos (ΩRt)] +

∆2

2 Ω2
R

· [1− cos (ΩRt)] . (5.65b) i85b

Since Ω2 = Ω2
R −∆2, we can eliminate Ω from the above equations, obtainingi86

P2(t) =
1

2

(
1− ∆2

Ω2
R

) [
1− cos (ΩRt)

]
, (5.66a) i86a

P1(t) =
1

2

(
1 +

∆2

Ω2
R

)
+

1

2

(
1− ∆2

Ω2
R

)
cos (ΩRt) . (5.66b) i86b

Using trigonometric relations it is easy to check that these probabilities sum up to unity.

Moreover we note that the obtained probabilities do not depend on the sign of detuning

only on its absolute value.

5.3.6 Rabi oscillations

Expressions (
i86
5.66) clearly exhibit oscillatory behavior. Let us discuss it in some more

detail. Let us concentrate on the probability of finding two-level atom in the ground state.

P1(t). As it follows from the obtained results, the time derivative of this probability is

d

dt
P1(t) = − 1

2

(
1− ∆2

Ω2
R

)
ΩR sin (ΩRt) , (5.67) i88b
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which is zero for ΩRt = kπ (k = 0, 1, 2, . . .). let us investigate the values of P1(t) for the

given moments of time. Then, from (
i86b
5.66b) we get

P1

(
kπ

ΩR

)
=

1

2

(
1 +

∆2

Ω2
R

)
+

1

2

(
1− ∆2

Ω2
R

)
cos (kπ) . (5.68) i88c0

Since cos(kπ) = (−1)k we have

P1

(
kπ

ΩR

)
=

1

2

[
1 + (−1)k

]
+

∆2

2 Ω2
R

[
1− (−1)k

]
. (5.69) i88c

For even k = 2n (in particular for n = 0 – initial moment) we get

P1

(
π

ΩR

· 2n
)

= 1. (5.70) i88d

On the other hand, for odd k = 2n + 1

P1

(
π

ΩR

· (2n + 1)

)
=

∆2

Ω2
R

. (5.71) i88e

Thus, we see that at the initial moment (t = 0) we have P1(t) = 1, the atom is in its

ground state. When the time goes probability of finding the atom in the ground state

reaches its minimum value ∆2/Ω2
R. Next, at the later moment ΩRt = 2π, it reaches unity

again. Obviously, with growing time, the oscillations continue.
In a similar way we discuss P2(t) – probability of finding the atom in the excited state.

From (
i86a
5.66a) we find the derivative

d

dt
P2(t) =

1

2

(
1− ∆2

Ω2
R

)
ΩR sin (ΩRt) , (5.72) i89lb

which is again zero for ΩRt = kπ (k = 0, 1, 2, . . .). Hence we easily get

P2

(
kπ

ΩR

)
=

1

2

(
1− ∆2

2 Ω2
R

) [
1− (−1)k

]
. (5.73) i89c

Hence, for even k = 2n we get

P2

(
π

ΩR

· 2n
)

= 0. (5.74) i89d

For odd k = 2n + 1, on the other hand, we obtain

P2

(
π

ΩR

· (2n + 1)

)
= 1− ∆2

Ω2
R

. (5.75) i89e

Oscillations of the excited state population are, thus, slightly different. At the initial

moment t = 0 P2(0) = 0, which agrees we the adopted initial conditions. Then, the prob-

ability P2 grows, at the moment t = π/ΩR attains its maximum equal to 1−∆2/Ω2
R. when

the time passes P2(t) decreases and reaches zero at the moment t = 2π/ΩR. Afterwards,

the oscillations go on.
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Let us return to the discussion of P2(t) – probability of finding the atom in the upper

state, which is given in Eq.((
i86a
5.66a), ie.,

P2(t) =
1

2

(
1− ∆2

Ω2
R

) [
1− cos (ΩRt)

]
=

(
1− ∆2

Ω2
R

)
sin

(
ΩRt

2

)
. (5.76) i92

Moreover, we recall that ∆ = ω − ω21, and Ω2
R = ∆2 + |Ω|2. It is important to realize

which parameters can be controlled in a real experimental situations. Frequency ω of the

incident light can be tuned. This allows an experimentalist to control the detuning ∆

(atomic frequency ω21 is obviously fixed. Furthermore, application of filters results in the

control over the field intensity. This means that the electric |~E| can be adjusted. This, in

turn, gives a chance to regulate Rabi frequency Ω (see (
i44
5.29)). Hence, we see that ∆ and

Ω are the essential experimental parameters. We will consider several possible choices of

these parameters.

Ω t

0 2 π

P2(t)

0.2

0.6

1

Fig. 5.3: Examples of Rabi oscillations – probability of finding an atom in the
upper state. Dotted line: ∆ = 2Ω; dashed line: ∆ = Ω; solid line - resonance:
∆ = 0. f:ir

• As the first case we take |∆| = 2Ω. This gives ΩR =
√

5Ω. Probability P2(t)

becomes

P2(t) =
1

10

[
1− cos

(√
5 Ωt

)]
=

1

5
sin2

(√
5

2
Ωt

)
. (5.77) i93

Rabi frequency ΩR is relatively large. Probability P2(t) oscillates quickly. It reaches

the first zero (with t > 0) in the moment
√

5 Ωt/2 = 2π, which yields Ωt ≈ 2.8.

Its maximum value is only 0.2. Rabi oscillations are shown as a dotted line in the

figure
f:ir
5.3.

• The second case corresponds to |∆| = Ω, so that ΩR =
√

2 Ω. Eq. (
i92
5.76)) implies

P2(t) =
1

4

[
1− cos

(√
2 Ωt

)]
=

1

2
sin2

(√
2

2
Ωt

)
. (5.78) i94
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Generalized Rabi frequency decreases so the oscillations are slower than in the pre-

vious case. The first zero occurs at
√

2 Ωt/2 = 2π, so that Ωt ≈ 4.4. Maximum

value of the probability equals to 0.5. Its behavior is shown in figure
f:ir
5.3 by a dashed

line

• The third case depicted in figure
f:ir
5.3 is a resonance one. Thus, ∆ = 0 and ΩR = Ω.

In this case from (
i92
5.76) we have

P2(t) =
1

2
[1− cos (Ωt)] = sin2

(
1

2
Ω1t

)
. (5.79) i95

Rabi frequency ΩR is smallest and Oscillations are slowest. The first zero appears

at Ωt = 2π ≈ 6.28. On the other hand, probability of finding the atom in the upper

state reaches maximum possible value equal to 1.

5.3.7 Mollow spectrum – heuristic approach

The operator of the atomic dipole moment (the one for a two-level atom) is of the form

~d = ~d12| 1 〉〈 2 |+ ~d21| 2 〉〈 1 |. (5.80) iA1

Let us assume that, as previously, the atom is initially in the ground state. The corre-

sponding probability amplitudes ar given in Eqs.(
i82
5.62). We intend to find the expectation

value of atomic dipole moment. For simplicity, we shall assume that its matrix elements

are real ~d12 = ~d21. So, we want to compute the quantity

〈 ~d 〉 = 〈ϕ(t) | ~d |ϕ(t) 〉
= ~d21〈ϕ(t) | (| 1 〉〈 2 |+ | 2 〉〈 1 |) |ϕ(t) 〉 (5.81) iA4

Having found the matrices (
i52b
5.35) we easily construct the matrix corresponding to the

operator in the above matrix element. Thus we have

〈 ~d 〉 = ~d21

(
ϕ∗1, ϕ∗1

) (
0 1
0 0

)(
ϕ1

ϕ2

)
= ~d21

(
ϕ∗1, ϕ∗1

) (
ϕ2

ϕ1

)

= ~d21

[
ϕ∗1ϕ2 + ϕ∗2ϕ1

]
= ~d21 · 2Re {ϕ∗2ϕ1} (5.82) iA6

The amplitudes ϕj are known, It is easy to get

ϕ∗2ϕ1 =
iΩ

ΩR

e−iωt sin

(
ΩRt

2

)[
cos

(
ΩRt

2

)
+

i∆

ΩR

sin

(
ΩRt

2

)]
. (5.83) iA8

To simplify our calculation let us temporarily denote a = ΩRt/2. Writing trigonometric

functions in exponential form, we get

ϕ∗2ϕ1 =
iΩ

ΩR

e−iωt eia − e−ia

2i

[
eia + e−ia

2
+

i∆

ΩR

eia − e−ia

2i

]

=
Ω

4 ΩR

e−iωt

[
e2ia − e−2ia +

∆

ΩR

(
e2ia + e−2ia − 2

)]

= − Ω

2 ΩR

e−iωt

[
∆

ΩR

− 1

2

(
1 +

∆

ΩR

)
e2ia +

1

2

(
1− ∆

ΩR

)
e−2ia

]
. (5.84) iA8a
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Returning to ”old” notation, we finally obtain

ϕ∗2ϕ1 = − Ω

2 ΩR

[
∆

ΩR

e−iωt − 1

2

(
1 +

∆

ΩR

)
e−i(ω−ΩR)t +

1

2

(
1− ∆

ΩR

)
e−i(ω+ΩR)t

]
. (5.85) iA9

Taking real part and inserting into (
iA6
5.82) yields

〈 ~d 〉 = −~d21
Ω

2 ΩR

{
∆

ΩR

cos(ωt)− 1

2

(
1 +

∆

ΩR

)
cos

[
(ω − ΩR)t

]

+
1

2

(
1− ∆

ΩR

)
cos

[
(ω + ΩR)t

]}
. (5.86) iA12

ωr

ωω − ΩR
ω + ΩR

Fig. 5.4: A typical example of the Mol-
low’s spectrum.f:mollow

From this relation we can see that the oscilla-

tions of the atomic dipole moment are more com-

plicated than Rabi ones which were discussed

above. In this case we deal with the superposi-

tion of three oscillations at frequencies: ωr = ω

– at the frequency of the incoming light, and

at two shifted frequencies ωr = ω ± ΩR. We

can discuss these oscillations according to the

notions known from classical electrodynamics.

As we know an oscillating dipole emits electro-

magnetic waves which have the same frequency

as the frequency of dipole’s oscillations. Hence,

on the basis of Eq.(
iA12
5.86) we can say that the

dipole would emit waves with three frequencies

ωr which follow from our considerations. We ex-

pect that that the spectrum of the emitted radi-

ation would consist of three lines, which (after accounting for natural line broadening).

Naturally, our present analysis is based on classical notions. Later on we we argue that

the full quantum-mechanical analysis (at least quantitatively) leads to the same predic-

tions. Summarizing, we can say, that we expect the spectrum of the light emitted by the

two-level atom to consist of three peaks. Such a spectrum is called Mollow’s spectrum.

An example of such a spectrum is given in the figure.
However, one comment is in place. Namely, we know that the spectral lines have

some natural linewidth, which usually is expressed by the Einstein’s A coefficient. If the

generalized Rabi frequency ΩR (which determines the separation of the spectral lines in

the Mollow’s spectrum) is less or comparable with A then the three lines strongly overlap.

As a result we will see just one line (perhaps somewhat broadened, but single). In order

to observe Mollow’s three-peaked spectrum the incident field has to be strong enough. We

shall return to the discussion of these issues later, in more precise, quantum-mechanical

manner.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 6

Spontaneous emission.
Simple treatmentc:sp

6.1 Introduction

In this chapter we shall deal with the physical model much similar to that considered

in the previous chapter. Our atom still is a two-level one. hence its free hamiltonian is

given by (
i32c
5.24). This atom interacts with a single mode of quantized electromagnetic field

which is described by a hamiltonian

HF = ~ωka
†
~kλ

a~kλ. (6.1) s2

We will soon generalize our approach to a multimode situation. The interaction hamil-

tonian will be taken in the RWA approximation, so it is (for a single mode) of the same

form as (
i36
5.27)

HAF = −| 2 〉〈 1 | ~d21 · ~E(+)
~k,λ

+ H.C

= −| 2 〉〈 1 | (~d21 · ~e~kλ

)
i

√
~ωk

2ε0V
ei~k·~R a~kλ + H.C. (6.2) s3a

We stress that all dynamical (ie., time dependent) information is ”hidden” in the an-

nihilation and creation operators. For future purposes it is convenient to introduce an

abbreviated notation

V =
2

~
i
(
~d21 · ~e~kλ

)√ ~ωk

2ε0V
ei~k·~R =⇒ ~V

2
= i

(
~d21 · ~e~kλ

)√ ~ωk

2ε0V
ei~k·~R. (6.3) s4

This allows us to write the interaction hamiltonian as

HAF = −~
2

[
V | 2 〉〈 1 | a~kλ + V ∗| 1 〉〈 2 | a†~kλ

]
. (6.4) s5b

We will be interested in the following physical situation.

• At the initial moment t = 0 the atom is assumed to be in the exited (upper) state,

while the field is in the n-photon state. That is, the initial state of the system is

| i 〉 = | 2 〉 ⊗ |n~k,λ 〉. (6.5) s6
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• At some later moment the system is in the final state

| i 〉 = | 1 〉 ⊗ |n~k,λ + 1 〉. (6.6) s7

That is, we assume that within time interval t there occurs a transition | i 〉 → | f 〉
during which, the atom emits a photon (and goes to the ground state).

We note that states | i 〉 and | f 〉 are normalized and orthogonal. The latter fact is due to

orthogonality of atomic states | 1 〉 and | 2 〉 and of photon states (with different photon

numbers.
The problem now, is to find the probability of such a transition. To find such a

probability we need to solve Schrödinger equation

i~
∂

∂t
|ψ(t) 〉 = (HA + HF + HAF ) |ψ(t) 〉. (6.7) s8

We will seek the solution to this equation in the form of a linear combination

|ψ(t) 〉 = Ci(t)| i 〉+ Cf (t)| f 〉, (6.8) s9

with states | i 〉 and | f 〉 defined above. Equation (
s8
6.7) needs an initial condition, which

is

Ci(0) = 1, Cf (0) = 0, (6.9) s10

as it follows from our discussion. Now, we should construct the explicit form of the

Schrödinger equation and the look for the solution. We want to find the probability of

finding the atom in the upper state, that is

Pf←i(t) =
∣∣〈 f |ψ(t) 〉

∣∣2 =
∣∣Cf (t)

∣∣2. (6.10) s11

6.2 Schrödinger eqaution

We introduce ansatz (
s9
6.8) into Schrödinger equation (

s8
6.7) and we get

i~
∂Ci

∂t
| i 〉+ i~

∂Cf

∂t
| f 〉 = (HA + HF + HAF )

[
Ci| i 〉+ Cf | f 〉

]
. (6.11) s13a

States | i 〉 and | f 〉 are orthogonal so multiplying on the right by | i 〉 and | f 〉 we obtain

a set of two differential equationss14

i~Ċi = 〈 i | (HA + HF + HAF ) | i 〉Ci + 〈 i | (HA + HF + HAF ) | f 〉Cf , (6.12a) s14a

i~Ċf = 〈 f | (HA + HF + HAF ) | i 〉Ci + 〈 f | (HA + HF + HAF ) | f 〉Cf . (6.12b) s14b

The problem is reduced to a two-dimensional case, the space of the solutions |ψ(t) 〉 is

spanned by vectors | i 〉 and | f 〉. Hence we need to construct the corresponding 2 × 2

matrices of three hamiltonians appearing in the above set of equations.
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6.2.1 Matrix elements

From the definition (
i32c
5.24) we see that

HA| i 〉 =
~ω21

2

[
| 2 〉〈 2 | − | 1 〉〈 1 |

]
| 2 〉|n~k,λ 〉 =

~ω21

2
| 2 〉|n~k,λ 〉

=
~ω21

2
| i 〉, (6.13) s15a

since HA does not act on photon states. So the state | i 〉 is an eigenstate of the atomic

hamiltonian. Similarly for state | f 〉 we have

HA| f 〉 =
~ω21

2

[
| 2 〉〈 2 | − | 1 〉〈 1 |

]
| 1 〉|n~k,λ + 1 〉 = −~ω21

2
| 1 〉|n~k,λ + 1 〉

= −~ω21

2
| f 〉, (6.14) s15b

and | f 〉 is also an eigenstate of HA. Due to orthogonality of states | i 〉 and | f 〉 we obtain

four necessary matrix elements of the atomic hamiltonian. They are

〈 i |HA| i 〉 =
~ω21

2
, 〈 i |HA| f 〉 = 0,

〈 f |HA| i 〉 = 0, 〈 f |HA| i 〉 = −~ω21

2
.

(6.15) s16

The field hamiltonian HF = ~ωka
†
~kλ

a~kλ is diagonal in photon numbers and does not

affect atomic states. Therefore, we immediately get

HF | i 〉 = ~ωka
†
~kλ

a~kλ| 2 〉|n~k,λ 〉 = ~ωk n~k,λ| 2 〉|n~k,λ 〉
= n~k,λ~ωk| i 〉, (6.16) s18a

HF | f 〉 = ~ωka
†
~kλ

a~kλ| 1 〉|n~k,λ + 1 〉 = ~ωk

(
n~k,λ + 1

)| 1 〉|n~k,λ + 1 〉
=

(
n~k,λ + 1

)
~ωk| f 〉. (6.17) s18b

Considered states | i 〉 and | f 〉 are, thus, the eigenstates of the field hamiltonian. Similarly

as in the case of atomic hamiltonian we obtain

〈 i |HF | i 〉 = n~k,λ~ωk, 〈 i |HF | f 〉 = 0,

〈 f |HF | i 〉 = 0, 〈 f |HF | i 〉 =
(
n~k,λ + 1

)
~ωk.q

(6.18) s19

Finally, we analyze matrix elements of the interaction hamiltonian (
s5b
6.4). Proceeding

along the same lines as above, we look at the action of HAF on the basis states | i 〉 and

| f 〉. For vector | i 〉 we get

HAF | i 〉 = −~
2

[
V | 2 〉〈 1 | a~kλ + V ∗| 1 〉〈 2 | a†~kλ

]
| 2 〉|n~k,λ 〉

= −~V
∗

2
| 1 〉a†~kλ

|n~k,λ 〉

= −~V
∗

2

√
n~k,λ + 1 | 1 〉|n~k,λ + 1 〉 = −~V

∗

2

√
n~k,λ + 1 | f 〉. (6.19) s23a
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Contrary to the previous cases, now matrix elements are off-diagonal. For the second

vector we have

HAF | f 〉 = −~
2

[
V | 2 〉〈 1 | a~kλ + V ∗| 1 〉〈 2 | a†~kλ

]
| 1 〉|n~k,λ + 1 〉

= −~V
2
| 2 〉a~kλ|n~k,λ + 1 〉

= −~V
2

√
n~k,λ + 1 | 2 〉|n~k,λ 〉 = −~V

2

√
n~k,λ + 1 | i 〉. (6.20) s23b

Then, orthogonality of states | i 〉 and | f 〉 yields matrix elements of the interaction hamil-

tonian

〈 i |HAF | i 〉 = 0, 〈 i |HAF | f 〉 = −~V
2

√
n~k,λ + 1,

〈 f |HAF | i 〉 = −~V
∗

2

√
n~k,λ + 1, 〈 f |HAF | i 〉 = 0.

(6.21) s23c

Having found matrix elements of all contributions to the total hamiltonian we can con-

struct equations of motion (
s14
6.12).

6.2.2 Equations of motion

Using matrix elements (
s16
6.15), (

s19
6.18) and (

s23c
6.21) we introduce necessary matrix elements

into equations (
s14
6.12). Then we arrive at the set of equationss24

i~Ċi =

(
~ω21

2
+ n~k,λ~ωk

)
Ci − ~V

2

√
n~k,λ + 1 Cf , (6.22a) s24a

i~Ċf = −~V
∗

2

√
n~k,λ + 1Ci +

[
−~ω21

2
+

(
n~k,λ + 1

)
~ωk

]
Cf . (6.22b) s24b

Analyzing this set of equations we see that it is convenient to introduce the following

notation

ωi = 1
2
ω21 + n~k,λωk, ωf = −1

2
ω21 +

(
n~k,λ + 1

)
ωk, (6.23) s25

moreover we write

v = V
√

n~k,λ + 1 =
2i

~

√
n~k,λ + 1

(
~d21 · ~e~kλ

)√ ~ωk

2ε0V
ei~k·~R (6.24) s26

With this notation equations (
s24
6.22) after multiplication by (−i) can be written ass28

Ċi = −iωiCi +
iv

2
Cf , (6.25a) s28a

Ċf =
iv∗

2
Ci − iωfCf . (6.25b) s28b

This is a set of differential equations with time independent coefficients.
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6.2.3 Solution to the equations of motion

The set (
s28
6.25) is quite similar to the one considered in the previous chapter (in connection

with Rabi equations), see Eqs(
i67
5.47). In order to have a full analogy let us perform the

following transformation

Ci(t) = Bi(t)e
−iωit, Cf (t) = Bf (t)e

−iωf t. (6.26) s29

These transformation leads to the initial conditions Bk(0) = Ck(0) for k = i, f . Substi-

tuting these into Eqs.(
s28
6.25) we obtain equations of motion for amplitudes Bj(t) in the

forms30

Ḃi =
iv

2
Bfe

−iωfit, (6.27a) s30a

Ḃf =
iv∗

2
Bie

iωfit, (6.27b) s30b

where ωfi = ωf − ωi. This set of equations is formally identical to the set (
i62
5.42). We can

use the solutions of the latter one in the present case. We only need to make the proper

identifications. In the case of Eqs.(
i62
5.42) the initial conditions were ϕ2(0) = 0, ϕ1(0) = 1.

Comparing initial conditions, we make the identifications

ϕ2 ↔ Bf , ϕ1 ↔ Bi, (6.28) s31a

Moreover, comparing equations (
i62
5.42) and (

s30
6.27) we should identify

ω21 → 0, Ω → v, ω → ωfi = ωf − ωi = ωk − ω21. (6.29) s31b

These substitutions result in some further ones, namely

∆ = ω − ω21 → ωk − ω21, ΩR =
√

∆2 + |Ω|2 →
√

v2 + (ωk − ω21)2. (6.30) s31c

We are interested in the amplitude Cf (t), ot equivalently in Bf (t). Then using the given

identifications in solution (
i82a
5.62a) for ϕ2 → Bf we can write

Bf (t) =
iv√

|v|2 + (ωk − ω21)2
ei(ωk−ω21)t sin

[√
|v|2 + (ωk − ω21)2

t

2

]
. (6.31) s31d

The second coefficient Bi(t) – of the atom remaining in the upper state with the field

having nn~k
,λ photons is out of our interest.

6.2.4 Transition probability

As indicated in (
s11
6.10) we are interested in the transition probability Pf←i(t) =

∣∣Cf (t)
∣∣2 =∣∣Bf (t)

∣∣2, as it follows from (
s29
6.26). Amplitude Bf (t) is found in Eq.(

s31d
6.31), so we have

Pf←i(t) =
|v|2

|v|2 + (ωk − ω21)2
sin2

[√
|v|2 + (ωk − ω21)2

t

2

]
. (6.32) s32

Coefficient v is defined by relation (
s26
6.24), it is proportional to the square root of the light

intensity (because v ∝ √
n~k,λ). We are interested in small field intensities, when n~k,λ → 0,
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so we can take the lowest order approximation in |v2|. Taking such an approximation in

(
s32
6.32) we get

Pf←i(t) = |v|2 sin2
[

1
2
(ωk − ω21t)

]

(ωk − ω21)2
. (6.33) s33

It is worth noting that the same result can be obtained within the first order time-

dependent perturbation calculations. Returning to the full notation, as it follows from

Eq.(
s26
6.24), we get

Pf←i(t) =

∣∣~d21 · ~e~kλ

∣∣2
~2

(
~ωk

2ε0V

) (
n~k,λ + 1

) 4 sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.34) s34

Let us stress the very important fact. From the obtained expression we see that the

atomic transition | 2 〉 → | 1 〉 (that is, downwards with the photon emission) is possible

when the number of photons in the considered mode (~k, λ) is zero, ie., n~k,λ = 0. This

corresponds to the spontaneous emission. It is not important what was the reason of

finding the atom in the excited (upper) state. The interaction of the atom with the field

in the vacuum state (n~k,λ = 0) results in the spontaneous emission. Thus, the probability

of spontaneous emission follows from the last equation with (n~k,λ = 0), and it is

Psp(t) =
4
∣∣~d21 · ~e~kλ

∣∣2
~2

(
~ωk

2ε0V

)
sin2

[
1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.35) s35

This probability cannot be obtained within the semiclassical approximation. The reason

is simple. In the semiclassical approach the fields are given functions not operators. The

essential term
(
n~k,λ + 1

)
arises due to annihilation and creation operators so, it is of

quantum-mechanical origin.

6.3 Probability of spontaneous emission

6.3.1 Einstein’s A-coefficient

Probability given by Eq.(
s35
6.35) corresponds to spontaneous emission into one well-defined

mode. But we should remember that the vacuum field (and that is what we intend to

consider) consists of infinity of modes. Therefore, we shall sum the obtained expression

over all modes. Thus, we write

Psp(t) =
2

~ε0V

∑

~kλ

ωk

∣∣~d21 · ~e~kλ

∣∣2 sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.36) s49

Let us assume that the cavity is large enough so that we can transform the sum over the

modes into the corresponding integration(as it was discussed in previous chapters). This

transformation is summarized as

∑

~kλ

( . . . ) −→ V

(2πc)3

∑

λ

∫ ∞

0

dωk ω2
k

∫
dΩ~k ( . . . ), (6.37) s50
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where the angular integral runs over all possible spatial orientations of the wave vector
~k. Combining these relations, we get

Psp(t) =
1

4π3~ε0c3

∑

λ

∫ ∞

0

dωk ω3
k

∫
dΩ~k

∣∣~d21 · ~e~kλ

∣∣2 sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.38) s51a

The term containing matrix elements of the atomic dipole moment does not depend on

frequency ωk, so the integration splits into two independent parts. Hence, it is convenient

to introduce an integral

J(ω21) =

∫ ∞

0

dωk ω3
k

sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.39) s51b

~k/|~k|

θ

~e2

β

~e1

α

~d21

Fig. 6.1: Relative orientations of
atomic dipole moment, wave vec-
tor and two polarization vectors. f:sp

Then, expression (
s51a
6.38) can be written as

Psp(t) =
1

4π3~ε0c3
J(ω21)

∑

λ

∫
dΩ~k

∣∣~d21 · ~e~kλ

∣∣2,

(6.40) s51c

and there are two terms which can be computed sep-

arately.
First we deal with the last one – summation over

polarizations and angular integration. Atomic dipole

moment has a completely arbitrary orientation with

respect to wave vector ~k and two polarization vectors

~e1, ~e2. This is illustrated in figure
f:sp
6.1. We can assume

that atomic dipole ~d21 is aligned with the z axis, so

the wave vectors makes an angle θ with vector ~d21.

Polarization vetors are oriented at angles α and β,

respectively (see figure). According to this discussion,

the sum over polarization of the scalar products is

written as
∑

λ

∣∣~d21 · ~e~kλ

∣∣2 =
∣∣~d21

∣∣2 (
cos2 α + cos2 β

)
, (6.41) s52a

since polarization vector are of unit length. Three vectors ~k,~e1,~e2 are mutually orthogo-

nal, thus the theorem on directional cosines holds, and we have

cos2 α + cos2 β + cos2 θ = 1. (6.42) s52b

Previous relation now becomes
∑

λ

∣∣~d21 · ~e~kλ

∣∣2 =
∣∣~d21

∣∣2 (
1− cos2 θ

)
, (6.43) s52c

and now the last term in (
s51c
6.40) can easily be calculated

∑

λ

∫
dΩ~k

∣∣~d21 · ~e~kλ

∣∣2 =
∣∣~d21

∣∣2
∫

dΩ~k

(
1− cos2 θ

)

= 2π
∣∣~d21

∣∣2
∫ π

0

dθ sin θ
(
1− cos2 θ

)
=

8π

3

∣∣~d21

∣∣2. (6.44) s52d
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So summation over polarizations and integration over all possible orientations is per-

formed, The result is inserted into probability (
s51c
6.40) giving

Psp(t) =
2
∣∣~d21

∣∣2
3π2~ε0c3

J(ω21). (6.45) s53

It remains to compute the integral J . In order to do so, we take a new integration variable

x = ωk − ω21 and from (
s51b
6.39) we obtain

J(ω21) =

∞∫

−ω21

dx (x + ω21)
3 sin2

[
1
2
xt

]

x2
. (6.46) s54b

Strictly speaking this integral is divergent, what is typical for quantum-electrodynamical

problems. We will give some intuitive arguments which will allow us to find an approxi-

mate value of this integral. Due to physical arguments (energy conservation) we expect

that emission of a photon with high energy (large frequency) is in fact highly improbable,

if not just impossible. Hence, me may expect that some cutoff would be in place. As

a result, high frequencies do not contribute to the integral and the main contribution

comes from vicinity of x ∼ 0 where the second (fractional) term the integrand is strongly

peaked. Therefore we write approximately

J(ω21) = ω3
21

∞∫

−∞

dx
sin2

[
1
2
xt

]

x2
. (6.47) s54c

where (due to the given arguments) moved lower bound of integration to minus infinity

he remaining integral can be found in the mathematical tables

∞∫

−∞

dx
sin2

[
1
2
xt

]

x2
= 2

∞∫

0

dx
sin2

[
1
2
xt

]

x2
=

πt

2
. (6.48) s54d

Hence the sought integral J(ω21) becomes

J(ω21) =
π

2
ω3

21t. (6.49) s54e

This final result is then introduced int (
s53
6.45) and the probability of spontaneous emission

is given as

Psp(t) =

∣∣~d21

∣∣2
3π~ε0c3

ω3
21t, (6.50) s55

and the probability per unit time

A =
dPsp(t)

dt
=

ω3
21

∣∣~d21

∣∣2
3π~ε0c3

, (6.51) s56

which is called Einstein’s A-coefficient. We note that the probability (per unit time) of

spontaneous emission is isotropic. Any direction of emission is as probable as any other

one. This is an important feature of spontaneous emission.
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6.3.2 Some additional discussion

Let us return to relation (
s49
6.36) (with summation over modes)

Psp(t) =
2

~ε0V

∑

~kλ

ωk

∣∣~d21 · ~e~kλ

∣∣2 sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.52) s61

Our discussion will consist in performing the summation in a different manner.
Atomic dipole moment has, as previously, arbitrary direction (obviously in the labo-

ratory frame of reference). Let us take one of the polarization vectors, say ~e~k1. Then we

can write

∣∣~d21 · ~e~kλ

∣∣2 =
∣∣~d21

∣∣2 cos2 θ, (6.53) s62a

where θ is an angle between the considered vectors. Since vector ~d21 has arbitrary direction

the angle θ is also arbitrary. Therefore we should average over the orientations of the

atomic dipole moment

∣∣~d21 · ~e~kλ

∣∣2
av

=
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ
∣∣~d21

∣∣2 cos2 θ =

∣∣~d21

∣∣2
3

. (6.54) s62c

The averaged value of the atomic dipole moment is now inserted into probability (
s61
6.52)

Psp(t) =
2

~ε0V

∑

~kλ

∣∣~d21

∣∣2
3

ωk

sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.55) s63

For sake of clarity we shall keep numerical factors. Inspecting the terms summed in the

above relation, we see that they do no depend on polarizations. Hence, this sum produces

a factor equal two. So we have

Psp(t) =
2

~ε0V

(
2
∣∣~d21

∣∣2
3

) ∑

~kλ

ωk

sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
. (6.56) s64

As previously, we transform the sum over wave vectors to the integral, so that

Psp(t) =
2

~ε0V

(
2
∣∣~d21

∣∣2
3

)
V

(2πc)3

∫ ∞

0

dωk ω2
k

∫
dΩ~k ωk

sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2

=
1

4~ε0π3c3

(
2
∣∣~d21

∣∣2
3

)
· 4 π

∫ ∞

0

dωk ω3
k

sin2
[

1
2
(ωk − ω21)t

]

(ωk − ω21)2
, (6.57) s65a

because the integrand does not depend on the orientations of wave vectors. Recognizing

integral J(ω21 as in Eq.(
s51b
6.39), we have

Psp(t) =
1

4~ε0π3c3

(
2
∣∣~d21

∣∣2
3

)
· 4 π J(ω21). (6.58) s66

This expression is exactly the same as (
s53
6.45) only obtained in a different way. Previously,

we computed
∑

λ

∫
dΩ~k

∣∣~d21 ·~e~kλ

∣∣2 (see Eqs.(
s52a
6.41)-(

s52c
6.43)) which lead us to relation (

s52d
6.44)
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and gave a factor (8π/3)
∣∣~d21

∣∣2. In the present case we first averaged over spatial ori-

entations of the atomic dipole moment (see (
s62c
6.54)) which yielded

∣∣~d21

∣∣2/3. Polarization

summation reduced to multiplication by 2, which appeared in (
s64
6.56) (the middle term,

in brackets). Since remaining expression is polarization independent, the angular integral

in (
s65a
6.57) became trivial and produced factor 4π. Further discussion is identical as in

previous subsection and leads to Einstein’s A-coefficient (
s56
6.51).

6.3.3 Final remarks

Now we return to expression (
s51c
6.40), that is to

Psp(t) =
1

4π3~ε0c3
J(ω21)

∑

λ

∫
dΩ~k

∣∣~d21 · ~e~kλ

∣∣2, (6.59) s68

Probability of spontaneous emission of a photon with specified polarization ~e in the given

direction dΩ~k can be obtained from (
s68
6.59) without any summation. Then we get

Psp(t,~e, dΩ~k) =

∣∣~d21 · ~e
∣∣2

4π3~ε0c3
J(ω21) dΩ~k. (6.60) s69a

Taking the integral J(ω21) from Eq.(
s54e
6.49) we further obtain

Psp(t,~e, dΩ~k) =
ω3

21

∣∣~d21 · ~e
∣∣2

8π2~ε0c3
t dΩ~k, (6.61) s69b

hence, per unit time we get

psp(~e, dΩ~k) =
ω3

21

∣∣~d21 · ~e
∣∣2

8π2~ε0c3
dΩ~k. (6.62) s69c

This is a probability (per unit time) of spontaneous emission of a photon with given

polarization in the direction of a solid angle dΩ~k. We again see that this expression is

fully isotropic (direction independent).
On the other hand, when we integrate expression over all emission angles we would

obtain probability (per unit time) of the emission in arbitrary direction but with specified

polarization. Due to isotropy such an integral is trivial and produces a factor 4π. We get

from

psp(~e) =
ω3

21

∣∣~d21 · ~e
∣∣2

2π~ε0c3
. (6.63) s70

Furthermore, the obtained expression can be averaged over the orientations of the atomic

dipole. This, according to relation (
s62c
6.54) gives a factor 1/3, so that

psp(~e) =
ω3

21

∣∣~d21 · ~e
∣∣2

6π~ε0c3
. (6.64) s71a

Finally, summation over polarizations will produce factor 2 and we get

psp =
ω3

21

∣∣~d21 · ~e
∣∣2

3π~ε0c3
, (6.65) s71b
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and we again arrive at Eistein’s A-coefficient.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 7

Optical Bloch equationsc:be

7.1 Introduction. General discussion

We return to the more detailed analysis of the interaction of a two-level atom with elec-

tromagnetic field. The problem was already discussed in chapter
c:af
5, hence we just briefly

recall some basic facts.

• The atomic Hamiltonian HA is taken to be (see (
i32c
5.24))

HA =
1

2
~ω21 [ | 2 〉〈 2 | − | 1 〉〈 1 | ] . (7.1) b1

• We shall consider a semiclassical approach. We will assume that an atom interacts

with a light beam consisting of a single mode with frequency ωL and wave vector ~k.

Hence, we can take the interaction hamiltonian given in (
i47
5.32), where summation

and corresponding indices are not necessary.So we have

HAF = −~
2

{
| 2 〉〈 1 | Ω e−i(Φ+ωLt) + | 1 〉〈 2 | Ω∗ ei(Φ+ωLt)

}
, (7.2) b2

where we have typical notation for Rabi frequency Ω and phase factor

Ω =
2

~
~d21 · ~E(+)

L , Φ = −~k · ~R, (7.3) b3

with ~d21 being the matrix element of the atomic dipole; ~E
(+)
L – the amplitude of the

classical monochromatic incident mode; ~R – the position of (the center of mass of)

the atom. We also note that RWA is silently assumed.

• The total hamiltonian (according to the discussion in chapter
c:af
5) of an atom inter-

acting with (classical) radiation mode is of the form

HAL =
1

2
~ω21 [ | 2 〉〈 2 | − | 1 〉〈 1 | ]

− ~
2

{
| 2 〉〈 1 | Ω e−i(Φ+ωLt) + | 1 〉〈 2 | Ω∗ ei(Φ+ωLt)

}
. (7.4) b4

The outlined model does not account for spontaneous emission which consists in the

emission of a photon into vacuum modes which are not present here. Therefore we should

S.Kryszewski QUANTUM OPTICS 105



March 4, 2010 7. Optical Bloch equations 106

account for the coupling with vacuum modes. This implies, that we should consider a

physical system consisting of three subsystems

{ atom (A) } + { laser field (L) } + { vacuum modes (V ) }. (7.5) b5

We are, in fact, interested only in the atomic subsystem in the description of which we

need to account for spontaneous emission. The laser light is treated classically so there

are no problems with it. On the other hand, vacuum modes are necessary for spontaneous

emission, but otherwise not interesting. We are describing a compound system, but we

are interested only in one part of it. Then, by necessity, we must consider the density

matrix approach. The von Neumann equation thus reads

i~
∂

∂t
ρA+L+V =

[
HA+L+V , ρA+L+V

]
. (7.6) b6a

The laser light is treated classically so we can write ”AL” instead of separate index ”L”

in the above equation of motion. Hence we have

i~
∂

∂t
ρAL+V =

[
HAL+V , ρAL+V

]
. (7.7) b6b

This equation should be reduced to the equation for the reduced density operator of

an atom only. The mathematically sound reduction technique is quite complicated and

difficult. It leads to the so called Master Equation (ME). We shall not discuss the details of

the ME methods. We will only state the main results. They follow from the requirements

imposed upon atomic reduced density operator. Such an operator must be

• hermitian: ρ = ρ†;

• normalized: Tr { ρ } = 1;

• semi-positive definite, ie., its eigenvalues must be nonnegative.

