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March 4, 2010 1. Classical harmonic oscillator in external field 1

Chapter 1

Classical harmonic oscillator
in external field

Classical simple harmonic oscillator (SHO) is a very important model for many physical
situations. When the potential energy of some interaction possesses a smooth minimum,
then in the vicinity of this minimum interaction energy can be approximated by a parabola
and that corresponds to the potential energy of SHO. This is the reason why SHO is such
an important model and why we start our lectures with the discussion of this model.

1.1 Equation of motion

We consider a one-dimensional harmonic oscillator with mass m, frequency wg > 0 and
electric charge q. The forces acting on the oscillator are as follows. The elastic force
F, = —kx = —mwjz obeys Hooke’s law. The friction Fy = —mI'% is proportional to
velocity and directed in the opposite direction, this allows us to take I' > 0. Moreover, we
assume that the oscillator is driven by a classical time—dependent electric field £(¢) which
exerts the force F, = ¢E(t). The corresponding equation of motion follows immediately
from second law of dynamics and is of the form

mi = —mwir —mla + qE(t). (1.1)
We rewrite Eq. (Fl)ill')@ as
i+ Td+wizr = f(t), with f(t) = (g/m)E(t). (1.2)

os1b
Equation (T.2] is an inhomogeneous one. Whatever the method used for finding its
solution we need initial conditions. We will assume general initial conditions, that is

z(t =0) = x, T(t=0) =v(t =1ty) = vo. (1.3)

In some particular cases, we shall use more specific initial conditions.

1.2 Solution to homogeneous equation

o
Solution to Eq. (T.2) is a sum of a general solution to the homogeneous equation and of
a particular solution to the inhomogeneous one. Thus, we first consider the homogeneous

S.Kryszewski QUANTUM OPTICS 1

0s2



March 4, 2010 1. Classical harmonic oscillator in external field 2

equation, which reads
i+ Ti+wjz =0. (1.4)

We will seek the solution in the form e~™?*. It is as well possible to look for a solution
in another form, for example e*. We, however adopt the former form, which is due to
the fact that we will further use the Fourier transform of the Green’s function. The
Fourier components of the time-dependent functions are taken to have time dependence
e~™!  This explains the adopted form of the solution to the homogeneous equation.
Substituting our ansatz into equation (0? we find the quadratic characteristic equation

—w? —iTw+wi = 0. (1.5)

The discriminant is equal to 4wy — ['?. At present, we assume that damping is weak,
so that the inequality %F < wy is satisfied, and then the discriminant is positive and the
characteristic roots are
i
W12 = —? + Q, (16)

where we have introduced a new parameter

Q= fui — ir% (1.7)

These roots are discussed in more detail in Auziliary Chapters (see the corresponding
chapter). There, we will drop the assumption that damping constant is sufficiently small
and discuss the physical consequences of %F > wp which entails 2 being purely imaginary
which has quite interesting consequences.

Having found the characteristic roots, we write the solution to the homogeneous equa-
tion as a combination of two (linearly independent) exponentials

o(t) = Ae™1 4 Be~ — exp (=1 1't) [AeiQt n Be—z‘ﬂt} ’ (1.8)

with A and B being the co stants to be fixed by initial conditio S,
Differentiating relation (II.8) and using the initial conditions (1.32) we arrive at the set

of equations for constants A and B

x9g=A+ B, (1.9a)

v = (-3 +iQ) A+ (—3I —iQ)B. (1.9b)
It is a straightforward matter to solve this set of equations. The solutions are

A= [t T+ ], B=— o [w— (T +i0) ] (1.10)
Substituting the obtained constants into Eq. (ﬁ_.sg), after minor rearrangement we arrive

at the general solution to the homogeneous equation of motion, which satisfies general
initial conditions and is of the form

vo + iz
L Yot 30w

z(t) = exp (=5 I't) |z cos (Qt) sin (2t)] . (1.11)

This solution corresponds to simple damped oscillations, since the parameter €2 is real.
This is so, because the damping is small, in the sense that %F < wp.

S.Kryszewski QUANTUM OPTICS 2

os4

oslil



March 4, 2010 1. Classical harmonic oscillator in external field 3

1.3 Driven oscillator

1.3.1 General remarks

The osocéllator driven by the external electric field is described by the equation of motion
as in (II.2]; that is

i+ Ti+wir = f(t), with  f(t) = (¢g/m)E(t). (1.12)
Its general solution is the sum
Z(t) = Thom(t) + Tinn(t), (1.13)

where ., is a general solution to the homogeneous equation. This solutionoglogr weak
damping which we still assume to be the case so that 2 € R) is given in (I.IT) with
the notation introduced in the previous section. On the other hand z;,, is a particular
solution to the inhomogeneous equation and is still unknown. Finding the solution to
the inhomogeneous equation with arbitrary driving force f(t) is certainly possible, but
difficult. The very elegant method to find the solution is to construct and use the Green’s
function for equation i_?%) However, it is rather a mathematical question, therefore it is
discussed in the Auxiliary chapters where we derive the necessary Green’s function. Here

we will simply employ the results obtained in these chapters.
One can show that the solution to the inhomogeneous equation can be written as

Toun(t) = / T gt— ) F(), (1.14)

—00

Where g(7) is the Green’s function and is given as
g(1) =0O(1) = exp (—%FT) sin (27) , (1.15)
where O(7) is the Heaviside function, defined as

1 for7m>0,
O(r) = { 0 for 7 <0. (1.16)

0s28a

The presence of the Heaviside function ensures that the integral in (h_ﬁ[f has the upper
limit actually equal to ¢t and not to infinity. This, in turn, ensures the causality of the
solution, that is x;,,(t) depends on the force f(t') taken at the moments earlier that the
current moment ¢. (this is discussed in él%:iézgmry chapters). Then, given the driving force
f(t) we can compute the integral in (IT. thereby finding the sought solution to the
inhomogeneous equation of motion. osib

We can now construct a general solution to the driven oslchllator equation (h_ZT by
summing the general Solut(i)gn to the homogeneous equation (II.11) angQtélge solution to the
inhomogeneous equation (I a) with the Green’s function given in (II.15). We restrict our
attention to the case of standard damped oscillations, that is to %F < wp. The obtained

S.Kryszewski QUANTUM OPTICS 3



March 4, 2010 1. Classical harmonic oscillator in external field 4

solution satisfies arbitrary initial conditions and can be written down for arbitrary driving
force f(t). The obtained result is thus, as follows

Ft Vo + lFx

z(t) = exp (-7) lxo cos () + T20 sin (Qt)}
Q/ it ex p( F(t;t))sin(Q(t—t’))f(t’). (1.17)

We see that x(t) depends only on the driving force for times earlier than the current

moment. This conforms with the causality requirement.

It is interesting to nog%8 cghaﬁc when the oscillator is initially at rest g = 0 and vy = 0,
then the first term in (II.17) vanishes. Only the driving force governs its evolution. In
the general case (arbitrary initial conditions), if time ¢ is sufficiently long then all the
transients depending on initial conditions decay and again the evolution is determined
only by the second term in (IT. . This is a stationary regime which we will discuss in
the next sections. In this regime only the influence of the external force is of interest.
Hence it remains to investigate special cases for which we can take the evolution of the

displacement as

x(t) no transients dt/ 6 eXp 2

i ! (—M) sin[Q(t — )] £(t). (1.18)

Moreover, in most of the practical cases, the electric field is switched on at the moment
t = 0. Thus we take

0 for t <0,

E(t) = { E(t) fort>0, (1.19)

with the concrete form of the time dependence of the field to be speciﬁed later. If the
driving field satisfies the above requirement, then the driving force f(t) 8Sq/ ?Eése
has the same property. In such a case the lower limit of the integral in (\1 I7) or (\l I8)
effectively becomes zero instead of minus infinity.

1.3.2 Harmonic driving force

In the following we will consider a quite special type of the driving force, namely, the
harmonic driving force, that is

qEo QB0 (ot | —iw
ft) = e cos(wt) = Y (e + ™). (1.20)

We assume that the force is turned on at ¢ = 0, hence f(¢) = 0 for ¢ < 0 as indicated
in (II.19), so that the lower limit of integration in h_MT is zero. This case is important
because it corresponds to the oscillator placed in the field of the electromagnetic wave
the time behavior of which is given as above. This especially true when the oscillator is

much smaller than the wavelength, so that the position dependence is unimportant.
It is now straightforward to find the solution_to inhom%%eneous equation for the

28
oscillator driven by a harmonic force. Inserting (E_SZO) and (OI.SI5i into the integral (II. ]

S.Kryszewski QUANTUM OPTICS 4



March 4, 2010 1. Classical harmonic oscillator in external field 5

and taking into account the remarks on the limits of integration, we get

E 1 - -
Tinn(t) = 2qm(;2/ dt’ e 2" gin [Q(t — )] (e 4 e, (1.21)

This relation can be rewritten as

Jo 2fo

Tinn (1) = Q[ It)+C.C] = o Re{I(t)}, (1.22)

with fo = qFo/2m, and where C.C denotes complex conjugation. I(t) is the integral
¢ ot L0y
I(t) = / dt’ 2" gin [Q(t — t)]. (1.23)
0

0s33
The problem, as for now, is reduced to the computation of the integral (h_ZB') This
computation is not difficult but somewhat tedious. We present the major steps. First
one expresses the sine by complex exponentials, then one changes the integration variable
from ¢’ to x =t — t’. Thus one has

. t 11 .
I(t) _ elwt/ dx efzw:rf§Fx 2_ (ezﬂx o efzﬂx) ) (124)
0 7

Computation of the integrals is simple. The result is

1 . 1
Q-w)t—5Tt _ 1 —i(Q+w)t—5Tt 1

e el e 2

2 | iQ-w) -1 i Qtw) - IT

(1.25)

. ) os6e
Next one separates terms proportional to ¢! and to e~ 2 !, Using relation (I.7) one finds

the final result, which is

Qett Ly Qcos(Q) + (3T + iw) sin(Qt)
e :

() wd —w?+ilw wg —w? +ilw

(1.26)

. . E_S%% . .
To find theSSSolutlon Tinn(t) according to (1.22) it remains to find the reoasl %)art of the
integral (I.26). This is a simple matter, so we just give the final form of (I[.22). It is

w?) cos(wt) + wl sin(wt)

(wg —
Tinn(t) = 2fo w2 — w?)2 4 22

(w§ — w?) cos(U) + +(I'/Q)(wi + w )sm(Qt)

. 2f e*%l—‘t
0 (W — w?)? + T2

(1.27)

Examining this expression, we can say that the first term is a driven one, while the second
is the damped one. In the long time limit only the first term survives. We note also that
the full solution to the equations of motion for the oscillator driven by harmonic force is
given by the sum of homogeneous solution (O.S ) and of (1.27). However, homogeneous
solution does not survive in the long time limit.

S.Kryszewski QUANTUM OPTICS 5



March 4, 2010 1. Classical harmonic oscillator in external field 6

1.4 Stationary behavior

1.4.1 General discussion

Stationary behavior occurs when all the initial transients die out. This certainly occurs
when the time ¢ is long enough. Clearly, from (O.S ) and (O.S ) we see that the damped
motion is the mentioned transient. For ¢ large enough the terms proportional to exp(—%f‘t)
become insignificant and do not contribute in the stationary regime. Hence, the long time
behavior means ¢ > I'"!, and in this regime we conclude that only the first term in the
inhomogeneous solution (1%527) is of importance. Hence, the evolution of the harmonically
driven oscillator in the stationary regime is given as

qEy (wi — w?) cos(wt) + wI sin(wt)
m (w2 — w?)? + Mw? ’

T4(t) = (1.28)
which may be called the stationary solution. It consists of two terms. The first one is
in-phase with the driving force (which is proportional to cos(wt))

qEy (w? —w?) cos(wt)

(n) (4) = 1.29
() m (Wi —w?)? 4 T2w?’ (1.29)

while the second is shifted in phase by 7/2 and has the form

qEo wIlsin(wt)
m (Wi — w?)? + [2w?’

x(out) (t) _

S

(1.30)

For future purposes it is worth noting that the stationary solution can also be written
as

2a(t) = 1E0 ( e +C.C ) , (1.31)

S 2m \ Wi - w?+ilw

. . . . H_Sél% . .
It is interesting to note that the stationary solution (I.3T) can be obtained in a much
simpler way. To see this, let us consider a simplified equation of motion

i+ i+ wiz = foe™'. (1.32)

We postulate the particular solution in the form Ae™!, which plugged into the above

equation yields
(—w® + iTw + wj) Ae™" = foe™". (1.33)

This equation is clearly satisfied when we take

fo
2

wi —w? +ilw’

A= (1.34)

This reasoning reproduces stautiomz()u)rs;gl Eglution (IT-3T), since the second term in this relation
follows by replacing w by —w in (IT. and by combining corresponding two results.

S.Kryszewski QUANTUM OPTICS 6
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1.4.2 Resonance approximation
This approximation consists in the assumption that wy ~ w. This allows us to write

Wi —w? = (Wt w) (W —w) =~ 2w(wy —w) (1.35)

os42a .
In such a case (T.28) gives

qFy 2w(wg — w) cos(wt) + wI' sin(wt)
m dw?(wy — w)? + I'w?

(1.36

Some simple rearrangement and substitution of wy instead of w in the common factors

xs(t) =

(which is allowed in the resonance approximation) leads to the expression

B qEy Wy — w
 2mwp \ (wo — w)? + 312

1
1

(wo — w)? + }1F2

xs(t) cos(wt) + sin(wt) ) . (1.37)
Let us discuss briefly the behavior of the oscillator within the resonance approximation.
We see that the in-phase term (proportional to cos(wt), as the driving field) has dispersive

character. Its amplitude is

Ay = 2 o (1.38)

2&)0 (wo — u}d)2 + (F/2)2 .

It is sketched by a broken line in the figure below.

Fig. 1.1: Shapes of dispersive (broken line) and absorptive (solid line) curves.
Zero on the horizontal axis corresponds to strict resonance w = wy. The units

fig:dabs| are arbitrary. It should be noted that the curves are out of proportion.

On the other hand, the out-of-phase term (proportional to sin(wt)] is absorptive, and its
amplitude is

/2
Ay = 2 / (1.39)

2w (wo —wg)? + ([/2)2

: fig:dabs .. . . . . .
Figure 1 (solid line) illustrates the behavior of this amplitude a functions of frequency.
The terminology used here may be somewhat unclear. It will be fully clarified when we
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March 4, 2010 1. Classical harmonic oscillator in external field 8

employ the oscillator model to describe some phenomena which occur in the atomic media

irradiated by electromagnetic waves.
When the damping is weak, then apart from the close vicinity of the resonance we
have

Wo — Wy
r/2

> 1, off resonance. (1.40)

‘ Adisp
Aabs

This allows some interesting conclusions.

osd7a
1. Off resonance, (I.37) implies that

qEo |wo — w|
2mwy (wo —w)? 4+ (I'/2)2

z,(t) ~ 2W(t) = + ( cos(wt), (1.41)
where we have plus for w < wg and minus when wy > wy. This means that off
resonance the oscillator is in phase with the driving force.

2. Close to the resonance (or just on resonance), the absorptive term dominates, and
in this case we have

r/2
zs(t) = 20 () = ( Jfo ) sin(wgt + @). 1.42
() s () 2o (WO—Wd)2+(F/2)2 ( d gb) ( )
This indicates, that in resonance the motion of the oscillator is out of phase. It
motion is shifted in phase (with respect to the driving force) by a factor of 7/2.

The discussed features of the driven oscillator are useful in the discussion of some
atomic or molecular phenomena.

1.5 Nonlinear perturbation

1.5.1 Description of the problem

Harmonic oscillator models physical situation in which potential energy has a minimum.
It is a good approximation only in the close neighborhood of the minimum. The farther
we get the poorer the approximation and we need to take into account the nonlinear
corrections.

To facilitate further discussion we will now adopt the following model. As previously
we consider weakly damped oscillator driven by two external fields with different ampli-
tudes and different frequencies. But now we will include a small anharmonic (quadratic)
correction to the Hooke’s force. The corresponding equation of motion now becomes

&+ Tid + wir + ba® = Fy(t) + Fy(t), (1.43)

where b is a small parameter controlling the strength of the nonlinear perturbation. The
force Fy(t) are specified as previously, that is

_ 4B
2m

Fi(t) (et 4 7). (1.44)
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March 4, 2010 1. Classical harmonic oscillator in external field 9

From now on we will consider only the stationary solutions, since only they survive in
the long-time limit. Moreover, the nonlinear correction is small so that we can seek
approximate solutions. It is easy to find the stationary solution to the unperturbed case
(b = 0). In such a case equation ([[.43] is linear so its solution is just the sum of two
solutions each for one of the external force. So, following the results of the previous
section, we can write the unperturbed solution as

fl 6iwlt f‘2 eiwgt

©) () =
w20 wi —wi+ilw Wi —wi+ iTwy

+C.C, (1.45)

where fr = qEy/2m, (k= 1,2). To simplify the equations we denote

f]_ eiwlt

t) = , 1.46
(?) wig — w? 4+ ilw (1.46)
53
so the unperturbed solution (OI .SZIB) is shortly written as
2O(t) = a1 + g + af + o (1.47)
1.5.2 Iterative solution
51
We return to the perturbed case, that is to Eq.(o.S ¥ As we noted we treat the nonlinear
correction as a small perturbation. We look for the solution in the form
z(t) = 20 t) + y(t), (1.48)

os55
where x()(¢) is the unperturbed solution (511.47) and y(t) is a small correction due to the
oS a
perturbation. Inserting our ansatz into (I.43) and moving the nonlinear term to the right
hand side we obtain

2

O 4 T 4 w22 44 Dy + Wy = Fy (1) + Fa(t) — b(z®@ + ) (1.49)

Iterative solution of this equatigg consists in neglecting the correction y(t) in the nonlinear
term. Thus, we approximate (1.49) by the following equation

#0 4 Ti® 4 W22 Of 4+ Ty + wdy = Fi(t) + Fa(t) — b(2 @), (1.50)

Noting that z(®)(¢) is the (stationary) solution of the unperturbed equation we see that
the first three terms in the left hand side cancel out with the forces in right hand side.
Therefore, we finally get an equation for correction y(t) only. We get

i+ Ty +wiy=—b (a1+a2+a*{—|—a§)2, (1.51)

54 55
where auxiliary functions ay(t) are specified in (E%[G) and (Ol .SZU). Performing the multi-

plication an regrouping we find
jHTy+wdy=—b[(a}+CC)+ (a3 +CC)+2(mar+CC)

+2(maj +C.C) +2|a1\2+2]a1\2}, (1.52)

S.Kryszewski QUANTUM OPTICS 9



March 4, 2010 1. Classical harmonic oscillator in external field 10

This equation looks pretty complicated, but this is misleading. It is sufficient to examine
its structure, to note that it is linear. Linearity implies that we can consider each inho-
mogeneity (the terms in the right hand side) separately. Hence our solution has the form
of the sum

y(t) = y(t) +ya(t) + ys(t) + yalt) + ys (1), (1.53)
where each of the terms satisfies the equation of motion

G+ Dir + woye = —b (Ape™™ + Ape™ ™M), k=1,2,3,4,5. (1.54)

. . 0s60
The structure of the rhs follows fr88115141nspect10n of the rhs of (I.52) compared to the
form of ay’s as they are given in (I[.46). Since we are icr)lécﬁgsted‘ogiléllg in the stationary
solutions, we see that we have special cases of equations (I.32) to (I.34). The only point is

to correctly recognize the amplitudes A; and frequencies €. Now we will briefly discuss

the particulars.

0s60

First term in (I.52)
0s60

The first part of (I[.52) is as follows
g1+ Ty +wiys = —b (of + C.C). (1.55)
54
By means of (E)%[G) we read that

2
Ql = 2(,01, A1 == fl . (156)
2 2 . 2
(Wo —wi + 1Fw1)

Therefore the first contribution to the correction y(t) is of the form

—b f12 62iw1t

(w(z) —wi+ Z'le)z(wg — 4w? + Qile)

yi(t) = + C.C. (1.57)

This corresponds to stationary oscillations with the doubled frequency of the first driving
field. In other words, it can be associated with second harmonic generation.

60
Second term in (OI ?52)

Clearly the second terms differs from the previous one only by the index: 2 instead of 1.
Hence from (I.57) we immediately get

-} f22 einQt

(Wi — Wi+ Z'ng)2(wg — 4w3 + 2ilw,)

ya(t) = + C.C. (1.58)

This terms, thus describes the generation of the second harmonic of the second external
field.

S.Kryszewski QUANTUM OPTICS 10
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60
Third term in (OI .852)

The third contribution to (ﬁ_.sgg) is
s + s + wiys = —b (20900 + C.C). (1.59)

As previously, from (E%%) we read that

2f1f2

(Wi — w4+ ilTw) (W — w}+ iTws)

Qg =wi + Wa, A3 = (160)

This part of the correction y(t) is, thus, of the form

92} i(w1twa2)t
() = . Sl , e
(Wi — wi+ ilTw;) (W — Wi+ iTws) (W — (W1 + w2)? + il (w1 + wo)]

(1.61)

This describes stationary oscillations with the frequency being the sum of the frequen-
cies of two driving fields. Hence, it can be associated with the so-called sum-frequency
generation.

60
Fourth term in (OI .852)
60
The next contribution to (OI .852) follows

Ga + s + wiys = —b (20405 + C.C). (1.62)

Due to the presence of o it differs from the previous case only by replacing +ws by —ws
oS C
Therefore (I.61) allows us to write

_2bf1 f2 e’i(uJ1—UJ2)t
t) = + C.C.
al?) (Wi — wi+ iTwr) (W — Wi+ iTws) [wd — (W1 — w2)? + il (wy — ws)]

(1.63)

These are stationary oscillations with the frequency being the difference of the frequencies
of two driving fields. Hence, it can be associated with the so-called difference-frequency
generation.

60
Fifth term in (OI .852)

: . . . E_Sgg
In this, last, case we have an equation of motion (as it follows from (I[.52))

. . 2 2
iis + Tijs + wiys = —b (2|an| +2|as|™). (1.64)

. . ﬁ%%‘e . . L : .
As we see from inspection of (I.46) rhs in this case is time-independent. It is straightfor-
ward to check the particular solution to the above equation is also constant. Namely it

1S

() == 25 (Joa+lon ) (1.65)
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54
Taking a’s from (H%H?) we obtain

ys(t) = — 2—2 ( fi + /3 ) : (1.66)

. 2 . 2
2 2 2 2
‘wo w1 + erll ‘wo w3 + ZPQ}Q}

This term describes a constant shift due to the nonlinearity of the potential energy.
Simple harmonic oscillator has quadratic potential energy, hence symmetric . Introduced
nonlinearity results in the term in potential energy proportional to 2 thereby inducing
asymmetry which entails the constant shift of the stationary oscillations.

kok ook ockok ok okook sk ockok ok okook sk ockok ok ok ok ok ko ok ok ok ook ok ok ok
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Chapter 2

Classical electrodynamics

It is not our aim to give a lecture on electrodynamics. There is a book by Griffith which
gives an excellent presentation of the subject. We only briefly review the fundamentals
of the subject necessary to perform the quantization in a simple and convenient manner.
This chapter only summarizes the main aspects of classical electrodynamics. Some other
ones, useful in more restricted applications will be dealt with when such a need arises.

2.1 Maxwell’s equations

We will use the SI system of units. In this system, the general Maxwell’s equations in
presence of free charges and currents are as follows

div D(F,t) = p(F, 1), (Gauss' law), (2.1a)
div B(F,t) = 0, (no magnetic monopoles), (2.1b)
rot B(F,¢) = — % B(F,t), (Faraday's law), (2.1¢)
rot H(E, 1) = j(F,¢) + % D(F, ), (modi fied Ampere's law), (2.1d)

where p and Iare charge and current densities. The pairs of the fields E, D and ]§, H
are connected by the material relations, which may be written as

D; = €,€,;Ej, B; = popiiHj, with ule = (2.2)
with €, and p, the permeabilities of vacuum. The tensors €;; and p;; are the dielectric
and magnetic susceptibilities of the medium in which the fields propagate. For linear and
isotropic media these tensors reduce to constants. In general, susceptibilities €;; and p;;
may be position and time dependent, they may also be the functions of the fields E and
H. In the latter case we arrive at the problems of nonlinear optics, which in itself, can be

a subject of a separate lecture. In this notes, however, we will not address such questions.
Moreover, we note (for linear and isotropic media) that the fields D and B can be
expressed via the electric polarization and magnetization

—

D = ce,E = ¢,E + P, B = pp.H = p1,(H+ M), (2.3)
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Equivalently, polarization and magnetization can be written as

. , . . T T
P = (¢ - 1)¢,E, M=p-DH=""8B=-"B_H (2.4)
BHo o

Two additional remarks seem to be in place. Firstly, we note that Maxwell’s equations

automatically account for charge conservation. To see this, let us take the time derivative
of the Gauss’ law (2.Ta) (we assume that spatial and temporal derivatives commute)

0 = 0
div — D(r,t) = — p(r,1). 2.
v O B(E) = plE) (2.5)
o . o = . . Egll_g,
Then we eliminate time derivative of D by employing modified Ampere’s law (2.1d).
Thus, we get
9 —d ( ot H '*> (2.6)
—p=div(r —-jl- .
ot .
Since we have the vector identity div rot = 0, it follows that
0 it divi—0 (2.7)
— ivj=0. .
ot vl

which is an equation of charge continuity written in a local form. charge conservation
requirement. It is a local law. Its integral counterpart reads

/d3r2p:—/d3rdivj:—/ ds -j, (2.8)
v ot v ov

ce7
where the Gauss’ theorem was used. Relation (}‘2_8) means that the charge within certain

volume may change only due to the current flowing across its surface.
Second remark concerns the so-called displacement current. This is a concept intro-

duced by Maxwell himself. To understand it let us recall that the original Ampere’s law
states that circulation of the magnetic field along a closed contour is equal to the current
flowing across an arbitrary surface spanned on this contour.

]{df-ﬁ = /d§-}. (2.9)

Then, due to Stokes’ theorem, this can be written in a local form
rot H=j. (2.10)

The term 6D /Ot is missing. It is just the displacement current introduced by Maxwell.
This is a misnomer, since this term has nothing to do with current — the flow of charges.
oD /Ot can be nonzero in vacuum, where any charges are absent. Let us see what would
happen if the displacement, current were not accounted for, that is if the fourth Maxwell’s
equation were reduced to (C.e ). Taking divergence of both sides of this equation, we get

0 = div rot H = div j. (2.11)

where the left hand side vanishes identically. On the other hand divjneed not be zero.
For example, where the charges accumulate (capacitors) divj = —3 p/0t # 0, according
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cel3 cel2
to charge conservation. So, Eq(b_ﬂ') is wrong, and thus (bﬁ) must be wrong too. ;Elllés
is why the displacement current is indeed necessary. Obviously, we can correct (2

writing
- ) oD
0 = divrot H = divj+ a—f divj + div— T (2.12)
”Taking off” the divergence (we note that left hand side can be then nonzero) we get
. . 0D
tH = j —_—. 2.13
ro J + ot ( )

which is exactly the fourth Maxwell’s equation, called also the modified Ampere’s law.

We see that the introduction of the displacement current is indeed necessar otc
It is worth noting that there are 1o such problem with Faraday’s law (é [c).Indeed,
taking divergence of both sides of (2.1c) we get

0 = divrot E = — %divﬁ = 0, (2.14)

due to the second Of Maxwell’s equations.
Finally we note that in vacuum there is no medium, hence polarlzatlon and magne-

tization vanish. There is no need to distinguish fields D and E B and H SO we write
Maxwell’s equation for the free space as

div B(F,t) — El o(F, 1), (Gauss' law),  (2.15)
divB(F,t) = 0, (no magnetic monopoles), — (2.15b)
rot B(F,t) = — % B(%,1), (Faraday's law),  (2.15¢)
rot B(F,t) = 60102 J(E 1) + ci?% E(F, ), (modified Ampere's law),  (2.15d)

This is the set of fundamental equations with which we will mainly deal in subsequent
discussion.

2.2 Potentials

2.2.1 Introduction and basic definitions

Maxwell’s equations may be formulated in terms of potentials. To define the potentials,
ce

we refer to general Maxwell’s equations (}’ZT) We also recall the identities known from

vector analysis

div rot = 0, rot grad = 0. (2.16)

The second Maxwell’s equation div B=0 is always satisfied, since it siﬁniﬁes that there
ce

are no magnetic monopoles. Hence, due to the first of the identities (2.16) we can always

write

—

B(F,t) = rot A(F,t). (2.17)
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—

We conclude that, Whencg}%% vector potential A is speciciiel% so that the magnetic field
B is determined by Eq.(2.17), the Maxwell’s equation (bTB) is automatically satisfied.
Introducing (Egl%%) into the Faraday’s law (Célcc) we obtain rot E = —drot A/dt, which
suggests that the electric field is given as E=-0 A/ ot. This is not sufficient, for two
reasons. In the static case, it would imply that E = 0, which is clearly wrong — static fields
do exist. Secondly, due to the second of relations (}'ZTG) we can always add a gradient of
arbitrary function, writing

E(F,t) = — grad ¢(f,t) — %A(a t), (2.18)

celc

and the Faraday’s equation (b_E) is still automatically satisfied.

Therefore, we may formulate the problem of specifying the electromagnetic field as
follows. We postulate the existence of a scalar ﬁ§£%3¢(F’ t) and of a vector field jicgbt)
such that the electric field is determined by Eq.(2.I8) and the magnetic field by ( c'ell)'
Then, we automatically satisfy two out of four Maxwell’s equations (namely, Eqs. (2.1D)
and (Egllfc) There are still two other Maxwell’s equations to consider

— — — a —
divD = p, rotH=j+ g D, (2.19)

which also must be satisfied. It remains to check what are the conditions imposed on
potentials by equations (2.19).

2.2.2 Wave equations for potentials

We now look for the restrictions imposed on the potentials by two remaining Maxwell’s
equations (c'.e ). .

We note that there arises a serious problem. Namely, the potentials A and ¢ spec-
ify the fields E and B, while equations (59[9) contain fieclds D and H. The latter and
the former fields are connected by material relations (2.3). The dielectric and magnetic
susceptibilities may be cogéggcated functions of position, time and also of the fields them-
selves. Thus, equations (b_[g) after insertion of material relations and potentials can be
expected to be very complicated. To avoid such problems, we shall restrict our atten-
tion to fields in vacuum. The relations between fields E, B and potentjals A, ¢ remain

celb celc
unchanged, because the second and the third Maxwell’s equations (2}%_1‘5) and (b_l?) in
vacuum are the same as in media. On the other hand, equations (Ce ) become simpler,

and in vacuum they are

divE = — tB=— — —E 2.20
iv e’ ro e J+ 2 ( )
) . : 52123 . .
Introducing electric field specified by (2.19) into the first of the above equations we get
iv ( grad ¢ T > . ¢ Ay ) (2.21)

which is the wave equation (in vacuum) for scalar potential. This wave equation is not,
strictly speaking, an equation of motion for ¢ since it does not include its time derivative.
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It is rather a relation between ¢ and the time derivative of vector potential 8&/ Ot at a

certain moment of time. a0
It remains to make use of the second of equations (b‘ZU) We replace the fields by the
corresponding expressions for potentials and obtain

o 1 - 190 9 %
A=—j+= — (- - —A). 2.22
rot rot e j+ 2 815( Vo o ) (2.22)

Using the vector analysis identity

Vx(VxA)=V(V-A)—-V3A, (2.23)
we get

1 02 9| = 1 - > 1 0¢

[gﬁ—V}A— CZEOJ_V[VA+C3§] (224)

We may concludQ%, restrictiQ%g our considerations to vacuum, that the introduction of
e e

otentials by (E [7) and (ETS) guarantees that two of the Maxwell’s equations (EEFB) and

celc
2.1c) are automatically satisfied, while the other two are equivalent to wave equations

591) and (2.24).

~—
o e

2.2.3 Potentials — gauge invariance
We recall the relations between the fields and potentials

B o - . .

E(r,t) = —grad ¢(r,t) — 5% A(r)t), B(r,t) = rot A(T,t). (2.25)
The fields are the true physical quantities measured and observed in a variety of ex-
periments. The role of the potentials is rather auxiliary since they are not uniquely
determined. To see this we recall that rot grad = 0, hence the redefinition (called gauge

transformation) of the vector potential

A(F, 1) A'(F,t) = A(F,t) + V F(T,1), (2.26)

gauge

does not change the magnetic field B for arbitrary function F'(r,t). Let us now express
the electric field via a new vector potential

E(f,t) = —grad ¢(F,t) — % [A/(f, t) — VF]
— —grad {W, t) — % F(T, t)] - % A'(F, ). (2.27)

We see that the expression in the square brackets plays a role of a new scalar potential.
We conclude that the joint transformation

A(F,t) —— A'(F,t) = A(F, 1)+ VF(E,1), (2.28a)
ﬁ . H J -
(b(ra t) W ¢ (I', t) = ¢(r7t> - a F(I‘,t), (228b)
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leaves the physical quantities, that is gle fields E and B, unchanged. This means that
for 7old” potentials we had relations (b‘TS), while for the "new” ones we similarly have

E(F,t) = —grad ¢/(F,t) — % A'(F, 1), B(f,t) = rot A'(F,t).  (2.29)

The fields are unchanged though tlclgs]z‘l)otentials are. It Cigsstraightforward to check that
introducinge:t%l{le "new” potentials (b‘2'8) into relations (2.29) we will arrive at the fields
given by (2.25).

This fact is called the gauge invariance of the fields. We have some freedom at the
choice of potentials in a convenient way, best suited to particular applications. At present,
we will not discuss this subject. We will only briefly indicate two most commonly used
gauges — methods of choosing the potentials.

2.2.4 Lorentz gauge

Lorentz gauge consists in such a choice of the potentials, that the relation

divA(r)t) + == ¢(r,t) =0 2.30
v A(E, 1) + o 6(F 1) =0, (230)
is satisfied. This requirement still leaves Sonégg)f’?reedom. Namely, let us assume that the
7old” potentials satisfy the Lorentz gauge (2.30). We make a gauge transformation by
adopting "new” potentials

- - 0

A=A+ VG, ¢ =q¢— EG’ (2.31)

37
Inserting "new” potentials into (}‘ZC?BU) we obtain
- 10¢ 10°G

divA' = V’G+ S+ —5 =0. 2.32

a * 2 ot * 2 Ot? (2:32)
We see that if the function G satisfies the wave equation

1 0*°G

VG - = =0 2.33

then the "new” potentials still fulfill Lorentz requirement (2:33(71). Conversely, if we assume

that "new potentials must also satistg{) the Lorentz gauge (2.30) then we conclude that an
ce
arbitrary function G satisfying (2 will preserve Lorentz gauge. This indicates some

arbitrariness in the choice of the gauge Elénction G
(gEe ce2

8
Let us return to wave equations ) and (}'2_27[) Assuming Lorentz gauge, we get

1 02 . L
[VQ - g@] o(r,t) = — - p(T,1) (2.34a)
2 l 82 N _ 1 -
{V 29 A(r,t) = e j(rt). (2.34b)

As a result, we obtain uncoupled, symmetric wave equations for the potentials.
Finally, we note the Lorentz gauge can be shown to be invariant with respect to

Lorentz transformation, and as such is particularly useful in relativistic considerations. It
is not difficult to recast wave equations (2.34)) into four-dimensional (space-time) nota-
tion. This is, however, beyond the scope of our present interests.
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2.2.5 Coulomb gauge
Coulomb gauge is specified by the requirement
div A(F,t) = 0. (2.35)

So, there is no conditions imposed on the scalar potential. Unfortunately, relativistic
invariance is thus lost. NeverthelESS2 thls ga d%%és extremely useful.

In this case wave equations ( and ( are also simplified and they are of the
form
1
0
1027 % 1 - 1 0
2 - -

The symmetr%/ of the wave equatlons is lost. Scalar potential must satisfy Poisson’s
e a

equation (E.BGa) and it is due to the instantaneous charge distribution. Then we can

write

SE 1) = — / d%’ﬁfi (2.37)

4re, r—r/|

as it is known from the course on electrodynamics. This may lead to the conclusion that
there is some kind of an interaction which spreads with infinite velocity. It can be shown,
that this is not really a problem. At present, we only state that the discussion of this
problem can be found elsewhere.

2.3 Longitudinal and transverse fields

2.3.1 Introduction

In many practical applications it is convenient to split vector fields in a longitudinal part,
for which the rotation is zero, and a transverse part, which has a vanishing divergence (it
is a sourceless field). For example, for the electric field we write

E(F) =E|(®) +E.(f), and E; LE,, (2.38)
with
V x E(f) =0, V-E, (F)=0. (2.39)

For any square integrable field such a separation is unique when we also require that the
transverse and longitudinal parts vanish separately at infinity. This statement is known
as Helmholtz’s theorem. The given separation is non-local, in the sense that knowledge
of the values of E(F) at a certain position is not sufficient to determine the values of E |
and EH at that position. The differential operators do not specify the field in a unique

way, some integration is necessary.
The separation of the fields into transverse and longitudinal parts seems to be more

transparent in Fourier space — the space of spatial Fourier transforms.We shall, however,

address these problems in the Auxiliary Chapters.
Here we will study the question why do we introduce the concepts of transverse and

longitudinal fields. The answer is — this leads to the separation of Maxwell’s equations.

S.Kryszewski QUANTUM OPTICS 19
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2.3.2 Longitudinal Maxwell’s equations

First of all we note that div B = div (EL + ]_31“) = 0. Since div ]_3& = 0 (by definition of

the transverse field) we have div ]§|| = 0. This is most easily satisfied by demanding
B(r,t) = 0. (2.40)

This is the first of longitudinal Maxwell’s equations. It simply states that magnetic field
has no longitudinal components. In other words, magnetic field is purely transverse (or
sourceless, its divergence always vanishes).

Then, the Gauss’ law gives

—

div (B, +E)) = 2. (2.41)

€o
Since divE, = 0, we are left with

divE, = £ (2.42)
€

o

which is the second longitudinal Maxwell’s equation. By definition rot EH = 0, so we can
always write

E” = — grad gb, (243)
56b
which, together with (E?@Zi yield

Vip = — L, (2.44)

€o

. : . . . Eggg_a
that_is the Poisson’s equation as it was the case in the Coulomb gauge (see (2.36a) and
ce
(2.37)). Hence, we conclude that the longitudinal electric field is due to instantaneous

charge distribution. In other words, longitudinal Maxwell’s equations reduce to
B||<F, t) = O, (2.45&)

= -1 p(r' t) 1 . r—r
E”(I‘,t) = 7Tﬁ(}V/dB’I"/ ’F = /dI_'»/ p(r/,t) W (245b)

4 — 1| Are,

2.3.3 Transverse Maxwell’s equations

Now we consider the remaining Maxwell’s equations, that is Faraday’s and Ampere’s laws.
First we write the Faraday’s law
L OB
rot(E +E ) = — —. 2.46
By definition rot EH = 0, so Faraday’s law is transverse because so is the magnetic field
B = B,. Hence we have

rot B, = —% B,, (2.47)
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which is the first of transverse Maxwell’s equations. It contains no information on the
longitudinal fields because longitudinal component of E does not contribute to left hand
side, and magnetic field B is purely transverse so there is no magnetic longitudinal con-
tribution. cold

It remains to discuss the modified Ampere’s law (}‘Z_l_d) We take into account transver-
sality of magnetic field and we have

— 1 /e 1 0
B = —5 (J+5) + (B +E.). 2.48
rot B o JI+JL 20t |+ B ( )
This equation splits into two parts: the transverse and longitudinal ones
— J - 1 0
tB, = j — —E 2.49
1 - 10 %
0 = — — Ej. 2.49b
cadl T o B (2.49D)
] . ce65b . . .
We will now argue that equation (2:49b) does not bring any new information, and there-
fore, usually can be discarded. Taking the divergence of (2.49b) we get
o .0 4
= leJH + € div a E”. (250)

But div jl = 0, by definition, so transvgrse component of the current can be added.
Moreover, we use longitudinal equation (. which allows us to write

0 = leJ||—|— 3

5P (2.51)

= div (JH"‘JJ_) (975

Lo o ) mce%b
which is clearly seen to be the charge continuity equation. We conclude that (2.49b) does

not bring any new information. It can indeed be discarded.
Hence, the two transverse Maxwell’s equations are of the form

_ 0
tE, = B 2.52
rot E| —5; BLs (2.52a)
— 1 - 1 0
rot BL = & 2 .]L + — 2 8t EL, (252b)

: : N . E%?g% .
It is worth remembering that the longitudinal eq%ateslé)bn (2.49b) of the modified Ampere’s
e
law reduces to charge conservation requirement (

2.3.4 Discussion of the potentials

As we already mentioned the analysis of the longitudinal and transverse parts of the vector
fields seems to be easier and more transparent in the Fourier domain. In this domain it
is straightforward to see that grad F(r,t) is a purely longitudinal vector (for arbitrary

function F'(T,t)). We shall take this fact for granted and use it in this section. cen
We start the discussion of potentials with the vector one. From the definition (bl 7)

we certainly have

B=B, =rot <1§H+AL> =rot A, (2.53)
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since, by definition, rot 1&” = 0. The transverse part of vector potential is sufficient to
specify the magnetic field. Moreover, from our discussion of longitudinal and transverse
Maxwell’s equations it follows that

_ _ o -
EJ_ = AJ_, E” = —grad¢a A”. (2.54)

ot
No gradient (it is purely longitudinal) contributes to E,. The question is, what is the role
played by the longitudinal vector potential A7 Can we (for simplicity) put A = 0. We
shall discuss this problem, but before doing so, we return for a while to wave equations

(537) and (531)

1 0 >
V3 = —E— P div Ay, (2.55a)
|i§ @ -V :| A= grad |:le AH + — 02 at :| (255b)
A 1 does not appear increi%lg hand sides because div A 1 =0, by definition. The gradient
is longitudinal, so Eq.(2:55b) clearly splits into two parts
1 0? 5| = 1 1 0¢
[; e v } A= — grad |:le A+ = W} : (2.56a)
1 0? > 1 -
— = -V? A, = 1 2.56b
{02 ot? } T e, - ( )

. . o ceT4a
In normal space (in contrast to Fourier domain) it is not easy to show that Eq.(b.BGa) does
not_bring any new information and that it reduces to charge conservation requirement
(2.5T). This fact, in the view of previous discussion, should not be really surprising.
221784? easily shown in the Fourier space and is presented in Auziliary chagters E uatlgn
(2.56a) can be thus discarded and we remain with two wave equations (2.55a) and (é hHoa).
Coulomb gauge requlrement div A = 0 reduces to div A|| =_. The s1m;2)1est way to
ce7l
fulfill this condition is to take AH = 0. In this case relations (b.BS) and (b H4) still hold,

so the fields remain unchanged. On the other hand, potentials now satisfy the following
wave equations

V2¢ = ——p, (257&)

1 02 - 1 -
|:_ - V2:| AJ_ — C2 JL, (257b)

. . . . . . . ce66b
while the longitudinal current density is connected with charge density by Eq.(b.SI ).

At the end of our discussion we shall give some additional comments (which are also
discussed in Auxziliary Chapters.

. . . : . E%é
1. Having found the scalar potential (by solving Poisson’s equation (£. Ce%) we can find
the longitudinal component of the electric field Ej according to Eq.(2.54). MOI?S%’EJ?
it is interesting to note that in Coulomb gauge (with A = 0) wave equation (2.56a)
yields

1 0 0
6_ JI = 8t grad g25 at E”, (258)

o
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so the longitudinal current density can also be found.

2. The second wave equation (2.57b) gives transverse component of the vector potential
as a function of the transverse part of the current density. It is sufficient to know
A, to Comg%llte transverse components of electric and magnetic fields according to

[

relations (}’2_53) and (E‘e&[)

3. In the Coulomb gauge the transverse A is the only relevant vector potential. Let

us note that it is gauge invariant (this will be discussed in more detail in Auziliary

Chapters). To see this, we perform gauge transformation (2.28a)

A= A+VFE (2.59)

Since any gradient is purely longitudinal, the transverse component is unchanged.

A

gauge

X ok ok sk ook ok okok ockock ok okok ok ok ock ok ok ok ok sk 3k ok ok ok ok ok ok k%
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Chapter 3

Quantization of electromagnetic field

3.1 Introductory remarks

We will quantize electromagnetic field in a simple, intuitive manner. We consider the
sourceless electromagnetic field in a cavity with Coulomb gauge, that is the field, for
which the vector potential satisfies the requirement

div A = 0. (3.1)

As it follows from the considerations in the previous chapter, the vector potential is
transverse, gauge independent, and since there are no sources, it satisfies the homogeneous
wave equation

7 o — V2A (F,t) = 0. (3.2)

Due to the Coulomb gauge and to the absence of the sources we can take the scalar
potential to be identically zero. Then the fields are fully specified by the vector potential

., o - .
E (F1) =~ 5 AL(T.1), E((F,t) = 0, (3.3a)
B(f,t)=B, = V xA,(f,1), (3.3b)

We will not go into the subtleties of the gauge problems, or other mathematical nuances.
We will consider the electromagnetic field in the cavity of volume V. The procedure we
will describe does not depend on the shape of the cavity, although the proof of this fact
is far from trivial. We will also indicate the limiting procedure allowing the description
of the fields in all space.
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3.2 Expansion into normal modes

3.2.1 Statement of the problem
£q03
We seek the solution to the wave equation (k%.b) in a form with separated variables

- \/ET > galt) T, (E). (3.4)

The index n may have the meaning of the multiindex (the Laplace operator in the wave
equation is usually degenerate). The coefficient in the front is introduced for future
convenience. We will call ¢, () the field amplitudes, while the function , (r) will be called
field modes. At present we will assume that the set of field modes is linearly independent,
and as such can be orthonormalized. This point will be discussed later. Since the fields
are physical observables, we can for present purposes take the field amplitudes and modes

to be real.
Before analyzm% the wave_equation let us express the fields via the adopted vector

potential. From (\d 3) and (3.4) we get

E, (F,t) \/»an i, (F), (3.5a)
\/: an ) rot @, (F) (3.5b)

Let us also note, that the Coulomb gauge implies the relation

0 = divAFEL) = 4 El S () div (@) (3.6)

. . £qO07. _ £q03
We return to the wave equation. Substituting (%.EU into the wave equation (}B.QF we employ
the linear independence of the field modes to obtain

SO0~ 4ut) Vi) = 0 (3.7)

We can add and subtract the same quantity. Then we get

12 [6n(t) + wign(t) JEn(F) — qu(t) [ VPUW(T) + 3 T(F) ] = 0. (3.8)

C

This procedure is fully equivalent to usual variable separation. This equation must be
satisfied identically for any time instant and at any point within the cavity, therefore,
the coefficients in square brackets must vanish separately. Hence, our wave equation is
equivalent to the set of equations

Qn<t) + wi Qn(t> =0, (3.9&)
V2, (F) + Cz—zﬁn(*) =0. (3.9b)

S.Kryszewski QUANTUM OPTICS 25

£q09m



March 4, 2010 3. Quantization of electromagnetic field 26

Equation (%%%? has dynamical character, while (E%l%z is geometrical. First, we consider
the geometrical one with the reasonable assumption that w,, # w,.

The field within the cavity must satisfy the boundary conditions at the walls of the
cavity. The tangent component of the electric field must vanish, and so must the normal

component of the maigrigtic field. Since the fields are given via Eqgs.(3:5), we see that the
geometric equation (3: must be solved with three conditions
U, ()| 14pgens = 0 on the boundary 9V, (3.10a)

rot U, (T)|,,,mgq = 0 on the boundary 9V, (3.10b)

div u,(r) =0 in all volume V. (3.10c)

The third condition follows from the Coulomb gauge (E%’%ST%% must be saécisﬁed within
all volume of the cavity. It can be shown that relations (3.10a) and (3.10c) imply that
the electric field should vanish on the cavity walls. Hence, we can say that |y = 0.
We will not solve Eq.(3.9b) with the above given conditions. We refer to mathematical
handbooks, and we will only state that such a problem can be solved once the shape of the
cavity is given. Moreover, the obtained cavity modes u,(r) can be shown to characterize
the cavity in a unique manner. Such modes are called normal modes of the cavity. Hence,
normal modes fully characterize the geometry of the problem. The dynamical behavior
of the fields is thus described by the amplitudes g¢,(t). Determination of amplitudes
automatically determines the fields, since the normal (geometrical) modes are fixed once
the cavity shape is given. Therefore we proceed to analyze the field amplitudes g, (t).

3.2.2 Energy of the field in a cavity

The field amplitudes ¢, (t) are best discussed via the field energy. We recall, that in
classical electrodynamics the energy of the field in cavity (in vacuum) is given by the
integral
£ =2 ar [E2 + c2]§2} (3.11)
2 Jy

. ) . £909
Inserting the fields according to relations (b.%i we get

£= / a7 [; () () T (F) - 1 ()

n % > Gn()ga(t) 10t G (F) - 0t 6, (F) | - (3.12)

m,n

We proceed with the analysis of the second integral, which we denote as
I = /df" rot U,,(T) - rot U, (r), (3.13)
1%

and which is obviously symmetric, that is J,,,,, = Jpm. We will now transform this integral
so as to make use of the boundary conditions imposed on cavity modes. We use the vector
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analysis identities (rot rot = grad div — V?),

—

roti-rotf):div(é’xrotl;) + F-rotrotb
:div(é’xrotf)) + &-graddivb — a-V?b, (3.14)

which allows us to rewrite the integral .J,,,
y — / dr [ div (d,, x rotd,) + U, -graddivd, — U, - VQﬁn} ) (3.15)
1%

£927
Firstly, we note that the Sec%)nld9 term in (%917{) does not contribute, because the fields are
C
tyfansverse: div i, = Of, see (B:10c). Secondly, the functions u,, satisfy Helmholtz equation

17
()‘3@5) Hence, from (% [5) we obtain
w2
Jn = /df {div (d,, x rotu,) + — ﬁm~ﬁ_n} . (3.16)
v c

The symmetry (%f gllle integral J,,,,, gives Jyn—Jnm = 0, and by subtraction of the equations
of the type of (}'3 [6) we obtain

w2 —w2

/df’ [ div (i, X 061,) — div (i, X rot )] = “m_%n /df’ iy, -, (3.17)
1% c 1%

Now, we consider the integral of the term similar to the ones appearing in the above
formula. First we use the Gauss theorem and transform the volume integral into the
surface one. Then we argue that, for any m and n, the resulting integral vanishes, that is
we have

/ d¥ div (@, x rot d,) = jf dS - (d,, x rotd,) = 0. (3.18)
14 oV

The scalar product in the surface integral ”selects” the component of 1, x rot u,, along
the vector dS which is perpendicular to the surface. This (perpendicular) part of the
vector U, X rot U, arises from the components which are parallel (tangent) to the surface,
as it follows from the properties of the vector product of twqg vectors. But the tangent
component of rot U, vanishes [see the boundary conditions (3: g)] Hence, the normal
cgrr?)lgonent of the vector product vanishes. The integrand is thus zero, and the relation
(%QTS) is proved. Left-hand side of (%917) is zero, and we arrive at the conclusion that

2 2
Wiy — Wy

/df’ G, i, = 0. (3.19)
14

c2

Since parameters w,, # w,,, we may write
/ dr U, - U, = Omn, (3.20)
%

because orthogonal functions can be normalized. This fafct117nay be explained in a different
manner. Namely, we can refer to the wave equation (3. and since the laplacian V2
is a Hermitian operator, its eigenfunctions belonging to different eigenvalues should be
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£939
orthonormal, which is reflected by (}B.b()). %NSescomple‘%e Qur discussion by returning to the
integral (B.16) in which we use relations (%3 8) and (3.20) to get

2
— — — — — _ wn
T = Jpm = /Vdr rot U, (r) - rot U, (r) = = O (3.21) |fq41

£q939 fq41 £q923
Inserting the obtained results (%QZU) and (&350 into the expression (&S.IZ) for the
energy of the field in the cavity, we obtain

w?

