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0 Introduction

These notes are a reasonably faithful transcription of lectures which I gave
in Trieste in May 2007. My objective was to provide participants of the Al-
gebraic K-theory Summer School an overview of various aspects of algebraic
K-theory, with the intention of making these lectures accessible to partici-
pants with little or no prior knowledge of the subject. Thus, these lectures
were intended to be the most elementary as well as the most general of the
six lecture series of our summer school.

At the end of each lecture, various references are given. For example,
at the end of Lecture 1 the reader will find references to several very good
expositions of aspects of algebraic K-theory which present their subject in
much more detail than I have given in these lecture notes. One can view
these present notes as a “primer” or a “course outline” which offer a guide
to formulations, results, and conjectures of algebraic K-theory found in the
literature.

The primary topic of each of my six lectures is reflected in the title of
each lecture:

1. K0(−), K1(−), and K2(−)

2. Classifying spaces and higher K-theory

3. Topological K-theory

4. Algebraic K-theory and Algebraic Geometry

5. Some Difficult Problems

6. Beilinson’s vision partially fulfilled

Taken together, these lectures emphasize the connections between alge-
braic K-theory and algebraic geometry, saying little about connections with
number theory and nothing about connections with non-commutative geom-
etry. Such omissions, and many others, can be explained by the twin factors
of the ignorance of the lecturer and the constraints imposed by the brevity
of these lectures. Perhaps what is somewhat novel, especially in such brief
format, is the emphasis on the algebraic K-theory of not necessarily affine
schemes. Another attribute of these lectures is the continual reference to
topological K-theory and algebraic topology as a source of inspiration and
intuition.
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We very briefly summarize the content of each of these six lectures. Lec-
ture 1 introduces low dimensional K-theory, with emphasis on K0(X), the
Grothendieck group of finitely generated projective R-modules for a (com-
mutative) ring R if SpecR = X, of topological vector vector bundles over
X if X is a finite dimensional C.W. complex, and of coherent, locally free
OX -modules if X is a scheme. Without a doubt, a primary goal (if not the
primary goal) of K-theory is the understanding of K0.

The key concept discussed in Lecture 2 is that of “homotopy theo-
retic group completion”, an enriched extension of the process introduced
by Alexander Grothendieck of taking the group associated to a monoid.
We briefly consider three versions of such a group completion, all due to
Daniel Quillen: the plus-construction, the S−1S-construction, and the Q-
construction. In this lecture, we remind the reader of simplicial sets, abelian
categories, and the nerve of a category.

The early development of topological K-theory by Michael Atiyah and
Fritz Hirzebruch has been a guide for many algebraic K-theorists during the
past 45 years. Lecture 3 presents some of machinery of topological K-theory
(spectra in the sense of algebraic topology, the Atiyah-Hirzebruch spectral
sequence, and operations in K-theory) which reappear in more recent devel-
opments of algebraic K-theory.

In Lecture 4 we discuss the relationship of algebraic K-theory to the
study of algebraic cycles on (smooth) quasi-projective varieties. In particu-
lar, we remind the reader of the definition of Chow groups of algebraic cycles
modulo rational equivalence. The relationship between algebraic K-theory
and algebraic cycles was realized by Alexander Grothendieck when he first
introduced algebraic K-theory; indeed, algebraic K0 figures in the formula-
tion of Grothendieck’s Riemann-Roch theorem. As we recall, one beautiful
consequence of this theorem is that the Chern character from K0(X) to
CH∗(X) of a smooth, quasi-projective variety X is a rational equivalence.

In order to convince the intrigued reader that there remain many funda-
mental questions which await solutions, we discuss in Lecture 5 a few difficult
open problems. For example, despite very dramatic progress in recent years,
we still do not have a complete computation of the algebraic K-theory of the
integers Z. This lecture concludes somewhat idiosyncratically with a dis-
cussion of integral analogues of famous questions formulated in terms of the
“semi-topological K-theory” constructed by Mark Walker and the author.

The final lecture could serve as an introduction to Professor Weibel’s
lectures on the proof of the Bloch-Kato Conjecture. The thread which orga-



An Introduction to K-theory 7

nizes the effort of many mathematicians is a list of 7 conjectures by Alexander
Beilinson which proposes to explain to what extent algebraic K-theory pos-
sesses properties analogous to those enjoyed by topological K-theory. We
briefly discuss the status of these conjectures (all but the Beilinson-Soulé
vanishing conjecture appear to be verified) and discuss briefly the organiza-
tional features of the motivic spectral sequence. We conclude this Lecture
6, and thus our series of lectures, with a very cursory discussion of etale
cohomology and Grothendieck sites introduced by Vladimir Voevodsky in
his dazzling proof of the Milnor Conjecture.

1 K0(−), K1(−), and K2(−)

Perhaps the first new concept that arises in the study of K-theory, and
one which recurs frequently, is that of the group completion of an abelian
monoid.

The basic example to keep in mind is that the abelian group of integers Z
is the group completion of the monoid N of natural numbers. Recall that an
abelian monoid M is a set together with a binary, associative, commutative
operation + : M ×M → M and a distinguished element 0 ∈ M which serves
as an identify (i.e., 0 + m = m for all m ∈ M). Then we define the group
completion γ : M → M+ by setting M+ equal to the quotient of the free
abelian group with generators [m],m ∈ M modulo the subgroup generated
by elements of the form [m] + [n] − [m + n] and define γ : M → M+ by
sending m ∈ M to [m]. We frequently refer to M+ as the Grothendieck
group of M .

The group completion map γ : M → M+ satisfies the following universal
property. For any homomorphism φ : M → A from M to a group A, there
exists a unique homomorphism φ+ : M+ → A such that φ+◦γ = φ : M → A.

1.1 Algebraic K0 of rings

This leads almost immediately to K-theory. Let R be a ring (always assumed
associative with unit, but not necessarily commutative). Recall that an
(always assumed left) R-module P is said to be projective if there exists
another R-module Q such that P ⊕Q is a free R-module.

Definition 1.1. Let P(R) denote the abelian monoid (with respect to ⊕)
of isomorphism classes of finitely generated projective R-modules. Then we
define K0(R) to be P(R)+.



8 E.M. Friedlander

Warning: The group completion map γ : P(R) → K0(R) is frequently not
injective.

Exercise 1.2. Verify that if j : R → S is a ring homomorphism and if P is
a finitely generated projective R-module, then S ⊗R P is a finitely generated
projective S-module. Using the universal property of the Grothendieck group,
you should also check that this construction determines j∗ : K0(R) → K0(S).

Indeed, we see that K0(−) is a (covariant) functor from rings to abelian
groups.

Example 1.3. If R = F is a field, then a finitely generated F -module is just
a finite dimensional F -vector space. Two such vector spaces are isomorphic if
and only if they have the same dimension. Thus, P(F ) ( N and K0(F ) = Z.

Example 1.4. Let K/Q be a finite field extension of the rational numbers
(K is said to be a number field) and let OK ⊂ K be the ring of algebraic
integers in K. Thus, O is the subring of those elements α ∈ K which satisfy
a monic polynomial pα(x) ∈ Z[x]. Recall that OK is a Dedekind domain.
The theory of Dedekind domains permits us to conclude that

K0(OK) = Z⊕ Cl(K)

where Cl(K) is the ideal class group of K.

A well-known theorem of Minkowski asserts that Cl(K) is finite for any
number field K (cf. [5]). Computing class groups is devilishly difficult.
We do know that there only finitely many cyclotomic fields (i.e., of the
form Q(ζn) obtained by adjoining a primitive n-th root of unity to Q) with
class group {1}. The smallest n with non-trivial class group is n = 23
for which Cl(Q(ζ23)) = Z/3. A check of tables shows, for example, that
Cl(Q(ζ100)) = Z/65.

The reader is referred to the book [4] for an accessible introduction to
this important topic.

The K-theory of integral group rings has several important applications
in topology. For a group π, the integral group ring Z[π] is defined to be the
ring whose underlying abelian group is the free group on the set [g], g ∈ π
and whose ring structure is defined by setting [g] · [h] = [g · h]. Thus, if π is
not abelian, then Z[π] is not a commutative ring.

Application 1.5. Let X be a path-connected space with the homotopy type
of a C.W. complex and with fundamental group π. Suppose that X is a
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retract of a finite C.W. complex. Then the Wall finiteness obstruction is an
element of K0(Z[π]) which vanishes if and only if X is homotopy equivalent
to a finite C.W. complex.

1.2 Topological K0

We now consider topological K-theory for a topological space X. This is also
constructed as a Grothendieck group and is typically easier to compute than
algebraic K-theory of a ring R. Moreover, results first proved for topological
K-theory have both motivated and helped to prove important theorems in
algebraic K-theory. A good introduction to topological K-theory can be
found in [1].

Definition 1.6. Let F denote either the real numbers R or the complex
numbers C. An F-vector bundle on a topological space X is a continuous
open surjective map p : E → X satisfying

(a) For all x ∈ X, p−1(x) is a finite dimensional F-vector space.

(b) There are continuous maps E ×E → E, F×E → E which provide the
vector space structure on p−1(x), all x ∈ X.

(c) For all x ∈ X, there exists an open neighborhood Ux ⊂ X, an F-vector
space V , and a homeomorphism ψx : V × Ux → p−1(Ux) over Ux (i.e.,
pr2 = p ◦ ψx : V × Ux → Ux) compatible with the structure in (b).

Example 1.7. Let X = S1, the circle. The projection of the Möbius band
M to its equator p : M → S1 is a rank 1, real vector bundle over S1.

Let X = S2, the 2-sphere. Then the projection p : TS2 → S2 of the
tangent bundle is a non-trivial vector bundle.