The mathematically strict reduction technique then leads to the following equation of

motion for atomic density operator ρAL ≡ ρ:

d

dt
ρ(t) =

1

i~
[ HAL, ρ ]

− A

2

[
| 2 〉〈 2 | ρ(t) + ρ(t) | 2 〉〈 2 | − 2 | 1 〉〈 2 | ρ(t) | 2 〉〈 1 |

]
, (7.8) b7

where HAL is the hamiltonian defined in (
b4
7.4). A denotes the usual Einstein’s coefficient

– probability (per unit time) of spontaneous emission. The second line of the above equa-

tion stems from reduction of the degrees of freedom to the atom only (which interacts

with classical incident field). Sometimes we say that the second line of (
b7
7.8) accounts for

the radiative damping due to the coupling with vacuum mode, that is, it describes spon-

taneous emission and ensures that the conditions imposed upon atomic density operator

are fulfilled.
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7.2 Derivation of optical Bloch equations

7.2.1 Evolution of the atom without damping

We continue our analysis of the two-level atom in the framework presented in the previous

section. The evolution without damping is given by the first term in (
b7
7.8) in a manner

similar to the von Neuman equation

i~
∂

∂t
ρ(t)

∣∣∣
free

= [ HAL, ρ(t) ] . (7.9) b11

From now on, we we will omit the time argument and we will remember that we analyze

the free evolution. Radiative damping will be considered later. Equation (
b7
7.8) is an

operator equation. We transform it into a set of equations for the matrix elements of the

atomic density operator. We multiply from the left by 〈 a | and from the right by | b 〉 with

a, b = 1, 2.

∂

∂t
〈 a | ρ | b 〉 =

1

i~
〈 a | ( HALρ− ρHAL ) | b 〉

=
1

i~
〈 a |HALρ | b 〉 − 1

i~
〈 a | ρHAL | b 〉. (7.10) b12

Between operators in the second line we insert a unit operator 1̂ = | 1 〉〈 1 | + | 1 〉〈 2 |.
After minor transformations, we obtain an equation for matrix elements of the atomic

density operator

∂

∂t
ρab =

1

i~

(
(HAL)a1 ρ1b + (HAL)a2 ρ2b − (HAL)1b ρa1 − (HAL)2b ρa2

)
. (7.11) b14

The hamiltonian HAL is given in (
b7
7.8). It is straightforward to find its matrix elements.

They are

(HAL)11 = −~ω21

2
, (HAL)12 = −~Ω

∗

2
ei(ωLt+Φ),

(HAL)21 = −~Ω
2

e−i(ωLt+Φ), (HAL)22 =
~ω21

2
. (7.12)

Having matrix elements of the Hamiltonian it is an easy matter to construct the equa-

tions of motion for the matrix elements of the atomic density operator which follow from

Eq.(
b14
7.11)). We obtain the set of equationsb21

ρ̇11 =
iΩ∗

2
ei(ωLt+Φ)ρ21 − iΩ

2
e−i(ωLt+Φ)ρ12, (7.13a) b21a

ρ̇22 = −iΩ∗

2
ei(ωLt+Φ)ρ21 +

iΩ

2
e−i(ωLt+Φ)ρ12, (7.13b) b21b

ρ̇21 =
iΩ

2
e−i(ωLt+Φ) (ρ11 − ρ22)− i ω21 ρ21, (7.13c) b21c

ρ̇12 = −iΩ∗

2
ei(ωLt+Φ) (ρ11 − ρ22) + i ω21 ρ21. (7.13d) b21d

These equations describe the free evolution of the two-level atom in the field of classical

monochromatic field. It remains to account for spontaneous emission.
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7.2.2 Radiative and collisional damping

Radiative damping (spontaneous emission) is accounted for by the last term in Eq.(
b7
7.8).

For matrix elements we easily obtain

∂

∂t
ρab

∣∣∣
sp

= −A

2

(
δa2 ρ2b + ρa2 δ2b − 2 δa1 ρ22 δ1b

)
. (7.14) b24

The contributions due to this term are as follows

∂

∂t
ρ11

∣∣∣
sp

= Aρ22,
∂

∂t
ρ12

∣∣∣
sp

= −A

2
ρ12,

∂

∂t
ρ21

∣∣∣
sp

= −A

2
ρ21,

∂

∂t
ρ22

∣∣∣
sp

= −Aρ22. (7.15) b25

These equations must be now combined with free evolution ones (
b21
7.13). This results in

the following set of equationsb26

ρ̇11 = Aρ22 +
iΩ∗

2
ei(ωLt+Φ)ρ21 − iΩ

2
e−i(ωLt+Φ)ρ12 (7.16a) b26a

ρ̇22 = −A ρ22 − iΩ∗

2
ei(ωLt+Φ)ρ21 +

iΩ

2
e−i(ωLt+Φ)ρ12 (7.16b) b26b

ρ̇21 =
iΩ

2
e−i(ωLt+Φ) (ρ11 − ρ22)−

(
A

2
+ i ω21

)
ρ21 (7.16c) b26c

ρ̇12 = −iΩ∗

2
ei(ωLt+Φ) (ρ11 − ρ22)−

(
A

2
− i ω21

)
ρ12 (7.16d) b26d

This set of equations constitutes optical Bloch equations (OBE) for a two-level atom inter-

acting with the single-mode (monochromatic) electromagnetic field which is assumed to be

classical. Since OBE play an extremely important role in quantum optics we summarize

the notation.

• ω21 denotes the atomic frequency;

• ωL is the frequency of the incoming (classical) electromagnetic field;

• Ω is the Rabi frequency, defined in (
b3
7.3).

• The phase factor Φ = −~k · ~R, where ~R is the position of the atom.

• A is Einstein’s coefficient for spontaneous emission.

Let us note that OBE preserve the trace of the atomic density matrix. From Eqs.(
b26a
7.16a)

and (
b26b
7.16b) we see that

ρ̇11 + ρ̇22 = 0 =⇒ = %11 + %22 = const., (7.17) b27

so if normalization is imposed at the initial moment, it will be conserved for any later

moment of time. The requirement (which follows from the hermiticity of the density

operator) that ρ12 = ρ∗21 is also clearly satisfied by the OBE.
It is also evident that the optical Bloch equations are not independent. The first two

equations are actually the same, while two last equation are complex conjugates of each
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other. Therefore, the trace conservation requirement (
b27
7.17)) plays an essential role in any

attempts to find the solution to Eqs.(
b26
7.16).

Before proceeding further we note the presence of the term e±(iΦ+iωt) in equations

(
b21
7.13). Certainly the presence of a time dependent factor makes the solution to the set

of equations more difficult. Therefore, it is desirable to eliminate the time dependent

factor. We will do this in the further sections, transforming the OBE to such a form, that

right-hand sides of the equations will not include any time dependencies.
In many practical cases there are some other mechanisms which lead to the damping

of the atomic dipole moment. For example, our atom may collide with some other atoms.

General analysis of atomic collisions id pretty difficult. During the collision the oscillations

of atomic dipole are disturbed and caused to decay. The matrix elements of atomic

dipole are proportional to the coherences. Hence the collisional damping of the dipole

moment can be accounted for in a phenomenological manner. We will assume that atomic

coherences decay not only due to spontaneous emission but also due to collisions. This

effect can be included in our picture by introducing an additional damping rate of the

coherences. In the equations (
b26
7.16) we will replace the decay rate A/2 by

Γc =
A

2
+ γph, (7.18) b28a

where γph describes the dephasing of the atomic dipole moment. The physical reasons for

the dephasing will be discussed elsewhere. At present, we will simply include it into the

optical Bloch equations. We arrive at the following set of equationsb29

ρ̇11 = Aρ22 +
iΩ∗

2
ei(ωLt+Φ)ρ21 − iΩ

2
e−i(ωLt+Φ)ρ12, (7.19a) b29a

ρ̇22 = −A ρ22 − iΩ∗

2
ei(ωLt+Φ)ρ21 +

iΩ

2
e−i(ωLt+Φ)ρ12, (7.19b) b29b

ρ̇21 =
iΩ

2
e−i(ωLt+Φ) (ρ11 − ρ22)− (Γc + i ω21) ρ21, (7.19c) b29c

ρ̇12 = −iΩ∗

2
ei(ωLt+Φ) (ρ11 − ρ22)− (Γc − i ω21) ρ12, (7.19d) b29d

which constitute the final form of the optical Bloch equations.

7.2.3 Simple elimination of time dependence

The set of equations (
b29
7.19) is linear, first order and with time-dependent coefficients.

This is very inconvenient for practical solutions. It is desirable to transform out the

unnecessary time dependence. To achieve this end we introduce new auxiliary variables

ρ11 = σ11, ρ12 = σ12 ei(ωLt+Φ),

ρ21 = σ21 e−i(ωLt+Φ), ρ22 = σ22. (7.20)

Transformation (
b30
7.20) allows us to write

ρ̇21 = −i
(
ωL + Φ̇

)
σ21 e−i(ωLt+Φ) + σ̇21 e−i(ωLt+Φ), (7.21) b31
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and similarly (by complex conjugation) for ρ12. Let us stress that Φ̇ = −~k · ~̇R = −~k · ~v,

where ~V is the velocity of the atom. Transformation (
b30
7.20) in the two first equations of

the set (
b26
7.16) leads to cancellation of the time-dependent exponential factors. Then, we

use (
b31
7.21) in the equations for coherences, and we get from (

b26c
7.16c)

− i
(
ωL + Φ̇

)
σ21 e−i(ωLt+Φ) + σ̇21 e−i(ωLt+Φ) =

=
iΩ

2
e−i(ωLt+Φ) (ρ11 − ρ22)− (Γc + i ω21) ρ21. (7.22) b33a

Time-dependent factors cancel out. Introducing the generalized detuning defined as

∆ = ωL − ω21 − Φ̇ = ωL − ω21 − ~k · ~v, (7.23) b34

we rewrite Eq.(
b33a
7.22) in the form

σ̇21 =
iΩ

2
(ρ11 − ρ22)− (Γc − i ∆) ρ21. (7.24) b35

Combining the results of our discussion, we transform the set (
b29
7.19) into one with time-

independent coefficients. This isb36

σ̇11 = A σ22 +
iΩ∗

2
σ21 − iΩ

2
σ12, (7.25a) b36a

σ̇22 = −Aσ22 − iΩ∗

2
σ21 +

iΩ

2
σ12, (7.25b) b36b

σ̇21 =
iΩ

2
(σ11 − σ22)− (Γc − i ∆) σ21, (7.25c) b36c

σ̇12 = − iΩ∗

2
(σ11 − σ22)− (Γc + i ∆) σ12. (7.25d) b36d

This is an alternative form of OBE. However it must be remembered that if we intend

to give physical predictions, then we must use matrix elements of ρ. So the solutions to

the set (
b36
7.25) must always be transformed back into elements of ρ according to relations

(
b30
7.20).

LAB

ωL, ~k
~v

Fig. 7.1: Illustration to the discussion of the Doppler shift. f:do

The generalized detuning is defined as ∆ = ωL − ω21 − ~k · ~v. The term ~k · ~v is just a

Doppler shift. To see this note that the laser light is resonant when ∆ = 0. This means

(according to Eq.(
b34
7.23)) that

ωL − ~k · ~v = ω21. (7.26) b37
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When the atom moves toward the light source, the atom (which plays the role of the

”observer”) sees the light of the ”shorter” wavelength. Since λν = c, the smaller λ means

larger frequency ωL = 2πν. Therefore, when the atom moves towards the light source, it

must ”see” the light of resonant frequency ω′L = ωL − ~k · ~v greater than ωL because the

scalar product ~k · ~v is negative as is clearly seen from figure
f:do
7.1.

It is convenient to write set of equations (
b36
7.25) in the matrix form

d

dt




σ11

σ22

σ21

σ12




=




0 A i
2
Ω∗ − i

2
Ω∗

0 −A − i
2
Ω∗ i

2
Ω∗

i
2
Ω∗ − i

2
Ω∗ −Γc + i∆ 0

− i
2
Ω∗ i

2
Ω∗ −Γc − i∆ 0







σ11

σ22

σ21

σ12




. (7.27) b39

The matrix has vanishing determinant (first two lines are linearly dependent). This

indicates that one of the eigenvalues of the above given matrix is equal to zero. Moreover,

it can be shown that the remaining three eigenvalues have negative real parts. As a

consequence we can say that the solution to set (
b39
7.27) consists of two parts. One part

(due to negative real parts of three eigenvalues) leads to quickly decaying transients. They

decays in time exponentially, roughly speaking during the time comparable to several

atomic lifetimes τA = 1/A. The other part (corresponding to the zero eigenvalue) survives

when time t is long enough. This part of the solutionis called a stationary one. This

reasoning has also physical counterpart. When the laser is switch on some transient and

fast phenomena occur. Afterwards we expect that some kind of dynamical equilibrium is

established. The system stabilizes and no more changes occur. This clearly corresponds

to the stationary behavior.

7.3 Stationary optical Bloch equations

Following the argument given in the previous section we will find stationary solutions to

OBE (
b36
7.25) or (

b39
7.27).

7.3.1 Stationary solutions

Stationary optical Bloch equations follow, when we take the left-hand sides of equations

(
b36
7.25)) to be equal zero. So we haveb46

0 = Aσ̄22 +
i

2
Ω∗ σ̄21 − i

2
Ω σ̄12, (7.28a) b46a

0 = −Aσ̄22 − i

2
Ω∗ σ̄21 +

i

2
Ω σ̄12, (7.28b) b46b

0 =
i

2
Ω ( σ̄11 − σ̄22 )− (Γc − i ∆) σ̄21, (7.28c) b46c

0 = − i

2
Ω∗ (σ̄11 − σ̄22 )− (Γc + i ∆) σ̄12. (7.28d) b46d

The bar indicates that we deal with stationary solutions, in the sense

σ̄ab = lim
t→∞

σab(t). (7.29) b46e
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The obtained set is homogeneous, moreover, it is straightforward to see that the first

two equations differ only by a sign, so they are linearly dependent. It may seem that

there are no nontrivial solution. This not the case since we must account for the trace

conservation. We discard the first equation of the above set, and instead, we adopt the

trace conservation requirement as the first equation. As a result we arrive at the set of

equationsb48

1 = σ̄11 + σ̄22, (7.30a) b48a

0 = −Aσ̄22 − i

2
Ω∗ σ̄21 +

i

2
Ω σ̄12, (7.30b) b48b

0 =
i Ω

2
(σ̄11 − σ̄22)− (Γc − i∆) σ̄21, (7.30c) b48c

0 = −i Ω∗

2
(σ̄11 − σ̄22)− (Γc + i∆) σ̄12. (7.30d) b48d

From two last equations we express coherences as functions of populations

σ̄21 =
iΩ

2(Γc − i∆)
(σ̄11 − σ̄22) , (7.31) b48e

while the second coherence σ̄12 follows by complex conjugation. Inserting these expressions

into the first two equations of the set (
b48
7.30) we get two, closed equations for populations

onlyb48x

σ̄11 = 1− σ̄22, (7.32a) b48xa

Aσ̄22 =
|Ω|2
2

(σ̄11 − σ̄22)
Γc

Γ2
c + ∆2

, (7.32b) b48xb

Solution to these equations poses no difficulties. The obtained populations are then

substituted into Eq.(
b48e
7.31) which yield the coherences. Straightforward algebra leads to

the following stationary solutions to optical Bloch equationsb49

σ̄11 =
A(Γ2

c + ∆2) + 1
2
|Ω|2Γc

A(Γ2
c + ∆2) + |Ω|2Γc

, (7.33a) b49a

σ̄22 =
1
2
|Ω|2Γc

A(Γ2
c + ∆2) + |Ω|2Γc

, (7.33b) b49b

σ̄21 = σ̄ ∗
12 =

1
2
ΩA(iΓc −∆)

A(Γ2
c + ∆2) + |Ω|2Γc

. (7.33c) b49c

The trace conservation requirement is obviously satisfied. Moreover, we note the inequal-

ity

σ̄11 > σ̄22 (7.34) b51

7.3.2 Stationary energy balance

Our present discussion of atom-light interaction is semiclassical. The atom is coupled to

the electric field

~E(~R, t) = ~E(+)(~R, t) + ~E(−)(~R, t)

= ~E
(+)
0 ei~k·~R−iωLt + ~E

(−)
0 e−i~k·~R+iωLt. (7.35)
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This field acts upon the atom and within the time interval performs the elementary work

dW = q~E(~R, t) · d~r, (7.36) b57

where d~r is the displacement of the electron. Thus, the power absorbed by the atom is

given as

d

dt
W = ~E(~R, t) · d

dt
(q~r) , = ~E(~R, t) · d

dt

(
~d(t)

)
, (7.37) b58

with ~d(t) being the operator of the atomic dipole moment. We average the obtained

relation both quantum-mechanically and over time (we denote the latter averaging by the

bar)

〈 d

dt
W 〉 = ~E(~R, t) · d

dt
〈 ~d(t) 〉. (7.38) b59

Quantum-mechanical averaging refers only to the atomic dipole, because the field is

treated classically.

〈 ~d(t) 〉 = Tr {~d ρ(t)} (7.39)

= Tr {[~d12| 1 〉〈 2 |+ ~d21| 2 〉〈 1 |
]
ρ(t)} (7.40)

= ~d12ρ21(t) + ~d21ρ12(t). (7.41) b60

In this section we are interested only in the stationary regime, hence we can use Eq.(
b30
7.20)

to express matrix elements of ρ by the corresponding elements of σ. Thus, we get

ρ21 = σ̄21 e−i(ωLt+Φ), ρ12 = σ̄12 ei(ωLt+Φ). (7.42) b61

Hence the expectation value for the atomic dipole moment becomes

〈 ~d(t) 〉 = ~d12 σ̄21 e−i(ωLt+Φ) + ~d21 σ̄12 ei(ωLt+Φ). (7.43) b62

The needed time derivative is

d

dt
〈 ~d(t) 〉 = i

(
ωL + Φ̇

)
~d21 σ̄12 ei(ωLt+Φ) − i

(
ωL + Φ̇

)
~d12 σ̄21 e−i(ωLt+Φ). (7.44) b63a

According to relation (
b37
7.26) we have ωL + Φ̇ = ωL − ~k · ~v = ω21. Hence

d

dt
〈 ~d(t) 〉 = iω21

~d21 σ̄12 ei(ωLt+Φ) − iω21
~d12 σ̄21 e−i(ωLt+Φ). (7.45) b63b

Now, we substitute the obtained time derivative into (
b59
7.38) to get the average absorbed

power

〈 d

dt
W 〉 =

[
~E

(+)
0 ei~k·~R−iωLt + ~E

(−)
0 e−i~k·~R+iωLt

]

·
[

iω21
~d21 σ̄12 ei(ωLt+Φ) − iω21

~d12 σ̄21 e−i(ωLt+Φ)
]
, (7.46)

S.Kryszewski QUANTUM OPTICS 113



March 4, 2010 7. Optical Bloch equations 114

We are averaging over time, therefore we can neglect the quickly oscillating terms. We

arrive at the expression

〈 d

dt
W 〉 = iω21

(
~E

(+)
0 · ~d21

)
σ̄12 − iω21

(
~E

(+)
0 · ~d12

)
σ̄21. (7.47) b65

According to Eq.(
b3
7.3) we recognize the Rabi frequency Ω/2 and its complex conjugate.

We obtain

〈 d

dt
W 〉 = iω21

~Ω
2

σ̄12 − iω21
~Ω∗

2
σ̄21 = − ~ω21Im

{
Ωσ̄12

}
. (7.48) b66a

We now take σ̄12 from Eq.(
b49c
7.33c)) and we obtain

〈 d

dt
W 〉 = ~ω21

1
2
|Ω|2AΓc

A(Γ2
c + ∆2) + Γc|Ω|2 = ~ω21 A

1
2
|Ω|2Γc

A(Γ2
c + ∆2) + Γc|Ω|2 . (7.49) b68

Finally, we see that the fraction reproduces the stationary-state upper state population

σ̄22 as given in (
b49b
7.33b). Therefore we have

〈 d

dt
W 〉 = ~ω21A σ̄22. (7.50) b69

We have calculated the average power absorbed by the atom from the incident field. Let

us denote

N̄abs = A σ̄22. (7.51) b70

and call this quantity an average absorption rate. Then we can write

〈 d

dt
W 〉 = ~ω21 N̄abs. (7.52) b71

The average absorption rate can be interpreted as the average number od absorbed pho-

tons (per unit time), each photon carrying the resonant energy ~ω21. In this sense ex-

pression (
b71
7.52) is understandable.

On the other hand, the term A σ̄22 is the rate of spontaneous emission, because it

appears in the right-hand side of the equation of motion (
b36b
7.25b) as the rate of the decay

of the upper state population. So the quantity N̄abs may be interpreted as the average

number (per unit time) of spontaneous emissions. At first it may seem difficult to explain

this apparent discrepancy.
The sequence of photon absorption and stimulated emission do not result in the

weakening of the light beam. It is impossible to say whether a photon appeared in the

beam due to stimulated emission or it just was not absorbed. When a photon is absorbed

from the beam by an atom which afterwards emits spontaneously (in arbitrary direction)

then the former one is truly lost from the beam. This explains the equivalence between the

average rate of absorption (from the incident beam) and the average rate of spontaneous

emission. This seems to be an intuitively plausible conclusion.
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7.4 Population inversion

7.4.1 Population inversion. Introduction

Let us return to OBE, as given in Eqs.(
b36
7.25)bb1

σ̇11 = A σ22 +
iΩ∗

2
σ21 − iΩ

2
σ12, (7.53a) bb1a

σ̇22 = −Aσ22 − iΩ∗

2
σ21 +

iΩ

2
σ12, (7.53b) bb1b

σ̇21 =
iΩ

2
(σ11 − σ22)− (Γc − i ∆) σ21, (7.53c) bb1c

σ̇12 = − iΩ∗

2
(σ11 − σ22)− (Γc + i ∆) σ12. (7.53d) bb1d

We construct a new physical quantity, the so-balled population inversion

w(t) = σ22 − σ11, (7.54) bb2

note that it is independent of the transformation (
b30
7.20). Inversion is greatest when all

population is in the upper state, that is when σ22 = 1. The minimum value of inversion

corresponds to σ11 = 1 – all atoms in in the ground state. Hence we see that population

inversion is a real number within an interval

w(t) ∈ [−1, 1
]
. (7.55) bb2e

First two out of Eqs.(
bb1
7.53) yield an equation of motion for population inversion.

ẇ(t) = −2Aσ22 − iΩ∗σ21 + iΩσ12. (7.56) bb3a

Due to normalization condition σ22 = 1− σ11 we can write

2σ22 = σ22 + σ22 = σ22 + 1− σ11 = 1 + w(t). (7.57) bb3b

Hence, equation of motion becomes

ẇ(t) = A
[−1− w(t)

] − iΩ∗σ21 + iΩσ12. (7.58) bb3c

Let us modify this equation. We shall replace the number (−1) in the brackets by a

unspecified number λ, so our equation of motion reads

ẇ(t) = A
[
λ− w(t)

] − iΩ∗σ21 + iΩσ12. (7.59) bb4

Our present aim is to investigate the physical sense of the parameter λ. In order to do

so, we consider a simplified physical situation, assuming that there is no incident light,

which entails that Ω = 0. So we investigated the equation

ẇ(t) = Aλ− Aw(t). (7.60) bb5
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This is an inhomogeneous differential equation. The heomogeneous one is ẇ(t) = −Aw(t),

with an obvious solution wh(t) = C exp(−At). We postulate, that the solution to

Eq.(
bb5
7.60) is

w(t) = C(t) exp(−At). (7.61) bb7a

This leads to the equation for the unknown function C(t)

Ċ(t) = Aλ exp(At). (7.62) bb7c

Integration is trivial, and gives

C(t) = λ exp(At) + C0, (7.63) bb7d

where the constant C0 has to be found. Inserting (
bb7d
7.63) into (

bb7a
7.61) yields

w(t) = [λ exp(At) + C0] exp(−At) = λ + C0 exp(−At). (7.64) bb8a

Assuming that in the initial moment w(0) = w0 we get C0 = w0 − λ. This allows us to

write

w(t) = w0 exp(−At) + λ
[
1− exp(−At)

]
. (7.65) bb9

This relation enables us to determine the physical sense of the parameter λ. We see that

w(t) -
t →∞ λ. (7.66) bb10

So λ equals the value to which population inversion tends, after the decay of all possible

initial excitations. In principle, we expect the atom to arrive at the ground state, which

in turn, correspond to λ = −1. In fact we have replaced −1 by λ, so this conclusion

should not be surprising.
Let us, however, generalize our approach. Let us call the parameter λ the equilibrium

population inversion

λ ≡ weq ∈
[−1, 1

]
. (7.67) bb11

Such a generalization results in the modification of equation (
bb4
7.59) which now is of the

form

ẇ(t) = A
[
weq − w(t)

] − iΩ∗σ21 + iΩσ12. (7.68) bb12

This equation was derived from optical Bloch equations, so the introduced modification

must lead to the corresponding modification of OBE. The question is whether such modi-

fication is really necessary. To answer the question we must investigate weq in much more

detail.
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7.4.2 Analysis of equilibrium population inversion

In this subsection we use the concepts of statistical physics. Let us assume that our

atomic system st in thermodynamical equilibrium (and the atoms are not irradiated).

The canonical density operator follows from Gibbs theory and it is

%eq =
1

Z
exp

(
− HA

kBT

)
. (7.69) bb15

HA is the (free) atomic hamiltonian (
b1
7.1), kB is the Boltzmann constant, and T the

temperature. Finally Z denotes the statistical sum

Z = Tr

{
exp

(
− HA

kBT

)}
. (7.70) bb17

Since the atomic hamiltonian is known, it is not difficult to find Z.

Z =

〈
1

∣∣∣∣exp

(
− HA

kBT

)∣∣∣∣ 1

〉
+

〈
2

∣∣∣∣exp

(
− HA

kBT

)∣∣∣∣ 2

〉
. (7.71) bb18a

States | 1 〉 and | 2 〉 are the eigenstates of HA so we easily get

Z = exp

(
~ω21

2kBT

)
+ exp

(
− ~ω21

2kBT

)
. (7.72) bb18b

Let us introduce a temporary symbol

κ =
~ω21

2kBT
. (7.73) bb19

Combining the result, we write the equilibrium density operator (
bb15
7.69) as

%eq =
1

eκ + e−κ
exp

(
− HA

kBT

)
. (7.74) bb20

Then we can compute the equilibrium populations. For the ground state we get

〈 1 | %eq | 1 〉 =

〈
1

∣∣∣∣
1

eκ + e−κ
exp

(
− HA

kBT

)∣∣∣∣ 1

〉
=

eκ

eκ + e−κ
, (7.75) bb21

while for the excited state we have

〈 2 | %eq | 2 〉 =

〈
2

∣∣∣∣
1

eκ + e−κ
exp

(
− HA

kBT

)∣∣∣∣ 2

〉
=

e−κ

eκ + e−κ
. (7.76) bb22

Thus, in the thermodynamical equilibrium the population inversion is equal to

weq = 〈 2 | %eq | 2 〉−〈 1 | %eq | 1 〉 = − eκ − e−κ

eκ + e−κ
= − tanh(κ) = − tanh

(
~ω21

2kBT

)
. (7.77) bb23

Obviously, the argument of the hyperbolic tangent is positive. Let us consider the case

of high and low temperatures.
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• For large temperatures, such that kBT À ~ω21, the argument of the hyperbolic

tangent is very small and the tangent itself is very close to zero. Therefore, we can

say that

weq
-

T →∞ 0−, (7.78) bb24

that is weq tends to zero from the negative side. This means, that in high temper-

atures weq = (%eq)22 − (%eq)11 is very small but negative. Almost half of the atoms

are in the excited (upper) state, while slightly more than half are still in the ground

state.

• In the case of low temperatures, that is when ~ω21 À kBT , the argument of the

hyperbolic tangent is quite large and the value of tangent is close to unity. Therefore,

in this case we have

weq
-

T → 0
− 1+. (7.79) bb25

Equilibrium population inversion tends from above to −1. It means that almost all

atoms are in the ground state and only a very small fraction of them may be found

in the excited state.

The presented reasoning is certainly sound, but what does it mean that temperature is

high or low ? To answer this question we need some numerical estimates.

7.4.3 Numerical estimates and conclusions

We are interested in the estimates, not in precise calculations for any specific physical

situations. For this purpose, we will consider an atomic transition corresponding to the

light of wavelength

λ = 500 nm. (7.80) bb31a

Since c = 3·108 m/s, the assumed wavelength corresponds to the frequency f = c/λ = 0.6·
1015 s−1. The angular frequency (usually used in our calculations) ω = 2πf ≈ 3.8·1015 s−1.

Atomic frequency ω21 must be of the same order of magnitude. For our estimates we shall,

thus, adopt

ω21 = 4 · 1015 s−1. (7.81) bb32b

We stress that we are making estimates, not exact calculations, thereby it is reasonable

to assume that

~ =
h

2π
=

6.6256 · 10−34 J/s

2π
≈ 10−34 J/s. (7.82) bb32c

Then, the energy ~ω21 is estimated as

~ω21 ≈ 4 · 1015 · 10−34 J = 4 · 10−19 J =
4

1.6
eV = 2.5 eV, (7.83) bb32d
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which is quite a reasonable result. On the other hand, Boltzmann constant is kB =

1.38 · 10−23 J/K. Let us now consider room temperature T = 300 K. This corresponds to

thermal energy

kBT ≈ 1.38 · 10−23 · 300 J ≈ 4.2 · 10−21 J =
4.2

1.6
· 10−2 eV ≈ 2.6 · 10−2 eV. (7.84) bb33b

Hence we have an estimate

κ =
~ω21

2kBT
≈ 2.5 eV

2 · 2.6 · 10−2 eV
≈ 0.5 · 102 = 50. (7.85) bb34

Obviously, for lower temperatures the parameter κ will be still larger. Now according to

Eq. (
bb23
7.77) for κ estimated above, we get for T = 300 K

weq = − tanh(κ) = −1. (7.86) bb35

This is a result given by three (quite different) calculators. We conclude that the substi-

tution λ = weq > −1 (as it was done when passing from Eq.(
bb3c
7.58) to (

bb4
7.59)) is completely

not necessary when temperatures are reasonable.
It is straightforward to repeat this estimate for temperature T = 1000 K. This gives

kBT ≈ 0.09 eV. This, in turn, leads to κ = ~ω21/2kBT = 13.9. Then, one calculator gives

tanh(13.9) = 1 and the second calculator showed 11 digits 9 after the decimal point. The

conclusion stated above still holds with extremely good approximation even for relatively

high temperatures.
We have established that for temperature below 1000 K we ar fully justified to put

weq = −1 and forget about any modifications to OBE as given by Eqs.(
b36
7.25) ot (

b26
7.16). At

reasonable temperatures (in equilibrium) all atoms are in the ground state. Reasonable

temperatures in practice mean temperatures of the order of several hundreds of kelvins

or less.
An interesting question is as follows. What is the temperature at which (in equilib-

rium) 1 per cent of atoms is in the excited state while 99 % remain in the ground state ?

This corresponds to the population inversion

weq = (%eq)22 − (%eq)11 =
1

100
− 99

100
= − 98

100
. (7.87) bb41

According to Eq.(
bb23
7.77) this requirement corresponds to the equation

tanh

(
~ω21

2kBT

)
= tanh(κ) =

98

100
. (7.88) bb42a

Calculator estimates are as follows

tanh(2.29) = 0.9797, tanh(2.30) = 0.9801, tanh(2.31) = 0.9805. (7.89) bb42x

So we see that 1 per cent of excited atoms corresponds to κ = ~ω21/2kBT ≈ 2.3. This

leads to the simple estimate

kBT ≈ ~ω21

5
= 0.5 eV = 0.8 · 10−19 J. (7.90) bb42d
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Having estimated the thermal energy, we translate it into temperature estimate

T ≈ 0.8 · 10−19 J

1.38 · 10−23 J/K
≈ 0.6 · 104 K = 6000 K. (7.91) bb43

We conclude that the appreciable number of atoms (1 %) in the upper state (in thermal

equilibrium) occurs at the temperatures corresponding to the star’s atmospheres. In

practical laboratory experiments virtually all atoms are in the ground state, weq = −1,

and no modifications to the optical Bloch equations (
b29
7.19) or (

b36
7.25) are necessary.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 8

Classical harmonic oscillator
in external fieldac:ano

8.1 Discussion of the roots and solutions

In the main part of the lectures we considered the roots of the characteristic polynomial

(
os6a
1.5) of the damped harmonic oscillator. These roots ω1 and ω2 are given in (

os6d
1.6). They

govern the behavior of the solution of the homogeneous equation. They are also important

for the solution of the inhomogeneous one, therefore we will discuss their properties. Let

us recall that the considered roots are as follows

ω1,2 = −iΓ

2
± Ω, with Ω =

√
ω2

0 −
1

4
Γ2. (8.1) aos15

We stress that from the physical point of view, we require that the damping parameter

Γ ≥ 0, while the oscillator frequency ω0 > 0. Negative parameters are unphysical, so

we do not consider such a case. First of all, we note that for arbitrary values of the

parameters Γ and ω0, the characteristic roots have the property

|ω1,2| = ω0. (8.2) aos16

Im(ω)

Re(ω)

ω2 ω1

Fig. 8.1: Behaviour of the characteristic
roots for fixed frequency ω0 for parameter
Γ varying from zero to infinity.1f:osc

We start our discussion taking the lowest value of

damping parameter, that is Γ = 0. Then Ω = ω0

and characteristic roots are simply ω1,2 = ±ω0,

so they lie on the real axis in the plane of com-

plex ω, see figure
1f:osc
8.1. The solution to homoge-

neous equation follows easily from (
os12
1.11), and it

is x(t) = x0 cos (ω0t) + (v0/ω0) sin (ω0t), which

are standard undamped oscillations satisfying

arbitrary initial conditions.
When Γ grows from zero, but satisfies 1

2
Γ <

ω0, the roots have the form (
aos15
8.1) and Ω is real.

Both roots have nonzero (negative) imaginary

part and as Γ grows they move in the complex

plane downwards along the arcs of the radius ω0,

as it follows from the relation (
aos16
8.2). The oscilla-

tor performs typical damped oscillations and the
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general solution of the homogeneous equation is

as given in Eq. (
os12
1.11).

The situation changes at the point where 1
2
Γ = ω0. Then Ω = 0 and both roots coin-

cide, possessing the values ω1,2 = ω0 = − i
2
Γ. So we do not have two linearly independent

solutions as it was in the case of Eq. (
os8
1.8). For the case of Ω = 0 we can, however, take

the limit in Eq. (
os12
1.11). Taking the limit carefully we obtain the following result

x(t) -
Ω → 0

exp

(
−1

2
Γt

)[
x0 +

(
v0 +

1

2
Γx0

)
t

]
. (8.3) aos19d

This solution corresponds to exponential decay without oscillations.
When parameter Γ still grows, i.e., 1

2
Γ > ω0, then Ω becomes purely imaginary. We

can then write

Ω = i

√
1

4
Γ2 − ω2

0 = iΩ̃, (8.4) aos20a

where Ω̃ is again real. The general solution (
os12
1.11) changes its character because substi-

tution (
aos20a
8.4) must be made. Hence, from Eqs. (

os11
1.10) and (

aos20a
8.4) we obtain

x(t) -
1
2
Γ > ω0

exp

(
−1

2
Γt

)[
x0 cos

(
iΩ̃t

)
+

v0 + 1
2
Γx0

iΩ̃
sin

(
iΩ̃t

)]
. (8.5) aos20d

Then, trigonometric function are transformed into hyperbolic ones, and we obtain

x(t) -
1
2
Γ > ω0

exp

(
−1

2
Γt

)[
x0 ch

(
Ω̃t

)
+

v0 + 1
2
Γx0

Ω̃
sh

(
Ω̃t

)]
. (8.6) aos20e

This solution quickly decays in time because Ω̃ < 1
2
Γ and may be called an overdamped

one, since it corresponds to strong damping.
In this case two characteristic roots are purely imaginary and have the propertyaos20b

ω1 = −iΓ

2
+ i Ω̃ -

Γ →∞ 0, (8.7a) aos20ba

ω2 = −iΓ

2
− i Ω̃ -

Γ →∞ − i∞, (8.7b) aos20bb

Therefore, as presented in Fig.
1f:osc
8.1, we see that when Γ grows ω1 moves upward the

imaginary axis towards zero, while ω2 → −i∞ downwards along the imaginary axis.
Fig.

1f:osc
8.1 illustrates the behaviour of the roots ω1,2 as functions of the varying parameter

Γ. It is important to note that only for Γ = 0 the roots are real, for Γ > 0 the roots are

always in the lower half of the complex ω–plane.

8.2 Green’s function

8.3 Solution to inhomogeneous equation – Green’s

function

Our next aim is to find the Green’s function leading to an elegant method of finding a

particular solution to the inhomogeneous equation of motion for driven harmonic oscil-

lator. We will apply the method to a particular case, but it seems clear that it can be
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generalized to other differential equations. So, now we consider the equation (
os1a
1.1) which

we write as follows

ẍ + Γẋ + ω2
0x = f(t), with f(t) = (q/m)E(t). (8.8) ano01

We seek a particular solution to the inhomogeneous equation (
ano01
8.8) in the form

x(t) =

∫ ∞

−∞
dt′ g(t− t′) f(t′), (8.9) ano02

where g(τ) is an unknown function. We will first discuss the conditions imposed on func-

tion g(τ) which follow for the physics of the problem. Then, we will explicitly construct

this function and check that it satisfies all the requirements.