1 .9 2 s
&= 2 ; q(t) + o Z Gm (t)qn(t) gémn

=2 (&) + ). (322)

This result confirms that all dynamical information on the fields is included in the field
amplitudes ¢, (t). The obtained result clearly reminds of the harmonic oscillator. We
may interpret (3.22) as the sum of the energies of the so-called field oscillators. This
analogy will be very important, therefore, we will devote some attention to the harmonic
oscillator.

3.2.3 Expansion in normal variables

To proceed further we introduce new, in this case complex, time dependent functions
which reexpress the amplitudes ¢, and associated momenta p,, as

dn = \/ﬂ(an‘i‘an)a Pn = qn = _ZV 9 (an_an)7<3'23)

where Planck’s constant is introduced for future convenience. These relations are easily

inverted to give

1 1

ap, = ——— (Wn Gn + 1pp ), a, = —F——— (Wn @n — P ). (3.24) [fq47
S (“ntn +ipn) S (wnd Pn)- (3.24) [£q47]

Tfh85functions a, and a, are called "normal variables” of the fields which, as follows from

(BBF and (BB after substitution of (B%3), are now of the form
AL (T1) :zn: \/ 2:% (a, + a) U, (F). (3.25a)
E,(f,t) =i Xn: @(an — a}) d,(F), (3.25b)
B(F, t) :zn: \/ 2:% (an + a ) rot iy (F). (3.25¢)
£943

Energy of the field, given in (%%Z), can also be given in terms of the normal variables. It

becomes
E = %Zﬁwn[ana; + ana, ] = Zﬁwn aan, (3.26)
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where the second equality follows from the commutation of classical normal variables.
We have already ment%oned analogies to classical harmonic oscillator. The energy of

the field expressed as in (}'356) by normal variables brings further associations, but this
time with quantum-mechanical harmonic oscillator.

3.3 Field quantization in a cavity

3.3.1 Field oscillators — harmonic oscillator

We recall some basic facts about quantum mechanical harmonic oscillator. We consider
one-dimensional harmonic oscillator with unit mass, thus we write its Hamiltonian as
1 1
Hosc = _p2 + = w2 q2 (327)
2 2
The position and momentum operators satisfy the well-known canonical commutation
relation [g, p| = ih. It is straightforward to find the Heisenberg equations of motion for
both operators

ihg=[q H] = = [q,p*] = ihp (3.28a)

thp = [p, H} = [p, w? q2] = —ihw’q (3.28b)

N — DN =

We see that quantum-mechanical Heisenberg equations yield the same equations as clas-
sical Hamilton equations

4=p=%—;{ p= —wrqg= - A (3.29)
We know (see the chapter %ﬁhat the variables of the harmonic oscillator can be re-
expressed in terms of the dimensionless annihilation and creation operators. Such a
procedure is called second quantization. We assign the following operators to the position
and momentum ones

h hw
. . ~t . A A
q = “_2w (a—l—a), P Z\/—2 (a a), (3.30)

These relations are easily inverted to give

1
a = (wq + ip), al = (wq — ip). (3.31)

V2hw

So far, we easily see full analogy between quantum-mechanical annihilation and creation

operators and normal variables. The essential difference follows from the canonical com-
mutation relation for position and momentum operators. It implies the canonical com-
mutation relation for annihilation and creation operators

[a,a'] = 1. (3.32)
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The Hamiltonian of the oscillator, rewritten in terms of annihilation and creation opera-
tors is of the form

Hose = hw(d'a + =), (3.33)

DN | —

where the term 1/2 is due to noncommutativity of a and af.
It is also important to note, than the states of the harmonic oscillator (ie., eigenstates

of the Hamiltonian) are denoted by |n) withn =0, 1, 2, ,....... So we have
1
Hosc|n>:hw(n+§)|n> (334>

The state with n = 0 is called the vacuum state and it has the property
al0) = 0. (3.35)

It is useful to remind that given the vacuum state, we can construct all states |n) by
successive application of the creation operator
~tyn
ln) = %]0). (3.36)

Obviously, we can also construct the wave functions of the oscillator. For example, in
the position representation we %%r}afcind the eigenfunctions ¢, (¢) = (g |n). We refer the
reader to the auxiliary chapter [T0.

We can also easily derive the Heisenberg equations of motion for annihilation and
c;f‘eation operators. This can be done directly by the differentiation of the definitions
(B:31) or in a standard way. We get

| =

a:m[a, Hyl = —iwl[a,ala] = —iwla, a']a = — dwa, (3.37a)
’&:iih[at Hyl = —iw[dl, dfa] = — iwal[a, a] = iwal. (3.37b)

This summarizes all the information on the quantum mechanical harmonic oscillator.
This is relevant for the context of electromagnetic fields in the cavity.

3.3.2 Field quantization

We proceed with the intuitively simple quantization of the electromagnetic field in the
cavity. With each of the field oscillators we associate corresponding annihilation and
creation operators which satisfy the commutation relation

n

[am, al,] = O, (3.38)

with all other commutators vanishing. This commutation relation reflects the indepen-
dence of the field modes.

Quantization of the fields consists in replacing the normal variables by corresponding
operators @ and a'. Adopting such an equivalence we now have the quantized fields in the
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£949
form identical to (}'355) only with normal variables replaced by annihilation and creation
£q77| operators. We thus obtain the fields as

h ~ I — —
= zﬂ: 260 o, ( an, + CLL ) un(r) (339&)
=i, \/ Zt:: (@n — al) Wa(F), (3.39Db)
| X L
= zﬂ: Serion (an + a;rl) rot U, (r) (3.39¢)

Thus, instead of classical functions describing the electromagnetic field we now have

quantum-mechanical field operators. These operators do not commute, since the an-
nihilation and creation operators do not commute. It is important to understand that
the time dependence (or, dynamical behavior) of the fields is hidden in the annihilation
and creation operators. This is evident, if we take into account that in the classical case,
the dynamics was hidden in the field amplitudes ¢(¢), as it can be seen from Eq.(3:22).
Since the amplitudes are, in the quantum-mechanical case, replaced by annihilation and

creation operators, they must account for the dynamics of the fields.
Applying the same procedure to the field energy, we reexpress it in terms of the

annihilation and creation operators. Thus, we replace the classical energy of the field by
the quantum mechanical operator

Hpigg = Y hw, (@} an + 5)- (3.40)

The term 1/2, absent in the classical case, now follows from the noncommutativity of the

annihilation and creation operators.
To complete the field quantization we must specify the Hilbert space of the field

eigenstates. We again employ the analogy with the harmonic oscillator. First we define
the vacuum state by the requirement

an, |2) =0, for any mode n. (3.41)

Since the field modes are independent we construct other eigenstates of the field as a
tensor product

|n(1),n(2),...,n(k),...>:| >®|n > ®|n(k))®

a ”()

_® "<1> (3.42)

(@)

where numbers n;) are nonnegative integers and index (i) numbers all modes. The states

defined above are called states with n(;) photons in the mode number (7).
We note, that in many practical cases the number of modes in the cavity is infinite.

In such a case the expectation value of the energy of the vacuum state follows form (13:40)

1
(Q Hfiera | Q) = Z éhwn (3.43)
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and is infinite. We renormalize the energy by dropping the term 1/2. Thus the free field
hamiltonian is taken to be

Hpiq = Y hw, ala,. (3.44)
Omission of the 1/2 term does not change the equation of motion for field operators.
They follow again by the analogy to harmonic oscillator, and we have

Gy = — Wiy, (3.45a)

b, = iwal. (3.45b)

Hence the time dependence of the field annihilation and creation operators for the case
of free field is simple. By direct integration we get

an(t) = Gn(ty) e~nlt=to), al (t) = af (ty) et (3.46)

with a,(tg) and af (ty) being the initial values. As we already stressed, the dynamics of
the fields is "hidden” in the annihilation and creation operators. If we insert relations
(EQZ%) into the fields (%939), we see that their time dependence is sinusoidal, as might be
expected due to the oscillator analogy.

3.4 Plane wave representation

3.4.1 Discussion of our results

As we already mentioned, the index n numbering field modes should be understood as a
multiindex. We generalizfe onr results by using an additional index « explicitly. More-
over, the wave equation (3. is rez%l,719ut in general, it allows complex valued solutions.
Therefore, we generalize the fields (%%'9) by writing

oo 7 o N
A(rt) = Z \/ 5 (o a(@) + al, £15(T) ), (3.47a)
0 n
— h n N re — N Pt —»
BF =iy 4/ 2‘: (e Foa(®) — al, £5,(F)), (3.47b)
0
— h — —
B(Et) =) o ((Gnatot £,0(F) + af,rot £, (F) ) (3.47c)
0 n

The functions Fna(F) possess similar properties as initial functions u,. They satisfy the

boundary conditions, are orthonormal, etc. We stress that the form of the fields as above
ensures hermiticity of the field operators, as it should be, because the fields are most
certainly the physically observable quantities.

The annihilation and creation operators satisfy the commutation relation which is an
obvious generalization of (%338), and which reads

[ama, il , ] = G O (3.48)
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Other expressions, as for example the free field Hamiltonian (%%), are also suitably
generalized in an obvious manner. It may be worth noting that our generalization can
be viewed as a unitary transformation of the previous results. Unitary transformation
preserve commutation relations, orthonormality etc., thus, there is no need to discuss this
point in more detail.

As we also mentioned, the specific form of cavity modes fna depends on the geometry
of the cavity. It is possible to discuss cavities of various shapes, symmetries, but we will
focus attention on the simplest, but most widely used case — the plane waves.

3.4.2 Introduction of plane waves

We will now discuss the quantization of fields in a cubic box of volume V. The simplest
set of orthonormal eigenfunctions of such a cavity consists of plane waves

£, (R) = ——= &, 5%, (3.49)
which are labelled by the wave vector k and by an additional index A (which replace our
multiindex n, ). The wave vector satisfies the dispersion relation

wr = ke, with k=K|, (3.50)

which is a_consequence of the requirement that functions fﬁ/\(i) satisfy the Helmholtz
equation (39b). The vectors €, called polarization vectors are in general complex and
normalized to unity

l€g Il = 1. (3.51)

In order to discuss these functions we expand the vector potential in terms of them.
Adjusting the summation indices according to the present situation, from (3.47a) we get

b 75 ik-% b ik
B Z \/J [eEA Uiy © + € ag, € ] ; (3.52)

Vector potentlal must satisfy the Coulomb gauge ( }3.l 5 that is we consider a transverse

field A = A 1. This requirement applied to expansion ( ylelds
e k= _’l{:\ -k =0. (3.53)

So, polarization vectors are orthogonal to wave vector, which explains their name. By
analogy to classical electrodynamics we conclude that there are two vectors orthogonal to
the given k. Hence the index \ takes on two possible values A = 1, 2. Two real vectors
€;;, correspond to two linear polarizations. When polarization is circular polarization
vectors are complex. Moreover, it is convenient to assume that two polarization vectors
are mutually orthogonal, that is

€x  €Ry = O (3.54)

S.Kryszewski QUANTUM OPTICS 33



March 4, 2010 3. Quantization of electromagnetic field 34

The boundary conditions imposed on the fields result in the requirements imposed
upon functions fi;, (X). These requirements may be phrased as periodic boundary condi-
tions

f. (X +6&L) = f,(%), (3.55)

where L is the length of the edge of the cubic cavity and €; is a unit vector directed along
one of the three orthogonal edges. Imposing this condition on the plane waves (%92%) we
arrive at the quantization of the wave vector

- 2 R o ~

k = T (nxex + n,€, + n.€, ), (3.56)
where n, n,, n, are triples of integers. Hence numbering of the plane wave modes by wave
vector K is fully equivalent to numbering by triples of integers. It is, however, important
that the numbering of the modes, as discussed here, should not be mixed with photon
numbers ny, which are nonnegative integers and they number the states of the quantized
field in the abstract Hilbert space of states of the type indicated in (3.42).

Finally we note that

rot £, (%) = i (E X FEA(X')). (3.57)
S . . . £993m
which is necessary to express the magnetic induction according to Eq. (3.47¢).
3.4.3 Quantization in cubic box of volume V

Having discussed the main features of the plane wave representation of modes in the
cubic cavity we can express the fields in this representation. Although we have already
considered the vector potential (see (B:52] we collect all the results which follow from
Eqgs.(3:47) and from the above given discussion. Vector potential quantized in the cubic

£q115| box of volume V is

— 5 h — Z'_:)_(‘ — % —i_‘~)_(’
Al(x,wzz ’/W [% agy (D) X% 4+ &5 al (1) e ] (3.584)
kA

& T4 iK-% = —ik-®
- Z o [eﬁ)\ apy (t) e** + ez a;rz)\(t) ek } : (3.58Db)
KX

Transverse electric field (in Coulomb gauge) in the cubic box of volume V|

S ‘ hor 1. iK% = —ik-%

E.®1)=i Y 1\ 5t [em agy(t) 5% — &7 al (1) e ] (3.59a)
- 0
kA

iy & [el;A agy(t) &% — 82, al. (1) e—“?'f]. (3.50b)
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The corresponding magnetic field is of the form

(3.60a)
=1 Z i_]]: [ (E X 412,\> ag, (t) ek _ <E X éﬁ;) alT:/\(t) e_il:"?] . (3.60b)

In these equations we have introduced a useful and convenient notation

Ay,
& = . 3.61) |fq121
‘ 26,V (3.61)
It is worth noting that operators of the electric field and magnetic induction are related
as
B =) LR E, (3.62) [£q123
AN 9
KA

The Hamiltonian of the field in the plane wave representation has an obvious form

Hp = Y hwpal ag,. (3.63) [£q125
kA

£q83
The eigenstates of this Hamiltonian are denoted similarly as in ()'3&2) the only difference
being in numbering of the modes

{ng ) =1 - ong ) = @

1

I

;3 1
1

~—

— B Q) (3.64) [£q127

For sake of completeness let us write the commutation relation for field operators. It
obviously follows from ()3.E38) and now is of the form

[al:/\’ aT]}'/)\/] = 5121:’ O (365)

where the first Kronecker delta is understood as a product of three deltas with indices
following from the allowed values of the wave vector as in Eq.(3:56). The Hamiltonian
(B and commutation relations are sufficient to derive the Heisenberg equations of
motion for field operators

d l

G = _ﬁ[ab\’ Hp| = —iwyag,. (3.66)

This equation of motion obviously yields the solution

aga(t) = ag(to) 717, (3.67)

Since annihilation and creation operators determine the dfynamics (time evolution) of the
' Q133 , 115 [fql19 '

fields, we see that after inserting (3.67) into expansions (£3.58 )—(B:60) we obtain the fields

as the combinations of plane waves.
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3.4.4 Density of the modes

In many practical applications need to perform summations over allowed wave vectors
and polarizations. We will consider this problem in more detail. Let us assume that we
have to compute the sum

ZZ (...), (3.68)

of some function of summation variables. Summation is usually difficult, therefore we will

show how to replace summation by integration.
In_the k-space the allowed wave vectors are specified by points with integer coordinates

(see (3:56). The region of the volume of (2/L)3 around such a point is inaccessible for
other wave vectors. Thus,ft}i% 5given volume determines the elementary cell in the l{—space.
Hence summation as in (3: corresponds to counting the number of points in k-space
with weights specified by the summed function. The number of such points is equal to
the volume in K space divided by the volume of the elementary cell. Thus we can write

1 - % .
zﬁ:;(m):; m/dk(...): ;(2W)3/dk(...) (3.69a)

:$;/Owk2dk/d%(...) (3.69b)

where we expressed the last integral in spherical coordinates. We will apply this result to

some practically important cases.
As a example, which can be easily adopted to practical problems, we consider the

function G (wg) fW}fé(%h depends only on polarizations and the length of the wave vector k& =
wi/c. Then in (3: we can easily integrate over the angles. Changing the integration
variable to wy we get

V o0
K\ x 70

As the second example, we go further and take the fungtil%rgl G(wy) which depends
only on the field frequency. The sum over polarizations in (3.70) can be performed and
yield a factor 2 because there are two polarizations. Hence, we obtain

V oo
Z Glwr) — — Z / wi dwy Ga(wy), (3.71)
= Tt
which is sometimes written as
> Glww) — / dwi V plwy) G(wp). (3.72)
= 0
KA
The introduced quantity p(wy) is given as

B
plwy) = PR (3.73)
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an is called the density of the modes. It gives the number of modes of any polarization
which lie within the frequency interval (wg, wi + dwy) per unit volume of the cavity. The
notiIin i)sf mode density is useful when we have to evaluate the integrals of the type given
in (B.

3.4.5 Quantization in free space

Fields given above in terms of the plane waves in a cubic box by Eqs.(%%é%f(%%é‘% are
in fact Fourier series. There is no difficulty in transforming Fourier series in the bounded
region into Fourier integrals in the whole space. The quantity (27/L) = 87%/V deter-
mines the elementary cell in the K-space (see the discussion in the previous section). This
implies that the functions orthonormalized to Kronecker delta in the box by a constant
1/4/V and summed over discrete K will in the whole space be normalized by a factor
1/(2m)3/? to Dirac delta and integrated over whole space of wave vectors. This procedure
allows us to rewrite the above discrete expansions of the fields into Fourier integrals over

whole E—space.
Vector potential quantized in free space with plane waves

3 . -
) = § : / a d | S apa (1) %+ & ab (1) e |
kX kA kX k) )

\/ 271' 3 2€owk
—Z / W > [éﬁ ag () %%+ &2 al (1) e_ik'i]. (3.74)
Electric field (in Coulomb gauge) in this case is
— . 3 dBk h/Wk N 7:4.;(' — % —iﬂ-i
E (X,t)=1 Z/ \/W \/ %€, [ KA aﬁ/\(t)ek ) a;\(t)@ k }7
A
) dBk / — 112)'(' — % T —il_{")?
=1 Z W gk: |:el‘<'>\ al‘{‘/\(t) (& - ©x aE)\(t) € i| . (375)
A

Corresponding magnetic field

- <k X }3) alz/\(t)e_ik"ﬂ , (3.76)
We have also introduced a useful notation
oy,
o
& = 20, (3.77)

. . - . fq123 .
The relation between the electric field and magnetic induction (&3.%2} still holds, but
the sum is replaced by the integral. Similarly the commutation relation for annihilation
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and creation operators now reads
[aEA’ aTﬁ/)\/ ] = (5<E - E/) (5)\)\’7 (378)

The Hamiltonian of the field in the plane wave representation has now the integral form
Hypjaa = / dk hwyal ag,. (3.79)

: : e . Jfq127 _
The eigenstates of this Hamiltonian are denoted as in ()3.%4) only the tensor product is
now performed over the continuous variable.

3.5 Equations of motion — Maxwell’s equations

We work in the Coulomb gauge, that is div A = 0. This ensures that two homogeneous
Maxwell’s equations (for vacuum, in absence of sources)

div B = 0, divE =0, (3.80)

£q05
are automatically satisfied, which is due to the definitions (}'3L3 ). It remains to check that
two other Maxwell’s equations are satisfied.
Let us first check that rof ]1317: —0B/0t. We ﬁgstllc?)alculate rotation of the electric

field. Taking the field as in (3. , using relation (3. and its complex conjugate, we
get
rotE| (X, t) = — Z Ek [ (E X 61;/\) ag, k% | <E X 65\) aTE/\ e’ﬂz"ﬂ . (3.81)

k)

119
On the other hand, computing the time derivative of B we take Eq. ()‘3 b()i and we see that
the only time dependence in the right-hand side may enter via annihilation and creation

operators. Then using Eq.(3.66) and its hermitian conjugate we obtain
= Z [ (k X 412,\> ( T W aE,\) kX <k X eE/\> <zwk a;\> e “"2] ,
= Z E [ (E X *E)\) ag, kx4 (E X 615\) a&)\ e’ik'i] ) (3.82)
K\

Comparing rhs of the last two equations we see that the Maxwell’s equation rot E, =
—0B/0t is indeed satisfied.

Thus it remains to check the fourth Maxwell’s equation, namely
OE,
ot

117
We computellgt?ft hand side by dlfferentlatln%Eq Eg %Qi over time and taking into account
relations (3:66). We get, similarly as in (3:

= 1ot B (3.83)

OE, (%,1) Ex . K% | =kt —ik%
—== = 2 Z Sk 1.2 [emaﬁx@ + éXal e ], (3.84)
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where we have used the dispersion relation: wp = ck. Now we proceed to compute the
rotation of the magnetic induction.

%1
N
~l
X
1
*
N——
S
l—)—
)
=
Wi
| I
—~
o
(0]
t
SN—

. £ . .
rot B(X,t) = i Z “F ot [(k X é’l—(»/\) ag, €
Wk

iE~i’]

To find the rotation we need the expression rot [(E X _’12)\) e . So we compute it.

rot [(E X él:A) eiﬁ'i]a = Eabe 8,, [(E X éﬁA) 6@‘125:’}

= Eabc€emn ab [km (6§A)n ellzi}

— (Gam Oon — Oan Oom ) 1 ki (8g,) iy €%
=i [k (Keg) = (&), (KK ) |le*x (3.86)

Since polarization vectors and wave vector are orthogonal, the first term vanishes, and we
finally obtain

rot [ (K x &, ) %], = ~i &gk e (3.87)

) ) ) . . [fql69 . . )
We use the obtained relation and its complex conjugate in (&3.855, this yields rotation of
the magnetic induction

ot BR 1) = > k| &g, agy % + & al e X (3.88)

. fql67 . £q165 . |
Comparing Eqs.(}B.gZIi and the last one we see that the Maxwell’s equation (3.83) is indeed

satisfied.
We conclude this section by stating that the Maxwell’s equations are satisfied by the

quantized field (in the cubic cavity). Checking that this is so also in a general case is
much more tedious, but nevertheless can be done along the same lines. On the other hand
Maxwell’s equations are equivalent to Heisenberg equations of motion for field operators.
This follows, since we used (3: in the derivation, and the latter equations are just the
Heisenberg ones for annihilation and creation operators.

kokoskok ok ok skoskoskoskokokookosk sk kR ok koskosk sk ok ok ko skosk sk kX
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Chapter 4

States of quantized electromagnetic
fields

£ql127
Quantization of the electromagnetic field has led us to the so-called Fock space (3:64),

that is to the states

k)\
{ng }) = | ooy, o) \/7
n—a
75

where |2) is a vacuum state specified by a sequence of zeroes — no photons in any of the

(4.1)

allowed modes, which are numbered by the wave vector k and polarization index A = 1, 2.
Each of such states is specified by a sequence of nonnegative integers. Ob%fi%lSsly, these
photon number states are the eigenstates of the Hamiltonian H, given in (3

4.1 Introduction and general discussion

4.1.1 Vacuum state

It is natural to consider the vacuum state |€2) as the first one. Since vacuum state
can be defined by the relation ag,|2) =0 or (Q |at/\ = 0, we easily see that the vacuum

o _ fqll7
expectatiforlllxéalues of the vector potential A L (%.%8 J, electric field E | (}23.%95 and magnetic
field B (}B.LO"(H all vanish

(@A ]Q)=0,  (Q|E.|Q)=0,  (Q|B|Q)=0. (4.2)

On the other hand, expectation values of the intensities, that is of the squares of the fields
do not vanish in the vacuum state. Let us compute the expfectation value of the square
of the electric field (which is a Hermitian operator). Using (3:59) we get

_ hvwkwk’ iK% 2 At —iKX
(Q|E2 | QI €y ap, e ™ — € a. e
2¢V kA
KX K
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We stress that the fields E, are both taken at the same space-time point (X,t). By
straightforward multiplication we get
hy/wrwp 2 2. A~ i(K+K')-%
(QE] - Z Z 260V Q] { S~ Sy gy gy, €T
KA kv
— &, - &5, ap, al. el
9} P

— eﬁ/\ SV

. . iR %

+ €5, €y, ikt )X}|Q). (4.4)
The first term vanishes, since each of the annihilation operators acting on |2) yields zero.
The same applies to the last (fourth) term (only it acts on the right, that is on (Q]). So
the nonzero contribution is at most due to two terms only, and we get

<Q | E Z Z fiy /wk;Wk’ | { L& B CALJL ei(ﬁ_ﬁf).g

2V ko i KN
K\ KV

o —i(k—K')-®
+ €, " €py aLA Gy e ) } |€2). (4.5)

The diagonal terms behave differently than off-diagonal. Let us discuss the latter ones
first. If kK # K and/or A # X' then operators aj, and d;fz/,v commute. So we can move
annihilation operators to the right and then these operators act on vacuum state giving
zeroes. The conclusion is that all off-diagonal terms vanish, do not contribute. Non-zero
contribution may arise only due to diagonal terms with k = k' and A = X. The double

C
sum reduces to a single one. Thus (4.5) reduces to

Fiw
(QE2|Q) = Y 2eokv (Q\{ama + al ak)\}]Q), (4.6)
KX

bfeciaol%se exponential factors give unity and so do the products of polarization vectors (see
. Due to canonical commutation relation we finally arrive at an expression

_ hwy t B hwy,
1) = 3 5 (| {20} a5, + 1}10), = > o (47)

s £q119
Very similar calculation can be performed for the magnetic field B specified in (3.60). The

only difference consists in different vectorial factors. The argument about annihilation
and creation operators in diagonal and off-diagonal terms remains unchanged. The sum
reduces to a single one and we have to consider the vector products. It is easy to show
that

(k x &,)° = k?* & — (k-&p)* = K2, (4.8)

£9105
where the second term vanishes due to transversality of the field (&3.%3), so the vectorial
products reduces to k%. Therefore, the expectation value of the square of the magnetic
field follows in exactly the same manner as that for electric field, yielding

q hk? Py,
Q|B?|Q) = = —r 4.9
@B = 2y = Y e (19
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£999
because (see (b%U)) we have the dispersion relation wy, = K| c. Due to dispersion relation,
both quantities (Q|E2 |Q) and (Q|B2|Q), in principle, diverge with growing k.

In our con51derat10ns we use nonrelativistic approach, so we do not allow for creation
or destruction of material particles. Hence the energy range in which we work must
be restricted to energies less than m.c?, where m, is the electron rest mass. Or, in
other words, nonrelativistic approach becomes invalid for frequencies approaching w,, =
mec?/h. Hence we can limit the energies by mtroducmé the freqélency cut-off equal to w,,.

Adopting such a limit we see that our expressions ( () and (4 9) contain summations over
all modes butfceilézern the functions of frequency only. Thus we can use the summation

prescription (3. and we can expressed the obtained expectation values as
. Wnr 2 hw
QEQZQQBQQ:/dw——. 4.10
(QIBL|Q) = (lB) = [ a5 5 (410)

Hence, the these expectation values diverge as w?. Since the averages (hTZTvanish, the
corresponding variances are equal to the expectation values (4.10), so the variances are
also divergent as w?,. This is typical (purely quantum) problem with vacuum fields. The
procedure of renormalization is aimed at removal of the divergencies, but it is a subject
which we will not consider here.

4.1.2 Photon number states

£1s01
The states (hl ) introduced prevfio&s%y are called photon number states. So they are the
eigenstates of the hamiltonian (3. with eigenvalues Ep, = > i\ hwing,. It is easy to
argue that when the field is in the photon number state the expectation values of the field

operators ( %%81)' %%é’) are
{({ng,} | A [{ngd) = {nipd | E, {ngd) = {ngyd | B [{ngy ) =0, (411

which follows directly from the fact that ag, lowers and aE)\ raises the number of photons,

while states with different photon numbers (different eigenstates of H) are orthogonal.
The expectation values of the squares of the fields can be computed in an exactly the

same manner as for vacuum state. Com]foutatlon for the average of E2 in the vacuum
state was, up to the first part of eq.(4.7), done in a quite a general manner. Thus, it is
sufficient to replace |Q2) by |{ng,}), and we get

wwmmmmzzfﬂu%ﬂwwe+mmw»

ﬂ

= Z T v (2ng, + 1). (4.12)

We note that terms such as ag,aj;, do not contribute in this case due to orthonormality
of the states with unequal photon numbers. Obviously the expression for the expectation
value of B2 is the same as (. only divided by an additional factor ¢?>. We shall return
to the discussion of this results in a more specific case of a single mode field.
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At present we will add only several comments. The variances of the fields follow
immediately from two previous formulas. We obtain

. hw .
(B = Y ﬁ@nﬁ)\—i—l) = 2 o*(B) (4.13)

Certainly, we encounter here the same problems with divergencies, so again we can con-
sider the cut-off frequency w,,. Finally, we note that photon number states (eigenstates
of Hy) are stationary ones. Therefore, all expectation values are time independent. This
is strictly nonclassical, because in the classical picture the fields are quantities oscillating
in time. We can view the photon number states as states of well-defined amplitude of
the oscillatiglr}s’sl,lbut with completely undetermined phase, hence the fields average out to
zero as in

4.1.3 Single mode field

It is possible to consider a multimode field, just as we have done in the previous section,
that is a field in which many modes specified by (E, A) are occupied — many numbers ng
are nonzero. However, the field may be viewed as a Fourier series, or linear combination
of many modes. Thus, it is frequently sufficient to consider only one (single) mode, while
the generalizations to many modes usually poses no difficulties.

For these reason, and also for reason of simplicity, we will now consider only a single

mode of the quanftizlel% e%ecltlrgomagnetic field. Hence, we drop the indices denoting the

modes and from (3:58)—(3.60) we have the fields given by single terms, as
AL (R 1) =/ I [ae“z"? + af e‘“‘ﬂ (4.14a)
’ 2e,wV ’ '
. o o o
B (x.1) =i\ 51 @ [a cKx gt e*lk"‘] , (4.14b)
BR1) =i\ —" (Kx8) [a k% _ gt e*“?ﬂ (4.14c)
’ 2e,wV ’ '

where we assumed the polarization vector € to be real.

The physical state of the field is specified by the n-photon state |n). We note that the
vacuum state |2) corresponds to n = 0. The results of previous section can be specified
to ﬁic the present needs. In particular, the expectation values for the field follow from

f1s11 _ . _
. and in this special case they are

(n|Ai|n) = (n|Ei|n) = (n|B|n) = 0, (4.15)
where n = 0, corresponding to vacuum, is also allowed. Similarly, for the expectation
value of the square of the field, from (4.12] we get

E’ = 2 1 4.16

(| n) = 5255 (20 + 1) (1.16)

This is not unexpected. The expression €y( E2 )/2 gives hauflzfs(()):f3 the energy density of the
field. Since we use oscillator analogy, we see that result (h [6) is indeed proportional to
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energy density. Howevefrﬁsfoor the field in the n-state the expectation value of the field
amplitude is zero (see (. . This may be explained by saying that photons can have
any phases, so that the field averages out to zero. Energy is phase independent, hence
the non-zero result (4.

. . . . E9358
Before proceeding, let us recall the identifications (B.30), namely

h . . . Jhw .
q = %( <|>a,T), p = —1 T(CL—CLT), (417)

which immediately yield expectation values in n-state

(q). = (nlq|n) =0, (p)n = (n|p[n) = 0. (4.18)
The expectation values of the squares are also easy to compute, and we get
h 2 h
2\ _ 2 _ Y -
(). = (nld|n) = o= (n] (@+al)*|n) = = @n+1) (4192)
fuw W a2 hw
(), =l n) = — inl @—ah) [n) = 20 @o+1) (119D)

£2s505 . . .
The quantum averages (h [8) vanish, so the above expectations are equal to variances,
eg. 02(q) = (¢*),, and similarly for p. Therefore the product of variances becomes
h? h?

Q) olp) = 7 Cn+1) = o (4.20)

Since [q, p| = ih, the last inequality follows from Heisenberg uncertainty relation for
noncommuting observables. We see that even for the vacuum state (n = 0) the product
of variances satisfies the uncertainty principle, which for n > 1 is satisfied as a "real—-
sharp” inequality.

Therefore, an important question arises: can we construct fields such, that the uncer-
tainty principle is minimized ?

4.2 Coherent states (single mode)

Coherent states are the states which answer to the given question. We shall introduce
these states in a formal manner and we will investigate their properties.

The coherent state |z ) is defined as the normalized eigenstate of the annihilation
operator

alz)y = z|z), z¢€C, (z]z) = L (4.21)

Annihilation operator is not hermitian, so we do not a priori know whether states |z )
and | &) are orthogonal.

4.2.1 Expansion in n-photon states

Fock states, that is n-photon states, are complete and orthonormal (they are eigenstates
of hermitian operator 7 = a'a). Thus, any state can be expanded as

[z) = ) In)nlz) = Y |In)Cu(2). (4.22)
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C'.(z) are probability amplitudes, that for the field in coherent state | z) we will find it in
the n-photon state. Applying the annihilation operator to both sides we get

E:V_W”—1> }:Vn+1|n>nﬂ() (4.23)

v&;léeliel in the second equality we have renumbered the series. On the other hand, from
S

we obtain
alz) = z|z) = Y z|n)C.(2). (4.24)
n=0

Comparing rhs of two last formulas we arrive at the recurrence relation

z
vn+1

which easily gives the probability amplitude

Conlz) = C.(2), (4.25)

C.(2) = Co(2), (4.26)

Vnl

so it remains to compute Cy(z). This is done by invoking the normalization requirement.
T UF2st1y : ' 2515
From expansion (h.ZZi after insertion of (4.26) we have

(e 9]

L= Gl = a6 3 %wm

Z 'Z'Zn Co(2)P? €, (4.27)

where we used orthonormality of the n-states. Adopting zero phase we get Cy(z) =
exp(—|z[*/2). Hence, the final form of the expansion of the coherent state |z ) in the
n-states becomes

|2) = exp(—|2]?/2) Z\/_ In). (4.28)

We note that the vacuum state |€2) is the coherent state corresponding to z = 0. The
expansion coefficients give probability

|Z|2n

Pu) = [CIP = exp(—la) £,

(4.29)

which is the Poisson distribution with mean (n ), = |z|?. Indeed, it is straightforward to
check that the average number of photons for the field in the coherent state | z) is given
as

(n). = (z]ala|z) = |lalz)|* = |, (4.30)

, . £2s10
as it follows from the definition (M.
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4.2.2 Scalar product (z|¢)

. . £2s17 .
Employing expansions (h.ZSF for two coherent states we can write

B ’ZP |£|2 o0 n m
(1) = e (-5 Z o (nlm) (4.31)
and due to orthonormality of n-states we get

(z]€) = exp(—'z’ i g) (432)

The obtained relation immediately entails

(2| &) = exp (—|z]* = [€F + "¢+ 26") = exp(—|z—£]). (4.33)

The bigger the difference between two complex numbers z and &, two coherent states
become "more orthogonal”.

4.2.3 Completeness of coherent states

Complex numbers which parameterize coherent states span a two-dimensional space with
continuous variable. Thus it seems natural to investigate the operator

/d2z|z)<z|:/d22 el Z

m,n=0

CLE (]

_ Z 'n &2z e VP () (4.34)

m,n=0

Taking the polar coordinates in the complex plane, we transform the integral and we

obtain
00 21
/dZZ e—\z|2 (z*)nzm :/ dr Tm—l—n—l—l 6—7“2/ d@ ezm n)e

0 0

& 2
=27 5mn/ dr rmtntl e — 15, n! (4.35)
0

: . , £252 _

Using this result in the operator (4. we express it as

I
3
!—l>

(4.36)

/d2z|z)<z| = 3 In)(n

Hence, we arrived at the completeness relation for coherent states, which can be written
as

1/d2z )z = i (4.37)

™

) £2520b o )
Since coherent states are not orthogonal (see (&IBZF ) but complete, it is possible to expand
one coherent state |« ) in terms of all other ones. This means, that the coherent states
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constitute, the so called, overcomplete set. The obtained relation allows us to write for
an arbitrary (single mode) state |1 ) of the radiation field

o) = = [z 12z 0) (4.38)

It seems tempting to call (2|1 ) the wave function of state |t ) in the coherent state
representation. This, is, however, incorrect, because (z|v) is a function of two real
variables which have the sense of phase space variables, so can be interpreted (considered)
as position and momentum.

4.2.4 Minimalization of uncertainty

£2s06
In Eqs.(h._l'gf we have computed the expectation values of operators ¢ and p for the field
in the n-photon state. Here, we shall repeat these calculations for the field in the coherent
state |z ).
First we compute the corresponding expectation values

(@)= Gl (a +at) |2) = 4/ ("4 2) (4.39)

(a
(0. = (212 (af = @) 2) = i/ - ). (4:39D)

£2s10
These relations follow from definition of the coherent state (h‘ZT) and its hermitian con-
jugate: (z|a" = 2*(z|. Next we proceed to find the expectation values of the squares ¢?
and p?. In the calculation we use the canonical commutation relation for annihilation and
creation operators and we obtain

(¢°). = (= %(d +at)z2) = % ()2 + 22> + 2% + 1] (4.40a)

<p2>z=—<z]hw7(€ﬁ —a)'|z) = —MT[(Z*)Q—Q‘ZF—l-ZQ—l} (4.40b)
Variances follow immediately, we easily get the following expressions

70 = (21¢12) — (zlal=) = 5 (4.410)

) = (21512) —{z]p| )2 =" (1.41b)
Hence, the product of the variances, for the field in the coherent state |z ) is given as

o2(q)oi(p) = hzz > %2, (4.42)

so indeed the uncertainty relation is satisfied, but it is minimized, the product of variances
attains the minimum allowed value. Thus, we can say that coherent states minimize the
uncertainty, and as such can be considered to be as close to classical states as it is allowed
by the principles of quantum mechanics. From general course of quantum mechanics we,
for example, know how to construct the minimum uncertainty wave packet. Replacing
the averages of ¢ and p by the expectation values in the coherent state, we may construct
the coherent state wave packet.
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4.2.5 Comments on electric field

. L £2s01 . .
The electric field for one mode is given by Eq(h_l?[ﬁ Its expectation value in the coherent
state reads

hw

E =
(ZIELZ) =iy 57

€ < 2 ek g ik ) : (4.43)

We already know that this field corresponds to the state with minimum uncertainty and
as we see it, is of the form of classical plane wave. This is another argument, why the

coherent states are considered to be the closest to the classical ones.
Let us analyze the variance of the photon number for the field in the coherent state.

We have the obvious relations (in the second one we use commutation relation)

(n),=(z]|a'a|z) = |z (4.44a)
(n?), = (z] (a'a)” |2) = (z|af@la+1)alz) = |2[*+ |2 (4.44b)

Thus, the variance of the photon number in this case is given as
oi(n) = (n*). —(n) = |oI* = (n).. (4.45)

Relative fluctuations of the mean photon number can thus be estimated as

2 , (4.46)

so it becomes very small when the field is strong (with large mean photon number (n ), =
|2]?). So, if the mode contains (on average) many photons, the fluctuations of (n), are

small and the field approaches the classical one.
We continue our discussion of the field in the coherent state and we C%IQIl%lolte the
S

variance of the electric field intensity. The average is already given in Eq.(H. SO we
proceed to find the average of the square

(z|El|z) =

€o

=57 (2|z!2 +1 — (2%)? e k% _ 2 eZiE"z> : (4.47)
0

Calculation of the variance is now easy, and we get

hw

2 a 2
IELIZ) = (21Bil2) = 5 =g

0, (4.48)

because classical limit corresponds to 2 — 0. This limit for the variance is indfe:p%%dent
S
oﬁzt%e field intensity (its energy), in contrast to the n-photon states (see Eqgs.(#.16) and
S
(4. . This is an additional argument explaining why coherent states of the field are

closely related to classical ones.
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4.2.6 Time evolution of the coherent state

We still consider one mode field, hence its Hamiltonian is simply H, = hwa'a. Let us
assume that the mode was initially in the coherent state
[U(to)) = [2). (4.49)

We want to find what happens with the mode when time ¢ > ¢,. Since Hamiltonian is
explicitly time independent, we can invoke general rules of quantum mechanics to write

oH At
|(t)) = exp (— hF (t — to)) |¥(te)) = exp (—iwa'a(t —t,))|z). (4.50)
£2s17
Expanding the coherent state | z) in n-photon states, as in (4.28] we obtain
o0 zn

[9(t)) = exp(=]2]*/2) e~ nt=h) In). (4.51)

n=0 \/m

Additional phasse5 4fa(:tor e~™(t=10) does not change the modulus of number z, thus we can
write rhs of (4.51) as

[9(t) = [2(t) = | (ze™7)), (4.52)

which still is a coherent state only with ¢ = e ™®(~t)z that is with time dependent
phase. So, free evolution of the coherent state produces a new coherent state, or we may
say equivalently, that an evolving coherent state remains coherent. Let us also note that
this result may be written as

[¢(t) = |2()) = D(ze 7)), (4.53)

. . z2dsim .
which agrees with the property (B.ZISi of the displacement operator.

For some further discussion, let us denote z(t,) = z, + iy,. Thus, the time evolution
of z can be written as

z(t) = xocosw(t — to) + Yosinw(t — t,) — ixysinw(t — t,) + iy cosw(t —t,)  (4.54)

Then, the time dependent expectation values of phase space variables are

(a0} = (0 1y 5o (a+a) [2(0))
= % (z(t)+2*(t) = % 2 Re[z(t)]
= %_L [zocosw(t —t,) + yosinw(t — t,)] . (4.55)

And similarly, we obtain

(p(t)) = - I\/ ) 12()
[ hw hw
= —1 > (z(t) — 2"(t)) = o 2 Iml[z(2)]

= V2hw [—x,sinw(t —t,) + yo cosw(t — t,)] . (4.56)
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These relations reproduce the evolution of classical harmonic oscillator. We conclude
that a coherent state during its time (free) evolution remains coherent and follows the
trajectory of the classical orbit in the phase space. The uncertainties (variances) o,(q)
and o, (p) remain constant and minimal.

4.2.7 Coherent state as a displaced vacuum

£2s17 fq71
Let us combine expression (&LZSF with that for the n state, that is with (%936) As a result
we can write

|21

2) = exp<—‘%|2> g% (j%n\m _ exp(—%) exp (za) |Q) (457)

Since there holds the relation a| Q) = 0, then it is obvious that e=*"¢| Q) = | Q). There-
fore, we can recast the above relation as

2
|z) = exp (— %) exp (2a') exp (—z*a) | Q). (4.58)
2ach L an . .
Using relation (hz?)'aZC?'b), fe.: e@d+Bal — Bl gt coB/2 with o = —2* and 3 = z we rewrite
the above formula as
|z) = exp(za' —2*a) Q) = D(2)|Q), (4.59)

where we have introduced an operator, which we will call the displacement operator
D(z) = exp(za —2*a). (4.60)
The displacement operator is unitary, indeed we have
D'(z) = exp(z*a—=za') = exp[—(za' —z*a")] = D(-=z), (4.61)
and it is evident that

D'(z) = D(—2) = D7\(2), (4.62)

£2s26
which proves that it is unitary, while the operator acting on the vacuum in (4: does

not possess such a property. U‘Eziztsagi% is the reason why we have introduced D(z).

Let us also recall relation (B-37), that is e—@@Fa" g ead+04" — & 4 3 which allows us
to write
Di(z)aD(z) = ¢ gt =70 = 4 4 2, (4.63)

which explains the name " displacement” operator. This is also the reason why we call

the coherent state (see (4.59)) "the displaced vacuum” state.
It may be worth discussing some analogy with quantum mechanical harmonic oscil-

lator. The hamiltonian of the oscillator is quadratic in momentum and position. If we
add an additional potential energy term (for example coupling of the charged oscillator
with an external, uniform electric field) linear in position, it is then easy to show that the
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wave functions and energies will be displaced. This follows by expressing the hamiltonian
in a canonical form: az? + bx = a(x + b/2a)? — b?/4a. Similar considerations could also
be done for linear shift in momentum. This is so, because position and momentum of the
oscillator both enter the hamiltonian quadratically (they are canonically equivalent). The
given arguments suggest that a displaced state of the oscillator is generated by an oper-
ator proportional to position (or momentum), that is by a combination of annihilation
and creation operaécgsrgg Requirement of unitarity then leads to the displacement operator
D(z) as given in (4.60). So we see, that the discussed analogy could be used to define a
coherent state via the relation (4.59), which could be then used to prove other properties
of coherent states, including the fact that | z) is an eigenvector of the annihilation oper-
ator. Moreover, this analogy gives additional clarification to the notion of coherent state
as a displaced vacuum state.

4.3 Squeezed states (single mode)

4.3.1 Introduction and basic definition

. .. . £2s01
We know that a quantized mode of the radiation field can be expressed via fields (h 47,
that is via annihilation and creation operators. We will concentrate our attention on the
electric field,

B o o =
Bix1) =iy 5 6[&4‘”‘ ~ 4 e*lk"‘]. (4.64)

Discussing the field oscillators and coherent states we have used the phase space operators

q and p (position and momentum operators of the oscillator with unit mass). We will
now introduce two operators

1 —1
X=—(a+a Y =—(a—al), 4.65
75 (i) 75 (=) (1.65)
. . . £2s04 . : . i
which, by comparison with (h.l?i may be viewed as dimensionless (rescaled) position
and momentum. We shall discuss the importance of the absence of dimensionality later.
At present we note that both operators X and Y are hermitian, and as such, can be

considered observables. The relations (4.65) imply the inverse ones
1
i=—7(X+iY al = — (X —1iY), 4.66
75 (X +i) 7 (X —iY) (4.66)

in the essentially the same manner as it was done for harmonic oscillator. Moreover, we
note that operators X and Y satisfy an obvious commutation relation

X, Y] =i, (4.67)

which follows immediately from the properties of annihilation and creation operators.
To clarify the physical meaning of the operators X and Y, let us consider t1%% electric

field (4.64). We recall that in the Heisenberg picture a(t) = ae~** (as in (3.67)), so we
can write

N (2 . ho ~ g At —i
E, (X,t) = 14/ AT glae” — ale™], (4.68)

S.Kryszewski QUANTUM OPTICS 51




March 4, 2010 4. States of quantized electromagnetic fields 52

_, £3s03
where, for brevity, we have denoted ¢ = k - ¥ — wt. Introducing relations ( X , after
simple manipulations we get

. ho )
E, (Xt) = — V2 TG €[ Xsing + Ycosg]. (4.69)
€o

£3s01
Hence, X and Y are amplitudes of the two quadratures of the electric field (&HSZFI having
a phase difference of 7/2. 3504
The commutation relation (h‘(ﬁ'?’) implies that the variances of observables X and Y
satisfy the uncertainty relation

o?(X)a*(Y) > i. (4.70)
Before continuing our discussion, it may be worth recalling that the variances of quadra-
tures are:

e for n — photon state (see(f?SOG) C o2 X)=02(Y) = % (2n+1) (4.71a)
e for coherent state (see(f.2537) D o2(X)=02(Y) = % (4.71Db)

These relations show that we reach the minimum uncertainty (the product of variances
equal to 1/4) for the vacuum state |Q2) = |n = 0) aan(iOfor a coherent state | z). For
future reference, we also recall that according to Eq.(4.18), for n-photon state we have
the expectation values

(X)), = (n|X|n) =0, (Y), = (n|Y|n) = o0 (4.72)

) £2s33
For the coherent state, these expectations become (see (h.239i

(X).=(z|X|z) = (z+2") = V2 Re(2), (4.73a)

1
V2
(Y).=(2|Y]2) = — (2= 2") = V2 Im(z), (4.73b)
V2
We are now in position to define a squeezed state of the radiation field as such, for which
one of the variances of quadrature operators goes below the vacuum limit 1/2. That is:

Definition: State |1 ) of the radiation field is a squeezed state if either o?(X) < 1/2 or

o?(Y) < 1/2. The product of the variances, however, must still satisfy the
uncertainty relation (h‘?UT

Sometimes an additional requirement is imposed, namely, that state | ) is also a mini-

mum uncertainty state, but this is not necessary. We shall call state |1) a squeezed state

when one of the quadratures has less fluctuations than in vacuum or coherent state. The

s%seoezed state can be called ideal if it is also a state with minimum uncertainty (when in

(470} we have equality).

The fact that both quadratures have the same dimension is essential, because then
scaling the dimensions does not change the ratio of the variances. The feature of quantum
fluctuations below vacuum value is most important and it implies the quantum-mechanical
nature of squeezed states.
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4.3.2 Operator approach
Squeeze operator. Introduction

. . . . xlvac6
The wave function of the ground state of the harmonic oscillator is (see (I[0.57)):

wolq) = (%)U4 exp (—m;f), (4.74)

so it becomes narrower when w gets larger. The width of this function is governed by the
strength of the potential energy which is quadratic in position. Frequency can be enlarged

by the additional term in the hamiltonian which must be quadratic in position. Hence,
a transformation generated by ¢? is expected to narrow the oscillator’s wave function.
This suggests that an operator quadratic in annihilation and creation operators should
"narrow”, or squeeze the states of the radiation field. This reasoning is similar to that

concerning the displacement operator leading to coherent states.
Following this argument, we postulate that an operator

S(€) = exp %g*eﬁ — —g(eﬁ)2 , with ¢ = pe? eC, (4.75)

generates states which can be justified to be called squeezed states of the radiation field.
The simplest candidate for a squeezed state would then be

10,6) = S(&)[), (4.76)

where |2) = |n = 0) is a usual vacuum state. Obviously, we have to prove that the state
(Elg%% indeed is a squeezed state, according to the above given definition. Before we do so,
we will study some bgg%ic properties of squeeze operator ( “75F which is also investigated
in the Appendix B: We have shown that S(§) is unitary and that it transforms the

annihilation and creation operators as

ST(€)a S(€) = acosh(p) — a' e sinh(p), (4.77a)
ST(&)al S(¢) = a' cosh(p) — ae “sinh(p). (4.77b)

Since squeezing of the states is defined by quadrature operators, we should devote some
time to Stlflg.gfl ;chem together with operator S(§). But before we do so, let us note that

relations (4. immediately imply that
(0,£]a]0,¢) = (Q]S'(¢) asS(€) | )
= (] (acosh(p) — a'e”sinh(p)) |Q) = 0, (4.78a)
(0,¢]a"0,¢) = (Q|S'(¢) a's ()| Q)
= (Q] (a'cosh(p) —ae “sinh(p)) Q) = 0, (4.78Db)

due to the fact that annihilation (creation) operator acting on vacuum state |Q) ((Q|)
produces zero.
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Similarity relations for quadratures

To investigate the expectation values of quadrature operators in state |0, ) we obviously

need expressions of the type gf S 1€)X S(€). Hence, we proc ( tp find such expressions.
From the definition (éBSi of the quadratures and from (% (7] we have

ST(E) XS(¢) = % [acosh(p) — a' e sinh(p) + af cosh(p) — ae " sinh(p) |

1 ) )
= X cosh(p) — 7 (a'e” +ae ™) sinh(p). (4.79)

£3s03
Expressing the term in brackets by (h‘gﬁf we get
ate® +ae™™ = V/2(X cosh+ Ysind). (4.80)

Combining the two last equations yields

ST(€) XS(€) = X (cosh(p) — cos@sinh(p)) — Y sin @ sinh(p). (4.81)
In fully analogous manner we easily derive the similarity relation for the second quadrature
operator

ST(€)YS(€) = Y (cosh(p) + cos@sinh(p)) — X sin @ sinh(p). (4.82)

These relations, though correct are neither illuminating nor convenient. Nevqfréchle?}ess, we
S
can find the expectation values of the quadratures for the field in the state (4.