Let X = S2, but now view X as the complex projective line, so that
points of X can be viewed as complex lines through the origin in C2 (i.e.,
complex subspaces of C2 of dimension 1). Then there is a natural rank 1,
complex line bundle E → X whose fibre above x ∈ X is the complex line
parametrized by x; if E − o(X) → X denotes the result of removing the
origin of each fibre, then we can identify E − o(X) with C2 − {0}.

Definition 1.8. Let V ectF(X) denote the abelian monoid (with respect to
⊕) of isomorphism classes of F-vector bundles of X. We define

K0
top(X) = V ectC(X)+, KO0

top(X) = V ectR(X)+.
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(This definition will agree with our more sophisticated definition of topo-
logical K-theory given in a later lecture provided that the X has the homo-
topy type of a finite dimensional C.W. complex.)

The reason we use a superscript 0 rather than a subscript 0 for topological
K-theory is that it determines a contravariant functor. Namely, if f : X → Y
is a continuous map of topological spaces and if p : E → Y is an F-vector
bundle on Y , then pr2 : E ×Y X → X is an F-vector bundle on X. This
determines

f∗ : K0
top(Y ) → K0

top(X).

Example 1.9. Let nS2 denote the “trivial” rank n, real vector bundle over
S2 (i.e., pr2 : Rn × S2 → S2) and let TS2 denote the tangent bundle of S2.
Then TS2 ⊕ 1S2 ( 3S2 . We conclude that V ectR(S2) → KO0

top(S2) is not
injective in this case.

Here is one of the early theorems of K-theory, a theorem proved by
Richard Swan. You can find a full proof, for example, in [5].

Theorem 1.10. (Swan) Let F = R (respectively, = C), let X be a compact
Hausdorff space, and let C(X, F) denote the ring of continuous functions
X → F. For any E ∈ V ectF(X), define the F-vector space of global sections
Γ(X,E) to be

Γ(X,E) = {s : X → E continuous; p ◦ s = idX}.

Then sending E to Γ(X,E) determines isomorphisms

KO0
top(X) → K0(C(X, R)), K0

top(X) → K0(C(X, C)).

1.3 Quasi-projective Varieties

We briefly recall a few basic notions of classical algebraic geometry; a good
basic reference is the first chapter of [3]. Let us assume our ground field k
is algebraically closed, so that we need only consider k-rational points. For
more general fields k, we could have to consider “points with values in some
finite field extension L/k.”

Recollection 1.11. Recall projective space PN , whose k-rational points
are equivalence classes of N + 1-tuple, 〈a0, . . . , aN 〉, some entry of which is
non-zero. Two N + 1-tuples (a0, . . . , aN ), (b0, . . . , bN ) are equivalent if there
exists some 0 ,= c ∈ k such that (a0, . . . , aN ) = (cb0, . . . , cbN ).
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If F (X0, . . . ,XN ) is a homogeneous polynomial, then the zero locus
Z(F ) ⊂ PN is well defined.

Recall that PN is covered by standard affine opens Ui = PN\Z(Xi).
Recall the Zariski topology on PN , a base of open sets for which are the

subsets of the form UG = PN\Z(G).

Recollection 1.12. Recall the notion of a presheaf on a topological space
T : a contravariant functor from the category whose objects are open subsets
of T and whose morphisms are inclusions.

Recall that a sheaf is a presheaf satisfying the sheaf axiom: for T com-
pact, this axiom can be simply expressed as requiring for each pair of open
subsets U, V that

F (U ∪ V ) = F (U)×F (U∩V ) F (V ).

Recall the structure sheaf of “regular functions” OPN on PN , sections of
OPN (U) on any open U are given by quotients P (X0,...,XN )

Q(X0,...,XN ) of homogeneous
polynomials of the same degree satisfying the condition that Q has no zeros
in U . In particular,

OPN (UG) = {F (X)/Gj , j ≥ 0;F homgeneous of deg = j · deg(G)}.

Definition 1.13. A projective variety X is a space with a sheaf of commu-
tative rings OX which admits a closed embedding into some PN , i : X ⊂ PN ,
so that OX is the quotient of the sheaf OPN by the ideal sheaf of those regular
functions which vanish on X.

A quasi-projective variety U is once again a space with a sheaf of com-
mutative rings OU which admits locally a closed embedding into some PN ,
j : U ⊂ PN , so that the closure U ⊂ PN of U admits the structure of a
projective variety and so that OU equals the restriction of OU to U ⊂ U .

A quasi-projective variety U is said to be affine if U admits a closed
embedding into some AN = PN\Z(X0) so that OU is the quotient of OAN

by the sheaf of ideals which vanish on U .

Remark 1.14. Any quasi-projective variety U has a base of (Zariski) open
subsets which are affine.

Most quasi-projective varieties are neither projective nor affine.
There is a bijective correspondence between affine varieties and finitely

generated commutative k-algebras. If U is an affine variety, then Γ(OU ) is
the corresponding finitely generated k-algebra. Conversely, if A is written
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as a quotient k[x1, . . . , xN ] → A, then SpecA → Spec(k[x1, . . . , xN ]) = AN

is the corresponding closed embedding of the affine variety SpecA.

Example 1.15. Let F be a polynomial in variables X0, . . . ,XN homoge-
neous of degree d (i.e., F (ca0, . . . , caN ) = cdF (a0, . . . , aN ). Then the zero
locus Z(F ) ⊂ PN is called a hypersurface of degree d. For example if N = 2,
then Z(F ) is 1-dimensional (i.e., a curve). If k = C and if the Jacobian of
F does not vanish anywhere on C = Z(F ) (i.e., if C is smooth), then C is a
projective, smooth, algebraic curve of genus (d−1)(d−2)

2 .

1.4 Algebraic vector bundles

Definition 1.16. Let X be a quasi-projective variety. A quasi-coherent
sheaf F on X is a sheaf of OX-modules (i.e., an abelian sheaf equipped with
a pairing OX⊗F → F of sheaves satisfying the condition that for each open
U ⊂ X this pairing gives F(U) the structure of an OX(U)-module) with the
property that there exists an open covering {Ui ⊂ X; i ∈ I} by affine open
subsets so that F|Ui

is the sheaf associated to an OX(Ui)-module Mi for each
i.

If each of the Mi can be chosen to be finitely generated as an OX(Ui)-
module, then such a quasi-coherent sheaf is called coherent.

Definition 1.17. Let X be a quasi-projective variety. A coherent sheaf E
on X is said to be an algebraic vector bundle if E is locally free. In other
words, if there exists a (Zariski) open covering {Ui; i ∈ I} of X such that
E|Ui

( Oei
X|Ui

for each i.

Remark 1.18. If a quasi-projective variety is affine, then an algebraic vector
bundle on X is equivalent to a projective Γ(OX)-module.

Construction 1. If M is a free A-module of rank r, then the symmetric
algebra Sym•

A(M) is a polynomial algebra of r generators over A and the
structure map π : SpecSym•

A(M) → SpecA is just the projection Ar ×
SpecA → SpecA. This construction readily globalizes: if E is an algebraic
vector bundle over X, then

πE : V(E) ≡ SpecSym•
OX

(E)∗ → X

is locally in the Zariski topology a product projection: if {Ui ⊂ X; i ∈} is
an open covering restricted to which E is trivial, then the restriction of πE
above each Ui is isomorphic to the product projection Ar × Ui → Ui. In
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the above definition of πE we consider the symmetric algebra on the dual
E∗ = HomOX (E ,OX ), so that the association E 0→ V(E∗) is covariantly
functorial.

Thus, we may alternatively think of an algebraic vector bundle on X as
a map of varieties

πE : V(E∗) → X

satisfying properties which are the algebraic analogues of the properties of
the structure map of a topological vector bundle over a topological space.

Remark 1.19. We should be looking at the maximal ideal spectrum of a
variety over a field k, rather than simply the k rational points, whenever k is
not algebraically closed. We suppress this point, for we will soon switch to
prime ideal spectra (i.e., work with schemes of finite type over k). However,
we do point out that the reason it suffices to consider the maximal ideal
spectrum rather the spectrum of all prime ideals is the validity of the Hilbert
Nullstellensatz. One form of this important theorem is that the subset of
maximal ideals constitute a dense subset of the space of prime ideals (with
the Zariski topology) of a finitely generated commutative k-algebra.

1.5 Examples of Algebraic Vector Bundles

Example 1.20. Rank 1 vector bundles OPN (k), k ∈ Z on PN . The sections
of OPN (j) on the basic open subset UG = PN\Z(G) are given by the formula

OPN (k)(UG) = k[X0, . . . ,XN , 1/G](j)

(i.e., ratios of homogeneous polynomials of total degree j).
In terms of the trivialization on the open covering Ui, 0 ≤ i ≤ N , the

patching functions are given by Xj
i /Xj

i′ .
Γ(OPN (j)) has dimension

(N+j
j

)
if j > 0, dimension 1 if j = 0, and 0

otherwise. Thus, using the fact that OPN (j) ⊗OX OPN (j′) = OPN (j + j′),
we conclude that Γ(OPN (j)) is not isomorphic to Γ(OPN (j′)) provided that
j′ ,= j.

Proposition 1.21. (Grothendieck) Each vector bundle on P1 has a unique
decomposition as a finite direct sum of copies of OP1(k), k ∈ Z.

Example 1.22. Serre’s conjecture (proved by Quillen and Suslin) asserts
that every algebraic vector bundle on AN (or any affine open subset of
AN ) is trivial. In more algebraic terms, every finitely generated projective
k[x1, . . . , xn]-module is free.
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Example 1.23. Let X = Grassn,N , the Grassmann variety of n− 1-planes
in PN (i.e., n-dimensional subspaces of kN+1). We can embed Grassn,N as
a Zariski closed subset of PM−1, where M =

(N+1
n

)
, by sending the subspace

V ⊂ kN+1 to its n-th exterior power ΛnV ⊂ Λn(kN+1). There is a natural
rank n algebraic vector bundle E on X provided with an embedding in the
trivial rank N + 1 dimensional vector bundle ON+1

X (in the special case
n = 1, this is OPN (−1) ⊂ ON+1

PN ) whose fibre above a point in X is the
corresponding subspace. Of equal importance is the natural rank N − n-
dimensional quotient bundle Q = ON+1

PN /E .
This example readily generalizes to flag varieties.