8.3.1 Requirement of causality

We seek the particular solution to the inhomogeneous equation in the postulated form

of (
ano02
8.9). We require that this solution is causal. This means that the force f(t′) can

affect the displacement x(t) only at the instants earlier than the current moment. In

other words, this means that the displacement x(t) can depend on the force f(t′) only

when t′ ≤ t. We may also say that the current state of the oscillator can be influenced

by the earlier magnitude of the force, and not by the later ones. Therefore, requirement

of causality can be written asano03

g(t− t′) 6= 0 for t′ < t, (8.10a) ano03a

g(t− t′) = 0 for t′ ≥ t. (8.10b) ano03b

Relation (
ano03a
8.10a) should be understood in the sense that the function g(t − t′) is not

identically zero for times t′ earlier than t. Let us note, that since g(t − t′) = 0 for t′ > t

the upper limit of the integral in (
ano02
8.9) is effectively equal to t and not +∞. Hence, instead

of (
ano02
8.9), we can write

x(t) =

∫ t

−∞
dt′ g(t− t′) f(t′), (8.11) ano04

which, in an evident manner, displays the causality requirement. Only moments t′ earlier

than t give nonzero contributions to the current value of the displacement, so that x(t) is

determined solely by the earlier magnitudes of the driving force.
The condition (

ano03
8.10) can be put into somewhat more formal way. We write

g(t− t′) = Θ(t− t′) g(t− t′), (8.12) ano05

which is an equality in the sense of generalized functions. Θ(t− t′) denotes the Heaviside

function, which is defined as

Θ(t− t′) =

{
1 for t′ < t,
0 for t′ ≥ t.

(8.13) ano06
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At this stage it is perhaps worthwhile to give some comments. Searching for the

Green’s function in the form of the product Θ(t− t′) g(t− t′) requires a careful approach

within the theory of generalized functions, which is not easy. It seems that it is more

convenient to seek the Green’s function g(t− t′) via the particular solution (
ano02
8.9) of the in-

homogeneous equation with additional conditions summarized by relations (
ano03
8.10). On the

other hand, relation (
ano05
8.12) may be useful in practical applications, because it automati-

cally restricts the integration domain to times earlier than the current moment. Hence,

the causality requirement is then explicitly seen. This is put clearly via the equation

x(t) =

∫ ∞

−∞
dt′ Θ(t− t′)g(t− t′) f(t′), =

∫ t

−∞
dt′ g(t− t′) f(t′), (8.14) ano06x

Although this relation seems ”tempting”, we will seek the Green’s function via relations

(
ano02
8.9) and (

ano03
8.10).

8.3.2 Green’s function

As we have discussed, one of the ways to construct the particular solution to inhomoge-

neous equation is to look for the function g(t− t′). In order to do so, we substitute (
ano02
8.9)

into equation (
ano01
8.8).Thus, we find an equation which must be satisfied by g(t − t′) – the

Green’s function
∫ ∞

−∞
dt′

[
d2g(t− t′)

dt2
+ Γ

dg(t− t′)
dt

+ ω2
0g(t− t′)

]
f(t′) = f(t). (8.15) ano09

Since the right-hand side can be written as

f(t) =

∫ ∞

−∞
dt′ δ(t− t′) f(t′), (8.16) ano09x

it is straightforward to see that Eq. (
ano09
8.15) is equivalent to the equation

d2g(τ)

dτ 2
+ Γ

dg(τ)

dτ
+ ω2

0g(τ) = δ(τ), (8.17) ano10

where we have put t− t′ = τ . Eq (
ano09x
8.16) is a differential equation for generalized functions

of the form typical for the equations determining the Green’s function.
Solution to (

ano10
8.17) is best sought in the Fourier domain. The fundamentals of Fourier

transform theory are briefly presented in Appendix
ap:ff
A. Following this theory, we introduce

a pair of Fourier transforms

G(ω) =

∫ ∞

−∞

dt√
2π

eiωt g(t), g(t) =

∫ ∞

−∞

dω√
2π

e−iωt G(ω), (8.18) ano12

and we recall the relation well-known from generalized functions (distribution) theory

δ(t) =
1

2π

∫ ∞

−∞
dω e−iωt. (8.19) ano13

Transforming equation (
ano10
8.17) into the Fourier domain we obtain

∫ ∞

−∞

dω√
2π

[
(−iω)2 − iωΓ + ω2

0

]
e−iωt G(ω) =

1

2π

∫ ∞

−∞
dω e−iωt, (8.20) ano14
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where we used (
ano13
8.19) in the right-hand side. Hence, the last relation entails the equality

of the Fourier transforms and we get the algebraic equation for the Fourier transform

G(ω) of the Green’s function g(τ). The result is

( −ω2 − iωΓ + ω2
0

)
G(ω) =

1√
2π

, (8.21) ano14x

or, equivalently

G(ω) =
1√
2π

(−1)

ω2 + iωΓ− ω2
0

=
1√
2π

(−1)

(ω − ω1)(ω − ω2)
, (8.22) ano15

where ω1,2 = − i
2
Γ±Ω are the previously discussed roots (

aos15
8.1). This is so, because the de-

nominator in the first equality is exactly the same as the discussed characteristic equation

(
os6a
1.5) of the homogeneous equation. Hence, we have easily found the Fourier transform

of the Green’s function for the driven and damped harmonic oscillator. Moreover, due to

previous discussion of the roots of characteristic equation we automatically have discussed

the poles of the complex valued Fourier transform of the Green’s function.
In order to find the Green’s function g(τ) we must invert the Fourier transform. This

is equivalent to compute the integral

g(τ) =

∫ ∞

−∞

dω√
2π

e−iωτ G(ω) =
−1

2π

∫ ∞

−∞
dω

exp(−iωτ)

(ω − ω1) (ω − ω2)
. (8.23) ano17

Im(ω)

Re(ω)

ω2 ω1

τ < 0

τ > 0

Fig. 8.2: Integration contours for evalu-
ation of Green’s function from Eq.(

ano17
8.23).

1f:green

Computation of this integral is simple when one

uses the residue theory. For time τ < 0 we close

the contour in the upper half–plane of complex ω

as indicated in Fig.
1f:green
8.2 by the dashed line. The ra-

dius of the semicircle goes to infinity and from the

Jordan lemma the integral over the upper semi-

circle vanishes (because τ < 0 and −iωτ possesses

negative real part).The integral reduces to the one

over the real axis and since there are no poles

within the contour (which has the positive direc-

tion) the integral vanishes, yielding g(τ) = 0 for

τ < 0.

Similarly, for positive argument, (i.e. for

τ > 0) we close the contour in the lower half–plane

as indicated by dotted line. This contour has neg-

ative direction. The integral over the semicircle

vanishes again due to Jordan lemma for τ > 0

when the radius goes to infinity. Since the poles are within the contour we obtain non-

vanishing result which is easily computed via the residues in the first order poles ω1 and

ω2 given in (
aos15
8.1). The obtained Green’s function follows by evaluation of the residues

g(τ) = −2πi

(−1

2π

) [
exp

[−iτ
(− i

2
Γ + Ω

)]

− i
2
Γ + Ω + i

2
Γ + Ω

+
exp

[−iτ
(− i

2
Γ− Ω

)]

− i
2
Γ− Ω + i

2
Γ− Ω

]
. (8.24) ano20a
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Simple manipulation of this result allows us to write the resulting Green’s function for

τ > 0 as

g(τ) =
−i

2Ω
e−

1
2
Γτ

(
eiΩτ − e−iΩτ

)
=

1

Ω
e−

1
2
Γτ sin (Ωτ) (8.25) ano20b

Summarizing, the Green’s function for the damped harmonic oscillator is given as follows

ano21

g(τ) = 0, for τ < 0 (8.26a) ano21a

=
1

Ω
exp

(
−Γτ

2

)
sin(Ωτ), for τ > 0, (8.26b) ano21b

which completes the computation of the Green’s function for the damped, driven harmonic

oscillator.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 9

Electrodynamics in Fourier spaceac:ae

In some applications it is convenient to express Maxwell’s equations (
ce1
2.1) in Fourier space.

The basic review of the properties of Fourier transforms is given in the appendix
ap:ff
A. For

vector fields such as ~E or ~B the Fourier transform can be defined for each Cartesian

component separately, so that again a vector field results. For example, we define Fourier

transform of the electric field and its inverse asae1

~E(~k, t) =
1

(2π)3/2

∫
d3r e−i~k·~r ~E(~r, t), (9.1a) ae1a

~E(~r, t) =
1

(2π)3/2

∫
d3k ei~k·~r ~E(~k, t). (9.1b) ae1b

Note that time dependence is explicitly accounted for. Completely analogously we intro-

duce the corresponding relations for other fieldsae2

~B(~r, t) -¾ ~B(~k, t), (9.2a) ae2a

~D(~r, t) -¾ ~D(~k, t), (9.2b) ae2b

~H(~r, t) -¾ ~H(~k, t). (9.2c) ae2c

Moreover, similarly as in (
ae1
9.1) we have Fourier pairsae3

ρ(~r, t) -¾ ρ̃(~k, t), (9.3a) ae3a

~j(~r, t) -¾ ~J (~k, t), (9.3b) ae3b

Electrodynamics in the Fourier space consists in expressing the laws of classical theory

in the language of the defined Fourier transforms. Therefore, the sections in the present

chapter would have the same titles as the sections in the chapter in the Main Part.

9.1 Maxwell’s equation

Using the connections between differentiation in normal space and vector multiplications

by vector ~k in the Fourier space (see Appendix
ap:ff
A) we rewrite Maxwell’s equations (

ce1
2.1)

in the Fourier domain as follows (we suppress the arguments, which should not cause any
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problems)ae5

i~k · ~D = ρ̃, (9.4a) ae5a

i~k · ~B = 0, (9.4b) ae5b

i~k× ~E = − ∂

∂t
~B, (9.4c) ae5c

i~k× ~H = ~J +
∂

∂t
~D, (9.4d) ae5d

It should be, however, noted that in case of dispersive media (that is, media for which the

dielectric and magnetic susceptibilities depend on frequency, which is proportional to the

absolute value of wave vector ~k) and/or are position dependent, the material relations

lead to serious complications. The same applies to nonlinear media (when susceptibilities

depend on fields, usually in a nonlinear manner). The problem of the electromagnetic

fields in the media is still not fully understood. Therefore, we will mainly focus our

attention on the case of the fields in vacuum. In such a case the corresponding Maxwell’s

equations (
ce17
2.15) in coordinate space and in the Fourier space are simpler, and are of the

formae6

i~k · ~E =
1

εo

ρ̃, (9.5a) ae6a

i~k · ~B = 0, (9.5b) ae6b

i~k× ~E = − ∂

∂t
~B, (9.5c) ae6c

i~k× ~B =
1

ε0 c2
~J +

1

c2

∂

∂t
~E , (9.5d) ae6d

It is perhaps worth stressing that the time derivatives of the Fourier transforms of the

fields depend on the values of the transforms taken at the same point ~k of the Fourier

space. Hence, Maxwell’s equation in the Fourier domain are local.
Let us also note that Eqs.(

ae5b
9.4b) and (

ae6b
9.5b) clearly show that the Fourier field B(~k, t)

are perpendicular to the wave vector ~k. This notion leading to the concepts of transverse

(orthogonal to ~k) and longitudinal (parallel to ~k) fields will be discussed later. It also

explains why we say that magnetic field is purely transverse.
Finally, we express the charge conservation equation (

ce6
2.7) in the Fourier domain.

According to the rules of Fourier transformation it now reads

i~k · ~J +
∂

∂t
ρ̃ = 0. (9.6) ae7

9.2 Potentials

9.2.1 Introduction and basic definitions

Discussing potentials in Fourier space we follow similar lines of reasoning as it was done

in the main part of these lectures. For vector potential we write the pair of Fourier
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transformsae10

~A(~k, t) =
1

(2π)3/2

∫
d3r e−i~k·~r ~A(~r, t), (9.7a) ae10a

~A(~r, t) =
1

(2π)3/2

∫
d3k ei~k·~r ~A(~r, t). (9.7b) ae10b

where we have included the time dependencies. Obviously we similarly have for scalar

potential

φ(~r, t) -¾ φ̃(~k, t), (9.8) ae11

As in the case of Maxwell’s equations we use the connections between spatial derivatives

and wave vectors as discussed in Appendix
ap:ff
A. Then, the Fourier transforms of the electric

and magnetic fields ~E(~k, t) and ~B(~k, t) are given by the transforms of potentials in the

following mannerae12

~E(~k, t) = − ∂

∂t
~A(~k, t)− i~k φ̃(~k, t) (9.9a) ae12a

~B(~k, t) = i~k× ~A(~k, t). (9.9b) ae12b

Note that the electric field in the Fourier domain contains a longitudinal component

(parallel to wave vector ~k) and proportional to scalar potential φ̃(~k, t).

9.2.2 Wave equations for potentials

General wave equations in normal space are given by Eqs.(
ce26
2.21) and (

ce28
2.24). In Fourier

domain they becomeae13

k2 φ̃(~k, t) =
1

ε0

ρ̃(~k, t) + i~k · ∂

∂t
~A(~k, t), (9.10a) ae13a

[
k2 +

1

c2

∂2

∂t2

]
~A(~k, t) =

1

c2ε0

~J (~k, t)− i~k

[
i~k · ~A(~k, t) +

1

c2

∂

∂t
φ̃(~k, t)

]
, (9.10b) ae13b

9.2.3 Potentials – gauge invariance

Gauge transformation are specified by equations (
ce34
2.28). The corresponding relations in

the Fourier domain are as follows is of the formae14

~A(~k, t) -
gauge

~A′(~k, t) = ~A(~k, t) + i~k F̃ (~k, t), (9.11a) ae14a

φ̃(~k, t) -
gauge

φ̃′(~k, t) = φ̃(~k, t)− ∂

∂t
F̃ (~k, t), (9.11b) ae14b

where F̃ (~k, t) is the Fourier transform of the gauge function F (~r, t).

9.2.4 Lorentz gauge

Lorentz gauge (
ce37
2.30) in the Fourier domain reads

i~k · ~A(~k, t) +
1

c2

∂

∂t
φ̃(~k, t) = 0, (9.12) ae15
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and the corresponding wave equations (
ae14
9.11) becomeae16

[
~k2 +

1

c2

∂2

∂t2

]
φ̃(~k, t) =

1

ε0

ρ̃(~k, t) (9.13a) ae16a

[
~k2 +

1

c2

∂2

∂t2

]
~A(~k, t) =

1

ε0 c2
~J (~k, t). (9.13b) ae16b

9.2.5 Coulomb gauge

Next we discuss Coulomb gauge (
ce45
2.35), which in the Fourier domain attains the form

~k · ~A(~k, t) = 0. (9.14) ae17

We see that in this gauge the Fourier transform of the vector potential is perpendicular

(or transverse) to the wave vector ~k. This explains why the Coulomb gauge is sometimes

called the transverse one. Wave equations (
ae13
9.10)) in the Coulomb gauge becomeae17a

~k2 φ̃(~k, t) =
1

ε0

ρ̃(~k, t), (9.15a) ae17aa

[
~k2 +

1

c2

∂2

∂t2

]
~A(~k, t) =

1

ε0 c2
~J (~k, t)− i~k

c2

∂

∂t
φ̃(~k, t), (9.15b) ae17ab

and deserve some further attention. During our discussion of wave equations in Coulomb

gauge we noted that causality is lost. The solution for scalar potential was shown to give

instantaneous electric field due to charge distribution ρ(~r, t), (see (
ce47
2.37)). Let us repeat

similar analysis in Fourier domain. Wave equation (
ae17aa
9.15a) may be written

φ̃(~k, t) =
1

ε0

ρ̃(~k, t) (2π)3/2 1

(2π)3/2 k2
. (9.16) ae18

In Appendix
ap:ff
A we show that [(2π)3/2k2]−1 is a Fourier transform of 1/4πr. So φ̃ given in

Eq.(
ae18
9.16) is a product of two Fourier transforms. It follows that the inverse transform,

being the potential φ(~r, t) is a convolution of two functions

1

ε0

ρ(~r, t) and (2π)3/2 1

4π|~r | (9.17) ae19

where the second one follows from (
z1tft6
A.96). Therefore we have the potential φ(~r, t) – the

inverse of φ̃ given as the convolution, that is

φ(~r, t) =
1

4πεo

∫
d~r ′

ρ(~r ′, t)
|~r−~r ′ | , (9.18) ae20

so we reproduce the well-known Coulomb potential, the Fourier transform of which satis-

fies equation (
ae18
9.16). This solution exactly reproduces (

ce47
2.37) obtained as in usual electro-

statics.
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9.3 Longitudinal and transverse fields

9.3.1 Introduction

Let us translate the concepts of transverse and longitudinal components of vector fields.

Fourier transforms are linear so the decomposition ~E(~r) = ~E‖(~r) + ~E⊥(~r) transforms into

~E(~k) = ~E‖(~k) + ~E⊥(~k), (9.19) ae25

while the requirements div ~E⊥(~r) = 0 and rot ~E⊥(~r) = 0 become

i ~k · ~E⊥(~k) = 0, i ~k× ~E‖(~k) = 0. (9.20) ae26

These relations clearly imply that ~E⊥(~k) is a component orthogonal (transverse) to wave

vector ~k, while ~E‖(~k) is aligned along ~k – longitudinal. We also see that in the Fourier

space the separation (
ae25
9.19) is local and obviously unique. This clear picture shows why

the Fourier domain is sometimes advantageous. Introducing a unit vector

~nk =
~k

|~k |
(9.21) ae27

we may also writeae28

~E‖(~k) = ~nk

[
~nk · ~E(~k)

]
, (9.22a) ae28a

~E⊥(~k) = ~E(~k)− ~E‖(~k) = ~E(~k)− ~nk

[
~nk · ~E(~k)

]
, (9.22b) ae28b

It is straightforward to check that vectors (
ae28
9.22) satisfy requirements (

ae26
9.20).

Introducing the discussed separation in normal space we mentioned that it is not an

easy problem. There, the requirements div ~E⊥(~r) = 0 and rot ~E⊥(~r) = 0 must be satisfied

for all positions ~r. Similarly, relations (
ae26
9.20) must hold for any wave vector ~k. This may

be a tricky problem. To clarify it, let us consider an example, a point charge Q located

at a position ~r0. In this case the charge density is ρ(~r) = Qδ(~r −~r0). Then, Gauss’ law

states that

εo div ~E = Q δ(~r−~r0). (9.23) ae31

Right hand side is zero almost everywhere (except at the point at which the charge is

located). taking Fourier transforms

εo

(2π)3/2

∫
d3r e−i~k·~r div ~E =

Q

(2π)3/2

∫
d3r e−i~k·~r δ(~r−~r0). (9.24) ae32

Thus, we get

iε0
~k · ~E(~k) =

Q

(2π)3/2
e−i~k·~r0 . (9.25) ae33

Here we see that ~k · ~calE 6= 0 except for a trivial case ~k = 0. The field ~E(~k) and wave

vectors ~k are not orthogonal almost everywhere. Although div ~E = 0 almost everywhere,

the field is not transverse. This explains, that in presence of charges the problem of sepa-

rating the electric field into longitudinal and transverse components can be really difficult.

Secondly, the separation into longitudinal and transverse parts is not relativistically in-

variant. A vector which is transverse in one reference (coordinate) frame, usually is not

transverse in another frame – obtained via Lorentz transformation.
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9.3.2 Longitudinal Maxwell’s equations

We shall again restrict our attention to the vacuum fields. Maxwell’s equations (
ce1
2.1) in

coordinate space, or (
ae5
9.4) in Fourier space, can now be expressed as separate equations

for the longitudinal and transverse parts of the fields and the current density. Firstly, we

discuss the longitudinal components. Maxwell’s equation (
ae5b
9.4b) clearly indicates that the

transform of magnetic field is purely transverse. This automatically implies that

~B‖(~k) = 0, (9.26) ae35

and the longitudinal component of ~B must always be zero. The other longitudinal

Maxwell’s equation (
ce56b
2.42) translates into

i~k · ~E‖(~k) =
ρ̃(~k)

εo

, (9.27) ae36

in the Fourier domain. It is interesting to look for the solution to the above equation.

Using relation (
ae28a
9.22a) we can write

~E‖(~k) =
~k

|~k |2
[
~k ·

(
~E‖(~k) + ~E⊥(~k)

)]
=

~k

|~k |2
(
~k · ~E‖(~k)

)
, (9.28) ae37

because ~k·~E⊥ = 0. The scalar product in right hand side is replaced by Maxwell’s equation

(
ae36
9.27) yielding

~E‖(~k) = − i ~k

ε0 |~k |2
ρ̃(~k). (9.29) ae38

Once again we have a product of Fourier transforms (see the Appendix
ap:ff
A)

~E‖(~k) = − i ~k

ε0 |~k |2
ρ̃(~k). (9.30) ae39

So the inverse transform to ~E(~k) is a convolution

~E‖(~r) =
1

4πεo

∫
d~r′ ρ(~r ′, t)

~r−~r ′

|~r−~r ′|3 . (9.31) ae40

So we indeed see that Maxwell’s equation (
ae36
9.27) leads to the correct solution (

ce59b
2.45b).

Longitudinal Maxwell’s equation in the Fourier domain summarize to Eqs.(
ae35
9.26) and

(
ae38
9.29) (the latter one is equivalent to (

ae40
9.31)).

9.3.3 Transverse Maxwell’s equations

Faraday’s law reduces to the transverse equation (
ce62
2.46) and in Fourier domain it reads

i~k× ~E⊥(~k) = − ∂

∂t
~B⊥(~k). (9.32) ae44

The same follows from Maxwell’s equation (
ae5c
9.4c), because longitudinal part of electric

field does not contribute to its left hand side, while magnetic field is purely transverse.
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Let us now turn to the discussion of the modified Ampere’s law

rot ~B(~r) =
1

ε0 c2
~j(~r) +

1

c2

∂

∂t
~E(~r), (9.33) ae45

Which, in the Fourier domain reads directly as

i~k× ~B(~k) =
1

ε0 c2
~J (~k) +

1

c2

∂

∂t
~E(~k). (9.34) ae46

Longitudinal magnetic field ~B(~k) = 0 so we can rewrite the above equation as

i~k× ~B⊥(~k) =
1

ε0 c2

(
~J⊥(~k) + ~J‖(~k)

)
+

1

c2

∂

∂t

(
~E⊥(~k) + ~E‖(~k)

)
. (9.35) ae47

Vector product ~k × ~B⊥(~k) is obviously transverse (perpendicular to ~k). So, the last

equation splits into two parts. The first one, the transverse one is

i~k× ~B⊥(~k) =
1

ε0 c2
~J⊥(~k) +

1

c2

∂

∂t
~E⊥(~k), (9.36) ae48a

and the longitudinal part

0 =
1

ε0 c2
~J‖(~k) +

1

c2

∂

∂t
~E‖(~k). (9.37) ae48b

As we may suspect (
ae48b
9.37) does not bring any new information, since it reduces to charge

conservation requirement and therefore, usually can be discarded. To see this, let us

multiply both sides of Eq.(
ae48b
9.37) by i~k. We get

i

ε0

~k · ~J‖(~k) = −i
∂

∂t
~k · ~E‖(~k). (9.38) ae49a

Longitudinal equation (
ae36
9.27) allows us to write

i ~k · ~J‖(~k) = − ∂

∂t
ρ̃(~k). (9.39) ae49b

Projection of the part ~J‖ onto ~k is obviously equivalent to the projection of a whole

vector. Hence, instead of (
ae49b
9.39) we can write

i ~k · ~J (~k) = − ∂

∂t
ρ̃(~k), (9.40) ae49c

which is clearly seen to be the charge continuity equation in the Fourier space. Hence

we conclude that (
ae48b
9.37) really does not bring any new information. In the case when we

consider free fields only, it can indeed be discarded.
Summarizing, the transverse Maxwell’s equations in the Fourier domain areae50

i~k× ~E⊥(~k, t) = − ∂

∂t
~B⊥(~k, t), (9.41a) ae50a

i~k× ~B⊥(~k, t) =
1

ε0 c2
~J⊥(~k, t) +

1

c2

∂

∂t
~E⊥(~k, t). (9.41b) ae50b

These equations are fully equivalent (in the Fourier domain) to transverse Maxwell’s

equations (
ce67
2.52) in normal space.
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9.3.4 Discussion of the potentials

As it was done in the main part of the lectures, we continue the discussion of the transverse

and longitudinal fields in the Fourier domain. As we know, (see (
z1tft5a
A.95a)) the gradient of

an arbitrary scalar function ∇φ(~r) transforms into i~k(̃~k), hence transforms into a vector

parallel to ~k – the transform is purely longitudinal.
We already know that the magnetic field is purely transverse. It follows that the

transverse part of ~A(~k, t) is sufficient to specify the magnetic field in the Fourier domain

~B(~k, t) = ~B⊥(~k, t) = i ~k× ~A⊥(~k, t), (9.42) ae54

because the component ~A‖ does not contribute anyway. For electric field in the Fourier

domain (as it follows from Eqs.(
ae12a
9.9a)) we have

~E⊥(~k, t) = − ∂

∂t
~A⊥(~k, t), (9.43a) ae55a

~E‖(~k, t) = − ∂

∂t
~A‖(~k, t)− i~k φ̃(~k, t). (9.43b) ae55b

Again the role of ~A‖ is unclear. Can we take ~A‖ = 0 as indicated in the main part of the

lectures. We shall consider this question in terms of wave equations (
ae13
9.10). We focus our

attention on Eq.(
ae13b
9.10b) which we split into longitudinal and transverse partsae56

[
k2 +

1

c2

∂2

∂t2

]
~A‖(~k, t) =

1

c2εo

~J‖(~k, t)− i~k

[
i~k · ~A‖(~k, t) +

1

c2

∂

∂t
φ̃(~k, t)

]
. (9.44a) ae56a

[
k2 +

1

c2

∂2

∂t2

]
~A⊥(~k, t) =

1

c2ε0

~J⊥(~k, t) (9.44b) ae56b

Note that ~k· ~A⊥ = 0 so it does not contribute to the first of the above equations. Note also

that these equations are the Fourier domain equivalents of Eqs.(
ce74
2.56). We have mentioned

that Eq.(
ce74a
2.56a) (and also its equivalent (

ae56a
9.44a)) does not bring any new information. This

is difficult in normal space, but relatively easy in Fourier domain. To show that, we take

scalar product of both its sides with the vector i~k. We note that the second term in the

left-hand side cancels with the second one in right-hand side, and we get

i ~k · ∂2

∂t2
~A‖ =

1

ε0

i ~k · ~J‖ + k2 ∂

∂t
φ̃. (9.45) ae57

Then, differentiating Eq.(
ae13a
9.10a) over time, we eliminate the second order time derivative

of the longitudinal component of the vector potential, so the terms containing the time

derivative of scalar potential cancel out and we obtain

i ~k · ∂2

∂t2
~A‖ =

1

εo

i ~k · ~J‖ +
1

εo

∂

∂t
ρ̃ + i ~k · ∂2

∂t2
~A‖, (9.46) ae58

since, by definition, ~k · ~A⊥ = 0 in the last term wich cancels with the one in the left hand

side. So, Eq.(
ae56a
9.44a) reduces to

0 =
∂

∂t
ρ̃ + i ~k · ~J‖, (9.47) ae59
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The vector ~J‖ can be replaced by the total one ~J = ~J‖ + ~J⊥ and (
ae59
9.47) is then a

transform of the charge conservation requirement. Hence wave equation (
ae56a
9.44a) does not

bring anything new and can be discarded. We conclude that the longitudinal component
~A‖ is not really important.

The discussed problem is fully solved in the Coulomb gauge where div ~A(~r, t) = 0. In

the Fourier domain this corresponds to Eq.(
ae17
9.14) which indicates that the transform of

the vector potential is transverse. The simplest way to assure the transversality of vector

potential is to demand that

~A‖(~k, t) = 0. (9.48) ae60

Wave equation (
ae58
9.46) automatically reduces to charge conservation demand and the only

remaining wave equations (in Fourier domain) areae61

~k2 φ̃(~k, t) =
1

ε0

ρ̃(~k, t), (9.49a) ae61a

[
~k2 +

1

c2

∂2

∂t2

]
~A⊥(~k, t) =

1

εo c2
~J⊥(~k, t), (9.49b) ae61b

which are Fourier domain ones corresponding to Eqs.(
ce77
2.57).

We conclude stating that the longitudinal component of the vector potential (at least

in the Coulomb gauge) can be safely assumed to be zero (as in (
ae60
9.48)).

Finally, let us make one additional remark. Any gauge transformation for vector

potential in the Fourier domain is given by relation (
ae14a
9.11a), that is

~A(~k, t) -
gauge

~A ′(~k, t) = ~A(~k, t) + i~k F̃ (~k, t), (9.50) ae63

with arbitrary function F . The last term - transforming ~A(~k, t) into ~A ′(~k, t) is purely

longitudinal (parallel to the wave vector ~k). It follows that gauge transformation changes

only the longitudinal component of vector potential. It means that in any gauge the

transverse component

~A⊥(~k, t) -
gauge

~A⊥ ′(~k, t) = ~A⊥(~k, t), (9.51) ae64

so it is unchanged, hence the transverse part of vector potential ~A⊥ is gauge invariant.

Therefore, wave equation for ~A⊥(~r, t) (that is, Eq.(
ce77b
2.57b)) has the same for as the cor-

responding transverse equation which follows from (
ce42b
2.34b) in the Lorentz gauge. It will

have such form in any gauge due to gauge invariance of ~A⊥ either in normal space or in

the Fourier domain.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 10

Annihilation and creation operatorsac:ac

10.1 General properties

We introduce two nonhermitian operators which, by definition, satisfy the canonical com-

mutation relation:

[
â, â†

]
= 1. (10.1) x1ccom

By | z 〉 we denote a normalized eigenstate of the operator N̂ = â† â. We assume that such

states are orthogonal, since operator N̂ is hermitian. So we have

N̂ | z 〉 = â† â| z 〉 = z | z 〉, 〈 z | z′ 〉 = δzz′ . (10.2) x1est

x1le1 Lemma 10.1 Eigenvalue of the operator N̂ is real and nonnegative: z ∈ R+.

Proof. Since | z 〉 denotes the normalized eigenvector of N̂ , we have

z = z 〈 z | z 〉 = 〈 z | z | z 〉 = 〈 z | â† â | z 〉 =
( 〈 z | â† )

( â | z 〉 )

= ( â | z 〉 )† ( â | z 〉 ) = || â | z 〉 ||2. (10.3) x1lem1

So we see that z is equal to a norm of a certain vector, and as such is real and nonnegative.

x1le2 Lemma 10.2 The following commutation relations holdx1com
[
â† â, â

]
= −â, (10.4a) x1coma[

â† â, â†
]

= â†. (10.4b) x1comb

Proof. By simple calculation, we get from the canonical relation (
x1ccom
10.1):

[
â† â, â

]
= â† [ â, â ] +

[
â†, â

]
â = â† · 0 + (−1)â.[

â† â, â†
]

= â†
[
â, â†

]
+

[
â†, â†

]
â = â† + 0 · â, (10.5) x1lem2

which completes the proof.

x1le3 Lemma 10.3 The ket â | z 〉 is an eigenstate of the operator N̂ = â† â, and it belongs

to an eigenvalue (z − 1), that is

N̂ â | z 〉 = (z − 1) â | z 〉. (10.6) x1lem3
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Proof. If â | z 〉 6= 0, then we have

N̂ â | z 〉 = â† â â | z 〉. (10.7) x1lem3a

Due to commutation relation (
x1coma
10.4a) we can write â† â â = â â† â− â, and hence

N̂ â | z 〉 = â (â† â− 1) | z 〉 = â z | z 〉 − â | z 〉 = (z − 1) â | z 〉. (10.8) x1lem3b

This shows that vector â | z 〉 is an eigenstate of N̂ with an eigenvalue (z − 1).

x1le4 Lemma 10.4 The ket â† | z 〉 is an eigenstate of the operator N̂ = â† â, and it belongs

to an eigenvalue (z + 1), that is

N̂ â† | z 〉 = (z + 1) â | z 〉. (10.9) x1lem4

Proof. The proof is analogous to that of the previous lemma, only we use commutation

relation (
x1comb
10.4b) instead of (

x1coma
10.4a).

x1le5 Lemma 10.5 Norms of the vectors â | z 〉 and â† | z 〉 are given as

|| â | z 〉 || =
√

z , || â† | z 〉 || =
√

z + 1 . (10.10) x1lem5

Proof. The first norm follows automatically from the proof of the first lemma, see

relation (
x1lem1
10.3). The second relation is proved similarly. We have

||â† | z 〉||2 =
(

â† | z 〉)† ( â† | z 〉) = 〈 z | â â† | z 〉. (10.11) x1lem5a

Using the canonical commutation relation we have â â† = â† â + 1, thus, we get

||â† | z 〉||2 = 〈 z | â† â+1 | z 〉 = 〈 z | â† â | z 〉+〈 z | z 〉 = || â | z 〉||2+1 = z+1, (10.12) x1lem5b

since vector | z 〉 is normalized and || â | z 〉 ||2 = z. Second relation (
x1lem5
10.10) follows imme-

diately.

x1le6 Lemma 10.6 If a vector ân | z 〉 6= 0, then it is an eigenvector of N̂ belonging to the

eigenvalue (z − n):

N̂ ân | z 〉 = (z − n) ân | z 〉 (10.13) x1lem6

Proof. The proof follows by mathematical induction. The case n = 1 was already shown

in (
x1lem3
10.6). In the proof essential role is played by the relation N̂ â = N̂ â− â, which follows

from (
x1coma
10.4a). We easily have

N̂
[
ân+1 | z 〉] = N̂ â [ân | z 〉] = (âN̂ − â) [ân | z 〉] = âN̂ [ân | z 〉]− ân+1 | z 〉 (10.14) x1lem6a

By induction assumption, we further get

N̂
[
ân+1 | z 〉] = â(z − n)ân | z 〉 − ân+1 | z 〉 = (z − n− 1)ân+1 | z 〉. (10.15) x1lem6b

and the lemma follows.
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x1le7 Lemma 10.7 There exists such an integer n, that

ân | z 〉 6= 0, but ân+1 | z 〉 = 0, (10.16) x1lem7

Proof. From the previous lemma it follows that ân| z 〉 is an eigenvector of the operator

N̂ and it belongs to the eigenvalue (z−n). Lemma (
x1le1
10.1) states that eigenvalues of N̂ are

nonnegative. For n sufficiently large we would have (z − n) < 0. This contradicts lemma

(
x1le1
10.1). Hence, there must exist an integer n such that relations (

x1lem7
10.16) are satisfied. This

completes the proof.

x1th1 Theorem 10.1 The eigenvalues z of the operator N̂ defined in Eq.(
x1est
10.2) are nonnegative

integers. Moreover, there exists such a normalized eigenvector | 0 〉 of N̂ that

â | 0 〉 = 0 (10.17) x1t11

which will be called the vacuum state.

Proof. Since a vector ân| z 〉 is an eigenvector of N̂ belonging to the eigenvalue z − n,

we can normalize it and write it as

| z − n 〉 =
ân | z 〉
||ân | z 〉|| . (10.18) x1t12

Let the integer n be such, that Eq.(
x1lem7
10.16) is satisfied. This means that

â | z − n 〉 = 0, (10.19) x1t13

and the norm of the obtained vector is

|| â | z − n 〉 || = 0. (10.20) x1t14

Now, from the first of relations (
x1lem5
10.10) it follows that

|| â | z − n 〉 || =
√

z − n = 0. (10.21) x1t15

This implies that z = n. Hence the eigenvalues z of the operator N̂ = â† â are nonnegative

integers. We also conclude that there exists a normalized vector | 0 〉 for which eq.(
x1lem7
10.16)

is satisfied for n = 0.

x1th2 Theorem 10.2 According to the previous theorem, we denote by |n 〉 the normalized

eigenstate of the operator N̂ belonging to the eigenvalue n – nonnegative integer. Then,

the vectors

|n− 1 〉 =
â |n 〉√

n
, and |n + 1 〉 =

â† |n 〉√
n + 1

, (10.22) x1t21

are the eigenstates of N̂ . These relations enable us to construct all the eigenstates of

operator N̂ , provided one of the states |n 〉 is given.
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Proof. In lemma (
x1le3
10.3) we have shown that the vector â |n 〉 is an eigenstate of N̂

belonging to the eigenvalue (n− 1). This means (according to the introduced notation),

that â |n 〉 is proportional to the vector |n − 1 〉. It remains to find the coefficient of

proportionality. From lemma (
x1le5
10.5) we have the norm || â |n 〉 || = √

n . Thus the vector

â |n 〉
|| â |n 〉 || =

â |n 〉√
n

, (10.23) x1t22

is a normalized eigenvector of N̂ with eigenvalue (n − 1). Hence it is equal to |n − 1 〉.
So the first part of the theorem is proved. The second part can be shown in the same

manner.
Let us note that relations (

x1t21
10.22) can be rewritten asx1def

â |n 〉 =
√

n |n− 1 〉 (10.24a) x1defa

â† |n 〉 =
√

n + 1 |n + 1 〉 (10.24b) x1defb

x1le8 Lemma 10.8 The eigenstate |n 〉 of the operator N̂ = â† â can be constructed as

|n 〉 =
1√
n!

(
â†

)n | 0 〉, (10.25) x1lem8

if the vacuum state | 0 〉 defined in eq.(
x1t11
10.17) is given.

Proof. The proof follows by induction from relation (
x1defb
10.24b). For n = 1 we have

| 1 〉 =
1√
1!

â† | 0 〉 =
1√
1!

√
1 | 1 〉 = | 1 〉, (10.26) x1lem8a

as it should be. Now, we have

|n + 1 〉 =
1√

(n + 1)!
(â†)n+1 | 0 〉 =

1√
n + 1

1√
n!