(X)=(0,£1X10,¢) = (Q|S"()X5(©)[2) =0, (4.83a)
(V) =(0,£]Y]0,6) = (Q[S'(YS(E)|Q) = o (4.83b)

£3s15
This is so, because operator ST(£) X S(€) is expressed by (&LSSI i,ci.e., by a combination of

a and af. The expectation values of the latter vanish for the field in the vacuum state.
sl7 f3s14x

Hence our result (4.83). We can also refer to Eqs.(#.78), quadratures are combinations of

a and a', so mentioned equations imply the obtained ones.
Computation of the expectation values of the squares of the quadratures is greatly

inconvenient. It appears that to consider the quadratures further it is useful to introduce
some additional transformations.

Rotated operators

To simplify the above obtained relations it is convenient to introduce new operators
b=ae 2 bt = at e?/?, (4.84)
which, obviously, satisfy the commutation rule:

[13, BT] ~ 1, (4.85)
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and which means that they are also annihilation and creation operators. Analyzing the
S

similarity relation (4.77), we almost automatically obtain
ST(€) b S(€) = beosh(p) — bfsinh(p), (4.86a)
ST(E) bT S(€) = bt cosh(p) — bsinh(p). (4.86h)

Since b and b' are annihilation and creation operators we can construct new (hermitian)
quadrature operators in an exactly the same manner as previously. Namely, we introduce

- 1 . R - —i /A R
X:—<b+bT>, Y:—(b—bT), 487

7 7 (4.87)
so the inverse relations read

8:%<X+ﬂ?), 8*:%()2—@?). (4.88)

Moreover, we note that new quadratures satisfy the commutation relation
[X, Y/] — i (4.89)

- £3s04 C
which is the same one as for old quadratures (h.G? J. This implies that new quadratures
also satisfy the same uncertainty relation

c?(X) a*(Y) > (4.90)

1
4’
where the variances are taken in the arbitrary state of the field. This suggests that we
can look for squeezed state in terms of new quadratures. Before we do so, let us look at

the properties of new quadratures.
First we seek the connection between old and new quadratures. We insert operators

A A £3
b, b given according to ( 81} into Egs.( s 3Ssoecond1y we express old annihilation and
creation operators by old quadratures as in (4.65). Simple manipulation yields
X = X cos(0/2) + Y sin(6/2), (4.91a)
Y = —Xsin(6/2) + Y cos(6/2), (4.91b)

which is a simple rotation by an angle /2. Rotation is an orthogonal transformation,
so automatically ur%iécgﬂfé Hence, it is not surprising that new quadratures satisfy com-
mutation relation (4.89), the same as old quadratures. Moreover, rotational character of
transformation (b_QTT enables us to write an inverse one

X = X cos(h/2) — Ysin(6/2) (4.92a)

Y = Xsin(6/2) + Y cos(0/2), (4.92b)

which is a rotation by a negative angle —6/2.
Finally, having specified new quadrature operators, we look for the similarity rela-
tions. We apply operator ST(¢) on the left and S(€) on the right of X and Y. Then
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£3s2 £3s21
we use equations (h.S? i Applying similarity relations (&8’0—) and using the properties of
hyperbolic functions, we arrive at

ST(€) X S(¢) = % (?3 + IA)T> (coshp —sinhp) = Xe™ (4.93a)
STE)Y S(¢) = \;_—22 (lA) - IST> (coshp +sinhp) = Ye* (4.93b)

It is pogsible to cross-check the consistencgl of the theory, for example by obtaining equa-
. slbc £3s15f . £3s29 . .
tions (H. and (h.SZS from relations (h.QZSi by using suitable correspondence between

new and old operators.

Moreover, having specified new quadrature operators we look for their expectation
l£3s26 [£3s09a

values in n-photon and coherent states. Thus, from (A.91) and (4.72) we easily obtain

(X)p={(n|X|n) = (n| (Xcos(8/2) +Ysin(6/2)) |n) = 0, (4.94a)
(Y)n=(n|Y|n) = (n| (— Xsin(f/2) + Y cos(6/2)) |n) = 0. (4.94b)
£3s09b
Similarly, for the field in the coherent state |z ), using (#.73) we obtain

(X)), =(2z|X|z) = (2] (Xcos(8/2) +Ysin(0/2)) | z)

= /2 (cos(0/2)Re(z) 4 sin(6/2)Im(z))

= V2 Re (2 e_w/Q) (4.95a)
(YY), =(z|Y|z) = (2] (=X sin(/2) + Y cos(8/2)) | z)

= V2 (= sin(8/2)Re(z) + cos(8/2)Im(z))

V3 I (2 e %?) (4.95b)

Having speciﬁedf Soige auxiliary quantities, we proceed to investigate the single mode
S
squeezed state (4.

4.3.3 Squeezed vacuum states
Calculation of expectation values for quadratures

As we already mentioned the state (El%s'é% that is [0,£) = S(£)|) is suspected to be
a squeezed state of the electromagnetic single mode field. We suggested the construction
of this state by reasoning stemming from harmonic oscillator, expecting that squeezing
occurs due to displacement quadratic in annihilation and creation operators. We recall
that the state |1 ) is called squeezed if the variance of one of the quadratures goes below
1/2 — its vacuum value. So we have to check whether the discussed state |0, ¢ %3ssait:5i§ﬁes
this definition. We need to find the variances of the quadratures, and in Eqs.(&. and
(ELTBSS‘%jS’fwe found that old quadratures are inconvenient. Therefore, we will consider the
expectation values and variances of new quadratures X and Y.

£3s29
First we compute simple averages — expectation values. From similarities ( 037 we
obtain
(X) = (0,£]X0,¢) = (QST(XS() Q) = (Q[X[Q) e, (4.96)
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and similarléf 3fo%che second quadrature Y. Next, we express new quadratures by the old
S

ones, as in (4.91) and since the averages of old quadratures vanish in vacuum state, [see
S a

(1.72)], we finally obtain

(X) = (0,€]X1[0,¢) =0, (V) = (0,£]Y]0,6) = 0, (4.97)

Computation of the expectation values of the squares of the quadratures is a bit
lengthy, but rather straightforward. We illustrate the procedure by considering X?. By
definition, in state |0, &) we have

(X?) = (0,£]X?[0,&) = (2]ST(XS(E) ST(XS(6)[9), (4.98)

o £3s29
due to unitarity of S(§).Next, from (£.93) we get

(X?) = (QX?|Q)e ™, (4.99)

' ' £3526 '
Expressing new quadratures by the old ones, according to (&IQ ) (remembering that
quadratures do not commute) we have

(X?) = e [(Q]X?|Q)cos*(0/2) + (Q|Y?|Q)sin?(6/2)
+ (Q(XY +YX)|Q)sin(0/2) cos(0/2)] . (4.100)

Tf%EO%ISt two matrix elements correspond to vacuum expectations, each of which due to

(&[.7 o) gives 1/2. Thus,

(X?) = % [% QXY +YX)|Q)sin(0/2) 008(9/2)]. (4.101)

Tfléezrélemaining matrix element can be simplified with the aid of the commutation relation
S a

(857 which yields
(X?) = e % {% + i sin(0/2) cos(0/2)

+2(Q|YX|Q)sin(0/2) cos(e/z)] . (4.102)

£3s0
So we have to calculate the matrix element (Q2|Y X |Q). We invoke definitions (&[655
and we write

(QIYX|Q) = -5 (2@ —-a"a+a)|Q)
= (9] [+ (1+afa) - afa — (@] |2), (4.103)

where in the second term we used the commutation relation for @ and af. We easily see
that operator terms do not contribute, and only term with unity survives, so we have

?

(QYX|Q) = —2(Q[1]Q) = -3, (4.104)
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£3s34
Finally, we see that two last terms in (4. cancel out and we have for the expectation

value of the square of the first quadrature

. . ~ 1
(X%) = (0,6 X*|0,&) = (Q|S'(e) X*5(¢) Q) = 3¢ 7 (4.105)
Calculation of the expectation value for Y2 goes along exactly the same lines, so we give

the final result, which is of the form

(7?) = {0.6]72]0,6) = (]SO V() |Q) = 5> (4.106)

Thus, summarizing our results we can say that for the state of the radiation field which
is generated by the operator S(§)
10,6) = S()[92) (4.107)

. . £3s33 ' .
the expectation values of quadratures vanish (S%% Es S. (h.Q? 5%, %hlle the expectation values
S
of the squares of quadratures are given by (h.lliB) and (4.106). This means that the
corresponding variances are

~ 1 ~ 1
o*(X) = 3 e %, a*(Y) = 3 e, (4.108)
so that the product of variance follows as
L 1
o*(X)o*(Y) = t (4.109)

. . £3s24b . 5
We see that the uncertainty relation (h.Q(H 1s minimalized and variance of quadrature X
is reduced with respect to its vacuum value, while the variance of Y is correspondingly
enhanced.

Squeezed vacuum states

The state |0,£) = S(€) Q) is a minimum uncertainty state, for which variance of one
quadrature is enhanced, while variance of the second one is reduced below the so-called
vacuum limit (equal to 1/2). By definition, this state is a squeezed state, which we
can call a vacuum squeezed state. erssa?}go note, that the expectation values of the
quadratures themselves give zero (see (4.97), which is characteristic for a_vaguum state.
As a consequence, since the field E, (%, ¢) is linear in quadratures (see (h_ﬁgf), relations

S
(1.97) imply that the expectation value of the field in the squeezed vacuum state vanishes

(EL) = (0,|EL]0,6) = (Q] ST ELSE)|Q) =0, (4.110)

similarly as in the n-photon state, but differently from a coherent state.
Next, let us compute the expectation value of the number of photons in the squeezed

vacuum state. We then have

(ala) =(0,¢la'alo,¢) = (Q[S'(¢)a'as(E)|Q)

=(Q|sM(a' s©)stas() Q). (4.111)
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£3s14
Using similarity relations (h 77) we further get
(a'a) = (] (a'acosh®(p) — (a')? ™ sinh(p) cosh(p)
—a” e sinh(p) cosh(p) + aa'sinh?(p)) | Q). (4.112)

It is obvious that three first terms do no contribute (give zeroes), while due to commuta-
tion rule, the term aa’ = a'a + 1 contributes unity, so we have

(a'a) = (0,&]a'a0,&) = sinh?(p). (4.113)

So, the squeezed vacuum state has nonzero expectation value of photon number. The
averages of the quadratures, however, remain zero, as it is in a "normal vacuum”. This
explains why we keep the word ”vacuum”, calling the state |0,£) — squeezed vacuum.
The states |0, ) are made out of "real vacuum”, but may be arbitrarily intense.

Time evolution of squeezed vacuum state

The squeezed vacuum state |0,£) evolves freely according to usual rules of quantum
mechanics, that is

i —iwata

[ Yualt)) = exp [—;.LHFt] 0,€) = e =ilis(6)| Q). (4114)

Obviously we can write
—iwala iwatat —iwala
| sq(t) ) = e7 T HS (e @ e Q)
=S (€e7*) Q) = |0, g7, (4.115)

. . “ et . 225qulQ ) .
where in the second line we have used similarity relatlon(B.Bglli trom the appendix, while
in the last step we applied a definition of the squeezed vacuum state with time-shifted

(time-dependent) argument. Since the number £ = pe?, we may say that the angle  is
a time dependent function with

0(t) = 0, — 2uwt, (4.116)

which corresponds to a clockwise rotation with angular frequency 2w, We shall return to
the discussion of this point in more geometric context in next sections.

4.3.4 Fluctuations of photon number in squeezed vacuum state

To investigate the fluctuations of photon number we need the variance of photon number
and thus we need ((a'a)?) = (n?)
(n*) = (0,¢](@'a)*0,6) = (Q|s(§alas(e) S'€)alas(©)[Q).  (4117)
. . 3sqnf .
We can use the operator appearing in (b_?TZ%, SO we can write
(n®) = (] [a'acosh?(p) — (a)? ” sinh(p) cosh(p)
—a” e sinh(p) cosh(p) + aa' sinh?(p)]
[a'a cosh?(p) — (a')? e” sinh(p) cosh(p)
—a? e~ sinh(p) cosh(p) + aa' sinh*(p)] | Q2). (4.118)
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In general, multiplication gives sixteen terms, but those which contain unequal numbers
of @ and a' do not contribute. Moreover, the terms having a as the rightmost operator
also vanish. So, out of sixteen terms, the nonzero ones may arise only from three terms.

We thus have

(n?) = cosh?(p)sinh®(p) (Q]a'aaa’ | Q)
+ cosh?(p) sinh?(p) (Q|a*(a")?| Q)
+ sinh*(p) (Q|aataa’ | Q). (4.119)
Calculations of the remaining three matrix elements is very simple if we take into account

the canonical commutation relation aa’ = 1 + a'a and the fact that a|Q) = 0. We just
state the results

(Q|ataaa’ | Q) =0, (4.120a)
(Qa*ah)?|Q) =2, (4.120b)
(Qlaa‘aal | Q) = 1. (4.120c)
3fpn4 3fpn3
Inserting results (H?U) into (&[ P 9) we obtain
(n*) = ((a'a)*) = 2 cosh?(p)sinh?®(p) + sinh?(p)
1
= sinh*(p) + 3 sinh?(2p). (4.121)
3fpnb
The Vg)aérirelmpce of the photon number in the vacuum squeezed state follows from (4. 7 )
and (4. It is
1
o?(n) = (n?) —(n)? = 3 sinh?(2p). (4.122)

Let 1S now discuss relative fluctuations, as we did it for the field in the coherent state as
S
in (hﬁ) In the present case of squeezed vacuum we have

2 inh(2 h
oXn) __sinh(0) g5 cosh(p) (4.123)
(n) V2 sinh?(p) sinh(p)
. . : 3sqnf . . .
Since y/(n) = sinh(p) according to (4.T13), we can write the relative fluctuations as

\/mf\/ﬁ cosh(p) 1 (4.124)

(my VT T iy

: . .. ff2843 . . .
Comparing this result with (&UHTI we can say that relative photon number fluctuations in

vacuum squeezed state are larger than in the coherent state, because cosh(p) > 1.

4.3.5 Similarity relations for operators a2, (a')?, a'a
£3s14 25qu9
In the main text (see (h 77) and in the appendix (ZB.SS% we have already used the following

similarity relations for annihilation and creation operators
ST(€)aS(€) = acosh(p) — a' e sinh(p), (4.125a)
ST(&) at S(€) = al cosh(p) — ae “sinh(p). (4.125D)
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Since operator S(§) is a unitary one, it is straightforward to utilize these formulas to
compute other similarity relations. Therefore, we will only give the results, without a
detailed derivation, which in fact, reduces to performing some operator multiplication. We
also note that, when necessary, we use the canonical commutation relation aa’ = 1 + afa.
The similarities which we will employ in further developments are as follows.

For the square of the annihilation operator

ST(€) a* S(€) = ST(€) a S(€) S'(&)as(€)
= 4% cosh?(p) — (2a'a + 1) e sinh(p) cosh(p)
+ (a")? e*? sinh?(p). (4.126)

Analogous similarity relation for the square of the creation operator follows by hermitian
conjugation and yields

St(e) (a')? S(€) = ST(¢) a' S(¢) S'(¢) a' S(¢)
= (a')?cosh®(p) — (2a'a + 1) e " sinh(p) cosh(p)
+ (a)? e 2 sinh?(p). (4.127)

Finally, for photon number operator we get

St(¢) a'a S(6) = S™(¢) a' S() ST(€) aS(6)
= a'acosh®(p) + (a'a+ 1)sinh?(p)
— [a?e™™ + (a')? €] sinh(p) cosh(p). (4.128)

We shall need these relation in our next steps.

4.3.6 Expectation value for Ei in squeezed vacuum state

: L .. f£3s05 . . .
Using notation introduced earlier in (%687 we investigate the expectation value of the
square of the electric field which is in the squeezed vacuum state. Thus, we write

(E1) = (0,¢|EL[0.¢)

hw X At e\ 2
:_zeov<(“€¢_aTe )
hw TN 2 24 AF\2 2
=3 V((2aa—|—1—ae —(a")?e ) (4.129)
€o

. £3s13
from the definition (h 76) of the squeezed vacuum state we have

(B) = oov {1+2(0]81©) d'a5(0)]2)
—(0181(€) @ ()| 2) ¢
~(0]81(6) @) 5(©)|9) e} (1.130)
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: . . .. . . x2saa
Wgslélgve to consider each of the three matrix elements using similarity relations (h [26)-
X

(M.128). For the term involving the photon number operator we get

(Q|ST(¢)a'a S |Q) = (Q]{a'acosh*(p) + (a'a+1)sinh*(p)
— [a® e + (a)? €] sinh(p) cosh(p) } | )
= sinh*(p). (4.131)

The next term includes the square of the annihilation operator. For this term we get
(QS1(¢) a*S(€) 1) = (] {a*cosh?*(p) — (2a'a+ 1) " sinh(p) cosh(p)
+ (ah)?2 e sinh?(p)} | Q)
= — ¢ sinh(p) cosh(p). (4.132)

The last term with the square of creation operator follows by hermitian conjugation of
the previous one

(Q]S'(¢) (a')* S(§) | Q) = — e sinh(p) cosh(p). (4.133)

. . . . Ei%’ég% .
Inserting the obtained matrix elements into Eq.(4.130) we express the expectation value
of the square of the field as

hw

B2 ) —
(EL) 2¢,V

{1+ 2sinh*(p)

+ ¢ sinh(p) cosh(p) e + e *sinh(p) cosh(p) e >}

= 27?}‘/ {1+ 2sinh*(p) + 2sinh(p) cosh(p) cos(6 + 2¢)} . (4.134)

Due to well-known properties of the hyperbolic functions we have 2sinh(p) cosh(p) =
sinh(2p) and 1 + 2sinh?(p) = cosh(2p). Therefore we obtain

(E1(x,1)) =

AT [cosh(2p) + sinh(2p) cos(6 + 2¢)].

= [ + sinh(2p) (1 + cos(6 + 2¢))] . (4.135)
2¢,V

. . . . E{l%gg%

First of all, we note that in the absence offsl%%%ezmg, that is when p = 0, formula (4.135)

exactly reproduces the expectation value (A.7) which is characteristic for the pure vacuum

state | 2). Next, we recall that ¢ = k - X — wt}.{ Therefore, we conclude that there exist

such space-time points in which the cosine in (£.135) equals minus unity. Then, we have

_ hw

El) = cosh(2p) — sinh(2p)] = e 2. 4.136
(B1) = 525 cosh(20) ) = ep (4.136)
This relation may be interpreted as showing that in certain regions of space-time the field
is squeezed, while in some other ones it is not necessarily the case. We will not present a
detailed investigation of the temporal and/or spatial dependencies of squeezing. It suffices
to realize, that squeezing may occur only in some regions of space-time, not necessarily

everywhere.
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4.4 Squeezed coherent states

4.4.1 Introductory remarks

£3s13
We have already investigated the squeezed vacuum states (h‘?’BT defined as [0,£) =
S(€)] Q). We also know that a displacement operator D(z) = exp(za' —z*a) when applied
to the vacuum state | ) produces a coherent state | z) = D(z)|§2). Thus we see that we
have two alternatives to construct new quantum-mechanical states of the radiation field,

namely

|, &) = D(a)S(€)|€2), (4.137a)

|2,§) = S(€)D(2)| Q). (4.137b)
The question is whether these two possiblezgseﬁnitions are equivalent or not. To answer
this question we refer to Appendix. In eq.(B: we have shown that

D(a) 5(§) = S(§) D(2), (4.138)
where ¢ = pe® as previously, while o and z are complex numbers connected by the
relations

z = acosh(p) + a*e” sinh(p) (4.139a)

o = zcosh(p) — 2" sinh(p), (4.139b)

which can be written equivalently, as

Re (ze7/?) = ¢# Re (ave /?),, (4.140a)

Im (= e_w/z) =¢”Im (a e_ie/Q) . (4.140b)
g}észe relations allow discussion of two possible deﬁnétions of thes gé)zherent squeezed states
(A137). Thereforgawe conclude that the states (4.137a) and (4.137b) are the same, pro-
vided relations (4.139) or, equivalently, (&FMO) are met.

We can say that squeezing of vacuum (done by S(€)) followed by displacement (per-
formed by D(«)) leads to a squeezed coherent state |, &) = D(«)S(€)|2). This has the
same effect as a displacement (by D(z)) of the vacuum state fzoélowed bgzggueezing S(§),
provided the parameters a and z are connected by relations (4.139) or (4. [3(,)2) So we can
consider either the state |, ), or the | z,£). Due to relations (h.zlgBQ)— (ZL._E%O) we can
easily transform results concerning | «v, £ ) into those corresponding to | z, £ ) or vice versa.

The choice between the two states is rather a matter of convenience, and less of physics.
We note, that we have used the name ”squeezed coherent state” not really knowing

whether the discussed states are indeed squeezed or not. Hence we proceed to investigate
the properties of these states and to validate the name associated with them.

4.4.2 Expectation values for |z, &)

Here, we choose to investigate the expectation values for various operators, for the case
when the radiation field is in the state

[2,6) = S(E)D(2)[Q) = S(&)]2). (4.141)
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According to our discussion above, we shall then transform our results to describe the other
state: |a, &) = D(a)S(£)| Q). The subsequent calculations are rather straightforward, so
we only indicate main steps.

First, we compute the expectation value of the annihilation operator.

(a) = (2,¢lalz &) = (A DY(2)S"(€asE)D(z)|) = (2|S'(€)as(€)|z). (4.142)
By similarity relation (57378'%% we get
(a) = (z]| (acosh(p) —a'e”sinh(p)) |2) = zcosh(p) — z*e“sinh(p).  (4.143)

As the second expectation value, we consider the one for photon number operator.
Thus, we calculate as follows

(ala) = (z,¢laa|z¢)
Q| D'(2)8"(¢) a'a S(§)D(2) | )
z2|8'(¢) a' S(¢) $'(§) aS()]#)
| (@' cosh(p) — ae " sinh(p)) (acosh(p) — a e’ sinh(p)) |z),  (4.144)

{
{
{
(2

where we used the similarity relations (hé% Performing the multiplications and using
the commutation relation for annihilation and creation operators, we get
(a'a) = (z| [a'acosh®(p) + (a'a—+1)sinh?(p)
—a% e~ sinh(p) cosh(p) — (a")? e sinh(p )cosh(p)] | 2)
= |2|* (cosh®(p) + sinh*(p)) + sinh?(p)
— 22 ?sinh(p) cosh(p) — (2 )2 ZGsmh( ) cosh(p)
= (zcosh(p) — z*e”sinh(p)) (2" cosh(p) — “sinh(p)) + sinh®(p
= |z cosh(p) — z* e sinh(p)|2 + sinh?(p) (4.145)

We calculate the expectation value of the quadrature operator X as the third one. In
the similar manner we obtain

(¢ X]26)
(2| DI(2)S'(€) X S()D(2) |2)
(z| Xe?|z), (4.146)

(X)

T . [£3s29 . .
where we used &m%grg%y relation (h.%a;. Employing also the connection between old and
S
new quadratures (4.9Ta) we have

(X) = e (z]| (Xcos(8/2) + Ysin(8/2)) |z). (4.147)

. . . £3s09b .
Next, taking into account expectation values (h.713i taken in the coherent state |z ) we
get
(X)=e"+2[Re(z)cos(8/2) + Im(z)sin(6/2)]
—e¢?V2Re (ze7™/2) (4.148)
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The fourth expectation value to consider is the one for the second quadrature. In this
case we can calculate along the same lines as for f)g ,Szl%ut we will present a little different

approach. At first, we start as for X, and using (. we get
(V) =(z¢|Y]z¢6) = (Q|D'(x)S"(€) Y S()D(2) | Q)
= (z|Ye|z), (4.149)

~ A A £3s2
Next,f Jye_express the quadrature Y via operators b and b according to (h.S? i, then we
S
use (hBSi to arrive at the expression with old annihilation and creation operators. This
yields

. —i /e s
Y)y=¢e’(z|— (b — bT> z
(Y) (z| NG |2)
—i ) )
= — e (z]ae 2 —gte? 2, 4.150
7 (z] |2) (4.150)
Then, by simple properties of usual coherent states we obtain
- —q . .
Y)=¢ef — 26719/2 _* 619/2
(Y) 7 ( )
= e’ v/2Im (2 e—i9/2) (4.151)

In order to estimate the uncertainties we need also the expectation values of the
squares of the quadratures. So we compute them. First we consider X2, obtaining

(X?) = (26| X?[2¢€) = (QD'(2)S(€) X* S(€)D(2)|Q)

— (2] S7(&) X S(8) ST(E) X S()|2) = e (2] X2|2), (1.152)
e h_%_?f3829 . — 5
where we used similarity (4.93a). Expressing the quadrature via b and b’ we get
- 1 . o\ 2
(X2) = e (] <b + b*) B
1 . . o
= 2 e (] <b2 + (6h? + 2bth + 1) | 2) (4.153)
. . mﬁs?o . I .
where we used tlflgs(i‘%)mmutatlon relation (A.85). Going to old annihilation and creation
operators as in (4.833) we get
~ 1 . .
<X2>:§e’29<z\ (a*e™ + (a")?e” + 2a'a + 1) |2)
1 . ,
— 56—2;7 (22 6—20 + (2*)2619 + 2|Z|2 + 1)
1 . .
= 56’2'” [(26719/2 + (z*)ew/2)2 + 1}
1 .
— e [1 + 4 (Re(z 6—29/2))2} . (4.154)

Finally, we need the expectation value of the second quadrature. Since the calculation
goes along exactly the same lines as for X? we now give only the final result

(Y2) = (2,€|Y?|2,€) = (Q|D'(2)S7(6) Y* S(¢)D(2)| Q)

—~

e2 [1 + 4 (Im(ze*”ﬂ)ﬂ. (4.155)

N | —
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Having computed the necessary exyecgation values we are in position to write down
SCX. SCXX

the correspon(gicn variances. From (A4.148) and (4. for the first quadrature, from
(M.I5I) and (4. for the second one we get the variances
ol (X)=(X?) — (X)? = e %/2, (4.156a)
cH(Y)=(Y?) — (V)2 = e¥/2. (4.156b)

To summarize, we have considered states of the radiation field which arise by first
displacing and then squeezing of the vacuum state | z,&) = S(£)D(z)| Q). We may also
view this state as s.queezinéc(})cf3 the coherent state | z,£) = S(€)| z). The expectation
values of the quadratures (4.148) and (4.I51) can be written as

(X) = V2Re (e=? ze_ie/Q) ) (Y) = v21Im (ef ze 7). (4.157)

f£3s30x
Comparing these results with Eqs.(h‘.g'fy‘)’we can say that they indeed correspond to some
specific coherent state. Moreover, we see that the considered state is a minimum uncer-
tainty state, since the product of variances equals 1/4. On the other hand, one of the
variances is reduced below 1/2 — the vacuum limit, and the second is correspondingly en-
hanced. Thus, we see that we indeed can call the state | z,£) = S(§)D(2)| ) a coherent
squeezed state.

4.4.3 Expectation values for |, ¢)

Now, we proceed to investigate the similar expectation values, but for the state of the
radiation field defined as

|a,§) = D()S(§)[€), (4.158)

3za 3zac

which is first squeezed and then displaced. Due to relations (b_l'39) and (4.140

an easy connection between two types of squeezed coherent states. So in principle we can

just rewrite previous results with suitable replacements of z by «, as indicated in (55?39)
and (1-140).

However, the direct computation may be of interest. The reason is as follows. Cal-

culation with |z,£) = S(§)D(2)| Q) = S(§)|z), was simplified since in fact we have

dealt with the coherent state | z). We only had to consider similarity transformations

) we have

induced by squeeze operator. In the present case we also need the similarities induced by

a displacement operator D(«). Therefore, we first consider such similarities.
First we recall already used similarity relations

Di(a)a D(a) = a+ « (4.159a)
Di(a)a' D(a) = ' + o (4.159b)

Other similarity relations for combinations of annihilation and creation operators follow
from the two given above. For example, we evidently have for the photon number operator

Di(a)d'a D(a) = a'a+aa' + a*a+ |al? (4.160)
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. . . . . J£3s0 .
Since old quadratures X and Y are combinations of a and a' (hBSi we easily find that

D'(a) X D(a) = % Di(a)(a+ahD(@) = = (a+a+d +a)

1
75

= X + V2 Re(a). (4.161)
In completely analogous manner we get
Di(a)Y D(a) = Y 4+ V2 Im(a). (4.162)
Since new quadratures are linear combinations of the old ones (f?S% we obtain
DY (a) X D(a) = X + V2 Re (c e_w/Q) , (4.163a)
D'(a)Y D(a) =Y + V2 Im (ae™/?). (4.163b)

Having collected auxiliary relations we can proceed to calculations of various expectation

values for the state | o, &) = D(«)S Qidﬁ ). As previously, we start with the annihilation
a

operator. Using similarity relation (4.I59a) we simply get

(a)=(a.&lala,g) = (Q[S'(§)D(a)aD(e)S(€) )
=(Q[8(O)a+a)S()[2) = a+(Q[S(§)asE)|Q) = o (4.164)

L. . . £3s14x . .
The remaining matrix element vanished due to (h /8) — it reproduces the corresponding

aa
expectation value for the squeezed vacuum. H;;, we <':Izauke into account the relation (4.T39b)

then we see that (4.164) reproduces exactly (4. , as it should. 3daad
The next expectation value concerns photon number operator. Employing (4.160) we
get
(ala) = (a,¢lalala,€) = (Q]5"(€)DY(a)a'a D(a)S(€)|2)
= (Q]51(¢) (a'a+ ad’ + a*a+ |of?) S(&) | Q)
= la? +(Q[s%(¢)alaS() ) (4.165)
because terms linear in annihilation and %%(asalgg}(gn operators do not contribute, as it was
the case with squeezed vacuum state [see (A.78). The last term is the same as for squeezed
vacuum, hence from (4. we get
(a'a) = |a*+(0.¢]a%al0,&) = |af* +sinh?(p). (4.166)

3 3sct
Noting that (h.zal Ia39b) holds, we see that the above relation exactly reproduces (&I.SCI it ), as
it should.
To study squeezed states we must investigate the expectation values of quadratures.

So we proceed to do that. The ex ectagion value of the first of the new quadratures is
found by using similarity relation (E I%Sa) and it is
(X)=(a.¢|X|a,&) = (Q]S()D(a) X D(a)S(€)|2)

—(Q]5'(§) (X + V2 Re(ae /%)) 5(6) |2)

= V2 Re(ae™?) + (Q]S57(¢) X 5(¢)10)

= V2 Re(ae™/?), (4.167)
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£3s30 £3s33
where the last result follows from (h.%ai or from (&[.97) for the sqlueezed vacuum _state.
. 3zacr . 3sxt 3scx
Due to connection (4.140a) we see that the obtained formula (b [67) reproduces (4.148).
In the exactly the same manner we obtain the expectation value of the second quadra-

ture. The result is

(V) = (a.¢]Y]a€) = vV2Im(ae™?), (4.168)

. . 3scy3 . 3zaci .
which in turn, reproduces (h Igl) }%E%XWG take into account (M. ). Comparing the
obtained expectation values with (£.95) we see that we indeed have the expectations for

a coherent state.
To estimate the variances we also need the expectation values of the squares of the
quadratures. Hence, using the square of the similarity (4.163a) we get

(X2) = (a,¢] X2 |a,&) = (QS"(§)D!(a) X2 D()S(€) |2)
= (Q157(§) (X + V2 Re(ae™/2)) " S(6) | 2)

=2 [Re(ae™?)]” + (Q|Si(&) X25(¢)|Q), (4.169)
£3533 , .o . - .
because due to (h.97 ), the term linear in X does not C(s)ntrlbute. The remaining matrix
element is identical to the one for squeezed vacuum (4.105), so we obtain
~ ~ 1 .
(X*) = {a,6| X&) = ;e + 2[Re(a e 7)), (4.170)

3scxx

3
which, together with (ﬁéa) is clearly identical to (
putation of the expectation value of Y2 is evidently similar and it yields

, as it is expected to be. Com-

(Y?) = (a,&|V? &) = %eQ'D + Q[Im(ae’w/Q)]Z, (4.171)

3zaci

3sc
which coincides with (h l%%, when we replace a by 2 according tg (4,110b). .
(h.l?(;%, (A.167), (hl}li and

3syt1l
a.

3scvv

Corresponding variances follow immediately from Egs.
(4.168). We easily obtain

o2(X) = (X2) = (X)? = %e—%, (4.172a)
o2(V) = (V2) = (V)2 = %e%, (4.172b)

We conclude that we can in fact repeat the comments given after Eqs.(ﬁ.ﬁlggﬂ. Both states
|2,&) = S(€)D(2)| Q) and |, &) = D(a)S(§)|§2) are indeed squeezed states and since
the expectation values of quadratures correspond to coherent state, they can be called
coherent squeezed states.

4.5 Squeezed photon number states

4.5.1 New role of squeezed vacuum state

The vacuum state |Q2) is an eigenstate of the annihilation operator belonging to the
eigenvalue zero. On the other hand, the squeeze operator S(&) is a unitary one. Therefore
we can write

0=alQ)=as"(€)S(€)|Q) = as"(€)]0,¢), (4.173)

S.Kryszewski QUANTUM OPTICS 68



March 4, 2010 4. States of quantized electromagnetic fields 69

£3s13
where | 0, &) is the squeezed vacuum state defined in (#.76). The obvious conclusion from

this relation is
S(€)as'(€)]0,¢) = 0. (4.174)

The operators on the left do not have a typical form of the similarity relation, so we may
ask a question: what kind of an operator is the one appearing in the lhs of (4.T74). The
answer is simple, if we notice that S(¢) is unitary and ST(§) = S71(&) = S(—¢). Thus,
we can define the operator

¢ = 5(¢)as'(€) = S'(—=¢)as(—¢). (4.175)
£3s14 .
Recalling similarity relation ( 7 a) we note that —¢ = —pe® and that sinh is an odd

function. Therefore we get

&= S1(=&)aST(—¢) = acosh(p) + a' e sinh(p), (4.1764a)
ot ST(—f)&TST(—f) = af cosh(p) + ae sinh(p), (4.176b)

Definition of ¢ operators allows us to check the commutation relation

[¢, é"] = [acosh(p) + a' e’ sinh(p), a' cosh(p) + ae " sinh(p) |

= cosh®(p) —sinh?(p) = 1, (4.177)
which shows that operators ¢ and &' are also annihilation and creation operators. Thus
relation (4.174) is equivalent to

¢0,¢) = 0. (4.178)

We can interpret this expression as follows. The vacuum squeezed state |0, ) plays the
role of the vacuum state for the annihilation operator ¢. This clearly suggest the following
definition of the new states of a single mode electromagnetic field

ne) = < o) (4.179)

n? = ) ) N
vn!

and tempts us to call these states — squeezed photon number states. This, however,

requires some discussion, we have to see if these states have the necessary properties.

Obviously they are number states for operators ¢ and &, so we can write

éln, &) =+vn |n—1,¢) (4.180a)
¢Mn, &) =vn+1 |n+1,€) (4.180b)
&eln, &) =n|n,€) (4.180c)

So our next steps should be aimed at investigation of the properties of the newly
introduced quantum states of the field.
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4.5.2 Squeezed photon number states

: . 3snde . . . :
Firstly, vgedstfudy the definition (hl 79;. Expressing ¢’ according to the hermitian conju-
cae
gate of (&Il 7/5) and using the definition of the vacuum squeezed state we get

(@) [5(¢) at S7(€)]"
! G gy — s@n), (a1s1)

= = 5@ @) S8 19) = 5O 2

which, at least partly, justifies the name ”squeezed photon number state”. Nevertheless,

it remains to check whether this state is indeed squeezed, in the sense defined earlier. To

do so we need to study the variances of quadratures of the field. 3
So we investigate the expectation values of the new quadratures X and Y. The simple

averages follow from (héf%lT) and from ( =
(X) = (ng]X|n,&) = (n] S X S([n) =0, (4.182a)
(V) =(n.&lY[n¢) =(n|SHEY S()[n)=0. (4.182b)

The expectation values of the quadratures vanish, as it is the case for a usual photon
number state | n ). So we proceed to compute the expectation values of the squares of the
quadratures. We start with the X quadrature

(X2) = (0| R2[n.€) = (n] SO XS(E)[n) = {n] (SO X ©) [n) (4183)

In this case we have to be more c%ggful since we deal with product of operators. We shall
XX XX

proceed similarly as in (4. - (. . The present case differs from the previous one
only by the presence of photon number states instead of coherent ones. So we can write

(X?) = % e (n| ("™ + (a")?e” + 2d'a + 1) |n). (4.184)
The two first terms do not contribute, hence we have

(X?%) = %ezf’ (2n +1). (4.185)
Clearly, the similar calculation for the second quadrature yields

(Y?) = (n,&|Y?|n,¢) = %e% (2n +1). (4.186)

3sn .
The averages (h I§2) and the expectation values of the squares of quadratures allow us
to write the corresponding variances

~ 1 1
o*(X) = 3 e % (2n + 1), a2(Y) = 3 e* (2n +1). (4.187)
The product of these variances is
N - 1 1
o?(X)o*(Y) = 1 (2n +1)* > T (4.188)

which is characteristic for the photon number states. State |n,{) is not minimalizing
the uncertainty relation. Nevertheless, for given (but arbitrary) n we can choose the real
number p in such a way that one of the variances will attain a value less than 1/2, that is
below the magnitude which is characteristic for the vacuum state. Thus, we see that the
name squeezed number state, for the state |n, &), may be considered justified.
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4.6 Expansion of squeezed vacuum state into
n-photon states

Considering I%lsel%:oherent states, we have expanded the coherent state | z) into n-photon
ones in Eq.(#.28). We now intend to find a similar expansion for the squeezed vacuum
state, that is we look for series

0,6) = D> A |n). (4.189)

Finding this expansion means finding the explicit expression for coefficients A,(£). In

order to do so, we recall that the squeezed vacuum state |0,&) is a vacuum fcocra the
v

operator ¢ as in (A.I78), with annihilation ogerator ¢ related to "usual” ones by (4.176a).

svn
Now, we apply operator ¢ to both sides of ( T ) obtaining

> A9 éln). (4.190)

n=0

. . . Bcca
Expressing operator ¢ via (4.176a) we get

= cosh(p ZA Yaln) + esinh(p ZA at|n). (4.191)

We know how operators @ and a' act on n-photon states. We also note that the term
n = 0 in the first sum vanishes, hence we have

oo [ee)

0 = cosh(p) > Au(§) v [n—1) + ?sinh(p) Y A () Vn+1 [n+1). (4.192)

n=1 n=0

In the first sum we change the summation index n — m =n — 1, with m = 0,1,2,...,
and we take the term m = 0 out of the sum. In the second sum we also introduce a new
summation index n — m =n+ 1, with m = 1,2,3,.... Then from (4.192) we get

0 = cosh(p)A1(£) |0) + cosh(p Z Api1(§) vVm+1 |m)

+ ¢?sinh(p ZAm (&) v |m). (4.193)
m=1

This relation obviously implies that

Moreover, the kets |n) are the basis of the space of state vectors of the field. Thus, all
the coefficients must be equal to zero. Therefore, we arrive at the relation

cosh(p) Vim +1 A,1(6) = — ¢?sinh(p)vm An_1(6), (4.195)
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which is equivalent to the recurrence relation

Apmar(€) = — etanh(p) [/ —2— A, _1(6),  for m=1,2.3,... (4.196)
m+1

This recurrence is valid for m > 1, so we conclude that Ay is the first unknown coefficient.

Since A; = 0, we see that only coefficients with even index are nonzero. In other words,

all coefficients with odd index are equal to zero
Putting m = 2k + 1 in recurrence relation (579'6) we rewrite it as

2k+1
2k + 2

Agri2(€) = — € tanh(p) Agi(8), for k=0,1,2,... (4.197)

Writing down several first coefficients, we can easily generalize the recurrence relation,
which enables us to write

MA (5)7 for k=1,23,... (4'198)

Agi(€) = (=1)% e* tanh*(p) 2! 0

3svnl0
It is straightforward o check (by induction) that the expression (h_l'%') agrees with the
recurrence relation (4.196). The coefficient Ay(§) is unknown, and must be determined
from the requirement of normalization of the vacuum squeezed state |0, ). Before we do
s0, let us consider the term with factorials. It is evident that

(2k)1! = 2Fk! and (2k)! = (2k)11(2k — 1)1, (4.199)

Which implies that

(2k — )N (2k)! (2k)!
= = 4.2
20! O (@R (4.200)
3svni0

which, after inserting into ( 19 gives
iko h k

Agy(€) = (—1)’f% (%) VRN Ag(6),  for k=1,2,3,... (4.201)

3svnl
We use the obtained coefficients in the expansion (A.189), we also account for the fact

that odd terms are absent, and we have
= e /tanh(p b
10,6) = Ao(§) Y (D = (%) V(2k)! | 2k). (4.202)
k=0 :

It remains to find the coefficient Ay(§) from the normalization requirement. Since the
n-photon states are orthonormal, we easily obtain

1= (0,£]0,¢) = A& D i]f)); <tanh(p)) . (4.203)

2
k=0
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So it is necessary to perform the remaining summation. This not an easy task. To do
so, we first note that from the definition of Hermite polynomials we have for ones of even

order
k
(21’)2k 2m
H = (2k)! _ 4.204
2k 7;) m' (2k — 2m)! ( )
so, for = 0 only the term with m = k does not vanish. Hence, we have
(—1)*F
Hop(z =0) = (2k)! R (4.205)
3svnl . .
This allows us to reexpress the terms under summation in (4. , which is therefore
rewritten as
=1 tanh?(p) :
= |Ap(¢)]? - Hop(z = 0). 4.206
O 3 g (- 5) Hato =0 (4.200)

. 9 z3shil . . .
Since tanh®(p) < 1, the sum rule (C.1) applies. The summation is, thus, performed and
we arrive at the formula

1= AP ! — | Ay(€) P coshi(p), (4.207)

1 — tanh?(p)

because cosh(p) is always positive. Denoting an arbitrary phase by ¢, we express the last
expansion coefficient as
Ao(€) ew (4.208)
O cosh(p) .

. . . 3svnl4d
We adopt the overall phase ¢ = 0, then we insert Ay into expansion (&[.ZUZi and we get

™ (tanh(p)\"
10,6) = \/W Z (T) V(2R | 2k). (4.209)

3herm
If we employ the expression (4. we can transform the obtained formula into

0,6) Z W (™52) VO (20) (1210)

Combining the powers of (—1) into exponential phase we have

Z k(0+37/2) (tanh(p)
\/F k+ 1) cosh(p) 2

k
0.¢) ) (0 |26), (1.211)
At this point we can generalize this result by noting that Hermite polynomials of odd
order taken at x = 0 are equal ‘50 zero, i.e., Hop1(z = 0) = 0. Therefore, we can include
the odd terms in the sum (4. and we can write

(0+3m/2)n/2 tanh(p) n/2
06) = 3 e () VR G
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where the odd terms (with odd n) gis\é% nt2he zero contribution, while the even terms (in
which n = 2k) reproduce the sum (4. . The obtained expression is the sought ex-
pansion of the vacuum squeezed state in the n-photon states. The coefficients of the
expansion are the probability amplitudes. Therefore, we can say that

" | Hn(0)]
['(n/2+4 1) cosh(p) ’

P.(§) = ‘1 tanh(p) (4.213)

2

is the probability that for the field in the vacuum squeezed state | 0, ) we find n photons.
We note that this probability is zero for n odd, while for n even, that is for n = 2k it
reads

0] = ‘ ! (4.214)

1 (2Kk)!
['(k+1) cosh(p) 2 tanh(p) cosh(p) (k!)?’

where we used relation (E’Lll%%% The squeezed vacuum state |0,£) = S(£)|Q), and
P, is the probability that for the field in this state, we find n photons. The fact that
Por+1(€) = 0 seems not to be very surprising. Operator S(€) = exp[¢*a?/2 — £(a)?/2)],
while operators @ and (co)? correspond either to destruction or to creation of two pho-

Py(§) = ‘% tanh(p)

tons. Hence S(&£)|€2) is composed of n-photon states in which photons are created (or
annihilated) in pairs. Therefore, only Pa;)(£) may be expected to be nonzero.

4.7 Equivalence of coherent squeezed states | z, £ ) and
[, &)

3
Let us consider the coherent squeezed state (h.scl 3827b): |2,&) =S(&)D(2)| Q) :féS'S(Q\ 0,¢),

and expand the coherent state | z) into photon number states according to (4.28). Then
we get
[e.o] Zn
[2,6) = S() exp (—3[2*) > = In)
n=0 :

= exp (<41:) 2 m S(6) |n)

11,2 — 2"
n=0 \/m
L 3sgn3
where we s%%%d the definition (h i8|) of the squeezed photon number states. Next we
employ (4. to write
L 2" (¢h)?
| 2,&) = exp (—312) ) - 10,€),
n=0 ’
zét
= exp (—3]z?) ¥ 10,¢). (4.216)

The state |0,£) is an eigenstate of the annihilation operator ¢. Thus The above formula
is equivalent to

2,6) = exp(=}[2) e

0,€). (4.217)
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. . . — . %2_3267% .
Operators ¢' and ¢ are creation and annihilation operators, thus relation (B.27b) (with
a = —z* and [ = z) applies, and we get

exp (—3/2%) e = exp (ze" — 27¢). (4.218)
We combine two last equations, and we obtain

|2,£) = exp(zél —2%¢) [0,€) = exp (26" —27¢) S(&)| Q). (4.219)
Next we need to consider the exponent in the leftmost operator. Due to relations (4.176)

zé" — 2*é = z (a' cosh(p) + ae “sinh(p)) — z* (acosh(p) + a' e sinh(p))
=ad’ —axxa, (4.220)

WhereS we have denoted o = z cosh(p) — z* € sinh(p). Introducing this new variable into
Eq.(42190 we have
|2,6) = exp(adl —a*a) S(€)|Q). (4.221)

Recognizing the displacement operator we summarize our calculations by

2,6) = SEODE|Q) = D@SE)[Q) = [a.€) (4.222)
provided the complex numbers z and « are connected by the relation

o = zcosh(p) — z* ¢ sinh(p). (4.223)

This result is in full agreement with the discussion of two possible squeezed coherent
states. This fact elucidates the sense of the squeezed photon number states. They have
the same relation to squeezed coherent states as the corresponding usual number states
to usual coherent ones. Obviously, the derivation presented here could have been done in
the reversed direction, leading to the same final conclusion.

X ok ok sk ok ok ok ok ok osk sk kok ok sk osk oskok ok ok sk sk sk ok ok ok ok ok k%
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Chapter 5

Atom—field interaction.
Dipole approach

5.1 Hamiltonian of the system

In this chapter we consider an atom interacting with electromagnetic field. Therefore, we
must construct the corresponding hamiltonian. It consists of three terms

H=H,®1p+14® Hp + Hap, (5.1)

where H, is the atomic hamiltonian, Hr corresponds to the field hamiltonian, while H4r
describes the interaction between two parts of the system under consideration.

5.1.1 Atomic hamiltonian

We consider a simple one-electron atom. The center

of an atom (its nucleus) is positioned at the point de-
N noted by the vector R. The electron, with respect
to the nucleus has radius vector r, while with respect
to the point & — the center of the coordinate system,

electron’s position is given by a vector X. The atom as

=l

=

a single whole may perform a uniform motion. Such

il

a case of a moving atom, if time permits, will be con-
sidered later (in next chapters). Then its position
R will be a time-dependent function varying (usually
linearly) with time. Transforming our description to
S the center-of-mass frame we can separate the kinetic
energy of an atom as a whole from its internal degrees

of freedom. The latter ones are then given in the rel-
ative coordinates. Then, atomic kinetic energy is just

Fig. 5.1: Positions of atomic nu- ] i )
. . . a constant in the hamiltonian and as such can be ne-
cleus and its electron in arbitrary

coordinate frame. ed. So, we consider the electron motion in the

center-of-mass frame. We denote by m the electron’s
reduced mass, which is very close to the well-known electron mass (the nucleus is much
heavier than the electron). We assume that in the center-of-mass frame the Hamilto-
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nian H 4 of the atom may be diagonalized, that is the necessary stationary Schrodinger

equation can be solved. We denote the eigenstates of H4 by | a) and the corresponding

energies by Aw,. Therefore, the standard hamiltonian of a free atom can be written as
=)

Hi=21vi)=nY wila)al. (5.2)

2m
By definition states | a ) are the eigenstates of the atomic hamiltonian:
Hala) = hw, |a), (5-3)
and are orthonormal and complete:

(a|b)=0w, and Y Ja)(a|=1 (5.4)

The set of vectors {|a)} is numbered by index a which may consists of several quantum
numbers (as it is the case for the hydrogen-like atom). Eigenfrequencies w, are allowed
to be degenerate, that is, it may happen that w, = w; for different indices a and b.

5.1.2 Field hamiltonian

As we know from previous considerations, the hamiltonian of the quantized electromag-
netic field is od the form

Hp =Y hwpal: ag,, (5.5)
KA
where aTl_{.)\ and akl are annihilation and creation operators corresponding to the field mode

specified by wave vector k and polarization \. The states of the field belong to the Fock
space and are of the form

[Yr) = @l nga ), (5.6)

where numbers nj , are nonnegative integers. We also recall that the wave vector Kk and
the frequency satisfy the dispersion relation

—

wi = c k. (5.7)

5.1.3 Interaction hamiltonian

Interaction hamiltonian H,p is essential in our considerations. Due to the analogy to
classical physics, we take the interaction hamiltonian in the following form

Hup = —d-E(R, 1), (5.8)

where d = eT is the electric dipole moment of the atom, and E(ﬁ, t) the electric field
of the incident electromagnetic field taken at the position of the atomic nucleus (center
of mass). This hamiltonian is called a dipole-interaction one. The given name has two

S.Kryszewski QUANTUM OPTICS 78

i2b

i2c

i1l



i13

March 4, 2010 5. Atom—field interaction. Dipole approach 79

explanations. Firstly, there appears the dipole moment of an atom which will be discussed
later. Secondly, it must be noted that the electric field is taken in the center of the atom
ﬁ, and not at the position X of the electron. This is clearly an approximation justified by
the following argument. The influence of the incident light on the atom will be appreciable
if its frequency wj has the same order of magnitude as some of the atomic frequencies
wg. The statement that w, =~ wj leads to appreciable effects can be supported, for
example, by simple time-dependent perturbation theory. This is a notion of resonance
— the nonresonant events are quite improbable. Atomic frequencies are typically within
optical range, then field frequencies must also lie in this region. This means that the
wavelength A\ of light is of the order of 500 nm. The size of an atom is smaller roughly
by three orders of magnitude. Therefore |F] < \. As a conclusion we can say that R ~ X
which explains why we used R instead of X in the definition (%_8) This approximation is
called a dipole one and explains the name of the interaction hamiltonian.
Electric field of the incident light is written as

BE-Y [E&“ +EC) } , (5.9)

where we have denoted

=) . hwr o5
Eg)\ =1 %V €j,, Qi EXP (zk : R) : (5.10a)

eal
wL

-) . hwk . T
NaluAY TG g, exXp <zk : R> : (5.10b)

according to our discussion in the previous chapters. Let us, however, stress that the
quantized electromagnetic field is a dynamic quantity. The time dependence is "hidden”
in the annihilation and creation operators. Combining relations (%_8) and (1. we write
the interaction hamiltonian as

_ 3| R L g
Hir ==Y d- [Em +EC) | (5.11)
79)

In priciple, the summation runs over all modes. It may lead to the divergences (as
discussed earlier). Hence, in practical case some care might be necessary.