Example 1.24. Let A be a commutative k-algebra and recall the module
ΩA/k of Kaḧler differentials. These globalize to a quasi-coherent sheaf ΩX

on a quasi-projective variety X over k. If X is smooth of dimension r, then
ΩX is an algebraic vector bundle over X of rank r.

1.6 Picard Group Pic(X)

Definition 1.25. Let X be a quasi-projective variety. We define Pic(X)
to be the abelian group whose elements are isomorphism classes of rank 1
algebraic vector bundles on X (also called “invertible sheaves”). The group
structure on Pic(X) is given by tensor product.

So defined, Pic(X) is a generalization of the construction of the Class
Group (of fractional ideals modulo principal ideal) for X = SpecA with A
a Dedekind domain.

Example 1.26. By examining patching data, we readily verify that

H1(X,O∗
X ) = Pic(X)

where O∗
X is the sheaf of abelian groups on X with sections Γ(U,O∗

X ) defined
to be the invertible elements of Γ(U,OX ) (with group structure given by
multiplication).

If k = C, then we have a short exact sequence of analytic sheaves of
abelian sheaves on the analytic space X(C)an,

0 → Z → OX
exp→ O∗

X → 0.

We use identification due to Serre of analytic and algebraic vector bundles on
a projective variety. If X = C is a smooth curve, this identification enables
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us to conclude the short exact sequence

0 → Cg/Z2g → Pic(C) → H2(C, Z)

since H1(C,OC ) ( H0(C, ΩC) = Cg (where g is the genus of C). In par-
ticular, we conclude that for a curve of positive genus, Pic(C) is very large,
having a “continuous part” (which is an abelian variety).

Example 1.27. A K3 surface S over the complex numbers is characterized
by the conditions that H0(S, Λ2(ΩS)) = 0 = H1

sing(S, Q). Even though the
homotopy type of a smooth K3 surface does not depend upon the choice of
such a surface S, the rank of Pic(S) can vary from 1 to 20. [The dimension
of H2

sing(S, Q) is 22.]

1.7 K0 of Quasi-projective Varieties

Definition 1.28. Let X be a quasi-projective variety. We define K0(X) to
be the quotient of the free abelian group generated by isomorphism classes
[E ] of (algebraic) vector bundles E on X modulo the equivalence relation
generated pairs ([E ], [E1]+ [E2]) for each short exact sequence 0 → E1 → E →
E2 → 0 of vector bundles.

Remark 1.29. Let A be a finitely generated k-algebra. Observe that every
short exact sequence of projective A-modules splits. Thus, the equivalence
relation defining K0(A) is generated by pairs ([E1 ⊕ E2], [E1] + [E2]). Every
element of K0(A) can be written as [P ]−[m] for some non-negative integer m;
moreover, projective modules P,Q determine the same class in K0(A) if and
only if there exists some non-negative integer m such that P⊕Am ( Q⊕Am.

Proposition 1.30. K0(PN ) is a free abelian group of rank N + 1. More-
over, for any k ∈ Z, the invertible sheaves OPN (k), . . . ,OPN (k+N) generate
K0(PN ).

Proof. One obtains a relation among N+2 invertible sheaves from the Koszul
complex on N + 1 dimensional vector space V :

0 → ΛN+1V ⊗ S∗−N−1(V ) → · · · → V ⊗ S∗−1(V )→ S∗(V )→ k → 0.

One shows that the invertible sheaves OPN (j), j ∈ Z generate K0(PN )
using Serre’s theorem that for any coherent sheaf F on PN there exist integers
m,n > 0 and a surjective map of OPN -modules OPN (m)n → F .

One way to show that the rank of K0(PN ) equals N + 1 is to use Chern
classes.
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1.8 K1 of rings

So far, we have only considered degree 0 algebraic and topological K-theory.
Before we consider Kn(R), n ∈ N,Kn

top(X), n ∈ Z, we look explicitly at
K1(R). This was first investigated in depth in the classic book by Bass [2].

Definition 1.31. Let R be a ring (assumed associative, as always and with
unit). We define K1(R) by the formula

K1(R) ≡ GL(R)/[GL(R), GL(R)],

where GL(R) = lim−→n
GL(n,R) and where [GL(r), GL(R)] is the commutator

subgroup of the group GL(R). Thus, K1(R) is the maximal abelian quotient
of GL(R),

K1(R) = H1(GL(R), Z).

The commutator subgroup [GL(R), GL(R)] equals the subgroup E(R) ⊂
GL(R) defined as the subgroup generated by elementary matrices Ei,j,(r), r ∈
R, i ,= j (i.e., matrices which differ by the identity matrix by having r in
the (i, j) position). This group is readily seen to be perfect (i.e., E(R) =
[E(R), E(R)]); indeed, it is an elementary exercise to verify that E(n,R) =
E(R) ∩GL(n,R) is perfect for n ≥ 3.

Proposition 1.32. If R is a commutative ring, then the determinant map

det : K1(R) → R×

from K1(R) to the multiplicative group of units of R provides a natural split-
ting of R× = GL(1, R) → GL(R) → K1(R). Thus, we can write

K1(R) = R× × SL(R)

where SL(R) = ker{det}.
If R is a field or more generally a local ring, then SK1(R) = 0.

The following theorem is not at all easy, but it does tell us that nothing
surprising happens for rings of integers in number fields.

Theorem 1.33. (Bass-Milnor-Serre) If OK is the ring of integers in a num-
ber field K, then SK1(OK) = 0.
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Application 1.34. The work of Bass-Milnor-Serre was dedicated to solving
the following question: is every subgroup H ⊂ SL(OK) of finite index a
“congruent subgroup” (i.e., of the form ker{SL(OK) → SL(OK/pn)} for
some prime ideal p ⊂ OK . The answer is yes if the number field F admits
a real embedding, and no otherwise.

The Bass-Milnor-Serre theorem is complemented by the following classi-
cal result due to Dirichlet (cf. [5]).

Theorem 1.35. (Dirichlet’s Theorem) Let OK be the ring of integers in a
number field K. Then

O∗
K = µ(K)⊕ Zr1+r2−1

where µ(K) ⊂ K denotes the finite subgroup of roots of unity and where
r1 (respectively, r2) denotes the number of embeddings of K into R (resp.,
number of conjugate pairs of embeddings of K into C).

We conclude this brief commentary on K1 with the following early ap-
plication to topology.

Application 1.36. Let π be a finitely generated group and consider the
Whitehead group

Wh(π) = K1(R)/{±g; g ∈ π}.

A homotopy equivalence of finite complexes with fundamental group π has an
invariant (its “Whitehead torsion”) in Wh(π) which determines whether or
not this is a simple homotopy equivalence (given by a chain of “elementary
expansions” and “elementary collapses”).

The interested reader can find a wealth of information about K0 and K1

in the books [2] and [6].

1.9 K2 of rings

One can think of K0(R) as the “stable group” of projective modules “mod-
ulo trivial projective modules” and of K1(R) of the stabilized group of auto-
morphisms of the trivial projective module modulo “trivial automorphisms”
(i.e., the elementary matrices up to isomorphism. This philosophy can be
extended to the definition of K2, but has not been extended to Ki, i > 2.
Namely, K2(R) can be viewed as the relations among the trivial automor-
phisms (i.e., elementary matrices) modulo those relations which hold uni-
versally.
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Definition 1.37. Let St(R), the Steinberg group of R, denote the group
generated by elements Xi,j(r), i ,= j, r ∈ R subject to the following commu-
tator relations:

[Xi,j(r),Xk,"(s)] =






1 if j ,= k, i ,= '
Xi,"(rs) if j = k, i ,= '
Xk,j(−rs) if j ,= k, i = '

We define K2(R) to be the kernel of the map St(R) → E(R), given by
sending Xi,j(r) to the elementary matrix Ei,j(r), so that we have a short
exact sequence

1 → K2(R)→ St(R) → E(R) → 1.

Proposition 1.38. The short exact sequence

1→ K2(R) → St(R)→ E(R) → 1

is the universal central extension of the perfect group E(R). Thus, K2(R) =
H2(E(R), Z), the Schur multiplier of E(R).

Proof. One can show that a universal central extension of a group E exists if
and only E is perfect. In this case, a group S mapping onto E is the universal
central extension if and only if S is also perfect and H2(S, Z) = 0.

Example 1.39. If R is a field, then K1(F ) = F×, the non-zero elements
of the field viewed as an abelian group under multiplication. By a theorem
of Matsumoto, K2(F ) is characterized as the target of the “universal Stein-
berg symbol”. Namely, K2(F ) is isomorphic to the free abelian group with
generators “Steinberg symbols” {a, b}, a, b ∈ F× and relations

i. {ac,b} = {a,b} {c,b},

ii. {a,bd} = {a,b} {a,d},

iii. {a, 1− a} = 1, a ,= 1 ,= 1− a. (Steinberg relation)

Observe that for a ∈ F×, − a = 1−a
1−a−1 , so that

{a,−a} = {a, 1− a}{a, 1 − a−1}−1 = {a, 1 − a−1}−1 = {a−1, 1− a−1} = 1.

Then we conclude the skew symmetry of these symbols:

{a, b}{b, a} = {a,−a}{a, b}{b, a}{b,−b} = {a,−ab}{b,−ab} = {ab,−ab} = 1.