â† (â†)n| 0 〉

=
â†√

n + 1
|n 〉 =

√
n + 1

|n + 1 〉√
n + 1

= |n + 1 〉. (10.27) x1lem8b

Going from the first to the second line we have employed the principle of mathematical

induction, and thus the proof is completed.
This lemma clearly indicates the manner of construction of the eigenstates of the

operator N̂ = â† â. We must find the ground state – the vacuum one | 0 〉 which should

be unique. If this is not the case, we must find a complete set of commuting observables

and classify the vacuum states with the aid of additional quantum numbers. Normalizing

the vacuum state we apply the creation operators to construct the eigenstates |n 〉.
x1le9 Lemma 10.9 The eigenstates |n 〉 specified in (

x1lem8
10.25) are orthonormal, that is

〈n |m 〉 = δnm. (10.28) x1lem9

Orthogonality follows from the fact that |n 〉 are eigenstates of the hermitian operator

N̂ = â† â, so it is sufficient to prove that the are normalized.
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Proof. Without loss of generality we can assume n ≥ m. Then from (
x1lem8
10.25) we have

〈n |m 〉 =
1√

n! m!
〈 0 | ân (â†)m | 0 〉. (10.29) x1lem9a

But

â (â†)m − (â†)m â =
[
â, (â†)m

]
= â†

[
â, (â†)m−1

]
+

[
â, â†

]
(â†)m−1

= â†
[
â, (â†)m−1

]
+ (â†)m−1. (10.30) x1lem9b

Continuing such a reasoning we finally obtain

â (â†)m − (â†)m â = m (â†)m−1, (10.31) x1lem9c

which can easily be verified by mathematical induction. Therefore, we obtain

〈n |m 〉 =
1√

n! m!
〈 0 | ân−1

[
m(â†)m−1 + (â†)m â

] | 0 〉

=
1√

n! m!
m 〈 0 | ân−1 (â†)m−1 | 0 〉, (10.32) x1lem9d

because â | 0 〉 = 0. Repeating such a procedure m times we will arrive at the relation

〈n |m 〉 =

√
m!

n!
〈 0 | ân−m | 0 〉. (10.33) x1lem9e

For n > m we have ân−m | 0 〉 = 0, which follows from the definition of the vacuum state.

When n = m we get 〈n |m 〉 = 〈 0 | 0 〉 = 1. So the states |n 〉 are orthogonal (which is

not unexpected) and normalized, as it should be.

10.2 Annihilation and creation operators – summary

Annihilation and creation operators (non-hermitian) are specified by the commutation

relation

[
â, â†

]
= 1. (10.34) x1scom

The number states |n 〉 are the eigenstates of the number operator N̂ = â† â, that is

N̂ |n 〉 = â† â|n 〉 = n |n 〉, with n = 0, 1, 2, . . . . . . (10.35) x1sest

The state | 0 〉 is called a vacuum state and it satisfies the condition

â | 0 〉 = 0. (10.36) x1svac

Number states |n 〉 are orthonormal (eigenstates of the Hermitian operator N̂)

〈m |n 〉 = δmn. (10.37) x1snorm
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Annihilation and creation are sometimes called ladder operators. This follows from the

properties of lowering and raising the number of the statex1sac

â |n 〉 =
√

n |n− 1 〉, (10.38a) x1saca

â† |n 〉 =
√

n + 1 |n + 1 〉. (10.38b) x1sacb

Let us note that these relations are fully consistent with the previous ones. Relation

(
x1saca
10.38a) agrees with the definition (

x1svac
10.36) of the vacuum state. Moreover, we have

â† â |n 〉 = â†
√

n |n− 1 〉 =
√

n â† |n− 1 〉
=
√

n
√

(n− 1) + 1 |n 〉 = n |n 〉, (10.39) x1scon

as it should be, when compared to definition (
x1sest
10.35). Matrix elements of the annihila-

tion and creation operators follow immediately from Eqs.(
x1sac
10.38)and from orthonormality

requirement. We havex1se

〈m | â |n 〉 =
√

n 〈m |n− 1 〉 =
√

n δm,n−1, (10.40a) x1sea

〈m | â† |n 〉 =
√

n + 1 〈m |n + 1 〉 =
√

n + 1 δm,n+1. (10.40b) x1seb

Finally, practical construction goes along the following way

• Construct annihilation and creation operators â and â†, check their commutation

relation (to reproduce the canonical one (
x1scom
10.34)).

• Find (construct) the vacuum state | 0 〉.
• Construct the number states by using the relation

|n 〉 =
(â†)n

√
n!

| 0 〉. (10.41) x1snn

10.3 Application to harmonic oscillator

10.3.1 Annihilation and creation operators for harmonic oscil-
lator

Hamiltonian of the quantum–mechanical harmonic oscillator is of the form

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (10.42) x1hosc

and the momentum and position operators satisfy the canonical commutation relation

[ x̂, p̂ ] = i~. (10.43) x1hocom

It is an easy matter to check that two operators
√

mω

~
x̂ and

p̂√
mω~

, (10.44) x1xpops

are dimensionless.
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x1th3 Theorem 10.3 Two dimensionless, nonhermitian operators â and â† defined asx1b

b̂ =
1√
2

( √
mω

~
x̂ +

ip̂√
mω~

)
=

1√
2mω~

( mω x̂ + ip̂ ) , (10.45a) x1ba

b̂† =
1√
2

( √
mω

~
x̂ − ip̂√

mω~

)
=

1√
2mω~

( mω x̂ − ip̂ ) , (10.45b) x1bb

satisfy the commutation relation[
b̂, b̂†

]
= 1. (10.46) x1aac

Hence we may identify: b̂ – annihilation, and b̂† – creation operators.

Proof. The facts that these operators are nonhermitian and dimensionless are evident.

We show the commutation relation.[
b̂, b̂†

]
=

1

2mω~
[ mω x̂ + ip̂, mω x̂ − ip̂ ]

=
1

2mω~
{

m2ω2 [x̂, x̂] − imω [x̂, p̂] + imω [p̂, x̂] + [p̂, p̂]
}

=
imω

2mω~
{ − [x̂, p̂] + [p̂, x̂] } =

i

2~
{ − i~ + (−i~) } = 1. (10.47)

Since operators b̂ and b̂† satisfy commutation relation typical for annihilation and creation

operators, they posses all the necessary properties and the identification made in the

theorem is fully justified and correct.
Relations (

x1b
10.45) can easily be inverted, and we can express the position and momen-

tum operators via annihilation and creation onesx1xpac

x̂ =

√
~

2mω

(
b̂ + b̂†

)
, (10.48a) x1xpaca

p̂ = −i

√
mω~

2

(
b̂ − b̂†

)
, (10.48b) x1xpacb

Having expressions (
x1xpac
10.48) we can now express the Hamiltonian of the oscillator in terms

of the annihilation and creation operators. We obtain

Ĥ =
1

2m

[
−i

√
mω~

2

(
b̂ − b̂†

) ]2

+
1

2
mω2

[ √
~

2mω

(
b̂ + b̂†

)]2

= − ~ω
4

(
b̂ − b̂†

)2

+
~ω
4

(
b̂ + b̂†

)2

= − ~ω
4

(
b̂b̂− b̂b̂† − b̂†b̂ + b̂†b̂†

)
+

~ω
4

(
b̂b̂ + b̂b̂† + b̂†b̂ + b̂†b̂†

)

=
~ω
2

(
b̂ b̂† + b̂† b̂

)
(10.49) x1hac1

Using the commutation relation (
x1aac
10.46) we have b̂ b̂† = 1 + b̂†b̂, thus from the above we

finally get

Ĥ =
~ω
2

(
2 b̂† b̂ + 1

)
= ~ω

(
b̂† b̂ +

1

2

)
= ~ω

(
N̂ +

1

2

)
(10.50) x1hac

where, as previously, we introduced the number operator N̂ = b̂† b̂.
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x1th4 Theorem 10.4 Energy eigenstates of the quantum-mechanical harmonic oscillator are

the number states |n 〉 – the eigenstates of the number operator N̂ = b̂† b̂. The energy

eigenvalues are

En = ~ω
(

n +
1

2

)
. (10.51) x1enei

Proof. The proof follows immediately from relation (
x1hac
10.50) and from the properties of

the number operator, as discussed in the previous section.

10.3.2 Construction of the vacuum state

Construction of the vacuum state is the first step in building the energy eigenstates of the

harmonic oscillator. We will do this in the position representation, that is we are looking

for the wave function ϕ0(x) = 〈x | 0 〉. The vacuum state is defined by eq.(
x1t11
10.17), so using

the annihilation operator b̂ as given in (
x1ba
10.45a), we get

0 = b̂ | 0 〉 =
1√

2mω~
( mω x̂ + ip̂ ) | 0 〉. (10.52) x1vac1

In position representation, this equation reads

0 = 〈x | 1√
2mω~

( mω x̂ + ip̂ ) | 0 〉

=
1√

2mω~

[
mω x + i

(
−i~

d

dx

) ]
ϕ0(x). (10.53) x1vac2

The latter relation is a simple differential equation of the first order

0 =

(
λx +

d

dx

)
ϕ0(x), with λ =

mω

~
. (10.54) x1vac3

Solution to this equation is very simple. It is

ϕ0(x) = Ao exp

(
−λx2

2

)
, (10.55) x1vac4

where Ao is a normalization constant. Computation of this constant yields

1 = |Ao |2
∫ ∞

−∞
dx exp

(
−λx2

2

)
= |Ao |2

√
π

λ
. (10.56) x1vac5

Choosing the arbitrary phase of the constant Ao to be zero we obtain the wave function

of the ground state of the oscillator, or in other words, the vacuum state in the position

representation

ϕ0(x) =

(
λ

π

)1/4

exp

(
−λx2

2

)
, (10.57) x1vac6

which is properly normalized.
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10.3.3 Construction of the number states |n 〉
Having constructed the vacuum state in the position representation, we proceed to con-

struct further states. To do so, we use relation (
x1snn
10.41) in position representation

ϕn(x) = 〈x |n 〉 =
1√
n!

〈x | (b̂†)n | 0 〉. (10.58) x1n1

In order to deal with this expression let us consider a bra (dual form) 〈x | b̂†. Using

Eq.(
x1bb
10.45b) we get

〈x | b̂† = 〈x | 1√
2mω~

( mω~ x̂ − ip̂ ) =

√
mω

2~
〈x |

(
x̂ − i

mω
p̂

)

=

√
λ

2

[(
x̂ +

i

mω
p̂

)
|x 〉

]†
=

√
λ

2

[(
x +

~
mω

d

dx

)
|x 〉

]†
.

Since the differential operator d/dx is antihermitian, we get

〈x | b̂† =

√
λ

2

(
x − 1

λ

d

dx

)
〈x |. (10.59) x1n3

Using this relation n times in (
x1n1
10.58), we get

ϕn(x) =

(
λ

2

)n/2
1√
n!

(
x − 1

λ

d

dx

)n

〈x | 0 〉. (10.60) x1n4

Inserting the wave function (
x1vac6
10.57), we obtain the differential relation specifying the n-th

eigenstate of the harmonic oscillator

ϕn(x) =

(
λ

π

)1/4
√

1

2n n!
λn/2

(
x − 1

λ

d

dx

)n

exp

(
−λx2

2

)
. (10.61) x1n5

This is a functional equation similar to the Rodrigues formula for Hermite polynomials.

This is clarified by the following theorem

Theorem 10.5 Hermite polynomials can be expressed as follows

Hn(y) = exp

(
y2

2

)(
y − d

dy

)n

exp

(
− y2

2

)
. (10.62) x1Hpol

We accept this theorem without proof (which is not difficult, when one uses the Rodrigues

formula for Hermite polynomials). Changing the variable y = x
√

λ, we can easily show

that eq.(
x1n5
10.61 leads to the expression

ϕn(x) =

(
λ

π

)1/4
√

1

2n n!
exp

(
−λx2

2

)
Hn(x

√
λ), (10.63) x1n6

which, together with notation introduced in (
x1vac3
10.54) exactly reproduces the standard wave

functions of the n-th energy eigenstate of the quantum-mechanical harmonic oscillator.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 11

Density operatorac:do

11.1 Introductory remarks

According to the principles of quantum mechanics full information about the physical

system is contained in the time-dependent state |ψ(t) 〉 which is a normalized vector from

certain Hilbert space. To each physical quantity there corresponds a Hermitian operator

Â. The expectation value of the observable A is then given in Schrödinger picture as

〈A 〉t = 〈ψ(t) |A |ψ(t) 〉 (11.1) do1

This statement can be checked only by performing the measurement of observable A on

the ensemble of systems, each prepared in the quantum-mechanical state |ψ 〉). In case of

the measurements done on one system only we cannot predict the result with certainty.

We note that the average in (
do1
11.1) depends parametrically on time, so it evolves in time.

Let us assume that the considered system possesses a Hamiltonian, for which we can

find the eigenstates and eigenvalues (energies)

H |ϕn 〉 = En |ϕn 〉, (11.2) do2

where the states |ϕn 〉 are orthonormal and complete, that is

〈ϕm |ϕn 〉 = δmn,
∑

n

|ϕn 〉〈ϕn | = 1. (11.3) do3

Then, any state of our system can be expanded in the basis provided by the eigenstates

of the Hamiltonian, and we have

|ψ(t) 〉 =
∑

n

Cn(t) |ϕn 〉, (11.4) do4

with time-dependent expansion coefficients. The norm conservation results in the require-

ment
∑

n

|Cn(t) |2 = 1, for any instant t. (11.5) do5

Let us now compute the expectation value of the observable A. We insert expansions

(
do4
11.4) into Eq.(

do1
11.1) and by standard calculation we get

〈A 〉t =
∑
m,n

C∗
n(t) Cm(t) Anm, (11.6) do6
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where we denoted the matrix element Anm = 〈ϕn |A |ϕm 〉. We see that the average

value 〈A 〉t is bilinear in eigenstates |ϕn 〉. It is a very important feature of quantum

mechanics which, among other things, accounts for interference phenomena, characteristic

for quantum description.
In many practical experiments we do not deal with single entities as atoms. Usually

we have some ensemble of atoms and molecules. Then we understand the necessity of

the description in the language of statistical physics. We measure some average charac-

teristics of the ensemble of atoms, or molecules. In such a case we do not have exact

information about quantum state of each atom within the ensemble. This leads to the

concept of density operator. We will also discuss elsewhere that a system interacting with

the surroundings (an open system) must be described with the aid of density operator.

Hence we proceed to introduce this concept.

11.2 The basic concept of density operator

We will try to introduce the idea of the density operator in a simple and intuitive manner.

To this end, let us consider a system consisting of N atoms (subsystems) numbered by an

index i. Let us assume that the i-th atom is in the quantum state |ψ(i) 〉. The quantum-

mechanical average of the observable A for this particle is 〈A 〉 = 〈ψ(i) |A |ψ(i) 〉. The

statistical average over the ensemble of the particles is given as

〈A 〉 =
1

N

N∑
i=1

〈ψ(i) |A |ψ(i) 〉, (11.7) do7

where we have two kinds of averaging: the quantum-mechanical expressed by the matrix

element, and statistical – over the ensemble. Constructing the second one we assumed

that atoms are equivalent, each contributes in the same manner to the total average.

Hence each atom is accounted for with the weight factor 1/N . Clearly, each atomic state

|ψ(i) 〉 can be expanded as in (
do4
11.4), that is we have

|ψ(i) 〉 =
∑

n

C(i)
n |ϕn 〉, C(i)

n = 〈ϕn |ψ(i) 〉
∑

n

∣∣C(i)
n

∣∣2 = 1, (11.8) do8

Similarly as we obtained (
do6
11.6), we now expand states |ψ(i) 〉 as above, and compute the

average defined in (
do7
11.7). Thus we get

〈A 〉 =
∑
m,n

(
1

N

N∑
i=1

C(i) ∗
n C(i)

m

)
Anm, (11.9) do9

where we dropped the time argument. The obtained expression involving two kinds of

averaging can be rewritten as follows. We define a new matrix (note the change sequence

of factors)

ρmn =
1

N

N∑
i=1

C(i)
m C(i)∗

n = C
(i)
m C

(i)∗
n . (11.10) do10
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We note that the statistical information about the considered ensemble is reflected by

this matrix. It is worth noting, that due to the conditions imposed upon coefficients C
(i)
n

imply that

Tr { ρ } =
∑

n

ρnn =
1

N

N∑
i=1

∑
n

C(i)
n C(i)∗

n =
1

N

N∑
i=1

1 = 1. (11.11) do11

This important result is called normalization of the density operator.
Relation (

do9
11.9) can be reexpressed with the aid of the introduced matrix

〈A 〉 =
∑
m,n

ρmn Anm =
∑
m

( ρA )mm = Tr { ρA } , (11.12) do12

where we use the rules of matrix multiplication. Evidently, the average value of the unit

operator is equal 1. Eq.(
do12
11.12) for A = 1 gives

〈 1 〉 =
∑
m,n

ρmn 〈ϕn | 1 |ϕm 〉 =
∑
m,n

ρmn δnm = Tr { ρ } = 1 (11.13) do13

as expected due to the normalization of the density operator.
The matrix ρmn is expressed by the expansion coefficients C

(i)
n obtained in the energy

representation (see (
do8
11.8)). Nevertheless, relation (

do12
11.12) indicates, that the average of

an observable A is computed via the trace. We know that the trace of any operator

is independent of the particular basis chosen in the Hilbert space. This suggest that

operator ρ has more general sense, its representation by (
do10
11.10) is only one of the possible

expansions.
Defining the density operator in terms of the state of the system (independently of

the particular basis in the Hilbert space) we can write

ρ =
1

N

N∑
i=1

|ψ(i) 〉〈ψ(i) |. (11.14) do14

We see that statistical information is still present in this expression. We have to show

that this definition is equivalent to (
do10
11.10). Indeed, in energy representation we have

〈ϕm | ρ |ϕn 〉 =
1

N

N∑
i=1

〈ϕm |ψ(i) 〉〈ψ(i) |ϕn 〉 =
1

N

N∑
i=1

C(i)
m C(i) ∗

n , (11.15) do15

which clearly reproduces the previous definition (
do10
11.10).

We adopt (
do14
11.14) as the intuitive definition of the density operator. It includes the

statistical information (in this case equivalence reflected by the factor 1/N) about the

subsystems constituting the whole one.

11.3 Some generalizations

We now proceed to generalize the introduced concept of the density operator. There are

no restrictions on states |ψ(i) 〉. In general, they can be nonorthogonal (although it is
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inconvenient), some of them may be the same (some atoms may be in the same quantum

states), etc. Therefore, we generalize the definition (
do14
11.14) as follows

ρ =
∑

α

|ψ(α) 〉 P (α) 〈ψ(α) |. (11.16) do16

In this case we do not sum over the atoms in the ensemble, but over the multiplicity of

states which are accessible to the constituents of the ensemble. We require that

∑
α

P (α) = 1, (11.17) do17

which is necessary to preserve the statistical interpretation of P (α) as the probability

of encountering the state |ψ(α) 〉. In the following we will examine and discuss such an

interpretation.

11.3.1 Projection operators

We write a projection operator on (normalized) state |χ 〉 as

Pχ = |χ 〉〈χ |, (11.18) do18

because Pχ|ψ 〉 = |χ 〉〈χ |ψ 〉 which is a component of |ψ 〉 in the direction of |χ 〉. It is

straightforward to show that projection operator is idempotent, that is

P2
χ = |χ 〉〈χ |χ 〉〈χ | = |χ 〉〈χ | = Pχ. (11.19) do19

Expectation value of the projector Pχ when the system is described by the state |ψ 〉
is

〈 Pχ 〉 = 〈ψ | Pχ |ψ 〉 = 〈ψ |χ 〉〈χ |ψ 〉 = 〈χ |ψ 〉∗〈χ |ψ 〉 = |〈χ |ψ 〉|2. (11.20) do20

So it is the probability of finding the system in state |χ 〉 (while the system is prepared

in state |ψ 〉). We can say that it is the probability that state |χ 〉 is populated.

11.3.2 Application to density operator

Let us now consider the system described by the density operator ρ. According to (
do12
11.12)

The expectation value of the observable A is given by the trace over the product ρA.

We recall that the trace is invariant with respect to the choice of the basis in which it is

computed. Thus, it is unimportant which basis we employ. We will use the energy basis

defined in (
do2
11.2). so, let us compute the expectation value of the projector π̂

〈 Pχ 〉 = Tr {Pχρ} =
∑

n

〈ϕn |χ 〉〈χ | ρ |ϕn 〉 =
∑

n

〈χ | ρ |ϕn 〉〈ϕn |χ 〉

= 〈χ | ρ |χ 〉, (11.21)

where we have used the completeness of states |ϕn 〉. Eq. (
do21
11.21) tells us that the

probability of finding the system, which is described by the density operator ρ, in state

|χ 〉 is given just by the diagonal element of the density operator in the given state.
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Now we use the definition (
do16
11.16) to find the probability of finding the system in

state |ψ(β) 〉 – one of the states defining the density operator. Due to the discussed

interpretation, we can use (
do21
11.21) with |χ 〉 replaced by |ψ(β) 〉. Then, we obtain

〈ψ(β) | ρ |ψ(β) 〉 =
∑

α

〈ψ(β) |ψ(α) 〉 P (α) 〈ψ(α) |ψ(β) 〉

=
∑

α

P (α)
∣∣ 〈ψ(β) |ψ(α) 〉

∣∣2 . (11.22)

If states |ψ(α) 〉 are not orthonormal, there is no simple relation between populations

(probabilities) 〈ψ(β) | ρ |ψ(β) 〉 and statistical weights P (α). On the other hand, when

states |ψ(α) 〉 are orthonormal, then eq.(
do22
11.22) yields

〈ψ(β) | ρ |ψ(β) 〉 =
∑

α

δβα P (α) = P (β). (11.23) do23

We conclude, that P (α) can be interpreted as the probability of finding the system in

state |ψ(α) 〉 if these states (defining the density operator) are orthonormal. Frequently,

P (α) is called the population of state |ψ(α) 〉. If states |ψ(α) 〉 are not orthogonal, then

P (α) is the function (see (
do22
11.22)) which tells us with what statistical weight the state

|ψ(α) 〉 is represented in the ensemble specified by the density operator.

11.4 Properties of the density operator

The fundamental reason for the introduction of density operator is that when a system

is not ideally prepared, we may describe its state as a statistical distribution over state

vectors. Then, we can describe the state by specifying the probabilities wi that the system

is in the state vector | i 〉. We write

ρ =
∑

i

| i 〉 wi 〈 i |. (11.24) do24

By definition the density operator is Hermitian, and as such can be diagonalized, thus

it can be written as above. The states | i 〉 are then orthonormal and form a basis.

Moreover the physical sense of the coefficient wi follows from the given discussion – it is

the population of state | i 〉, or in other words, the probability of finding the system in

state | i 〉. We stress, that in the present context we do not specify the meaning of the

states | i 〉. They may refer to very different physical situations.
Having defined the density operator, we recall that the expectation value of an ob-

servable A is simply the classical average of the expectation values corresponding to each

of the state vectors. So, the averaging procedure leads to the expectation value of the

observable A

〈A 〉 = Tr
{

Âρ
}

=
∑

j

〈 j | Âρ | j 〉 =
∑
i,j

〈 j | i 〉wi〈 i | Â | j 〉

=
∑
i,j

δijwi〈 i | Â | j 〉 =
∑

i

wi〈 i | Â | i 〉. (11.25)
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The trace is invariant with respect to the choice of the basis, so we have taken the most

convenient one to compute it
Since the density operator is Hermitian, we know that wi are real. We want to make

sure that they are nonnegative. To do so, let us consider the projector π̂k = | k 〉〈 k | where

state | k 〉 belongs to the set forming the density operator as in (
do24
11.24). Then, we have

0 ≥ 〈 Pk 〉 = Tr {Pk ρ } =
∑

j

〈 j | Pk ρ | j 〉 =
∑

j

〈 j | k 〉〈 k | ρ | j 〉

=
∑
j,i

〈 j | k 〉〈 k | i 〉wi 〈 i | j 〉 =
∑
j,i

δjk δki wi δij =
∑

i

δik wi = wk.(11.26)

So coefficient wi are indeed nonnegative. We already know that the density operator must

be normalized, in the sense that

Tr { ρ } =
∑

i

wi = 1. (11.27) do27

Since we have the conditions

wi ≥ 0,
∑

i

wi = 1, (11.28) do28

we conclude that the coefficients wi can indeed be interpreted as probabilities of finding

the system in states | i 〉.
In many practically interesting cases we do not know exactly the state of the system.

We are unable to give the full wave vector |ψ(t) 〉. The only thing we can do, is to give

the probability wi, that our system is in the state | i 〉. Then we describe the system

with the density operator. This is connected with complicated phase relationships which

are usually unknown. Hence we have to deal with incoherent mixture of states | i 〉 each

of which appears with certain statistical weight. This is the reason why computing the

expectation value of the observable A we first have to find the quantum averages 〈 i |A | i 〉
and then average over the distribution wi. This clearly leads to (

do25
11.25). Such a incoherent

mixture of states is called a mixed state in contrast to the situation when the state vector

|ψ(t) 〉 carries all information. The latter situation – described by a state vector is called

a pure state.

Lemma 11.1 Assume that the set of numbers {wi } satisfies the conditions wi ≥ 0, and∑
i wi = 1. Then, we havedo29

1.
∑

i

w2
i ≤ 1 (11.29a)

2.
∑

i

w2
i = 1 if , and only if wi = δik for certain index k. (11.29b)

Proof. From our assumption it follows that

1 =
(∑

i

wi

)(∑
j

wj

)
=

∑
i,j

wi wj =
∑

i

w2
i +

∑

i6=j

wi wj. (11.30) do30

The second sum contains products of nonnegative numbers, so it is nonnegative. The first

sum must be smaller or equal one. (
do29a
11.29a) is thus proved.
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Thesis (
do29b
11.29b) means that the second sum in (

do30
11.30) is zero. If even two numbers,

say wi and wj are nonzero, the second sum is greater than zero. The second sum can be

zero if, and only if, just only one of the numbers wk is nonzero. Then due to imposed

conditions, this single nonzero number must be equal to 1. This shows the second part of

the lemma.
This lemma is useful when proving the following fact. If the system is in the mixed

state, then at least two of the probabilities wi are nonzero. Then we have

Tr { ρ2 } =
∑

k

〈 k | ρ2 | k 〉 =
∑

i,j,k

〈 k | i 〉wi 〈 i | j 〉wj 〈 j | k 〉

=
∑

i,j,k

δik δij δjk wi wj =
∑

j,k

δkjwk wj =
∑

k

w2
k < 1, (11.31)

as it follows from the lemma for at least two wi being nonzero.
When the system is in the pure state, then we can say that it is in state | j 〉 with

probability wi = δij. Lemma ensures that in such a case we have Tr { ρ2 } = 1. We

conclude that the trace of the square of the density operator gives the criterion whether

the system is in the mixed or pure state.

11.5 Equation of motion for density operator

Let some physical system be described by the density operator ρ. We know that the expec-

tation value of an observable A may, in general, be time-dependent. In the Schrödinger

picture the operators are time-independent, hence the time dependence of the average

must be reflected in the time dependence of the density operator, so that we have

〈A 〉t = Tr { ρ(t) A }. (11.32) do32

Thus, in order to be able to make physical predictions we need an equation of motion

for the density operator. The argumentation leading to such an equation can be as

follows. The physical contents of the Schrödinger picture must be the same as that of the

Heisenberg picture. The density operator is defined as the mixture of the projection on

a certain set of states. In the Heisenberg picture the states are time independent, hence

we may expect that in this picture the density operator is defined by the initial state of

the system. The time dependence is shifted to the operators and the average (
do32
11.32) can

be compared to the same average but computed in the Heisenberg picture

〈A 〉t = Tr { ρ(t) AS } = 〈AH(t) 〉 = Tr { ρ(t0) AH(t) }. (11.33) do33

We know that in the Heisenberg picture the operators evolve as

AH(t) = U †(t, t0) AS U(t, t0), (11.34) do34

where U(t, t0) is the evolution operator

U(t, t0) = exp

(
− i

~
H (t− t0)

)
(11.35) do35
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with H being the Hamiltonian of the considered system. In (
do35
11.35) the hamiltonian is

taken to be time-independent. There is, however, no problem to extend the theory to

case with H = H(t). Introducing (
do35
11.35) into (

do30
11.30) we get

〈A 〉t = Tr { ρ(t) AS } = Tr { ρ(t0) U †(t, t0) AS U(t, t0) } (11.36) do36

Invoking the cyclic property of the trace we immediately get

Tr { ρ(t) AS } = Tr { U(t, t0) ρ(t0) U †(t, t0) AS }, (11.37) do37

and thus we can write

ρ(t) = U(t, t0) ρ(t0) U †(t, t0). (11.38) do38

This result gives the sought time dependence of the density operator. By simple differen-

tiation we can obtain the equation of motion for density operator

i~
∂

∂t
ρ(t) =

(
i~

∂

∂t
U(t, t0)

)
ρ(t0) U †(t, t0)

− U(t, t0) ρ(t0)

(
−i~

∂

∂t
U †(t, t0)

)
. (11.39)

The evolution operator satisfies Schrödinger equation, hence (
do39
11.39) is equivalent to

i~
∂

∂t
ρ(t) = H U(t, t0) ρ(t0) U †(t, t0) − U(t, t0) ρ(t0) H U †(t, t0)

= H ρ(t) − ρ(t) H, (11.40)

Since the hamiltonian commutes with evolution operator and where in the last step we

have used eq.(
do38
11.38) for time dependent density operator. The obtained equation of

motion (called von Neumann equation) for the density operator is, thus, of the form

i~
∂

∂t
ρ = [ H, ρ ] (11.41) do41

Von Neumann equation for the density operator (mixed state) is the equivalent of the

Schrödinger equation for the state vector (pure state). It should be stressed that von

Neumann equation correspond to the Schrödinger picture where the observables are time-

independent. In the Heisenberg picture we have (
do33
11.33) where the density operator is

specified by initial conditions and is time-independent.
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11.6 Density operator for open system

The formalism of the density operator is especially useful for description of the open

system. By an open system we understand a system consisting of two parts. The first

part is labelled by A and the observations (measurements) we make, concern only this

part of the total system. The second part, labelled by B, is the surrounding which may

exchange energy with the subsystem A. Thus, the subsystem B is a heat reservoir, such as

frequently discussed in the context of statistical mechanics. System A may, for example,

corresponds to a vapor cell with some gas, while B is the surroundings which may exchange

the heat with the gas (across the cell walls). Another example is an atom immersed in

the radiation field.
The heat bath B is considered to be much larger than the system of interest A. That

is, the number of degrees of freedom of the bath is much larger. In many cases it is

possible to assume that the bath is always in thermal equilibrium. Here, we discuss only

the main features of reservoir. In practical applications one usually needs to specify the

properties of system B in more detail.
In general, the state of the joint system A+B is described by a density operator ρAB.

Let us, however, assume that the situation is simpler and that the Joint system is in a

pure state, given by a vector |Ψ 〉 This state can always be expanded on an orthonormal

basis of states {| ξn 〉} of B
|Ψ 〉 =

∑
n

Cn |ψn 〉 ⊗ | ξn 〉, (11.42) do42

where the |ψn 〉 are normalized (but not necessarily orthogonal) states of subsystem A.

The coefficients Cn are the probability amplitudes that the bath B is in its basis state | ξn 〉,
which correlates with the normalized state |ψn 〉 of the subsystem S. The normalization

of the joint state |Ψ 〉 is as follows

1 = 〈Ψ |Ψ 〉 =
∑
m,n

(
〈ψm | ⊗ 〈ψm |C∗

m

)(
Cn |ψn 〉 ⊗ | ξn 〉

)

=
∑
m

∑
n

C∗
m Cn 〈 ξm | ξn 〉 〈ψm |ψn 〉 =

∑
m

∑
n

C∗
m Cn δmn 〈ψm |ψn 〉

=
∑
m

|Cm |2 〈ψm |ψm 〉 =
∑
m

|Cm |2 . (11.43)

Performing this computation we note that the states of the bath, that is states | ξn 〉 and

the states |ψn 〉 of subsystem S are independent what is indicated by a tensor product.

Hence, we take separate scalar products, corresponding to two different Hilbert spaces.

We again stress, that states |ψn 〉 of A are only normalized, no assumption is made on

their orthogonality. Finally, the result (
do43
11.43) shows that interpretation of coefficients Cn

as probability amplitudes is indeed correct.
Let us now consider a measurement of an observable A⊗1̂B performed on subsystemA

only. By such a measurement we understand that the operator A operates only on states

of A. The expectation value of A, due to orthonormality of the basis states { | ξn 〉 }, can

be then found to be

〈A 〉 = 〈Ψ |A |Ψ 〉 =
∑

n

|Cn|2 〈ψn |A |ψn 〉. (11.44) do44
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This relation is obviously equivalent to

〈A 〉 = TrAB

{
ρAB A⊗ 1̂B

}
, (11.45) do45

with ρAB = |Ψ 〉〈Ψ | being the density operator for the joint (total) system S + B, while

TrAB indicates that we take the trace with respect to the states of both subsystems. The

density operator ρAB contains information on both parts of the whole system. However,

we are not interested in the heat reservoir. Therefore, we define the reduced density

operator ρA which contains data only on the relevant subsystem A. We define ρA as

ρA = TrB { ρAB } = TrB { |Ψ 〉〈Ψ | } . (11.46) do46

Then, using (
do42
11.42) we calculate the trace with respect to the basis vectors { | ξk 〉 } of the

subsystem B. We get

ρA = TrB

{ ∑
m,n

Cn|ψn 〉 ⊗ | ξn 〉〈 ξm | ⊗ 〈ψm |C∗
m

}

=
∑

k,m,n

C∗
mCn 〈 ξk |

(
|ψn 〉 ⊗ | ξn 〉〈 ξm | ⊗ 〈ψm |

)
| ξk 〉

=
∑

k,m,n

C∗
mCn |ψn 〉〈 ξk | ξn 〉〈 ξm | ξk 〉〈ψm | =

∑

k,m,n

C∗
mCn |ψn 〉 δknδmk 〈ψm |

=
∑
m,n

C∗
mCn |ψn 〉 δmn 〈ψm |

=
∑

n

|ψn 〉 |Cn |2 〈ψn |. (11.47)

The advantage of the reduced density operator is that in order to find expectation value

of the observable A concerning the subsystem A only, we can write

〈A 〉 = TrA{ ρA A }, (11.48) do48

where TrA indicates that we compute the trace only with respect to the states of the

subsystem A. To find the trace in (
do48
11.48) we introduce a basis { |ϕa 〉 } in the Hilbert

space of states of the subsystem A. Then, we have

〈A 〉 = TrA{ ρA A } =
∑

a

〈ϕa |AρA |ϕa 〉

=
∑

a

∑
n

〈ϕa |A |ψn 〉 |Cn |2 〈ψn |ϕa 〉

=
∑

a

∑
n

|Cn |2 〈ψn |ϕa 〉 〈ϕa |A |ψn 〉

=
∑

n

|Cn |2 〈ψn |A |ψn 〉 (11.49)

Comparison of (
do49
11.49) and (

do44
11.44) shows that the reduced density operator is indeed

sufficient to find necessary information about measurements on subsystem A only. The

structure of the density operator ρA as in (
do47
11.47) is similar to that given in Eq.(

do15
11.15).
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The difference is that the statistical probabilities are now replaced by quantum-mechanical

probabilities |Cn |2. We recall that the amplitudes Cn are the probability amplitudes that

the reservoir B is in its basis state | ξn 〉, which correlates with the normalized state |ψn 〉
of the observed subsystem S which is of interest.

The discussed case concerns a pure state |Ψ 〉 of the joint system. Similar consider-

ations can be also done for a more general case, when the joint system is in the mixed

state. It is, however, worth noting that even in this simple case the description of the

relevant subsystem S must be done with density operator. Although the joint system is

in the pure state, the subsystem is in the mixed state described by the reduced density

operator ρA which is defined in eq.(
do47
11.47). Therefore, to describe subsystem A only we

need reduced density matrix ρA. The only exception occurs, when the joint system hap-

pens to be in state for which Cn = δnk, that is when all terms except one in combination

(
do42
11.42) are zeroes.

11.7 Evolution of the reduced density operator

11.7.1 Introductory remarks

We are interested in the evolution of the subsystem A which is coupled to the heat

reservoir B. This evolution cannot be described by the von Neumann equation for the

subsystem A alone due to the influence of the interaction with B. Therefore, we must

start studying the evolution of reduced density operator ρA with the evolution of the

whole system A+B, which is assumed to be closed. The total density operator ρAB obeys

the von Neumann equation (
do41
11.41), where the total Hamiltonian of the combined system

can be separated as

H = H0 + VAB, with H0 = HA ⊗ 1̂B + 1̂A ⊗HB, (11.50) do50

where HA and HA describe the free evolution of subsystems A and B, whereas VAB is

their interaction Hamiltonian. We note that the Hamiltonian HA operates only on states

|ψn 〉 of the subsystem A, while HB only on the state vectors | ξn 〉 of the reservoir B. The

von Neumann equation for the total system reads

i~
d

dt
ρAB(t) = [ H, ρAB(t) ] (11.51) do51

This is our starting point for finding the evolution equation for the reduced density oper-

ator for the system of interest ρA = TrB{ρAB}.