5.1.4 Atomic dipole moment and interaction hamiltonian

It remains to .sgecify the electric dipole moment of the atom. We use eigenstates of the
1
hamiltonian (%.3), which allows us to write

d=Y"la)ald S 10)(b] = Y 1a)(b] da, (512)

where &ab is the matrix element defined as

-

dab:<a|a|b>:/d3r(a|f’)(f’|&|b). (5.13)
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In the position representation we have d= gr, hence we can write (due to principles of
quantum mechanics)

—

dy = (a|d|b) = q/d% 0 (F) T oy (F). (5.14)

In many typical atoms wave functions possess the property of parity, then diagonal ele-
ments of the atomic dipole vanish

—

d.,, =0. (5.15)
12 . . . . %1167% ) .

Usually |14 (F)|” is an even function, so that the integrand in (5.14) is odd and the integral
yields zero. In other words, we consider atoms which do not have any permanent dipole

moment.

i16 i14
Introducing Eq.(%[%) into hamiltonian (%_fl) we obtain
Hip == 3 Ja)(bldy- [Eghﬁg]. (5.16)

K\ ab
This hamiltonian (as any quantum—mechaglilc?al observable) must be hermitian. To see
that this the case, lest us split expression d’o_f6) and write
= = - =
Hip=-> {\a)(b\ da - B+ a)(b] day - Efa}. (5.17)
kx @b
The sum over (a, b) runs over all atomic states (the case dg, = 0 is allowed), hence in the
second term we can interchange indices a < b, moreover, since dy, = d, we get
T R
Har= =30 > {la)(b] du By
kx @b
which is clearly hermitian, as it should be. This hamiltonian will be employed in a variety

of applications. Obviously, its specific form will have to be adapted to particular physical
situations.

by (aldy, EC) L (5.18)

5.1.5 Semiclassical approximation

Semiclassical approximation consists in quantum-mechanical description of an atom but
in the classical treatment of the field. In such a case annihilation and creation operators

in (1. ) are replaced by classical amplitudes ay, — oy , exp [—iwit]. As a result we take

EC) = EX)(0) exp [:l:z‘ (12 R-— wktﬂ , (5.19)

where ES\) (0) are classical field amplitudes (given vectors). Field energy, in the classical
case is well-defined and, as such can be omitted in the total hamiltonian. Moreover, we

can write
Hap == S {la)(b] do-BY) + |b)(al d;, - B}, (5.20)
79 b

i21
with fields specified in Eq.(5.19).
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5.2 Hamiltonian for two—level atom in radiation field

5.2.1 The two-level atom. Free hamiltonian

In many practical cases the electromagnetic field irra-

diating an atom is closely tuned to one of the atomic

| 9 > resonances and has a relatively narrow spectral band-
width equal to Awy. In such a case only two atomic
levels with energy separation hws; close to the cen-
hway tral frequency wy, of the field, are strongly coupled to
the incoming radiation. Moreover, if the other levels

| 1 > are separated by much more than Aw;, we can safely
disregard all other levels, except those two coupled to
the field. Then we may say that we deal with a two-

Fig. 5.2: The level scheme of a level approximation to the real atom. We shall still
two-level atom. make an additional simplifying assumption. Namely,

we will assume that the considered two levels do not
exhibit spatial degeneracy. This means, that we do not consider the angular momen-
tum issues, which reduces the atomic basis just to two states, and two quantum numbers
(numbering the levels) are sufficient to fully describe the state of the atom. The Hilbert
space of these states is, thus, two-dimensional. It may be worth noting, that it is possible
to prepare such states of real atoms that are indeed well described by a two-level model.
Moreover, investigations of two-level atom give excellent insights in the phenomena oc-

curring in real atoms.
So, we restrict our attention to the simplest two-level atom (TLA) model, and we

denote upper (excited) state of a TLA by |2) and lower (ground) state by |1). The space
spanned by the states |1) and |2) is two-dimensional, it is isomorphic to the space of
the eigenstates of spin 1/2 states. Therefore, (for future purposes) we make a natural
identification

yz>:(é>, |1>:((1)). (5.21)

i2
The hamiltonian of the free TLA may be then written as it follows from (%Za), that is
Hy = hwy|1){(1] + hws|2)(2]. (5.22)

This form is fairly self-evident. We can, however, select other forms of the Hamiltonian
for TLA, depending on the choice of the zero on the energy scale. When we take zero
energy at the ground level, then we can write

Ha = hwst|2)(2]. (5.23)

Another possibility consists in chOQS312ng the zero of energy midway between the levels.
1 a

Then, we can rewrite hamiltonian (5.22) as

HA:%hwm[yz)m—u)m}:hwmsg, (5.24)
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where S3 is the third component of the quasi-spin operator (for the details see the corre-
sponding appendix). Since the space of | 1) and | 2) is two-dimensional, the corresponding
operators can be associated with 2 x 2 matrices, and are expressible by Pauli matrices.
These operators can also be expressed by the so-called pseudo-spin operators introduced
and discussed in appendix. We will use pseudo-spin operators without reference to par-
ticular formulas given in that appendix, which should be consulted if necessary.

5.2.2 Interaction hamiltonian. Rotating wave approximation

il
Obviously, the total hamiltonian of TLA-light system contains three terms as in (%_l)
The interaction hamiltonian should be, however, transformed to suit our current needs.
Moreover, as is was already discussed, we will take

di; =dyp = 0. (5.25)

. . . e . %_115%
The specific for{n of the interaction hamiltonian follows from general expression (b.18),
which (due to (5.25)) gives
Hip=-Y { [1)(2|dip - BY) + [2)(1]di, - EL)

—

kA

+(2)(1] dor - BY) + y1><2|d;1-Ef§}. (5.26)

Let us carefully discuss all four terms which appear in the above given expression.

e Operator |1)(2| corresponds to the transition |2) — |1) (downwards). We expect
the photon to be emitted. The field term El(;/\) contains annihilation operator —
photon disappears.

e Operator |2)(1]| corresponds to the transition |1) — |2) (upwards). We expect
the photon to be absorbed. The field term ]:jl({/\) contains creation operator — a new
photon appears.

e Operator |2)(1]| corresponds to the transition |1) — |2) (upwards). We expect
the photon to be absorbed. The field term ES)? contains annihilation operator —

)

the photon disappears.

e Operator |1)(2] corresponds to the transition |2) — | 1) (downwards). We expect
the photon to be emitted. The field term EE_)? contains creation operator — a new
photon appears. 7

This discussion shows that two first terms in (%6) are, so to speak, nonresonant. Intu-
itively speaking, they do not satisfy the principle of energy conservation. For example, the
first term describes the process in which an atom losses energy (transition |2) — | 1)) and
also the energy of the field decreases (one photon is annihilated). This heuriistic argument
justifies the possibility to neglect the first two terms in the hamiltonian (5.26). This is
clearly an approximation, which is called rotating wave approximation (RWA). It can be
shown, that the neglected terms lead to small corrections called Bloch-Siegert shifts.
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Another argument supporting RWA follows from the notions of time-dependent per-
turbation theory. From this theory we know that nonresonant terms give negligibly small
transition probabilities. Thus nonresonant terms may be neglected and droped out of
consideration. Thus, we adopt RWA and write our interaction hamiltonian

Hap ==Y {12)(1] dor - BY) + [1(2]d3, - EL) ], (5.27)
79)
i13
with the fields given by Eqs(h@) Let us remind, that the dynamical (time) dependence
is "hidden” in the annihilation and creation operators.

5.2.3 Semiclassical approximation

The fundamental ideas behind semiclassical approximation were discussed earlier. Here,
we only need to adapt what was said before tl% the present needs. We reg lz%ce the field

)

operators E(j[) appearing in the hamiltonian (5.27) by classical functions (1.
Hap = —Z{!2><1\ d; - 1({ )(0) Rt 4 1) (2] dyy- k} -i<k‘R—wkt>}, (5.28)
K\
It is convenient to introduce the following notation

h = . 2~ =
5 Qp,=da- ES}? (0), or, equivalently €, = 5 dy; - ES)? (0), (5.29)

i43
where quantities (), are called Rabi frequencies. Then, hamiltonian (328) is rewritten
as

HAF———Z{rz (1] O, @R 1 1)(2) 0p e ERman ) (5.30)

Let us also denote another notational abbreviation, namely
®=-k-R, (5.31)

which will allow some generalizations. So finally, the semiclassical interaction hamiltonian
for a two-level atom, with rotating wave approximation, attains its final form

HAF-——Z{rz (1] Qg e 1 |1)(2] Qg FHa0 ], (5.32)
which will be used in the next sections.

5.3 Application: Rabi oscillations

5.3.1 Introduction

We will concentrate on the following model. We still consider a two-level atom interacting
with the electromagnetic field. However, we will adopt following simplifications. First of
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all we will assume that the considered atom is at rest. Hence we can take R = 0 (this
depends only on the proper choice of the coordinate frame. Moreover, this implies & = 0.
Finally, we shall assume that the external field can be treated classically (semiclassical
approximation) and that it consists of a single monochromatic plane wave. Thus, we
deal with a single well-specified mode, so that the indices (E, A) and summation over the
modes are not necessary. In the light of these remarks we can write the total hamiltonian
as a sum of the atomic one (%_27[) and the interaction one (%_3‘2) So we have

=1 hon [12)02] - 11)(1]] - D [12041 06 + 1021006 ], (5.39)

i31
where w denotes the frequency of the mode. Identifications (%Z'l) allow us to write
matrices

2021-10a= (g 7). (5.3

Similarly, we get

201=(g o) me=(4 ) (5:5)

i51
With the aid of these matrices, hamiltonian (%.33) gets the following matrix form

g_len (10N R 0 Qe
~ 2 \0 -1 2 \ Qe 0

h w —Q et
-2 ( o, ) . (5.36)

—W21

Our aim is to solve the time dependent Schrédinger equation for the state of two-level
atom interacting with a monochromatic (classical) mode of the electromagnetic field.

5.3.2 Schrodinger equation

As we have already mentioned, the space of the states of a two-level atom is two dimen-
sional. The state of an atom is thus described by the vector

e = (20 ). (5.37)

i31
according to identifications (%_21) Obviously, quantity g(t), k = 1,2, is the probability
amplitude of finding the atom in the state | k). Time-dependent Schrédinger equation is,
certainly, of the form

o olt)) = Hlg(0)) (5.38)

ib3
where the total hamiltonian is given in (E’TS'G) In order to solve this equation in a unique
way we need initial conditions. We shall simply take

|p(0)) = < zfggg > , (5.39)
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which must satisfy the normalization condition
=1. (5.40)

|02(0)
i57
Fiosrgnal Schrodinger equation (1. ) can be written in the matrix form, which follows from
(5-36) and is as follows

ng (G ) =5 (o 5T (50) a0

We see that h cancels out. Multiplying both side by (—i) we obtain an equivalent set of
equations (we discard an obvious time argument)

* + lef

, 1w (.

P2 = ——221 w2 + 5 ¢ "1, (5.42a)
: (1O w

b= e + o (5.42D)

It is a set of the linear, first-order coupled differential equations with time-dependent
coefficients. Solution to this set may be sought in several different ways. We will present
just one of the methods.

5.3.3 An auxiliary transformation

First of all we intend to get rid of the time-dependent coefficients. This may be achieved
by the transformation

wa(t) = ca(t) e W2, 01(t) = 1 () e, (5.43)

Let us note that "new” amplitudes fulfil the same initial conditions

o1(0) = c(0), k=12 (5.44)
Introducing substitutions (%%?3) into Eqs(%%%Z) we get a set of equations where the time-
dependent factors e*™ cancel out. As a result we get

Co = — % (w21 — w)c2 + g c1, (5.45a)

¢ = ZZ e + %(wzl —w)er. (5.45b)
Now, we introduce the detuning

A =w—wy, (5.46)

i65
due to which the set of equations (%7[5) becomes

) 1A 182

Cy = 7 Coy + 7 C1, (547&)
) 10 iA

cT = 5 Cy — 7 C1. (547b)

This is still a set of linear, coupled differential equations, but with time-independent
coefficients.
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5.3.4 Solution to the evolution equations
i67
Let us differentiate the first equation of the set (%.ZN) with respect to time. We obtain a
second-order equation
. iA - i)
Cy = 7 Cy + ? C1. (548)

Then, with the aid of the second equation, we eliminate ¢; obtaining

N7 S gt iA

Cop — 9 Co 9 9 Co 9 C1
7ANS QJ? 1A if)

= 7 Cy — % Cop — 7 . ? Ct. (549)
i67a
Now, from (5.47a) we have
182 ) 1A
7 CiL = C — 7 Co. (550)

i68b
Using this relation in (5.49) we obtain

I 7 NS (o1 N[ A
Cy = 9 Co 1 Co 9 Cy 9 Co

1
= =3 (12 + A%) . (5.51)

Introducing the so-called generalized Rabi frequency

O = VIR + A2, (5.52)

. i68d . ) )
we see, that equation (%5 [) is an equation of the type of harmonic oscillator

Q 2
é + (TR) ¢y =0, (5.53)

with an obvious solution

Qpt Qpt
co(t) = Asin (TR) + Bcos (%) : (5.54)
i63b
Arbitrary constants A and B should be determined from the initial con(iifisiéicon (%717[) Be-

fore we do so, let us compute amplitude ¢, (t). It follows from relation (5.50). Performing
the necessary differentiations, we obtain

A . [ Qpt Qpt
c] = ) {A sin (T) + Bcos (T)}
iQR QRt . QRt
— T |:A COS (T) — BS]H (T

B A Qg ) Qpt
—(—QA—i- Q B)sm( 5 )
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Summarizing the obtained results we write down the amplitudes of the evolving two-level

atom
c2(t) = Asin (%) + Bcos (%) : (5.56a)
1 Q 1 Q

This ends the formal solution to the Schrodinger equation, what remains is the determi-

nation of constants A and B from initial conji%ons.
. l . 1 . .
Due to relations (}1)717[) and to solutions (5.56) we arrive at the set od equations for

constants A and B

2(0) = B, (5.57a)
1
c1(0) = — 5(AB +iQRA). (5.57b)
Solution to this set of equations is a straightforward matter. They read
€2 1A
A=— — 5
P 0) + al0), (5.5%)
B = ¢5(0). (5.58b)
i73
Plugging the constants A and B into solutions (1. ) after simple transformations we
obtain
Qpt ' Qpt
c2(t) = p2(0) cos (TR) + QL [Q01(0) + Awa(0)] sin <7R> , (5.59a)
R
Qpt i . (gt
c1(t) = ¢1(0) cos <TR) + o [Qp2(0) — Ay (0)] sin (TR> : (5.59b)

163
Finally, we have to take into account transformation (ﬁB) Then, we can write down the
solutions to the considered problem,as

Qpt . ' Ot ‘
©a(t) = @2(0) cos <TR) emiwt/2 4 QL[Q%(O) + Ay (0)] sin (TR) emit/?,
R

(5.60a)

p1(t) = ¢1(0) cos (TRt) ey QL [Qp2(0) — Ay (0)] sin (TRt) /2,
R

(5.60D)

This is the end of the procedure of finding the solutions to the Schrodinger equation for
a two-level atom interacting with (a classical) single, monochromatic mode of light. The

initial conditions are fully arbitrary, they only must satisfy the normalization condition
1

8b
(510).
5.3.5 Specific initial conditions

Let us now assume, that the atom was initially in the ground state. This corresponds to
the initial conditions

v2(0) =0, and 01(0) =1, (5.61)
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W 7isch clearly satisfy the normalization requirement. In such a case, from general solutions
1

(5.60) we obtain

Ay Qgt .
wo(t) = ;Z_R sin (TR) e~ wt/2 (5.62a)
Qgpt\ A Qgpt\ ,
©1(t) = cos (TR> ewt/? ;2— sin (TR> et?, (5.62b)
R

Having the amplitudes, we easily compute the corresponding probabilities of finding the
atom in the excited state and in the ground state

_ ‘QP o (gt
Py(t) = o S\ ) (5.63a)
Qpt A? Ot
P1<t) = COS2 (T) + Q—% Sln2 (T . (563b)

Since Q% = |Q> + A? the obtained probabilities sum up to unity for any moment 7", as
it should be. Next, we use the simple trigonometric identities

2 (@) _ 1 w2 (Y=Lt
Cos <2>—2(1—|—cosoz), sin <2>—2(1 cos ), (5.64)
i83
With the aid of these relations, from (l. ) we get
ik
Py(t) = 5o [1 —cos (Qgt)], (5.65a)
R
1 A?
Pi(t) = 3 [1+4 cos (Qgt)] + ST [1 — cos (Qgt)]. (5.65b)
R

Since Q% = Q% — A?, we can eliminate Q from the above equations, obtaining

Py(t) = % (1 — %Z) [1— cos (Qnt) |, (5.66a)
Pu(t) = % (1 + é—;) + % (1 - é—;) cos (nt) (5.66b)

Using trigonometric relations it is easy to check that these probabilities sum up to unity.
Moreover we note that the obtained probabilities do not depend on the sign of detuning
only on its absolute value.

5.3.6 Rabi oscillations

i86
Expressions (%_66) clearly exhibit oscillatory behavior. Let us discuss it in some more
detail. Let us concentrate on the probability of finding two-level atom in the ground state.
Pi(t). As it follows from the obtained results, the time derivative of this probability is

d 1 A?

— Pit) = - 3 (1 - Q—%) Qpsin (Qpt) | (5.67)
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which is zero for Qpt = kn (k = 0,1, 12865')' let us investigate the values of Py(t) for the
given moments of time. Then, from (5.66b) we get

kn 1 A? 1 A?

Since cos(kw) = (—1)¥ we have
P, (é—l) = % [1+(-D*] + % [1—(-1)"]. (5.69)

For even k = 2n (in particular for n = 0 — initial moment) we get

j2) (QLR : 2n) = 1. (5.70)

On the other hand, for odd £ =2n + 1

T A?
P—=—-(2 )| =—=. 5.71
(g nen) = 5 (5.71)
Thus, we see that at the initial moment (¢ = 0) we have P;(t) = 1, the atom is in its
ground state. When the time goes probability of finding the atom in the ground state
reaches its minimum value A?/Q%. Next, at the later moment Qgt = 27, it reaches unity

again. Obviously, with growing time, the oscillations continue.
In a similar way we discuss P»(t) — probability of finding the atom in the excited state.

From (5.66a) we find the derivative

d 1 A? .
% Pg(t) = 5 (1 — Q_2) QR S1n (QRt) s (572)
R

which is again zero for Qgt = k7 (k=0,1,2,...). Hence we easily get

P (5—2) = % (1 — %) [1—(=D)"]. (5.73)

Hence, for even k = 2n we get

Py (QLR : 2n> = 0. (5.74)

For odd k£ = 2n + 1, on the other hand, we obtain

7 A2
Pl — (2 H)=1—-—=. .
(g ) =1- 5 (5.75)

Oscillations of the excited state population are, thus, slightly different. At the initial
moment ¢t = 0 P,(0) = 0, which agrees we the adopted initial conditions. Then, the prob-
ability P, grows, at the moment ¢ = 7/Qp attains its maximum equal to 1—A?/Q%. when
the time passes P,(t) decreases and reaches zero at the moment ¢t = 27 /Qpg. Afterwards,
the oscillations go on.
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Let us return to the discuisgégn of P(t) — probability of finding the atom in the upper
state, which is given in Eq.((5.66a), ie.,

Py(t) = % (1 - é—é) [1—cos(Qnt) | = <1 — 3—9 sin (%) : (5.76)

Moreover, we recall that A = w — wyy, and Q% = A% + |Q%. Tt is important to realize
which parameters can be controlled in a real experimental situations. Frequency w of the
incident light can be tuned. This allows an experimentalist to control the detuning A
(atomic frequency wy; is obviously fixed. Furthermore, application of filters results in the
control over the field intensity. This means that the electric |E_j| can be adjusted. This, in
turn, gives a chance to regulate Rabi frequency €2 (see (5:29)). Hence, we see that A and
() are the essential experimental parameters. We will consider several possible choices of
these parameters.

A
Py(t)
| I R TS < S T T (G I
0.6 |-t Nl
............. Ot N o
4 hY ’: :
4 : f‘\ : \ 4 Y AL : : :
: : : \¢ : : : ; :
02 ........ .‘.'..\.....' ..... ..... ;"'f .\‘\ ....... ..;I‘ .........
: . o\ : e o ° R4
te o N 4'3{% N e \J.;l, Q\t
0 2T

Fig. 5.3: Examples of Rabi oscillations — probability of finding an atom in the
upper state. Dotted line: A = 2Q; dashed line: A = ; solid line - resonance:
A=0. fiir

e As the first case we take |A| = 2. This gives Qr = /5Q. Probability Py(t)
becomes

Py(t) = % [1 — oS (\/5 Qt)} = % sin? (\/75 Qt) . (5.77)

Rabi frequency (2 is relatively large. Probability P (t) oscillates quickly. It reaches
the first zero (with ¢ > 0) in the moment /5 Qt/2 = 27, which yields Qt ~ 2.8.
Its maXiIiI}um value is only 0.2. Rabi oscillations are shown as a dotted line in the
figure 5.3.
i92
e The second case corresponds to |A| = €, so that Qr = v/2 Q. Eq. (h6)) implies

Py(t) = i [1 — oS (\/5 Qt)] = % sin? (? Qt> . (5.78)
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Generalized Rabi frequency decreases so the oscillations are slower than in the pre-
vious case. The first zero occurs at v/2 Qt/2 = 27, so that Qt ~ %:4. Maximum

1T

value of the probability equals to 0.5. Its behavior is shown in figure 5.3 by a dashed
line
. . . f:ir
e The third case depilcgthed in figure H.31s a resonance one. Thus, A = 0 and Q2 = €.
In this case from (5.76) we have

Py(t) = %[1—Cos(Qt)] = sinQ(%Qlt). (5.79)

Rabi frequency (2g is smallest and Oscillations are slowest. The first zero appears
at Qt = 27 =~ 6.28. On the other hand, probability of finding the atom in the upper
state reaches maximum possible value equal to 1.

5.3.7 Mollow spectrum — heuristic approach

The operator of the atomic dipole moment (the one for a two-level atom) is of the form
d=dp|1)(2]+dy|2)(1]. (5.80)

Let us assume that, as previously, the atom is initially in the ground state. The corre-
sponding probability amplitudes ar given in Eqs.(l. ). We intend to find the expectation
value of atomic dipole moment. For simplicity, we shall assume that its matrix elements
are real &12 = &21. So, we want to compute the quantity

(d) = (@) |d] )
= dar{p® | (11)(2]+12){1]) [¢()) (5.81)

. . %ég_g . . .
Having found the matrices (5.35) we easily construct the matrix corresponding to the
operator in the above matrix element. Thus we have

<d> :d21(9017 901) ( 0 0 ) ( 22 ) =d21(¢1a <P1) ( Zzi )

=dy (P2 + 1] = dy - 2Re {w5p1} (5.82)
The amplitudes ¢; are known, It is easy to get
Q. Qgt Qgt A Qgt
Vi1 = é_Re—wt sin (TR> [COS <TR> + ;Z—R sin (%)] : (5.83)

To simplify our calculation let us temporarily denote a = Qgt/2. Writing trigonometric
functions in exponential form, we get

. ZQ iy eia _ e—ia eia + 6—ia ZA 6ia _ e—ia
= —e _—
Lo 2 2 Qp 2

Q. . A .

— 4QR e—zwt |:621a _ 6—27,(1 + Q_R (€2m + 6—27,a _ 2):|

QO . [A 1 AN i 1 AN

" W — _ -1 - ia (1= = | 5.84

205" [QR 2( +QR>6 +2( QR)e (5:84)
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Returning to ”old” notation, we finally obtain

Qra ., 1 AN 1 AN
* — | Bt _Z (9 = —i(w—QR)t Z (1= —i(w+QR)t (5.85
291 7o, [QRe > ( * QR) ‘ T3 ( QR> ‘ (5.85)

iA6
Taking real part and inserting into (%_8'2) yields

(d) = —dy L {ﬁcos,(wt)—

Qg

! (1 n QﬁR) cos[(w — Q)]

s (1 - Q%) cos[(w + )] } . (5.86)

w—QR w W+QR

Fig. 5.4: A typical example of the Mol-

low’s spectrum.

From this relation we can see that the oscilla-
tions of the atomic dipole moment are more com-
plicated than Rabi ones which were discussed
above. In this case we deal with the superposi-
tion of three oscillations at frequencies: w, = w
— at the frequency of the incoming light, and
at two shifted frequencies w, = w + Qr. We
can discuss these oscillations according to the
notions known from classical electrodynamics.
As we know an oscillating dipole emits electro-
magnetic waves which have the same frequency
as the frequency of dii}K&le’s oscillations. Hence,
on the basis of Eq.(5.86) we can say that the
dipole would emit waves with three frequencies
w, which follow from our considerations. We ex-
pect that that the spectrum of the emitted radi-

ation would consist of three lines, which (after accounting for natural line broadening).

Naturally, our present analysis is based on classical notions. Later on we we argue that
the full quantum-mechanical analysis (at least quantitatively) leads to the same predic-
tions. Summarizing, we can say, that we expect the spectrum of the light emitted by the
two-level atom to consist of three peaks. Such a spectrum is called Mollow’s spectrum.

An example of such a spectrum is given in the figure.
However, one comment is in place. Namely, we know that the spectral lines have

some natural linewidth, which usually is expressed by the Einstein’s A coefficient. If the

generalized Rabi frequency Qg (which

determines the separation of the spectral lines in

the Mollow’s spectrum) is less or comparable with A then the three lines strongly overlap.

As a result we will see just one line (perhaps somewhat broadened, but single). In order

to observe Mollow’s three-peaked spectrum the incident field has to be strong enough. We

shall return to the discussion of these issues later, in more precise, quantum-mechanical

manner.
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Chapter 6

Spontaneous emission.
Simple treatment

6.1 Introduction

In this chapter we shall deal with the physical model much similar to that considered
in the previous chapter. Our atom still is a two-level one. hence its free hamiltonian is
given by (5.24). This atom interacts with a single mode of quantized electromagnetic field
which is described by a hamiltonian

Hp = hwkafz/\aﬁ/\. (6.1)

We will soon generalize our approach to a multimode situation. The interaction hamil-
tonian will be taken in the RWA approximation, so it is (for a single mode) of the same
form as (b.27)

_ 3. R
Hap = —[2)(1] dor - EY) + H.C

-y (o g
= —‘2><1| (d21 .eEA)Z ﬁ €kRCL1‘{’)\+H.C. (62)

We stress that all dynamical (ie., time dependent) information is "hidden” in the an-
nihilation and creation operators. For future purposes it is convenient to introduce an
abbreviated notation

2 5 o [ kg RV s hoe ik
V= ﬁ ] (d21 : el‘(‘/\) W (& — 7 =1 (d21 : elz)\) m (& . (63)
This allows us to write the interaction hamiltonian as

Hap =~ [VI2)(1]ag, +V*1)(2] af, | (6.4)

We will be interested in the following physical situation.

e At the initial moment ¢ = 0 the atom is assumed to be in the exited (upper) state,
while the field is in the n-photon state. That is, the initial state of the system is

1) =12) @ |ng ). (6.5)
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e At some later moment the system is in the final state
(1) =11) @ |ng\ +1). (6.6)

That is, we assume that within time interval ¢ there occurs a transition |i) — | f)
during which, the atom emits a photon (and goes to the ground state).

We note that states |i) and | f) are normalized and orthogonal. The latter fact is due to
orthogonality of atomic states | 1) and |2) and of photon states (with different photon
numbers.

The problem now, is to find the probability of such a transition. To find such a
probability we need to solve Schrodinger equation

L0
i |0(t)) = (Ha+ Hp + Har) | 6(1)). 6.7)
We will seek the solution to this equation in the form of a linear combination

[9(t)) = Ci®)[ 1) + Cr ()] f), (6.8)

8
with states |i) and | f) defined above. Equation (%7) needs an initial condition, which
is

Ci(0)=1,  Cy0)=0, (6.9)

as it follows from our discussion. Now, we should construct the explicit form of the
Schrodinger equation and the look for the solution. We want to find the probability of
finding the atom in the upper state, that is

Proi(t) = |[(f1e(0)] = |Cs(t)|” (6.10)
6.2 Schrodinger eqaution
, s9 . . g8
We introduce ansatz (%'8) into Schrodinger equation (k)—?) and we get
iﬁaﬁ? i) + ih% | f) = (Ha+ Hp + Hap) [Ci] i)+ Cy| [)]. (6.11)

States |4) and | f) are orthogonal so multiplying on the right by |i) and | f) we obtain
a set of two differential equations
ihCy = (i| (Ha+ Hp + Hap) i) Ci+ (i| (Ha+ Hp + Hap) | f) Cy, (6.12a)
ihCy = (f|(Ha+ Hp + Har) |i) Ci + ( f| (Ha + Hp + Har) | [ ) Cy. (6.12b)
The problem is reduced to a two-dimensional case, the space of the solutions |(t)) is

spanned by vectors |i) and | f). Hence we need to construct the corresponding 2 x 2
matrices of three hamiltonians appearing in the above set of equations.

S.Kryszewski QUANTUM OPTICS 95

s10



March 4, 2010 6. Spontaneous emission. Simple treatment 96

6.2.1 Matrix elements
132
From the definition (%.ZZIC) we see that

Hali) =" [2)(2] = )11 ]12)Ing) = 2 (2 g,
:h‘;ﬂ i), (6.13)

since H4 does not act on photon states. So the state |7) is an eigenstate of the atomic
hamiltonian. Similarly for state | f) we have

hLUQl hw21

12)(2] = 1)1 |11 mgy +1) = ==
_FLWQI

--= £, (6.14)

Half) = (1)l +1)

and | f) is also an eigenstate of H4. Due to orthogonality of states | i) and | f) we obtain
four necessary matrix elements of the atomic hamiltonian. They are

thl .
GilHAN) = 2, (ilHAl ) =0,

(f|Hali) =0, (fHa|i) = —

B, (6.15)

The field hamiltonian Hr = hwkafaalz/\ is diagonal in photon numbers and does not
affect atomic states. Therefore, we immediately get

Hpli) = hwka}g,\aﬁl 2)ng ) = hweng | 2)[ng )

= ng i), (6.16)
Hel ) = hugal agy| 1) ng, +1) = g (ngy + 1) 1) g +1)
= (g + 1) hwl f). (6.17)

Considered states | i) and | f ) are, thus, the eigenstates of the field hamiltonian. Similarly
as in the case of atomic hamiltonian we obtain

6.18
(flHp|i) =0, (fHpli) = (g, +1)hwrg (01%)

s5b
Finally, we analyze matrix elements of the interaction hamiltonian (%7[) Proceeding
along the same lines as above, we look at the action of Hap on the basis states |i) and
| f). For vector |i) we get

: h .
Harli) = =5 [ VI2)(1] agy + V[1)(2] af, | 12)]ng, )
%
= =)l Ing,)
A% %
Ty ”E,A+1|1>|n1’<’,,\+1>:_7 nga+111) (6.19)
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Contrary to the previous cases, now matrix elements are off-diagonal. For the second
vector we have

h "
Harl f) = =5 | VI2)(1] ag, + V' 1){2] af, | |1)Ing, +1)
hV
== [2)agp g, +1)
hV hV .

Then, orthogonality of states |i) and | f) yields matrix elements of the interaction hamil-
tonian

1%
(i|Har|1i) =0, (i[Har| f)=——Fy/nixt 1,
2 VA (6.21)

, % 4
(FlHapli) = ==\ frga+ L (f [ Harli) =0

Having found matrix elements of all contributions to the total hamiltonian we can con-
struct equations of motion (6.12).

6.2.2 Equations of motion

516 s19 523¢
Using matrix elements (% [5), (6.I8) and (%_ZT) we introduce necessary matrix elements
into equations (6.12). Then we arrive at the set of equations

S hway A A —
o hV* hway
ihCy = ——= /g, +1Ci + [— 5+ (s + 1)hwk] Cy. (6.22b)

Analyzing this set of equations we see that it is convenient to introduce the following

notation
w; = %w21 -+ nl_{,)\wk’ Wy = —%u)gl + (nﬁ/\ + 1)Wk; (623)

moreover we write

21 1 o hwy, ik-R
v=V,/ng,+1= - /gy +1 (dar - €,) 2oy kR (6.24)
524

With this notation equations (%22) after multiplication by (—¢) can be written as

Oi = —iwiC’i + %Cf, (625&)
. w* )
Cf = 9 CZ — waCf. (625b)

This is a set of differential equations with time independent coefficients.
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6.2.3 Solution to the equations of motion

528
The set (%.25) is quite similar to the one considered in the previous chapter (in connection
with Rabi equations), see Eqs(h.47). In order to have a full analogy let us perform the
following transformation

Ci(t) = By(t)e ™", C(t) = By(t)e ™t (6.26)

These transformation leads to the initial conditions By (0) = C%(0) for k = i, f. Substi-

2
tuting these into Eqs.(s. ) we obtain equations of motion for amplitudes B;(t) in the
form
E:%&JW& (6.27a)
By = “2’ Betsit, (6.27D)

i62
where wy; = wy — w;. This set of equations is formally identical to the set (%7f2) We can
use the solutions of the latter one iin the present case. We only need to make the proper
identifications. In the case of Eqs.(h.42) the initial conditions were 5(0) = 0, ¢1(0) = 1.

Comparing initial conditions, we make the identifications
9 < By, 1 < By, (6.28)
. . 162 530 . .
Moreover, comparing equations (5.42) and (%.27) we should identify
wyp — 0, Q— 0, W W =W — W = Wy — W (6.29)
These substitutions result in some further ones, namely

A=w—wy — W — W, Qp = VA2 + Q2 — V02 + (W — w12 (6.30)

We are interested in the arrilgéi;cude Cy(t), ot equivalently in By(t). Then using the given

identifications in solution (5.62a) for @9 — By we can write

X 4 t

t(wp—w21)t o; 2 2

e sin V% + (W — w —1. 6.31
VIV + (w0 — wa)? VI =) 2 (030

The second coefficient B;(t) — of the atom remaining in the upper state with the field

By(t) =

having N A photons is out of our interest.

6.2.4 Transition probability
s11 2
As indicated in (ho) we are interested in the transition probability P{ﬁi(t) = |Cy(1)]

29
| B (t) 2 as it follows from (%76) Amplitude By(t) is found in Eq.(%.B [), so we have
Pri(t) = [vf* sin? | v/[v]2 + (wp — wa1)? ! (6.32)
fei - ‘U’Q + (wk — w21)2 k 2 2 ' '

526
Coeflicient v is defined by relation (%724), it is proportional to the square root of the light
intensity (because v oc /77, ). We are interested in small field intensities, when ng , — 0,
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so_we can take the lowest order approximation in |v?|.

(%%22) we get

Pri(t) = |vl*

Taking such an approximation in

sin2 [%(wk — w21t)}

(wk - wzl)2

(6.33)

It is worth noting that the same result can be obtained within the first order time-

depenQ%ent perturbation calculations. Returning to the full notation, as it follows from
S
Eq.(%f?él), we get

_ \&21 . é'lg)\|2 ( huwy, > (n~ N 1) 4 sin® [%(wk —wgl)t}
= KA :

Pri(t
! ( ) h? 2€0V (wk — w21)2

(6.34)

Let us stress the very important fact. From the obtained expression we see that the
atomic transition |2) — |1) (that is, downwards with the photon emission) is possible
when the number of photons in the considered mode (E, A) is zero, ie., nig, = 0. This
corresponds to the spontaneous emission. It is not important what was the reason of
finding the atom in the excited (upper) state. The interaction of the atom with the field
in the vacuum state (nyg , = 0) results in the spontaneous emission. Thus, the probability
of spontaneous emission follows from the last equation with (nﬁ, , =0), and it is

o 4 |&21 . éEA|2 ( hwk ) SiIl2 [%(wk — WQl)t]

Py(t) = AT o —om)? (6.35)

This probability cannot be obtained within the semiclassical approximation. The reason
is simple. In the semiclassical approach the fields are given functions not operators. The
essential term (nﬁ/\ + 1) arises due to annihilation and creation operators so, it is of
quantum-mechanical origin.

6.3 Probability of spontaneous emission

6.3.1 Einstein’s A-coefficient

Probability given by Eq(%?)?%) corresponds to spontaneous emission into one well-defined
mode. But we should remember that the vacuum field (and that is what we intend to
consider) consists of infinity of modes. Therefore, we shall sum the obtained expression
over all modes. Thus, we write

Py(t)

L2l
S wnfdon 8 F Lo — )] (6.36)

B heoV (Wi, — way)?

kA
Let us assume that the cavity is large enough so that we can transform the sum over the

modes into the corresponding integration(as it was discussed in previous chapters). This
transformation is summarized as

() — #Z/jdwkwg/dﬂﬁ(...), (6.37)

kX
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where the angular integral runs over all possible spatial orientations of the wave vector
k. Combining these relations, we get

1 o . _ o sin? [l(wk — w21)t]
Py(t) = WZ/O duwy wi/dﬁﬁ |y - &) ; :
A

6.38

(W — wa1)? ( )
The term containing matrix elements of the atomic dipole moment does not depend on
frequency wy, so the integration splits into two independent parts. Hence, it is convenient
to introduce an integral

& sin2 [l(wk — w21)t]
J(wor) = dwy, w3 2

sbla
Then, expression (%_38) can be written as

(6.39)

 K/IK Palt) = s Jloa) Y / A0 [dar - &, |,

A
. Yam (6.40)
. ,»'k' and there are two terms which can be computed sep-

0/{" 3 ‘\‘ arately.

. —> First we deal with the last one — summation over
4 a/'l ©2 polarizations and angular integration. Atomic dipole
/ T moment has a completely arbitrary orientation with
e respect to wave vector k and two Qéarization vectors

€1, €5. Thisis illustrated in figure6.T. We can assume

Fig. 6.1: Relative orientations of that atomic dipole dy is aligned with the z axis, so

atomic dipole moment, wave vec-
tor and two polarization vectors.

the wave vectors makes an angle 6 with vector &21.
f Bxdarization vetors are oriented at angles a and (3,

respectively (see figure). According to this discussion,

the sum over polarization of the scalar products is
written as

- L2 - 2
E 91 - 6, | = 2a + cos , :
‘d 1 ek/\‘ ‘dﬂ‘ (Cos 2 ﬁ) (6.41)
A

since polarization vector are of unit length. Three vectors E, €1, €, are mutually orthogo-
nal, thus the theorem on directional cosines holds, and we have

cos® a + cos® B+ cos? ) = 1. (6.42)
Previous relation now becomes
Z ’agl . é'lz)\lz = ’321‘2 (]_ - COS2 9) s (643)
A
51
and now the last term in (E?&) can easily be calculated
Z/dQE }&21 .é’f{»)f = }&21|2/dQE (1 — cos? 9)
A
3 2 T . 2 87T - 2
= 27T‘d21| / df sinf (1 — CoS 6) = ?{dgl‘ ) (6.44)
0
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So summation over polarizations and integration over all possible orientations is per-
S
formed, The result is inserted into probability (6.40) giving

J(wa1). (6.45)

It remains to compute the integral J. In order to do so, we take a new integration variable
T = wy, — wo; and from (%_39) we obtain

T 5 sin? [%xt]

J((UQl) = / dx (l’ + WQl) T (646)

—w21

Strictly speaking this integral is divergent, what is typical for quantum-electrodynamical
problems. We will give some intuitive arguments which will allow us to find an approxi-
mate value of this integral. Due to physical arguments (energy conservation) we expect
that emission of a photon with high energy (large frequency) is in fact highly improbable,
if not just impossible. Hence, me may expect that some cutoff would be in place. As
a result, high frequencies do not contribute to the integral and the main contribution
comes from vicinity of  ~ 0 where the second (fractional) term the integrand is strongly
peaked. Therefore we write approximately

% 21
sxt
J(wa1) = wi / dx smx% (6.47)

where (due to the given arguments) moved lower bound of integration to minus infinity
he remaining integral can be found in the mathematical tables

5 t
/ g S / ap et % (6.48)
—00 0

Hence the sought integral J(ws;) becomes

J(way) = gw;t. (6.49)
This final result is then introduced int (6.45) and the probability of spontaneous emission

is given as

|dai]

3 4 6.50

P Sp(t) =
and the probability per unit time

= 2
d Py (t) wgl ‘dm‘

A= P = 51

dt 3mheoc® (6.51)

which is called Einstein’s A-coefficient. We note that the probability (per unit time) of
spontaneous emission is isotropic. Any direction of emission is as probable as any other
one. This is an important feature of spontaneous emission.
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6.3.2 Some additional discussion

Let us return to relation (6.36) (with summation over modes)

2 - _ 9 sin? [%(wk — w21)ﬂ
Psp(t) = heoV % Wk ‘d21 ’ eEA‘ (wk _ w21)2 : (6-52)

Our discussion will consist in performing the summation in a different manner.

Atomic dipole moment has, as previously, arbitrary direction (obviously in the labo-
ratory frame of reference). Let us take one of the polarization vectors, say €,. Then we
can write

‘321 . él;/\‘z = ‘321}2 cos? 0, (6.53)

where 0 is an angle between the considered vectors. Since vector 321 has arbitrary direction
the angle 0 is also arbitrary. Therefore we should average over the orientations of the
atomic dipole moment

3 2

T L2 1 [ B = 2 |da1 |
‘dm'eﬁ/\‘av:ﬂfo dgp/o do |d21’ cos® ) = T (6.54)

s61
The averaged value of the atomic dipole moment is now inserted into probability (%52)

N 2 |321 |2 SiIl2 [%(wk — w21)t]
Psp(t) - FL€0V Z 3 (wk — w21)2

75}

(6.55)

For sake of clarity we shall keep numerical factors. Inspecting the terms summed in the
above relation, we see that they do no depend on polarizations. Hence, this sum produces
a factor equal two. So we have

2 2|d 2 sin? [ (wp — woy )t
Palt) = hsoV< ‘321‘ )Z oy S Lol )], (6.56)

As previously, we transform the sum over wave vectors to the integral, so that

2 2 ‘321‘2 V > Sin2 [l(wk — w21)t}
P, (t) = d 2 [ 4O 2
a0 heoV/ ( 3 (2mc)? /o . u)k/ ke (wp — wa1)?

0

 4hegm3c3 3 (Wg — wa1)?

because the integrand do%s1 k1)10‘5 depend on the orientations of wave vectors. Recognizing
S
integral J(wo; as in Eq.(6.39), we have

Psp(t) - 1 (2 ‘d21‘ ) AT J(W21)~ (658)

3

53
This expression is exactly the same as (ETS) onlg/ obtained in a different way. Previousla/,
- L2 552 sb2c¢ . . 552
we computed Y, [ dQg|da - €, | (see Eqs.(%ﬂ)—(%.%)) which lead us to relation (%.44)
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and gave a factor (87/3 &21 . In the present case we first averaged over spatial ori-
g g

entations of the atomic dipole moment (see (%%)) which yielded6L321‘2 /3. Polarization
summation reduced to multiplication by 2, which appeared in (S. 6) (the middle term,
in brackets). Since remaining expression is polarization independent, the angular integral
in (6.57) became trivial and produced factor 4. Furthgr discussion is identical as in
previous subsection and leads to Einstein’s A-coefficient (6.51).

6.3.3 Final remarks

51
Now we return to expression (%7[6), that is to
1 - L2
Paplt) = A3 hegcd JMQ;/ dQy |dor - &, |7, (6.59)

Probability of spontaneous emission og a photon with specified polarization € in the given
direction d€); can be obtained from (6.59) without any summation. Then we get

Py(t,8,dY) = 2 =L J(wyy) dS. (6.60)

54
Taking the integral J(wsp;) from Eq.(ksﬁfg) we further obtain

313 12
P —

(1,8 dS0) = S0 (6.61)

hence, per unit time we get

_ w |dy - &[°
psp(e, dQE) = W dQE (662)
This is a probability (per unit time) of spontaneous emission of a photon with given
polarization in the direction of a solid angle d€2;. We again see that this expression is
fully isotropic (direction independent).

On the other hand, when we integrate expression over all emission angles we would
obtain probability (per unit time) of the emission in arbitrary direction but with specified
polarization. Due to isotropy such an integral is trivial and produces a factor 47. We get
from

313 =2
_ wh|da - €|

Psp(€) = T orhed (6.63)

Furthermore, the obtained expressiorsl gan be averaged over the orientations of the atomic
dipole. This, according to relation (6.54) gives a factor 1/3, so that

3 1d.. . &l?

s = 6.64
Psn(€) 6mhec? ( )
Finally, summation over polarizations will produce factor 2 and we get

w3 |dyy - &7

3rheoc?
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and we again arrive at Eistein’s A-coefficient.
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Chapter 7

Optical Bloch equations

7.1 Introduction. General discussion

We return to the more detailed analysis of the interaction of a two level atom with elec-

£
tromagnetic field. The problem was already discussed in chapter “ence we just briefly
recall some basic facts.
i32
e The atomic Hamiltonian H 4 is taken to be (see (%_27%))
1
Hp = Shwy [12)(2] = [1)(1]]. (7.1)

2

e We shall consider a semiclassical approach. We will assume that an atom interacts
with a light beam consisting of a single mode with frequenc%%uL and wave vector k.
Hence, we can take the interaction hamiltonian given in (b:32), where summation
and corresponding indices are not necessary.So we have

I3 ,
Hap = —2{|2)(1] Qe 4 |1)(2] 7 ], (7.2
where we have typical notation for Rabi frequency €2 and phase factor

Q:?Ldgl E(Y ®=-k-R, (7.3)

with dy being the matrix element of the atomic dipole; Eg-f) — the amplitude of the
classical monochromatic incident mode; R — the position of (the center of mass of)
the atom. We also note that RWA is silently assumed.

c:af
e The total hamiltonian (according to the discussion in chapter %) of an atom inter-
acting with (classical) radiation mode is of the form

HAL:%M21[|2><2|_’1><1|]
- Mlapaj e 4 1yga) o e, (7.4)

The outlined model does not account for spontaneous emission which consists in the
emission of a photon into vacuum modes which are not present here. Therefore we should
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account, for the coupling with vacuum modes. This implies, that we should consider a
physical system consisting of three subsystems

{atom (A) } + {laser field (L) } + {vacuum modes (V') }. (7.5)

We are, in fact, interested only in the atomic subsystem in the description of which we
need to account for spontaneous emission. The laser light is treated classically so there
are no problems with it. On the other hand, vacuum modes are necessary for spontaneous
emission, but otherwise not interesting. We are describing a compound system, but we
are interested only in one part of it. Then, by necessity, we must consider the density
matrix approach. The von Neumann equation thus reads

L0
ZHEPA—FL-{-V = [Huasr4v, pasrsv |- (7.6)

The laser light is treated classically so we can write ”AL” instead of separate index ”L.”
in the above equation of motion. Hence we have

L0
ZhapALJrV = [Hartv, pacyv ] (7.7)

This equation should be reduced to the equation for the reduced density operator of
an atom only. The mathematically sound reduction technique is quite complicated and
difficult. It leads to the so called Master Equation (ME). We shall not discuss the details of
the ME methods. We will only state the main results. They follow from the requirements
imposed upon atomic reduced density operator. Such an operator must be

e hermitian: p = pf;
e normalized: Tr{p} = 1;

e semi-positive definite, ie., its eigenvalues must be nonnegative.

The mathematically strict reduction technique then leads to the following equation of
motion for atomic density operator pa; = p:

d 1
i P(ﬂ—E [Har, p]

- g 12)(2]p(t) + p(t)12)(2] — 2!1><2\p(t)\2><1|}, (7.8)

where H 4y, is the hamiltonian defined in (%4). A denotes the usual Einstein’s coefficient
— probability (per unit time) of spontaneous emission. The second line of the above equa-
tion stems from reduction of the degrees of freedom to the atom only (which interacts
with classical incident field). Sometimes we say that the second line of (}7_8) accounts for
the radiative damping due to the coupling with vacuum mode, that is, it describes spon-
taneous emission and ensures that the conditions imposed upon atomic density operator

are fulfilled.
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7.2 Derivation of optical Bloch equations

7.2.1 Evolution of the atom without damping

We continue our analysis of the two-level atom in the framework plresentelgl7 in the previous
section. The evolution without damping is given by the first term in (7.8) in a manner
similar to the von Neuman equation

o ol =, (0], (7.9)

From now on, we we will omit the time argument and we will remember that we analyze
the free evolution. Radiative damping will be considered later. Equation (b@) is an
operator equation. We transform it into a set of equations for the matrix elements of the
atomic density operator. We multiply from the left by (a | and from the right by | b) with
a,b=1,2.

0 1

§<a|p|b>:%(CLHHALP—PHALHM
1 1
= (@l Hasp b) = -(al plar [D), (7.0)
Between operators in the second line we insert a unit operator 1 = [1)(1]| + [1)(2].

After minor transformations, we obtain an equation for matrix elements of the atomic
density operator

0 1

a7 P = 57 ((HAL)al p1v+ (Har)a2 pay — (Har)w par — (Har)2 pa2>. (7.11)
The hamiltonian H,y, is given in (%) It is straightforward to find its matrix elements.
They are

(Hah = 222, (Hasho = 155 cttosts®),

(Harp)z1 = —? e iontt®) (Har)2e = 77;)21' (7.12)

Having matrix elements of the Hamiltonian it is an easy matter to construct the equa-
tions of motion for the matrix elements of the atomic density operator which follow from
Eq.(7T1)). We obtain the set of equations

P22 = —MT*ei(th+¢)P21 + ge_i(thJr@)Plz; (7.13b)
P21 = gei(%tﬂj) (P11 — pa2) — i way pa, (7.13c)
P12 = —gei(%“@) (p11 — p2a) + i way por. (7.13d)

These equations describe the free evolution of the two-level atom in the field of classical
monochromatic field. It remains to account for spontaneous emission.
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7.2.2 Radiative and collisional damping

b7
Radiative damping (spontaneous emission) is accounted for by the last term in Eq(h)
For matrix elements we easily obtain

0

A
g Pab —— <5a2 P26 + Pa2 026 — 2041 P22 511))- (7.14)

)

The contributions due to this term are as follows

] . 0 A
ot P11 o = A P22, ot P12 o Ty P12,

0 A 0

il - _ il = —A 0o 7.15
ot P21 . 5 P21, ot P22 . P22 ( )

21
These equations must be now combined with free evolution ones (? [3). This results in
the following set of equations

P11 = Ang + gei(“}Lt+¢)p21 - ge_i(wLH@)Pu (7.16a)
pa2 = —Apy — z§22* WLt pyy 4+ gei(wLH@Plz (7.16b)
Po1 = ge_i(%“@) (p11 — p22) — (é +1 w21) P21 (7.16¢)
P12 = —mT*ei(wLH@) (P11 — pa2) — (é —1 w21) P12 (7.16d)

This set of equations constitutes optical Bloch equations (OBE) for a two-level atom inter-
acting with the single-mode (monochromatic) electromagnetic field which is assumed to be
classical. Since OBE play an extremely important role in quantum optics we summarize
the notation.

® W, denotes the atomic frequency;

e wy is the frequency of the incoming (classical) electromagnetic field;
e (2 is the Rabi frequency, defined in (P%%)

e The phase factor & = —k- f_{, where R is the position of the atom.

e A is Einstein’s coefficient for spontaneous emission.

b26a
Let us note that OBE preserve the trace of the atomic density matrix. From Egs.(7.16a)

b26b
and (I7.I6b) we see that
pi1+p2=0 = =01+ 02 = const., (7.17)

so if normalization is imposed at the initial moment, it will be conserved for any later
moment of time. The requirement (which follows from the hermiticity of the density

operator) that pjp = p3; is also clearly satisfied by the OBE.
It is also evident that the optical Bloch equations are not independent. The first two

equations are actually the same, while two last equation are complex conjugates of each
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b27
other. Therefore, the trace conservation requirement (W)) plays an essential role in any
attempts to find the solution to Eqs.(I7.16).