Milnor used this presentation of K2(F ) as the starting point of his defini-
tion of the Milnor K-theory KMilnor

∗ of a field F , discussed briefly in Lecture
5.
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2 Classifying spaces and higher K-theory

2.1 Recollections of homotopy theory

Much of our discussions will require some basics of homotopy theory. Two
standard references are [8] and [14].

Definition 2.1. Two continuous maps f, g : X → Y between topological
spaces are said to be homotopic if there exists some continuous map F :
X × I → Y with F|X×{0} = f, F|X×{1} = g (where I denotes the unit
interval [0, 1]).

If x ∈ X, y ∈ Y are chosen (“base points”), then two (“pointed”) maps
f, g : (X, {x}) → (Y, {y}) are said to be homotopic if there exists some
continuous map F : X × I → Y such that F |X×{0} = f, F|X×{1} = g, and
F|{x}×I = {y} (i.e., F must project {x} × I to {y}. We use the notation
[(X,x), (Y, y)] to denote the pointed homotopy classes of maps from (X,x)
(previously denoted (X, {x})) to (Y, {y}).

We shall employ the usual notation, [X,Y ] to denote homotopy classes
of continuous maps from X to Y .

Another basic definition is that of the homotopy groups of a topological
space.

Definition 2.2. For any n ≥ 0 and any pointed space (X,x),

πn(X,x) ≡ [(Sn,∞), (X,x)].

For n = 0, πn(X,x) is a pointed set; for n ≥ 1, a group; for n ≥ 2, an abelian
group. If (X,x) is “nice”, then πn(X,x) ( [Sn,X]; moreover, if X is path
connected, then the isomorphism class of πn(X,x) is independent of x ∈ X.

A relative C.W. complex is a topological pair (X,A) (i.e., A is a
subspace of X) such that there exists a sequence of subspaces A = X−1 ⊂
X0 ⊂ · · · ⊂ Xn ⊂ · · · of X with union equal to X such that Xn is obtained
from Xn−1 by “attaching” n-cells (i.e., possibly infinitely many copies of the
closed unit disk in Rn, where “attachment” means that the boundary of the
disk is identified with its image under a continuous map Sn−1 → Xn−1 ) and
such that a subset F ⊂ X is closed if and only if X ∩Xn ⊂ Xn is closed for
all n. A space X is a C.W. complex if (X, ∅) is a relative C.W. complex. A
pointed C.W. complex (X,x) is a relative C.W. complex for (X, {x}).

C.W. complexes have many good properties, one of which is the following.
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Theorem 2.3. (Whitehead theorem) If f : X → Y is a continuous map
of connected C.W. complexes such that f∗ : πn(X,x) → πn(Y, f(x)) is an
isomorphism for all n ≥ 1, then f is a homotopy equivalence.

Moreover, C.W. complexes are quite general: If (T, t) is a pointed topo-
logical space, then there exists a pointed C.W. complex (X,x) and a con-
tinuous map g : (X,x) → (T, t) such that g∗ : π∗(X,x) → π∗(T, t) is an
isomorphism.

Recall that a continuous map f : X → Y is said to be a fibration if it has
the homotopy lifting property: given any commutative square of continuous
maps

A× {0}

!!

"" X

!!
A× I "" Y

then there exits a map A× I → X whose restriction to A×{0} is the upper
horizontal map and whose composition with the right vertical map equals
the lower horizontal map. A very important property of fibrations is that if
f : X → Y is a fibration, then there is a long exact sequence of homotopy
groups for any xo ∈ X, y ∈ Y :

· · · → πn(f−1(y), x0)→ πn(X,x0)→ πn(Y, y0)→ πn−1(f−1(y), x0) → · · ·

If f : (X,x) → (Y, y) is any pointed map of spaces, we can naturally
construct a fibration f̃ : X̃ → Y together with a homotopy equivalence
X → X̃ over Y . We denote by htyfib(f) the fibre f̃−1(y) of f̃ .

2.2 BG

Definition 2.4. Let G be a topological group and X a topological space.
Then a G-torsor over X (or principal G-bundle) is a continuous map p :
E → X together with a continuous action of G on E over X such that there
exists an open covering {Ui} of X homeomorphisms G×Ui → E|Ui

for each
i respecting G-actions (where G acts on G×Ui by left multiplication on G).

Example 2.5. Assume that G is a discrete group. Then a G-torsor p : E →
X is a normal covering space with covering group G.

Theorem 2.6. (Milnor) Let G be a topological group with the homotopy type
of a C.W. complex. There there exists a connected C.W. complex BG and a
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G-torsor π : EG → BG such that sending a continuous function X → BG
to the G-torsor X ×BG EG → X over X determines a 1-1 correspondence

[X,BG] &→ {isom classes of G-torsors over X}

Moreover, the homotopy type of BG is thereby determined; furthermore, EG
is contractible.

The topology on G when considering the classifying space BG is cru-
cial. One interesting construction one can consider is the map on classifying
spaces induced by the continuous, bijective function Gδ → G where G is a
topological group and Gδ is the same group but provided with the discrete
topology.

Corollary 2.7. If G is discrete, then π1(BG, ∗) = G and πn(BG, ∗) = 0 for
all n > 0 (where ∗ is some choice of base point). Moreover, these properties
characterize the C.W. complex BG up to homotopy type.

Proof. Sketch of proof. If n > 0, then the facts that π1(Sn) = 0 and EG
is contractible imply that [Sn, BG] = {0}. The fact that π1(BG, ∗) = G is
classical covering space theory.

The proof of the following proposition is fairly elementary, using a stan-
dard projection resolution of Z as a Z[π]-module.

Proposition 2.8. Let π be a discrete group and let A be a Z[π]-module.
Then

H∗(Bπ,A) = Ext∗Z[π](Z, A) ≡ H∗(π,A)

H∗(Bπ,A) = TorZ[π]
∗ (Z, A) ≡ H∗(π,A).

Now, vector bundles are not G-torsors but rather fibre bundles for the
topological groups O(n) (respectively, U(n)) in the case of a real (resp.,
complex) vector bundle of rank n. Nevertheless, because O(n) (resp., U(n))
acts faithfully and transitively on Rn (resp., Cn), we can readily conclude
using Theorem 2.6

[X,BO(n)] = {isom classes of real rank n vector bundles over X}

[X,BU(n)] = {isom classes of complex rank n vector bundles over X}.
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2.3 Quillen’s plus construction

Daniel Quillen’s original definition of Ki(R), i > 0, was in terms of the follow-
ing “Quillen plus construction”. A detailed exposition of this construction
can be found in [7].

Theorem 2.9. (Plus construction) Let G be a discrete group and H ⊂ G
be a perfect normal subgroup. Then there exists a C.W. complex BG+ and
a continuous map

γ : BG→ BG+

such that ker{π1(BG) → π1(BG+)} = H and such that H̃∗(htyfib(γ), Z) =
0. Moreover, γ is unique up to homotopy.

The classical “Whitehead Lemma” implies that the commutator sub-
group [GL(R), GL(R)] of GL(R) is perfect. (One verifies that an n × n
elementary matrix is itself a commutator of elementary matrices provided
that n ≥ 4.)

Definition 2.10. For any ring R, let

γ : BGL(R) → BGL(R)+

denote the Quillen plus construction with respect to [GL(R), GL(R)] ⊂
GL(R). We define

Ki(R) ≡ πi(BGL(R)+), i > 0.

This construction is closely connected to the group completions of our
first lecture. In some sense,

∐
n BGL(n,R) is “up to homotopy, a commuta-

tive topological monoid” and BGL(R)+×Z is a group completion in an ap-
propriate sense. There are several technologies which have been introduced
in part to justify this informal description (e.g., the “S−1S construction”
discussed below).

Remark 2.11. Essentially by definition, K1(R) as defined in the first lecture
agrees with that of Definition 2.10. Moreover, for any K1(R)-module A,

H∗(BGL(R)+, A) = H∗(BGL(R), A).

Moreover, one can verify that K2(R) as introduced in the first lecture
agrees with that of Definition 2.10 for any ring R by identifying this sec-
ond homotopy group with the second homology group of the perfect group
[GL(R), GL(R)].
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When Quillen formulated his definition of K∗(R), he also made the fol-
lowing fundamental computation. Indeed, this computation was a motivat-
ing factor for Quillen’s definition (cf. [10]).

Theorem 2.12. (Quillen’s computation for finite fields) Let Fq be a finite
field. Then the space BGL(Fq)+ can be described as the homotopy fibre of a
computable map. This leads to the following computation for i > 0:

Ki(Fq) = Z/qj − 1 if i = 2j − 1

Ki(Fq) = 0 if i = 2j.

As you probably know, homotopy groups are notoriously hard to com-
pute. So Quillen has played a nasty trick on us, giving us very interesting
invariants with which we struggle to make the most basic calculations. For
example, a fundamental problem which is still not fully solved is to compute
Ki(Z).

Early computations of higher K-groups of a ring R often proceeded by
first computing the group homology groups of GL(n,R) for n large, then
relating these homology groups to the homotopy groups of BGL(R)+.

2.4 Abelian and exact categories

Much of our discussion in these lectures will require the language and con-
cepts of category theory. Indeed, working with categories will give us a
method to consider various kinds of K-theories simultaneously.

I shall assume that you are familiar with the notion of an abelian cate-
gory. Recall that in an abelian category A, the set of morphisms HomA(B,C)
for any A,B ∈ Obj A has the natural structure of an abelian group; more-
over, for each A,B ∈ Obj A, there is an object B ⊕ C which is both a
product and a coproduct; moreover, any f : A → B in HomA(A,B) has
both a kernel and a cokernel. In an abelian category, we can work with
exact sequences just as we do in the category of abelian groups.

Example 2.13. Here are a few “standard” examples of abelian categories.

• the category Mod(R) of (left) R-modules.