11.7.2 Transformation to interaction picture and formal inte-
gration

The main advantage of the interaction picture is that the free time evolution (due to free

Hamiltonian H0) is transformed away. The remaining time evolution is entirely due to

the interaction. Therefore we take the full density operator ρAB(t) in the Schrödinger

picture and we transform it to the interaction picture

%̃AB(t) = eiH0t/~ ρs+b(t) e−iH0t/~, (11.52) do52
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or equivalently

ρAB(t) = e−iH0t/~ %̃AB(t) eiH0t/~, (11.53) do53

where tilde denotes the interaction picture.
Before proceeding further with the problem of evolution, let us note that the definition

(
do46
11.46) of the reduced density operator implies (in the Schrödinger picture)

ρA(t) = Tr b

{
e−i(HA⊗HB)t/~ %̃AB(t) ei(HA⊗HB)t/~ }

. (11.54) do54

It is not obvious that we can simply use the cyclic property of the trace. However, we

can. The reason is that A variables are not affected by TrB. Free Hamiltonians HA and

HB act in two different Hilbert spaces, so they commute, hence we can write

e±i(HA⊗HB)t/~ = e±iHAt/~ ⊗ e±HBt/~. (11.55) do55

In (
do54
11.54) we compute the trace with respect to reservoir variables only, hence due to

(
do55
11.55) we can write

ρA(t) = e−iHAt/~ Tr B

{
e−iHBt/~ %̃AB(t) eiHBt/~ }

eiHAt/~. (11.56) do56

Using the cyclic property of the trace, we obtain

eiHAt/~ ρA(t) e−iHAt/~ = Tr b { %̃AB(t) } . (11.57) do57

We easily see that the left-hand side represents the reduced density operator in the inter-

action picture (since it depends solely on the variables of the subsystem A), we can say

that the variables of reservoir ”are traced out” So we have

%̃A(t) = Tr B { %̃AB(t) } . (11.58) do58

Hence the relation (
do46
11.46) is formally identical to (

do58
11.58). The connection between the

reduced density operator and the total one is the same in both pictures.
Now, we transform the von Neumann equation (

do51
11.51) into the interaction picture.

We insert (
do52
11.52) into the lhs, and we use (

do50
11.50) in the rhs. By differentiation we get

i~
{ (

− i

~
H0

)
e−iH0t/~ %̃AB(t) eiH0t/~ + e−iH0t/~

(
d

dt
%̃AB(t)

)
eiH0t/~

+ e−iH0t/~ %̃AB(t)

(
i

~
H0

)
eiH0t/~

}
=

= ( H0 + VAB ) e−iH0t/~ %̃AB(t) eiH0t/~ − e−iH0t/~ %̃AB(t) eiH0t/~ ( H0 + VAB )(11.59)

Since H0 obviously commutes with exponential operators the terms containing H0 cancel

out. Then, we multiply this equation by eiH0t/~ at the left and by e−iH0t/~ at the right.

Hence, we get

i~
d

dt
%̃AB(t) = eiH0t/~ VAB e−iH0t/~ %̃AB(t) − %̃AB(t) eiH0t/~ VAB e−iH0t/~. (11.60) do60
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Thus, and we arrive at

d

dt
%̃AB(t) =

1

i~

[
ṼAB(t), %̃AB(t)

]
, (11.61) do61

where ṼAB(t) is the interaction hamiltonian in the interaction picture

ṼAB(t) = eiH0t/~ VAB e−iH0t/~. (11.62) do62

Equation (
do61
11.61) is the interaction picture version of the von Neumann equation for the

density operator of the full system A + B. We shall investigate it further to extract

evolution equation for the reduced density operator %̃A for the subsystem of interest.
In the next step we formally integrate the von Neumann equation (

do61
11.61). This yields

%̃AB(t) = %̃AB(t0) +
1

i~

∫ t

t0

dt1

[
ṼAB(t1), %̃AB(t1)

]
, (11.63) do63

where %̃AB(t0) is the initial condition.
The result of the iteration is the substituted into the von Neumann equation, and we

get

d

dt
%̃AB(t) =

1

i~

[
ṼAB(t), %̃AB(t0)

]

+

(
1

i~

)2 ∫ t

t0

dt1

[
ṼAB(t),

[
ṼAB(t1), %̃AB(t1)

]]
. (11.64)

Taking the trace Tr B which commutes with time derivative, we obtain an equation for

the reduced density operator

d

dt
%̃A(t) =

1

i~
Tr B

{[
ṼAB(t), %̃AB(t0)

]}

+

(
1

i~

)2 ∫ t

t0

dt1 Tr B

{[
ṼAB(t),

[
ṼAB(t1), %̃AB(t1)

]]}
. (11.65)

This is exact equation. However, to get useful information we must introduce several

simplifying assumptions which will yield a tractable and closed equation for ρA(t). This

is so, because right-hand side of (
do65
11.65) still contains the full density operator %̃AB(t1).

Let us note that there is also another another possibility to analyze von Neumann

equation (
do61
11.61). Relation (

do63
11.63) can be treated as the first iteration. Then we rewrite

it as

%̃AB(t1) = %̃AB(t0) +
1

i~

∫ t1

t0

dt2

[
ṼAB(t2), %̃AB(t2)

]
. (11.66) do66

Next, we insert (
do66
11.66) again into (

do63
11.63) and we obtain

d

dt
%̃AB(t) = %̃AB(t0) +

1

i~

[
ṼAB(t), %̃AB(t0)

]

+

(
1

i~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2

[
ṼAB(t1),

[
ṼAB(t2), %̃AB(t2)

]]
. (11.67)
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We can apply this procedure once more. We put t2 in (
do66
11.66) instead of t1 and insert it

into (
do67
11.67) and we get

d

dt
%̃AB(t) = %̃AB(t0) +

1

i~

[
ṼAB(t), %̃AB(t0)

]

+

(
1

i~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2

[
ṼAB(t1),

[
ṼAB(t2), %̃AB(t0)

]]

+

(
1

i~

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

[
VAB(t1),

[
ṼAB(t2),

[
ṼAB(t3), %̃AB(t3)

]]]
.(11.68)

This third-order equation is clearly exact. The iteration procedure can be carried out

farther to fourth, fifth orders and so on. It can be truncated, for example at the second

order, then Eq.(
do67
11.67) is taken as a second order approximation to the exact von Neumann

equation and it is used in practical calculations.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Chapter 12

Master Equationac:me

12.1 Evolution of the reduced density operator

12.1.1 Introductory remarks

We consider a physical system which consists of two parts A and B. We are interested

only in what happens in part A which usually is much smaller than part B, which we

will call a reservoir (environment). We will assume that the whole systemy, that A + B
is closed. The total hamiltonian can be written as

HAB = H0 + VAB, (12.1) me01a

where H0 is the free-evolution hamiltonian

H0 = HA ⊗ 1B + 1A ⊗HB, (12.2) me01b

where HA and HB describe the free, independent evolution of each of the subsystems

A and B. VAB is the hamiltonian describing the interaction between two parts. Some

additional assumptions concerning both subsystems will be introduced when necessary.
As it is well-known, the interaction between two (sub)systems usually leads to mixed

states, even if the initial state is a pure one. Therefore, investigating the joint systemA+B
we will use the density operator ρAB(t). On the other hand, the interesting (relevant)

subsystem A is then described by the reduced density operator

ρA(t) = Tr B{ρAB(t)}. (12.3) me03

Evolution of the state ρAB of the whole system A+ B is governed by von Neumann

equation

i~
d

dt
ρAB(t) =

[
HAB, ρAB(t)

]
, (12.4) me04

which, in the interaction picture is of the form

d

dt
%̃AB(t) =

1

i~
[
ṼAB(t), %̃AB(t)

]
, (12.5) me05

where, we obviously denoted

%̃AB(t) = eiH0t/~ ρAB(t) e−iH0t/~, ṼAB(t) = eiH0t/~ VAB e−iH0t/~, (12.6) me06
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with H0 given in Eq.(
me01b
12.2). Reduction of the density operator (as in (

me03
12.3)) is preserved

in the interaction picture

%̃A(t) = Tr B{%̃AB(t)}. (12.7) me06c

Additional information on interaction picture can be found in auxiliary sections.
So we start with von Neumann equation (

me05
12.5). Formal integration yields the following

expression

%̃AB(t + ∆t) = %̃AB(t) +
1

i~

t+∆t∫

t

dt1
[
ṼAB(t1), %̃AB(t1)

]
, (12.8) me07

which gives the density operator at a later moment t + ∆t, while the initial one at a

moment t is assumed to be known. Iterating further and denoting

∆%̃AB(t) = %̃AB(t + ∆t) − %̃AB(t), (12.9) me10

we obtain

∆%̃AB(t) =

(
1

i~

) t+∆t∫

t

dt1
[
ṼAB(t1), %̃AB(t)

]

+

(
1

i~

)2
t+∆t∫

t

dt1

∫ t1

t

dt2
[
ṼAB(t1),

[
ṼAB(t2), %̃AB(t)

]

+

(
1

i~

)3
t+∆t∫

t

dt1

∫ t1

t

dt2

∫ t2

t

dt3
[
ṼAB(t1),

[
ṼAB(t2),

[
ṼAB(t3) %̃AB(t3)

]
.(12.10)

Higher order iterations will contain fourfold, etc., integrals and commutators. Let us note

that in the last term we have time ordering t+∆t ≥ t1 ≥ t2 ≥ t3 ≥ t. The above equation

is rigorous, no approximations have been made.

12.1.2 Weak-coupling approximation

Weak-coupling approximation consists in retaining the terms up to the second order in

interaction hamiltonian. Higher order terms are then neglected. Thus, we remain with

∆%̃AB(t) =

(
1

i~

) t+∆t∫

t

dt1
[
ṼAB(t1), %̃AB(t)

]

+

(
1

i~

)2
t+∆t∫

t

dt1

∫ t1

t

dt2
[
ṼAB(t1),

[
ṼAB(t2), %̃AB(t)

]
. (12.11)

Alternatively, we can say that the obtained equation is valid in the second-order pertur-

bation theory. Such an approximation requires a justification. The necessary justification

will be presented in the auxiliary sections, now we focus on further steps of the derivation.
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Reduction of the operator %̃AB(t) poses no difficulties. Tracing over the reservoir

variables (subsystem B) we obtain

∆%̃A(t) =

(
1

i~

) t+∆t∫

t

dt1 Tr B

[
ṼAB(t1), %̃AB(t)

]

+

(
1

i~

)2
t+∆t∫

t

dt1

∫ t1

t

dt2 Tr B

[
ṼAB(t1),

[
ṼAB(t2), %̃AB(t)

]
. (12.12)

This expression has certain drawback. The point is that the commutators contain full

density operator %̃AB(t), and not the interesting (relevant) reduced one %̃A(t). To proceed,

we need some more assumptions and approximations.
One more remark seems to be in place. Subsequant iterations leading to Eq. (

me12
12.10)

are rigorous. In equation (
me16x
12.12) – which is approximate – there occurs the operator

ρAB(t), taken at the initial moment. The last term in the exact equation (
me12
12.10) contains

%̃AB for moments earlier than the current moment t+∆t, but later than the initial instant

t. This means that we neglect the influence of the ”history” on the present moment. We

shall return to the discussion of this point.

12.1.3 Neglecting the intial correlatios

The key role in our consideration is played by the assumption that there are to distinct

time scales. The first one is specified by time τB – typical time during which the internal

correlations in the reservoir B exist. This will discussed in more detail later. Here we

will only say that time τB is such a time, that when it elapses, the state of the resrevoir

is practically idependent of is initial state. The second time scale is provide by time TA.

It is a time which characterises evolution (changes) of the operator %̃A(t) which is due to

the interaction with resrvoir, and which may be specified by the relation

∆%̃A(t)

∆t
∼ 1

TA

%̃A(t). (12.13) me17

Time TA may be called the characteristic relaxation time of subsystem ukadu A. Let

us note that we are speaking about interaction – the interaction picture we employ is

thus, particularly useful. We make no statements about the rate of the free evolutions

of ρA (in the Schrödinger picture), which is governed by hamiltonian HA. Usually, the

characteristic times of free evolution (the times of the order of τA ∼ 〈HA 〉A/~) are

typically much shorter that TA describing the interaction between subsystems.
Now we assume that the introduced time scale satisfy the requirement

τB ¿ ∆t ¿ TA. (12.14) me18

We have a fast scale (small τB) determining the decay of correlations within the reservoir

and the second – much slower – scale defined by relatively long relaxation time TA,

characterizing the interaction between the two parts of the entire physical system. This
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may be phrased differently. We have assumed that the interaction is weak. Let V denote

the average ”strength” of this interaction. Uncertainty principle states that

V TA ∼ ~ =⇒ TA ∼ ~
V

. (12.15) me19

The condition τB ¿ TA implies that

τB ¿ TA ∼ ~
V

=⇒ V τB

~
¿ 1. (12.16) me20

Still in other words we can say that spectral widths are the reciprocals of characteristic

times, so the condition τB ¿ TA means that the spectral width of the reservoir must be

much larger than the spectral width of the interaction between subsystemA with reservoir.

Further discussion and justification of our approximations is postponed to other section.

Here we focus on the derivation of the master equation.
The adopted assumption τB ¿ TA allows us to make the following approximation.

Initial density operator for the whole system A+ B can always be written as

%̃AB(t) = %̃A(t)⊗ %̃B(t) + %̃corel(t), (12.17) me21

where %̃A(t) and %̃B(t) are the initial reduced density operators for two subsystems. The

state of the whole system consists of a factorizable part %̃A(t)⊗ %̃B(t) and the entangled

part %̃corel(t), which describes the correlations between the subsystems and which are due

to the interaction. Equation (
me16x
12.12) gives us the change ∆%̃A(t) = %̃A(t + ∆t) − %̃A(t),

hence informs us about changes occuring in te time interval ∆t. Assumption that τB ¿ ∆t

allows us to neglect the mentioned correlations. As previously, we postpone the discusion

for later sections. At present, we assume that

%̃AB(t) ≈ %̃A(t)⊗ %̃B(t). (12.18) me23

By assumption the reservoir (environment) is very large, it correlation time is very

short, so the resrvoir’s relaxation is very fast. We may say that before any significant

changes occur in subsystem A, the resevoir would have enough time to reach thermody-

namic equilibrium. As it is known from statistical physics such state is given as

σ̄B =
∑

z

p(z)| z 〉〈 z | where p(z) =
1

Z
exp

(
− Ez

kBT

)
. (12.19) me23b

The quantity Z is a partition sum

Z =
∑

z

exp

(
− Ez

kBT

)
. (12.20) me23c

States | z 〉 are the eigenstates of the reservoir hamiltonian and they satisfy the relation

HB | z 〉 = Ez| z 〉. At thermodynamic equilibrium the system does not change its state.

It means that the density operator σ̄B satisfies the requirement

[
σ̄B, HB

]
= 0, (12.21) me23d
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so we can say that operator σ̄B is stationary – does not change in time. Obviously the

states | z 〉 are common eigenstates of σ̄B and HB. This commutation relation also ensures

that the reduced density operator of the reservoir is equal to σ̄B both in Schrödinger and

interaction pictures. Hence, operator %̃B(t) appearing in Eq.(
me23
12.18) is simply replaced by

σ̄B. Therefore, in Eq.(
me16x
12.12) we make the replacement %̃AB = %̃A(t) ⊗ σ̄B. So we have

now

∆%̃A(t) =

(
1

i~

) t+∆t∫

t

dt1 Tr B

[
ṼAB(t1), %̃A(t)⊗ σ̄B

]

+

(
1

i~

)2
t+∆t∫

t

dt1

∫ t1

t

dt2 Tr B

[
ṼAB(t1),

[
ṼAB(t2), %̃A(t)⊗ σ̄B

]
, (12.22)

which will be analyzed further.

12.2 Interaction hamiltonian and its properties

12.2.1 The form of ṼAB(t)

Our next assumption concerns the shape of the interaction hamiltonian which will be

taken as

VAB =
∑

α

Aα ⊗Xα =
∑

α

A†
α ⊗X†

α, (12.23) me30

where Aα are operators which act in the space of the states of subsystem A, while opera-

tors Xα correspond to space of the reservoir’s states. Operators appearing in the definition

(
me30
12.23) nedd not be hermitian (each one separately) The hamiltonian VAB must ber her-

mitian. That is why we have written the second equality. We can say that to each

nonhermitian term Aα ⊗ Xα corresponds the term A†
α ⊗ X†

α, and the latter appears in

the sum VAB, but with another number. In auxiliary sections we will show that it is not

any significant limitation. It is only important that the whole hamiltonian VAB must be

hermitian.
Operators Aα i Xα act in different spaces so they are independent and commute. In

the interaction picture we immediately have

ṼAB(t) =
∑

α

Ãα(t)⊗ X̃α(t) =
∑

α

Ã†
α(t)⊗ X̃†

α(t), (12.24) me31

with

Ãα(t) = eiHAt/~ Aα e−iHAt/~, X̃α(t) = eiHBt/~ Xα e−iHBt/~. (12.25) me32

Rules of hermitian conjugation imply that

Ã†
α(t) = eiHAt/~ A†

α e−iHAt/~, X̃†
α(t) = eiHBt/~ X†

α e−iHBt/~, (12.26) me33

So the conjugate operators transform to interaction picture in the exactly the same manner

as the initial ones.
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We now make one more assuption about reservoir. We have already assumed that

%̃B(t) ≈ σ̄B. Here, we assume that in the Schrödinger picture

〈Xα 〉B ≡ Tr B {Xα ρB(t) } = Tr B {Xα σ̄B } = 0. (12.27) me37

This assumption easily transform to interaction picture

〈 X̃α(t) 〉B = Tr B

{
eiHBt/~ Xα e−iHBt/~ σ̄B

}

= Tr B

{
Xαe−iHBt/~ σ̄B eiHBt/~ }

= Tr B {Xα σ̄B } = 0, (12.28)

which follows due to cyclic property of trace and to (
me37
12.27). This is rather a simplification

and not a restrictive assumption. This will be clarified and explained in auxiliary sections.

Relation (
me37
12.27) (leading to (

me39
12.28)) aloows us to see that the first term in the ME (

me27
12.22)

is, in fact, zero. Indeed

Tr B

[
ṼAB(t1), %̃A(t)⊗ σ̄B

]
= Tr B

[ ∑
α

Ãα(t1)⊗ X̃α(t1), %̃A(t)⊗ σ̄B

]

=
∑

α

[
Ãα(t1)%̃A(t) Tr B

(
X̃α(t1) σ̄B

) − %̃AÃα(t1) Tr B

(
σ̄B X̃α(t1)

)]

= 0. (12.29)

Both traces are equal (cyclic property), nevertheless this expression need not be zero,

because operators of the A system need not commute. If requirement (
me37
12.27) is not

fulfiled then the above average may not vanish. Assumption (
me37
12.27) and its consequence

(
me39
12.28) fortunately give zero, and the first term of Eq.(

me27
12.22) vanishes and we remain

with the master equation

∆ %̃A(t) =

(
1

i~

)2 ∫ t+∆t

t

dt1

∫ t1

t

dt2 Tr B

[
ṼAB(t1),

[
ṼAB(t2), %̃A(t)⊗ σ̄B

]]
. (12.30) me41a

Expanding the commutators is simple. Moreover, one easily notices that there are two

pairs of hermitian conjugates. Hence we have

∆ %̃A(t)

∆t
=

1

~2 ∆t

t+∆t∫

t

dt1

∫ t1

t

dt2 Tr B

{
ṼAB(t2)

(
%̃A(t)⊗ σ̄B

)
ṼAB(t1)

− ṼAB(t1) ṼAB(t2)
(
%̃A(t)⊗ σ̄B

)}
+ H.C. (12.31)

We can now use hamiltonian (
me31
12.24) and perform futher transformations in (

me41c
12.31). It

can be, however, shown that this equation does not guarantee that the positivity of the

density operator %̃A(t) is preserved. It appears that the so-called secular approximation

is necessary. To perform it effectively it is worth to present the interaction hamiltonian

in a somewhat different form.

12.2.2 Operators Aα(Ω)

Let us write the hamiltonian of the subsystem A as

HA =
∑

a

~ωa| a 〉〈 a |. (12.32) me44
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States | a 〉 constitute the complete and orthonormal basis in the space of states of the

subsystem A. The eigenfrequencies ωa may or may no be degenerate. We allow ωa = ωb

for a 6= b. At present it suffices that we distinguish different kets | a 〉 solely by their

”number a. Now, we define the operators Aα(Ω) via the following relation

Aα(Ω) =
∑

a,b

δ(ωba − Ω) | a 〉〈 a |Aα | b 〉〈 b |. (12.33) me45

This representation may be called the decomposition of operator Aα into eigenprojectors

of hamiltonian HA. Delta δ(ωba − Ω) is of the Kronecker type, thus

δ(ωba − Ω) =

{
0 for Ωba 6= Ω,
1 for Ωba = Ωba,

(12.34) me46

In our considerations we allow for nonhermitian operators Aα. Hence, definition (
me45
12.33)

is augmented by the following one

A†
α(Ω) =

∑

a,b

δ(ωba−Ω) | b 〉〈 b |A†
α | a 〉〈 a | =

∑

a,b

δ(ωab−Ω) | a 〉〈 a |A†
α | b 〉〈 b |, (12.35) me47

because it is always allowed the interchange the summation indices a ↔ b. we stress that

Aα(Ω) contains Bohr frequancy ωba, while in A†
α(Ω) we have ωab = −ωba. The following

relation seems to be quite obvious
∑
Ω

δ(ωkn − Ω) = 1. (12.36) me48

As a consequence we we obtain
∑
Ω

Aα(Ω) = Aα. (12.37) me49

Indeed, from definition (
me45
12.33) and relation (

me48
12.36) we get

∑
Ω

Aα(Ω) =
∑
Ω

∑

a,b

δ(ωba − Ω) | a 〉〈 a |Aα | b 〉〈 b |

=
∑

a,b

| a 〉〈 a |Aα | b 〉〈 b | = 1Aα1 = Aα. (12.38)

Relation (
me49
12.37) implies that the interaction hamiltonian can be written as (in Schrödinger

picture)

VAB =
∑

α

Aα ⊗Xα =
∑
Ω

∑
α

Aα(Ω)⊗Xα. (12.39) me51

Similarly as above we show that
∑
Ω

A†
α(Ω) = A†

α, (12.40) me52

and

VAB = V †
AB =

∑
Ω

∑
α

A†
α(Ω)⊗X†

α. (12.41) me53
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Using definition (
me45
12.33) we find the operator Ãj(Ω) in the interaction picture

Ãα(Ω) = eiHAt/~ Aα(Ω) e−iHAt/~ = e−iΩt Aα(Ω). (12.42) me55

Certainly, by hermitian conjugation

Ã†
α(Ω) = eiHAt/~ A†

α(Ω) e−iHAt/~ = eiΩt A†
α(Ω). (12.43) me56

Linking expressions (
me51
12.39) and (

me55
12.42) we write the interaction hamiltonian in the inter-

action picture

ṼAB(t) =
∑
Ω

∑
α

e−iΩt Aα(Ω)⊗ X̃α(t). (12.44) me57

Equally well we can also write

ṼAB(t) = Ṽ †
AB(t) =

∑
Ω

∑
α

eiΩt A†
α(Ω)⊗ X̃†

α(t). (12.45) me58

Before starting to analyze ME (
me41c
12.31), let us notice that operators Aα(Ω) possess some

intresting properties. For exaple, the following commutation relations holdme59 [
HA, Aα(Ω)

]
= −~ΩAα(Ω), (12.46a)[

HA, A†
α(Ω)

]
= ~ΩA†

α(Ω), (12.46b)[
HA, A†

α(Ω)Aβ(Ω)
]

= 0. (12.46c)

The proofs wil be given in auxiliary sections.

12.2.3 Further analysis of master equation

We return to master equation (
me41c
12.31). Interaction hamiltonian ṼAB(t2) is taken as in

(
me57
12.44), while ṼAB(t1) is represented according to (

me58
12.45). This gives

∆ %̃A(t)

∆t
=

1

~2 ∆t

t+∆t∫

t

dt1

∫ t1

t

dt2
∑

α,β

∑

Ω,Ω ′
Tr B

{

e−iΩt2Aβ(Ω)⊗ X̃β(t2)
[
%̃A(t)⊗ σ̄B

]
eiΩ ′t1A†

α(Ω ′)⊗ X̃†
α(t1)

− eiΩ ′t1A†
α(Ω ′)⊗ X̃†

α(t1)
[
e−iΩt2Aβ(Ω)⊗ X̃β(t2)

]
%̃A(t)⊗ σ̄B

}
+ H.C. (12.47)

Performing tensor products we remember that partial trace is computed only with respect

to reservoir variables. Moreover we note that these traces are the same (cyclic property).

Therefore we denote

Ḡαβ(t1 − t2) = Tr B

{
X̃†

α(t1) X̃β(t2) σ̄B

}
. (12.48) me62

Finally we rewrite the arguments of the exponentials as iΩ ′t1 − iΩt2 = i(Ω ′ − Ω)t1 +

iΩ(t1 − t2). Thus Eq.(
me60
12.47) becomes

∆ %̃A(t)

∆t
=

1

~2 ∆t

t+∆t∫

t

dt1

∫ t1

t

dt2
∑

α,β

∑

Ω,Ω ′
ei(Ω ′−Ω)t1 eiΩ(t1−t2)Ḡαβ(t1 − t2)

×
[

Aβ(Ω)%̃A(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)%̃A(t)
]

+ H.C. (12.49)

The quantity Ḡαβ(t1−t2) is called the correlation function of the reservoir. We will briefly

discuss its properties.
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12.2.4 Correlation functions Ḡαβ

Let us focus for a while on the functions defined by the right hand side of Eq.(
me62
12.48),

they are

Gαβ(t1, t2) = Tr B

{
X̃†

α(t1) X̃β(t2) σ̄B

}
. (12.50) me65a

These are the function of two variables and it is not a priori clear that they are function

only of the difference τ = t1 − t2. Before proving this fact, let us note that

G∗
αβ(t1, t2) = Gβα(t2, t1). (12.51) me65b

To prove it, we use relation Tr ∗B{A} = Tr B{A†}, so that the definition (
me65a
12.50) gives

G∗
αβ(t1, t2) = Tr B

{
σ̄BX̃†

β(t2) X̃α(t1)
}

= Tr B

{
X̃†

β(t2) X̃α(t1) σ̄B

}
= Gβα(t2, t1),

(12.52) me65c

Where in the second step we have used the cyclic property of trace.
Now we will show that the function Gjk(t1, t2) is indeed a function of the difference of

its arguments. The key role plays the fact that the state of the reservoir (density operator

σ̄B) is stationary (does not change in time). Explicitly using the interaction picture we

get

Gαβ(t1, t2) = Tr B

{ (
eiHBt1/~ X†

α e−iHBt1/~) (
eiHBt2/~ Xβ e−iHBt2/~) σ̄B

}
. (12.53) me65d

The trace is cyclic and σ̄B commutes with hamiltonianem HB so we conclude that

Gjk(t1, t2) = Tr B

{
eiHB(t1−t2)/~ X†

α e−iHB(t1−t2)/~ Xβ σ̄B

}

= Tr B

{
X̃†

α(t1 − t2) X̃β(0) σ̄B

}
= Ḡαβ(τ = t1 − t2), (12.54)

for two moments of time t1 > t2. Reservoir’s correlation function effectively depends only

on one variable. This fact is denoted by a bar over the symbol od correlation function.

Thus we write

Gαβ(t1, t2) = Ḡαβ(τ) = Tr B

{
X̃†

α(τ) Xβ σ̄B

}
(12.55) me65f

Such correlation functions are called stationary. In this case stationarity Stacjonarno

means invariance with respect to time translation. Indeed

Ḡαβ(t1 + T, t2 + T ) = Ḡαβ

(
(t1 + T )− (t2 + T )

)
= Ḡαβ(t1 − t2). (12.56) me65g

Stationarity of the correlation functions is a straightforward consequence of the reservoir’s

density operator σ̄B.
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Fig. 12.1: Left figure presents the integration region in the double integral
in Eq.(

me64
12.49). Right figure illustrates the change to new variables τ = t1 − t2

and t1. Other explanantions are to be found in the text. xmerys01

12.3 Discusion of times

12.3.1 Limits of the integrals and Markov approximation

In master equation (
me64
12.49) one integrates over the triangle ABC which is shown in pic-

ture
xmerys01
12.1. First one computes the integral over dt2 in the range from t to t1, This is

indicated by thin vertical lines (at left). Next one sums such contributions by integrating

over dt1 from t to t + ∆t. The integrand in (
me64
12.49) contains correlation functions of the

reservoir which depend on the difference τ = t1 − t2. We stress that we always have

t1 ≥ t2, so that τ ≥ 0. The integration over the triangle can be performed in another

manner.
Let us consider the geometry. Along the diagonal AC we have t1 = t2, so τ = t1−t2 =

0. The straight line l1 has (in t1 and t2 variables) the equation t2 = t1 − τ , where τ is

fixed, since (−τ) is the coordinate t2 of the point where the discussed line intersects the

axis t2. Then, for the line lk (passing through the point B) τ is also fixed (by the same

argument, as in the case of line l1). On lk, at the point B we have t1 = t+∆t oraz t2 = t.

Thus at that point (B) (and on the line lk) we have τ = ∆t. Parametr τ specifies the skew

straight lines (parallel to the diagonal AC) and passing through triangle ABC. Integration

over the triangle ABC is now done as follows. We fix τ ∈ (0, ∆t) and we move along the

segment A’C’ (see Fig.
xmerys02
12.2). Variable t1 runs in the interval from t+ τ to t+∆t. So, first

we integrate over dt1 from t + τ to t + ∆t (along the segment A’C’). Next we integrate

over dτ from zero to ∆t. In this manner we sum the contributions from all skew segments

covering the triangle ABC. Therefore, we can write

t+∆t∫

t

dt1

∫ t1

t

dt2 =

∫ ∆t

0

dτ

t+∆t∫

t+τ

dt1, (12.57) me70
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t1

t t + ∆t

t2
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t + ∆t

t2 = t1
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C

C’

A’

τ

Fig. 12.2: Illlustration of the change of integration variables in equation
(
me64
12.49), Transformation to new variables τ = t1 − t2 i t1. Other explanations

– in the text. xmerys02

while we remember that τ = t1 − t2 (or t2 = t1 − τ).
Due to the discussed change of integration variables instead of expression (

me64
12.49) we

get

∆ %̃A(t)

∆t
=

1

~2 ∆t

∆t∫

0

dτ

t+∆t∫

t+τ

dt1
∑

α,β

∑

Ω,Ω ′
ei(Ω ′−Ω)t1 eiΩτ Ḡαβ(τ)

×
[

Aβ(Ω)%̃A(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)%̃A(t)
]

+ H.C., (12.58)

which should be further analyzed and discussed.
First of all we recall that the considered time intervals satisfy the requirement ∆t À

τB, which will be discussed in detail later. If it is true, then the main contribution

to the integral over dτ in Eq.(
me71
12.58) will come from the region in the neighborhood of

0 ≤ τ < τB ¿ ∆t. Geometrically, this corresponds to a narrow belt which is parallel to

the diagonal AC and lies just below it. It follows from the fact that outside this region the

reservoir’s correlation functions practically vanish (decay to zero). Therefore, we will not

make any serious error moving the upper limit of integration over dτ to infinity. Moreover,

since only small τ ’s contribute significantly, the lower limit of the integral over dt1 may

be approximated simply by t, so only a small ”inital” region will be neglected. With this

approximations equation (
me71
12.58) yields

∆ %̃A(t)

∆t
=

1

~2 ∆t

∑

Ω,Ω ′

∑

α,β

∫ ∞

0

dτ eiΩτ Ḡαβ(τ)

t+∆t∫

t

dt1 ei(Ω ′−Ω)t1

×
[

Aβ(Ω)%̃A(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)%̃A(t)
]

+ H.C. (12.59)
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Introducing the quantitiesme73

J(Ω ′ − Ω) =
1

∆t

t+∆t∫

t

dt1 exp
[
i(Ω ′ − Ω)t1

]
, (12.60a)

Wαβ(Ω) =

∫ ∞

0

dτ eiΩτ Ḡαβ(τ) =

∫ ∞

0

dτ eiΩτ Tr B

{
X̃†

α(τ) Xβσ̄B

}
, (12.60b)

we rewrite Eq.(
me72
12.59) as follows

∆ %̃A(t)

∆t
=

1

~2

∑

Ω,Ω ′

∑

α,β

J(Ω ′ − Ω)Wαβ(Ω)

×
[

Aβ(Ω)%̃A(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)%̃A(t)
]

+ H.C. (12.61)

This equation specifies the rate of change of the reduced density operator %̃A(t) within

the time interval (t, t + ∆t). The quotient ∆%̃A(t)/∆t can be traeted as an averaging

∆ %̃A(t)

∆t
=

%̃A(t + ∆t)− %̃A(t)

∆t
=

1

∆t

∫ t+∆t

t

dt1
d %̃A(t1)

dt1
. (12.62) me75

This averaging results in smoothing all very rapid changes of %̃A(t) which may occur

during the interval (t, t+∆t). In principle we should account for such rapid changes. We

do not do that because right hand side of Eq.(
me74
12.61) contains %̃A(t), while the left hand

side represent the smoothed rate of change. This rate depends on the density operator

%̃A in past , that is at the moment when the smoothed evolution was started. So our

next approximation consists in replacing the Smoothed rate by a usual derivative In other

words the variation at an instant t (that is the derivative d%̃A(t)/dt) is connected with

the value of %̃A(t) at the very same instant. This approximation allows us to use a usual

derivative at the left hand side of (
me74
12.61). This approximation sometimes is called a

markovian one since it connects the variations of some physical quantity with its value

at the same instant, independently from the values which this quantity had at earlier

moments. We can say that markovian approximation consists in neglecting the influence

of the history of the physical on its current state which fully determines the presently

occurring changes. In some literature sources this approximation is also called the coarse-

graining one, because small and rapid fluctuactions are neglected when the evolution is

investigated on a much longer time scale specified by ∆t.
With all the discussed approximation our master equation (

me74
12.61) becomes

d

dt
%̃A(t) =

1

~2

∑

Ω,Ω ′

∑

α,β

J(Ω ′ − Ω)Wαβ(Ω)

×
[

Aβ(Ω)%̃A(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)%̃A(t)
]

+ H.C. (12.63)

12.3.2 Schrödinger picture

At this stage we return to the Schrödinger picture and we insert

%̃A(t) = eiHAt/~ ρA(t) e−iHAt/~. (12.64) me77
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When computing the derivative at the left hand side we reproduce the free evolution term.

Thus, we get

eiHAt/~
(

d

dt
ρA(t)

)
e−iHAt/~ =

= − i

~
eiHAt/~[ HA, ρA(t)

]
e−iHAt/~

+

{
1

~2

∑

Ω,Ω ′

∑

α,β

J(Ω ′ − Ω)Wαβ(Ω)
[

Aβ(Ω) eiHAt/~ ρA(t) e−iHAt/~A†
α(Ω ′)

− A†
α(Ω ′)Aβ(Ω)eiHAt/~ ρA(t) e−iHAt/~

]
+ H.C

}
. (12.65)

Multiplying on the left by e−iHAt/~ and on the right by eiHAt/~, we use relation (
me55
12.42)

and (
me56
12.43) (for negative times). This yields

d

dt
ρA(t) = − i

~
[
HA, ρA(t)

]
+

{
1

~2

∑

Ω,Ω ′

∑

α,β

J(Ω ′ − Ω)Wαβ(Ω) ei(Ω−Ω ′)t

×
[

Aβ(Ω)ρA(t)A†
α(Ω ′) − A†

α(Ω ′)Aβ(Ω)ρA(t)
]

+ H.C
}

. (12.66)

12.3.3 Integral J(Ω ′ − Ω) and secular approximation

Our master equation contains the integral J(Ω ′−Ω) defined in (
me73a
12.60a). Its computation

is straightforward. Denoting temporarily tymczasowo x = Ω ′ − Ω we get

J(x) =

∫ t+∆t

t

dt1
eixt1

∆t
=

(
1

∆t

)
eixt1

ix

∣∣∣
t+∆t

t
=

(
1

∆t

)
eix(t+∆t) − eixt

ix

= eixt+ix∆t/2 eix∆t/2 − e−ix∆t/2

ix∆t
= eixt+ix∆t/2 sin

(
x∆t
2

)
(

x∆t
2

)

= eixt F (x), (12.67)

Where we have introduced a function specified by

F (x) = eix∆t/2 sin
(

x∆t
2

)
(

x∆t
2

) . (12.68) me85

Due to the obtained results we can write

J(Ω ′ − Ω) = ei(Ω ′−Ω)t F (Ω ′ − Ω). (12.69) me86

Inserting the computed integral into(
me81
12.66) we note that the exponential factor cancels

out. Hence

d

dt
ρA(t) = − i

~
[
HA, ρA(t)

]
+

{
1

~2

∑

Ω ′,Ω

∑

α,β

F (Ω ′ − Ω)Wαβ(Ω)

×
[

Aβ(Ω) ρA(t) A†
α(Ω) − A†

α(Ω) Aβ(Ω) ρA(t)
]

+ H.C
}

. (12.70)
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x

|F (x)|

Ω ′ = Ω

Fig. 12.3: The graph of the modulus of the function F (Ω ′−Ω) which appears
in (

me88
12.70). If the time ∆t is sufficiently large then the graph has a sharp

maximum for Ω ′ = Ω. xmerys03

The sense of function F (Ω ′ − Ω) which appears in (
me88
12.70) must be now carefully

considere. It is easy to see that function |F (x)| has a sharp maximum for x = Ω ′−Ω = 0,

where it is equal tu unity.
Zeroes of this function corresppond to

1
2
x∆t = nπ =⇒ x =

2nπ

∆t
. (12.71) me89

If the time ∆t is sufficiently long then the central maximum is very narrow. The quaestion

is what does it mean ”sufficiently long time”. Let us consider two possibilities.

1. If x =
∣∣Ω ′−Ω

∣∣ ¿ (∆t)−1, the argument of function |F (x)| is very close to zero, her

valu is practically one.

2. If x =
∣∣Ω ′ − Ω

∣∣ À (∆t)−1 (Bohr frequencies are significantly different) then |F (x)|
is close to zero.