Before proceeding further we note the presence of the term e
(%) Certainly the presence of a time dependent factor makes the solution to the set
of equations more difficult. Therefore, it is desirable to eliminate the time dependent
factor. We will do this in the further sections, transforming the OBE to such a form, that
right-hand sides of the equations will not include any time dependencies.

In many practical cases there are some other mechanisms which lead to the damping

+(@@+iwt) i equations

of the atomic dipole moment. For example, our atom may collide with some other atoms.
General analysis of atomic collisions id pretty difficult. During the collision the oscillations
of atomic dipole are disturbed and caused to decay. The matrix elements of atomic
dipole are proportional to the coherences. Hence the collisional damping of the dipole
moment can be accounted for in a phenomenological manner. We will assume that atomic
coherences decay not only due to spontaneous emission but also due to collisions. This
effect can be included in our gzi(éture by introducing an additional damping rate of the
coherences. In the equations (7.16) we will replace the decay rate A/2 by

L= 2 4+ (7.18)
where ~,;, describes the dephasing of the atomic dipole moment. The physical reasons for
the dephasing will be discussed elsewhere. At present, we will simply include it into the
optical Bloch equations. We arrive at the following set of equations

. i i(w if) —i(w

p11 = Apa + € @Ltt®) )y — =€ (@it+®) ;. (7.19a)
. ZQ* i(w ZQ —i(w

pa2 = —Apa — 9 T oy o+ 2 WD) o, (7.19b)
. i§2 —i(wpt+®) .

P21 = 76 (Pn - P22) - (PC +1 w21) P21, (7~19C)
. ZQ* ’i(th-i-CI)) .

Pz = ——5=¢ (p11 = pa2) — (L' — i war) pro, (7.19d)

which constitute the final form of the optical Bloch equations.

7.2.3 Simple elimination of time dependence

b29
The set of equations (I7.19) is linear, first order and with time-dependent coefficients.
This is very inconvenient for practical solutions. It is desirable to transform out the

unnecessary time dependence. To achieve this end we introduce new auxiliary variables
— _ i(wrt+P
P11 = 011, 012—0126( t ),
_ —i(wpt+P _
pa1 = g1 € WEHP), P22 = 022. (7.20)

30
Transformation (?.2()) allows us to write

p21 = —1 (wL + CD) o e W) 1 ) eTiwLt ) (7.21)
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and similarly (by complex conjugation) for pis. Let us stress that d=-K-R=—-k- v,
where V _is the velocity of the atom. Transformation (7.20) in the two first equations of
the set, (%JTG) leads to cancellation of the time-dependent exponential factors. Then, we
use (%) in the equations for coherences, and we get from (FE%%C)

B i(wL 4 @)021 e—ilwrt+®) | Go o iwrt+®) _

1 .
= 76_1(th+¢) (,011 — pgg) - (FC +1 u)gl) P21- (722)

Time-dependent factors cancel out. Introducing the generalized detuning defined as
A:wL—wgl—d):wL—le—lz-V, (7.23)
we rewrite Eq.(%%) in the form
182

091 = > (p11 — p22) — (Lo — i A) poy. (7.24)

b29
Combining the results of our discussion, we transform the set (7.19) into one with time-
independent coefficients. This is

o= Aoy + 22 091 — %0127 (7.25a)
(* ()

622 = —AO'QQ — Z2 0921 + %012, (725b)

091 = 7 (0'11 — 0'22) — (Fc — 1 A) 0921, (725(3)

019 = — 2 (0‘11 — 0'22) — (FC + 7 A) J12. (725(1)

This is an alternative form of OBE. However it must be remembered that if we intend
to give phs}ésical predictions, then we must use matrix elements of p. So the solutions to
tlggoset (7:25) must always be transformed back into elements of p according to relations

(720).

WL, k ‘—;
VVWWA~
LAB
Fig. 7.1: Tllustration to the discussion of the Doppler shift. f:do

The generalized detuning is defined as A = w;, — wyy — k- V. The term k - ¥ is just a
Doppler shift. To see this note that the laser light is resonant when A = 0. This means
(according to Eq.(7.23)) that

wL—E~{f’:w21. (726)
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When the atom moves toward the light source, the atom (which plays the role of the
”observer” ) sees the light of the ”"shorter” wavelength. Since Av = ¢, the smaller A\ means
larger frequency wy, = 2mv. Therefore, when the atom moves towards the light source, it
must ”see” the light of resonant frequency w) = wy — K-V g%riec'ioter than wy, because the
scalar product k - V is negative as is clearly seg§6from figure I7.1.

It is convenient to write set of equations (b‘%) in the matrix form

011 0 A % QF —% QF 011
d o 0 —-A —iQr O o
S = | | 22 2. (7.27)
dt 021 % Q* —% QO —Fc + 1A 0 0921

012 —% QO % Q* —Fc — 1A 0 012

The matrix has vanishing determinant (first two lines are linearly dependent). This
indicates that one of the eigenvalues of the above given matrix is equal to zero. Moreover,
it can be shown that the remaining three eigenvalues have negative real parts. As a
consequence we can say that the solution to set (I7.27) consists of two parts. One part
(due to negative real parts of three eigenvalues) leads to quickly decaying transients. They
decays in time exponentially, roughly speaking during the time comparable to several
atomic lifetimes 74 = 1/A. The other part (corresponding to the zero eigenvalue) survives
when time ¢ is long enough. This part of the solutionis called a stationary one. This
reasoning has also physical counterpart. When the laser is switch on some transient and
fast phenomena occur. Afterwards we expect that some kind of dynamical equilibrium is
established. The system stabilizes and no more changes occur. This clearly corresponds
to the stationary behavior.

7.3 Stationary optical Bloch equations

Followibr% the argument given in the previous section we will find stationary solutions to

OBE (7.95) or (727).

7.3.1 Stationary solutions

Staécionary optical Bloch equations follow, when we take the left-hand sides of equations

b3
b46 (+7_2'5)) to be equal zero. So we have

0= Ads + % 0 91 — %Q 012, (7.28a)
0=—AG9 — %Q 091 + %Q 712, (7.28Db)
0= %Q (a11 — G92) — (L — i A) Foy, (7.28c¢)
0= —%Q* (611 — G99) — (Tu + i A) G1o. (7.284)

The bar indicates that we deal with stationary solutions, in the sense

5ab = tlirglo O'ab(t). (729)
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The obtained set is homogeneous, moreover, it is straightforward to see that the first
two equations differ only by a sign, so they are linearly dependent. It may seem that
there are no nontrivial solution. This not the case since we must account for the trace
conservation. We discard the first equation of the above set, and instead, we adopt the
trace conservation requirement as the first equation. As a result we arrive at the set of

equations

1 =011+ 02, (7.30a)

0= —A5‘22 — %Q* 521+%Q§'12, (730b)

19 _ Lo
0= > (011 — 022) — ([e — iA) 721, (7.30¢)
i _ o

0=——- (0u —0n) — (T +il)d12. (7.30d)

From two last equations we express coherences as functions of populations
182

021 = 2T, —iA) (011 — 022), (7.31)

while the second coherence 715 follows bg4%0mplex conjugation. Inserting these expressions

into the first two equations of the set (I7.30) we get two, closed equations for populations
only

011 =1 — 092, (7.32a)
_ QP L.
Aoy = = (011 — O22) m,

Solution to these equat}aons poses no difficulties. The obtained populations are then
substituted into Eq.(7-3T) which yield the coherences. Straightforward algebra leads to
the following stationary solutions to optical Bloch equations

A2+ A?) 4 5|QPT.
TN T AT £ A2+ QT
3T
022 = 2 )
A(T2 + A?) + Q|2

%QA(iFC —A)
A2 4+ A?) + QT
The trace conservation requirement is obviously satisfied. Moreover, we note the inequal-
ity

(7.32b)

(7.33a)

(7.33D)

— %

O21 =01y =

(7.33¢)

011 > 022 (7.34)

7.3.2 Stationary energy balance

Our present discussion of atom-light interaction is semiclassical. The atom is coupled to
the electric field

ER.,t) = EPR,t)+E(R, 1)
_ EéJr) ok fith_i_E[()—) efil_(‘-ﬁJrith. (7_35)
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This field acts upon the atom and within the time interval performs the elementary work
AW = ¢qE(R,t) - d, (7.36)

where dr is the displacement of the electron. Thus, the power absorbed by the atom is

given as
d L ood L e d
= W=ER1)- - ).=E®R) - (do). (7.37)

with &(t) being the operator of the atomic dipole moment. We average the obtained
relation both quantum-mechanically and over time (we denote the latter averaging by the

bar)

d ,

(% W) = BR0)- 2

- (d). (7.38)

Quantum-mechanical averaging refers only to the atomic dipole, because the field is
treated classically.

(d(t)) =Tr{d p(t)} (7.39)
T { [l 1)(2 ]+ dal2)(1[] p(0)) (7.40)
= a12,021(75) + &21P12(f)~ (7.41)

[b30
In this section we are interested only in the stationary regime, hence we can use Eq.(I7.20)
to express matrix elements of p by the corresponding elements of o. Thus, we get

P21 = 0921 e_i(wLH@), P12 = 012 elwette), (7.42)
Hence the expectation value for the atomic dipole moment becomes

(d(t)) = dyo 791 e 1) L dyy 7y 1), (7.43)

The needed time derivative is

d
o ¢

Qaul

(t) > =1 (WL + (I)) 621 512 ei(thJr(I)) —1 ((UL + (I)) &12 5’21 671'(th+(1)). (744)

. o : .
According to relation (7.26) we have wy, + ® = w;, — k- Vv = wy;. Hence

4
dt

wrt+®) _ iWQl alg 0921 e_i(“’LtH)). (745)

—
Qul
—~

t) > = iWQl agl 5'12 ei(

b59
Now, we substitute the obtained time derivative into (7.38) to get the average absorbed
power

(Lwy = |::E_j(()+) eiﬁ.ﬁfim+ﬁ(()f) e—ifé-f{Hth}

: [iWQlagl 012 €i(th+(I>) — iw21alg 0921 Gfi(thJrq))] N (746)
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We are averaging over time, therefore we can neglect the quickly oscillating terms. We
arrive at the expression
d (B0 3 (BT -
<% W> = W21 EO . d21 012 — 1Woq EO . d12 091- (747)
. P%% . : . .
According to Eq.(I7.3) we recognize the Rabi frequency §2/2 and its complex conjugate.
We obtain

d . hQ . hQ*
<£ W> = ZW217 5‘12—2(,(}21

49
We now take a1 from Eq.( ?.3!%0)) and we obtain

091 = —hWQllm{Qa'lg}. (748)

L|QJ2AT,
A(T2+ A2) + T QP2

AR
A(T2 + A2) + T JQp

LWy =

= hwy A
It 21

(7.49)
Finally, we see that the fraction reproduces the stationary-state upper state population
092 as given in (7:33b). Therefore we have
d _
<E W) = hwaAGas. (7.50)
We have calculated the average power absorbed by the atom from the incident field. Let
us denote

Nabs = A5-22- (751)
and call this quantity an average absorption rate. Then we can write
d ~
<_ W> = hw?l Naps- (752)
dt
The average absorption rate can be interpreted as the average number od absorbed pho-

tons (per 1171}it time), each photon carrying the resonant energy fuws;. In this sense ex-

pression (I7.52) is understandable.
On the other hand, the term A &9y is the rate of spontaneous emission, because it

b36b
appears in the right-hand side of the equation of motion (7.25b) as the rate of the decay
of the upper state population. So the quantity N, may be interpreted as the average
number (per unit time) of spontaneous emissions. At first it may seem difficult to explain

this apparent discrepancy.
The sequence of photon absorption and stimulated emission do not result in the

weakening of the light beam. It is impossible to say whether a photon appeared in the
beam due to stimulated emission or it just was not absorbed. When a photon is absorbed
from the beam by an atom which afterwards emits spontaneously (in arbitrary direction)
then the former one is truly lost from the beam. This explains the equivalence between the
average rate of absorption (from the incident beam) and the average rate of spontaneous
emission. This seems to be an intuitively plausible conclusion.
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7.4 Population inversion

7.4.1 Population inversion. Introduction

b36
Let us return to OBE, as given in Egs.(7.25)

Q0 )
on = Aoy + Z2 o211 — %0127 (7.53a)
195 )
099 = —Aody — 12 o921 + %012, (7.53b)
on = o (011 —022) — (Fe — i A) o2y, (7.53¢)
012 — — B (0’11 — 0'22) — (Fc +1 A) 012. (753d)

We construct a new physical quantity, the so-balled population inversion
w(t) = 0929 — 011, (754)

note that it is independent of the transformation (hﬂ) Inversion is greatest when all
population is in the upper state, that is when 099 = 1. The minimum value of inversion
corresponds to 017 = 1 — all atoms in in the ground state. Hence we see that population
inversion is a real number within an interval

w(t)e [ -1, 1]. (7.55)
. %9513 . . : L .
First two out of Eqs.([7.53) yield an equation of motion for population inversion.

w(t) = —2A09 — 1091 + 1Q0719. (756)
Due to normalization condition o9y = 1 — 077 we can write

2099 = 092+ 02 = 092 + 1 — 011 = L +w(t). (7.57)
Hence, equation of motion becomes

w(t) =A[-1—w(t)] — iQoxn + iQoia. (7.58)

Let us modify this equation. We shall replace the number (—1) in the brackets by a
unspecified number A, so our equation of motion reads

w(t) = AN —w@®)] — iQn + iQoia. (7.59)

Our present aim is to investigate the physical sense of the parameter A. In order to do
so, we consider a simplified physical situation, assuming that there is no incident light,
which entails that {2 = 0. So we investigated the equation

W(t) = AN — Aw(t). (7.60)
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This is an inhomogeneous differential equation. The heomogeneous one is w(t) = —Aw(t),
with an obvious solution wy(t) = Cexp(—At). We postulate, that the solution to

Eq.(7.60) is
w(t) = C(t) exp(—At). (7.61)

This leads to the equation for the unknown function C(t)

C(t) = A\exp(At). (7.62)
Integration is trivial, and gives
C(t) = Nexp(At) + Cy, (7.63)

bb7d bb7
where the constant Cj has to be found. Inserting (I7.63) into (?.Bal) yields

w(t) = [Nexp(At) + Colexp(—At) = X + Cpexp(—At). (7.64)
Assuming that in the initial moment w(0) = wy we get Cyp = wo — A. This allows us to
write

w(t) = wo exp(—At) + )\[1 — exp(—At)]. (7.65)

This relation enables us to determine the physical sense of the parameter A\. We see that

w(t)

Al (7.66)

t— oo

So A equals the value to which population inversion tends, after the decay of all possible
initial excitations. In principle, we expect the atom to arrive at the ground state, which
in turn, correspond to A = —1. In fact we have replaced —1 by A, so this conclusion
should not be surprising.

Let us, however, generalize our approach. Let us call the parameter A the equilibrium
population inversion

A=weg€[-1,1]. (7.67)
lbb4
Such a generalization results in the modification of equation (}7_59) which now is of the
form
w(t) = A[weq — U)(t)] - iQ*Ugl + ’iQO’lg. (768)

This equation was derived from optical Bloch equations, so the introduced modification
must lead to the corresponding modification of OBE. The question is whether such modi-
fication is really necessary. To answer the question we must investigate w,, in much more
detail.
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7.4.2 Analysis of equilibrium population inversion

In this subsection we use the concepts of statistical physics. Let us assume that our
atomic system st in thermodynamical equilibrium (and the atoms are not irradiated).
The canonical density operator follows from Gibbs theory and it is

1 H
Ocq = 7 XD (— kB;) : (7.69)

bl
Hy is the (free) atomic hamiltonian (h), kp is the Boltzmann constant, and 7' the
temperature. Finally Z denotes the statistical sum

Z=Tr {exp (— lf:%) } . (7.70)

Since the atomic hamiltonian is known, it is not difficult to find Z.

=l () + ()

States | 1) and |2) are the eigenstates of H4 so we easily get

hw huw
7 = exp (% 2}) + exp (— o 2:1[,) . (7.72)
B B

Let us introduce a temporary symbol

—

7.71)

_ hwyy

= ) 7.73
T Sk, T (7.73)
. . ey . P%_ngw
Combining the result, we write the equilibrium density operator ([7.69) as
1 Hy
g = ———— — ) 7.74
Oeq er ek exp( kBT) (7.74)
Then we can compute the equilibrium populations. For the ground state we get
1 HA e
10eg|1)=(1|———— — 1)=—"—, 7.75
(a1 = (1| o0 (<15 )| 1) = s (7.75)
while for the excited state we have
1 Hy e "
2| 0eg]2) =(2|——— — 2)=———. 7.76
(2leal2) = (2|t o0 (<1 )[2) = s (7.76)

Thus, in the thermodynamical equilibrium the population inversion is equal to

K —K

e” —e
e 4+ e F

Weqg = (2] 0eq|2) = (1] 0eq|1) = — = — tanh(k) = — tanh <2k‘BT>' (7.77)

Obviously, the argument of the hyperbolic tangent is positive. Let us consider the case
of high and low temperatures.
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e For large temperatures, such that kzT > hws, the argument of the hyperbolic
tangent is very small and the tangent itself is very close to zero. Therefore, we can
say that

Weq —— 0_, (7.78)

T — oo

that is we, tends to zero from the negative side. This means, that in high temper-
atures Weq = (0eq)22 — (0eq)11 1s very small but negative. Almost half of the atoms
are in the excited (upper) state, while slightly more than half are still in the ground
state.

e In the case of low temperatures, that is when hwsy > kT, the argument of the
hyperbolic tangent is quite large and the value of tangent is close to unity. Therefore,
in this case we have

— 1. (7.79)

Weq T-0

Equilibrium population inversion tends from above to —1. It means that almost all
atoms are in the ground state and only a very small fraction of them may be found
in the excited state.

The presented reasoning is certainly sound, but what does it mean that temperature is
high or low ? To answer this question we need some numerical estimates.

7.4.3 Numerical estimates and conclusions

We are interested in the estimates, not in precise calculations for any specific physical
situations. For this purpose, we will consider an atomic transition corresponding to the
light of wavelength

A = 500 nm. (7.80)

Since ¢ = 3-10% m/s, the assumed wavelength corresponds to the frequency f = ¢/\ = 0.6-
10" s71. The angular frequency (usually used in our calculations) w = 27 f ~ 3.8-101° s71.
Atomic frequency wy; must be of the same order of magnitude. For our estimates we shall,

thus, adopt
woy =4-10" 571 (7.81)
We stress that we are making estimates, not exact calculations, thereby it is reasonable

to assume that

h  6.6256 - 10734 J/s

:%_ 2

h

~ 107% J/s. (7.82)
Then, the energy hws; is estimated as

4
Awy ~4-10%.107% J=4-107" J = g eV =25¢V, (7.83)
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which is quite a reasonable result. On the other hand, Boltzmann constant is kp =
1.38-1072% J/K. Let us now consider room temperature 7' = 300 K. This corresponds to
thermal energy

4.2
kpT =~ 1.38-107%%.300 J ~4.2-107% J = o 1072eVa~26-102eV. (7.84)

Hence we have an estimate

hwgl ~ 2.5 eV

— ~ ~ 0.5-10% = 50. 7.85
2%k, T~ 2-2.6-10"2 eV (7.85)

K

Obvi%%sngf, for lower temperatures the parameter « will be still larger. Now according to
Eq. (7777) for k estimated above, we get for T = 300 K

Weq = —tanh(k) = —1. (7.86)

This is a result given by three (quite different) calculators. \éV% Cconclu(%z that the substi-
tution A = w,, > —1 (as it was done when passing from Eq.(7.58) to (F?_59)) is completely
not necessary when temperatures are reasonable.

It is straightforward to repeat this estimate for temperature 7" = 1000 K. This gives
ksT =~ 0.09 eV. This, in turn, leads to k = hwe; /2k;T = 13.9. Then, one calculator gives
tanh(13.9) = 1 and the second calculator showed 11 digits 9 after the decimal point. The
conclusion stated above still holds with extremely good approximation even for relatively

high temperatures.

We have established that for temperature below 1000 K we ar ful%g 6justiﬁec% to put
weq = —1 and forget about any modifications to OBE as given by Eqs.(7.25) ot (7.16). At
reasonable temperatures (in equilibrium) all atoms are in the ground state. Reasonable
temperatures in practice mean temperatures of the order of several hundreds of kelvins
or less.

An interesting question is as follows. What is the temperature at which (in equilib-
rium) 1 per cent of atoms is in the excited state while 99 % remain in the ground state ?
This corresponds to the population inversion

1 99 98

Weq = (Qeq)ZZ - (Qeq)ll = m - m = _HO (787)

bb23
According to Eq.([7.77) this requirement corresponds to the equation

hwar \ 98
tanh <2k;BT> = tanh(k) = 100" (7.88)

Calculator estimates are as follows
tanh(2.29) = 0.9797, tanh(2.30) = 0.9801, tanh(2.31) = 0.9805. (7.89)

So we see that 1 per cent of excited atoms corresponds to K = Fuwoy /2k;T =~ 2.3. This
leads to the simple estimate

_ hwy
5

kT =05eV=08-10""J. (7.90)
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Having estimated the thermal energy, we translate it into temperature estimate

0.8-10719]J

~ ~0.6-10* K = 6000 K. 91
1.38-10-28 J/K 0 (7.91)

We conclude that the appreciable number of atoms (1 %) in the upper state (in thermal
equilibrium) occurs at the temperatures corresponding to the star’s atmospheres. In
practical laboratory experiments virtually all atoms are in the %ound state, weq, = —1,
and no modifications to the optical Bloch equations (7.19) or (7.25) are necessary.

% k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

S.Kryszewski QUANTUM OPTICS 120



Part 11
AUXILIARY CHAPTERS






ac:ano

March 4, 2010 8. Classical harmonic oscillator in external field 123

Chapter 8

Classical harmonic oscillator
in external field

8.1 Discussion of the roots and solutions

In the main part of the lectures we considered the roots of the characteristic o%ynomial
. They
govern the behavior of the solution of the homogeneous equation. They are also important

(T'5) of the damped harmonic oscillator. These roots w; and ws are given in (II.

for the solution of the inhomogeneous one, therefore we will discuss their properties. Let
us recall that the considered roots are as follows

1K 1
Wi = —% +Q, with = /Wi — ZFQ.

We stress that from the physical point of view, we require that the damping parameter

(8.1)

I' > 0, while the oscillator frequency wg > 0. Negative parameters are unphysical, so
we do not consider such a case. First of all, we note that for arbitrary values of the

parameters I' and wy, the characteristic roots have the property
(8.2)

’wlyg‘ = Wy-.

We start our discussion taking the lowest value of

damping parameter, that is I' = 0. Then = wy

Im(w)

- ————— =

I" varying from zero to infinity.

Fig. 8.1: Behaviour of the characteristic
roots for fixed frequency wq for parameter

and characteristic roots are simply w; 2 = Fwy,
so they lie on the rez:% Sacxis in the plane of com-
plex w, see figure 8.1. The solution tg _homoge-
), and it

is z(t) = zgcos (wot) + (vo/wp) sin (wpt), which

neous equation follows easily from (L.

are standard undamped oscillations satisfying

arbitrary initial conditions.

When I' grows from zero, but satisfies %I’ <
ao0sS

wo, the roots have the form (8.T) and (2 is real.
Both roots have nonzero (negative) imaginary
part and as [ grows they move in the complex
plane downwards along the arcs of the radius wy,
as it follows from the relation ( V) .6 The oscilla-

tor performs typical damped oscillations and the
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general solution of the homogeneous equation is
as given in Eq. (T.11).

The situation changes at the point where %F = wy. Then € = 0 and both roots coin-
cide, possessing the values w; 2 = wy = —zI'. So we do not have two linearly independent
solutions as it was in the case of Eq. (h_B') For the case of {2 = 0 we can, however, take
the limit in Eq. (O.S

PO ——— <—%n) {xﬁ (v0+ %Fxo) t] | (8.3)

This solution corresponds to exponential decay without oscillations.
When parameter I' still grows, i.e., %F > wp, then 2 becomes purely imaginary. We

). Taking the limit carefully we obtain the following result

can then write

1 ~
Q=i T?—wf =i, (8.4)

= . . ﬁill_f_ . .
where ) is again real. The general solution (I[.1I) changes its character because substi-

. @o0s20 .
tution (8B.4) must be made. Hence, from Eqs. (I.10) and (8.4) we obtain
1 | S vo+ 3Tz | 7~
x(t) TIrs o, P (—§Ft) _:BQ Ccos (th) + 2—5 sin (th) : (8.5)
Then, trigonometric function are transformed into hyperbolic ones, and we obtain
1 [ ~ v + 2Tz -
x(t) Irso O (_§Ft) _:co ch <Qt> + T2 sh (Qt)} : (8.6)

This solution quickly decays in time because Q< %F and may be called an overdamped

one, since it corresponds to strong damping.
In this case two characteristic roots are purely imaginary and have the property

i~

w1 = _5 + 2 Q m 0, (878:)
oI~ ,

LUQ:—?—ZQ —— - — 00, (8.7b)

. . 1f:osc
Therefore, as presented in Fig. %.l, we see that when I' grows w; moves upward the

imaginary axis towards zero, while wy — —ioo downwards along the imaginary axis.
Fig 8. T1llustrates the behaviour of the roots w; o as functions of the varying parameter

I'. Tt is important to note that only for I' = 0 the roots are real, for I' > 0 the roots are
always in the lower half of the complex w—plane.

8.2 Green’s function

8.3 Solution to inhomogeneous equation — Green’s
function
Our next aim is to find the Green’s function leading to an elegant method of finding a

particular solution to the inhomogeneous equation of motion for driven harmonic oscil-
lator. We will apply the method to a particular case, but it seems clear that it can be
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osla
generalized to other differential equations. So, now we consider the equation (II.T) which
we write as follows

&+ Td+wiz = f(t), with ft) = (g/m)E(t). (8.8)

. . . . ano01
We seek a particular solution to the inhomogeneous equation (%.8) in the form

o) = [ at gt—1) £(0), (8.9
where ¢(7) is an unknown function. We will first discuss the conditions imposed on func-
tion g(7) which follow for the physics of the problem. Then, we will explicitly construct
this function and check that it satisfies all the requirements.

8.3.1 Requirement of causality

We seek the particular solution to the inhomogeneous equation in the postulated form
of (aflo . We require that this solution is causal. This means that the force f(t') can
affect the displacement x(t) only at the instants earlier than the current moment. In
other words, this means that the displacement x(t) can depend on the force f(¢') only
when t' < t. We may also say that the current state of the oscillator can be influenced
by the earlier magnitude of the force, and not by the later ones. Therefore, requirement
of causality can be written as

gt —1t) # 0 for t' <t, (8.10a)
git—=t) =0 for t' >t (8.10b)

ano03
Relation (%_I'UE? should be understood in the sense that the function g(t — t') is not
identically zero for times ¢/ earlielz"mtglan t. Let us note, that since g(t —t') =0 for t/ > ¢
the upper limit of the integral in (8.9) 1s effectively equal to t and not +o00. Hence, instead
of (8.9), we can write

t
o) = [ at gt 1) £(0), (811)
which, in an evident manner, displays the causality requirement. Only moments ¢’ earlier
than ¢ give nonzero contributions to the current value of the displacement, so that x(t) is

determined solely by the earlier magnitudes of the driving force.
The condition (% [0) can be put into somewhat more formal way. We write

gt —t) =0t — ') g(t — 1), (8.12)

which is an equality in the sense of generalized functions. ©(¢ —t') denotes the Heaviside
function, which is defined as

1 fort <t,
O —1t) = { 0 fort >t. (8.13)
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At this stage it is perhaps worthwhile to give some comments. Searching for the
Green’s function in the form of the product ©(t —t') g(t — ') requires a careful approach
within the theory of generalized functions, which is not easy. It seems théalico it is more
convenient to seek the Green’s function g(t —t') via the particular solution (8.9] of the in-
homogeneous equation with additional conditions summarized by relations (%.Elgg%. On the
other hand, relation (K. may be useful in practical applications, because it automati-
cally restricts the integration domain to times earlier than the current moment. Hence,
the causality requirement is then explicitly seen. This is put clearly via the equation

w(t) = /_ Tt Ot — gt — ) F(E),— / dt' g(t — ) f(t), (8.14)

e} —0o0

Although this relation seems ”tempting”, we will seek the Green’s function via relations
lano02 lano03

(8:9) and (8.10).

8.3.2 Green’s function

As we have discussed, one of the ways to construct the particular solution to inhomo%eb )
alo,
neous equation is to look for the function g(¢ — ¢’). In order to do so, we substitute (%.95

into equation (au.10 "Thus, we find an equation which must be satisfied by g(t — t') — the
Green’s function
> d*g(t — dg(t —t
/_OO dt! [ <dt2 )it (dt ) +w§g(t—t’)] Ft) = f(b). (8.15)

Since the right-hand side can be written as

f(t) = / T st — 1) F(), (8.16)

09
it is straightforward to see that Eq. (al.lo is equivalent to the equation
d? d
9(7) | pd90T) | 2oy 5(r). (8.17)

dr? dr

ano09
where we have put t —t' = 7. Eq (% [0) %s a differential equation for generalized functions

of the form typi g&ofl(g the equations determining the Green’s function.
Solution to (%I 7) is best sought in the Fourier domain. The fundamentals of Fourier

ap:ff
transform theory are briefly presented in Appendix i Following this theory, we introduce
a pair of Fourier transforms

*dt it B * dw =t
Glw) = /_m e gt) o(t) = /_oo MG, (B

and we recall the relation well-known from generalized functions (distribution) theory

5(t) = — / " dw et (8.19)

:% N

) . anol( . . . .
Transforming equation (% [7) into the Fourier domain we obtain

\/;d_w [(—iw)2 —iwl+wj] e™Gw) = . dw e ™", (8.20)
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anoi3 . . : ) i .
where we used (% [9) in the right-hand side. Hence, the last relation entails the equality
of the Fourier transforms and we get the algebraic equation for the Fourier transform
G(w) of the Green’s function g(7). The result is

(5.21)

(—w?® —iwl +wp )G(w) =

2V o

or, equivalently

1 (=1 1 (1)
Glw) = V2r w4+l — w21 (w—w)(w—wy)’ (8.22)
) @osl15
where w5 = —5I" £ are the previously discussed roots (%T).’This is so, because the de-
nominator in the first equality is exactly the same as the discussed characteristic equation
(O.s T of the homogeneous equation. Hence, we have easily found the Fourier transform
of the Green’s function for the driven and damped harmonic oscillator. Moreover, due to
previous discussion of the roots of characteristic equation we automatically have discussed

the poles of the complex valued Fourier transform of the Green’s function.
In order to find the Green’s function g(7) we must invert the Fourier transform. This

is equivalent to compute the integral

Cdw -1 /°° exp(—iwT)

T) = e Glw) = — dw . 8.23) |anol7
o) = [ oo -5 [ e SR (5.23) [anot7]
Computation of this integral is simple when one
uses the residue theory. For time 7 < 0 we close
the contour in the u%)perreglalf plane of complex w Im(w)

as indicated in Fig.K. e dashed line. The ra- I
dius of the semicircle goes to infinity and from the e N T<0

Jordan lemma the integral over the upper semi- / \
circle vanishes (because 7 < 0 and —iwT possesses ! ' Re(w)
negative real part).The integral reduces to the one F T >
over the real axis and since there are no poles L. d
within the contour (which has the positive direc- T -0
tion) the integral vanishes, yielding ¢g(7) = 0 for T A
T <0.

Similarly, for positive argument, (i.e. for
7 > 0) we close the contour in the lower half-plane
as indicated by dotted line. This contour has neg—
ative direction. The integral over the

Fig. 8.2: Integration contours for wvaln
(% 23];

ation of Green’s function from Eq.

vanishes again due to Jordan lemma
when the radius goes to infinity. Since the poles are within the contour we obtain non-
vanishing result which is easily computed via the residues in the first order poles w; and
wy given in (R.T). The obtained Green’s function follows by evaluation of the residues

__1> [exp[—ir(—gr+9)] . exp[F é - Q)]

- (8:24)

9(7) m( “IT+Q+ il +0 r—Q

1z
2
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Simple manipulation of this result allows us to write the resulting Green’s function for
7>0 as

—1 B
—e
2Q)

307 (e — e = 1 e~2'7 sin (Qr) (8.25)

g(t) = a

Summarizing, the Green’s function for the damped harmonic oscillator is given as follows

g(r) =0, for 7 <0 (8.26a)

1 r
~ e (_§> sn(Qr),  for 7> 0, (8.26b)

which completes the computation of the Green’s function for the damped, driven harmonic
oscillator.

X ok ok ok ook ok okok sk ok ook okok ok sk ook ok ok ok ok sk o3k ok ok ok ok ok ok kX
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Chapter 9

Electrodynamics in Fourier space

In some applications it is convenient to express Maxwell’s equations (Egll) in Fourier space.
The basic review of the properties of Fourier transforms is given in the appendix A Tor
vector fields such as E or B the Fourier transform can be defined for each Cartesian
component separately, so that again a vector field results. For example, we define Fourier

transform of the electric field and its inverse as

5 e 1 —ik ¥ Rz
Elk,t) = (27T>3/2/d37*e kT R((F L), (9.1a)
o 1 R o
B = 5o / Bl E(K 1), (9.1b)

Note that time dependence is explicitly accounted for. Completely analogously we intro-
duce the corresponding relations for other fields

B(f,t) ~ B(K, 1), (9.2a)
D(F,t) ~ D(K, 1), (9.2b)
H(T, 1) ~ H(K,1). (9.2¢)

p(E,t) ~ plk,t), (9.3a)
j(E 1) ~— Tk, 1), (9.3b)

Electrodynamics in the Fourier space consists in expressing the laws of classical theory
in the language of the defined Fourier transforms. Therefore, the sections in the present
chapter would have the same titles as the sections in the chapter in the Main Part.

9.1 Maxwell’s equation

Using the connections between differentiation in ano_rr%lal space and vector multiplications
by vector k in the Fourier space (see Appendix A7) we rewrite Maxwell’s equations (2.1)
in the Fourier domain as follows (we suppress the arguments, which should not cause any

S.Kryszewski QUANTUM OPTICS 130

aela

aelb

ae2a

ae2b

ae2c

ae3a

ae3b



aeb

March 4, 2010 9. Electrodynamics in Fourier space 131

problems)
ik-D = p, (9.4a)
ik-B = 0, (9.4b)
Kxé = — %g, (9.4¢)
KxH = j+%ﬁ, (9.4d)

It should be, however, noted that in case of dispersive media (that is, media for which the
dielectric and magnetic susceptibilities depend on frequency, which is proportional to the
absolute value of wave vector E) and/or are position dependent, the material relations
lead to serious complications. The same applies to nonlinear media (when susceptibilities
depend on fields, usually in a nonlinear manner). The problem of the electromagnetic
fields in the media is still not fully understood. Therefore, we will mainly focus our
attention on the case of the fields in vacuum. In such a case the corresponding Maxwell’s
equations (EEIS) in coordinate space and in the Fourier space are simpler, and are of the
form

— — 1 —
ik-& = —p, (9.5a)
€o
ik-B = 0, (9.5b)
— — 8 —
kx& = —— 9.5
ik x 5 B (9.5¢)
L 1 - 10 -
Kx B = -2 .
ik x B 6062.7+C2 (?tg’ (9.5d)

It is perhaps worth stressing that the time derivatives of the Fourier transforms of the
fields depend on the values of the transforms taken at the same point k of the Fourier

space. Hence, Maxwell’s equat'a%lgbin the ia%légier domain are local. .
Let us also note that Eqs.(%.ZIB) and (9.5b) clearly show that the Fourier field B(k, t)

are perpendicular to the wave vector k. This notion leading to the concepts of transverse
(orthogonal to k) and longitudinal (parallel to k) fields will be discussed later. It also
explains why we say that magnetic field is purely transverse

Finally, we express the charge conservation equation (b‘?) in the Fourier domain.
According to the rules of Fourier transformation it now reads

, o
ik T+ 5=0. (9.6)

9.2 Potentials

9.2.1 Introduction and basic definitions

Discussing potentials in Fourier space we follow similar lines of reasoning as it was done
in the main part of these lectures. For vector potential we write the pair of Fourier
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transforms
1k 1 3,. —ikt A (2
Ak, t) = (2#)3/2/d re A(T,t), (9.7a)
A= 1 37, KT (=
where we have included the time dependencies. Obviously we similarly have for scalar
potential
O(F,1) ~— o(K,1), (9.8)

As in the case of Maxwell’s equations we uge'the connections between spatial derivatives
and wave vectors as discussed in Appendix (A" en, the Fourier transforms of the electric
and magnetic fields £(K,t) and B(K,t) are given by the transforms of potentials in the
following manner

£(
B(

— 8 - — — ~ —

k,t) = T Ak, t) — ik ¢(k, 1) (9.9a)
K, t) =ik x A(K,1). (9.9b)
Note that the electric field in the Fourier domain contains a longitudinal component
(parallel to wave vector k) and proportional to scalar potential ¢(k, ).

9.2.2 Wave equations for potentials

ce26 ce28
General wave equations in normal space are given by Eqs.(bTZT) and (b'ZZ[) In Fourier
domain they become

ok, t) = 6—p(k,t)+zlz'%ff(lz,t), (9.10a)
N B [ S Bt S P R TSN N Aot
{ + 5 5| Al 1) m Tk 1) — ik ik Ak t) + = = 6(k.t) |, (9.10b)

9.2.3 Potentials — gauge invariance

ce34
Gauge transformation are specified by equations (}’2_28) The corresponding relations in
the Fourier domain are as follows is of the form

A(K, t po Ak, t) = AK,t)+ ik F(k,t), (9.11a)
~ . ~ o o~ o ~ -
¢(k7t> gauge ¢ (k7 t) - Qb(k, t) - E F(kvt)v (gllb)

where F(K,t) is the Fourier transform of the gauge function F(F,¢).

9.2.4 Lorentz gauge
E§§6 . . .
Lorentz gauge (2.30) in the Fourier domain reads

Lo 19 ~-=-
k- A(k — — (k. t) = 12
ik Ak, t) + = ok 1) =0, (9.12)
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. . aeld
and the corresponding wave equations (bl [) become

L 10°] ~ - 1 _ -
182 .- 1 -
{k2+ ?ﬁ] (K1) = —5 J(E0) (9.13b)

9.2.5 Coulomb gauge
. EE% o . . .
Next we discuss Coulomb gauge (2.35), which in the Fourier domain attains the form

—

K- Ak, t)=0. (9.14)

We see that in this gauge the Fourier transform of the vector potential is perpendicular
(or transverse) to the wave vector k. This explains why the Coulomb gauge is sometimes
called the transverse one. Wave equations (9.10)) in the Coulomb gauge become

€o

= K, 1), 9.15b
€, C2 2 ot ) ( )
and deserve some further attention. During our discussion of wave equations in Coulomb
gauge we noted that causality is lost. The solution for scalar potenticzél was shown to give
instantaneous electric field due to charge distributiogle 107(3’ t), (see (2.37)). Let us repeat
similar analysis in Fourier domain. Wave equation (9.15a) may be written

-~ 1 _

L 3/2 1
¢(kﬂf)=€—o (k, ) (2m)* R

(9.16)
ff ~
In A;) 1endix AWwo show that [(27)3/2k?)7! is a Fourier transform of 1/47r. So ¢ given in
Eq(b [6) is a product of two Fourier transforms. It follows that the inverse transform,
being the potential ¢(r,t) is a convolution of two functions
1 1

— o(F.t d o)/~
Do ad (n o

(9.17)

z1tft6 . -
where the second one follows from (b\_gé;f Therefore we have the potential ¢(r,t) — the
inverse of ¢ given as the convolution, that is

SE 1) = — / g LD (9.18)

dre, |t —7"|

so we reproduce the well-known Coulomb potential, the Fourier transform of which satis-
ae ce

fies equation (b [6). This solution exactly reproduces (bB?) obtained as in usual electro-

statics.
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9.3 Longitudinal and transverse fields

9.3.1 Introduction

Let us translate the concepts of transverse and longitudinal components of vector fields.
Fourier transforms are linear so the decomposition E(r) = E;(r) + E . (F) transforms into

E(k) = & (k) + E. (k). (9.19)
while the requirements divE | (f) = 0 and rot E | (F) = 0 become
ik-& (k) =0, ik x & (k) = 0. (9.20)

These relations clearly imply that & L(E) is a component orthogonal (transverse) to wave
vector E, while gh(l?) Ee %El)igned along K — longitudinal. We also see that in the Fourier
space the separation (b_[g) is local and obviously unique. This clear picture shows why
the Fourier domain is sometimes advantageous. Introducing a unit vector

—

k
K|
we may also write
(k) = i, [ﬁk; : 5(12)] a (9.22a)
ELK) = E(K)— E(K) = E(K) g | ity - () | (9.22D)

ae28 ae26
It is straightforward to check that vectors (b‘ZZ) satisfy requirements (b_ZU)
Introducing the discussed separation in normal space we mentioned that it is not an

easy problem. There, the requirements div E | (F) = 0 and rot E, (F) = 0 must be satisfied
for all positions r. Similarly, relations (E?ZO) must hold for any wave vector k. This may
be a tricky problem. To clarify it, let us consider an example, a point charge @) located
at a position Ty. In this case the charge density is p(f) = Q (¥ — rp). Then, Gauss’ law
states that

6 divE = Q §(F — ). (9.23)

Right hand side is zero almost everywhere (except at the point at which the charge is
located). taking Fourier transforms

@;ﬁ /d37" e F divE = (233/2 /d3r e~k E d(r —1p). (9.24)
Thus, we get
iek-E(K) = 9 ikw, (9.25)

(27)3/2 ¢

Here we see that K - calE # 0 except for a trivial case K = 0. The field & (k) and wave
vectors K are not orthogonal almost everywhere. Although div E = 0 almost everywhere,
the field is not transverse. This explains, that in presence of charges the problem of sepa-
rating the electric field into longitudinal and transverse components can be really difficult.
Secondly, the separation into longitudinal and transverse parts is not relativistically in-
variant. A vector which is transverse in one reference (coordinate) frame, usually is not
transverse in another frame — obtained via Lorentz transformation.
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9.3.2 Longitudinal Maxwell’s equations

We shall again restrict our attention to the vacuum fields. Maxwell’s equations (Egli') in
coordinate space, or (9.4) in Fourier space, can now be expressed as separate equations
for the longitudinal and transverse parts of the fields and the current density. Firstly, we
discuss the longitudinal components. Maxwell’s equation (ae ) clearly indicates that the
transform of magnetic field is purely transverse. This automatically implies that

By (k) =0, (9.26)
and the longitudinalcec&rglponent of B must always be zero. The other longitudinal
Maxwell’s equation (2.42) translates into

.o Pk

i - &) =PI (9.27)

€o

in the Fourier doglgain. It is interesting to look for the solution to the above equation.
ae a
Using relation (b.ZZa) we can write

—

~l

G = = [ (AW +am))

- T (K- £8). (9.28)

baeecg%use k-, = 0. The scalar product in right hand side is replaced by Maxwell’s equation

(9.27) yielding

gik) = — T p(k). (9.29)

. . . lp:ff
Once again we have a product of Fourier transforms (see the Appendix Z&)
ik
€ | k 2

k) = - pK). (9.30)

— =

So the inverse transform to £(k) is a convolution

= 1

S N r
Bi) = o [ dF ol -

(9.31)

4me,

. . ae36 . ce59b
So we indeed see that Maxwell’s equation (b.Z?) leads to the correct solution (2.45D).

ae
Longitudinal Maxwell’s equation in the Fourier domain summarize to Eqs.(9.26) and
ae3 . . aed0
(b.?g) (the latter one is equivalent to (b.Bl)).

9.3.3 Transverse Maxwell’s equations

ce62
Faraday’s law reduces to the transverse equation (ETG) and in Fourier domain it reads

K x & (K) = —%EL(E). (9.32)

The same follows from Maxwell’s equation (b.eZIC), because longitudinal part of electric
field does not contribute to its left hand side, while magnetic field is purely transverse.
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Let us now turn to the discussion of the modified Ampere’s law

1 - 1 0=

rot B(F) = — j(F) + = 5 B, (9.33)

€, C2

Which, in the Fourier domain reads directly as

- 1 1 0z

ik x B(k) = e j(k) + = 8_5(k) (9.34)
Longitudinal magnetic field B (E) 0 so we can rewrite the above equation as

S A 1 = 10 (5,20 &+

K BL(K) = — (J00)+ 7K ) + S o () +&)). (9.35)

Vector product k x B L(E) is obviously transverse (perpendicular to 12) So, the last
equation splits into two parts. The first one, the transverse one is

- — — 1 — — 1 0 g
ik x B (k) = e Ji (k) + =T £ (k), (9.36)
and the longitudinal part
. 10 - -
0 = 6002 J (k) + 2 &) (k). (9.37)

As we may suspect (b.B?i does not bring any new information, since it reduces to charge
conservation requirement egéd therefore, usually can be discarded. To see this, let us
multiply both sides of Eq.(9.37) by ik. We get

—k-Ji(k)=—1 = k- & (k). 9.38
ki) = —i 5o k- £y (k) (9.38)
36
Longitudinal equation (ba(.aZT) allows us to write
IK- G () =~ A(K). (9.30)
t
Projection of the part jH a%%% K is obviously equivalent to the projection of a whole
vector. Hence, instead of (9.39) we can write
ik J(k)=—5 k), (9.40)

which is clearly seen to be the charge continuity equation in the Fourier space. Hence
we conclude that (a(.e really does not bring any new information. In the case when we
consider free fields only, it can indeed be discarded.

Summarizing, the transverse Maxwell’s equations in the Fourier domain are

1k x (Sl(k, t) = _EBL(k’ t), (941&)
K x BL(K 1) = — JL(K 1) + 9 & & D). (9.41b)
€ C ot

These equatigns are fully equivalent (in the Fourier domain) to transverse Maxwell’s
equations (b_SZ) in normal space.
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9.3.4 Discussion of the potentials

As it was done in the main part of the lectures, we continue the discussion of the transverse
and longitudinal fields in the Fourier domain. As we know, (see (IA-95a)) the gradient of
an arbitrary scalar function V¢(r) transforms into 212:’(12), hence transforms into a vector
parallel to k — the transform is purely longitudinal.

We already know that the magnetic field is purely transverse. It follows that the
transverse part of /T(E, t) is sufficient to specify the magnetic field in the Fourier domain

— — —

B,t) = Bi(k,t) = ikx A, (K1), (9.42)

because the component .,1” does no%; contribute anyway. For electric field in the Fourier
domain (as it follows from Egs.(9.9a)) we have

EL(kt)=—o AL (K, ), (9.43a)
S oo o - - Y~ o
€k t) = — 5 Ay(k. ) — ik o(k. ). (9.43b)

Again the role of /f” is unclear. Can we take ./T” = 0 as indicated in the main part of the
ae
lectures. We shall consider this question in terms of wave equations (9.10). We focus our

attention on Eq.(9.10b) which we split into longitudinal and transverse parts
SRl Iy e FiEt) =ik k- A&+~ L@ 0 |, (0.440)
- — = —ik |i . (9.
2 oz | 0260 | I 2 Ot
1 02 1 - -
4+ S — k,t 9.44b
[ + 2 at2:| AJ—( ) CQEOJJ-( ) ) ( )
Note that k-4 1 = 0so it does not contribute to the first of the ag)e()%e equations. Note also
that these eq4uations are the Fourier domain equivalents of Eqgs.(2.56). We have mentioned

that Eq.(cfa ;) (and also its equivalent (9.44a)) does not bring any new information. This
is difficult in normal space, but relatively easy in Fourier domain. To show that, we take
scalar product of both its sides with the vector ik. We note that the second term in the
left-hand side cancels with the second one in right-hand side, and we get

a~
.A|| —Zk j|—|—k‘2

o (9.45)

: _ bgll_gé . . . .
Then, differentiating Eq.(9.10a) over time, we eliminate the second order time derivative
of the longitudinal component of the vector potential, so the terms containing the time
derivative of scalar potential cancel out and we obtain

BRI " A A, (9.46)

since, by deﬁnitison7 k- A 1 = 0 in the last term wich cancels with the one in the left hand
side. So, Eq.(9.44a) reduces to

0= 254 ik i, (9.47)

Q>
H~
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— — — — aeb9
The vector J) can be replaced by the total one J = J + J. and (b.ZIS?s) is then a
aecoba
transform of the charge conservation requirement. Hence wave equation (b.zﬂa) does not
bring anything new and can be discarded. We conclude that the longitudinal component

A| is not really important.
The discussed problem is fully solved in the Coulomb gauge where div A( t)=0. In

the Fourier domain this corresponds to Eq.(9.14) which indicates that the transform of
the vector potential is transverse. The simplest way to assure the transversality of vector
potential is to demand that

Ay(k,t) = 0. (9.48)

Wave equation (9.46) automatically reduces to charge conservation demand and the only
remaining wave equations (in Fourier domain) are

K2 G(K,1) = — p(K.1), (9.402)
2
{k2+la—] AL (K t) = ! Tk, 1), (9.49D)

€, C2

which are Fourier domain ones corresponding to Eqs.(2.57).
We conclude stating that the longitudinal component of the vector potential (at least

in the Coulomb gauge) can be safely assumed to be zero (as in (9.43)).
Finally, let us make one additional remark. Any gauge transformation for vector

potential in the Fourier domain is given by relation (9.1Ta), that is

A(K, 1) A'K,t) = AK,t)+ik F(k, 1), (9.50)

gauge
with arbitrary function F. The last term - transforming j(lz, t) into A’ (E, t) is purely
longitudinal (parallel to the wave vector E) It follows that gauge transformation changes
only the longitudinal component of vector potential. It means that in any gauge the
transverse component

AL (K, 1) A (K1) = A (k1) (9.51)

gauge

so it is unchanged, hence the transverse part of Vector gotentlal A s gauge invariant.
Therefore, wave equation for A, (F,¢) (that is, Eq. ( 42b)> has the same for as the cor-
responding transverse equation which follows from (E%ZFB) in the Lorentz gauge. It will
have such form in any gauge due to gauge invariance of A either in normal space or in
the Fourier domain.

X ok ok ock ook ok ok ok ok osk ok okok ok ok osk ok ok ok ok ok osk ok ok ok ok ok ok k%
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Chapter 10

Annihilation and creation operators

10.1 General properties

We introduce two nonhermitian operators which, by definition, satisfy the canonical com-
mutation relation:

@] = 1. (10.1)

By | z) we denote a normalized eigenstate of the operator N = a'a. We assume that such
states are orthogonal, since operator N is hermitian. So we have

Niz) = atalz) = z]2), (212) = b (10.2)
Lemma 10.1 FEigenvalue of the operator N is real and nonnegative: z € R...