• the category mod(R) of finitely generated R-modules (in which case
we must take R to be Noetherian).

• the category QCoh(X) of quasi-coherent sheaves on a variety X.
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• the category Coh(X) of coherent sheaves on a Notherian variety X.

Warning. The full subcategory P(R) ⊂ mod(R) is not an abelian category.
For example, if R = Z, then n : Z → Z is a homomorphism of projective
R-modules whose cokernel is not projective and thus is not in P(Z).

Definition 2.14. An exact category P is a full additive subcategory of some
abelian category A such that

(a) There exists some set S ⊂ Obj A such that every A ∈ Obj A is isomorphic
to some element of S.

(b) If 0 → A1 → A2 → A3 → 0 is an exact sequence in A with both
A1, A3 ∈ Obj P, then A2 ∈ Obj P.

An admissible monomorphism (respectively, epimorphism) in P is a mono-
morphism A1 → A2 (resp., A2 → A3) in P which fits in an exact sequence
of the form of (b).

Definition 2.15. If P is an exact category, we define K0(P) to be the group
completion of the abelian monoid defined as the quotient of the monoid of
isomorphism classes of objects of P (with respect to ⊕) modulo the equiva-
lence relation [A2]− [A1]− [A3] for every exact sequence of the form (I.5.b).

Exercise 2.16. Show that K0(R) equals K0(P(R)), where P(R) is the exact
category of finitely generated projective R-modules.

More generally, show that K0(X) equals K0(Vect(X)), where Vect(X) is
the exact category of algebraic vector bundles on the quasi-projective variety
X.

Definition 2.17. Let P be an exact category in which all exact sequences
split. Consider pairs (A,α) where A ∈ Obj P and α is an automorphism of
A. Direct sums and exact sequences of such pairs are defined in the obvious
way. Then K1(P) is defined to be the group completion of the abelian
monoid defined as the quotient of the monoid of isomorphism classes of such
pairs modulo the relations given by short exact sequences.

2.5 The S−1S construction

Recall that a symmetric monoidal category S is a (small) category with a
unit object e ∈ S and a functor ! : S×S → S which is associative and com-
mutative up to coherent natural isomorphisms. For example, if we consider
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the category P of finitely generated projective R-modules, then the direct
sum ⊕ : P × P → P is associative but only commutative up to natural iso-
morphism. The symmetric monoidal category relevant for the K-theory of
a ring R is the category Iso(P) whose objects are finitely generated projec-
tive R-modules and whose morphisms are isomorphisms between projective
R-modules.

Quillen’s construction of S−1S for a symmetric monoidal category S is
appealing, modelling one way we would introduce inverses to form the group
completion of an abelian monoid. A good reference for this is [13].

Definition 2.18. Let S be a symmetric monoidal category. The category
S−1S is the category whose objects are pairs {a, b} of objects of S and
whose maps from {a, b} to {c, d} are equivalence classes of compositions of
the following form:

{a, b} s!−→ {s!a, s!b)
(f,g)→ {c, d}

where s is some object of S, f, g are morphisms in S. Another such compo-
sition

{a, b} s′!−→ {s′!a, s′!b)
(f ′,g′)→ {c, d}

is declared to be the same map in S−1S from {a, b} to {c, d} if and only
if there exists some isomorphism θ : s → s′ such that f = f ′ ◦ (θ!a), g =
g′ ◦ (θ!b).

Heuristically, we view {a, b} ∈ S−1S as representing a − b, so that
{s!a, s!b} also represents a − b. Moreover, we are forcing morphisms in
S to be invertible in S−1S. If we were to apply this construction to the nat-
ural numbers N viewed as a discrete category with addition as the operation,
then we get N−1N = Z.

The following theorem of Quillen shows how the S−1S construction can
provide a homotopy-theoretic group completion

Theorem 2.19. (Quillen) Let S be a symmetric monoidal category with the
property that for all s, t ∈ S the map s!− : Aut(t) → Aut(s!t) is injective.
Then the natural map BS → B(S−1S) of classifying spaces (see the next
section) is a homotopy-theoretic group completion.

In particular, if S denotes the category whose objects are finite dimen-
sional projective R-modules and whose maps are isomorphisms (so that BS =∐

[P ] BAut(P )), then K(R) is homotopy equivalent to B(S−1S).
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2.6 Simplicial sets and the Nerve of a Category

The reader is referred to [9] for a detailed introduction to simplicial sets.

Definition 2.20. The category of standard simplices, ∆, has objects n =
〈0, 1, . . . , n〉 indexed by n ∈ N and morphisms given by

Hom∆(m,n) = {non-decreasing maps 〈0, 1, . . . , n〉 → 〈0, 1, . . . ,m〉}.

The special morphisms

∂i : n-1→ n (skip i); σj : n+1→ n (repeat j)

in ∆ generate (under composition) all the morphisms of ∆ and satisfy certain
standard relations which many topologists know by heart.

A simplicial set S• is a functor ∆op → (sets).

In other words, S• consists of a set Sn for each n ≥ 0 and maps di : Sn →
Sn−1, sj : Sn → Sn+1 satisfying the relations given by the relations satisfied
by ∂i, σj ∈ ∆.

Example 2.21. Let T be a topological space. Then the singular complex
Sing•T is a simplicial set. Recall that SingnT is the set of continuous
maps ∆n → T , where ∆n ⊂ Rn+1 is the standard n-simplex: the subspace
consisting of those points x = (x0, . . . , xn) with each xi ≥ 0 and

∑
xi = 1.

Since any map µ : n → m determines a (linear) map ∆n → ∆m, it also
determines µ : SingmT → SingnT , so that we may easily verify that

Sing•T : ∆op → (sets)

is a well-defined functor.

Definition 2.22. (Milnor’s geometric realization functor) For any simplicial
set X•, we define its geometric realization as the topological space |X.| given
as follows:

|X•| =
∐

n≥0

Xn ×∆n/ ∼

where the equivalence relation is given by (x, µ ◦ t) ( (µ ◦ x, t) whenever
x ∈ Xm, t ∈ ∆n, µ : n → m a map of ∆. This quotient is given the quotient
topology, where each Xn ×∆n is topologized as a disjoint union indexed by
x ∈ Xn of copies of ∆n ⊂ Rn+1.
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Now, simplicial sets are a very good combinatorial model for homotopy
theory as the next theorem reveals.

Theorem 2.23. (Homotopy category) The categories of topological spaces
and simplicial sets satisfy the following relationships.

• Milnor’s geometric realization functor is left adjoint to the singular
functor; in other words, for every simplicial set X• and every topolog-
ical space T ,

Hom(s.sets)(X•, Sing•T ) = Hom(spaces)(|X•|, T ).

• For any simplicial set X•, |X•| is a C.W. complex; moreover, for any
topological space T , Sing.•(T ) is a particularly well behaved type of
simplicial set called a Kan complex.

• For any topological space T and any point t ∈ T , the adjunction mor-
phism

(|Sing•T |, t) → (T, t)

induces an isomorphism on homotopy groups.

• The adjunction morphisms above induce an equivalence of categories

(Kan cxes)/ ∼ hom.equiv ( (C.W. cxes)/ ∼ hom.equiv .

Now we can define the classifying space of a (small) category.

Definition 2.24. Let C be a small category. We define the nerve NC ∈
(s.sets) to be the simplicial set whose set of n-simplices is the set of com-
posable n-tuples of morphisms in C:

NCn = {Cn
γn→ Cn−1 → · · · γ1→ C0}.

For ∂i : n-1 → n, we define di : NCn → NCn−1 to send the n-tuple Cn →
· · · → C0 to that n − 1-tuple given by composing γi+1 and γi whenever
0 < i < n, by dropping γ1→ C0 if i = 0 and by dropping Cn

γn→ if i = n. For
σj : n → n+1, we define sj : NCn → NCn+1 by repeating Cj and inserting
the identity map.

We define the classifying space BC of the category C to be |NC|, the
geometric realization of the nerve of C.
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The reader is encouraged to consult [12] for a discussion and insight into
this construction.

Example 2.25. Let G be a (discrete) group and let G denote the category
with a single object (denoted ∗) and with HomG(∗, ∗) = G. Then BG is a
model for BG (i.e., BG is a connected C.W. complex with π1(BG, ∗) = G
and all higher homotopy groups 0).

Example 2.26. Let X be a polyhedron and let S(X) denote the category
whose objects are simplices of X and maps are the inclusions of simplices.
Then BS(X) can be identified with the first barycentric subdivision of X.

2.7 Quillen’s Q-construction

What are the higher K-groups of an exact category? In particular, what
are the higher K-groups of a quasi-projective variety X (i.e., of the exact
category Vect(X)) or more generally of a scheme?

Quillen defines these in terms of another construction, the “Quillen Q-
construction.” This construction as well as many fundamental applications
can be found in Quillen’s remarkable paper [11].

Definition 2.27. Let P be an exact category and let QP be the category ob-
tained from P by applying the Quillen Q-construction (as discussed below).
Then

Ki(P) = πi+1(BQP), i ≥ 0,

the homotopy groups of the geometric realization of the nerve of QP.

Theorem 2.28. Let X be a scheme and let Vect(X) denote the exact cate-
gory of finitely presented, locally free OX -modules. Then

Ki(X) ≡ πi(Vect(X)) ≡ πi+1(BQVect(X))

agrees for i = 0 with the Grothendieck group of Vect(X) and for X = SpecA
an affine scheme agrees with Ki(A) = πi(BLG(A)+) provided that i > 0.

Quillen proves this theorem using the S−1S construction as an interme-
diary.