We conclude that the terms at the right hand side of master equation (
me88
12.70) containing

the operator products A†
α(Ω ′) Aβ(Ω), for which

∣∣Ω ′ − Ω
∣∣ À (∆t)−1 practically do not

contribute to the evolution of the density operator ρA(t) which appears in the left hand

side. According to the first possibility above, significant contribution comes only from

such couplings that operators Aα(Ω ′) and Aβ(Ω) have practically equal corresponding

Bohr frequencies.
As we know time TA is a characteristic relaxation time in subsystem A due to interac-

tion with reservoir. All the time we take the estimate ∆t ¿ TA holds (We discuss it later).

It can be argued that the terms in master equation (
me88
12.70), in which |Ω ′ − Ω| ∼ (∆t)−1

also give very small contributions, so that they can be neglected. As a result of all these

approximations, we may say that only those terms in right hand side of master equation

(
me88
12.70) contribute significantly for which

∣∣Ω ′ − Ω
∣∣ = 0. Such an approximation is called

the secular one. It allows us to replace the function F (Ω ′ − Ω) by the Kronecker delta

δ(Ω ′−Ω) defined as in (
me46
12.34). It reminds us that only the terms satysfying the require-

ment (Ω = Ω) give nonzero contribution. Due to all these arguments our master equation
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attains the form

d

dt
ρA(t) = − i

~
[
HA, ρA(t)

]
+

{
1

~2

∑

α,β

∑

Ω ′,Ω

δ(Ω ′ − Ω) Wαβ(Ω)

×
[

Aβ(Ω) ρA(t) A†
α(Ω ′) − A†

α(Ω ′) Aβ(Ω) ρA(t)
]

+ H.C
}

. (12.72)

The presence of the discussed Kronecker delta simplifies one of the summations, which

gives

d

dt
ρA(t) = − i

~
[
HA, ρA(t)

]

+

{
1

~2

∑

α,β

∑
Ω

Wαβ(Ω)
[
Aβ(Ω)ρA(t)A†

α(Ω) − A†
α(Ω)Aβ(Ω)ρA(t)

]
+H.C

}
.(12.73)

The fundamental part of the microscopic derivation of the master equation is finished.

We shall perform some transformations which have important, but rather cosmetic char-

acter. We want to transform master equation into the so-called standard form. All other

discussions are, as mentioned many times, are left to auxiliary sections.

12.4 Standard form

12.4.1 Introduction

Standard form is important, because it can be shown (in a complicated and difficult

mathematical manner) that this form guarantees prservation of hermiticity, normalization

and, first of all, the positivity of the reduced density operator. If our master equation

(
me91
12.73) can be brought into the standard form then we can be sure that all the necessary

properties of the density operator of subsystem A are indeed preserved. Obviously, the

first term in the right hand side of equation (
me91
12.73) describers the unitary evolution, hence

we shall concentrate only on the second term. Writing explicitly the hermitian conjugates,

we have

d

dt
ρA(t)

∣∣∣
d.

=
1

~2

∑
Ω

∑

α,β

Wαβ(Ω)
[

Aβ(Ω)ρA(t)A†
α(Ω) − A†

α(Ω)Aβ(Ω)ρA(t)
]

+
1

~2

∑
Ω

∑

α,β

W ∗
αβ(Ω)

[
Aα(Ω)ρA(t)A†

β(Ω) − ρA(t)A†
β(Ω)Aα(Ω)

]
,(12.74)

because operator ρA(t) is hermitian (the proof that hermiticity is preserved will be pre-

sented in auxiliary sections). In the second term we interchange the summation indices

j ↔ k which gives

d

dt
ρA(t)

∣∣∣
d.

=
1

~2

∑
Ω

∑

α,β

Wαβ(Ω)
[

Aβ(Ω)ρA(t)A†
α(Ω) − A†

α(Ω)Aβ(Ω)ρA(t)
]

+
1

~2

∑
Ω

∑

α,β

W ∗
βα(Ω)

[
Aβ(Ω)ρA(t)A†

α(Ω) − ρA(t)A†
α(Ω)Aβ(Ω)

]
.(12.75)
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12.4.2 New notation

For further convenience we introduce the following notationme97

Γαβ(Ω) = Wαβ(Ω) + W ∗
βα(Ω), (12.76a)

∆αβ(Ω) =
1

2i

[
Wαβ(Ω) − W ∗

βα(Ω)
]
. (12.76b)

The matrix Γαβ(Ω) is hermitian and positively defined. The proof of the latter fact is

difficult so it will be given later. Hermiticity of Γαβ follows directly from the definition

(
me97a
12.76a). Indeed, we have

Γ∗αβ(Ω) = W ∗
αβ(Ω) + Wβα(Ω) = Γβα(Ω). (12.77) me98

The second matrix ∆αβ(Ω) is also hermitian. From (
me97b
12.76b) it follows that

∆∗
αβ(Ω) = − 1

2i

[
W ∗

αβ(Ω)−Wβα(Ω)
]

=
1

2i

[
Wβα(Ω)−W ∗

αβ(Ω)
]

= ∆βα(Ω). (12.78) me100

Let us focus on the method of computation of elements Γαβ(Ω). As it will be shown,

elements ∆αβ(Ω) are less important (they will be considered in auxiliary sections). To

find Γαβ we need quantities W ∗
βα. Conjugating definition (

me73b
12.60b) we find that

W ∗
βα(Ω) =

(∫ ∞

0

dτ eiΩτ Tr B

{
X̃†

β(τ)Xασ̄B

})∗

=

∫ ∞

0

dτ e−iΩτ Tr B

{
X†

αX̃β(τ)σ̄B

}

=

∫ ∞

0

dτ e−iΩτ Tr B

{
e−iHBτ/~X†

αeiHBτ/~Xβσ̄B

}
, (12.79)

where we used relations (
me23d
12.21), (

me33
12.26) and cyclic property of trace. Changing the

integration variable τ → −τ , we have

W ∗
βα(Ω) =

∫ 0

−∞
dτ eiΩτ Tr B

{
X̃†

α(τ)Xβσ̄B

}
. (12.80) me101d

The integrand is identical identical as in (
me73b
12.60b), Only the integration limits are different.

Combining both formulas, we get

Γαβ(Ω) =

∫ ∞

−∞
dτ eiΩτ Tr B

{
X̃†

α(τ)Xβσ̄B

}
=

∫ ∞

−∞
dτ eiΩτ Ḡαβ(τ). (12.81) me101g

The elements Γαβ(Ω) are the Fourier transforms of the corresponding correlation function

of the reservoir.
Matrix ∆αβ(Ω) does not have such a simple representation. From the definition

(
me97b
12.76b) and the second relation in (

me101c
12.79)

∆αβ(Ω) =
1

2i

[∫ ∞

0

dτ eiΩτ Tr B

{
X̃†

α(τ)Xβσ̄B

} −
∫ ∞

0

dτ e−iΩτ Tr B

{
X†

αX̃β(τ)σ̄B

}]
.

(12.82) me101h
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12.4.3 Standard form

Inverting relations (
me97
12.76) we express elements Wαβ via Γαβ and ∆αβ. After simple re-

grouping of the terms in Eq.(
me96b
12.75) we get

d

dt
ρA(t)

∣∣∣
d.
=

1

~2

∑
Ω

∑

α,β

Γαβ(Ω)
{

Aβ(Ω) ρA(t) A†
α(Ω)

− 1
2

[
A†

α(Ω) Aβ(Ω), ρA(t)
]
+
− i∆αβ(Ω)

[
A†

α(Ω)Aβ(Ω), ρA(t)
] }

.

(12.83) me102d

Let us note that the last term is a commutator, so we denote

HLS =
1

~
∑
Ω

∑

α,β

∆αβ(Ω)A†
α(Ω)Aβ(Ω). (12.84) me103

Taking into account hermiticity of matrix ∆αβ(ω) and changing the names of the sum-

mation indices we can easily show that the operator HLS is hermitian. Returning to

full master equation, that is to Eq.(
me91
12.73), we conclude that the term containing HLS

in (
me102d
12.83) can be connected with the free hamiltonian term. In this manner connecting

Eqs.(
me91
12.73) and (

me102d
12.83) we finally have

d

dt
ρA(t) = − i

~
[
HA + HLS, ρA(t)

]

+
1

~2

∑
Ω

∑

α,β

Γαβ(Ω)
{

Aβ(Ω) ρA(t) A†
α(Ω)− 1

2

[
A†

α(Ω) Aβ(Ω), ρA(t)
]
+

}
,

(12.85) me106

which coincides exactly with the standard form of the evolution equation for the reduced

density operator rhoA(t) which describes the state of the subsystem A interacting with

reservoir B. This allows us to be sure that hermiticity, normalization and positivity of the

operator ρA(t) is indeed ensured. Finally let us remark that operator HLS which gives a

contribution to the hamiltonian (unitary) evolution, usually produces small shifts of the

eigenenergies of the subsystem A. That is why, in many practical applications, this term

is simply omitted. This explains our previous remark that matrix ∆αβ is less important

than Γαβ. Obviously one can construct operator HLS and investigate its influence on the

unperturbed energy levels of the subsystem A. Small energy shifts of eigenenergies of

subsystem A are qualitatively similar to the well-known Lamb shifts, which explains the

employed notation.
The obtained master equation (

me106
12.85) is an operator one. In practice, we frequently

need an equation of motion for the matrix elements of the reduced density operator ρA(t).

It seems to be natural to use the energy representation, that is to consider matrix elements

of ρA(t) calculated in the basis {| a 〉} of the eigenstates of the free hamiltonian HA (see

Eq.(
me44
12.32)). This will be done in the next section.

12.4.4 Energy representation

When analyzing master equation in the basis of the eigenstates of free hamiltonian We

must be careful. The reason is that the the commutator in (
me106
12.85) contains an additional
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term, namely the Lamb-shift hamiltonian. One may argue that this changes the hamil-

tonian and a new basis should be found (a basis in which HA + HLS is diagonal). We

will, however, proceed in the spirit of the perturbative approach. We will treat HLS as

a small perturbation which, at most, will yield small energy shifts. Therefore, the set

{|A 〉} of eigenstates of the unperturbed hamiltonian HA can be used as complete and

orthonormal basis. Working within this scheme we can easily construct master equation

(equation of motion) for matrix elements of the density operator for subsystem A. We

will suppress the index A since it should lead to no misunderstanding. Taking matrix

elements ρab(t) = 〈 a | ρA(t) | b 〉 and expanding the anticommutator term we obtain

d

dt
ρab(t) =− i

~
〈 a |[HA + HLS, ρ(t)

]| b 〉

+
1

~2

∑
Ω

∑

α,β

Γαβ(Ω)
{
〈 a |Aβ(Ω) ρ(t) A†

α(Ω)| b 〉

− 1
2
〈 a |A†

α(Ω) Aβ(Ω) ρ(t)| b 〉 − 1
2
〈 a |ρ(t) A†

α(Ω) Aβ(Ω)| b 〉
}

. (12.86) me112

The second term – last three ones – will be called a dissipative one and we will con-

centrate on its form. First we use expressions (
me45
12.33), (

me47
12.35) for operators Aα(Ω) and

A†
α(Ω). Then we consider three matrix elements. Necessary computations in the basis

of eigenstates of free hamiltonian HA are simple though a bit tedious, in some cases a

suitable changes of summation indices is necessary. The result of these calculations is as

followsme117

〈 a |Aβ(Ω) ρ(t) A†
α(Ω)| b 〉 =

=
∑
m,n

δ(ωma − Ω) δ(ωnb − Ω)〈 a |Aβ |m 〉〈n |A†
α | b 〉 ρmn(t), (12.87a)

〈 a |A†
α(Ω) Aβ(Ω) ρ(t)| b 〉 =

=
∑
m,n

δ(ωan − Ω) δ(ωmn − Ω)〈 a |A†
α |n 〉〈n |Aβ |m 〉 ρmb(t), (12.87b)

〈 a |ρ(t) A†
α(Ω) Aβ(Ω)| b 〉 =

=
∑
m,n

δ(ωmn − Ω) δ(ωbn − Ω)〈m |A†
α |n 〉〈n |Aβ | b 〉 ρam(t). (12.87c)

The computed matrix elements are plugged into equation (
me112
12.86) and perform summation

over frequency Ω. After some regrouping we find that

d

dt
ρab(t)

∣∣∣
d.

=
1

~2

∑

α,β

∑
m,n

{
Γαβ(ωma) δ(ωnb − ωma)〈 a |Aβ |m 〉〈 b |Aα |n 〉∗ ρmn(t)

− 1
2

Γαβ(ωan) δ(ωmn − ωan)〈n |Aβ |m 〉〈n |Aα | a 〉∗ ρmb(t)

− 1
2

Γαβ(ωmn) δ(ωbn − ωmn)〈n |Aβ | b 〉〈n |Aα |m 〉∗ ρam(t)
}

.(12.88)
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This expression is transformed further. In the first term we use the evenness of Kronecker

delta, while the presence of the deltas in the second and third term allows us to change

arguments in the elements of matrix Γαβ. Next, we denote

K(am, bn) =
1

~2

∑

α,β

Γαβ(ωma)〈 a |Aβ |m 〉〈 b |Aα |n 〉∗, (12.89) me119

Due to these facts we write formula (
me118b
12.88) as

d

dt
ρab(t)

∣∣∣
d.

=
∑
m,n

δ(ωma − ωnb) K(am, bn) ρmn(t)

− 1
2

∑
m,n

δ(ωmn − ωan) K(nm, na) ρmb(t)

− 1
2

∑
m,n

δ(ωbn − ωmn) K(nb, nm) ρam(t). (12.90)

Let us note the specific symmetry of this expression. Further analysis depends on whether

the eigenfrequencies of the hamiltonian HA are degenerate or not. We also note that

Kronecker delats in the second and third terms are correspondingly given as δ(ωmn−ωan) =

δ(ωma) and δ(ωbn − ωmn) = δ(ωbm), which allows one to perform summation over n.

However, one has to be careful because eigenfrequencies ωn can be degenerate.

12.4.5 Degenerate eigenfrequencies

Let us write the hamiltonian of the considered system A in the following form

HA =
∑
N

~ωN

gN∑
n=1

|Nn 〉〈Nn |, (12.91) me130

where N is the main quantum number which distinguishes energy levels (energy multi-

plets), while n = 1, 2, . . . , gN are subsidiary quantum numbers. Is is obvious that ωN 6= ωM

for N 6= M . Certainly the nondegenerate case follows immediately and it corresponds to

gN ≡ 1, then subsidiary quantum numbers are unnecessary and can be simply supressed.
In the degenerate case single indices appearing in equation (

me120
12.90) must be replaced

by corresponding pairs, for example a → Aa. Equation (
me120
12.90) is now rewritten as

d

dt
ρAaBb(t)

∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMA − ωNB) K(AaMm, BbNn) ρMmNn(t)

− 1
2

∑
Mm

∑
Nn

δ(ωMN − ωAN) K(NnMm,NnAa) ρMmBb(t)

− 1
2

∑
Mm

∑
Nn

δ(ωBN − ωMN) K(NnBb, NnMm) ρAaMm(t). (12.92)

One immediately sees that δ(ωMN−ωAN) = δ(ωMA) = δMA and similarly δ(ωBN−ωMN) =

δMB, where the last deltas are the simple Kronecker ones. The sum over M in the second
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term is trivial. We put M = A and we ”land within multiplet A”, hence we change

m = a′′. Analogously, in the second term M = B oraz m = b′′. Therefore, we have

d

dt
ρAaBb(t)

∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMA − ωNB) K(AaMm, BbNn) ρMmNn(t)

− 1
2

∑
Nn

∑

a′′
K(NnAa′′, NnAa) ρAa′′Bb(t)

− 1
2

∑
Nn

∑

b′′
K(NnBb, NnBb′′) ρAaBb′′(t). (12.93)

In two last terms matrix elements do not depend on quantum numers Nn, hence we can

denote

κ(Aa, Bb) =
∑
Nn

K(NnAa,NnBb). (12.94) me133

This allows us to write equation (
me133
12.94) in the form

d

dt
ρAaBb(t)

∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMA − ωNB) K(AaMm, BbNn) ρMmNn(t)

− 1
2

∑

a′′
κ(Aa′′, Aa) ρAa′′Bb(t) − 1

2

∑

b′′
κ(Bb,Bb′′) ρAaBb′′(t). (12.95)

Obviously fro the nondegenerate case ”small” indices play no role – they can be supressed.

Then, instead of equation (
me135
12.95) we get

d

dt
ρAB(t)

∣∣∣
d.

=
∑
M

∑
N

δ(ωMA − ωNB) K(AM, BN) ρMN(t)

− 1
2

[
κ(A,A) + κ(B, B)

]
ρAB(t), (12.96)

which is a nondegenerate analog of (
me135
12.95).

12.5 Auxiliary sections

12.5.1 Preservation of normalization

Any density operator, so also the reduced one for subsystem A must be normalized:

Tr A{ρA(t)} = 1. This requirement has a simple consequence

d

dt
Tr A{ρA(t)} = Tr A

{
d ρA(t)

dt

}
= 0. (12.97) mea02

Clearly the hamiltonian part (the commutator) preserves the trace, which follows from

cyclic property. Hence we must check the second – dissipative part of our ME. One may

ask at which stage of our derivation such a check should be made. In principle this can be

done at any stage. In this section we shall do so twice. Once for standard form (
me106
12.85),

and the for ME (
me135
12.95) in the energy basis.
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Standard form

Taking ME in its standard form (
me106
12.85) we need to compute the following trace

tS = Tr A

{∑
Ω

∑

α,β

[
Γαβ(Ω) Aβ(Ω) ρA(t) A†

α(Ω) − 1
2

Γαβ(Ω) A†
α(Ω) Aβ(Ω) ρA(t)

− 1
2

Γαβ(Ω) ρA(t) A†
α(Ω) Aβ(Ω)

]}
, (12.98)

and show that it vanishes, ie., tS = 0. The trace is s linear operation. so then

tS =
∑
Ω

∑

α,β

[
Γαβ(Ω) Tr A

{
Aβ(Ω) ρA(t) A†

α(Ω)
}
− 1

2
Γαβ(Ω) Tr A

{
A†

α(Ω) Aβ(Ω) ρA(t)
}

− 1
2

Γαβ(Ω) Tr A

{
ρA(t) A†

α(Ω) Aβ(Ω)
}]

. (12.99)

Cyclic property allows to see that all three traces are equal. Therefore, tS = 0 and we

conclude that preservation of the normalization for ME in the standard form is proved.

ME in energy basis

In this case we check the trace preservation for Eq.(
me135
12.95). Thus we must put Bb = Aa

(and consequently, in the last term we change b′′ → a′′). We need to compute

tS =
∑
Aa

d

dt
ρAaAa(t)

∣∣∣
d.

=
∑
Aa

∑
Mm,Nn

δ(ωAM − ωAN) K(AaMm, AaNn) ρMmNn(t)

− 1
2

∑
Aa

∑

a′′
κ(Aa′′, Aa) ρAa′′Aa(t)

− 1
2

∑
Aa

∑

a′′
κ(Aa,Aa′′) ρAaAa′′(t). (12.100)

In the first term we have δ(ωAM−ωAN) == δ(ωNM) = δNM ,. hence, M = N oraz n = m′.
We now find

tS =
∑
Aa

∑

Mm,m′
K(AaMm, AaMm′) ρMmMm′(t)

− 1
2

∑
Aa

∑

a′′
κ(Aa′′, Aa) ρAa′′Aa(t) − 1

2

∑
Aa

∑

a′′
κ(Aa,Aa′′) ρAaAa′′(t). (12.101)

In the first term we use definition of the parameter κ (see (
me133
12.94)). In the second one we

notice that indices a oraz a′′ concern the same multiplet A, so the summation range is

also the same. We can interchange a → a′′ and obtain

tS =
∑

Mm,m′
κ(Mm,Mm′) ρMmMm′(t)

− 1
2

∑
Aa

∑

a′′
κ(Aa,Aa′′) ρAaAa′′(t) − 1

2

∑
Aa

∑

a′′
κ(Aa,Aa′′) ρAaAa′′(t). (12.102)

The second and third terms are identical and cancel out with the first one (names of

summation indices are irrelevant). We have shown that in the energetic basis the trace

of the reduced density operator for subsystem A is preserved In other words the derived

ME preserves normalization.
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12.5.2 Hermiticity of the reduced density operator

The nect necessary property of any density operator is its hermiticity. If the equation of

motion for ρ†A(t) is identical with the similar equatin for ρA(t), then the same equations

must yield the same solutions, this means that ρ†A(t) = ρA(t) – hermiticity of the re-

duced density operator for subsystem A. Free evolution is given by the hamiltonian term

(−i/~) [HA + HLS, ρA(t) ] which poses no problems due to the commutator properties.

One need to investigate the dissipative part of ME. Bada wic trzeba pozosta, dyssypatywn

cz uzyskanego ME. As in the previous section we perform such a check for Me in standard

form and for the one in energy basis.

Standard form

We take the hermitian conjugate of the dissipative part of ME

d

dt
ρ†A(t)

∣∣∣
d.

= +
1

~2

∑
Ω

∑

α,β

{
Γ∗αβ(Ω) Aα(Ω) ρ†A(t) Aβ(Ω)

− 1
2

Γ∗αβ(Ω)
[
A†

β(Ω) Aα(Ω), ρ†A(t)
]
+

}
, (12.103)

because conjugate anticommutator is equal to the anticommutator of conjugated oper-

ators. We know (see (
me98
12.77)) that matrix Γαβ is hermitian. Interchanging the indices

α ↔ β we get

d

dt
ρ†A(t))

∣∣∣
d.

= +
1

~2

∑
Ω

∑

α,β

{
Γαβ(Ω) Aβ(Ω) ρ†A(t) Aα(Ω)

− 1
2

Γαβ(Ω)
[
A†

α(Ω) Aβ(Ω), ρ†A(t)
]
+

}
, (12.104)

We see that the equation of motion for ρ†A is identical with standard form (
me106
12.85) of ME.

Thus, ρ†A = ρA – hermiticity is preserved.

ME in energetic basis

Hermiticity of the density operator means that ρAaBb = ρ∗BbAa. It entails, that the equation

of motion for the element ρ∗BbAa must be the same as for ρAaBb. We say that we investigate

an equation of motion for ρ∗BbAa = 〈Bb | ρ |Aa 〉∗ = 〈Aa | ρ† |Bb 〉. So the equation of

motion for (ρ†)AaBb must be the same as for ρAaBb. Starting from ME (
me135
12.95) we look

for a corresponding equation for ρ∗BbAa. First we need to change the indices in (
me135
12.95)

(remebering that corresponding changes must be made for summation indices in all terms)

and then we perform complex conjugation. In this manner we find

d

dt
ρ∗BbAa(t)

∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMB − ωNA) K∗(BbMm,AaNn) ρ∗MmNn(t)

− 1
2

∑

b′′
κ∗(Bb′′, Bb) ρ∗Bb′′Aa(t) − 1

2

∑

a′′
κ∗(Aa, Aa′′) ρ∗BbAa′′(t).(12.105)

Next, we need to consider the conjugated quantities K∗ and κ∗. By definition (
me119
12.89)

δ(ωMA − ωNB)K(AaMm, BbNn) =

=
1

~2

∑

α,β

Γαβ(ωMA)〈Aa |Aβ |Mm 〉〈Bb |Aα |Nn 〉∗. (12.106)
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We take complex conjugates, use hermiticity of matrix Γαβ and we notice that the presence

of the Kronecker delta allows to change the argument in Γ. Interchanging the summation

indices α ↔ β we have

δ(ωMA − ωNB)K∗(AaMm, BbNn) =

=
1

~2

∑

α,β

Γαβ(ωNB)〈Bb |Aβ |Nn 〉〈Aa |Aα |Mm 〉∗. (12.107)

Comparing this relation with definition (
me119
12.89) we see that

δ(ωMA − ωNB)K∗(AaMm, BbNn) = δ(ωMA − ωNB)K(BbNn,AaMm). (12.108) meb06

We consider the parameter κ∗(Aa′′, Aa). In the above relation we substitute Aa → Nn,

Mm → Aa′′, Bb → Nn and Nn → Aa. Then

δ(ωAN − ωAN)K∗(NnAa′′, NnAa) = δ(ωAN − ωAN)K(NnAa, NnAa′′). (12.109) meb08

Obviously Kronecker deltas are equal to one, so they are unimportant. Using this result

in the definition (
me133
12.94) of the parametr κ we get

κ∗(Aa′′, Aa) =
∑
Nn

K∗(NnAa′′, NnAa) =
∑
Nn

K(NnAa, NnAa′′) = κ∗(Aa,Aa′′).

(12.110) meb10

Returning to the analysis of formula (
meb03c
12.105) we use the proven relations (

meb06
12.108) i

(
meb10
12.110). At the same time, in the first term in the right hand side we interchange

the summation indices Mm ↔ Nn. Moreover we recall that Kronecker delta is even.

Thus, we have

d

dt
ρ∗BbAa(t)

∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMA − ωNB) K(AaMm, BbNn) ρ∗NnMm(t)

− 1
2

∑

b′′
κ(Bb,Bb′′) ρ∗Bb′′Aa(t) − 1

2

∑

a′′
κ(Aa′′, Aa) ρ∗BbAa′′(t).(12.111)

Comparing this result with Eq.(
me135
12.95) we find that when in (

me135
12.95) we replace ρAaBb by

ρ∗BbAa (consequently in all the terms) then we will arrive at (
meb12
12.111). To see thais better

recall that ρ∗BbAa = (ρ†)AaBb and rewrite (
meb12
12.111) in the form

d

dt

[
ρ†(t)

]
AaBb

(t)
∣∣∣
d.

=
∑
Mm

∑
Nn

δ(ωMA − ωNB) K(AaMm, BbNn)
[
ρ†(t)

]
MmNn

− 1
2

∑

b′′
κ(Bb,Bb′′)

[
ρ†(t)

]
AaBb′′ − 1

2

∑

a′′
κ(Aa′′, Aa)

[
ρ†(t)

]
Aa′′Bb

.(12.112)

This equation is formally identical with Eq.(
me135
12.95), hence ρ = ρ†, what we intended to

show. Our ME preserve hermiticity of the reduced density operator of subsystem A.
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12.5.3 Transformation to interaction picture

In this section we consider the derivation of Eq. (
me05
12.5), the von Neumann equation

in the interaction picture. Moreover, we will show that the reduction of the density

operator is invariant with respect to the choice of the picture. We will also consider the

transformation from Schrödingera picture to the interaction one. For clarity, we will use

somewhat simplified notation, We consider an equation of motion

i~
d

dt
ρ(t) =

[
H0 + V, ρ(t)

]
. (12.113) mec01

Let us perform the transformation

%̃(t) = eiH0t/~ ρ(t) e−iH0t/~, (12.114) mec02

which can be easily inverted, to yield

ρ(t) = e−iH0t/~ %̃(t) eiH0t/~. (12.115) mec03

Inserting this relation into Eq.(
mec01
12.113) we get

i~
{ (

− i

~
H0

)
e−iH0t/~ %̃(t) eiH0t/~

+ e−iH0t/~
(

d

dt
%̃(t)

)
eiH0t/~

+e−iH0t/~ %̃(t)

(
i

~
H0

)
eiH0t/~

}

= ( H0 + V ) e−iH0t/~ %̃(t) eiH0t/~ − e−iH0t/~ %̃(t) eiH0t/~ ( H0 + V ) . (12.116)

We see that the terms containing H0 at both sides cancel out. As a result we are left with

i~ e−iH0t/~
(

d

dt
%̃(t)

)
eiH0t/~

= V e−iH0t/~ %̃(t) eiH0t/~ − e−iH0t/~ %̃(t) eiH0t/~ V. (12.117)

Multiplying at the left by eiH0t/~ and at the right by e−iH0t/~ we get

i~
d

dt
%̃(t) = eiH0t/~ V e−iH0t/~ %̃(t) − %̃(t) eiH0t/~ V e−iH0t/~. (12.118) mec06

Interaction operator is here transformed in an exactly the same way as specified in Eq.

(
mec02
12.114). So we define

Ṽ (t) = eiH0t/~ V e−iH0t/~, (12.119) mec07

which allows us to write Eq. (
mec06
12.118) as

i~
d

dt
%̃(t) =

[
Ṽ (t), %̃(t)

]
. (12.120) mec08
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Transformation (
mec02
12.114) or (

mec07
12.119) can be applied to any operator. We stress that we

made no assumptions concerning neither the structure of the space in which the oper-

ators act nor the structure of the operator space. Transformation from A to Ã(t) =

eiH0t/~ A e−iH0t/~, is called the transformation from Schrödinger picture to interaction

one. The free evolution is ”transformed out” only the influence of interaction remains.

This explains the adopted terminology.
Before proceeding further, let us note that the definition of the reduced density op-

erator and the definition (
mec02
12.114) of the transformation to the interaction picture imply

that the operator ρA(t) is expressed as

ρA(t) = Tr B{ρAB(t)} = Tr B

{
e−iH0t/~ %̃AB(t) eiH0t/~ }

. (12.121) mec09

We note that the free evolution of each of the subsystems written as

|ϕA(0) 〉 ⊗ |ψB(0) 〉 −→ |ϕA(t) 〉 ⊗ |ψB(t) 〉, (12.122) mec10a

can be expressed with the aid of the operator

exp

(
− i

~
H0t

)
= exp

(
− i

~
HAt

)
⊗ exp

(
− i

~
HBt

)
, (12.123) mec10b

because both hamiltonians are fully independent and commute. In Eq.(
mec09
12.121) we com-

pute the trace only over reservoir variables, so we can write

ρA(t) = e−iHAt/~ Tr B

{
e−iHBt/~ %̃AB(t) eiHBt/~ }

eiHAt/~. (12.124) mec11

Cyclic property of the trace yields

eiHAt/~ ρA(t) e−iHAt/~ = Tr B { %̃AB(t) } . (12.125) mec12

Left hand side represents the reduced density operator in the interaction picture (it de-

pends solely on the variables of the subsystem A). Hence, we have

%̃A(t) = Tr B { %̃AB(t) } . (12.126) mec13

This relation is formally identical with the definition of the reduced density operator in

the Schrödinger picture. The relation between the reduced density and the total one is the

same in both pictures. In other words, reduction of the operatora ρA(t) = Tr B { ρAB(t) },
is invariant with respect to the change of the pictures.

12.5.4 Two time scales and consequences

Order of magnitude of time TA

The key role in our considerations is played by the assumption that (
me18
12.14), to jest

warunek

τB ¿ ∆t ¿ TA. (12.127) med01
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In other words we assume that there exist two, quite distinst, time scales. Firstly, let us

try to estimate the time TA which characterizes the evolution of system A which is due

to the interaction with reservoir. To find such an estimate we use Eq. (
me41a
12.30), that is

∆ %̃A(t) =

(
1

i~

)2 ∫ t+∆t

t

dt1

∫ t1

t

dt2 Tr B

[
ṼAB(t1),

[
ṼAB(t2), %̃A(t)⊗ σ̄B

]]
. (12.128) med02

where we employed the discussed properties of the resevoir. We also recall that the main

contribution to the integrals comes from a thin belt (of width τB lying below the diagonal

t1 = t2. This allows us to estimate the integrand in the following way

Tr B

[
ṼAB(t1),

[
ṼAB(t2), %̃A(t)⊗ σ̄B

]] ∼ %̃A Tr B

{
Ṽ 2σ̄B

}
= V 2%̃A. (12.129) med03

Hence, left hand side of Eq.(
med02
12.128) is estimated by

∆%̃A

∆t
∼ 1

~2
τB V 2%̃A, (12.130) med04

because the area of the integration region is estimated by the product τB∆t (area of the

belt under the diagonal t1 = t2). Introduced parameter V characterizes the ”strength” of

the interaction between the reservoir and system A. The factoe which multiplies mnocy

%̃A in (
med04
12.130) has (according to (

me17
12.13)) the sense of the inverse of time TA. Therefore,

we obtain an estimate

1

TA

∼ V 2τB

~2
, lub TA ∼ ~2

V 2τB

. (12.131) med05

Condition for existence of two time scales

What is the condition of the existence of two time scales? The estimate of TA given in

(
med05
12.131) allows us to find such a condition. Let us look upon condition τB ¿ TA more

carefully and introduce the estimate (
med05
12.131). This yields

τB ¿ ~2

V 2τB

=⇒ V τB

~
¿ 1. (12.132) med06

The last inequality is the sought condition of existence of two time scales. If we denote

ΩAB = V/~, then we can write ΩABτB ¿ 1. So the interaction must be characterized by

such Bohr frequency ΩAB that during the time interval of magnitude of τB its influence

on system A is negligibly small.

Justification of weak coupling approximation

We already mentioned (see the discussion of Eq.(
me16
12.11)), it is possible to iterate von

Neumanna equation – accounting of higher order corrections would increase accuracy. We

can estimate these higher order terms in the same manner as done above. For example

for the third order term we have

∆%̃A

∆t

∣∣∣
(3)

∼ V 3

~3
τ 2
B %̃A, (12.133) med07
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because times t1, t2 oraz t3 must be close to each other (with accuracy of the order of τB).

Then the region of integration has volume of the order of τ 2
B∆t. Due to Eq.(

med05
12.131) we

get

∆%̃A

∆t

∣∣∣
(3)

∼ V τB

~
· 1

TA

%̃A ¿ 1

TA

%̃A, (12.134) med08

Since the condition (
med06
12.132) must hold. The obtained estimate shows that the third order

iteration (and similarly higher ones) are indeed negligible. Obviously this holds provided

the condition (
med06
12.132) holds and ensures the existence of two distinct time scales.

Neglecting ρcorel

Moving from Eq.(
me16
12.11) to (

me41a
12.30) we have neglected initial correlations between systems

A and B. These correlations built up at earlier moments t′ < t. This corresponds to

the assumption that at some earlier moment t0 (t0 < t) both systems were uncorrelated.

This happens, for example, when the interaction was switched on at an instant t0. So

the correlations described by %̃corel need time t − t0 to appear. If the correlations exist

(%corel 6= 0) then averaging of the term linear in interaction (as in expression (
me40
12.29))

Would not give zero. A wic %corel 6= 0 would result in the appearance of the linear term.

Moreover, this would also automatically modify the quadratic term in (
me41c
12.31). Let us

estimate the magnitude of this modification (which is due to earlier interaction)

∆%̃A

∆t
∼ 1

∆t

(
1

i~

)2 ∫ t

−∞
dt1

∫ t+∆t

t

dt2 〈 ṼAB(t1)ṼAB(t2) 〉B. (12.135) med09

The integrand contains correlation functions of the reservoir. Hence the integrand would

be practically zero for |t1− t2| ≥ τB. The integration runs effectively from t−τB to t+τB.

Therefore, using condition (
med05
12.131), we estimate

∆%̃A

∆t
∼ 1

∆t
· V 2

~2
τ 2
B =

V 2τB

~2
· τB

∆t
=

1

TA

· τB

∆t
, (12.136) med10

as the integrals are nonzero on the interval of the length of the order of τB. If τB ¿ ∆t

then the correction is small (main contribution to the evolution of %̃A is of the order of

1/TA, which is quite larger). The key assumption that τB ¿ ∆t allows us to conclude

that the correlations between system A and B which were built before moment t do not

significantly change the evolution of %̃A(t), their influence is restricted to the moments

from a very short interval (t, t − τB). New correlations, within a much longer interval

(t, t+∆t), are building up and have an effect on the evolution of %̃A(t). Initial correlations

have small significance and hence it is justified to neglect them.

Discussion of the secular approximation

Secular approximation consists in replacing the function F (Ω ′−Ω) (defined in (
me85
12.68)) in

(
me88
12.70) by Kronecker delta, which leads to Eq.(

me90
12.72). Our discussion of this replacement

does not rise any doubts when |Ω ′ −Ω| ¿ (∆t)−1, because then F (Ω ′ −Ω) is practically

unity. On the other hand for |Ω ′−Ω| À (∆t)−1 the function F (Ω ′−Ω) is practically zero.

The only problem is to justify the neglecting of the terms for which |Ω ′ − Ω| ∼ (∆t)−1.
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To explain this point, first use the fact that the free evolution of matrix elements ρab

is governed by

d

dt
ρ

(F )
ab = − i

~
〈 a |[HA, ρ(F )

]| b 〉 = − iωabρ
(F )
ab , (12.137) medd01

where the small Lamb shift (due to HLS is ignored. The solution is simple

ρ
(F )
ab (t) = e−iωabtρ

(F )
ab (0). (12.138) medd02

Now, we analyze the dissipative term which is given by (
me120
12.90). We do not discuss

the nuances connected with possible degeneracies. Obviously, we can write

ρmb =
∑

k

δbkρmk oraz ρam =
∑

k

δakρkm, (12.139) medd04

which we use in (
me120
12.90), moreover, we interchange indices k ↔ n in the second term and

similarly, in the third one we first interchange m ↔ n and then k ↔ m. The result is

d

dt
ρab(t)

∣∣∣
d.

=
∑
m,n

δ(ωma − ωnb) K(am, bn) ρmn(t)

− 1
2

∑

k,m,n

δbn δ(ωmk − ωak) K(km, ka) ρmn(t)

− 1
2

∑

k,m,n

δam δ(ωbk − ωnk) K(kb, kn) ρmn(t). (12.140)

We note that δbn implies b = n, and then ωnb = 0. Therefore

δbn δ(ωmk − ωak) = δbn δ(ωma) = δbn δ(ωma − ωnb), (12.141) medd08

since ωnb = 0 and changes nothing. Similarly we have

δam δ(ωbk − ωnk) = δam δ(−ωnb) = δbn δ(ωma − ωnb), (12.142) medd09

Finally, we note that δ(ωma−ωnb) = δ(ωab−ωmn), because Kronecker delta is even. After

hese manipulations Eq. (
medd07
12.140) can be written as

d

dt
ρab(t)

∣∣∣
d.

=
∑
m,n

δ(ωab − ωmn)
{

K(am, bn)− 1
2

δbn

∑

k

K(km, ka)

−1
2

δam

∑

k

K(kb, kn)
}

ρmn(t). (12.143)

The expression in braces is denoted as Mam,bn and we have

d

dt
ρab(t)

∣∣∣
d.