Proof. Since | z) denotes the normalized eigenvector of N, we have

v = z2(zlz) = (z]z]z) = (z|d'alz) = ((z]a")(alz))
= (al=))"(alz)) = llal=) I (10.3)

So we see that z is equal to a norm of a certain vector, and as such is real and nonnegative.
]

¥ilgr| Lemma 10.2 The following commutation relations hold

[ata, a] = —a, (10.4a)
[ata, a' ] =al. (10.4Db)

xlccom
Proof. By simple calculation, we get from the canonical relation (TO0.1):

=a-0 + (-Da.

a',al a
[al,a'] a = a' + 04, (10.5)

[ata, a] =a' [a, a
[

which completes the proof. m

pafy
Q>

Q>

R —
+

a,a' ] =a

Lemma 10.3 The ket i | z) is an eigenstate of the operator N = al a, and it belongs
to an eigenvalue (z — 1), that is

Nalz) = (= 1)az). (10.6)
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Proof. If a|z) # 0, then we have

Na|z) = ataalz). (10.7)

x1com
Due to commutation relation (T0.4a) we can write a' @ @ = a a' a — a, and hence

Nal|z) = a(@ta—1)]2) = az|z)—alz) = (z=1)a]z). (10.8)
This shows that vector @|z) is an eigenstate of N with an eigenvalue (z —1). m

Lemma 10.4 The ket a' | 2) is an eigenstate of the operator N = ata, and it belongs
to an eigenvalue (z + 1), that is

Na'|z) = (z4+1alz). (10.9)

Proof. The roof is analo Ous to that of the previous lemma, only we use commutation

lcom
relation h’DTb_% instead of (10.4a). m

Lemma 10.5 Norms of the vectors a|z) and a' | z) are given as
lal)Il = vz, la'|2)]] = Vz+1. (10.10)

Proof. XThe first norm follows automatically from the proof of the first lemma, see

relation ( 3). The second relation is proved similarly. We have

jat | 2)])? = (&T]z>)T(dT]z>) = (z]aa'|z). (10.11)

~

Using the canonical commutation relation we have a a' = a' a + 1, thus, we get

la"|2)|* = (z]a'a+1]z) = (z]alalz)+(z]z) = |la]2)[P+1 = 2+1, (10.12)

xllem

|2 = 2. Second relation (T0.10) follows imme-

since vector | z) is normalized and || a | z)
diately. m

Lemma 10.6 If a vector a" |z) # 0, then it is an eigenvector of N belonging to the
eigenvalue (z —n):

Na"|z) = (z—n)a"|z) (10.13)

Pr(g(cl)f £ ;he proof follows by mathematical induction. The case n = 1 was already shown

in ( In the proof essential role is played by the relation Na = Na — a, which follows

X COm
from (I0.4a). We easily have

N[a™|2)] = Na[a"|z)] = (aN—a)[a"|2)] = aN[a"|z)]—a"""|z) (10.14)
By induction assumption, we further get
N[a"|2)] = a(z—n)a"|z) —a"t'|z) = (z—n—1a"]|z). (10.15)

and the lemma follows. m
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Lemma 10.7 There exists such an integer n, that
a|z) #0, but a"ttz) =0, (10.16)

Ijroof. From the previous lemma it follows that d”}L 121>e 1is an eigenvector of the operator
N and it belongs to the eigenvalue (z —n). Lemma (T0.T) states that eigenvalues of NV are
nonnegative. For n sufficiently large we would have (z —n) < 0. This contradicts lemma,
(X 17 Hence, there must exist an integer n such that relations (Xl. are satisfied. This

completes the proof. m

~ les
Theorem 10.1 The eigenvalues z of the operator N defined in Eq. %U.?j are nonnegative
integers. Moreover, there exists such a normalized eigenvector |0) of N that

al0)=0 (10.17)
which will be called the vacuum state.

Proof. Since a vector a"|z) is an eigenvector of N belonging to the eigenvalue z — n,
we can normalize it and write it as
a*|z)

llam [2)1] -

(10.18)

|z—n) =

x1lem?

Let the integer n be such, that Eq(&D‘ﬂj‘) is satisfied. This means that

alz—n) =0, (10.19)
and the norm of the obtained vector is

l|alz—mn)]|| = 0. (10.20)
Now, from the first of relations (%l%l‘? it follows that

|a|lz—n)|| = Vz—n = 0. (10.21)

This implies that z = n. Hence the eigenvalues z of the operator N =a'a are nonne&xﬂvg
01}
integers. We also conclude that there exists a normalized vector | 0) for which eq. (0.

is satisfied for n = 0. m

Theorem 10.2 According to the previous theorem, we denote by |n) the normalized
eigenstate of the operator N belonging to the eigenvalue n — nonnegative integer. Then,
the vectors

aln) al|n)
1) = 10.22
Jn and |n+1) (10.22)

are the eigenstates of N. These relations enable us to construct all the eigenstates of
operator N, provided one of the states |n) is given.

ln—1) =

S.Kryszewski QUANTUM OPTICS 142

x1t11l

x1t12

x1t13

x1tl4

x1t15

x1t21



March 4, 2010 10. Annihilation and creation operators 143

x1le3 \
Proof. In lemma (10.3] we have shown that the vector a |n) is an eigenstate of N

belonging to the eigenvalue (n — 1). This means (according to the introduced notation),
that a |n) is proportional to the vector |n — 1). It remains to find the coefficient of

proportionality. From lemma (I0.5] we have the norm || a|n) || = +y/n . Thus the vector
aln) aln)

- = ) (10.23)
la|n) |l v

is a normalized eigenvector of N with eigenvalue (n — 1). Hence it is equal to |n — 1).
So the first part of the theorem is proved. The second part can be shown in the same

manner.m ‘ 1101 '
Let us note that relations (10.22) can be rewritten as

aln)y=+vn |n-1) (10.24a)
a'ln)y=vn+1 |n+1) (10.24b)

Lemma 10.8 The eigenstate |n) of the operator N =a' a can be constructed as

In) = N ()" ]0), (10.25)

1t11
if the vacuum state | 0) defined in eq.( 101 7) is given.
. . . x1defb
Proof. The proof follows by induction from relation (10.24b). For n = 1 we have

1 . _ 1 _
|1>:\/TaT|O>— \/F\/T|1>_|1>, (10.26)

as it should be. Now, we have

n - L @ipryey = L a4t (afyr
[n+1) CESI] (a0} TR @)"1o)

af n
— o n) = m% = [n+1). (10.27)

Going from the first to the second line we have employed the principle of mathematical

induction, and thus the proof is completed. m
This lemma clearly indicates the manner of construction of the eigenstates of the

operator N = a' . We must find the ground state — the vacuum one |0) which should
be unique. If this is not the case, we must find a complete set of commuting observables
and classify the vacuum states with the aid of additional quantum numbers. Normalizing
the vacuum state we apply the creation operators to construct the eigenstates |n ).

1lem8
Lemma 10.9 The eigenstates |n) specified in (%U. 25) are orthonormal, that is
(n|m) = . (10.28)

Orthogonality follows from the fact that |n) are eigenstates of the hermitian operator
N =a'a, so it is sufficient to prove that the are normalized.
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x1lem8
Proof. Without loss of generality we can assume n > m. Then from (10.25) we have

(n|m) = —————(0]a" (a")™|0). (10.29)

But

which can easily be verified by mathematical induction. Therefore, we obtain

1

vnl m!

1 An— ~T\m—
:Wmma Lah™110), (10.32)

because @ |0) = 0. Repeating such a procedure m times we will arrive at the relation

(n|m) = ,/%! (0]a™10). (10.33)

For n > m we have "™ |0) = 0, which follows from the definition of the vacuum state.
When n = m we get (n|m) = (0]0) = 1. So the states | n) are orthogonal (which is
not unexpected) and normalized, as it should be. m

(n]m) = (0@~ [m(a")"=" + (a")™ a] |0)

10.2 Annihilation and creation operators — summary

Annihilation and creation operators (non-hermitian) are specified by the commutation
relation

[a,a'] = 1. (10.34)

The number states |n ) are the eigenstates of the number operator N = at a, that is

N|n) = afaln) = n|n), with n=0,1,2 ...... (10.35)
The state |0) is called a vacuum state and it satisfies the condition

al0) = 0. (10.36)
Number states |n ) are orthonormal (eigenstates of the Hermitian operator N)

(m|n) = Omn. (10.37)
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Annihilation and creation are sometimes called ladder operators. This follows from the
properties of lowering and raising the number of the state

aln)y=+vn |n-1), (10.38a)
a'n)y=vn+1 |n+1). (10.38b)

Lelt us note that these relations are fully consistent with the previous ones. Relation
Xlsaca

Xlsvac
.38a) agrees with the definition (T0.36) of the vacuum state. Moreover, we have

ataln)y=a"'vn In—1) = Vn a'|n—1)
=vn /(n—1)+1 |n) = n|n), (10.39)

. . xlsest ) .
as it should be, when compared to definition (10.35). Magrlx elements of the annihila-
Xlsac
tion and creation operators follow immediately from Eqs.(10.38)and from orthonormality

requirement. We have

(mlaln)=+vn (m|n—1) = V/n Snn, (10.40a)
n+1l (min+1) = Vn+1 dpni. (10.40b)

(m]at|n)
Finally, practical construction goes along the following way

e Construct annihilation and creation operators @ and af, check their commutation
SCO

relation (to reproduce the canonical one (10.34)).
e Find (construct) the vacuum state |0).

e Construct the number states by using the relation

ah"
iy = @0y (10.41)

n!
10.3 Application to harmonic oscillator

10.3.1 Annihilation and creation operators for harmonic oscil-
lator

Hamiltonian of the quantum-mechanical harmonic oscillator is of the form
=2 L (10.42)
and the momentum and position operators satisfy the canonical commutation relation
[z, p] = ih. (10.43)
It is an easy matter to check that two operators

mw D
\/ T and , 10.44
h mwh ( )

are dimensionless.
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Theorem 10.3 Two dimensionless, nonhermitian operators a and a' defined as

A 1 [mw ip 1 .

b=— — 2 + = mwr + ip), 10.45a
V2 ( h mwh) 2mwh ( P) ( )

~ 1 [mw ip 1 .

b= — ( — 1T — ) = mwx — ip), 10.45b
V2 h mwh 2mwh ( P) ( )

satisfy the commutation relation

[13, zﬂ - 1. (10.46)

Hence we may identify: = annthilation, and bt — creation operators.

Proof. The facts that these operators are nonhermitian and dimensionless are evident.
We show the commutation relation.

P 1
[b, bT} =5 [mw@ + ip, mwi — ip]

1 . ) R ) A A
=5 {m*w?® [z, 2] — imwlz, p] + imw[p, 2] + [p, P] }
Tmw 7
— — (2.9 h. 7 = — — 9 —1 = 1. 10.4
gl ¢ il = o { - it (i)} = 1 (1047

Since operators b and bt satisfy commutation relation typical for annihilation and creation
operators, they posses all the necessary properties and the identification made in the
theorem is fully justified and correct. m

Relations (T0.45) can easily be inverted, and we can express the position and momen-
tum operators via annihilation and creation ones

/% (g, N y)j (10.48a)

4=
ﬁ——i\/@@ - BT), (10.48b)

. : xlxpac o . .
Having expressions (h’D—EB‘) we can now express the Hamiltonian of the oscillator in terms
of the annihilation and creation operators. We obtain

2 2
. 1 fmwh [+ A 1 h . R
| g _ pt - 2 o T
H 2m [ ! 2 (b b> +2mw [ 2mw <b+b>]
R 2

() e (e by
= bbb b)Y+ M (b b D4 B )
:%@guy@) (10.49)

) . . ﬁ%%(% P A
Using the commutation relation (10.46) we have b b" = 1 + bb, thus from the above we
finally get

. hw I I | ~ 1
== (2b b+1) hw(b b+2) hw<N+2) (10.50)

where, as previously, we introduced the number operator N = b b.
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Theorem 10.4 FEnergy eigenstates of the quantum-mechanical harmonic oscillator are
the number states |n) — the eigenstates of the number operator N = bt b. The energy
eigenvalues are

1
En:hw<n+§>. (10.51)

. . . xlhac .
Proof. The proof follows immediately from relation (T0.50) and from the properties of
the number operator, as discussed in the previous section. m

10.3.2 Construction of the vacuum state

Construction of the vacuum state is the first step in building the energy eigenstates of the
harmonic oscillator. We will do this in the position representation, that is we are looking
for the wave function pgo(z) = (z|0). Th(lebvacuum state is defined by eq.(I[0.17), so using
A X a
the annihilation operator b as given in (h’U7[5a), we get
- 1

In position representation, this equation reads

1
O={(z|——= (mwz + ip) |0
(o] 5)10)
N lmwx + z(—zhi)] (x) (10.53)
- V2mwh dz POl .

The latter relation is a simple differential equation of the first order

d
Solution to this equation is very simple. It is
A 2
po(r) = A, exp (—%) (10.55)

where A, is a normalization constant. Computation of this constant yields

0o by 2
1 = \A0|2/ dx exp (_%) = |A, 2 \/§ (10.56)

Choosing the arbitrary phase of the constant A, to be zero we obtain the wave function
of the ground state of the oscillator, or in other words, the vacuum state in the position
representation

po(z) = (5)1/4 exp (—%) (10.57)

which is properly normalized.
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10.3.3 Construction of the number states |n)

Having constructed the vacuum state in the positlion representation, we proceed to con-
X

struct further states. To do so, we use relation (10.41) in position representation

1
v n!

In og{der to deal with this expression let us consider a bra (dual form) (z|bt. Using

(] (61)"]0).

pn() = (z|n) = (10.58)

Eq.(T0°25b) we get
(o181 = (o] e (o = ip) = /3 (o] (& = )
. RS Yy e 1

Since the differential operator d/dx is antihermitian, we get

. A 1 d
|- - _ - %
(x]b 5 (x )\daz)<x|' (10.59)
x1inl
Using this relation n times in (10.58), we get
A1 1d\"
W) = (2 _ -4 . 10.
o = (3) == (e-52) 10 (10.60)

) . x1lvac6 i . . . oo
Inserting the wave function (10.57), we obtain the differential relation specifying the n-th

eigenstate of the harmonic oscillator
1 d\" Az?
- - = exp | — .
X dz P 2

3\ M4 T
on(r) = (;) on A2 (x

This is a functional equation similar to the Rodrigues formula for Hermite polynomials.
This is clarified by the following theorem

(10.61)

Theorem 10.5 Hermite polynomials can be expressed as follows

()~ 4) = (%)

We accept this theorem without proof (which is not difficult, when one uses the Rodrigues
formula for Hermite polynomials). Changing the variable y = v/, we can easily show

1nb
that eq.(%U%Gl leads to the expression

2\ V4 1 A2
(;) an' exp (——) Hn(x\/X),

2
. . . . . kxlvac
which, together with notation introduced in (I U.5ZI§ exactly reproduces the standard wave
functions of the n-th energy eigenstate of the quantum-mechanical harmonic oscillator.

H,(y) = (10.62)

on(z) = (10.63)

X ok ok ock ook ok ok ok ok osk sk okok ok ok osk ok ok ok ok sk o3k ok ok ok ok ok ok k%
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Chapter 11

Density operator

11.1 Introductory remarks

According to the principles of quantum mechanics full information about the physical
system is contained in the time-dependent state | (¢) ) which is a normalized vector from
certain Hilbert space. To each physical quantity there corresponds a Hermitian operator
A. The expectation value of the observable A is then given in Schrédinger picture as

(A) = (D) | AlP(@)) (11.1)

This statement can be checked only by performing the measurement of observable A on
the ensemble of systems, each prepared in the quantum-mechanical state |¢)). In case of
the measurements done on one system only we cannot predict the result with certainty.

We note that the average in (IT.1) depends parametrically on time, so it evolves in time.
Let us assume that the considered system possesses a Hamiltonian, for which we can

find the eigenstates and eigenvalues (energies)

where the states | ¢, ) are orthonormal and complete, that is
(&m | ©n) = mn, > len)enl =1 (11.3)

Then, any state of our system can be expanded in the basis provided by the eigenstates
of the Hamiltonian, and we have

Z Cu(t) | ¢n), (11.4)

with time-dependent expansion coefficients. The norm conservation results in the require-
ment

Z |Co(t)|? =1, for any instant t. (11.5)

n

Let us now Comgute the expectation value of the observable A. We insert expansions
( 4) into Eq.(TT.1) and by standard calculation we get

A) = Z Coa(t) Cn(t) Apim, (11.6)
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where we denoted the matrix element A,,, = (v, |A|¢m). We see that the average
value ( A); is bilinear in eigenstates |y, ). It is a very important feature of quantum
mechanics which, among other things, accounts for interference phenomena, characteristic
for quantum description.

In many practical experiments we do not deal with single entities as atoms. Usually
we have some ensemble of atoms and molecules. Then we understand the necessity of
the description in the language of statistical physics. We measure some average charac-
teristics of the ensemble of atoms, or molecules. In such a case we do not have exact
information about quantum state of each atom within the ensemble. This leads to the
concept of density operator. We will also discuss elsewhere that a system interacting with
the surroundings (an open system) must be described with the aid of density operator.
Hence we proceed to introduce this concept.

11.2 The basic concept of density operator

We will try to introduce the idea of the density operator in a simple and intuitive manner.
To this end, let us consider a system consisting of N atoms (subsystems) numbered by an
index 4. Let us assume that the i-th atom is in the quantum state | /) ). The quantum-
mechanical average of the observable A for this particle is (A) = (@ | A|® ). The
statistical average over the ensemble of the particles is given as

N 1 N .
A =5 X (v014100) (11.7)

where we have two kinds of averaging: the quantum-mechanical expressed by the matrix
element, and statistical — over the ensemble. Constructing the second one we assumed
that atoms are equivalent, each contributes in the same manner to the total average.
Hence each atom is accounted for with the weight factor 1/N. Clearly, each atomic state
| 4@ ) can be expanded as in (h_ol_.él), that is we have

[0y =30 CPea), OO =(@ulp®) 3 |CPP =1, (1)

do6 )
Similarly as we obtaigled (h_ol_ﬁ), we now expand states |1V ) as above, and compute the
average defined in (IT.7). Thus we get

(A)y=>_ ( Z cy) )Anm, (11.9)

m,n

where we dropped the time argument. The obtained expression involving two kinds of
averaging can be rewritten as follows. We define a new matrix (note the change sequence
of factors)

N
1 ) ) _
=y CHor = cl ol 11.10
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We note that the statistical information about the considered ensemble is reflected by
this matrix. It is worth noting, that due to the conditions imposed upon coefficients C’ﬁf)
imply that

N N
Tr{p}=>)_ pnn:%zz O@C}P*:%Zl:L (11.11)
n =1 n i=1

This importa &ogesult is called normalization of the density operator.
Relation (TT.9) can be reexpressed with the aid of the introduced matrix

m

(A)=>" ponAwm =) (pA), =Tr{pA}, (11.12)

where we use the rules of matrix multiplication. Evidently, the average value of the unit
(0]
operator is equal 1. Eq.(TT.12) for A = 1 gives

(1) =" pun (@nlLl0m) = puunum=Tr{p}=1 (11.13)

m,n m,n

as expected due to the normalization of the density operator.
The matrix p,,, is expressed by the expansion coefficients C% obtained in the energy

representation (see (I1.8)). Nevertheless, relation (TT.12) indicates, that the average of
an observable A is computed via the trace. We know that the trace of any operator
is independent of the particular basis chosen in the Hi(lilg%t space. This suggest that
operator p has more general sense, its representation by (I[T.10) is only one of the possible

expansions.
Defining the density operator in terms of the state of the system (independently of

the particular basis in the Hilbert space) we can write

1 & . ,
p= 2 1PN e, (11.14)
=1

We see that statistical information is still present in this expression. We have to show
that this definition is equivalent to (IT.10). Indeed, in energy representation we have

N N
1 N 1 Ny
(omlplon) =5 D (om 00N o) =5 > CRCP™, (11.15)
=1 =1

do10
which clearly reprpduces the previous definition (h_l_l'O)
We adopt (ITT.14) as the intuitive definition of the density operator. It includes the
statistical information (in this case equivalence reflected by the factor 1/N) about the
subsystems constituting the whole one.

11.3 Some generalizations

We now proceed to generalize the introduced concept of the density operator. There are
no restrictions on states [¢(® ). In general, they can be nonorthogonal (although it is
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inconvenient), some of them may be the same (some celtg;%ns may be in the same quantum
states), etc. Therefore, we generalize the definition (hﬂl) as follows

p=>_ [ Pla) (], (11.16)

In this case we do not sum over the atoms in the ensemble, but over the multiplicity of
states which are accessible to the constituents of the ensemble. We require that

> Pla) = 1, (11.17)

which is necessary to preserve the statistical interpretation of P(a) as the probability
of encountering the state |1(®)). In the following we will examine and discuss such an
interpretation.

11.3.1 Projection operators

We write a projection operator on (normalized) state | x ) as

P =1x){xl (11.18)

because Py |1 ) = |x)(x | ) which is a component of |¢) in the direction of |y ). It is
straightforward to show that projection operator is idempotent, that is

P> =[x ) (x| x){x] = Ix)(x|= Py (11.19)

Expectation value of the projector P, when the system is described by the state | 1)
is

(Py) = ([ Pylv) = (v lx)(xlv) = (x]¥) {(x|v) = [{x]¥) (11.20)

So it is the probability of finding the system in state | x ) (while the system is prepared
in state |1 )). We can say that it is the probability that state | x ) is populated.

11.3.2 Application to density operator

dol12
Let us now consider the system described by the density operator p. According to (IT1.12)

The expectation value of the observable A is given by the trace over the product p A.
We recall that the trace is invariant with respect to the choice of the basis in which it is
computed. Thus, it is unimportant which basis we employ. We will use the energy basis
defined in (h_OFQ) S0, let us compute the expectation value of the projector 7

(Py) = Tr{Py}=> (ealx){xlplen)=>_ (xlplen)(enlx)

n n

= (xlplx) (11.21)

do21
where we have used the completeness of states |p,). Eq. (IT.21) tells us that the
probability of finding the system, which is described by the density operator p, in state
| x) is given just by the diagonal element of the density operator in the given state.
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.. Ei_oll? - . .
Now we use the definition (ITT.16) to find the probability of finding the system in
state ’w(ﬁ)> — one of the %to%tles defining the density operator. Due to the discussed
interpretation, we can use (h_l_Zl) with | x ) replaced by |4 ). Then, we obtain

(WO p|p®) = 37 (0 9@) Pla) (¢ |4

«

- Y Pla) \<¢(m|¢(°‘)>\2- (11.22)

[0

If states lw(o‘)> are not orthonormal, there is no simple relation between populations
(probabilities) (@ |p|¢® ) and stati%toiggl weights P(a). On the other hand, when
states | 4(®)) are orthonormal, then eq.(I[T.22) yields

(WO 1p| D) =3 650 Pla) = P(B). (11.23)

We conclude, that P(«) can be interpreted as the probability of finding the system in
state | (@) if these states (defining the density operator) are orthonormal. Frequently,
P(a) is called the populati(()ng(Q)f state | (@ ). If states | (™) are not orthogonal, then
P(«) is the function (see (T1.22)) which tells us with what statistical weight the state
| () ) is represented in the ensemble specified by the density operator.

11.4 Properties of the density operator

The fundamental reason for the introduction of density operator is that when a system
is not ideally prepared, we may describe its state as a statistical distribution over state
vectors. Then, we can describe the state by specifying the probabilities w; that the system
is in the state vector |i). We write

p:Z i) w; (4. (11.24)

By definition the density operator is Hermitian, and as such can be diagonalized, thus
it can be written as above. The states |i) are then orthonormal and form a basis.
Moreover the physical sense of the coefficient w; follows from the given discussion — it is
the population of state |i), or in other words, the probability of finding the system in
state | 7). We stress, that in the present context we do not specify the meaning of the
states |i). They may refer to very different physical situations.

Having defined the density operator, we recall that the expectation value of an ob-

servable A is simply the classical average of the expectation values corresponding to each
of the state vectors. So, the averaging procedure leads to the expectation value of the

observable A
(4) = T {Ap} =" (il Anlg) =3 (sli)wilil Al4)

J 2y
= Y Gywii|Alj) =) wi(i|Ald). (11.25)
2% i
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The trace is invariant with respect to the choice of the basis, so we have taken the most

convenient one to compute it
Since the density operator is Hermitian, we know that w; are real. We want to make

sure that they are nonnegative. To do so, let us consider the projector ). = | k) (k| where
state | k) belongs to the set forming the density operator as in (I1.24). Then, we have

0 > (Py) = Tr{Pip} = > (jlPupli) = > (ilk){klplj)
J J
g jsi i
So coefficient w; are indeed nonnegative. We already know that the density operator must
be normalized, in the sense that

Tr{p} = Z w; = 1. (11.27)

Since we have the conditions

w; >0, > wi=1, (11.28)

we conclude that the coefficients w; can indeed be interpreted as probabilities of finding
the system in states |i).

In many practically interesting cases we do not know exactly the state of the system.
We are unable to give the full wave vector | (¢)). The only thing we can do, is to give
the probability w;, that our system is in the state |i). Then we describe the system
with the density operator. This is connected with complicated phase relationships which
are usually unknown. Hence we have to deal with incoherent mixture of states |i) each
of which appears with certain statistical weight. This is the reason why computing the
expectation value of the observable A we first have to find the quantum averages (i | A|i)
and then average over the distribution w;. This clearly leads to (%5). Such a incoherent
mixture of states is called a mixed state in contrast to the situation when the state vector
|1(t)) carries all information. The latter situation — described by a state vector is called
a pure state.

Lemma 11.1 Assume that the set of numbers { w; } satisfies the conditions w; > 0, and
>, w; =1. Then, we have

LY w<l (11.29a)
2. Z w? =1 if, and only if w; = &y, for certain index k. (11.29b)

Proof. From our assumption it follows that
1= <Z wi> <Z U}j> = Z w; Wi = Z w? + Z w; W (11.30)
( J 4,7 ( i#]
The second sum contains products ofdn%megative numbers, so it is nonnegative. The first
(o] a
sum must be smaller or equal one. (h_l_.Zga) is thus proved.
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Thesis (H_ol_?ggb) means that the second sum in (%O) is zero. If even two numbers,
say w; and w; are nonzero, the second sum is greater than zero. The second sum can be
zero if, and only if, just only one of the numbers wy, is nonzero. Then due to imposed
conditions, this single nonzero number must be equal to 1. This shows the second part of

the lemma. m
This lemma is useful when proving the following fact. If the system is in the mixed

state, then at least two of the probabilities w; are nonzero. Then we have

Te{p’} = > (kIP|k) = D> (kli)wi(ilj)w; (jlk)
k 1,5,k
= Z 511@ 5ij 5jkwi w; = Z 5k.jwkwj = Z w,% < 1, (1131)
ivj,k j.k k
as it follows from the lemma for at least two w; being nonzero.

When the system is in the pure state, then we can say that it is in state |j) with
probability w; = d;;. Lemma ensures that in such a case we have Tr{p*} = 1. We
conclude that the trace of the square of the density operator gives the criterion whether
the system is in the mixed or pure state.

11.5 Equation of motion for density operator

Let some physical system be described by the density operator p. We know that the expec-
tation value of an observable A may, in general, be time-dependent. In the Schrodinger
picture the operators are time-independent, hence the time dependence of the average
must be reflected in the time dependence of the density operator, so that we have

(A), = Te{p(t)A}. (11.32)

Thus, in order to be able to make physical predictions we need an equation of motion
for the density operator. The argumentation leading to such an equation can be as
follows. The physical contents of the Schrodinger picture must be the same as that of the
Heisenberg picture. The density operator is defined as the mixture of the projection on
a certain set of states. In the Heisenberg picture the states are time independent, hence
we may expect that in this picture the density operator is defined by the initial state of
the system. The time dependence is shifted to the operators and the average (T1.32) can
be compared to the same average but computed in the Heisenberg picture

(A) = Tr{p(t)As} = (Au(t)) = Tr{plto) Ault) } (11.33)

We know that in the Heisenberg picture the operators evolve as
Ap(t) = UT(t, 1) As U(t, ty), (11.34)

where U(¢,t) is the evolution operator

U(t,t,) — exp(—%H(t—to)> (11.35)
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. . : . . h‘l‘S’dOSS : -
with H being the Hamiltonian of the considered system. In (I1.35) the hamiltonian is
taken to be time-independent. There is, however, no problem to extend the theory to

. ) do35_ " do30
case with H = H(t). Introducing (I1.35) into (I1.30) we get

(A) = Tr{p(t)As} = Tr{plty) UT(t,t0) As U(t,t5) } (11.36)
Invoking the cyclic property of the trace we immediately get

Tr{p(t) As } = Tr{ U(t,to) p(to) U'(t, 1) As }, (11.37)
and thus we can write

p(t) = U(t, to) p(te) UT(, to). (11.38)

This result gives the sought time dependence of the density operator. By simple differen-
tiation we can obtain the equation of motion for density operator

in o) = (mﬁ U<t,to>) (1) U1 (1, 1)

ot ot
0
— U(t, to) p(to) <—z’ha U*(t,to)) : (11.39)
. do39
The evolution operator satisfies Schrodinger equation, hence (h_l_39) is equivalent to
0
Zh&ﬂ(t) = H U(t, 1) p(to) UT(t,t0) — U(t, o) plto) H UT(t, 1)

= Hp(t) — p(t) H, (11.40)

Since the hamil%onian commutes with evolution operator and where in the last step we
have used eq.(TT.38) for time dependent density operator. The obtained equation of
motion (called von Neumann equation) for the density operator is, thus, of the form

ih%p:[H,p] (11.41)
Von Neumann equation for the density operator (mixed state) is the equivalent of the
Schrodinger equation for the state vector (pure state). It should be stressed that von
Neumann equation correspond to the Schrodinger picture where the observables are time-
independent. In the Heisenberg picture we have (I[1.33) where the density operator is
specified by initial conditions and is time-independent.
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11.6 Density operator for open system

The formalism of the density operator is especially useful for description of the open
system. By an open system we understand a system consisting of two parts. The first
part is labelled by A and the observations (measurements) we make, concern only this
part of the total system. The second part, labelled by B, is the surrounding which may
exchange energy with the subsystem A. Thus, the subsystem B is a heat reservoir, such as
frequently discussed in the context of statistical mechanics. System A may, for example,
corresponds to a vapor cell with some gas, while B is the surroundings which may exchange
the heat with the gas (across the cell walls). Another example is an atom immersed in

the radiation field.
The heat bath B is considered to be much larger than the system of interest .A. That

is, the number of degrees of freedom of the bath is much larger. In many cases it is
possible to assume that the bath is always in thermal equilibrium. Here, we discuss only
the main features of reservoir. In practical applications one usually needs to specify the

properties of system B in more detail.
In general, the state of the joint system A+ B is described by a density operator pag.

Let us, however, assume that the situation is simpler and that the Joint system is in a
pure state, given by a vector | ¥ ) This state can always be expanded on an orthonormal
basis of states {| &, )} of B

(W) =D Cultn) @), (11.42)

where the |1, ) are normalized (but not necessarily orthogonal) states of subsystem .A.
The coefficients C,, are the probability amplitudes that the bath B is in its basis state | &, ),
which correlates with the normalized state |, ) of the subsystem S. The normalization
of the joint state | U) is as follows

L= (U0) = 30 ((dn] @ (4 O3 ) (Culin) @16 )

m,n

= 3N O (G ) (| ) = DD o Co b ([0
= Z |Om’2 <¢m|1/1m>=z |C'm\2. (11.43)

m m

Performing this computation we note that the states of the bath, that is states | £, ) and
the states |1, ) of subsystem S are independent what is indicated by a tensor product.
Hence, we take separate scalar products, corresponding to two different Hilbert spaces.
We again stress, that states |1, ) of Ad(e}gg only normalized, no assumption is made on
their orthogonality. Finally, the result (h‘ﬁ[?)) shows that interpretation of coefficients C,,

as probability amplitudes is indeed correct.
Let us now consider a measurement of an observable A®1 g performed on subsystem A

only. By such a measurement we understand that the operator A operates only on states
of A. The expectation value of A, due to orthonormality of the basis states {|¢, ) }, can
be then found to be

(A)=(TIA[T) = [Cul® (vn| Altn). (11.44)

n
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This relation is obviously equivalent to
<A>=TIAB{pABA®iB}7 (1145)

with pap = | ¥ )( V| being the density operator for the joint (total) system S + B, while
Tr g indicates that we take the trace with respect to the states of both subsystems. The
density operator pap contains information on both parts of the whole system. However,
we are not interested in the heat reservoir. Therefore, we define the reduced density
operator p4 which contains data only on the relevant subsystem A. We define p, as

pa="Trp{pap}t =Tep {|V)(V]}. (11.46)

. [do42 ' _
Then, using (TT.42) we calculate the trace with respect to the basis vectors { | & ) } of the
subsystem B. We get

k,m,n
= > GO )& &) | &) (Um| = D CnCl¥n) Stnmk (|
k,m,n k;7m7n

= D CrCultn) bn (U |

The advantage of the reduced density operator is that in order to find expectation value
of the observable A concerning the subsystem A only, we can write

(A) = Tea{psAl, (11.48)

where Tr, indicates that we computde 4tgle trace only with respect to the states of the
o]

subsystem A. To find the trace in (h‘l7[8) we introduce a basis {|y,) } in the Hilbert

space of states of the subsystem A. Then, we have

(A) = Traf{paA}=>_ (@alApalea.)
= S5 (@al Alda) 1Ca? (4] 0a)
= % Gl ($nla) (al Altn)

= D Gl (nlAl¥n) (11.49)
. 3049 do44 . .
Comparison of (I1.49) and (IT.44) shows that the reduced density operator is indeed

sufficient to find necessary information about measurements on subsystem A onld. {ghe
(0]

structure of the density operator ps as in (I[1.47) is similar to that given in Eq.(ITT.15).
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The difference is that the statistical probabilities are now replaced by quantum-mechanical
probabilities | C,, ]2. We recall that the amplitudes C,, are the probability amplitudes that
the reservoir B is in its basis state | &, ), which correlates with the normalized state |, )

of the observed subsystem S which is of interest.
The discussed case concerns a pure state | ¥ ) of the joint system. Similar consider-

ations can be also done for a more general case, when the joint system is in the mixed
state. It is, however, worth noting that even in this simple case the description of the
relevant subsystem S must be done with density operator. Although the joint system is
in the pure state, the subsystem is in the mixed state described by the reduced density
operator ps which is defined in eq.( T 7). Therefore, to describe subsystem .4 only we
need reduced density matrix ps. The only exception occurs, when the joint system hap-
pens to be in state for which C,, = d,x, that is when all terms except one in combination
(TT.42) are zeroes.

11.7 Evolution of the reduced density operator

11.7.1 Introductory remarks

We are interested in the evolution of the subsystem A which is coupled to the heat
reservoir B. This evolution cannot be described by the von Neumann equation for the
subsystem A alone due to the influence of the interaction with B. Therefore, we must
start studying the evolution of reduced density operator p4 with the evolution of the
whole system A+ B, which is assumed to be closed. The total density operator p4p obeys
the von Neumann equation (IT.41), where the total Hamiltonian of the combined system
can be separated as

H=Hy+ Vg, with Hy=H,®1p+14® Hp, (11.50)

where H4 and H, describe the free evolution of subsystems A and B, whereas Vyp is
their interaction Hamiltonian. We note that the Hamiltonian H 4 operates only on states
| 1y, ) of the subsystem A, while Hp only on the state vectors | &, ) of the reservoir B. The
von Neumann equation for the total system reads

S pant) = [H, pas(t)] (1151)

This is our starting point for finding the evolution equation for the reduced density oper-
ator for the system of interest ps = Trg{pan}.

11.7.2 Transformation to interaction picture and formal inte-
gration

The main advantage of the interaction picture is that the free time evolution (due to free
Hamiltonian Hy) is transformed away. The remaining time evolution is entirely due to
the interaction. Therefore we take the full density operator pap(t) in the Schrodinger
picture and we transform it to the interaction picture

Oan(t) = M oy (t) et (11.52)
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or equivalently
pap(t) = e MR G p(t) e, (11.53)

where tilde denotes the interaction picture.
do4]§efore proceeding further with the problem of evolution, let us note that the definition
(h_l7I6) of the reduced density operator implies (in the Schrodinger picture)

PA(t) — TI‘b { e—i(HA(X)HB)t/ﬁ EAB(t) ei(HA®HB)t/7i } ) (1154)

It is not obvious that we can simply use the cyclic property of the trace. However, we
can. The reason is that A variables are not affected by Trg. Free Hamiltonians H4 and
Hpg act in two different Hilbert spaces, so they commute, hence we can write

eii(H;,@HB)t/h — eiiHAt/ﬁ ® eiHBt/ﬁ. (1155)

dob54
h&ogs 54) we compute the trace with respect to reservoir variables only, hence due to
(TT55) we can write

,OA(t) — e—iHAt/ﬁ TrB { e—iHBt/h EAB(t) eiHBt/FL } eiHAt/ﬁ' (1156)
Using the cyclic property of the trace, we obtain
e Hat/h () e~ Hatlh = Ty £ Gap(t) }. (11.57)

We easily see that the left-hand side represents the reduced density operator in the inter-
action picture (since it depends solely on the variables of the subsystem A), we can say
that the variables of reservoir ”are traced out” So we have

04(t) =Trp{ 0an(t) }. (11.58)

do46 do58
Hence the relation (h‘oﬁm) is formally identical to (Iol :b8). The connection between the

reduced density operator and the total one is the sa O' both pictures.
Now, we transform the von Neumann equation (IT.51) into the interaction picture.

dob52 do50
We insert (lol -52) into the lhs, and we use (Iol :00) in the rhs. By differentiation we get

d

ih{ <—%Ho) o—iHot/h Gan(t) giHot/h | o=iHot/h (E EAB(t)) piHot/h

+ e—iH()t/h EAB(t) (% HO) eiHot/h } —_

= (Ho+ Vag)e P gup(t) eot/h — e Hol/h G p(t) €04 ( Hy + Vap(L1.59)

Since H, obviously commutes with exponential operators the terms containing H, cancel
out. Then, we multiply this equation by e*0t/" at the left and by e 0!/ at the right.
Hence, we get

d

Zh% EAB(t) — 6iHot/ﬁ VAB e—iHot/h ’é’AB(t) o §AB<t) 6iH0t/h VAB e—z’HOt/h. (1].60)
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Thus, and we arrive at

% Ganlt) = % Vas(t), Ban(t) ] (11.61)

where V4 p(t) is the interaction hamiltonian in the interaction picture
Vagp(t) = eMt/m v,y emiHot/h, (11.62)

do61
Equation (IT.61) is the interaction picture version of the von Neumann equation for the
density operator of the full system A + B. We shall investigate it further to extract

evolution equation for the reduced density operator p4 for the subsys g of interest.
In the next step we formally integrate the von Neumann equation (IT.61). This yields

~ ~ I ~ ~
04B(t) = oan(to) + E/ dty [VAB(tl)a QAB(tl)] , (11.63)
to
where pap(tp) is the initial condition.
The result of the iteration is the substituted into the von Neumann equation, and we
get

d _

— oap(t) =

— | Vas(t), Banto) |

1
ih
+ (%>Q/t:dt1[‘7AB(t)v [VAB(tl), §AB(751)]]- (11.64)

Taking the trace Tr g which commutes with time derivative, we obtain an equation for
the reduced density operator

d _

G0 = 5Ts{[Vasl0). 2astro)]}

. (%)2/;% TI“B{["}AB(t)’ [Vas(t), gAB(tl)}]}. (11.65)

This is exact equation. However, to get useful information we must introduce several
simplifying assumptions which Wi(lil é/fi)eld a tractable and closed equation for pa(t). This
(0]

is so, because right-hand side of (IT.65) still contains the full density operator gap(t;).
Let us note that there is also another another possibility to analyze von Neumann

do61 do63
equation (IT.61). Relation (IT.63) can be treated as the first iteration. Then we rewrite
1t as

- - 1 m ~ -
0ap(t1) = oap(to) + ﬁi/ dts [VAB(tQ); QAB(tQ)]- (11.66)
to
do66 do63
Next, we insert ( 1. 6) again into (Iol.63) and we obtain
C aanlt) = Banlto) + = [ Van(t), Zani) ]
i 0AB = ©0aBl\lo i AB\t), 0AB(lo

+ (%>Q/t:dt1 /t:l dt2|:‘7AB(t1)7 [VAB(tz), 5A3(t2)]]~ (11.67)
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. . El_tiég . . .
We caclréG%pply this procedure once more. We put ¢, in (I1.66) instead of ¢; and insert it
into (I1.67) and we get

;i 0aB(t) = oaB(to) + % [N B(t), QAB(tO)]

+ (271) /dh/ tg VAB (t1), [ Van(ta), §AB(t0)]]

+ <%>3/t0 dt, /: dts /to dt3|:VAB<t1); [vAB(tZ)a [ Vag(ts), 5AB(?53IH]68)

This third-order equation is clearly exact. The iteration procedure can be carried out
farther to fourth, fifth orders and so on. It can be truncated, for example at the second
order, then Eq.( T 7) is taken as a second order approximation to the exact von Neumann
equation and it is used in practical calculations.

X ok ok ok ook ok ok ok ok osk sk okok ok ok osk oskok ok ok ok osk ok ok ok ok ok ok k%
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Chapter 12

Master Equation

12.1 Evolution of the reduced density operator

12.1.1 Introductory remarks

We consider a physical system which consists of two parts A and B. We are interested
only in what happens in part A which usually is much smaller than part B, which we
will call a reservoir (environment). We will assume that the whole systemy, that A+ B
is closed. The total hamiltonian can be written as

Hap = Ho + Vag, (12.1)
where Hj is the free-evolution hamiltonian
Hy = Hy®1p + 1,® Hp, (122)

where H4 and Hp describe the free, independent evolution of each of the subsystems

A and B. Vjp is the hamiltonian describing the interaction between two parts. Some

additional assumptions concerning both subsystems will be introduced when necessary.
As it is well-known, the interaction between two (sub)systems usually leads to mixed

states, even if the initial state is a pure one. Therefore, investigating the joint system A+B
we will use the density operator pap(t). On the other hand, the interesting (relevant)
subsystem A is then described by the reduced density operator

pa(t) = Trp{pan(t)}. (12.3)

Evolution of the state p4p of the whole system A + B is governed by von Neumann

equation
d
ih— pa(t) = [ Hap, pas(t) ], (12.4)
which, in the interaction picture is of the form
& Gaslt) = = [Vas(t), 2as(t)] (12,5
di OAB T AB\l); OAB ) .

where, we obviously denoted

EAB(t) _ 6iHOiE/h PAB(t) efngt/h’ VAB(t) _ ez’HOt/h Vi efz'Hot/Fz (126)
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e01b e03
with Hy given in Eq(Ff'Z‘ZT Reduction of the density operator (as in (iZ.B)) is preserved
in the interaction picture

04(t) = Trp{oan(t)}. (12.7)

Additional information on interaction picture can be found in auxiliary sections.
So we start with von Neumann equation ( i 2.5). Formal integration yields the following

expression

Gap(t+ A8 = Gap(t) + ih / dty [Vas(tr), Gas(t)]. (12.8)

which gives the density operator at a later moment ¢ + At, while the initial one at a
moment ¢ is assumed to be known. Iterating further and denoting

Aoap(t) = oap(t+At) — 0ap(h), (12.9)
we obtain
. tHAt
A/QVAB(t) = (%) / dtl [‘7,43(151), §AB(t)}
t
5 tHAL

+ (lh) / dt, /tt1 dty [VAB(tl), [VAB(t2)7 0a5(t) ]

1
t

t+At

(%)3 / dt: /ttl dtz /ttg dts [Vap(tr), [Vas(ta), [ Vap(ts) Ban(ts) ](12.10)

Higher order iterations will contain fourfold, etc., integrals and commutators. Let us note
that in the last term we have time ordering t+ At > t; > t5 > t3 > t. The above equation
is rigorous, no approximations have been made.

12.1.2 Weak-coupling approximation

Weak-coupling approximation consists in retaining the terms up to the second order in
interaction hamiltonian. Higher order terms are then neglected. Thus, we remain with

t+At

Apap(t) = (%) /dt1 [ Vas(t), 2as(t) ]

t
t+At

+ (Zlh)Q t/ dt, /ttl dty [Van(t), [Vas(ta), Ban()]. (12.11)

Alternatively, we can say that the obtained equation is valid in the second-order pertur-
bation theory. Such an approximation requires a justification. The necessary justification
will be presented in the auxiliary sections, now we focus on further steps of the derivation.
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Reduction of the operator gap(t) poses no difficulties. Tracing over the reservoir
variables (subsystem B) we obtain

t+At

Ada(t) = (%) / dt; Tr p[ Vap(th), 2an(t) ]

t+At

+ (%)2 / dt, /ttl dt, TrB[VAB(h), [‘Z&B(tz), 0a5(t) ]. (12.12)

This expression has certain drawback. The point is that the commutators contain full
density operator gap(t), and not the interesting (relevant) reduced one g4 (t). To proceed,

we need some more assumptions and approximations.

One more remark seems to be in place. Subsequant iterations leading to Eq. (%112'0)
are rigorous. In equation ( e?GX) — which is approximate — there occurs the operator
pap(t), taken at the initial moment. The last term in the exact equation ( 5 0) contains
04p for moments earlier than the current moment ¢+ At, but later than the initial instant
t. This means that we neglect the influence of the ”history” on the present moment. We

shall return to the discussion of this point.

12.1.3 Neglecting the intial correlatios

The key role in our consideration is played by the assumption that there are to distinct
time scales. The first one is specified by time 75 — typical time during which the internal
correlations in the reservoir B exist. This will discussed in more detail later. Here we
will only say that time 7p is such a time, that when it elapses, the state of the resrevoir
is practically idependent of is initial state. The second time scale is provide by time T'4.
It is a time which characterises evolution (changes) of the operator g4(t) which is due to
the interaction with resrvoir, and which may be specified by the relation
Aoa(t) 1

A T o), (12.13)

Time T4 may be called the characteristic relaxation time of subsystem ukadu A. Let
us note that we are speaking about interaction — the interaction picture we employ is
thus, particularly useful. We make no statements about the rate of the free evolutions
of pa (in the Schrédinger picture), which is governed by hamiltonian H4. Usually, the
characteristic times of free evolution (the times of the order of 74 ~ (H4)a/h) are

typically much shorter that T4 describing the interaction between subsystems.
Now we assume that the introduced time scale satisfy the requirement

T K Al K Thy. (12.14)

We have a fast scale (small 75) determining the decay of correlations within the reservoir
and the second — much slower — scale defined by relatively long relaxation time T},
characterizing the interaction between the two parts of the entire physical system. This
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may be phrased differently. We have assumed that the interaction is weak. Let V' denote
the average ”strength” of this interaction. Uncertainty principle states that
h

The condition 75 < T’y implies that

h v
< Ta~ g = %«1. (12.16)

Still in other words we can say that spectral widths are the reciprocals of characteristic
times, so the condition 75 < Ty means that the spectral width of the reservoir must be
much larger than the spectral width of the interaction between subsystem A with reservoir.
Further discussion and justification of our approximations is postponed to other section.
Here we focus on the derivation of the master equation.

The adopted assumption 75 < T4 allows us to make the following approximation.

Initial density operator for the whole system A 4+ B can always be written as

EAB(t) - §A<t)®§B<t) + §corel(t)7 (1217)

where p4(t) and op(t) are the initial reduced density operators for two subsystems. The
state of the whole system consists of a factorizable part 04(t) ® gp(t) and the entangled
part 0corer(t), which describes thg cg{rrelations between the subsystems and which are due
to the interaction. Equation (T2.12) gives us the change Apu(t) = 0a(t + At) — 04(?),
hence informs us about changes occuring in te time interval At. Assumption that 75 < At
allows us to neglect the mentioned correlations. As previously, we postpone the discusion
for later sections. At present, we assume that

0ap(t) = 0a(t) ® 05(1). (12.18)

By assumption the reservoir (environment) is very large, it correlation time is very
short, so the resrvoir’s relaxation is very fast. We may say that before any significant
changes occur in subsystem A, the resevoir would have enough time to reach thermody-
namic equilibrium. As it is known from statistical physics such state is given as

Gy = ;p(zﬂ 2Nz|  where  p(z) = %exp <_I£T ) | (12.19)

The quantity Z is a partition sum

Z = Z:exp <—I£T ) . (12.20)

States | z ) are the eigenstates of the reservoir hamiltonian and they satisfy the relation

Hgp|z) = E.|z). At thermodynamic equilibrium the system does not change its state.
It means that the density operator gz satisfies the requirement

(65, Hg| = 0, (12.21)
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so we can say that operator gp is stationary — does not change in time. Obviously the
states | z ) are common eigenstates of g and Hp. This commutation relation also ensures
that the reduced density operator of the reservoir is equal to gz both in Schrodinger and
interaction pictures. Hence, operator op(t) appearing in Eq.(I2.18) is simply replaced by
op. Therefore, in Eq.( e?Gx) we make the replacement g4 = 04(t) ® 5. So we have
now

AGA(t) = <%) H/Atdtl Tr 5| Vas(th), 3a(t) ® 5 ]

t
t+At
1\’ t _ ~ -
+(z_h) / dtl/ dty Tr [ Vap(tr), [Vap(t2), 0a(t) @ op],  (12.22)
t
t

which will be analyzed further.

12.2 Interaction hamiltonian and its properties

12.2.1 The form of Vyz(t)

Our next assumption concerns the shape of the interaction hamiltonian which will be
taken as

Vag = 3 Aa® X, = Y Al @ X, (12.23)

where A, are operators which act in the space of the states of subsystem A, while opera-
tors X, correspond to space of the reservoir’s states. Operators appearing in the definition
(12:23) nedd not be hermitian (each one separately) The hamiltonian Vg must ber her-
mitian. That is why we have written the second equality. We can say that to each
nonhermitian term A, ® X, corresponds the term Al ® X!, and the latter appears in
the sum Vg, but with another number. In auxiliary sections we will show that it is not
any significant limitation. It is only important that the whole hamiltonian Vg must be
hermitian.

Operators A, i X, act in different spaces so they are independent and commute. In
the interaction picture we immediately have

Vapl(t Z Aql Z Al (t) @ XI(1), (12.24)

Aa<t> — eiHAt/h Aa e—iHAt/ﬁ’ Xa(t) — eiHBt/fL Xa e_iHBt/h. (1225)
Rules of hermitian conjugation imply that
Zl(t) _ iHat/h gt e—iHAt/h7 )?T(t) _ iflst/h xt e—iHBt/ﬁ’ (12.26)

So the conjugate operators transform to interaction picture in the exactly the same manner
as the initial ones.
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We now make one more assuption about reservoir. We have already assumed that
op(t) =~ op. Here, we assume that in the Schrodinger picture

<Xa>B = TI‘B{XapB(t)} = TI‘B{XQE'B} = 0. (1227)

This assumption easily transform to interaction picture

<Xa(t) Vg = Trp { cHpt/h X, e—tHpt/h Gh }
= Trp{ Xee B Gp st/ = Trp{X,65} =0, (12.28)

. . FFQ%? - o .
which follows due to cyclic property of trace and to (12:27). This is rather a simplification
and not a r%strictive assumpti%n. This will be clarified and explained in auxiliary Sectgons.
Relation (12:27) (leading to (12:28)) aloows us to see that the first term in the ME (12:22)

is, in fact, zero. Indeed

TrB[vAB<t1)a 0a(t) ® 53] = TrB[ZZa(tl) ® )?a(tl), oAlt) ® 53}

= ) [Au(t)oalt) Tr p(Xa(t) 58) — Badalts) Tr5(5 Xa(t))]

o

= 0. (12.29)

Both traces are equal (cyclic property), nevertheless this expression need réot be zero,
because operators of the A system need not commute. If requirement (T2727) is not
fulfiled then the above average may not vanish. Assumption (I12.27) and its consequence
( 5 8) fortunately give zero, and the first term of Eq.( e?72) vanishes and we remain
with the master equation

AGalt) = <%>2[+Atdtl /t“ dts Tr s | Van(t), [Vas(t2), 8a(t) @75 ]| . (1230)

Expanding the commutators is simple. Moreover, one easily notices that there are two
pairs of hermitian conjugates. Hence we have

t+ At
Apal(t 1 f ~ ~ o~
QAA; ) _ AL / dtl/t dtz TI"B {VAB(tz) (QA(t) R UB) VAB(tl)
t
— Vap(t1) Vap(ts) (5A(t)®63)} + HC.  (1231)
. . Ff_% . . edlic
We can now use hamiltonian (12.24) and perform futher transformations in (12.31). It

can be, however, shown that this equation does not guarantee that the positivity of the
density operator p4(t) is preserved. It appears that the so-called secular approximation
is necessary. To perform it effectively it is worth to present the interaction hamiltonian
in a somewhat different form.