Here is the formulation of Quillen’s Q-construction.
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Definition 2.29. Let P be an exact category. We define the category QP
as follows. We set Obj QP equal to Obj P. For any A,B ∈ Obj QP, we
define

HomQP(A,B) = {A
p
" X

i# B; p (resp. i) admissible epi (resp. mono)/ ∼}

where the equivalence relation is generated by pairs

A " X # B,A " X ′ # B

which fit in a commutative diagram

A

=
!!

Xp
##

!!

i ""

!!

B

=
!!

A Xp′
## i′ "" B

Waldhausen in [15] gives a somewhat more elaborate construction of
Quillen’s Q construction which produces “n-fold deloopings” of BQP for
every n ≥ 0: pointed spaces Tn with the property that Ωn(Tn) is homotopy
equivalent to BQP.

3 Topological K-theory

In this lecture, we will discuss some of the machinery which makes topological
K-theory both useful and computable. Not only does topological K-theory
play a very important role in topology, but also it has played the most
important guiding role in the development of algebraic K-theory. As general
references, the books [17], [18] and [14] are recommended.

3.1 The Classifying space BU × Z

The following statements about topological vector bundles are not valid (in
general) for algebraic vector bundles. These properties suggest that topo-
logical K-theory is better behaved than algebraic K-theory.

Proposition 3.1. (cf. [1]) Let T be a compact Hausdorff space. If p :
E → T is a topological vector bundle on T , then for some N > 0 there is a
surjective map of bundles on T , (CN+1 × T ) → E.
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Any surjective map E → F of topological vector bundles on T admits a
splitting over T .

The set of homotopy classes of maps [T,BU(n)] is in natural 1-1 corre-
spondence with the set of isomorphism classes of rank n topological vector
bundles on T .

Proof. The first statement is proved using a partition of unity argument.
The proof of the second statement is by establishing a Hermitian metric

on E (so that E ( F⊕F⊥), which is achieved by once again using a partition
of unity argument.

To prove the last statement, one verifies that if T ×I → G is a homotopy
relating continuous maps f, g : T → G and if E is a topological vector bundle
on G, then f∗E ( g∗E as topological vector bundles on T . Once again, a
partition of unity argument is the key ingredient in the proof.

Proposition 3.2. For any space T , the set of homotopy classes of maps

[T,BU × Z], BU = lim−→
n

BUn

admits a natural structure of an abelian group induced by block sum of ma-
trices Un × Um → Un+m. We define

K0
top(T ) ≡ [T,BU × Z].

For any compact, Hausdorff space T , K0
top(T ) is naturally isomorphic to

the Grothendieck group of topological vector bundles on T :

K0
top(T ) ( Z[iso classes of top vector bundles on T ]

[E] = [E1] + [E2], whenever E ( E1 ⊕ E2
.

Proof. (External) direct sum of matrices gives a monoid structure on 7nBUn

which determines a (homotopy associative and commutative) H-space struc-
ture on BU × Z which we view as the mapping telescope of the self map

7nBUn → 7nBUn, BUi × {+ ∈ BU1} → BUi+1.

The (abelian) group structure on [T,BU × Z] is then determined.
To show that this mapping telescope is actually an H-space, one must

verify that it has a 2-sided identity up to pointed homotopy: one must verify
that product on the left with + ∈ BU1 gives a self map of BU × Z which
is related to the identity via a base-point preserving homotopy. (Such a
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verification is not difficult, but the analogous verification fails if we replace
the topological groups Un by discrete groups GLn(A) for some unital ring
A.)

Example 3.3. Since the Lie groups Un are connected, the spaces BUn are
simply connected and thus

K0
top(S

1) = π1(BU × Z) = 0.

It is useful to extend K0
top(−) to a relative theory which applies to pairs

(T,A) of spaces (i.e., T is a topological space and A ⊂ T is a closed subset).
In the special case that A = ∅, then T/∅ = T+/+, the pointed space obtained
by taking the disjoint union of T with a point + which we declare to be the
basepoint.

Definition 3.4. If T is a pointed space with basepoint t0, we define the
reduced K-theory of T by

K̃∗
top(T ) ≡ K∗

top(T, t0).

For any pair (T,A), we define

K0
top(T,A) ≡ K̃0

top(T/A)

thereby extending our earlier definition of K0
top(T ).

For any n > 0, we define

Kn
top(T,A) ≡ K̃0

top(Σ
n(T/A)).

In particular, for any n ≥ 0, we define

K−n
top (T ) ≡ K−n

top (T, ∅) ≡ K̃0
top(Σ

n(T+)).

Observe that

K̃0
top(S ∧ T ) = ker{K0

top(S × T )→ K0
top(S)⊕K0

top(T )},

so that (external) tensor product of bundles induces a natural pairing

K−i
top(S)⊗K−j

top(T ) → K−i−j
top (S × T ).
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Just to get the notation somewhat straight, let us take T to be a single
point T = {t}. Then T+ = {t, +}, the 2-point space with new point + as
base-point. Then Σ2(T+) is the 2-sphere S2, and thus

K−2
top({t}) = ker{K0

top(S
2)) → K0

top(+)}.

We single out a special element, the Bott element

β = [OP1(1)] − [OP1 ] ∈ K−2
top(pt)),

where we have abused notation by identifying (P1)an with S2 and the images
of algebraic vector bundles on P1 in K0

top((P1)an) have the same names as in
K0(P1).

3.2 Bott periodicity

Of fundamental importance in the study of topological K-theory is the fol-
lowing theorem of Raoul Bott. Recall that if (X,x) is pointed space, then
the loop space ΩX is the function complex (with the compact-open topol-
ogy) of continuous maps from (S1,∞) to (X,x). The loop space functor
Ω(−) on pointed spaces is adjoint to the suspension functor Σ(−): there is
a natural bijection

Maps(Σ(X), Y ) ( Maps(X, Ω(Y ))

of sets of continuous, pointed (i.e, base point preserving) maps. An extensive
discussion of Bott periodicity can be found in [17].

Theorem 3.5. (Bott Periodicity) There are the following homotopy equiv-
alences.

• From BO × Z to its 8-fold loop space:

BO × Z ∼ Ω8(BO × Z)

Moreover, the homotopy groups πi(BO × Z) are given by

Z, Z/2, Z/2, 0, Z, 0, 0, 0

depending upon whether i is congruent to 0, 1, 2, 3, 4, 5, 6, 7 modulo 8.
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• From BU × Z to its 2-fold loop space:

BU × Z ∼ Ω2(BU × Z)

Moreover, πi(BU × Z) is Z if i is even and equals 0 if i is odd.

Atiyah interprets this 2-fold periodicity in terms of K-theory as follows.

Theorem 3.6. (Bott Periodicity) For any space T and any i ≥ 0, multipli-
cation by the Bott element induces a natural isomorphism

β : K−i
top(T ) → K−i−2

top (T ).

Using the above theorem, we define Ki
top(X) for any topological space X

and any integer i as Ki
top(X), where i is 0 if i is even and i is -1 if i is odd.

In particular, taking T to be a point, we conclude that K̃0
top(S2) = Z,

generated by the Bott element.

Example 3.7. Let S0 denote {∗, +} = ∗+. According to our definitions,
the K-theory Ktop(∗), of a point equals the reduced K-theory of S0. In
particular, for n > 0,

K−n
top (∗) = K̃−n

top (S0) = K̃0
top(S

n) = πn(BU).

Thus, we conclude

Kn
top(∗) =

{
Z if n is even
0 if n is odd

We can reformulate this by writing

Ki
top(S

n) =

{
Z if i + n is even
0 if i + n is odd

3.3 Spectra and Generalized Cohomology Theories

Thus, both BO × Z and BU × Z are “infinite loop spaces” naturally deter-
mining Ω-spectra in the following sense.

Definition 3.8. A spectrum E is a of pointed spaces {E0, E1, . . .}, each
of which has the homotopy type of a pointed C.W. complex, together with
continuous structure maps Σ(Ei) → Ei+1.
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The spectrum E is said to be an Ω-spectrum if the adjoint Ei → Ω(Ei+1)
of each map is a homotopy equivalence; in other words, a sequence of pointed
homotopy equivalences

E0 &→ ΩE1 &→ Ω2E2 &→ · · · &→ ΩnEn → · · ·

Each spectrum E determines an Ω-spectrum Ẽ defined by setting

Ẽn = lim−→
j

ΩjΣj−n(En).

The importance of Ω-spectra is clear from the following theorem which
asserts that an Ω-spectrum determines a “generalized cohomology theory”.

Theorem 3.9. (cf. [14]) Let E be an Ω-spectrum. For any topological space
X with closed subspace A ⊂ X, set

hn
E(X,A) = [(X,A), En], n ≥ 0

Then (X,a) 0→ h∗
E(X,A) is a generalized cohomology theory; namely, this

satisfies all of the Eilenberg-Steenrod axioms except that its value at a point
(i.e., (∗, ∅)) may not be that of ordinary cohomology:

(a) h∗
E(−) is a functor from the category of pairs of spaces to graded abelian

groups.

(b) for each n ≥ 0 and each pair of spaces (X,A), there is a functorial
connecting homomorphism ∂ : hn

E(A) → hn+1
E (X,A).

(c) the connecting homomorphisms of (b) determine long exact sequences for
every pair (X,A).

(d) h∗
E(−) satisfies excision: i.e., for every pair (X,A) and every subspace

U ⊂ A whose closure lies in the interior of A, h∗
E(X,A) ( h∗

E(X−U,A−U).

Observe that in the above definition we use the notation h∗
E(X) for

h∗
E(X, ∅) = h∗

E(X+, ∗), where X+ is the disjoint union of X and a point ∗.

Definition 3.10. The (periodic) topological K-theories KO∗
top(−), K∗

top(−)
are the generalized cohomology theories associated to the Ω-spectra given
by BO × Z and BU × Z with their deloopings given by Bott periodicity.