=
∑
m,n

δ(ωab − ωmn)Mam,bn ρmn(t). (12.144) medd13

This is a specific form of ME, but useful in the discussion. However, in the degenerate

case some care must be exercised and renewed considerations might be necessary.
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We proceed to the discussion of conditions and/or possibilities of neglecting the terms

for which |Ω ′ − Ω| ∼ (∆t)−1. Interaction with the reservoir certainly modifies the free

evolution of ρ
(S)
ab (t) = e−iωabtρ

(S)
ab (0) If Bohr frequencies of the oscillating elements ρab i

ρmn are such that |ωab−ωmn| À 1/TA, then mutual couplings between these elements are

quickly averaged to zero (interfere destructively) before time TA elapses and the influence

of interaction has enough time to affect the evolution. In other words, if |ωab−ωmn| differs

much from 1/TA then the coupling between corresponding matrix elements will have small

(weak) effect. This is the situation similar to the one encountered in perturbation theory.

Namely, when the energies |Ea − Eb| À Vab = 〈 a |V | b 〉 then the perturbation has small

(usually negligible) effect.
Since, by assumption TA À ∆t the discussed situation corresponds, in fact, to the

relation |ωab − ωcd| ∼ (∆t)−1. This, in turn means, that such terms have little influence

on the evolution of the operator ρA(t). Such terms are neglected while passing from Eq.

(
me88
12.70) to (

me90
12.72). Thus the last of our approximations is justified.

12.5.5 VAB = V †
Ab – nonhermiticity of operators Aα i Xα

In our considerations we have adopted the interaction hamiltonian between the system

A and reservoir B in the form VAB =
∑

α Aα ⊗Xα, where operators Aα and Xalpha does

not have to be hermitian. Certainly the full interaction hamiltonian must be hermitian,

so we conclude that it must contain operators Aα, Xα and their hermitian conjugates A†
α,

X†
α. Constructing linear combinations we can always transform the hamiltonian V AB

into VAB =
∑

α A
′
α ⊗X

′
α, where the primed operators are hermitian.

We shall illustrate this with a simple example. Let the interaction hamiltonian be of

the form

VAB = A⊗X† + A† ⊗X, (12.145) mee03

where operators A oraz X are nonhermitian, while the full hamiltonian is clearly hermi-

tian. We define new operators

q =
1√
2

(
A + A†), Q =

1√
2

(
X + X†),

p =
i√
2

(
A− A†), P =

i√
2

(
X −X†), (12.146)

which ar evidently hermitian. Expressing operators A, X and their conjugates we obtain

VAB = 1
2

(
q − ip

)⊗ (
Q + iP

)
+ 1

2

(
q + ip

)⊗ (
Q− iP

)

= q ⊗Q + p⊗ P. (12.147)

This interaction hamiltonian is expressed as a sum of products of hermitian operators.

Hence construction of the interaction hamiltonian with nonhermitian operators is allowed.

One can always build necessary combinations. However, in some practical applications it

is much more convenient to use nonhermitian operators than the linear combinations.

S.Kryszewski QUANTUM OPTICS 192



March 4, 2010 12. Master Equation 193

12.5.6 Vanishing average 〈Xα 〉B
In the main part of the lecture we assumed that Eq.(

me37
12.27) holds, that is the average

〈Xα 〉B ≡ Tr B {Xα ρB(t) } = 0. We have stated that it is not really restrictive. We will

show that it is true. This is so, because we can always shift the energy scale. To see this,

let us write

V
′

AB =
∑

α

Aα ⊗
(
Xα − 〈Xα 〉B

)

=
∑

α

Aα ⊗Xα −
∑

α

〈Xα 〉B
(
Aα ⊗ 1B

)
, (12.148)

where 〈Xα 〉B = Tr B{σ̄BXα} is a number not necessarily equal to zero. Then we have

〈V ′
AB 〉B =

∑
α

Aα

(〈Xα 〉B − 〈Xα 〉B
)

= 0, (12.149) mef2

which holds no matter whether numbers 〈Xα 〉B are zeroes or not. Full hamiltonian can

then be written as

HAB = HA ⊗ 1B + 1A ⊗HB + VAB

= HA ⊗ 1B + 1A ⊗HB + V
′

AB +
∑

α

〈Xα 〉B
(
Aα ⊗ 1B

)

=
[
HA +

∑
α

〈Xα 〉BAα

]⊗ 1B + 1A ⊗HB + V
′

AB. (12.150)

Rescaled interaction term (the last one) has zero average (as in (
mef2
12.149)). This is achieved

be the redefinition of the energy scale in system A – via redefinition of the hamiltonian

HA. We conclude that the assumption that the averages (
me37
12.27) vanish is not really

restrictive, but simplifies the computations.

12.5.7 Commutators of operators Aα(Ω)

In the main sections we have introduced the operators

Aα(Ω) =
∑

a,b

δ(ωba − Ω) | a 〉〈 a |Aα | b 〉〈 b |. (12.151) meg01

The hamiltonian of system A is of the form

HA =
∑

n

~ωn|n 〉〈n |. (12.152) meg02
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It is not difficult to find the commutator
[
HA, Aα(Ω)

]
. Directly from the definition we

obtain[
HA, Aα(Ω)

]
=

[∑
n

~ωn|n 〉〈n |,
∑

a,b

δ(ωba − Ω) | a 〉〈 a |Aα | b 〉〈 b |
]

=
∑

a,b,n

~ωn δ(ωba − Ω)
{

δna|n 〉〈 a |Aα | b 〉〈 b | − δnb| a 〉〈 a |Aα | b 〉〈n |
}

=
∑

a,b

~(ωa − ωb) δ(ωba − Ω)| a 〉〈 a |Aα | b 〉〈 b |

= − ~Ω
∑

a,b

δ(ωba − Ω)| a 〉〈 a |Aα | b 〉〈 b |

= −~ΩAα(Ω), (12.153)

which ends the calculation. Conjugation changes sign, so that
[
HA, A†

α(Ω)
]

= ~ΩA†
α(Ω). (12.154) meg04

Heisenberg equation of motion follows from formula (
meg03
12.153), and it is

i~
d

dt
A(H)

α (Ω) =
[
A(H)

α (Ω), HA

]
= ~ΩA(H)

α (Ω). (12.155) meg05

After integration we obtain A
(H)
α (Ω) = eiΩtAα(Ω) which agrees with (

me55
12.42). Finally, we

present one more relation
[
HA, A†

α(Ω)Aβ(Ω)
]

= A†
α(Ω)

[
HA, Aβ(Ω)

]
+

[
HA, A†

α(Ω)
]
Aβ(Ω) = 0, (12.156) meg09

which follows immediately from the derived results.

12.5.8 Additional properties of correlation functions Ḡαβ(τ)

Correlation function of the reservoir was defined in (
me62
12.48) or (

me65f
12.55). By assumption,

reservoir hamiltonian HB and the corresponding density operator σ̄B commute, so they

have a common set of complete and orthonormal eigenstates | z 〉. Let us calculate the

trace in (
me65f
12.55) in chosen basis

Ḡαβ(τ) = Tr B

{
X̃α†(τ) Xβ σ̄B

}
= Tr B

{
eiHBτ/~ X†

α e−iHBτ/~ Xβ σ̄B

}

=
∑

z,ξ

〈 z | eiHBτ/~ X†
α e−iHBτ/~ | ξ 〉〈 ξ |Xβ σ̄B | z 〉 (12.157)

In Eq.(
me23b
12.19) we denoted the eigenvalues of σ̄B by p(z), hence

Ḡαβ(τ) =
∑

z,ξ

p(z) eiωzξτ 〈 z |X†
α | ξ 〉〈 ξ |Xβ | z 〉, (12.158) meh03

with ωz = Ez/~, and ωzξ = ωz − ωξ.
Expression (

meh03
12.158) shows that the correlation function Ḡαβ(τ) is a complicated su-

perposition of functions which oscillate with Bohr frequencies ωzξ. Reservoir is assumed

to be large, the discussed frequencies are are densely space (quasi-continuous). If time τ

is sufficiently large the oscillations interfere destructively (average out to zero). We can

expect that reservoir correlation function decay quickly when time τ = t1 − t2 increases.

Characteristic decay time is denoted by τB and assumed to be, by far, the shortest time

characterising the system A+ B. When τ > τB the correlation may be neglected.
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12.5.9 Positivity of the matrix Γαβ(Ω)

12.5.10 Calculation of matrix elements ∆αβ(Ω)

12.5.11 Evolution
[
HA + HLS, ρA(t)

]

12.6 Summary

In this summary we describe practical steps neede in the construction of the ME for

specified physical systems.
The first step consists in precise definition of the system A and of the reservoir B.

We need to specify their free hamiltonians HA and HB and (at least sometimes) their

eigenenergies and eigenstates. Then we define the interaction hamiltonian in the form

VAB =
∑

α

Aα ⊗Xα =
∑

α

A†
α ⊗X†

α, (12.159) mep01

where Aα, Xα are (correspondingly) operators of system A and reservoir. We stress that

these operator do not need to be (separately) hermitian. It suffices that the full interaction

hamiltonian is hermitian. We also need to specify the density operator σ̄B describing the

state of the reservoir. It is worth remembering that operator HB and σ̄B commute. This

implies that the reservoir is in the stationary state. In the second step of ME construction

we build (identify) the following operators

Aα(Ω) =
∑

a,b

δ(ωba − Ω) | a 〉〈 a |Aα | b 〉〈 b |. (12.160) mep02

The following matrix elements are computed in the third step

Wαβ(Ω) =

∫ ∞

0

dτ eiΩτ Ḡαβ(τ) =

∫ ∞

0

dτ eiΩτ Tr B

{
X̃†

α(τ) Xβσ̄B

}
. (12.161) mep03

They are seen to be partial Fourier transform of the reservoir correlation functions. Reser-

voir operatora are taken in the interaction picture

X̃α(t) = eiHBt/~ Xα e−iHBt/~. (12.162) mep04

Matrix elements Wαβ(Ω) are then employed to construct two hermitian matrices

Γαβ(Ω) = Wαβ(Ω) + W ∗
βα(Ω), ∆αβ(Ω) =

1

2i

[
Wαβ(Ω) − W ∗

βα(Ω)
]
. (12.163) mep05

We note that matrix Γαβ(Ω) is positive-definite and can be computed directly as Fourier

transform

Γαβ(Ω) =

∫ ∞

−∞
dτ eiΩτ Tr B

{
X̃†

α(τ)Xβσ̄B

}
=

∫ ∞

−∞
dτ eiΩτ Ḡαβ(τ). (12.164) mep06a

Matrix Γαβ(Ω), in practical applications, is more important than ∆αβ(Ω). Explanation

will be given later. The separate expression for elements ∆αβ(Ω) is

∆αβ(Ω) =
1

2i

[∫ ∞

0

dτ eiΩτ Tr B

{
X̃†

α(τ)Xβσ̄B

} −
∫ ∞

0

dτ e−iΩτ Tr B

{
X†

αX̃β(τ)σ̄B

}]
.
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(12.165) mep6b

Hence, calculation of matrix Wαβ(Ω) can be usually omitted
Final construction of the proper ME is the fourth and the last step. The above given

quantities allow us to write the ME as

d

dt
ρA(t) = − i

~
[
HA + HLS, ρA(t)

]

+
1

~2

∑
Ω

∑

α,β

Γαβ(Ω)
{

Aβ(Ω) ρA(t) A†
α(Ω) − 1

2

[
A†

α(Ω) Aβ(Ω), ρA(t)
]
+

}
,(12.166)

where the so-called Lamb-shift hamiltonian HLS is given as

HLS =
1

~
∑
Ω

∑

α,β

∆αβ(Ω)A†
α(Ω)Aβ(Ω). (12.167) mep08

Energy shifts of the system A which are due to the presence of HLS in the hamiltonian

part , are usually quite small and frequently negligible. This explains why the role of

matrix ∆αβ is usually less important than that of matrix Γαβ.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Appendix A

Fourier transformsap:ff

A.1 Time–frequency Fourier transforms

A.1.1 Definition of the pair of Fourier transforms

Time–frequency Fourier transforms are essentially one–dimensional. Therefore we define

a pair of Fourier transforms similarly as in the main text (see Eqs.(
ano13
8.19)), and we writez1ftdef

F (ω) =

∫ ∞

−∞

dt√
2π

eiωt f(t), (A.1a)

f(t) =

∫ ∞

−∞

dω√
2π

e−iωt F (ω). (A.1b)

These equation can be formally written asz1ftform

F [f ] = F (ω) =

∫ ∞

−∞

dt√
2π

eiωt f(t), (A.2a)

F−1[F ] = f(t) =

∫ ∞

−∞

dω√
2π

e−iωt F (ω). (A.2b)

In the forthcoming we will briefly discuss some of the most important properties of one–

dimensional (time–frequency) Fourier transforms.

A.1.2 Dirac’s delta function and its Fourier transform

Let f(t) = δ(t). Then, according to definition (
z1ftform
A.2), we note that

F−1[δ] =

∫ ∞

−∞

dt√
2π

eiωt δ(t) =
1√
2π

, (A.3) z1ftdel

which, after substitution into the definition (
z1ftdefb
A.1b) yields

δ(t) =
1√
2π

∫ ∞

−∞

dω√
2π

e−iωt. (A.4) z1delft

Relation (
z1delft
A.4) is best remembered in the form

2π δ(t) =

∫ ∞

−∞
dω e±iωt. (A.5) z1rem

S.Kryszewski QUANTUM OPTICS 200



March 4, 2010 Math. App. A. Fourier transforms 201

We note, that both signs are allowed in the exponential under the integral in (
z1rem
A.5). This

is so, because we can easily replace ω by −ω in the integral in rhs of (
z1delft
A.4). Since both

variables t and ω are mathematically equivalent, we can formally write

F [1] =

∫ ∞

−∞

dt√
2π

eiωt =
√

2π δ(ω). (A.6) z1ftun

It may be worth remarking that the above relation for Dirac’s delta function can be

intuitively explained as follows

F (0) = lim
ε→0

F (ε) = lim
ε→0

∫ ∞

−∞

dt√
2π

eiεtf(t)

= lim
ε→0

∫ ∞

−∞

dt√
2π

eiεt

∫ ∞

−∞

dω√
2π

e−iωt F (ω)

=

∫ ∞

−∞

dω√
2π

F (ω)

∫ ∞

−∞

dt√
2π

e−iωt. (A.7)

From this we easily conclude that relation (
z1rem
A.5) follows immediately. This train of thought

explains the above relationships between Fourier transforms of delta function and unit

function.

A.1.3 Basic properties of Fourier transformation

z1th:fre Theorem A.1 If function f(t) is real, then the Fourier transform satisfies the relation

F ∗(ω) = F (−ω). (A.8) z1fre

Proof. We compute the complex conjugate of the Fourier transform. From the definition

(
z1ftdefa
A.1a) we get

F ∗(ω) =

∫ ∞

−∞

dt√
2π

e−iωt f(t) =

∫ ∞

−∞

dt√
2π

ei(−ω)t f(t) = F (−ω). (A.9) z1fre1

which ends the proof.

z1th:fremin Theorem A.2 If function f(t) is real, then the Fourier transform of f(−t) is

F [f(−t)] = F (−ω) = F ∗(ω). (A.10) z1fremin

Proof. We compute the Fourier transform as in the definition, and we get

F [f(−t)] =

∫ ∞

−∞

dt√
2π

eiωt f(−t). (A.11) z1fremin1

We change the integration variable t → −t′, and we obtain

F [f(−t)] =

∫ ∞

−∞

dt′√
2π

e−iωt′ f(t′) = F (−ω). (A.12) z1fremin2

Since F (−ω) = F ∗(ω), the proof is completed.
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z1th:freoe Theorem A.3 If function f(t) is real and either even or odd, then the Fourier transform

of f(t) is also either even or odd.

Proof. From previous theorems we have

F [f(±t)] = F (±ω), (A.13) z1freoe1

so it is obvious that the symmetry of f(t) is inherited by the Fourier transform F (ω).
The convolution of two functions f(t) and g(t) is defined as

(f ∗ g)(t) =

∫ ∞

−∞

dt′√
2π

f(t− t′) g(t′) =

∫ ∞

−∞

dt′√
2π

f(t′) g(t− t′). (A.14) z1condef

Symmetry of the convolution summarized in the second equality, follows by a straightfor-

ward change of integration variables.

z1th:contr Theorem A.4 Fourier transform of the convolution is equal to the product of the trans-

forms, that is

F [f ∗ g] (ω) =

∫ ∞

−∞

dt√
2π

eiωt

∫ ∞

−∞

dt′√
2π

f(t− t′) g(t′) = F (ω) G(ω). (A.15) z1contr

Proof. We transform the convolution

F [(f ∗ g)] (ω) =

∫ ∞

−∞

dt√
2π

eiωt

∫ ∞

−∞

dt′√
2π

f(t− t′) g(t′), (A.16) z1contr1

where we change the integration variables. Instead of t we take τ = t− t′, while we leave

t′ unchanged. Thus we get

F [(f ∗ g)] (ω) =

∫ ∞

−∞

dτ√
2π

eiω(τ+t′)
∫ ∞

−∞

dt′√
2π

f(τ) g(t′)

=

∫ ∞

−∞

dτ√
2π

eiωτf(τ)

∫ ∞

−∞

dt′√
2π

eiωt′g(t′)

= F (ω)G(ω). (A.17)

which ends the proof.

z1th:prodtr Theorem A.5 A transform of a product of two functions is a convolution of transforms,

that isz1prodtr

F [fg] =

∫ ∞

−∞

dt√
2π

eiωt f(t)g(t) (A.18a)

=

∫ ∞

−∞

dω′√
2π

F (ω′)G(ω − ω′) (A.18b)

=

∫ ∞

−∞

dω′√
2π

F (ω − ω′)G(ω′) = [ F ∗G ] (ω). (A.18c)
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Proof. We substitute Fourier transforms of both functions according to (
z1ftdefa
A.1a) into

right-hand side of (
z1prodtra
A.18a), which yieldsz1prtr

F [fg] =

∫ ∞

−∞

dt√
2π

eiωt

∫ ∞

−∞

dω′√
2π

e−iω′t F (ω′)
∫ ∞

−∞

dω′′√
2π

e−iω′′t G(ω′′)(A.19a)

=
1

(2π)2/3

∫ ∞

−∞
dω′ F (ω′)

∫ ∞

−∞
dω′′ G(ω′′)

∫ ∞

−∞
dt ei(ω−ω′−ω′′)t. (A.19b)

According to Eq.(
z1rem
A.5) the last integral (over time) gives a factor 2πδ(ω− ω′− ω′′) which

we substitute, and arrive at the equation

F [fg] =
1√
2π

∫ ∞

−∞
dω′ F (ω′)

∫ ∞

−∞
dω′′ G(ω′′) δ(ω − ω′ − ω′′). (A.20) z1prtr2

Integration over dω′′ gives the convolution as defined in (
z1prodtrb
A.18b). Thus, the first part of

the theorem (
z1prodtrc
A.18c) is proved. The second relation (i.e., (

z1prodtrc
A.18c)) may proved in two

ways. The first proof follows if we integrate in (
z1prtr2
A.20) over dω′ instead of dω′′. The second

proof consists in the change of integration variable in (
z1prodtrb
A.18b). We take ω′′ = ω − ω′.

Then (
z1prodtrc
A.18c) follows immediately.

Let us assume that certain function f(t) has the property

lim
t→±∞

dn

dtn
f(t) = 0. (A.21) z1fprop

for the integer n sufficiently large. Then we can formulate the following theorem.

z1th:dertr Theorem A.6 The Fourier transform of the derivative is given as followsz1dertr

F
[
dnf(t)

dtn

]
=

∫ ∞

−∞

dt√
2π

eiωt dn

dtn
f(t) (A.22a)

= (−iω)n

∫ ∞

−∞

dt√
2π

eiωt f(t) (A.22b)

= (−iω)n F (ω). (A.22c)

Proof. Integrating by parts in the rhs of Eq.(
z1dertra
A.22a) sufficient number of times, we

take into account property (
z1fprop
A.21). We see that the boundary terms vanishes in each step

of partial integration. Thus, we obtain Eq.(
z1dertrb
A.22b). Recognizing the transform of the

function f(t) we immediately obtain (
z1dertrc
A.22c), which completes the proof.

Finally, let us note that differentiating definition (
z1ftdefb
A.1b) n times with respect to time

we obtain

dn

dtn
f(t) =

∫ ∞

−∞

dω√
2π

(−iω)n e−iωt F (ω). (A.23) z1ftdd

from which (
z1dertrc
A.22c) follows immediately.

We define norms of the functions in time and frequency domains

||f(t)||2 =

∫ +∞

−∞
dt |f(t)|2, ||F (ω)||2 =

∫ +∞

−∞
dω |F (ω)|2. (A.24) z1normdef
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z1th:parth Theorem A.7 (Parseval – Plancherel) The norms of the pair of Fourier transforms

in time and frequency domains are equal, that is

||f ||2 = ||F ||2, (A.25) z1parth

where function f(t) and F (ω) are connected by relations (
z1ftdef
A.1).

Proof. We simply compute the norm in time domain

||f(t)||2 =

∫ +∞

−∞
dt f(t)f ∗(t)

=

∫ +∞

−∞
dt

∫ ∞

−∞

dω1√
2π

e−iω1t F (ω1)

∫ ∞

−∞

dω2√
2π

eiω2t F ∗(ω2)

=
1

2π

∫ +∞

−∞
dω1

∫ +∞

−∞
dω2 F (ω1) F ∗(ω2)

∫ +∞

−∞
dt e−i(ω1−ω2)t. (A.26)

The time integral yields 2πδ(ω1−ω2), as it follows from Eq.(
z1rem
A.5). Hence, the last integral

easily gives the norm of the transform F (ω), and the theorem is proved.

A.1.4 Pseudo-convolution. An auxiliary integral

We define ”pseudo-convolution” as

K[fg](t) =

∫ ∞

−∞

dt′√
2π

f(t + t′) g∗(t′). (A.27) z1pscon1

We investigate some properties of this integral.

z1th:pscon1 Theorem A.8 Pseudo-convolution can be expressed as

K[fg](t) =

∫ ∞

−∞

dt′√
2π

f(t + t′) g∗(t′) =

∫ ∞

−∞

dt′√
2π

f(t′) g∗(t′ − t). (A.28) z1pscon2

Proof. The proof follows by introduction of a new integration variable t′′ = t+ t′. Hence

t′ = t′′ − t and we obtain

K[fg](t) =

∫ ∞

−∞

dt′′√
2π

f(t′′) g∗(t′′ − t), (A.29) z1pscon3

which completes the proof.
The expression (

z1pscon2
A.28) for the pseudo-convolution should be compared to the definition

(
z1condef
A.14) for convolution.

z1th:pscon2 Theorem A.9 Fourier transform of the pseudo-convolution is given as

K[fg](ω) =

∫ ∞

−∞

dt√
2π

eiωt K[fg](t) = F (ω) G∗(ω), (A.30) z1pscon4

so it is the same as for true convolution.

S.Kryszewski QUANTUM OPTICS 204



March 4, 2010 Math. App. A. Fourier transforms 205

Proof. The proof follows by direct calculation from the definition

K[fg](ω) =

∫ ∞

−∞

dt√
2π

eiωt

∫ ∞

−∞

dt′√
2π

f(t + t′) g∗(t′)

=

∫ ∞

−∞

∫ ∞

−∞

dt dt′

2π
eiωt f(t + t′) g∗(t′). (A.31)

Inserting Fourier transforms for functions f(t) and g∗(t) we get

K[fg](ω) =

∫ ∞

−∞

∫ ∞

−∞

dt dt′

2π
eiωt

∫ ∞

−∞

dω′√
2π

e−iω′(t+t′) F (ω′)
∫ ∞

−∞

dω′′√
2π

eiω′′t′ G∗(ω′′)

=

∫ ∞

−∞

∫ ∞

−∞

dω′ dω′′

2π
F (ω′) G∗(ω′′)

∫ ∞

−∞

dt√
2π

e−i(ω−ω′)t
∫ ∞

−∞

dt′√
2π

ei(ω′′−ω′)t′ (A.32)

Employing fourier transforms of the delta function (
z1rem
A.5), we obtain

K[fg](ω) =

∫ ∞

−∞

∫ ∞

−∞

dω′ dω′′

2π
F (ω′) G∗(ω′′)

√
2π δ(ω − ω′)

√
2π δ(ω′′ − ω′)

=

∫ ∞

−∞
dω′ F (ω′) G∗(ω′) δ(ω − ω′) = F (ω) G∗(ω) (A.33)

which completes the proof.
We summarize the results of this subsection by writing pair of Fourier transforms.

Firstly, the Fourier transform of the pseudo-convolution is the product of Fourier trans-

forms (similarly as for a true convolution), as it follows from (
z1pscon7
A.33):z1pscon8

∫ ∞

−∞

dt√
2π

eiωt

[ ∫ ∞

−∞

dt′√
2π

f(t + t′) g∗(t′)
]

(A.34a)

=

∫ ∞

−∞

dt√
2π

eiωt

[ ∫ ∞

−∞

dt′√
2π

f(t′) g∗(t′ − t)

]
= F (ω) G∗(ω). (A.34b)

Similarly, the inverse transform can be written asz1pscon9 ∫ ∞

−∞

dω√
2π

e−iωt F (ω) G∗(ω) (A.35a)

=

∫ ∞

−∞

dt′√
2π

f(t + t′) g∗(t′) =

∫ ∞

−∞

dt′√
2π

f(t′) g∗(t′ − t) (A.35b)

The last relations can be easily proved in a manner similar as above.

A.1.5 Properties of the Lorentzian curve

We define a Lorentzian as a frequency dependent function

L(ω) =
Γ/π

(ω − ω0)2 + Γ2
, (A.36) z1lordef

with ω0 and Γ being real positive parameters. We intend to compute the Fourier transform

l(t) =

∫ ∞

−∞

dω√
2π

e−iωt L(ω) =

∫ ∞

−∞

dω√
2π

e−iωt Γ/π

(ω − ω0)2 + Γ2
. (A.37) z1lortr1
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We separate the denominator into two factors

l(t) =

∫ ∞

−∞

dω√
2π

e−iωt Γ/π

[(ω − ω0) + iΓ] [(ω − ω0)− iΓ]
. (A.38) z1lortr2

The integrand has two simple poles ω1 = ω0 − iΓ and ω2 = ω0 + iΓ. Hence, our integral

becomes

l(t) =
Γ

π

∫ ∞

−∞

dω√
2π

e−iωt

(ω − ω1) (ω − ω2)
. (A.39) z1lortr3

Such an integral can be computed via the residue theory. Thus, we see that the problem

of evaluation of integral (
z1lortr3
A.39) reduces to the proper choice of the integration contour.

Im(ω)

Re(ω)

t < 0

t > 0

Fig. A.1: Typical integration contour
for evaluation of the Fourier transforms
over frequency. f:aintcon01

Let ω = α + iβ, then e−iωt = e−i(α+iβ)t =

e−iαt+βt. Therefore we easily conclude that

• For time t > 0 convergence of the inte-

gral requires β < 0. This, in turn implies

that ω should lie within the lower half-

plane (Im(ω) = β < 0.

• On the other hand, when time t < 0

, by the same argument of convergence

we should have β > 0. So, in this case,

ω should lie within the upper halfplane

(Im(ω) = β > 0.

The integration contours appropriate for both

case are presented in Fiq.(
f:aintcon01
A.1) Jordan lemma

ensures that the integrals along the arcs in

lower (for t > 0) or upper halfplanes (for t < 0)

tend to zero when their radius tends to infin-

ity. The remaining integrals along the real axis

reduce to the sought integrals over real axis.

Hence, for time t > 0 we choose the contour in

the lower half plane. The contour includes only one pole, namely ω1 = ω0 − iΓ. We also

note that this contour has negative direction. Then by means of the residue theory we

obtain

l(t) = −2πi
1√
2π

(
Γ

π

)
e−iω1t

ω1 − ω2

=
1√
2π

e−(Γ+iω0)t. (A.40) z1lortr4

Similarly, for t < 0 we close the contour in the upper halfplane. The contour again

includes only one pole ω2 = ω0 + iΓ, and has positive direction. The residue theory yields

in this case

l(t) = 2πi
1√
2π

(
Γ

π

)
e−iω2t

ω2 − ω1

=
1√
2π

e−(Γ−iω0)|t|, (A.41) z1lortr5
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where we note the presence of the modulus of time in the last exponential. We can write

Eqs.(
z1lortr4
A.40) and (

z1lortr5
A.41) as a single relation, in which we use the Heaviside functions to

denote the corresponding time domains

l(t) =
θ(t)√

2π
e−(Γ+iω0)t +

θ(−t)√
2π

e(Γ−iω0)t, (A.42) z1lortr6

where the absolute value of time t is already not necessary. Combining relations (
z1lortr1
A.37)

and (
z1lortr6
A.42), we finally havez1lortr

l(t) =

∫ ∞

−∞

dω√
2π

e−iωt Γ/π

(ω − ω0)2 + Γ2
(A.43a)

=
1√
2π

e−Γ|t| e−iω0t, (A.43b)

=
θ(t)√

2π
e−(Γ+iω0)t +

θ(−t)√
2π

e(Γ−iω0)t, (A.43c)

which completes the computation of the Fourier transform of the Lorentzian (
z1lordef
A.36).

For pedagogical reasons it is useful to consider the inverse integral, that is the Fourier

transform

L(ω) =

∫ ∞

−∞

dt√
2π

eiωt l(t), (A.44) z1lortr7

with l(t) taken as in the right hand side of (
z1lortr
A.43). Substituting l(t) into Fourier integral

(
z1lortr7
A.44) we obtain

L(ω) =

∫ ∞

−∞

dt√
2π

eiωt θ(t)√
2π

e−(Γ+iω0)t +

∫ ∞

−∞

dt√
2π

eiωt θ(−t)√
2π

e(Γ−iω0)t. (A.45) z1lortr8

Simplifying, and taking into account properties of the Heaviside function, we arrive at

the expression

L(ω) =
1

2π

∫ +∞

0

dt eiωt e−(Γ+iω0)t +
1

2π

∫ 0

−∞
dt eiωt e(Γ−iω0)t. (A.46) z1lortr9

In the second integral we change the integration variable t → −t′, and we obtain

L(ω) =
1

2π

∫ +∞

0

dt e−[Γ+i(ω0−ω)]t +
1

2π

∫ +∞

0

dt e−[Γ−i(ω0−ω)]t. (A.47) z1lortr10

The obtained integrals are complex conjugates, therefore we can write

L(ω) =
1

2π
2 Re

∫ +∞

0

dt e−[Γ+i(ω0−ω)]t

=
1

π
Re

1

Γ− i(ω0 − ω)
=

(
Γ

π

)
1

Γ2 + (ω0 − ω)2
. (A.48)

as it should be for the Fourier transforms l(t) and L(ω).
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We shall prove another extremely useful property of the Lorentzian. Let us consider

an integral

I =

∫ ∞

−∞
dω

(Γ1/π)

(ω − ω1)2 + Γ2
1

(Γ2/π)

(ω − ω2)2 + Γ2
2

. (A.49) z1lor1

First, we note that this integral is proportional to the convolution of two Lorentzians. This

can be shown by changing the integration variable. Instead of ω we take ω′ = ω−ω1, and

we obtain

I =

∫ ∞

−∞
dω′

(Γ1/π)

ω′2 + Γ2
1

(Γ2/π)

[(ω2 − ω1)− ω′]2 + Γ2
2

. (A.50) z1lor2

We see, that apart of the factor (2π)−1/2, the obtained integral indeed is a convolution of

two Lorentzians. Eq.(
z1lor2
A.50) can thus, be written as

I =
√

2π ( L1 ∗ L2) (Ω), (A.51) z1lor3

with Ω = ω2 − ω1, and other notation following by comparison of the right hand sides of

two last equations.
According to theorem (

z1th:prodtr
A.5) the convolution of the transforms is a transform of the

product. Adopting the notation as in Eq.(
z1lortr
A.43) to the present case we get

I =
√

2π ( L1 ∗ L2) (Ω) =
√

2π

∫ ∞

−∞

dt√
2π

eiωt l1(t) l2(t)

=
√

2π

∫ ∞

−∞

dt√
2π

eiωt

[
θ(t)√

2π
e−Γ1t +

θ(−t)√
2π

eΓ1t

]

×
[

θ(t)√
2π

e−(Γ2+iΩ)t +
θ(−t)√

2π
e(Γ2+iΩ)t

]
. (A.52)

Since θ(t) θ(−t) = 0, we obtain

I =

∫ ∞

−∞

dt√
2π

eiωt

[
θ(t)√

2π
e−[(Γ1+Γ2)+iΩ]t +

θ(−t)√
2π

e[(Γ1+Γ2)+iΩ]t

]
. (A.53) z1lor5

We recognize the Fourier transform of the Lorentzian (cf. (
z1lortr
A.43)), and we have

I =
(Γ1 + Γ2)/π

(Γ1 + Γ2)2 + Ω2
. (A.54) z1lor6

Connecting equations (
z1lor1
A.49) and (

z1lor6
A.54) we finally have the following result

∫ ∞

−∞
dω

(Γ1/π)

(ω − ω1)2 + Γ2
1

(Γ2/π)

(ω − ω2)2 + Γ2
2

=
(Γ1 + Γ2)/π

(Γ1 + Γ2)2 + (ω2 − ω1)2
, (A.55) z1lorf

so we can say that a convolution of two Lorentzians is proportional to a Lorentzian. This

result can also be obtained by a direct computation of the integral in the left hand side

of Eq.(
z1lorf
A.55). However, usage of Fourier transforms greatly simplifies things, since direct

integration is pretty complicated.
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A.1.6 Sochocki formulas and related topics

Principal value of the integral

We define the principal value of the integral (shortly, principal value) by the relation

Vp

∫ ∞

−∞
dx ϕ(x) = lim

ε→0+

[∫ −ε

−∞
+

∫ ∞

ε

]
dx ϕ(x), (A.56) sf01

which exists for some functions, and does not for some other ones. For example, function

1/x is divergent at x = 0 and thus, is nonitegrable. We will show that the principal value

for ϕ(x) = 1/x exists. Indeed

Vp

∫ ∞

−∞

dx

x
= lim

ε→0+

lim
R→∞

[∫ −ε

−R

dx

x
+

∫ R

ε

dx

x

]

= lim
ε→0+

lim
R→∞

(
ln

∣∣x
∣∣−ε

−R
+ ln

∣∣x
∣∣−R

ε

)
= 0. (A.57)

So, the discussed principal value is well defined.
Let ϕ(x) denote a differentiable function, such that ϕ(x) = 0 for |x| > R (finite

support). Then, we use the concept of the principal value to define a distribution P(1/x)

(a generalized function) as follows

〈 P 1

x
, ϕ(x) 〉 = Vp

∫ ∞

−∞
dx

ϕ(x)

x
= lim

ε→0+

[∫ −ε

−∞
+

∫ ∞

ε

]
dx

ϕ(x)

x
. (A.58) sf03

The integral under the ”Vp” sign is usually divergent at x = 0. On the other hand, the

last part of the above relation may give finite results because we have specified a special

way of avoiding the divergence, as a result we obtain finite number, since the function

ϕ(x) vanishes for sufficiently large |x|.
Let us now transform expression (

sf03
A.58) into some other form which will be useful in

further developments. From (
sf03
A.58) we get

〈 P 1

x
, ϕ(x) 〉 = lim

ε→0+

[∫ −ε

−∞
+

∫ ∞

ε

]
dx

ϕ(x)− ϕ(0) + ϕ(0)

x
. (A.59) sf04

The quotient [ϕ(x) − ϕ(0)]/x is continuous and finite at x = 0 . This follows from de

L’Hospital rule and from good behavior of ϕ(x) . Hence, the integral of [ϕ(x) − ϕ(0)]/x

can be computed without any special limiting procedures. Therefore, we can write

〈 P 1

x
, ϕ(x) 〉 =

∫ ∞

−∞
dx

ϕ(x)− ϕ(0)

x
+ ϕ(0) lim

ε→0+

[∫ −ε

−∞

dx

x
+

∫ ∞

ε

dx

x

]
. (A.60) sf05

The last term gives zero (see Eq.(
sf02
A.57)), and we arrive at the relation

〈 P 1

x
, ϕ(x) 〉 = Vp

∫ ∞

−∞
dx

ϕ(x)

x
=

∫ ∞

−∞
dx

ϕ(x)− ϕ(0)

x
. (A.61) sf06

This relation will appear to be useful.
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Sochocki formulas

We recall that the function ϕ(x) vanishes for |x| > R. Then we consider an integral

lim
ε→0+

∫ ∞

−∞
dx

ϕ(x)

x + iε
= lim

ε→0+

∫ R

−R

dx
x− iε

x2 + ε2
ϕ(x)

= lim
ε→0+

∫ R

−R

dx
x− iε

x2 + ε2
[ ϕ(x)− ϕ(0) + ϕ(0) ]

= ϕ(0) lim
ε→0+

∫ R

−R

dx
x− iε

x2 + ε2
+ lim

ε→0+

∫ R

−R

dx
x− iε

x2 + ε2
[ ϕ(x)− ϕ(0) ] (A.62)

The first integral contains an odd part (proportional to x) which does not contribute. In

the second integral we take the indicated limit. Thus, we get

lim
ε→0+

∫ ∞

−∞
dx

ϕ(x)

x + iε
= − iϕ(0) lim

ε→0+

∫ R

−R

dx
ε

x2 + ε2
+

∫ R

−R

dx
ϕ(x)− ϕ(0)

x
(A.63) sf08

The first integral is tabulated – it gives arctg, while the second one follows from (
sf06
A.61).