12.2.2 Operators A,()

Let us write the hamiltonian of the subsystem A as

Hy = > hwa)(al. (12.32)
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States | a) constitute the complete and orthonormal basis in the space of states of the
subsystem A. The eigenfrequencies w, may or may no be degenerate. We allow w, = wy,
for a # b. At present it suffices that we distinguish different kets | a) solely by their
"number a. Now, we define the operators A,(2) via the following relation

Aa(Q) = 0w — Q) [a)(a] A |)(b]. (12.33)

a,b

This representation may be called the decomposition of operator A, into eigenprojectors
of hamiltonian H4. Delta §(wy, — 2) is of the Kronecker type, thus

|0 for Q #Q,
§(whe — Q) = { L for O Lo (12.34)

e45
In our considerations we allow for nonhermitian operators A,. Hence, definition (i2.33)
is augmented by the following one

AL(R) = 3 8lna— ) [6)(b] AL la) (o] = 3 6(wa— ) [a)(al AL 1b)(b], (12:35)

because it is always allowed the interchange the summation indices a <» b. we stress that
A, () contains Bohr frequancy wy,, while in Af (Q) we have wy, = —ws,. The following
relation seems to be quite obvious

> S(win — Q) =1. (12.36)

As a consequence we we obtain

> A(Q) = A, (12.37)

45 48
Indeed, from definition (ieZ.BB) and relation (i62.36) we get
DA = D0 8w~ Q) la)(al Aa|b)(b]
Q Q ab

= > la)(alAq|b)(b] =1A,1 = A,. (12.38)

a,b

e49
Relation (HLZ_B'?) implies that the interaction hamiltonian can be written as (in Schrédinger
picture)

Vig =Y Aa@Xo =) > Aa(Q) ® X, (12.39)
«@ Q «

Similarly as above we show that
> ALQ) = Al (12.40)
Q

and

Vap =Vig=>_ Y Al(Q)®X]. (12.41)
Q «
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Using definition (Ff'%%?)) we find the operator A;(€2) in the interaction picture

Ag(Q) = Hatlh A (Q) emHat/h — =% 4 (Q)). (12.42)
Certainly, by hermitian conjugation

AL (Q) = eMath Al (Q) e Hat/h = (2 Al (Q). (12.43)

ebl e55
Linking expressions (12.39) and (%27[2) we write the interaction hamiltonian in the inter-
action picture

Vap(t) =D > e A, (Q) @ Xalt). (12.44)
Q «
Equally well we can also write
Vag(t) = Vigt) =) > e AL (Q) ® X[(1). (12.45)
. ¢« edlic .
Before starting to analyze ME (i2.3l), let us notice that operators A,(€2) possess some
intresting properties. For exaple, the following commutation relations hold

[Ha, Au(Q))] = —hQAL(Q), (12.46a)
[Ha, AL(Q)] = hQAL(Q), (12.46b)
[Ha, AL(Q)A3(Q)] = 0. (12.46¢)

The proofs wil be given in auxiliary sections.

12.2.3 Further analysis of master equation

. E‘.%%l% . . . ~ . .
Wg return to master equation (T2.31). Interactlonehamlltoman Vap(ta) is taken as in
(12.44), while Vap(t;) is represented according to (12.45). This gives
t+At

Apal(t 1 f
QAAt() == FLQ At / dtl/t dtQZZ TI‘B{
t

a,B Q07

e—iQtzAB(Q) ® )N(ﬁ(t2) [EA(t) ® 5B}€i9/t1Al(Q/) ® )N(l(tl)

— AL Q") @ X (1) [e T Ap(Q) ® Xp(ta)|Ba(t) ® 63} + H.C. (12.47)

Performing tensor products we remember that partial trace is computed only with respect
to reservoir variables. Moreover we note that these traces are the same (cyclic property).
Therefore we denote

Gaslti — ) = Trp{ Xl(t) Xslta) op | (12.48)
Finally we rewrite the ggguments of the exponentials as iQ't; — iQty = i(Q' — Q)t; +
i€ty — t2). Thus Eq.(%ﬂ?) becomes

t+At

A0a(t) 1 n (Q—Q)t1 iQ(t—t2) A
At = h2 At / dtl [ dtQ Z Z e e Galg<t1 — tg)
t

a8 Q.0
X[Aﬁ(Q)EA(t)AL(Q’) — ALQ)As(QFa(t)] + H.C. (12.49)

The quantity Gag(t; —t2) is called the correlation function of the reservoir. We will briefly
discuss its properties.
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12.2.4 Correlation functions G,z

62
Let us focus for a while on the functions defined by the right hand side of Eq.( 5. 8),
they are
Gaplti 1) = Trp {X1(1) Xs(t2) o5 } (12.50)

These are the function of two variables and it is not a priori clear that they are function
only of the difference 7 = t; — t5. Before proving this fact, let us note that

GZﬁ(tbt2) - Gga(tg,tl). (1251)

65
To prove it, we use relation Tr;{A} = Tr p{ AT}, so that the definition (ieZ.B(ai) gives

Gyt ta) = TrB{ﬁg)?g(tQ))?a(tl)} - TrB{)?;(tz))?a(tl)aB} = Galta,th),
(12.52)

Where in the second step we have used the cyclic property of trace.
Now we will show that the function Gjx(t1,%2) is indeed a function of the difference of

its arguments. The key role plays the fact that the state of the reservoir (density operator
op) is stationary (does not change in time). Explicitly using the interaction picture we
get

Gaﬁ(tth) _ TrB{ (eiHBtl/h Xl e*l’HBtl/h) (eiHBtg/h Xﬁ efiHBtg/h) Gp } (12.53)

The trace is cyclic and 65 commutes with hamiltonianem Hp so we conclude that

ij(tth) = Tryp { B (ti—t2)/h Xl e~ tHp(ti—t2)/h X363 }

— Try { Xt — ts) X5(0) 75 } = Gug(r =t —t), (12.54)

for two moments of time ¢; > ¢5. Reservoir’s correlation function effectively depends only
on one variable. This fact is denoted by a bar over the symbol od correlation function.
Thus we write

Guplti,ts) = Gug(r) = TrB{X;(T) X 53} (12.55)

Such correlation functions are called stationary. In this case stationarity Stacjonarno
means invariance with respect to time translation. Indeed

Gas(ti + Tita+T) = Gag((ti +T) — (2 + 1)) = Gaplts —ta). (12.56)

Stationarity of the correlation functions is a straightforward consequence of the reservoir’s
density operator 7.
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t+ At k- t+ At b

Fig. 1 é]6:4 Left figure presents the integration region in the double integral
in Eq.(12.49). Right figure illustrates the change to new variables 7 = t; — t

and t1. Other explanantions are to be found in the text.

12.3 Discusion of times

12.3.1 Limits of the integrals and Markov approximation

In mz}m{%%err Seéqluation (%%9) one integrates over the triangle ABC' which is shown in pic-
ture MT2.T. First one computes the integral over dt, in the range from ¢ to ¢y, This is
indicated by thin vertical lines (at left). Next one sums such contributions by integrating
over dt; from t to t + At. The integrand in (12.49) contains correlation functions of the
reservoir which depend on the difference 7 = t; — t5. We stress that we always have
t1 > to, so that 7 > 0. The integration over the triangle can be performed in another
manner.

Let us consider the geometry. Along the diagonal AC we have t; = t5, s0 7 =t; —ty =
0. The straight line [; has (in t; and ¢ variables) the equation to = t; — 7, where 7 is
fixed, since (—7) is the coordinate ¢, of the point where the discussed line intersects the
axis ty. Then, for the line I}, (passing through the point B) 7 is also fixed (by the same
argument, as in the case of line [1). On [, at the point B we have t; =t + At oraz ty = t.
Thus at that point (B) (and on the line l;) we have 7 = At. Parametr 7 specifies the skew
straight lines (parallel to the diagonal AC) and passing through triangle ABC. Integration
over the triangle ABC gger%ogv done as follows. We fix 7 € (0, At) and we move along the
segment A’C’ (see Fig.12.2). Variable ¢; runs in the interval from ¢ + 7 to t + At. So, first
we integrate over dt; from t + 7 to t + At (along the segment A’C’). Next we integrate
over dt from zero to At. In this manner we sum the contributions from all skew segments

covering the triangle ABC. Therefore, we can write

t+At ” At t+AL
t ! 0 t+1
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t+ At fpem-

ié%. 12.2: Illlustration of the change of integration variables in equation
(12.49), Transformation to new variables 7 = t; — t5 i t;. Other explanations

— in the text.

while we remember that 7 =t; — ty (or ty =t — 7). 64
Due to the discussed change of integration variables instead of expression (12.49) w
get

At t+AL

AQA o i(Q—Q)tq ZQT
N _mmﬁh/%zz: Glop(T)

e B a0

x[Agm)aA(t)ALm') = AL@)A)Ea0)] + HC, (1258)

which should be further analyzed and discussed.

First of all we recall that the considered time intervals satisfy the requirement At >
T, which will be discussed in edetail later. If it is true, then the main contribution
to the integral over dr in Eq.(12.:58) will come from the region in the neighborhood of
0 <7 < 7 <K At. Geometrically, this corresponds to a narrow belt which is parallel to
the diagonal AC and lies just below it. It follows from the fact that outside this region the
reservoir’s correlation functions practically vanish (decay to zero). Therefore, we will not
make any serious error moving the upper limit of integration over dr to infinity. Moreover,
since only small 7’s contribute significantly, the lower limit of the integral over dt; may
be approximated simply b e75_7150 only a small ”inital” region will be neglected. With this
approximations equation (T2.58) yields

t+At

A 514 (t) iQr 1(Q'—Q)t1
AL :h2AtZZ/ dr e Gaﬁ<>/dt1€

Q0,9 o ¢

<[ As(@)EahALQ") — AUQ)AQ)EA0)] + BC. (1259)
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Introducing the quantities

1 t+At
JQ -Q) = oy /dt1 exp[i(Q' — )ty ], (12.60a)
t
Wap(Q2) = /0 dr " Gaﬁ(T):/O dr ™" TrB{)?l(T)Xﬁmg}, (12.60b)

72
we rewrite Eq.( i62.59) as follows

Bl LSS a0 - W)

Q0.0 af

x| A(@Ea®ALO) — AUQADEA®)] + BC. (1261)

This equation specifies the rate of change of the reduced density operator ga(t) within
the time interval (¢,¢ + At). The quotient Apa(t)/At can be traeted as an averaging

AGult) _ Balt+AD—Ta(t) _ 1 /”At L dat)
ZGY
t

At At N dt; (12.62)

This averaging results in smoothing all very rapid changes of g4(t) which may occur
during the interval (¢, ¢+ At). In principle we shé%ld account for such rapid changes. We
do not do that because right hand side of Eq.(II2.61) contains g4(t), while the left hand
side represent the smoothed rate of change. This rate depends on the density operator
04 in past , that is at the moment when the smoothed evolution was started. So our
next approximation consists in replacing the Smoothed rate by a usual derivative In other
words the variation at an instant ¢ (that is the derivative doa(t)/dt) is connected with
the value of p4(t) at the very same instant. This approximation allows us to use a usual
derivative at the left hand side of (Pll%%l). This approximation sometimes is called a
markovian one since it connects the variations of some physical quantity with its value
at the same instant, independently from the values which this quantity had at earlier
moments. We can say that markovian approximation consists in neglecting the influence
of the history of the physical on its current state which fully determines the presently
occurring changes. In some literature sources this approximation is also called the coarse-
graining one, because small and rapid fluctuactions are neglected when the evolution is

investigated on a much longer time scale specified by At. 074
With all the discussed approximation our master equation (%2‘61) becomes

TN SECEL LA

Q0" a,8
x| (a0 ALO) — ALQ)AQEa®)] + HC. (1263)

12.3.2 Schrodinger picture

At this stage we return to the Schrodinger picture and we insert

oa(t) = etlat/h p (1) emiHat/h, (12.64)
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When computing the derivative at the left hand side we reproduce the free evolution term.
Thus, we get

) d .
e’LHAt/ﬁ (_ pA(t)) e—ZHAt/h —

dt
_ % eiHAt/h[ Ha, pa(t) }efiHAt/h
1 ' '
+ { 7 Z Z J(Q' = Q)W,5(2) [ Ap(Q) oiHat/h pa(t) eszAt/hAL(Q/)
Q.Q7 a,p
— ALQ) Ag(Q)e AT pa (1) e—"HAt/h} + HC } (12.65)

—iHt/h iHat/h

55
Mlélgéplying on the left by e , we use relation ( 5 2)

and (I12:43) (for negative times). This yields

d i 1 , /
. — _ _ H s Q/ _ Q Q Z(Q—Q )t
a0 == 1 ]+ {3 o

<[ A@pa0ALR) — AL@IA@pa0)] + BE . (1200

and on the right by e

12.3.3 Integral J(2' — Q) and secular approximation

e73a
Our master equation contains the integral J(2" — Q) defined in (T2:60a). Its computation

is straightforward. Denoting temporarily tymczasowo x = 2/ —  we get

t+ At iwty 1 ity At 1 tx(t+At) _ ixt
J(JJ) - / dtl 6A = —_— € - = —_ ;
' t At i At

t 1T
ix —ix : zA
_ piatrizat/2 € B2 — emiwhir? _ giat+ivat/2 S (*3%)
; A
| izt )
= " F(x), (12.67)

Where we have introduced a function specified by

. (et
F(z) = "8 —SI?LQ) ) (12.68)
2
Due to the obtained results we can write
J(Q —Q) = £V pQ - Q). (12.69)

e81
Inserting the computed integral into(Fln'ZT%) we note that the exponential factor cancels
out. Hence

& palt) = — 3 [Ha pA<t>}+{%ZZF<Q’—Q>Ww<Q>
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Figj. J23: The graph of the modulus of the function F° (Q'—Q) which appears
in (T2.70). If the time At is sufficiently large then the graph has a sharp

maximum for Q/ = Q.

e88
The sense of function F(2’ — Q) which appears in (FIE'Z_TO) must be now carefully
considere. It is easy to see that function |F(z)| has a sharp maximum for z = Q' —Q = 0,
where it is equal tu unity.
Zeroes of this function corresppond to

_2n7r
At

If the time At is sufficiently long then the central maximum is very narrow. The quaestion

IwAt=nr = (12.71)

is what does it mean "sufficiently long time”. Let us consider two possibilities.

1 Ifz = |Q'— Q| < (At)~!, the argument of function |F(z)| is very close to zero, her
valu is practically one.

2. If z = | — Q| > (At)~! (Bohr frequencies are significantly different) then |F(z)|
is close to zero.

We conclude that the terms at the right hand side of master equation (Fl%?%()) containing
the operator products Al (') Az(2), for which ’Q/ — Q| > (At)™! practically do not
contribute to the evolution of the density operator p4(¢) which appears in the left hand
side. According to the first possibility above, significant contribution comes only from
such couplings that operators A,(€2") and Ag(Q2) have practically equal corresponding
Bohr frequencies.

As we know time T4 is a characteristic relaxation time in subsystem A due to interac-

tion with reservoir. All the time we take the estimate At < T4 holds (We discuss it later).
It can be argued that the terms in master equation ( e2.380), in which |[Q' — Q| ~ (At)7!
also give very small contributions, so that they can be neglected. As a result of all these
a &rsoximations, we may say that only those terms in right hand side of master equation
(T2.70) contribute significantly for which [Q’ — Q| = 0. Such an approximation is called
the secular one. It allows ug to replace the function F(Q2' — Q) by the Kronecker delta
d(Q2" — Q) defined as in ( 7. 4). It reminds us that only the terms satysfying the require-
ment (2 = Q) give nonzero contribution. Due to all these arguments our master equation
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attains the form

%/)A(t) = - % [ Ha, pa(t)] + {%;%MQI—Q) Wags(§2)
<[ @) pa) ALR) = ALY A5 pa(0)] + EC | (1272

The presence of the discussed Kronecker delta simplifies one of the summations, which

gives
@ pa(t) = = L[, palt)]
* { %ZZ Was(©) [Aa(Qpa()ALQ) — ALQ)A5(Q)pat)] + H.(C(}Z?B)
a,f Q

The fundamental part of the microscopic derivation of the master equation is finished.
We shall perform some transformations which have important, but rather cosmetic char-
acter. We want to transform master equation into the so-called standard form. All other
discussions are, as mentioned many times, are left to auxiliary sections.

12.4 Standard form

12.4.1 Introduction

Standard form is important, because it can be shown (in a complicated and difficult
mathematical manner) that this form guarantees prservation of hermiticity, normalization
and, first of all, the positivity of the reduced density operator. If our master equation
(T2:73) can be brought into the standard form then we can be sure that all the necessary
properties of the density operator of subsystem A are indeed preserved. Obviously, the
first term in the right hand side of equation (EQ%S) describers the unitary evolution, hence
we shall concentrate only on the second term. Writing explicitly the hermitian conjugates,
we have

%mwd:%ggmmmwmmmm—ammwwﬁ

* %ZZW;‘a(Q)[Aa(Q)pA(t)ALM) — pA(t)A;(Q)Aa(m@lzjz;)
Q ap

because operator pa(t) is hermitian (the proof that hermiticity is preserved will be pre-
sented in auxiliary sections). In the second term we interchange the summation indices
7 < k which gives

Cooa| = S Was( @[ A ALQ) — AL A palr)]
| »3

* %ZZW&(Q)[%(Q)M@)AE(Q) - pA(t)AL(Q)Aﬁ(m@ujg;)
Q apf
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12.4.2 New notation

For further convenience we introduce the following notation

Tos(Q) = Was(Q) + Wi (), (12.762)
Aus(Q) = le_[waﬁ(sz) — Wi (9)]. (12.76b)

The matrix [',5(€2) is hermitian and positively defined. The proof of the latter fact is
difficult so it will be given later. Hermiticity of I',s follows directly from the definition

e97a

(T2776a). Indeed, we have
Do) = Wis(@) + Wia(®) = TaalQ). (12.77)
97b
The second matrix A,z(f2) is also hermitian. From (ieZ. 76b) it follows that

D2pl0) = = S [W3() = Wan()] = 2 [Wsn() — Wip(@)] = Asal®). (1278)
Let us focus on the method of computation of elements I',5(£2). As it will be shown,

elements A,3(f2) are less important (they will be considergd in auxiliary sections). To
find I'n3 we need quantities W3,. Conjugating definition (T2.60b) we find that

Wi (Q) = (/0 dr " Tr p{ X}(7 XJB}>*

= L/n dT’Biﬁh.T¥B{}leiﬂT)5B}
0

= / dr e Tr p{e Hom/h X1 HeT/hX 55,1, (12.79)
0

23d
where we used relations ( 5 ), (12:26) and cyclic property of trace. Changing the

integration variable 7 — —7, we have
0
W5, () = / dr & Tr p{ X! (1) X505} (12.80)

. - . . . Hl%%% . T .
The integrand is identical identical as in (I2.60b), Only the integration limits are different.
Combining both formulas, we get

Lop(2) = / dr " TI"B{XL(T)XﬁﬁB} = / dr VG o5(7). (12.81)

The elements I',5(€2) are the Fourier transforms of the corresponding correlation function

of the reservoir.

g%atrlx Ap(2) does not have sucll%)la simple representation. From the definition
e C

(T2.76b) and the second relation in (

Anp() = 212[/0 dr & Tr p{ X} (1) X508} — /0 dr e Tr p{ X1 X4(7) aB}]
(12.82)
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12.4.3 Standard form

e97
Inverting relations (iZ.?6) we express elements Wog via 'y and Ayp. After simple re-
e
grouping of the terms in Eq.(T2.75) we get

% pA(t)’d _ % DD Tas(@) { Ap(Q) pa(t) AL(Q)
. T <

—3 [AL(Q) Ap(9), m(t)]+ — iDap(Q) [AL(Q)Aﬁ(Q), pA(t)] }
(12.83)

Let us note that the last term is a commutator, so we denote
1
Hys =+ D) Aus(AL(Q)As(Q). (12.84)

Taking into account hermiticity of matrix A,3(w) and changing the names of the sum-
mation indices we can easily show that the operator Hypg is hermitian. Returning to
full rnlaoster equation, that is to Eq.(12.73), we conclude that the term containing Hpg

can be connected with the free hamiltonian term. In this manner connecting

Eqs iZ 73) and 2 835 we finally have

% pa(t) = — %[HA + Hys, pa(t)]
eSS () { A0 palt) AL(@) — & [AL@) A5, pa()], },
" (12.85)

which coincides exactly with the standard form of the evolution equation for the reduced
density operator rho(t) which describes the state of the subsystem A interacting with
reservoir B. This allows us to be sure that hermiticity, normalization and positivity of the
operator p4(t) is indeed ensured. Finally let us remark that operator Hyg which gives a
contribution to the hamiltonian (unitary) evolution, usually produces small shifts of the
eigenenergies of the subsystem A. That is why, in many practical applications, this term
is simply omitted. This explains our previous remark that matrix A,z is less important
than I', 3. Obviously one can construct operator Hyg and investigate its influence on the
unperturbed energy levels of the subsystem A. Small energy shifts of eigenenergies of
subsystem A are qualitatively similar to the well-known Lamb shifts, which explains the

employed notation. 0106
The obtained master equation (i2.85) is an operator one. In practice, we frequently

need an equation of motion for the matrix elements of the reduced density operator p4(t).
It seems to be natural to use the energy representation, that is to consider matrix elements
of p Ag@4calculated in the basis {| a)} of the eigenstates of the free hamiltonian H, (see
Eq.(12:32)). This will be done in the next section.

12.4.4 Energy representation

When analyzing master equation in the basis of the eigenstat%% of free hamiltonian We
must be careful. The reason is that the the commutator in (i2.85) contains an additional
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term, namely the Lamb-shift hamiltonian. One may argue that this changes the hamil-
tonian and a new basis should be found (a basis in which H4 + Hjg is diagonal). We
will, however, proceed in the spirit of the perturbative approach. We will treat Hpg as
a small perturbation which, at most, will yield small energy shifts. Therefore, the set
{|A)} of eigenstates of the unperturbed hamiltonian H4 can be used as complete and
orthonormal basis. Working within this scheme we can easily construct master equation
(equation of motion) for matrix elements of the density operator for subsystem A. We
will suppress the index A since it should lead to no misunderstanding. Taking matrix
elements p,(t) = (a|pa(t)|b) and expanding the anticommutator term we obtain

4 Pap(t) = — %<a|[HA+HLS7 p(t)}|b>

dt
+ %ZZ T0s(9) { (a]As(Q) p(t) AL(Q)|D)

Q ap
— 5 (a]AL(Q) A5(Q) p(t)]b) — 5 (alp(t) AL() As(Q)] b>}‘ (12.86)

The second term — last three ones — will be called a disslilpative one and we will con-
e

centrate on its form. First we use expressions (12.33), ( 7. 5) for operators A,(€2) and
Al (). Then we consider three matrix elements. Necessary computations in the basis
of eigenstates of free hamiltonian H4 are simple though a bit tedious, in some cases a
suitable changes of summation indices is necessary. The result of these calculations is as
follows

(alAs() p(t) ALQ)[b) =

= Y 5(@ma = Q) S(wny — D{al Ag[m)(n| ALID) prn(t),  (12.87a)

m,n

(a]AL(Q) As(Q) p(t)[ b) =

= 0(Wan = 92) 8(wmn = D(a| AL In)(n| Ag|m) puslt),  (12.87b)

(alp(t) AL(Q) As(Q)|D) =

=D 0wmn = Q) 8(wpn — Q(m| AL [n)(n] As|b) pam(?). (12.87¢)

2
The computed matrix elements are plugged into equation (Ff'%‘%) and perform summation
over frequency 2. After some regrouping we find that

& ou0), = 25 30 S Tasma) e — ma)a] Ay [ ) (0] A 1) pn()

a, mn

- % Lag(wan) 0(wWimn — wan)(n | Ag[m){n|Aa|a)” ps(t)

— L Tapwmn) 6(n = @) (0] Ag |5} (0] Aq | m0)" pom () }12.88)
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This expression is transformed further. In the first term we use the evenness of Kronecker
delta, while the presence of the deltas in the second and third term allows us to change
arguments in the elements of matrix I',3. Next, we denote

K(am, bn) = %Zraﬁ(wmaxammmxbma|n>*, (12.89)
o,

el18
Due to these facts we write formula (i2.88§ as

d

2P| = D Sl — wn) K(am,bn) pun(?)

— 1> 0(wmn — wan) K (nm,na) pou(t)

m,n

~3 Z O (Wen — W) K (nb, nm) pam (t). (12.90)

Let us note the specific symmetry of this expression. Further analysis depends on whether
the eigenfrequencies of the hamiltonian H,4 are degenerate or not. We also note that
Kronecker delats in the second and third terms are correspondingly given as §(wy,p—wan) =
d(wWma) and §(wp, — Winn) = 6(wpm), which allows one to perform summation over n.
However, one has to be careful because eigenfrequencies w,, can be degenerate.

12.4.5 Degenerate eigenfrequencies

Let us write the hamiltonian of the considered system A in the following form
gN
Hy=> hoy Y |Nn){Nn|, (12.91)
N n=1

where N is the main quantum number which distinguishes energy levels (energy multi-
plets), whilen = 1,2, ..., gy are subsidiary quantum numbers. Is is obvious that wy # wyy
for N # M. Certainly the nondegenerate case follows immediately and it corresponds to
gy = 1, then subsidiary quantum numbers are unnecessary and C%Iié%e simply supressed.

In the degenerate case single indices appearing in equation (12.90) must be replaced
by corresponding pairs, for example a — Aa. Equation (%) is now rewritten as

d
at PAaBb<t)‘d = ZZ d(wpa —wnp) K(AaMm, BBNN) parmnn(t)
' Mm Nn
- % ZZ dwyn —wan) K(NnMm, NnAa) prmps(t)
Mm Nn
— 130N Slwpy — wun) K(NnBb, NaMm) paan(t).  (12.92)
Mm Nn

One immediately sees that 0(wyy—wan) = 0(wapra) = dara and similarly 6 (wpy —wpn) =
0m B, where the last deltas are the simple Kronecker ones. The sum over M in the second
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term is trivial. We put M = A and we ”land within multiplet A”, hence we change
m = a”. Analogously, in the second term M = B oraz m = 0". Therefore, we have

d
— pAaBb(t)‘d' = ZZ dwrpa —wnp) K(AaMm, BONn) parmnn(t)

dt
Mm Nn
—1 Z ZK(NnAa", NnAa) paapp(t)

Nn a”

— 5> K(NnBb,NnBV") paapy(t). (12.93)

Nn b’

In two last terms matrix elements do not depend on quantum numers Nn, hence we can
denote

k(Aa, Bb) = > " K(NnAa, NnBb). (12.94)

Nn

e133
This allows us to write equation (F}TQYI) in the form

d
7 pAaBb(t)‘d = ZZ dwrra —wnp) K(AaMm, BONN) parmnn(t)
' Mm Nn
— 3 ) k(Ad", Aa) pawrs(t) — 3D K(Bb,BY') paasy(t). (12.95)
a” b//

Obviously fro the nondegenerate case ”small” indices play no role — they can be supressed.
Then, instead of equation (12.95) we get

% pAB(t))d. = ZZ (S(CUMA —wNB) K(AM, BN) pMN(t)
- %[’Q(A A) + H(BaB)] pas(t), (12.96)

135
which is a nondegenerate analog of (i92.95).

12.5 Auxiliary sections

12.5.1 Preservation of normalization

Any density operator, so also the reduced one for subsystem A must be normalized:
Tr 4{pa(t)} = 1. This requirement has a simple consequence

N R (12.07)

Clearly the hamiltonian part (the commutator) preserves the trace, which follows from
cyclic property. Hence we must check the second — dissipative part of our ME. One may
ask at which stage of our derivation such a check should be made. In principle this can be

done at any Stage.e In this section we shall do so twice. Once for standard form (12.85),
and the for ME (i2.95) in the energy basis.
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Standard form

Taking ME in its standard form (T2:85) we need to compute the following trace

ts =Tra{ D" D" | Tas(®) A5(2) pa(t) AL(Q) — 4 Tas(Q) ALQ) A5(92) palt)
Q a8

— 5 Tas(Q) pa(t) ALQ) AB(Q)} } (12.98)

and show that it vanishes, ie., tg = 0. The trace is s linear operation. so then

ts =300 | Tan® Tra{45(2) pa®) AL} — § Tap() Tra{ ALQ) As() pa(t)|
Q ap

~ 3 Daa(@) Traf pa(t) AL(Q) A5() }. (12.99)

Cyclic property allows to see that all three traces are equal. Therefore, t¢ = 0 and we
conclude that preservation of the normalization for ME in the standard form is proved.

ME in energy basis

e135
In this case we check the trace preservation for Eq.(i2.95). Thus we must put Bb = Aa
(and consequently, in the last term we change b” — a”). We need to compute

d
tS = Z% pAaAa(t))d. = Z Z 5(WAM_WAN) K(A&MmaAaNn) pMmNn<t>
Aa

Aa Mm,Nn
— % Z Z /<;(Aa”, ACL) pAa”Aa(t)
Aa a”

— 3. k(Aa, Aa") pacaar(t).  (12.100)

Aa a”
In the first term we have §(way —wan) == d(wyar) = Onwr,. hence, M = N orazn = m'.

We now find
ts = Z Z K(AaMm, AaMm') prrmnrme (t)
Aa Mm,m/
- % Z Z K)(ACLH, Aa) pAa”Aa(t) - % Z Z /Q(AG,ACZ”) pAaAa”(t)' (12101)
Aa a” Aa o

. e133
In the first term we use definition of the parameter k (see (12.94)). In the second one we
notice that indices a oraz a” concern the same multiplet A, so the summation range is
also the same. We can interchange a — a” and obtain

tg = Z k(Mm, Mm") prrmnsm (t)
Mm,m’'
-3 ZZ/@(Aa,Aa”) Paasar(t) — 5 ZZKJ(ACL,ACLH) Paasar (t). (12.102)
Aa  a” Aa o

The second and third terms are identical and cancel out with the first one (names of
summation indices are irrelevant). We have shown that in the energetic basis the trace
of the reduced density operator for subsystem A is preserved In other words the derived
ME preserves normalization.
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12.5.2 Hermiticity of the reduced density operator

The nect necessary property of any density operator is its hermiticity. If the equation of
motion for p',(¢) is identical with the similar equatin for p4(t), then the same equations
must yield the same solutions, this means that p(t) = pa(t) — hermiticity of the re-
duced density operator for subsystem A. Free evolution is given by the hamiltonian term
(—i/h)[Ha + Hps, pa(t) ] which poses no problems due to the commutator properties.
One need to investigate the dissipative part of ME. Bada wic trzeba pozosta, dyssypatywn
cz uzyskanego ME. As in the previous section we perform such a check for Me in standard
form and for the one in energy basis.

Standard form

We take the hermitian conjugate of the dissipative part of ME
d 1 .
Zoh0] =+ 23S Ts(@) Aal@) (1) As(@)
’ Q ap

— LT0(0) [A5@) Aa(), ph(0)], |, (12.103)
because conjugate antic%mmutator is equal to the anticommutator of conjugated oper-
ators. We know (see (I2.77)) that matrix I, is hermitian. Interchanging the indices
a «— 3 we get

d 1
2] =+ 2 D0 Y Tas@) As(9) (1) Aa(@)
' Q o8

— § Tap(Q) [AL(Q) A5(9), pl(t)h}, (12.104)

. . o . . E%%lg'g
We see that the equation of motion for p!; is identical with standard form (I2:85) of ME.
Thus, pTA = p4 — hermiticity is preserved.

ME in energetic basis

Hermiticity of the density operator means that paap, = pipa,- It entails, that the equation
of motion for the element p¥, 4, must be the same as for p4,p,. We say that we investigate
an equation of motion for pi, ., = (Bb|p|Aa)* = {Aa|p'|Bb). So thglgguation of
motion for (p')sapy must be the same as for pa.p,. Starting from ME (T2.95) Weellos%k
for a corresponding equation for pi, 4,. First we need to change the indices in (
(remebering that corresponding changes must be made for summation indices in all terms)
and then we perform complex conjugation. In this manner we find

d * % *
= Pnaa®)|, = DD dlwns —wya) K (BoMm, AGND) it
' Mm Nn
— 3 ) KBV, Bb) piyaa(t) — 5 > " (Aa, Aa”) piyae (0)2.105)
b” al/

1 1 iys L. ell9
Next, we need to consider the conjugated quantities K* and «*. By definition (i2.89)
dwma —wnp)K(AaMm, BbNn) =

1
= = 3" Tas(wrra) (Aa| Ag| Mm) (Bb| Ay| Nn ). (12.106)
a,f
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We take complex conjugates, use hermiticity of matrix I',3 and we notice that the presence
of the Kronecker delta allows to change the argument in I'. Interchanging the summation
indices o <~ 3 we have

d(wpa —wnp)K*(AaMm, BbNn) =
1
= 5 > Taplonn) (Bb| A5 | Nn)(Aa| Aq| Mm)" (12.107)
of

119
Comparing this relation with definition (ie2.89) we see that
dwpa —wnp)K*(AaMm, BbNn) = 6(wya — wyp)K(BbONn, AaMm). (12.108)

We consider the parameter x*(Aa”, Aa). In the above relation we substitute Aa — Nn,
Mm — Aa”, Bb — Nn and Nn — Aa. Then

d(wan — wan)K*(NnAad", NnAa) = 6(wany —wan)K(NnAa, NnAad"). (12.109)

Obviously Kroneckgr deltas are equal to one, so they are unimportant. Using this result
in the definition (12:94) of the parametr k we get

k*(Ad", Aa) = ZK*(NnAa”,NnAa) = ZK(NnAa, NnAd") = k*(Aa, Ad").
Nn Nn
(12.110)

Returning to the analysis of formula (FE%QS%) we use the proven relations (FE%QSS) 1
( e?loo). At the same time, in the first term in the right hand side we interchange
the summation indices Mm < Nn. Moreover we recall that Kronecker delta is even.
Thus, we have

d

E p*BbAa<t>‘d - Z Z 5(WMA - LUNB) K(Aava Ban) p*Nan(t)
' Mm Nn
3 ST K(BLBY) ) — 30 R(AG", Aa) pigan (12111
bll a//

135 135
Comparing this result with Eq.( ie2.95) we find that when in Eei :2.1925) we replace paqupp by
Pipaa (consequently in all the terms) then we will arrive at (I2.111). To see thais better

bl2
recall that pi; 4, = (p')aams and rewrite (Fli.'%._l'[l) in the form

% [PT(t)]AaBb(t)‘d. = > S(wna —wnp) K(AaMm, BbNn) [p'(1)] 1/, v
-1 ZK(Bb, BY") [pT(t)}AaBb,, - 3 Zm(Aa",Aa) [pT(t)]Aa,,Bb(12.112)

This equation is formally identical with Eq.(T2.95), hence p = pf, what we intended to
show. Our ME preserve hermiticity of the reduced density operator of subsystem A.
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12.5.3 Transformation to interaction picture

In this section we consider the derivation of Eq. (Fll'%_g), the von Neumann equation
in the interaction picture. Moreover, we will show that the reduction of the density
operator is invariant with respect to the choice of the picture. We will also consider the
transformation from Schrodingera picture to the interaction one. For clarity, we will use
somewhat simplified notation, We consider an equation of motion

z’h% p(t)=[Ho+V, p(t)]. (12.113)

Let us perform the transformation

o(t) = eHot/h () e=tHot/h (12.114)
which can be easily inverted, to yield

p(t) = e Hot/h 5(1) gtHot/h (12.115)

01
Inserting this relation into Eq.(Fll%(.:—HB) we get
Zh{ <_% HO) e—iHot/FL §<t> eiHot/fL
4+ e—iHot/h i o(t) ciHot/h
dt
teiHot/h o(t) (% Ho) eiHot/h }

= (Hy+V )e Hot/h Gty gitot/h _ p=iHot/h Gy gifot/h (p1, 4 V) (12.116)

We see that the terms containing Hy at both sides cancel out. As a result we are left with

d §(t)) 6ngt/ﬁ

h —iHot/h el
mn e di
-V efngt/h 5@) eiHot/h . efiHOt/h E(t) 6iHot/ii V. (12.117>

Multiplying at the left by e“0!/" and at the right by e~*0!/" we get

d _ , , _ _ . .
ih o o(t) = ciHot/h \y o—iHot/h ot) — o(t) eiHot/h 1/ o—iHot/h (12.118)

Interaction operator is here transformed in an exactly the same way as specified in Eq.
ec
(T2°1T4). So we define

V(t) — eiHOt/hvefiHot/h’ (12119>

. . ec06
which allows us to write Eq. (I2.118) as

m% oty = [V(), 2@ ]. (12.120)
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Transformation (%4) or (%9) can be applied to any operator. We stress that we
made no assumptions concerning neither the structure of the space in which the oper-
ators act nor the structure of the operator space. Transformation from A to g(t) =
etot/h A e=iHot/h g called the transformation from Schrédinger picture to interaction
one. The free evolution is "transformed out” only the influence of interaction remains.

This explains the adopted terminology.
Before proceeding further, let us note that the definition of the reduced density op-

eC
erator and the definition (I2.114) of the transformation to the interaction picture imply
that the operator p4(t) is expressed as

,OA(t) = Tr B{pAB(t)} = TI‘B { e_iHOt/h 5A3<t) GiHOt/h } . (12121)

We note that the free evolution of each of the subsystems written as

[£4(0)) @ [¢5(0)) — [walt)) @ |¥5(1)), (12.122)

can be expressed with the aid of the operator

exp (—%Hot) = exp (—%HAt) & exp (—%HBt) ) (12.123)

09
because both hamiltonians are fully independent and commute. In Eq.( v 1) we com-

pute the trace only over reservoir variables, so we can write

pa(t) = e"iHat/h Ty { e~iHat/h 5, o (1) eilnt/h } piHat/h (12.124)
Cyclic property of the trace yields

e Hat/h (b)) e”Hat/h — Ty g { Gap(t) }. (12.125)

Left hand side represents the reduced density operator in the interaction picture (it de-
pends solely on the variables of the subsystem .4). Hence, we have

0a(t) = Trp{oas(t)}. (12.126)

This relation is formally identical with the definition of the reduced density operator in
the Schrodinger picture. The relation between the reduced density and the total one is the
same in both pictures. In other words, reduction of the operatora pa(t) = Tr g { pas(t) },
is invariant with respect to the change of the pictures.

12.5.4 Two time scales and consequences

Order of magnitude of time T4

el8
The key role in our considerations is played by the assumption that (HLZ._M), to jest
warunek

B K At K Ty. (12.127)
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In other words we assume that there exist two, quite distinst, time scales. Firstly, let us
try to estimate the time T4 which characterizes the evolution of system eA thich is due
to the interaction with reservoir. To find such an estimate we use Eq. (I12.30), that is

Agat) = (%)2[%&1 /ttl dt, Tr 5 [T/AB(tl), [ Vag(ta), §A(t)®5BH. (12.128)

where we employed the discussed properties of the resevoir. We also recall that the main
contribution to the integrals comes from a thin belt (of width 75 lying below the diagonal
t; = to. This allows us to estimate the integrand in the following way

Tr p [V/AB(tl), [ Van(ta), EA(t)®5B]] ~ Ba Tr3{17253} — V2. (12.129)

do2
Hence, left hand side of Eq.(Pll%._[ZS) is estimated by

AV 1 2~
O 74 12.130
At p2 By e ( )
because the area of the integration region is estimated by the product 75 At (area of the
belt under the diagonal t; = t5). Introduced parameter V' characterizes the ”strength” of
the interaction between the reservogr and system A. The factoe which multiplies mnocy
04 in (I12.130) has (according to (T2:13)) the sense of the inverse of time T)4. Therefore,
we obtain an estimate
1 V2T B h2
— o~ , lub Ty ~ .
TA h2 A VQT B

(12.131)

Condition for existence of two time scales

What is the condition of the existence of two time scales? The estimate of Ty given in
(12.131) allows us to find such a condié;cil%n. Let us look upon condition 75 < T4 more
carefully and introduce the estimate (12.131). This yields

hQ Vr B

s <. 12,132
Virg - no S (12.132)

TB<<

The last inequality is the sought condition of existence of two time scales. If we denote
Qap = V/h, then we can write Q4575 < 1. So the interaction must be characterized by
such Bohr frequency €245 that during the time interval of magnitude of 7p its influence
on system A is negligibly small.

Justification of weak coupling approximation

el6
We already mentioned (see the discussion of Eq.(PllZ.Tl)), it is possible to iterate von
Neumanna equation — accounting of higher order corrections would increase accuracy. We
can estimate these higher order terms in the same manner as done above. For example
for the third order term we have

AGa|® V3

|~ T (12.133)
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because times t1, to oraz t3 must be close to each other (with accuracy of the ordedr of 75).
Then the region of integration has volume of the order of 73A¢. Due to Eq.(T2.131) we
get

Aoy |3 Vg 1 _ 1

~ 2B 5 12.134
At T, S T ( )

. . Hl%d_ng . . .
Since the condition (T2:132) must hold. The obtained estimate shows that the third order
iteration (and similarly higher ones) are indeed negligible. Obviously this holds provided
the condition (T2:132) holds and ensures the existence of two distinct time scales.

NegleCting Pcorel

Moving from Eq.(%%l) to (Fln'%%%) we have neglected initial correlations between systems
A and B. These correlations built up at earlier moments ¢ < t. This corresponds to
the assumption that at some earlier moment t, (o < t) both systems were uncorrelated.
This happens, for example, when the interaction was switched on at an instant ¢y;. So
the correlations described by g..re; Deed time t — ¢y to appear. If the correlations exist
(0coret # 0) then averaging of the term linear in interaction (as in expression ( Vi 9))
Would not give zero. A wic gore; # 0 would result in the appearance of thg linear term.
Moreover, this would also automatically modify the quadratic term in (12.3T). Let us
estimate the magnitude of this modification (which is due to earlier interaction)

AN 1 1\2 rt t+AL _ B
NN AT dt / dty (Vap(t1)Vas(t : 12.135
At At <m> /_Oo ', 2 (Vap(t1)Vas(t2) )5 ( )

The integrand contains correlation functions of the reservoir. Hence the integrand would
be practically zero for [t; —ts| > JB- The integration runs effectively from t — 75 to t+75.

Therefore, using condition (T2.131), we estimate
A?A 1 V2 2 VZTB B 1 B
=84 L 2 o == 2 12.136
At At 2B 2 At Ta At ( )

as the integrals are nonzero on the interval of the length of the order of 75. If 75 < At
then the correction is small (main contribution to the evolution of g4 is of the order of
1/T4, which is quite larger). The key assumption that 75 < At allows us to conclude
that the correlations between system 4 and B which were built before moment ¢ do not
significantly change the evolution of g4(t), their influence is restricted to the moments
from a very short interval (¢,¢t — 75). New correlations, within a much longer interval
(t,t+At), are building up and have an effect on the evolution of g4(¢). Initial correlations
have small significance and hence it is justified to neglect them.

Discussion of the secular approximation

Secular approximation consists in replacing the function F'(2’ — Q) (defined in (FB%’S)) in
( e§80) by Kronecker delta, which leads to Eq.(ﬁ%?%). Our discussion of this replacement
does not rise any doubts when |Q’ — Q| < (At)™!, because then F(Q’ — Q) is practically
unity. On the other hand for |Q’—| > (At)~! the function F(Q2'—) is practically zero.
The only problem is to justify the neglecting of the terms for which |/ — Q| ~ (At)~L.
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To explain this point, first use the fact that the free evolution of matrix elements pq
is governed by

d i :
— ) = — Z(a|[Ha, PP ]|b) = —iwaply), (12.137)
dt h
where the small Lamb shift (due to Hpg is ignored. The solution is simple
Pl (1) = e pl(0). (12.138)

o L El%lgg .
Now, we analyze the dissipative term which is given by (12.90). We do not discuss
the nuances connected with possible degeneracies. Obviously, we can write

Prb =D OokPmk  OFAZ  Pam = Y OakPhm, (12.139)
k k

. . E%l%g . - .
which we use in (12.90), moreover, we interchange indices k <> n in the second term and
similarly, in the third one we first interchange m < n and then k <= m. The result is

d
dt pab ’ Z 5 wma - wnb (am, b?’L) pmn(t)
— 5 Z Son O(Wimk — wWar) K(km, ka) ppn(t)
k,m,n
— 3 B O(wpk — war) K (kb,kn) ppn(t).  (12.140)
k,m,n

We note that 0y, implies b = n, and then w,;, = 0. Therefore

Oon O (Wink — Wak) = Obn 0(Wima) = Oon 0 (Wina — Wnb)s (12.141)
since wy, = 0 and changes nothing. Similarly we have

Sam O(Wok — Wnk) = Oam O(—wWnp) = Opn 0 (Wina — Wnp), (12.142)

Finally, we note that §(w %} 7”1) O(Wap — Wimn ), because Kronecker delta is even. After

hese manipulations Eq. ( ) can be written as

5 Pap(t ’ Z 0(Wab — Winm) { (am,bn) — % Obn ZK(k:m, ka)
k

~5 Gam ) K (R, kn)} Prn(t)- (12.143)

The expression in braces is denoted as M, 5, and we have
’ E 8(Wab — Winn) Mam.on Prmn (). (12.144)
a a a’ .
o Pab(t b— bn P

This is a specific form of ME, but useful in the discussion. However, in the degenerate
case some care must be exercised and renewed considerations might be necessary.
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We proceed to the discussion of conditions and /or possibilities of neglecting the terms
for which [Q’ — Q| ~ (At)~!. Interaction with the reservoir certainly modifies the free
evolution of pi‘? (t) = e_i”abtp((j)(O) If Bohr frequencies of the oscillating elements pgp i
Pmn are such that |wep — win| > 1/T4, then mutual couplings between these elements are
quickly averaged to zero (interfere destructively) before time T4 elapses and the influence
of interaction has enough time to affect the evolution. In other words, if |w,p — Wy, | differs
much from 1/7'4 then the coupling between corresponding matrix elements will have small
(weak) effect. This is the situation similar to the one encountered in perturbation theory.
Namely, when the energies |E, — Ey| > Vo, = (a |V |b) then the perturbation has small

(usually negligible) effect.
Since, by assumption T4 > At the discussed situation corresponds, in fact, to the

relation |we — weg| ~ (At)~'. This, in turn means, that such terms have little influence

one’é:ge evolugié)on of the operator p(t). Such terms are neglected while passing from Eq.
(iZ. 70) to (iZ 72). Thus the last of our approximations is justified.

12.5.5 Vup = ij — nonhermiticity of operators A, i X,

In our considerations we have adopted the interaction hamiltonian between the system
A and reservoir B in the form Vg = )" A, ® X,, where operators A, and Xgpn, does
not have to be hermitian. Certainly the full interaction hamiltonian must be hermitian,
so we conclude that it must contain operators A,, X, and their hermitian conjugates A!
XT. Constructing linear combinations we can always transform the hamiltonian V AB
into Vag = >, A, ® X, where the primed operators are hermitian.

We shall illustrate this with a simple example. Let the interaction hamiltonian be of
the form

Vug = A X" + AT® X, (12.145)

where operators A oraz X are nonhermitian, while the full hamiltonian is clearly hermi-
tian. We define new operators

q:%(AjLAT), Q:%(XJFXT),
p= L(A—AT), P= L(X — X1, (12.146)

V2

which ar evidently hermitian. Expressing operators A, X and their conjugates we obtain

Vag = 3(q—ip) ® (Q+iP) + i(q¢+ip)® (Q —iP)
= q®0Q + pPL (12.147)

N

This interaction hamiltonian is expressed as a sum of products of hermitian operators.
Hence construction of the interaction hamiltonian with nonhermitian operators is allowed.
One can always build necessary combinations. However, in some practical applications it
is much more convenient to use nonhermitian operators than the linear combinations.
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12.5.6 Vanishing average ( X, )z

In the main part of the lecture we assumed that Eq.(ﬁ%%?) holds, that is the average
(Xo)p =Trp{ Xaps(t) } =0. We have stated that it is not really restrictive. We will
show that it is true. This is so, because we can always shift the energy scale. To see this,
let us write

Vi = Y A ® (Xa — (Xa)p)

Y A®Xa — Y (Xa)p(Aa®1p), (12.148)

«

where ( X, )p = Tr p{opX,} is a number not necessarily equal to zero. Then we have

Winds = 3 Aul(Xes = (X)) =0, (12.149)

which holds no matter whether numbers ( X, )p are zeroes or not. Full hamiltonian can
then be written as

Hip = Ha®1p + 14, Q Hg + Vap
= Hoa®lpg + 1,0 Hp + Vig + Z V5 (Aa ® 1p)

= [Ha + Z W] ®1p + 14® Hp + Vyp. (12.150)

Rescaled interaction term (the last one) has zero average (as in (%%%49)). This is achieved
be the redefinition of the energy scale in system A — via redefinition of the hamiltonian
H,. We conclude that the assumption that the averages (I[2.27) vanish is not really
restrictive, but simplifies the computations.

12.5.7 Commutators of operators A,(f?)

In the main sections we have introduced the operators

Aa(Q) = 0(wha — Q) [a){a] Aa|b)(b]. (12.151)

a,b

The hamiltonian of system A is of the form

Hy=Y hw,|n)(n|. (12.152)
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It is not difficult to find the commutator [H, A4(2)]. Directly from the definition we
obtain

[Ha, Aa(@)] =[S hwnln)(nl 30w — Q) [a)(al Al b)(b)
= 3 B 8(na — D] Gual ) (0] Aa |B)(D] ~ Sula)(a] Au|b)(n|}

= Zh(wa—wb) wea — Q)] a)(a|Aa|b)(b]

= — hQZ5(wba—Q)|a><a|Aa|b><b|

= —hQAL(Q), (12.153)
which ends the calculation. Conjugation changes sign, so that
[Ha, AL(Q)] = hQAL(Q). (12.154)

03
Heisenberg equation of motion follows from formula (%3), and it is
d
ih— A(Q) = [A(Q), Ha] = rQAU(Q). (12.155)
dt
. . A (H) ot . . %57? .
After integration we obtain As /() = €** A, (2) which agrees with (12:42). Finally, we
present one more relation

[Ha ALUQ)AS(Q) ] = AL Ha, A(@)] + [Ha, ALQ)]A5(©) =0, (12156)

which follows immediately from the derived results.

12.5.8 Additional properties of correlation functions G,s(7)

e62 FfeSSf
Correlation function of the reservoir was defined in (Ff'ﬂ8) or (I2.55). By assumption,
reservoir hamiltonian Hp and the corresponding density operator 6z commute, so they

have a common set of complete and orthonormal eigenstates | z). Let us calculate the
e

trace in (T2:55) in chosen basis

Gaﬁ(T) = TI'B { )?Oz—'-(/r) Xﬁ 6‘B } o TI'B {eiHBT/fL X(‘L 6—iHBT/ﬁ Xﬁ 6_3}

= Z(Z | eiHBT/h Xl e—iHBT/h ’£><£ | Xﬂ G5 | Z> (12.157)
275
23b
In Eq(Pl%Tg) we denoted the eigenvalues of G5 by p(z), hence
Gap(r) =Y p(2) €7 (2| X1 1€)(&] X5 2), (12.158)
2,6

with w, = E, /h, %Jﬁglswzg = w, — We. B

Expression (FEZTSS) shows that the correlation function G.g(7) is a complicated su-
perposition of functions which oscillate with Bohr frequencies w.¢. Reservoir is assumed
to be large, the discussed frequencies are are densely space (quasi-continuous). If time 7
is sufficiently large the oscillations interfere destructively (average out to zero). We can
expect that reservoir correlation function decay quickly when time 7 = t; — ¢, increases.
Characteristic decay time is denoted by 75 and assumed to be, by far, the shortest time
characterising the system A + B. When 7 > 75 the correlation may be neglected.