In particular, whenever X is a finite dimensional C.W. complex,

K2j
top(X) = [X,BU × Z], K2j−1

top (X) = [X,U ],

so that we recover our definition of K0
top(X) (and similarly KO0

top(X)).
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Let us restrict attention to K∗
top(X) which suffices to motivate our further

discussion in algebraic K-theory. (K0∗top(X) motivates Hermetian algebraic
K-theory.) There are also other interesting generalized cohomology theories
(e.g., cobordism theory represented by the infinite loop space MU) which
play a role in algebraic K-theory, and there are also more sophisticated
equivariant K-theories, none of which will we discuss in these lectures.

Tensor product of vector bundles induces a multiplication

K0
top(X)⊗K0

top(X) → K0
top(X)

for any finite dimensional C.W. complex X. This can be generalized by ob-
serving that tensor product induces group homomorphisms U(m)×U(n)→
U(n + m) and thereby maps of classifying spaces

BU(m)×BU(n)→ BU(n + m).

With a little effort, one can show that these multiplication maps are compati-
ble up to homotopy with the standard embeddings U(m) ⊂ U(m+1), U(n) ⊂
U(n + 1) and thereby give us a pairing

(BU × Z)× (BU × Z)→ BU × Z

(factoring through the smash product). In this way, BU×Z has the structure
of an H-space which induces a pairing of spectra and thus a multiplication for
the generalized cohomology theory K∗

top(−). (A completely similar argument
applies to KO∗

top(−)).

Remark: Each of the topological K-groups, K−i
top(X), i ∈ N, is given as

K0
top(ΣiX) where ΣiX is the ith suspension of X. On the other hand, alge-

braic K-groups in non-zero degree are not easily related to the algebraic K0

of some associated ring.

As an example of how topological K-theory inspired even the early (very
algebraic) effort in algebraic K-theory we mention the following classical
theorem of Hyman Bass. The analogous result in topological K-theory for
rank e vector bundles over a finite dimension C.W. complex of dimension
d < e can be readily proved using the standard method of “obstruction
theory”.

Theorem 3.11. (Bass stability theorem) Let A be a commutative, noethe-
rian ring of Krull dimension d. Then for any two projective A-modules P,P ′

of rank e > d, if [P ] = [P ′] ∈ K0(A) then P must be isomorphic to P ′.
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3.4 Skeleta and Postnikov towers

If X is a C.W. complex then we can define its p-skeleton skp(X) for each
p ≥ 0 as the subspace of X consisting of the union of those cells of dimension
≤ p. Thus, the C.W. complex can be written as the union (or colimit) of its
skeleta,

X = ∪pskp(X).

There is a standard way to “chop off” the bottom homotopy groups of a
space (or an Ω-spectrum) using an analogue of the universal covering space
of a space (which “chops off” the fundamental group).

Definition 3.12. Let X be a C.W. complex. For each n ≥ 0, construct
a map X → X[n] by attaching cells (proceeding by dimension) to kill all
homotopy groups of X above dimension n− 1. Define

X(n) to X, htyfib{X → X[n]}.

So defined, X(n) → X induces an isomorphism on homotopy groups πi, i ≥ n
and πj(X(n)) = 0, j ≤ n.

The Postinov tower of X is the sequence of spaces

X · · · → X(n+1) → X(n) → · · ·

Thus, X can be viewed as the “homotopy inverse limit” of its Postnivkov
tower.

Algebraic K-theory corresponds most closely the topological K-theory
which is obtained by replacing the Ω-spectrum K = BU×Z by kU = bu×Z
obtained by taking at stage i the ith connected cover of BU × Z starting at
stage 0. The associated generalized cohomology theory is denoted kU∗(−)
and satisfies

kU i(X) ( Ki
top(X), i ≤ 0.

In studying the mapping complex Mapcont(X,Y ) continuous maps from
a C.W. complex X to a space Y , one typically filters this mapping complex
using the skeleton filtration of X by its skeleta or the “coskeleton” filtration
of Y by its Postnikov tower. We refer to [14] for details of these complemen-
tary approaches.
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3.5 The Atiyah-Hirzebruch Spectral sequence

The Atiyah-Hirzebruch spectral sequence for topological K-theory has been
a strong motivating factor in recent developments in algebraic K-theory.
Indeed, perhaps the fundamental criterion for motivic cohomology is that it
should satisfy a relationship to algebraic K-theory strictly analogous to the
relationship of singular cohomology to topological K-theory.

Theorem 3.13. (Atiyah-Hirzebruch spectral sequence [16]) For any gener-
alized cohomology theory h∗

E(−) and any topological space X, there exists a
right half-plane spectral sequence of cohomological type

Ep,q
2 = Hp(X,hq(∗)) ⇒ hp+q

E (X).

The filtration on h∗
E(X) is given by

F pE∗
∞ = ker{h∗

E(X) → h∗
E(skp(X)}.

In the special case of K∗
top(−), this takes the following form

Ep,q
2 = Hp(X, Z(q/2)) ⇒ Kp+q

top (X)

where Z(q/2) = Z if q is even and 0 otherwise.
In the special case of kU∗(−), this takes the following form

Ep,q
2 = Hp(X, Z(q/2)) ⇒ kUp+q(X)

where Z(q/2) = Z if q is an even non-positive integer and 0 otherwise.

Proof. There are two basic approaches to proving this spectral sequence.
The first is to assume T is a cell complex, then consider T as a filtered space
with Tn ⊂ T the union of cells of dimension ≤ n. The properties of K∗

top(−)
stated in the previous theorem give us an exact couple associated to the long
exact sequences

· · · → ⊕Kq
top(S

n) ( Kq
top(Tn/Tn−1)→ Kq

top(Tn)→ Kq
top(Tn−1) →

⊕Kq+1
top (Sn) → · · ·

where the direct sum is indexed by the n-cells of T .
The second approach applies to a general space T and uses the Postnikov

tower of BU × Z. This is a tower of fibrations whose fibers are Eilenberg-
MacLane spaces for the groups which occur as the homotopy groups of BU×
Z.
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What is a spectral sequence of cohomological type? This is the data of
a 2-dimensional array Ep,q

r of abelian groups for each r ≥ r0 (typically, r0

equals 0, or 1 or 2; in our case r0 = 2) and homomorphisms

dp,q
r : Ep,q

r → Ep+r,q−r+1
r

such that the next array Ep,q
r+1 is given by the cohomology of these homo-

morphisms:
Ep,q

r+1 = ker{dp,q
r }/im{dp−r,q+r−1

r }.

To say that the spectral sequence is “right half plane” is to say Ep,q
r = 0

whenever p < 0. We say that the spectral sequence converges to the
abutment E∗

∞ (in our case h∗
E(X)) if at each spot (p, q) there are only

finitely many non-zero homomorphisms going in and going out and if there
exists a decreasing filtration {F pEn

∞} on each En
∞ so that

En
∞ =

⋃

p

F pEn
∞, 0 =

⋂

p

F pEn
∞,

F pEn
∞/F p+1En

∞ = Ep,n−p
R , R >> 0.

The Postnikov tower argument together with a knowledge of the k-
invariants of BU×Z shows that after tensoring with Q this Atiyah-Hirzebruch
spectral sequence collapses; in other words, that E∗,∗

2 ⊗Q = E∗,∗
∞ ⊗Q.

Theorem 3.14. ([16]) Let X be a C.W. complex. Then there are isomor-
phisms

kU0(X)) ⊗Q ( Hev(X, Q), kU−1(X)⊗Q ( Hodd(X, Q).

These isomorphisms are induced by the Chern character

ch =
∑

i

chi : K0(−) → Hev(−, Q)

discussed in Lecture 4.
While we are discussing spectral sequences, we should mention the fol-

lowing:
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Theorem 3.15. (Serre spectral sequence; cf. [14]) Let (B, b) be a connected,
pointed C.W. complex. For any fibration p : E → B of topological spaces
with fibre F = p−1(b) and for any abelian group A, there exists a convergent
first quadrant spectral sequence of cohomological type

Ep,q
2 = Hp(B,Hq(F,A)) ⇒ Hp+q(E,A)

provided that π1(B, b) acts trivially on H∗(F,A).

The non-existence of an analogue of the Serre spectral sequence in alge-
braic geometry (for cohomology theories based on algebraic cycles or alge-
braic K-theory) presents one of the most fundamental challenges to compu-
tations of algebraic K-groups.

3.6 K-theory Operations

There are several reasons why topological K-theory has sometimes proved
to be a more useful computational tool than singular cohomology.

• K0
top(−) can be torsion free, even though Hev(−, Z) might have torsion.

This is the case, for example, for compact Lie groups.

• K∗
top(−) is essentially Z/2-graded rather than graded by the natural

numbers.

• K∗
top(−) has interesting cohomology operations not seen in cohomol-

ogy. These operations originate from the observation that the exterior
products Λi(P ) of a projective module P are likewise projective mod-
ules and the exterior products Λi(E) of a vector bundle E are likewise
vector bundles.

A good introduction to K-theory operations can be found in the appendix
of [1].

Definition 3.16. Let X be a finite dimensional C.W. complex and E → X
be a topological vector bundle of rank r. Define

λt(E) =
r∑

i=0

[ΛiE]ti ∈ K0
top(X)[t],

a polynomial with constant term 1 and thus an invertible element in K0
top(X)[[t]].

Extend this to a homomorphism

λt : K0
top(X) → (1 + K0

top(X)[[t]])∗,
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(using the fact that λt(E ⊕ F ) = λt(E) · λt(F )) and define λi : K0
top(T ) →

K0
top(T ) to be the coefficient of ti of λt.

For a general topological space X, define these λ operations on K0
top(X)

for by defining them first on the universal vector bundles over Grassmannians
and using the functoriality of K0

top(−).

In particular, J. Frank Adams introduced operations

ψk(−) : K0
top(−) → K0

top(−), k > 0

(called Adams operations) which have many applications and which are
similarly constructed for algebraic K-theory.