Since function ϕ(x) vanishes beyond |x| = R we obtain

lim
ε→0+

∫ ∞

−∞
dx

ϕ(x)

x + iε
= − 2iϕ(0) lim

ε→0+

arctg

(
R

ε

)
+ 〈 P 1

x
, ϕ(x) 〉. (A.64) sf10

Taking the remaining limit is easy, and we arrive at

lim
ε→0+

∫ ∞

−∞
dx

ϕ(x)

x + iε
= − iπϕ(0) + 〈 P 1

x
, ϕ(x) 〉. (A.65) sf11

The obtained relation has distributive sense. In this sense, it can be rewritten as

lim
ε→0+

1

x + iε
= − iπδ(x) + P 1

x
. (A.66) sf12

Expression (
sf12
A.66) must be understood as a distribution which, when applied to a func-

tion ϕ(x) automatically entails relation (
sf11
A.65) (with (

sf05
A.60) kept in mind to explain the

meaning of the last term). Relation (
sf12
A.66), in its distributive sense, is called the first

Sochocki formula.
The second Sochocki formula is obtained by simple complex conjugation

lim
ε→0+

1

x− iε
= iπδ(x) + P 1

x
. (A.67) sf13

We stress, once again, that Sochocki formulas (
sf12
A.66) and (

sf13
A.67) are validin the sense of

distribution (generalized functions) theory. It implies that their sense is given directly by

relation (
sf11
A.65). Sochocki formulas occur in some quantum-mechanical calculations. This

is the reason why they are worth remembering.
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Application of Sochocki formulas

Before discussing the practical applications let us transform the obtained Sochocki For-

mulas. First we write relation (
sf12
A.66) and (

sf13
A.67) as a single one

lim
ε→0+

1

x± iε
= ∓ iπδ(x) + P 1

x
. (A.68) sf16

Left hand side can be rewritten as follows

lim
ε→0+

1

x± iε
= lim

ε→0+

1

−i2x± iε
= lim

ε→0+

1

∓i(±ix− ε)
. (A.69) sf17

Then, formula (
sf16
A.68) gives

lim
ε→0+

1

∓i(±ix− ε)
= ∓ iπδ(x) + P 1

x
. (A.70) sf18

Multiplying both sides by (∓i) we get

lim
ε→0+

1

±ix− ε
= − πδ(x) ∓ P 1

x
. (A.71) sf19

This is another (and useful) form of the Sochocki formulas.
In order to see the usefulness of the obtained results let us consider an integral which

is encountered in some quantum-mechanical applications. It is

I(x) =

∫ ∞

0

dt e±ixt = lim
ε→0+

∫ ∞

0

dt e(±ix−ε)t. (A.72) sf21

The factor e−εt causes the integral to be convergent and allows us to compute it. The

result is

I(x) = lim
ε→0+

e(±ix−ε)t

±ix− ε

∣∣∣∣∣

∞

0

= lim
ε→0+

−1

±ix− ε
, (A.73) sf22

because for t →∞ the factor e−εqt tends to zero. Now, comparing Eqs.(
sf19
A.71) and (

sf22
A.73)

∫ ∞

0

dt e±ixt = πδ(x) ± P 1

x
, (A.74) sf23

which has to be understood in the distributive sense, as discussed above. We note that

(
sf23
A.74) is an analogue of the Fourier transform (

z1rem
A.5), that is

∫ ∞

−∞
dt e±ixt = 2πδ(x). (A.75) sf24

Let us note that from (
sf23
A.74) we easily have

∫ ∞

0

dt eixt

∫ ∞

0

dt e−ixt = 2πδ(x). (A.76) sf25

In the second integral we change the integration variable t = −t′ and we get
∫ ∞

0

dt eixt

∫ −∞

0

dt′ eixt′ = 2πδ(x). (A.77) sf26

Reversing the integration limits in the second integral and dropping the prime we imme-

diately see that the Fourier relation (
sf24
A.75) indeed follows.
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An auxiliary integral

Let us first consider an auxiliary integral

I(t, γ) =

∫ ∞

−∞
dω

e−iωt

ω + iγ
, with γ > 0. (A.78) z1aint1

The integrand has the first order pole at ω1 = −iγ in the lower half-plane of complex ω.

Therefore, closing the contour in the upper half-plane (see Fig.(
f:aintcon01
A.1)) we obtain zero, since

this contour contains no poles. Closing the contour in the lower half-plane we may obtain

a non-zero result. However, we must be careful. In the lower half-plane ω = α − i|β|.
T hus, we have e−iωt = e−i(α−i|β|)t = e−iαt−|β|t. The integral will converge if and only if

the time t > 0. Hence, we employ the approach similar to that we used considering the

Fourier transform for the Lorentzian. For time t < 0 we close the contour in the upper

half-plane, which gives zero for the integral (see Fig.(
f:aintcon01
A.1)). On the other hand, for time

t > 0 we close the integral in the lower half plane. Noting the negative direction of the

contour we compute the integral by residue theory. We use the Heaviside function which

ensures that the integral vanishes for negative times, and we obtain

I(t, γ) =

∫ ∞

−∞
dω

e−iωt

ω + iγ
= θ(t)

∫ ∞

−∞
dω

e−iωt

ω + iγ

= θ(t) (−2πi) e−it(−iγ) = − 2πi θ(t) e−γt. (A.79)

Thus, for γ > 0 we have obtained the result

I(t, γ) =

∫ ∞

−∞

dω√
2π

e−iωt

ω + iγ
= − i

√
2π θ(t) e−γt. (A.80) z1aint3

Fourier transform of Heaviside function

From relation (
z1aint3
A.80) we conclude that

θ(t) =
i√
2π

lim
ε→0+

∫ ∞

−∞

dω√
2π

e−iωt

ω + iε
. (A.81) z1htr1

Hence, Fourier transform of the Heaviside function can be written as

F [θ(t)] = Θ(ω) =
i√
2π

lim
ε→0+

1

ω + iε
. (A.82) z1htr2

Employing the Sochocki formula (
sf12
A.66), we get

F [θ(t)] = Θ(ω) =
i√
2π

lim
ε→0+

1

ω + iε
=

1√
2π

[
πδ(ω) + iP 1

ω

]
. (A.83) z1htr3

By an obvious property of Fourier transform, from relation (
z1htr3
A.83) we also obtain

F [θ(−t)] = Θ∗(ω) =
1√
2π

[
πδ(ω)− iP 1

ω

]
. (A.84) z1htr4

S.Kryszewski QUANTUM OPTICS 212



March 4, 2010 Math. App. A. Fourier transforms 213

A.2 Three-dimensional Fourier transformationqm:3df

We shall very briefly summarize some basic facts concerning Fourier transformation. We

will not be mathematically strict, and we will omit proofs of various statements or theo-

rems. Those can be found in many mathematical handbooks.
Let us consider the function F (~r) of the position. F may, as well depend on other

variables, but we do not indicate other dependencies. The Fourier transform is defined as

F(F )(~k) = F̃ (~k) =
1

(2π)3/2

∫
d~r e−i~k·~r F (~r). (A.85) z1ft1

The inverse transformation takes the form

F−1(F̃ )(~r) = F (~r) =
1

(2π)3/2

∫
d~k ei~k·~r F̃ (~k). (A.86) z1ft2

This equation expresses F (~r) as a superposition of plane waves with wave vector ~k.
Writing the above definitions we assume that the functions are such that the neces-

sary integrals exist. Usually it is sufficient to assume the considered functions are square

integrable or even just integrable. On the other hand, it is sometimes useful to view the

Fourier transform as a certain mapping in the space of generalized functions – distribu-

tions. However, we will not go into mathematical details, we will only list some useful

properties of the Fourier transforms.
Dirac’s delta function has the following Fourier propertiesz1ftd

e−i~k·~r0 =

∫
d~r δ(~r−~r0) e−i~k·~r (A.87a)

(2π)3 δ(~r−~r0) =

∫
d~k ei~k·(~r−~r0) (A.87b)

It may we worth recalling that the Coulomb potentials satisfies the equation

∇2

(
1

4π|~r|
)

= −δ(~r). (A.88) z1cpot

t:z1ft1 Theorem A.10 If the field F (~r) is real, then its Fourier transform satisfies the require-

ment

F̃ ∗(~k) = F̃ (−~k) (A.89) z1tft1

It is straightforward to see that the transformations (
z1ft1
A.85) and (

z1ft2
A.86) are identical

to the relation between wave functions in coordinate and momentum representation in

quantum mechanics. In that context it is well–known that the overlap between two wave

functions can be evaluated in either representation. This is the reflection of Parseval

identity for Fourier transforms.

2t:z1ft2 Theorem A.11 If the fields F (~r) and G(~r) have Fourier transforms F̃ (~k) and G̃(~k),

then we have Parseval – Plancherel identity
∫

d~r F ∗(~r) G(~r) =

∫
d~k F̃ ∗(~k) G̃(~k). (A.90) z1tft2

The fields F and/or G may be complex.
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2t:z1ft3 Theorem A.12 The convolution of two fields F (~r) and G(~r) is defined as

(F ∗G)(~r) =
1

(2π)3/2

∫
d~x F (~x)G(~r− ~x). (A.91) z1ftcon

Fourier transform of the convolution is a product of the transforms, that is

1

(2π)3/2

∫
d~r e−i~k·~r (F ∗G)(~r) = F̃ (~k) G̃(~k), (A.92) z1tft3a

while the Fourier transform of the product is the convolution of the transforms

1

(2π)3/2

∫
d~r e−i~k·~r F (~r)G(~r) = (F̃ ∗ G̃)(~k), (A.93) z1tft3b

Another result of the Fourier transform theory is also well–known in the context of

quantum mechanics. It is the expression for the Fourier transform of the gradient of a

function F (~r).

2t:z1ft4 Theorem A.13 Fourier transform of the derivative ∂jF (~r) follows by partial integration,

and is given as

1

(2π)3/2

∫
d~r e−i~k·~r ∂jF (~r) = ikj F̃ (~k), (A.94) z1tft4

This theorem is equivalent to the statement that the momentum operator in quantum

mechanics (in properly chosen units) is −i∇ in coordinate representation. This allows us

to transform differential equations in coordinate space into algebraic equations in Fourier

space.

2t:z1ft5 Theorem A.14 Simple generalization of the previous theorem (
2t:z1ft4
A.13) yieldsz1tft5

1

(2π)3/2

∫
d~r e−i~k·~r [ ∇φ(~r)] = i~k φ̃(~k), (A.95a)

1

(2π)3/2

∫
d~r e−i~k·~r

[
div ~F(~r)

]
= i~k · ~̃F(k̃), (A.95b)

1

(2π)3/2

∫
d~r e−i~k·~r

[
rot ~F(~r)

]
= i~k× ~̃F(k̃), (A.95c)

1

(2π)3/2

∫
d~r e−i~k·~r [ ∇2φ(~r)

]
= −k2 φ̃(~k), (A.95d)

(A.95e)

2t:z1ft6 Theorem A.15 Fourier transform of the Coulomb potential is given as

1

(2π)3/2

∫
d~r e−i~k·~r

(
1

4πr

)
=

1

(2π)3/2

(
1

k2

)
. (A.96) z1tft6

As a consequence we get the following relationsz1ft6a

1

(2π)3/2

∫
d~r e−i~k·~r

(
~r

4πr3

)
=

1

(2π)3/2

(
−i~k

k2

)
, (A.97a)

1

(2π)3/2

∫
d~k ei~k·~r

(
−i~k

(2π)3/2 k2

)
=

~r

4πr3
(A.97b)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Appendix B

Useful operator identitiesap:oid

B.1 Similarity relations

Theorem B.1 Let A and B be operators. Let ξ be a parameter which may be complex

or real. Then, the following identity holds

eξABe−ξA = B +
ξ

1!
[A,B] +

ξ2

2!
[A, [A,B]] +

ξ3

3!
[A, [A, [A, B]]] + . . . (B.1) z2theo1

Before proving this theorem let us specify a superoperator Â. For arbitrary operator B we

define

ÂB = [A,B] . (B.2) z2supopa1

Formally we can also write

Â = [A, ] , (B.3) z2supopa2

where an empty place at the second position within a commutator is understood as a place

where the operator B, which is acted upon by the superoperator Â, should be inserted.

Having the definition of the superoperator Â we can rewrite the theorem (
z2theo1
B.1) equivalently

as

exp(ξA) B exp(−ξA) = exp(ξÂ) B. (B.4) z2theo2

Proof. We introduce an operator-valued function

g(ξ) = eξABe−ξA, with initial condition : g(0) = B. (B.5) z2prth1a

Next, we expand g(ξ) in Taylor series

g(ξ) = g(0) +
∞∑

n=1

ξn

n!

dng(ξ)

dξn

∣∣∣∣
ξ=0

(B.6) z2prth1b

It remains to compute explicitly the coefficients of the expansion, that is the derivatives

evaluated at ξ = 0. The first derivative is as follows

d

dξ
g(ξ)

∣∣∣∣
ξ=0

=
d

dξ

(
eξABe−ξA

)∣∣∣∣
ξ=0

=
(
AeξABe−ξA − eξABAe−ξA

)∣∣
ξ=0

= (Ag(ξ)− g(ξ)A)|ξ=0 = [A, g(ξ)]|ξ=0 = [A, B] (B.7)
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where the first equality in the second line follows from the fact that operator A commutes

with the exponential eξA. The last equality follows from initial condition for the function

g(ξ). Substituting (
z2prth1c
B.7) into expansion (

z2prth1b
B.6) we obtain

g(ξ) = g(0) +
ξ

1!
[A, B] +

∞∑
n=2

ξn

n!

dng(ξ)

dξn

∣∣∣∣
ξ=0

(B.8) z2prth1d

In the similar manner we calculate next terms of the expansion.

d2

dξ2
g(ξ)

∣∣∣∣
ξ=0

=
d

dξ
[A, g(ξ)]

∣∣∣∣
ξ=0

=

[
A,

dg(ξ)

dξ

]∣∣∣∣
ξ=0

= [A, [A, g(ξ)]]|ξ=0 = [A, [A, B]] (B.9)

where the last steps follow from Eq.(
z2prth1c
B.7). Thus, (

z2prth1d
B.8) transforms into the relation

g(ξ) = g(0) +
ξ

1!
[A, B] +

ξ2

2!
[A, [A, B]] +

∞∑
n=3

ξn

n!

dng(ξ)

dξn

∣∣∣∣
ξ=0

(B.10) z2prth1f

Further derivatives may be found in the same manner. It is also possible to employ the

method of mathematical induction to show that the theorem (
z2theo1
B.1) indeed holds.

Finally, we note that the relation (
z2theo2
B.4) follows from (

z2theo1
B.1) simply by expansion of the

exponential in the right-hand-side of (
z2theo2
B.4). Comparing the obtained expansion we easily

see that right-hand-side of (
z2theo1
B.1) is reproduced. This completes the proof of the theorem.

The previous theorem can easily be generalized. We shall now formulate a generalized

similarity relation.

Theorem B.2 Let g(B1, . . . , Bk) be a function of k different operators. We assume that

this function can be expanded into series

g(B1, B2, . . . , Bk) =
∑

{nk}
gn1n2...nk

Bn1
1 Bn2

2 . . . Bnk
k . (B.11) z2sr1

If it is necessary, commutation relations can be used to rearrange the operators {Bj} in the

power series. Then, the following similarity relation holds for operator A and a complex

number ξ

eξA g(B1, B2, . . . , Bk) e−ξA = g
(
eξAB1e

−ξA, eξAB2e
−ξA, . . . , eξABke

−ξA
)
, (B.12) z2sr2

that is, the function g is unchanged, only each of its arguments is transformed according

to the given similarity.

Proof. Applying similarity operator eξA on the left of the expansion, and e−ξA on the

right, we can also introduce the 1̂ = e−ξAeξA between all factors in each term of the

series. Then each of the operators undergoes the similarity transformation, and the series

coefficients remain unchanged. Resummation yields rhs of the theorem.
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B.2 Decomposition of the exponential

B.2.1 General idea of the decomposition

In many practical applications we need to express the operator exp[ξ(A + B)], where A

and B are also operators, as a product of separate exponentials, that is

eξ(A+B) = ef1(ξ)A ef2(ξ)B ef3(ξ). (B.13) z2de1

where fk(ξ) are ordinary (c-numbered, complex) functions of the parameter ξ ∈ C. These

functions must satisfy an obvious boundary condition fk(0) = 0. The whole problem is

to determine these functions. Before we start looking for the solution, let us note that we

can easily write the relation inverse to (
z2de1
B.13), namely

e−ξ(A+B) = e−f3(ξ) e−f2(ξ)B e−f1(ξ)A. (B.14) z2de2

Surely, exp[−f3(ξ)] is a number so it commutes with all operators.
To find functions fk(ξ) let us differentiate both sides of )(

z2de1
B.13), thus obtaining

(A + B) eξ(A+B) = f
′

1 (ξ)A ef1(ξ)A ef2(ξ)B ef3(ξ) + ef1(ξ)A f
′

2 (ξ)B ef2(ξ)B ef3(ξ)

+ ef1(ξ)A ef2(ξ)B ef3(ξ) f
′

3 (ξ), (B.15)

where the prime denotes the derivative with respect to ξ. Next, we multiply both sides

of (
z2de3
B.15) on the right by both sides of the inverse relation (

z2de2
B.14). We get

A + B = f
′

1 (ξ) A + f
′

2 (ξ) ef1(ξ)A B e−f1(ξ)A + f
′

3 (ξ). (B.16) z2de4

Equating the coefficients multiplying operator A, we see that

f
′

1 (ξ) = 1, =⇒ f1(ξ) = ξ, (B.17) z2de5

which satisfies the boundary condition. Using (
z2de5
B.17) in (

z2de4
B.16) we reduce it to

B = f
′

2 (ξ) eξA B e−ξA + f
′

3 (ξ). (B.18) z2de6

Now, we employ the similarity expansion (
z2theo1
B.1) to write

B = f
′

2 (ξ)

{
B +

ξ

1!
[A,B] +

ξ2

2!
[A, [A,B]] + . . .

}
+ f

′
3 (ξ). (B.19) z2de7

Further steps obviously depend on the shape of the commutators which appear within the

curly brackets. If we know the commutators, we can try to find the remaining functions

of the parameter ξ.

B.2.2 The case of [ A, B ] = c

Let us now assume that the commutator [ A, B ] = c, where c ∈ C. In such a case, all

terms in (
z2de7
B.19), except the first two ones, vanish and we have

B = f
′

2 (ξ) (B + ξ c) + f
′

3 (ξ). (B.20) z2de8
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Hence, we arrive at the equations

f
′

2 (ξ) = 1, and f
′

2 (ξ)ξc + f
′

3 (ξ) = 0. (B.21) z2de9

These equations are immediately integrated, and taking into account the boundary con-

ditions we get

f2(ξ) = ξ, and f3(ξ) = − 1

2
ξ2c. (B.22) z2de10

Thus we can state the following

Theorem B.3 If two operators A and B have the commutator [ A, B ] = c ∈ C, then

eξ(A+B) = eξA eξB e−cξ2/2, (B.23) z2de11a

for any complex parameter ξ. Equivalently we can write

eξ(A+B) = eξB eξA ecξ2/2, (B.24) z2de11b

B.2.3 Special case for annihilation and creation operators

We employ the theorem (
z2de11a
B.23) taking ξ = 1 and specifying the operators as

A = α â, and B = βâ†, (B.25) z2de12

where â and â† are annihilation and creation operators. Since

[
αâ, βâ†

]
= α β, (B.26) z2de13

from Eqs.(
z2de11a
B.23) and (

z2de11b
B.24) we obtainz2ac

eαâ+βâ† = eαâ eβâ† e−α β/2 (B.27a)

= eβâ† eαâ eα β/2. (B.27b)

These relations are very useful in many practical cases.

B.3 Similarity relation for annihilation operator

B.3.1 General relation

Let â and â† be the annihilation and creation operators, which satisfy the canonical

commutation relation
[
â, â†

]
= 1. Let us, moreover, define an operator

Z = αâ + βâ† + γâ†â, (B.28) z2sra1

with α, β and γ being complex parameters (numbers). We consider the similarity relation

â(ξ) = e−ξZ â eξZ , (B.29) z2sra2

with an obvious boundary condition â(0) = â. We can, in principle, use general expression

(
z2theo1
B.1). This is, however, inconvenient because due to the term γâ†â, the commutator series
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do not truncate. Therefore, we employ a different approach. We differentiate Eq.(
z2sra2
B.29)

with respect to parameter ξ, obtaining

d

dξ
â(ξ) = e−ξZ

(−Zâ + â†Z
)
eξZ = e−ξZ [ â, Z ] eξZ . (B.30) z2sra3

It is straightforward to compute the commutator

[ â, Z ] =
[
â, αâ + βâ† + γâ†â

]
= β + γâ. (B.31) z2sra4

Thus we have the differential equation

d

dξ
â(ξ) = e−ξZ (β + γâ) eξZ = β + γâ(ξ). (B.32) z2sra5

This is an inhomogeneous differential equation. The homogeneous one: â
′
(ξ) = γâ has

an obvious solution â(ξ) = â(0)eγξ. Hence, we look for the solution of (
z2sra5
B.32) in the form

â(ξ) = eγξ b(ξ), (B.33) z2sra6

with boundary condition b(0) = â(0). Inserting (
z2sra6
B.33) into (

z2sra5
B.32) we obtain an equation

for b(ξ)

b
′
(ξ) = e−γξ β which yields b(ξ) = b0 − β

γ
e−γξ, (B.34) z2sra7

where the constant b0 has to be fixed. From boundary condition we get â(0) = b(0) =

b0 − β/γ. Therefore, the sought solution to Eq.(
z2sra5
B.32) follows as

â(ξ) = eγξ

(
â(0) +

β

γ
− β

γ
e−γξ

)
. (B.35) z2sra8

This completes our derivation and we can finally write

â(ξ) = e−ξ(αâ+βâ†+γâ†â) â eξ(αâ+βâ†+γâ†â) = â eγξ +
β

γ

(
eγξ − 1

)
. (B.36) z2sra9

B.3.2 Some special cases

Let us take γ = 0, ξ = 1. Then, relation (
z2sra9
B.36) reads

e−αâ−βâ† â eαâ+βâ† = â + β, (B.37) z2sra10

and it can be rewritten as

â eαâ+βâ† = eαâ+βâ† â + eαâ+βâ† β, (B.38) z2sra11

which yields the commutation relation[
â, eαâ+βâ†

]
= eαâ+βâ† β, (B.39) z2sra12

Let us note, that we can apply relations (
z2ac
B.27) to formula (

z2sra10
B.37). This gives

e−βâ† e−αâ eαβ/2 â eαâ eβâ† e−αβ/2 = e−βâ† â eβâ† = â + β, (B.40) z2sra13

because e±αâ commutes with â.
Another special case follows easily, when we put α = β = 0, and γ = 1. Then (

z2sra9
B.36)

yields

â(ξ) = e−ξâ†â â eξâ†â = â eξ. (B.41) z2sra14
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B.3.3 Applications of generalized similarity relation

The generalized similarity theorem (
z2sr2
B.12) has several immediate applications. The first

one is for arbitrary function g(â, â†) which can be expanded into power series of annihi-

lation and creation operators, namely we have

e−ξâ†â g(â, â†) eξâ†â = g
(
e−ξâ†â â eξâ†â, e−ξâ†â â† eξâ†â

)

= g
(
â eξ, â† e−ξ

)
(B.42)

where we used relation (
z2sra14
B.41).

Let us note, that (
z2sr3
B.42 implies for y ∈ R that

e−iyâ†â D(z) eiyâ†â = e−iyâ†â exp
(
zâ† − z∗â

)
eiyâ†â

= exp
(
ze−iyâ† − z∗eiyâ

)

= D(ze−iy) (B.43)
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B.4 Squeeze operator

We define squeezing operator, for a complex parameter ξ ∈ C, as

S(ξ) = exp

[
1

2
ξ∗ â2 − 1

2
ξ (â†)2

]
. (B.44) z2squ1

We easily see that

S†(ξ) = exp

[
1

2
ξ (â†)2 − 1

2
ξ∗ â2

]
, = S(−ξ) = S−1(ξ), (B.45) z2squ2

which indicates that operator S(ξ) is a unitary one.
In the spirit of previous sections, we intend to investigate the similarity transformation

of the annihilation operator induced by the squeezing operator. That is, we are interested

in the expression

aS(ξ) = S†(ξ) â S(ξ) = exp

[
1

2
ξ(â†)2 − 1

2
ξ∗â2

]
â exp

[
1

2
ξ∗â2 − 1

2
ξ(â†)2

]
. (B.46) z2squ3

To consider this relation it is convenient to write the complex parameter in polar coordi-

nates,

ξ = ρ eiθ. (B.47) z2squ4

Then, we can rewrite (
z2squ3
B.46) in the form

aS(ξ) = exp

[
ρ

(
1

2
(â†)2 eiθ − 1

2
â2 e−iθ

)]
â exp

[
− ρ

(
1

2
(â†)2 eiθ − 1

2
â2 e−iθ

)]
. (B.48) z2squ5

We analyze this expression by means of formula (
z2theo1
B.1), in which we make the identifications

ξ → ρ, A → 1

2
(â†)2 eiθ − 1

2
â2 e−iθ, B → â. (B.49) z2squ5a

We see that we have to consider the commutators of operator A with B which, due to

the introduced identifications, reads

[A, B] =

[
1

2
(â†)2 eiθ − 1

2
â2 e−iθ, â

]
=

1

2
eiθ

[
â†â†, â

]
= − eiθâ†. (B.50) z2squ6

Using the obtained commutator, we compute the next one, as it follows from the general

expansion (
z2theo1
B.1). We get

[A, [A, B]] =

[
1

2
(â†)2 eiθ − 1

2
â2 e−iθ, − e−iθ â†

]
=

1

2

[
ââ, â†

]
= â. (B.51) z2squ7

By careful inspection of the obtained commutators we conclude that:

• when operator A identified according to (
z2squ5a
B.49) occurs even number of times, the re-

sult of such a multiple commutator will always be equal to the annihilation operator

â;
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• when operator A occurs odd number of times, the result of a corresponding multiple

commutator will always be equal to the − eiθâ†.

Therefore, the general similarity expansion (
z2theo1
B.1) splits into two series: with odd and even

terms, and we get

aS(ξ) = â

(
1 +

ρ2

2!
+

ρ4

4!
+ . . . . . .

)
− â† eiθ

(
ρ +

ρ3

3!
+

ρ5

5!
+ . . . . . .

)

= â cosh(ρ) − â† eiθ sinh(ρ). (B.52)

Summarizing we write

aS(ξ) = S†(ξ) â S(ξ) = â cosh(ρ) − â† eiθ sinh(ρ), (B.53) z2squ9

The generalized similarity theorem (
z2sr2
B.12) can be applied to find a transformation of

the squeeze operator. Since the exponential function is expandable into the power series,

we get for y ∈ R:

e−iyâ†â S(ξ) eiyâ†â = e−iyâ†â exp

(
1

2
ξ∗ â2 − 1

2
ξ(â†)2

)
eiyâ†â

= exp

[
1

2
ξ∗

(
e−iyâ†â â eiyâ†â

)2

− 1

2
ξ
(
e−iyâ†â â† eiyâ†â

)2
]

= exp

[
1

2
ξ∗ â2 e2iy − 1

2
ξ(â†)2 e−2iy

]

= S
(
ξ e−2iy

)
(B.54)

where in the third line we have used (
z2sra14
B.41), while in the fourth we used the definition of

the squeeze operator with shifted argument.
Next, we note that by means of the general similarity theorem (

z2sr2
B.12) and using (

z2squ8
B.52)

and its hermitian conjugate, we can write

S†(ξ) g(â, â†) S(ξ) =

= g
(
â cosh(ρ) − â† eiθ sinh(ρ), â† cosh(ρ) − â e−iθ sinh(ρ)

)
(B.55)

where g(., .) is a function, which can be expanded into power series. In particular, taking

function g as the displacement operator g(â, â†) = D(α) = exp(αâ† − α∗â) we obtain

S†(ξ) D(α) S(ξ) = exp
[
α

(
â† cosh(ρ)− â e−iθ sinh(ρ)

)

−α∗
(
â cosh(ρ)− â† eiθ sinh(ρ)

)]

= exp
[
â†

(
α cosh(ρ) + α∗eiθ sinh(ρ)

)

− â
(
α∗ cosh(ρ) + αe−iθ sinh(ρ)

)]

= D
(
α cosh(ρ) + α∗eiθ sinh(ρ)

)

= D(z). (B.56)

which defines new argument z = α cosh(ρ)+α∗eiθ sinh(ρ) of the transformed displacement

operator. Relation (
z2squ12
B.56) can be written as

D(α) S(ξ) = S(ξ) D(z), (B.57) z2squ13
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with z given via α and ξ = ρeiθ as above. Taking the expression for z and its complex

conjugate, we multiply the first one by cosh(ρ) and the second one by − sinh(ρ) eiθ. Then

we add both equations, and using the hyperbolic unity we express α as

α = z cosh(ρ)− z∗eiθ sinh(ρ) (B.58) z2squ14

which, together with

z = α cosh(ρ) + α∗eiθ sinh(ρ) (B.59) z2squ15

allows us to use Eq.(
z2squ13
B.57) in an effective manner. From the last relation we see that

z e−iθ/2 = α e−iθ/2 cosh(ρ) + α∗eiθ/2 sinh(ρ)

=
1

2
eρ

(
α e−iθ/2 + α∗eiθ/2

)
+

1

2
e−ρ

(
α e−iθ/2 − α∗eiθ/2

)
(B.60)

This allows us to derive a useful relation between parameters α and z, namely

Re
(
z e−iθ/2

)
= eρ Re

(
α e−iθ/2

)

Im
(
z e−iθ/2

)
= e−ρ Im

(
α e−iθ/2

)
(B.61)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Appendix C

Certain sum rule for Hermite
polynomialsap:suh

Here we will prove the following summation rule involving even Hermite polynomials

∞∑

k=0

tk

k!
H2k(x) =

1√
1 + 4t

exp

(
4tx2

1 + 4t

)
, (C.1) z3sh1

To prove this rule, we recall the generating function of Hermite polynomials

e−s2+2sx =
∞∑

n=0

sn

n!
Hn(x). (C.2) z3sh2

We multiply both sides of (
z3sh2
C.2) by e−as2

, with a being a real positive parameter, and then

we integrate both sides over s ∈ R1. Thus, we get

∫ ∞

−∞
ds e−(a+1)s2+2sx =

∞∑
n=0

Hn(x)

n!

∫ ∞

−∞
ds sn e−as2

. (C.3) z3sh3

Both integrals appearing in (
z3sh3
C.3) are simple. The one in the lhs we compute according

to
∫ ∞

−∞
dy e−py2−qy =

√
π

p
exp

(
q2

4p

)
, (C.4) z3sh4

where in our case p = a + 1 and q = −2x. The integral in the rhs of (
z3sh3
C.3) vanishes for

n = 2k + 1, that is for odd n. Thus we have
∫ ∞

−∞
ds s2k e−as2

=
Γ(k + 1/2)

ak+1/2
, for n = 2k. (C.5) z3sh5

Using (
z3sh4
C.4) and (

z3sh5
C.5) in (

z3sh3
C.3) we get

√
aπ

a + 1
exp

(
x2

a + 1

)
=

∞∑

k=0

H2k(x)

ak

Γ(k + 1/2)

(2k)!
(C.6) z3sh6

Next we consider the combinatorial term in the rhs. We know that

Γ(k + 1/2) =
√

π
(2k − 1)!!

2k
. (C.7) z3sh7
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Moreover, we have (2k)! = (2k)!!(2k−1)!! = 2kk!(2k−1)!!, so by combining these relations

Γ(k + 1/2)

(2k)!
=
√

π
1

22k k!
. (C.8) z3sh8

Using (
z3sh8
C.8) in the summation rule (

z3sh6
C.6) we obtain

∞∑

k=0

(
1

4a

)k
H2k(x)

ak
=

√
a

a + 1
exp

(
x2

a + 1

)
. (C.9) z3sh9

We see that substitution a = 1/4t yields

∞∑

k=0

H2k(x)

k!
tk =

√
1

1 + 4t
exp

(
4tx2

1 + 4t

)
, (C.10) z3sh10

which is the sum rule (
z3sh1
C.1) which we intended to prove, so the proof is therefore completed.

Finally we note that the obtained expression is well defined for t > −1/4.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Appendix D

Pseudospin operatorsap:sop

D.1 Basic definitions

Identifications

| 1 〉 =

(
0
1

)
, | 2 〉 =

(
1
0

)
. (D.1) z4vecid

Construction of the pseudospin matricesz4psdef

| 1 〉〈 1 | =

(
0
1

)
( 0, 1 ) =

(
0 0
0 1

)
, (D.2a)

| 1 〉〈 2 | =

(
0
1

)
( 1, 0 ) =

(
0 0
1 0

)
, (D.2b)

| 2 〉〈 1 | =

(
1
0

)
( 0, 1 ) =

(
0 1
0 0

)
, (D.2c)

| 2 〉〈 2 | =

(
1
0

)
( 1, 0 ) =

(
1 0
0 0

)
. (D.2d)

Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (D.3) z4paul

It is convenient to denotez4spm

S− = | 1 〉〈 2 | =

(
0 0
1 0

)
, (D.4a)

S+ = | 2 〉〈 1 | =

(
0 1
0 0

)
. (D.4b)

We call these operators lowering and raising, respectively. We now define some more

operators via their matrices.z4sxyz

S1 =
1

2
(S+ + S−) =

1

2

(
0 1
1 0

)
, (D.5a)

S2 = − i

2
(S+ − S−) =

1

2

(
0 −i
i 0

)
, (D.5b)

S3 =
1

2
( | 2 〉〈 2 | − | 1 〉〈 1 |) =

1

2

(
1 0
0 −1

)
. (D.5c)
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An obvious connection with Pauli matrices

Sj =
1

2
σj (D.6) z4spaul

explains why we call Sj operators the pseudospin. Before discussion of the properties of

the pseudospin operators we make two additional comments. From Eqs.(
z4sxyza
D.5a) and (

z4sxyzb
D.5b)

it follows that

S+ = S1 + iS2, S− = S1 − iS2. (D.7) z4spm12

We also note the Hermiticity relations

S†j = Sj − Hermitian, S†± = S∓ − Hermitian conjugates, (D.8) z4sherm

what follows by inspection of the matrix representation.

D.2 Various products of pseudospin operators

The products of pseudospin operators follow:

• from their ket-bra definitions;

• from their matrix representations;

• from the fundamental property of Pauli operators:

σj σk = iεjkm σm for j 6= k, σ2
j = 1 for j = 1, 2, 3. (D.9) z4pamul

All this sources are in fact equivalent. The proofs of the given below relations are omitted

since such proofs are very easy to do. Before we give many particular examples, we note

that Eqs.(
z4pamul
D.9) and (

z4spaul
D.6) imply

Sj Sk =
i

2
εjkm Sm for j 6= k, S2

j =
1

4
for j = 1, 2, 3. (D.10) z4smul

For raising and lowering operators we have

S+ S+ = 0 S+ S− = 1/2 + S3,

S− S− = 0 S− S+ = 1/2 − S3. (D.11)

D.3 Commutation relations

For Pauli operators we have

[ σj, σk] = 2iεjkm σm, (D.12) z4paulcom

which, together with Eq.(
z4spaul
D.6), yields the commutation relation for the pseudospin oper-

ators

[ Sj, Sk] = iεjkm Sm, (D.13) z4pscom
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For raising and lowering operators we have

[ S±, S1] = ±S3, [ S±, S2] = i S3, [ S±, S3] = ∓S±, (D.14) z4rlcom1

and

[ S+, S−] = 2S3, (D.15) z4rlcom2

D.4 Useful identities and their consequences

z4th:sopid1 Theorem D.1 For numbers α and β real or complex, there holds an identity

exp [ iα S+ + iβ S− ] = cos
√

αβ +
i√
αβ

( α S+ + β S− ) sin
√

αβ . (D.16) z4sopid1

This identity has several interesting and useful consequences. Putting α = β, we get

eiα(S++S−) = cos α + (S+ + S−) sin α. (D.17) z4sopid1a

Since 2S1 = S+ + S−, we also get

e2iαS1 = cos α + 2S1 sin α. (D.18) z4sopid1b

If we take a limit β → 0 in (
z4sopid1
D.16), we get

eiαS+ = 1 + iα S+. (D.19) z4sopid1c

Similar procedure, but with α → 0 yields

eiβS− = 1 + iβ S−. (D.20) z4sopid1d

Combining two last relations we have

eiαS± = 1 + iα S±. (D.21) z4sopid1e

If we put α = −iξ, β = iξ, then from (
z4sopid1
D.16) we can derive

ei(αS++βS−) = e2iξS2 = cos ξ + 2iS2 sin ξ, (D.22) z4sopid1f

which should be compared to (
z4sopid1b
D.18).

z4th:sopid2 Theorem D.2 For numbers α and β real or complex, there holds an identity

exp [ iα S3 + iβ S1 ] =

= cos

(√
α2 + β2

2

)
+

2i√
α2 + β2

( α S3 + β S1 ) sin

(√
α2 + β2

2

)
(D.23)
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This theorem also leads to many useful specific cases. Putting β = 0 we get

eiαS3 = cos
(α

2

)
+ 2iS3 sin

(α

2

)
(D.24) z4sopid2a

Combining (
z4sopid1b
D.18), (

z4sopid1f
D.22) and (

z4sopid2a
D.24) we can write a useful relation

eiαSj = cos
(α

2

)
+ 2iSj sin

(α

2

)
, for j = 1, 2, 3. (D.25) z4sopid2b1

As a conclusion from the above derived relations we get the third useful theorem.

Theorem D.3 For any number α real or complex there holds an identity

eiαSk Sj e−iαSk =

{
Sk for j = k,

Sj cos α + εjkm Sm sin α for j 6= k.
(D.26) z4sopid3

From this theorem it follows that

eiαS3 S± e−iαS3 = S± e±iα (D.27) z4sopid3a

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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