S.Kryszewski QUANTUM OPTICS 194

meg05



March 4, 2010 12. Master Equation 195

12.5.9 Positivity of the matrix I',3(Q?)
12.5.10 Calculation of matrix elements A,3(f2)
12.5.11 Evolution [HA + Hyg, pA(t)}

12.6 Summary

In this summary we describe practical steps neede in the construction of the ME for

specified physical systems.
The first step consists in precise definition of the system A and of the reservoir B.

We need to specify their free hamiltonians H4 and Hp and (at least sometimes) their
eigenenergies and eigenstates. Then we define the interaction hamiltonian in the form

where A,, X, are (correspondingly) operators of system .4 and reservoir. We stress that
these operator do not need to be (separately) hermitian. It suffices that the full interaction
hamiltonian is hermitian. We also need to specify the density operator g describing the
state of the reservoir. It is worth remembering that operator Hgp and g commute. This
implies that the reservoir is in the stationary state. In the second step of ME construction
we build (identify) the following operators

Aa(Q) = 0(wha — Q) [a){a] Aa|b)(b]. (12.160)

a,b
The following matrix elements are computed in the third step

Wos(82) = /0 dr 7 Gop(1) = /o dr ™" TrB{)N(l(T) Xsop}. (12.161)

They are seen to be partial Fourier transform of the reservoir correlation functions. Reser-
voir operatora are taken in the interaction picture

X, (t) = etstih x,, e=iHnt/h, (12.162)

Matrix elements W,5(2) are then employed to construct two hermitian matrices

1

Tapl@) = Was() + Win(Q),  Aasl(@) = 5 [ Was(0) — Wi, (@)]. (12163
We note that matrix I',5(€2) is positive-definite and can be computed directly as Fourier
transform

Tos(0) = / dr & Tr p{X!(1) X058} = / dr G o5(7). (12.164)

Matrix I'»5(€2), in practical applications, is more important than A,z(€2). Explanation
will be given later. The separate expression for elements A,3(2) is

Ayp(Q) = 21[/ dr e TrB{)?;(T)XﬁﬁB} — /o dr e 7 TrB{Xl)?ﬁ(T)ﬁg}].

ttJo
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(12.165)

Hence, calculation of matrix W,z(€2) can be usually omitted
Final construction of the proper ME is the fourth and the last step. The above given
quantities allow us to write the ME as

% pa(t) = - %[HA + Hys, pa(t)]
+ %ZZM&(Q) { Ap(Q) palt) AL(Q) — 1 [AL(Q) A5(Q). pA(t)]+}12.166)
2 ap

where the so-called Lamb-shift hamiltonian Hy g is given as

Hys— % ; Zﬁ Aus(Q) AL (2) A5(0). (12.167)

Energy shifts of the system A which are due to the presence of H;g in the hamiltonian
part , are usually quite small and frequently negligible. This explains why the role of
matrix A,g is usually less important than that of matrix I',g.

X ok ok ock ook ok ok ok ok ock ok okok ok ok sk ok ok ok ok sk 3k ok ok ok ok ok ok k%
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Appendix A

Fourier transforms

A.1 Time—frequency Fourier transforms

A.1.1 Definition of the pair of Fourier transforms

Time—frequency Fourier transforms are essentially one-dimensional. Therefore we define
an
a pair of Fourier transforms similarly as in the main text (see Egs.(8.19)), and we write

Flw) = /_ Z \/d;_ﬂ e F (1), (Ala)

(1) = /_ Z \/f_ﬂ e P (). (A.1D)
These equation can be formally written as

AN =Fe) = [ 2= e e, (A.20)

FUF) = f(t) = Z % e F(w). (A.2b)

In the forthcoming we will briefly discuss some of the most important properties of one—
dimensional (time—frequency) Fourier transforms.

A.1.2 Dirac’s delta function and its Fourier transform
z1lftform

Let f(t) = 0(t). Then, according to definition (A.2), we note that

< dt 1
Fo :/ — e (t) = : A3
if fb
which, after substitution into the definition (ZA. It6( ie yields
1 o0 dw
o(t) = e, A4
Q vV 2w /oo vV 2w (A4)
zldelft
Relation (IA"4) 18 best remembered in the form
2w 6(t) = / dw et (A.5)
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. : . . . Jglrem .
We note, that both signs are allowed in the exponential under the mtegrzalldlri f(]:?§.5 ) This
is so, because we can easily replace w by —w in the integral in rhs of (A"4). Since both
variables ¢ and w are mathematically equivalent, we can formally write

*oodt
Fll] = /oo T e =+ 21 o(w). (A.6)

It may be worth remarking that the above relation for Dirac’s delta function can be

intuitively explained as follows

F(0) = limF(e) = lim h ﬂ et f(t)

:?i%/F /

0 o dt
B ,oo\/WF(),oo\/Qﬂ

. . . Jzlrem . . . .
From this we easily conclude that relation (/A 57 follows immediately. This train of thought
explains the above relationships between Fourier transforms of delta function and unit

e F(w)

e~ (A7)

function.

A.1.3 Basic properties of Fourier transformation

Theorem A.1 If function f(t) is real, then the Fourier transform satisfies the relation
F*(w) = F(—w). (A.8)

PIl'(f)g)f . We compute the complex conjugate of the Fourier transform. From the definition
Z ela

a) we get

I R A N
- A== [ e = ) (A9)

which ends the proof. m

Theorem A.2 If function f(t) is real, then the Fourier transform of f(—t) is
Flf(=t)] = F(—w) = F*(w). (A.10)

Proof. We compute the Fourier transform as in the definition, and we get

Flf(— et f(—t). (A.11)

o0
|
We change the integration variable ¢ — —t’, and we obtain
o gy

Flf(=t)] = Ve

Since F(—w) = F*(w), the proof is completed. m

e f(t') = F(—w). (A.12)
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Theorem A.3 If function f(t) is real and either even or odd, then the Fourier transform
of f(t) is also either even or odd.

Proof. From previous theorems we have
Flf(£t)] = F(Fw), (A.13)

so it is obvious that the symmetry of f(¢) is inherited by the Fourier transform F(w). m
The convolution of two functions f(¢) and ¢(¢) is defined as

Frat = [ A= e-ta)= [T == (aa

Symmetry of the convolution summarized in the second equality, follows by a straightfor-
ward change of integration variables.

Theorem A.4 Fourier transform of the convolution is equal to the product of the trans-
forms, that is

<odt L [ dY N
Flfraw) = [ = e [T =) gt = F) G (A15)

Proof. We transform the convolution

<odt o [ dY N
o) = [ e [ fa=t)glt) (A.16)

where we change the integration variables. Instead of ¢t we take 7 =t — t/, while we leave
t unchanged. Thus we get

Fig=a) = [ e [T 2 g o)

= F(w)G(w). (A.17)
which ends the proof. m

Theorem A.5 A transform of a product of two functions is a convolution of transforms,
that is

Fitsl= [ = e 1ot (A.15)
:/_Oo d“;;r F()G(w — ) (A.18b)
v ! N = * w c

:/_OO " Pw—w)GW) = [FrG]) (A.18¢)
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. . zlftdefa
Proof. We substltute Fourler transforms of both functions according to (A.Ta) into

rodtr

right-hand side of ( a Wthh ylelds

- o dw” .o
fzwt F / —iw tG " A.19
Tl / m m WL v o CA
1

= R / du' F(w') / dw" G(W") / dt @'t (A.19b)
™ oo oo _

o0

lrem
According to Eq.(ZA.5“) the last integral (over time) gives a factor 27d(w — w’ — w") which
we substitute, and arrive at the equation

1 oo o
Flfg] = / dw' F(w’)/ dw" G(W") §(w — ' — W"). (A.20)

V2T J oo —o0

1 trb

Integration over duw dw” %wes the convolution as defined in (ZA. iZS:l% ri.z I P(I:IS, the first part of
the theorem (A is proved. The second rezllat%o% (i.e., (A.iScH may proved in two
ways. The first proof follows if we integrate in (/A overZ glc%’oh%%ead of dw”. The second
proof consists in the change of integration variable in (A’ . We take " = w — W'

z1 ro trc
Then (A: ollows immediately. m

Let us assume that certain function f(¢) has the property

im T f(t) 0. (A.21)

t—+oco dt"

for the integer n sufficiently large. Then we can formulate the following theorem.

Theorem A.6 The Fourier transform of the derivative is given as follows

) [ dt L, d
]—“{ dtn} = me %f(t) (A.22a)

et f(t) (A.22D)

= —/Lw —_—
[ e
= (—iw)" F(w). (A.22¢)

1d
Proof. Integrating by pagtlsf ino the rhs of Eq.(ZA.ZGZra iraéufﬁcient number of times, we

take into account property (A2T). We see that ‘(cihetbgundary terms vanishes in each step
Irtr
of partial integration. Thus, we ObtalIlldE (AT . Recognizing the transform of the
ertrc
A.22c), which ¢

function f(t) we immediately obtain ( mpletes the proof. m
Finally, let us note that differentiating definition (;X l Bci n times with respect to time

we obtain

dtn / \/_ iw)" e " F(w). (A.23)

1d
from which (ZA.ZGZIC ollows immediately.

We define norms of the functions in time and frequency domains

sl - [ Ta i P, e = | "o [F)P (A.24)
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zith:parth| Theorem A.7 (Parseval — Plancherel) The norms of the pair of Fourier transforms
in time and frequency domains are equal, that is

A1 = NE1P, (A.25)

1ftdef
where function f(t) and F(w) are connected by relations (ZA.I n

Proof. We simply compute the norm in time domain

+oo
1)) :/ dt F(6)f (1)

toeo dw1 o0 dWQ
= dt/ e 1t Fwy) / e 2t F*(wy)
v 2w
+oo

+a> “+o00
_ o / ds Flwy) F* () / dt et (A.26)

27T

o0

The time integral yields 27w (w; —ws), as it follows from Eq.(A.S B Hence, the last integral
easily gives the norm of the transform F(w), and the theorem is proved. m

A.1.4 Pseudo-convolution. An auxiliary integral

We define " pseudo-convolution” as

oo d/
Kiot) = | <= f0+0)g0). (A27

We investigate some properties of this integral.

1th:psconl| Theorem A.8 Pseudo-convolution can be expressed as

oo d/ [e’e] d/
i) = [ = resg®)= [ = r0gw-n. @A)

Proof. The proof follows by introduction of a new integration variable t” = t+t'. Hence

t' = t" —t and we obtain

(e.¢] dt//

Kt = [ S 1057t =) (A.29)

which completes th Il)roocfhf
T he expressmn (A or the pseudo-convolution should be compared to the definition

zlcond
(A~ B convolution.

1th:pscon2| Theorem A.9 Fourier transform of the pseudo-convolution is given as

* dt i}
Kirg(w) :/ NeTa et Kigg(t) = F(w) G*(w), (A.30)

so it 1s the same as for true convolution.
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Proof. The proof follows by direct calculation from the definition

Kun) = [ F= e [ fus o)
- /_oo /_oo dtz—it/ 1) g (). (A.31)

Inserting Fourier transforms for functions f(¢) and g*(t) we get

dt dt/ iw & dw/ i / & dw” W %
il // e pw) [ e o)

dw du}” & dt . ’ ° dtl a7 WY
) G*( ) e—z(w—w )t / ez(w —w')t (A32)
oo V 2 oo V 2m

. . . zlrem .
Employing fourier transforms of the delta function (A.Si, we obtain

Kipg)(w / / d“" W b ) G (W) VaT S — o) VIR 8w — o)

_ / d' F() G (&) 6w — o) = Fw) G"(w) (A.33)

which completes the proof. m
We summarize the results of this subsection by writing pair of Fourier transforms.

Firstly, the Fourier transform of the pseudo-convolution is the Product of Fourier trans-

scon’
forms (similarly as for a true convolution), as it follows from (

[y =L L v res oo (i

_ /_ Z \/‘Z’f_ﬂew [ /_ Z j% £t g*(t’—t)] — F(w) G*(w). (A.34D)

Similarly, the inverse transform can be written as
— e F(w) G*(w A.35a
[ L ® (A.35)
- [ gerngw = [ g0 -n ()
B oo 27 g B oo 2 g .

The last relations can be easily proved in a manner similar as above.

A.1.5 Properties of the Lorentzian curve

We define a Lorentzian as a frequency dependent function

L/m

L(w) = RS

(4.36)

with wy and I' being real positive parameters. We intend to compute the Fourier transform

(A.37)

—zwt F/T{'

)= [ e

|
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We separate the denominator into two factors

The integrand has two simple poles wy = wy — ¢I" and ws = wy + ¢I'. Hence, our integral

L/m
[(w = wo) 4+l [(w — wp) — I -

—twt

(A.38)

becomes

—twt

_E © dw e
o oo V21 (w—wi) (W—ws)

Such an integral can be corlripuged via the residue theory. Thus, we see that the problem
Z [e]

of evaluation of integral (A~

(%) (A.39)

I
reduces to the proper choice of the integration contour.
Let w = a + 483, then e~ = e~iaFif)t —

e~"t+Bt  Therefore we easily conclude that

e For time t > 0 convergence of the inte-
--------- gral requires § < 0. This, in turn implies
that w should lie within the lower half-

plane (Im(w) = 8 < 0.

On the other hand, when time t < 0
\ ) , by the same argument of convergence
we should have § > 0. So, in this case,
w should lie within the upper halfplane
T~ e (Im(w) =3 > 0.

The integration contours aPp;QIRggrf&for both

case are presented in Fiq.(A- ordan lemma

Fig. A.1: Typical integration contour
for evaluation of the Fourier transforms
over frequency.

ensures that the integrals along the arcs in
0) or upper halfplanes (for ¢ < 0)
et when their radius tends to infin-

ity. The remaining integrals along the real axis

reduce to the sought integrals over real axis.

Hence, for time t > 0 we choose the contour in
the lower half plane. The contour includes only one pole, namely w; = wy — iI". We also
note that this contour has negative direction. Then by means of the residue theory we
obtain

e*(F‘i’in)t .

I(t) = —2mi (A.40)

1 (F) et 1
V2T m w1 — W2 V2T
Similarly, for ¢ < 0 we close the contour in the upper halfplane. The contour again
includes only one pole ws = wy +¢I", and has positive direction. The residue theory yields

in this case
e—iwgt 1

\/12_7T <£) W2 — Wi N V2m

6—(I‘—zw0)\t|’

I(t) = 2mi (A1)
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where we note the presence of the modulus of time in the last exponential. We can write
dzllortr4 ziloxrtrb

Eqgs.(A40) and (A'4I) as a single relation, in which we use the Heaviside functions to
denote the corresponding time domains

o(t - W o(—t —iw
I(t) = % o~ (Mol | % o T—ivo)t

z1llo

(A.42) |zllortr6
3 ; .. . zllortril
where the alasolute value of time t is already not necessary. Combining relations (b\‘?ﬁ*
and (A742), we finally have

() = /°° dw ., L/m
) Vor ¢ (W—wp)?+17?
1

(A.43a)
_ o1l e ot A.43b
— ( )
0(t> 7(F+' 9<_t) —1
e iwo)t + e(r le)t7 A.43c
V2T V2m ( )

. . . X zlloxrdef
which completes the computation of the Fourier transform of the Lorentzian (A.Sé).

For pedagogical reasons it is useful to consider the inverse integral, that is the Fourier
transform

<oodt
L(w) = /_Oo Tor et (1),

(A1)
1lort

Wilt:}Llolgl)7taken as in the right hand side of (%.ZIOSJ i.rSubstituting [(t) into Fourier integral

(EX.ZIZIJE we obtain

d ) e g (1)
)’ — iwt (T+iwo)t + iwt
() /_oo V 2w ¢ V2T ¢

—_— — 7 o(T—iwo)t (A 45 __11
e e . . zllortr8
oo V 27 V2T ( )

Simplifying, and taking into account properties of the Heaviside function, we arrive at
the expression

400 0
L(w) = i dt et e~ (Ttiwo)t i dt et o(T—iwo)t
2m Jo 2m '

(A.46)

In the second integral we change the integration variable ¢ — —t’, and we obtain

Lot e
Lw)= 5 /0 it e~ITiteo-wlt 4

- dt 7[I‘7i(w07w)}t.
2m Jo ¢

(A.47)

The obtained integrals are complex conjugates, therefore we can write

1 o0 .
L(w)=—2Re dt e~ M Filwo—w)lt

2m 0

1

R 1 r 1
= —-Ree——7F— = (- :
7r ' —i(wy —w) ) I'?+ (wy —w)?

as it should be for the Fourier transforms [(t) and L(w).

(A.48)
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We shall prove another extremely useful property of the Lorentzian. Let us consider
an integral

I = /oo dw (Fl/ﬂ-) (FQ/T‘-) ) (A49)

~ (W—w)2+T1? (w—wy)?+132

First, we note that this integral is proportional to the convolution of two Lorentzians. This
can be shown by changing the integration variable. Instead of w we take w’ = w —w;, and
we obtain

I= / " g L/ (I2/7) . (A.50)

o WPHTT [(wr—w) WP 4T3

We see, that apart of tl%%of%ctor (2m)~Y/2, the obtained integral indeed is a convolution of
Z
two Lorentzians. Eq.(A.50) can thus, be written as

I =21 (Ly* Ly) (), (A51)

with € = wy — wq, and other notation following by comparison of the right hand sides of
two last equations.

z1th:prodtr
According to theorem (1A~ e convolution of the transforms is a transform of the
product. Adopting the notation as in Eq. (/A o the present case we get

(&

I = r (Ly# L) () = m/“’ \/%e L (t) ()
_ i [

dt eiwt [0(t> —TI'qt + 9(_t) erltl

o V 21

y [ 0(t) e~ (T2t | 0(—1) 6(1“2+i9)t}‘ (A.52)

Since 0(t) 6(—t) = 0, we obtain

;o /°° dt gt [eg) [T+l 9(;?5) 6[(F1+F2)+i9]t}_ (A.53)

zllortr
We recognize the Fourier transform of the Lorentzian (cf. (A.Zﬁii ), and we have

(Iy +Ty)/m

I = .
(I'y +Ty)2 + Q2

(A.54)

. . lz1loxr1l lz1loxr6 )
Connecting equations (A~49) and (A-54) we finally have the following result

/ " (1 /7) (La/m) _ (I + o) /m (A.55)

00 (w — w1)2 + F% (w — Cd2)2 + F% N (Pl + F2)2 + (CUQ — W1)2 ’

so we can say that a convolution of two Lorentzians is proportional to a Lorentzian. This
result can algso be obtained by a direct computation of the integral in the left hand side
of Eq.(21.10 f However, usage of Fourier transforms greatly simplifies things, since direct
integration is pretty complicated.
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A.1.6 Sochocki formulas and related topics
Principal value of the integral

We define the principal value of the integral (shortly, principal value) by the relation

Vp /_C:dxgo = lim U / }dxgo (A.56)

which exists for some functions, and does not for some other ones. For example, function
1/z is divergent at x = 0 and thus, is nonitegrable. We will show that the principal value
for p(x) = 1/x exists. Indeed

® d —d Ra
Vp/—x:limlim[/ —x+/—ﬂ
o T e—04 R—oo _Rp T € T

= lim lim <ln‘ar[; + 1n|x‘;R> = 0. (A.57)

e—04 R—oo

So, the discussed principal value is well defined.

Let ¢(z) denote a differentiable function, such that ¢(x) = 0 for |z| > R (finite
support). Then, we use the concept of the principal value to define a distribution P(1/x)
(a generalized function) as follows

<7>%, p(r)) = Vp /_Zd 2o _ lim U / }d #@) (A.58)

The integral under the "Vp” sign is usually divergent at x = 0. On the other hand, the
last part of the above relation may give finite results because we have specified a special
way of avoiding the divergence, as a result we obtain finite number, since the function
¢(z) vanishes for sufficiently large [z|. ..

Let us now transform explé%%ssion (m) into some other form which will be useful in

further developments. From (IA758) we get
1
(P, o(z)) = lim { / / ] gy ) = 2(0) +0(0) (A.59)
xT e—04 €T

The quotient [¢(x) — ¢(0)]/x is continuous and finite at x = 0 . This follows from de
L’Hospital rule and from good behavior of ¢(z) . Hence, the integral of [p(z) — ¢(0)]/x
can be computed without any special limiting procedures. Therefore, we can write

<P§, plx)) = /_OodxM + ¢(0) el_if& {/_6 Ci:—x—l—/jo Ciﬂ (A.60)

(e 9] o0

£02
The last term gives zero (see Eq.(SYX.ST)), and we arrive at the relation

<7>1, o(r)) = Vp /OO az 2O _ /OO gz P8 = 20) (A.61)

€T T i

[e.9] o0

This relation will appear to be useful.
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Sochocki formulas

We recall that the function ¢(x) vanishes for |z| > R. Then we consider an integral

[e's) R

lim dx gp(a:) = lim dr =—< ()
=0+ ) o T Hi€ e—0y J_p a2+ €
R .
. Xr — 1€
= Jim [ de e L) = 9(0) +0(0)]
O im (a7 [ de ST (o) - e0)] (A62)
= m T ——> im r — z) — )
¥ 0 _R .CE2+€2 e—04 _R $2+62 ¥ ¥

The first integral contains an odd part (proportional to x) which does not contribute. In
the second integral we take the indicated limit. Thus, we get

o0

im [ dr 29 = is(0) tim Sy /R dp £ =00y gy

e—04 J_ x + i€ e—0y J_p  xZ4e€? R x

[e.9]

: : I . ﬁ\f_%é"l
The first integral is tabulated — it gives arctg, while the second one follows from (A-61).
Since function ¢(z) vanishes beyond |z| = R we obtain
> R 1
lim dx o) = —2ip(0) lim arctg (—) + (P—, o(x)). (A.64)
€ x

64>0+ 0o X + Z:E €4>0+

Taking the remaining limit is easy, and we arrive at

o

lim L C <7>%, o(z)). (A.65)

e—04 [ T+ 1€

o0

The obtained relation has distributive sense. In this sense, it can be rewritten as

1 1
lim — = —imd(x) + P-. (A.66)
e—04 T 4+ 1€ x
Expression (IA766) must be understood as a dlstrlbutlosn Vghlch, when applied to a func-
tion (z) automatically entails relation (A65) (with (A
meaning of the last term). Relation (IA766), in its distributive sense, is called the first
Sochocki formula.
The second Sochocki formula is obtained by simple complex conjugation

) kept in mind to explain the

im — = iro(x) + P (A.67)
T

e—0y T — 1€

, _ sf12 sf13 o
We stress, once again, that Sochocki formulas (A766) and (AT67) are validin the sense of

distribution ggeneralized functions) theory. It implies that their sense is given directly by
S

relation (m) Sochocki formulas occur in some quantum-mechanical calculations. This

is the reason why they are worth remembering.
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Application of Sochocki formulas

Before discussing the practical a%pQIications %ei‘% us transform the obtained Sochocki For-
S S

mulas. First we write relation (A766) and (IAT67) as a single one

lim L Find(x) + 771. (A.68)
T

e—04 T 1€

Left hand side can be rewritten as follows

1 1
I - lm ——— = lm —— . A.69
0y TEie | ey —PoLie | o0 Fi(Eir —e) (A.69)
f16
Then, formula (%6'8) gives
1 |
lim —— = Find P-. A0
B S - Tl Py (A.70)

Multiplying both sides by (Fi) we get

lim ! = — wi(z) F Pé. (A.71)

e—0y +ix — €

This is another (and useful) form of the Sochocki formulas.
In order to see the usefulness of the obtained results let us consider an integral which

is encountered in some quantum-mechanical applications. It is

I(z) = / dt e = lim dt eEFe=at, (A.72)
0 =0+ Jo
The factor e~ causes the integral to be convergent and allows us to compute it. The
result is
; | e(:i:i:v—e)t o | -1 AT
_ 1 ’ 73
() = tim o — —0s iz — ¢ (A.73)

£19 £22
because for t — oo the factor e~“* tends to zero. Now, comparing Eqs.(SA. 71) and (%.73)
> ; 1
/ dt e = 7wo(x) + P—, (A.74)
0 T

which has to be understood in the distributive sense, as discussed above. We note that

sf23 . zirem )
(A~74) is an analogue of the Fourier transform (A5), that is
/ dt e = 276(x). (A.75)

£23
Let us note that from (KS .74) we easily have

/ dt em/ dt e ™ = 2716(x). (A.76)
0

0

In the second integral we change the integration variable t = —t' and we get

/ dt it / dt' e = 2ms(x). (A7)
0 0

Reversing the integration limits in the second integral and dropping the prime we imme-
S
diately see that the Fourier relation (A.75) indeed follows.
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An auxiliary integral

Let us first consider an auxiliary integral

00 e—iwt
I(t,y) = dw ————, ith v > 0. A.T8
)= [ ot with (AT
The integrand has the first order pole at w; = —iy in the lowe¥ .Ealfgé’é%ﬁe of complex w.
Therefore, closing the contour in the upper half-plane (see Fig.(IA-T)) we obtain zero, since

this contour contains no poles. Closing the contour in the lower half-plane we may obtain
a non-zero result. However, we must be careful. In the lower half-plane w = o — i|3|.
T hus, we have et = e~ @—ilB)t = g=iat=IBlt " The integral will converge if and only if
the time ¢ > 0. Hence, we employ the approach similar to that we used considering the
Fourier transform for the Lorentzian. For time ¢ < _we close the contour in the upper
half-plane, which gives zero for the integral (see Fig.( 5 J.cconn he other hand, for time
t > 0 we close the integral in the lower half plane. Noting the negative direction of the
contour we compute the integral by residue theory. We use the Heaviside function which

ensures that the integral vanishes for negative times, and we obtain
o) e—dwt o0 e—dwt
I(t,y) = / dy —— = O(t)/ dw ————
o Wiy o Wiy
= O(t) (—2mi) e = = —2mi f(t) e (A.79)
Thus, for v > 0 we have obtained the result
—iwt

I(t,) = /_ h \/d;_ﬂ c = —iV2r 0(t) e (A.80)

w + 1y

Fourier transform of Heaviside function

. zlaint3
From relation (IA-80) we conclude that

. —iwt
o(t) = —— lim ‘

* dw
V2r =0y /_oom w + i€

Hence, Fourier transform of the Heaviside function can be written as

(A.81)

1 1
0(t) = = li . A.82
FOO] = O) = A= lm (A82)
£12
Employing the Sochocki formula (%66), we get
FO)] = Ow) = —— lim — ! { 5(w) + P ] (A.83)
= Ow) = im = mo(w) +1P— | . .
V2 e0p w e V2T w
1htr3
By an obvious property of Fourier transform, from relation (Z .ht we also obtain
Flo(—1)] = O'(w) = — [ 5(w) — iP } (A.84)
— — = i — — . .
V2T w
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A.2 Three-dimensional Fourier transformation

We shall very briefly summarize some basic facts concerning Fourier transformation. We
will not be mathematically strict, and we will omit proofs of various statements or theo-

rems. Those can be found in many mathematical handbooks.
Let us consider the function F(r) of the position. F' may, as well depend on other

variables, but we do not indicate other dependencies. The Fourier transform is defined as

o N 1 = —ikF o
The inverse transformation takes the form
. 1 I
—1 2\ 2\ ik-r
FH(F)(X)=F(r) = —(277)3/2 /dk ™" F(k). (A.86)

This equation expresses F'(r) as a superposition of plane waves with wave vector K.
Writing the above definitions we assume that the functions are such that the neces-

sary integrals exist. Usually it is sufficient to assume the considered functions are square
integrable or even just integrable. On the other hand, it is sometimes useful to view the
Fourier transform as a certain mapping in the space of generalized functions — distribu-
tions. However, we will not go into mathematical details, we will only list some useful
properties of the Fourier transforms.

Dirac’s delta function has the following Fourier properties

e~ikFo — / dt 5(F — Tp) e~ *F (A.87a)
() 5(F—Ty) — / 4R ) (A.87b)

It may we worth recalling that the Coulomb potentials satisfies the equation

VQ( ! ):—5(?). (A.88)

47 |7

Theorem A.10 If the field F(Y) is real, then its Fourier transform satisfies the require-
ment

F*(K) = F(—Kk) (A.89)

. . . z1ftd z1ft2 . .
It is straightforward to see that the transformations (A-85) and (IA-86) are identical

to the relation between wave functions in coordinate and momentum representation in

quantum mechanics. In that context it is well-known that the overlap between two wave
functions can be evaluated in either representation. This is the reflection of Parseval
identity for Fourier transforms.

Theorem A.11 If the fields F(F) and G(F) have Fourier transforms F(K) and G(K),
then we have Parseval — Plancherel identity

/ ¥ F*(F) G(F) = / dk F*(k) G(K). (A.90)

The fields F' and/or G may be complex.
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Theorem A.12 The convolution of two fields F(¥) and G(Y) is defined as

S 1 S e o
(F+G)E) = o / % F(R)G(E - R). (A.91)
Fourier transform of the convolution is a product of the transforms, that is
1 2 —ikF = O e
o / dF 5T (F 1 G)(F) = F(R) G(R), (A.92)
while the Fourier transform of the product is the convolution of the transforms
1 2 —iKF 2\ (R 5. A1

Another result of the Fourier transform theory is also well-known in the context of
quantum mechanics. It is the expression for the Fourier transform of the gradient of a
function F(r).

Theorem A.13 Fourier transform of the derivative 0; F(T) follows by partial integration,
and is given as
1
(2m)3/2
This theorem is equivalent to the statement that the momentum operator in quantum

/ dft e 9, F(F) = ik; F(K), (A.94)

mechanics (in properly chosen units) is —iV in coordinate representation. This allows us
to transform differential equations in coordinate space into algebraic equations in Fourier
space.

2t:z1ft4
Theorem A.14 Simple generalization of the previous theorem (KA IZI'S’:S yields

(27r1)3/2 / dF e [Vo(H)] = koK), (A.95a)
(2;)3/2 / aF o [aivFE)] = ik F (). o
(273)3/2 / a e (ot F()] = K x F(k), (A.95¢)
(27r1)3/2 / aF e T [V20(R)] = K oK), (A.95d)

(A.95¢)

Theorem A.15 Fourier transform of the Coulomb potential is given as

As a consequence we get the following relations

1 e [T 1 —ik
[ dr e = A.
(27)3/2 / e ( 473 ) (27)3/2 < k2 ) ’ (A.97a)

1 L —iK O F
(27)3/2 /dk c ((2#)3/2 k2>  4qr3 (A.97b)
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Appendix B

Useful operator identities

B.1 Similarity relations

Theorem B.1 Let A and B be operators. Let & be a parameter which may be complex
or real. Then, the following identity holds

£iaB + SAB] + SAMAMB] + ... (BY

EAD —EA
e*“ Be = B + o 3

Before proving this theorem let us specify a superoperator A. For arbitrary operator B we
define

AB=[A,B]. (B.2)
Formally we can also write

A=A, |, (B.3)

where an empty place at the second position within a commutator is understood as a place
where the operator B, which is acted upon by the superoperator A, sho%delgﬁ inserted.
Having the definition of the superoperator A we can rewrite the theorem (ZB. 1) equivalently
as

exp(€A) B exp(—€A4) = exp(¢A) B. (B.4)
Proof. We introduce an operator-valued function

g(&) = ¥4 Be™t4, with initial condition : g(0) = B. (B.5)
Next, we expand ¢(&) in Taylor series

o) =90+ 3 & T

It remains to compute explicitly the coefficients of the expansion, that is the derivatives

(B.6)

£=0

evaluated at & = 0. The first derivative is as follows

dig(ﬁ)‘ = di (egABe_gA) = (AeEABe_ﬁA — egABAe_gA)
AT o

= (Ag(§) — 9(5)14)‘5:0 = [4, 9(5)”5:0 = [4, B] (B.7)

|§:0
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where the first equality in the second line follows from the fact that operator A commutes
with the exponential egAt. The last equalitg fotl%l(i\éfs from initial condition for the function
Z

2
g(&). Substituting (ZB;) o expansion (B.6) we obtain

n dn
€)= 9(0) + 5 4, Bl + Z & 29 (B.5)
d&™ Jemg

In the similar manner we calculate next terms of the expansion.

), ~ o], - 25

- = — A, = |A,

90| = gl o] e
where the last steps follow from Eq. (282 7 ithll Chus, (282.% itfhrlégnsforms into the relation

Further derivatives may be found in the same manner. It is also 0851ble to employ the
method of mathematical induction to Z}%gwe (;C&lat the theogg (O “Mdeed holds.

Finally, we note that the relation @%ﬂows from (%._{%ﬁmply by expansion of the
exponential in the right—hangigi%g of ( omparing the obtained expansion we easily
see that right-hand-side of (B-T) 1s reproduced. This completes the proof of the theorem.
u

The previous theorem can easily be generalized. We shall now formulate a generalized
similarity relation.

Theorem B.2 Let g(By, ..., Bx) be a function of k different operators. We assume that
this function can be expanded into series

9(B1, By, ..., Br) = Y Guins.n, BBy ... B (B.11)
{ne}

If it is necessary, commutation relations can be used to rearrange the operators {B;} in the
power series. Then, the following similarity relation holds for operator A and a complex
number &

Ag(By,By,....,By) e = ¢ (egABle_gA, A Bye, L, egABke_gA) , (B.12)

that is, the function g is unchanged, only each of its arguments is transformed according
to the given similarity.

Proof. Applying similarity operator e on the left of the expansion, and e=¢4 on the
right, we can also introduce the 1 = e $4ef4 between all factors in each term of the
series. Then each of the operators undergoes the similarity transformation, and the series
coefficients remain unchanged. Resummation yields rhs of the theorem. m
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B.2 Decomposition of the exponential

B.2.1 General idea of the decomposition

In many practical applications we need to express the operator exp[¢(A + B)], where A
and B are also operators, as a product of separate exponentials, that is

ALB) _ LR(OA JROB B (B.13)
where fi(£) are ordinary (c-numbered, complex) functions of the parameter £ € C. These

functions must satisfy an obvious boundary condition f;(0) = 0. The whole problem is
to determine these functions. Before we start looking for the solution, let us note that we

can easily write the relation inverse to (B.13), namely

oEATB) _ = f3(6) p~ROB ,~H(©A (B.14)
Surely, exp[—f3(£)] is a number so it commutes with all operators

To find functions fi(§) let us differentiate both sides of )(B-13), thus obtaining
(A4 B) EA+B) — f/(e) A PO (P08 ofs©) | ohlOA /() B POF oI
+ A OB O f/(£), (B.15)

where ‘ghe prime denotes the derivative with respect to &. 1>Text we multiply both sides
of (B.I5) on the right by both sides of the inverse relation (B.14). We get

A+ B = flOA+ [(©ehOMBehO 4 (). (B.16)

Equating the coefficients multiplying operator A, we see that

!

. . . . lz2deb | z2ded .
which satisfies the boundary condition. Using (B.17) in (B.16) we reduce it to

B = (e Be ™ + [f5(9). (B.18)
2t 1
Now, we employ the similarity expansion (ZB.I ;efoo write

/ 1 £2 /
B = KO {8+ §IAB ¢ FIMBL 4 .} + £ (B.19)
Further steps obviously depend on the shape of the commutators which appear within the
curly brackets. If we know the commutators, we can try to find the remaining functions

of the parameter £.

B.2.2 The case of [A, B|=c

Let us now_assume that the commutator [ A, B | = ¢, where ¢ € C. In such a case, all
terms in (B.19), except the first two ones, vanish and we have
B = LB + &) + f(6) (B.20)
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Hence, we arrive at the equations

/

£ =1, and  fy(&)éc + f4(6) = 0. (B.21)

These equations are immediately integrated, and taking into account the boundary con-
ditions we get

(&) =& and  f3(§) = -5 &% (B.22)
Thus we can state the following
Theorem B.3 If two operators A and B have the commutator [ A, B| = c € C, then

eSAHB) = £A B 6_052/2, (B.23)

for any complex parameter . Equivalently we can write

eSA+B) — (B 8 6652/2, (B.24)

B.2.3 Special case for annihilation and creation operators
z2della | e .
We employ the theorem (B:23) taking £ = 1 and specifying the operators as

A=aa, and B = pal, (B.25)
where @ and a' are annihilation and creation operators. Since

[Ozd, gal ] =apf, (B.26)

lz2della lz2dellb .
from Egs.(B-23) and (B-24) we obtain

= o gl gmaB)2 (B.27a)
= P ot B2, (B.27Db)

a—+0at
eaa—‘rﬁa

These relations are very useful in many practical cases.

B.3 Similarity relation for annihilation operator

B.3.1 General relation

Let @ and a' be the annihilation and creation operators, which satisfy the canonical
commutation relation [&, af ] = 1. Let us, moreover, define an operator

7 = aa + pa’ + va'a, (B.28)
with «, # and 7 being complex parameters (numbers). We consider the similarity relation
a(é) = e % aet?, (B.29)

Wiéﬁ%l an obvious boundary condition a(0) = a. We can, in principle, use general expression
Z eo

-1). This is, however, inconvenient because due to the term va'a, the commutator series
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. . . z2sra2
do not truncate. Therefore, we employ a different approach. We differentiate Eq.(B.2§$
with respect to parameter &, obtaining

d
d—fa(g) = e (-Za+d'Z)e” = e ]a, 2] (B.30)

It is straightforward to compute the commutator
la, Z] = [a, ca+pa' +rdla] = B+~a. (B.31)

Thus we have the differential equation
d

P a(§) = e (B+na)e” = B +ra(f). (B.32)
This is an inhomogeneous differential equation. The homogeneous one: 2gr' (é) = ~va has
an obvious solution a(¢) = a(0)e?¢. Hence, we look for the solution of (B:32) in the form
a(€) = e b(E), (B.33)

2srab 2 5
with boundary condition b(0) = a(0). Inserting (ZB.SSII?;i into (ZB.SBrji we obtain an equation
for b(&)

b/(i’) = e %3 which yields b(&) = b, — g e e, (B.34)

where the constant b, has to be fixed. From boz%rsll@agy condition we get a(0) = b(0) =
by — (3/7. Therefore, the sought solution to Eq.(B- follows as

a(¢) = e* (d(O) + b_E e—%) : (B.35)
v
This completes our derivation and we can finally write
a(§) = e Slaathalinala) g (Laatpaltyale) — 40t 4 s (¢ —1). (B.36)
Y

B.3.2 Some special cases
z2srad

Let us take v = 0, £ = 1. Then, relation (B.36) reads

e—a&—ﬁ(ﬁ & ea&—i-ﬁ?ﬁ — + ﬁ (B37)
and it can be rewritten as

dea&+ﬂdf — ea&+ﬁdT a + ead+,3&T ﬁ7 (B38)
which yields the commutation relation

[&7 eaa+ﬁaf] — coathal g (B.39)

z2ac z2srall

Let us note, that we can apply relations (B.27) to formula (B-37). This gives

o Bl g—ad jaB/2 ;) pad pat —aB/2 _ et 5 Bat _ i+ B, (B.40)
because e**% commutes with a.

2 9
Another special case follows easily, when we put a = 8 =0, and v = 1. Then (ZB.SS%i
yields

a(6) = e 8 g eite — gt (B.41)
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B.3.3 Applications of generalized similarity relation

. e z2sT . . ..
The generalized similarity theorem (%_[2% has several immediate applications. The first
one is for arbitrary function g(a, a') which can be expanded into power series of annihi-
lation and creation operators, namely we have

p—tata g(a, ah it — g (efgafa g efala —gata gt ega*a)
= g(act, a'e®) (B.42)
. z2srald
where we used relation (B.2T).
Let us note, that (B.42 implies for y € R that
e—wala D(z) pwala  _  —iyala exp (de _ z*&) pivata
= exp (ze’ider — z*eiyd)
= D(ze ™) (B.43)
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B.4 Squeeze operator

We define squeezing operator, for a complex parameter ¢ € C, as

S() = exp [%5 i L W] (B.44)
We easily see that
$16) = ew| @ - gea], = sC9 = 57, (B.45)

which indicates that operator S(§) is a unitary one.
In the spirit of previous sections, we intend to investigate the similarity transformation

of the annihilation operator induced by the squeezing operator. That is, we are interested
in the expression

. L. 1 .9 . 1., 1.,

() = S 510 = exp | 360 — je0* | a e | e - Je@? | Bao
To consider this relation it is convenient to write the complex parameter in polar coordi-
nates,

& = pe. (B.47)

. z2squ3.
Then, we can rewrite (B.46) in the form

as(€) = exp [p (%(dT)2 el — %&2 e—w)] a exp [— p (%(dTV e — %éﬁ e_w)] . (B.48)

. . z2theol . . . .
We analyze this expression by means of formula (B ;, in which we make the identifications

1 . 1 .
£ —p, A— 5(fﬂ)2 e’ — §d2 e B — a. (B.49)

We see that we have to consider the commutators of operator A with B which, due to
the introduced identifications, reads

A4 B] = F(&*)Qew -

) 1 . )
A2 —30 A o 0 [ATAt & o 10 ~
5 a“e ", a} = ;e [aTa, a] = — %, (B.50)

1

2

Using the obggiggd commutator, we compute the next one, as it follows from the general
Z

expansion (B.T). We get

1 , 1 _ ) 1
[A,[A, B)] = |=(@@)?e” — za’e™, —e™al'| = -[aa, '] = a. (B.51)
2 2 2
By careful inspection of the obtained commutators we conclude that:
2 5
e when operator A identified according to (z -19) occurs even number of times, the re-

sult of such a multiple commutator will always be equal to the annihilation operator

A

a;
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e when operator A occurs odd number of times, the result of a corresponding multiple
commutator will always be equal to the —e®al.
z2theol

Therefore, the general similarity expansion (B-T) splits into two series: with odd and even
terms, and we get
2 4 3 5
. P P At P P
as(§) = a(1+§+1+ ...... ) —aTee(p+§+a+ ...... )
= acosh(p) — a'e®sinh(p). (B.52)

Summarizing we write

as(&) = ST(€)aS(E) = acosh(p) — a'esinh(p), (B.53)

: C e z2sT . .
The generalized similarity theorem (%_J'Z% can be applied to find a transformation of
the squeeze operator. Since the exponential function is expandable into the power series,
we get for y € R:

2
1 o N2 ] L N2
= exp |:§§* (6—ZyaTa a elyaTa) . 55 (6—zy(ﬂa (AIT elyaTa> :|

1 A 1 .
= exp |:§€* &2 622y o §€(dT)2 e—?zy:|

oL o o 1 1 o
e—zyaTa S(S) ezyaTa — e—zyaTa exp (_5* d2 o éf(dT)2) ezyaTa

= S (5 e’Qiy) (B.54)
z2srald
where in the third line we have used (B.41), while in the fourth we used the definition of
the squeeze operator with shifted argument. Josr 295 qu8
Next, we note that by means of the general similarity theorem (B-12) and using (B-

and its hermitian conjugate, we can write

S1(€) g(a, a') S(€) =
= g(acosh(p) — a'e”sinh(p), a'cosh(p) — ae “sinh(p)) (B.55)
where g(.,.) is a function, which can be expanded into power series. In particular, taking
function g as the displacement operator g(a, a') = D(a) = exp(aal — a*a) we obtain
ST(&) D(a) S(€) = exp [ (al cosh(p) — a e sinh(p))
—a* (acosh(p) — a' e” sinh(p))]
= exp [a' (acosh(p) + a*e” sinh(p))
— a (a” cosh(p) + ae " sinh(p))]
= D (acosh(p) + a*e” sinh(p))
— D(2). (B.56)

which defines new argélsmelnzt z = accosh(p) +a*e? sinh(p) of the transformed displacement
operator. Relation (B:50) can be written as

D(a) S(&§) = S(§) D(»), (B.57)
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with z given via o and ¢ = pe? as above. Taking the expression for z and its complex
conjugate, we multiply the first one by cosh(p) and the second one by — sinh(p) €. Then
we add both equations, and using the hyperbolic unity we express « as

a = zcosh(p) — z*¢ sinh(p) (B.58)

which, together with

z = acosh(p) + a*e”sinh(p) (B.59)
z2squl3 . .
allows us to use Eq.(B.57) n an effective manner. From the last relation we see that
ze 2 = e 2 cosh(p) + a*e/? sinh(p)
1 , , 1 , ,
=3 e’ (a e 2 4 a*ez(m) + 3 e’ (a e /2 _ a*e“)ﬂ) (B.60)

This allows us to derive a useful relation between parameters v and z, namely

Re (z e*i(’w) = ¢e”Re (a e*w/Q)
Im (z e_w/Q) = ¢’Im(a e_w/g) (B.61)

X ok ok ok sk ok okok ok sk sk kok ok ok oskoskokok ok sk osk ok ok ok ok ok sk k%
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Appendix C

Certain sum rule for Hermite
polynomials

Here we will prove the following summation rule involving even Hermite polynomials

i — 1 ex (4tm2> (C.1)
o T ira CP\Txa) '

To prove this rule, we recall the generating function of Hermite polynomials

o0 n

_52 ST S
e ST — Z mHn(x) (C.2)

n=0

) . z3sh2 2. . "
We multiply both sides of (K ‘2% by =", with a being a real positive parameter, and then
we integrate both sides over s € R!. Thus, we get

00 oo H 0o
/ ds e~ (a+1)s%+2sx _ Z n('l') / ds s" e—as2‘ (C?))
_ n! )

o0 n=0

) .. z3sh3 i . .
Both integrals appearing in (k 1.5’]; are simple. The one in the lhs we compute according

00 2
/ dy e*py27qy — \/g exp (Zp) (C4)

. . . z3sh3 .
where in our case p = a + 1 and ¢ = —2z. The integral in the rhs of (€ ‘3; vanishes for
n = 2k + 1, that is for odd n. Thus we have

> 2 L(k+1/2
/ ds s e7*" = %’ for n =2k. (C.5)

to

o0

z3sh4 lz3shb lz3sh3
Using (\b 4) and (\i H) in (E 3) we get

ar eXp( 2 ) _ i Hop(x) T'(k+1/2) (C6)

a+1 a+1 — ak (2k)!

Next we consider the combinatorial term in the rhs. We know that

Tk+1/2) = V7 k=D

= (C.7)
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Moreover, we have (2k)! = (2k)!!(2k—1)!! = 2¥k!(2k—1)!!, so by combining these relations

o = Vo (©8)

z3sh8 z3sh6
Using (K ‘8; in the summation rule (K ‘6; we obtain

i (1)kH2k(x) _ a exp( a2 > ©9)

A k
— 4a a a+1 a+1

We see that substitution a = 1/4¢ yields

=, H 1 Atax?
e e (). (C.10)

|
— k! 144t 1+ 4t

3shil
which is the sum rule (sz.sl ; which we intended to prove, so the proof is therefore completed.
Finally we note that the obtained expression is well defined for t > —1/4.

kokoskok ok ok skoskosk kR ok okoskosk kR ok koskosk sk ok ok ok skosk sk kX
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Appendix D

Pseudospin operators

D.1 Basic definitions
Identifications
|1>=<?), |2>:<(1)>. (D.1) [2avecid]
Construction of the pseudospin matrices
il = (Ve = (9 9). (D.2a)
el = (Voo = (7). (D.2b)
201 = (g )on = (g ,). (D20
220 = (g )0 = (4 ) (D.24)
Pauli matrices
a= (Vo) 2= (17) m=(od) 09

It is convenient to denote
0 0

s=mzl = (1), (D.4a)
01

S, —[2)(1] = (0 O). (D.4b)

We call these operators lowering and raising, respectively. We now define some more

operators via their matrices.

1 1 01

S = -5 (S+—S_):% (3 _é) (D.5b)
1 1 1 0

s = 3 (2el-mab=3 (4 7). (D.50)
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An obvious connection with Pauli matrices

Sj = 5 O'j (D6>

explains why we call S; operators the pseudospin. Before discussion of tzlfe propertigs ofb
ZaSXYyZa Z4SXVZ
the pseudospin operators we make two additional comments. From Egs.(D.5a) and (D.

it follows that

Sy = S1+iS S =S —iSh. (D7)
We also note the Hermiticity relations
SJT» =S, — Hermitian, S1 =S, — Hermitian conjugates, (D.8)

what follows by inspection of the matrix representation.

D.2 Various products of pseudospin operators

The products of pseudospin operators follow:

e from their ket-bra definitions;
e from their matrix representations;

e from the fundamental property of Pauli operators:

0; O = 1€jjm O, for j #k, a? =1 for 7=1,2,3. (D.9)

All this sources are in fact equivalent. The proofs of the given below relations are omitted

since such proofs are very casy to do. Before we give many particular examples, we note
Z u Z u

that Eqs.(D.9) and (D.6) imply

i , 1 .
S; Sk =5 €jkm Sm. for j#k, S7 = 7 for j=1,2.3 (D.10)
For raising and lowering operators we have
S+S+:0 S+S_:1/2 + 53,
S_S5_=0 S_S.=1/2 — S;. (D.11)

D.3 Commutation relations

For Pauli operators we have

[0j, okl = 2i€jpm om, (D.12)

4 1
which, together with Eq.(Z Xi ?uYIGIdS the commutation relation for the pseudospin oper-

ators

[S;, Skl = i€km S, (D.13)
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For raising and lowering operators we have
[Si7 Sl]::ts'g)a [Si, SQ]:iS?)’ [Siy SS]:q:Si,
and

[S,, S_] =28,

D.4 Useful identities and their consequences

4th:sopidl| Theorem D.1 For numbers o and (3 real or complex, there holds an identity
i

Jar (a Sy +0BS-)sinyaf .

exp[ia Sy + 18 S_]=cosv/af +

(D.14)

(D.15)

(D.16)

This identity has several interesting and useful consequences. Putting a = 3, we get

S+ T9-) — cosa + (S} + S_) sin . (D.17)
Since 257 = S, + 5_, we also get

%51 = cos o 4 289 sin av. (D.18)
If we take a limit 5 — 0 in (%4._5?69%&76 get

% =144ia S, (D.19)
Similar procedure, but with v — 0 yields

ePS- =14+iBS_. (D.20)
Combining two last relations we have

et =1 +ia Sy (D.21)
If we put a = —i&, = i&, then from (%L._Sf)(ﬁg)%e can derive

S+ HB5-) — 2892 — o5 € 4 2iS, sin &, (D.22)
which should be compared to (W

@ Theorem D.2 For numbers a and (3 real or complex, there holds an identity
exp[ia S3+1if 5] =
= coS (—W) + ﬁ (aSs+[3S))sin (—W) (D.23)
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This theorem also leads to many useful specific cases. Putting 7 = 0 we get

01955 — og (%) + 2iS; sin (%) (D.24)

L z4sopididisopidlf |z4sopid2a . .
Combining (D18, (D.22) and (D.24) we can write a useful relation

(S o . . .
€% = cos <§> + 24S; sin (5) , for j=1,2,3. (D.25) |z4sopid2b1l

As a conclusion from the above derived relations we get the third useful theorem.

Theorem D.3 For any number o real or complex there holds an identity

Sk for 7=k,

Sjcosa + €jgm Spsina for j # k.

(0.2

1Sk Sj etk — {

From this theorem it follows that

¢iaSs g, g=iaSs _ g Eia (D.27) |z4sopid3a

X ok ok ock ook ok ok ok ok sk sk okok ok sk sk ok ok ok ok sk o3k ok ok ok ok ok ok k%
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