Definition 3.17. For any topological space T , define

ψt(x) =
∑

i≥0

ψi(X)ti ≡ rank(x)− t · d

dt
(logλ−t(x))

for any x ∈ K0
top(T ).

The Adams operations ψk satisfy many good properties, some of which
we list below.

Proposition 3.18. For any topological space T , any x, y ∈ K0
top(T ), any

k > 0

• ψk(x + y) = ψk(x) + ψk(y).

• ψk(xy) = ψk(x)ψk(y).

• ψk(ψ"(x) = ψk"(x).

• chq(ψk(x)) = kqchq(x) ∈ H2q(T, Q).

• ψp(x) is congruent modulo p to xp if p is a prime number.

• ψk(x) = xk whenever x is a line bundle

In particular, if E is a sum of line bundles ⊕iLi, then ψk(E) = ⊕((Li)k),
the k-th power sum. By the splitting principle, this property alone uniquely
determines ψk.

We introduce further operations, the γ-operations on Ktop
0 (T ).
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Definition 3.19. For any topological space T , define

γt(x) =
∑

i≥0

γi(X)ti ≡ λt/1−t(x)

for any x ∈ K0
top(T ).

Basic properties of these γ-operations include the following

1. γt(x + y) = γt(x)γt(y)

2. γ([L]− 1) = 1 + t([L]− 1).

3. λs(x) = γs/1+s(x)

Using these γ operations, we define the γ filtration on K0
top(T ) as follows.

Definition 3.20. For any topological space T , define Kγ,1
top (T ) as the kernel

of the rank map

Kγ,1
top (T ) ≡ ker{rank : K0

top(T ) → K0
top(π0(T ))}.

For n > 1, define

K0
top(T )γ,n ⊂ Kγ,0

top (T ) ≡ K0
top(T )

to be the subgroup generated by monomials γi1(x1) · · · γik(xk) with
∑

j ij ≥
n, xi ∈ Kγ,1

top (T ).

3.7 Applications

We can use the Adams operations and the γ-filtration to describe in the
following theorem the relationship between K0

top(T ), a group which has no
natural grading, and the graded group Hev(T, Q).

Theorem 3.21. Let T be a finite cell complex. Then for any k > 0, ψk

restricts to a self-map of each Kγ,n
top (T ) and satisfies the property that it

induces multiplication by kn on the quotient

ψk(x) = kn · x, x ∈ Kγ,n
top (T )/Kγ,n+1

top (T )).

Furthermore, the Chern character ch induces an isomorphism

chn : Kγ,n
top (T )/Kγ,n+1

top (T ))⊗Q ( H2n(T, Q).
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In particular, the preceding theorem gives us a K-theoretic way to define
the grading on K0

top(T ) ⊗ Q induced by the Chern character isomorphism.
The graded piece of (the associated graded of) K0

top(T ) ⊗ Q corresponding
to H2n(T, Q) consists of those classes x for which ψk(x) = knx for some (or
all) k > 0.

Here is a short list of famous theorems of Adams using topological K-
theory and Adams operations:

Application 3.22. Adams used his operations in topological K-theory to
solve fundamental problems in algebraic topology. Examples include:

• Determination of the number of linearly independent vector fields on
the n-sphere Sn for all n > 1.

• Determination of the only dimensions (namely, n = 1, 2, 4, 8) for which
Rn admits the structure of a division algebra. (The examples of the real
numbers R, the complex numbers C, the quaternions, and the Cayley
numbers gives us structures in these dimensions.)

• Determination of those (now well understood) elements of the homo-
topy groups of spheres associated with KO0

top(Sn).

4 Algebraic K-theory and Algebraic Geometry

4.1 Schemes

Although our primary interest will be in the K-theory of smooth, quasi-
projective algebraic varieties, for completeness we briefly recall the more gen-
eral context of schemes. (A good basic reference is [3].) A quasi-projective
variety corresponds to a globalization of a finitely generated commutative
algebra over a field; a scheme similarly corresponds to the globalization of a
general commutative ring.

Recall that if A is a commutative ring we denote by SpecA the set of
prime ideals of A. The set X = SpecA is provided with a topology, the
Zariski topology defined as follows: a subset Y ⊂ X is closed if and only
if there exists some ideal I ⊂ A such that Y = {p ∈ X; I ⊂ p}. We define
the structure sheaf OX of commutative rings on X = SpecA by specifying
its value on the basic open set Xf = {p ∈ SpecA, f /∈ p} for some f ∈ A to
be the ring Af obtained from A by adjoining the inverse to f . (Recall that
A → Af sends to 0 any element a ∈ A such that fn · a = 0 for some n).
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We now use the sheaf axiom to determine the value of OX on any arbitrary
open set U ⊂ X, for any such U is a finite union of basic open subsets. The
stalk OX,p of the structure sheaf at a prime ideal p ⊂ A is easily computed
to be the local ring Ap = {f /∈ p}−1A.

Thus, (X = SpecA,OX) has the structure of a local ringed space: a
topological space with a sheaf of commutative rings each of whose stalks is
a local ring. A map of local ringed spaces f : (X,OX ) → (Y,OY ) is the data
of a continuous map f : X → Y of topological spaces and a map of sheaves
OY → f∗OX on Y , where f∗OX(V ) = OX(f−1(V )) for any open V ⊂ Y .

If M is an A-module for a commutative ring A, then M defines a sheaf
M̃ of OX -modules on X = SpecA. Namely, for each basic open subset
Xf ⊂ X, we define M̃(Xf ) ≡ Af ⊗A M . This is easily seen to determine
a sheaf of abelian groups on X with the additional property that for every
open U ⊂ X, M̃(U) is a sheaf of OX(U)-modules with structure compatible
with restriction to smaller open subsets U ′ ⊂ U .

Definition 4.1. A local ringed space (X,OX ) is said to be an affine scheme
if it is isomorphic (as local ringed spaces) to (X = SpecA,OX) as defined
above. A scheme (X,OX ) is a local ringed space for which there exists
a finite open covering {Ui}i∈I of X such that each (Ui,OX|Ui

) is an affine
scheme.

If k is a field, a k-variety is a scheme (X,OX ) with the property there
is a finite open covering {Ui}i∈I by affine schemes with the property that
each (Ui,OX|Ui

) ( (SpecAi,OSpecAi) with Ai a finitely generated k-algebra
without nilpotents. The (SpecAi,OSpec Ai) are affine varieties admitting a
locally closed embedding in PN , where N + 1 is the cardinality of some set
of generators of Ai over k.

Example 4.2. The scheme P1
Z is a non-affine scheme defined by patching to-

gether two copies of the affine scheme SpecZ[t]. So P1
Z has a covering {U1, U2}

corresponding to rings A1 = Z[u], A2 = Z[v]. These are “patched together”
by identifying the open subschemes Spec(A1)u ⊂ SpecA1, Spec(A2)v ⊂
SpecA2 via the isomorphism of rings (A1)u ( (A2)v which sends u to v−1.

Note that we have used SpecR to denote the local ringed space (SpecR,
OSpecR); we will continue to use this abbreviated notation.

Definition 4.3. Let (X,OX ) be a scheme. We denote by Vect(X) the
exact category of sheaves F of OX -modules with the property that there
exists an open covering {Ui} of X by affine schemes Ui = SpecAi and free,
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finitely generated Ai-modules Mi such that the restriction F|Ui
of F to Ui is

isomorphic to the sheaf M̃i on SpecAi. In other words, Vect(X) is the exact
category of coherent, locally free OX-modules (i.e., of vector bundles over
X).

We define the algebraic K-theory of the scheme X by setting

K∗(X) = K∗(Vect(X)).

4.2 Algebraic cycles

For simplicity, we shall typically restrict our attention to quasi-projective
varieties. In some sense, the most intrinsic objects associated to an algebraic
variety are the (algebraic) vector bundles E → X and the algebraic cycles
Z ⊂ X on X. As we shall see, these are closely related.

Definition 4.4. Let X be a scheme. An algebraic r-cycle on X if a formal
sum ∑

Y

nY [Y ], Y irreducible of dimension r, nY ∈ Z

with all but finitely many nY equal to 0.
Equivalently, an algebraic r-cycle is a finite integer combination of (not

necessarily closed) points of X of dimension r. (This is a good definition
even for X a quite general scheme.)

If Y ⊂ X is a reduced subscheme each of whose irreducible components
Y1, . . . , Ym is r-dimensional, then the algebraic r-cycle

Z =
m∑

i=1

[Yi]

is called the cycle associated to Y .
The group of (algebraic) r-cycles on X will be denoted Zr(X).

For example, if X is an integral variety of dimension d (i.e., the field
of fractions of X has transcendence d over k), then a Weil divisor is an
algebraic d − 1-cycle. In the following definition, we extend to r-cycles the
equivalence relation we impose on locally principal divisor when we consider
these modulo principal divisors. As motivation, observe that if C is a smooth
curve and f ∈ frac(C), then f determines a morphism f : C → P1 and

(f) = f−1(0)− f−1(∞),

where f−1(0), f−1(∞) are the scheme-theoretic fibres of f above 0,∞.
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Definition 4.5. Two r-cycles Z,Z ′ on a quasi-projective variety X are said
to be rationally equivalent if there exist algebraic r+1-cycles W0, . . . ,Wn on
X × P1 for some n > 0 with the property that each component of each Wi

projects onto an open subvariety of P1 and that Z = W0[0], Z ′ = Wn[∞], and
Wi[∞] = Wi+1[0] for 0 ≤ i < n. Here, Wi[0] (respectively, Wi[∞] denotes the
cycle associated to the scheme theoretic fibre above 0 ∈ P1 (resp., ∞ ∈ P1)
of the restriction of the projection X ×P1 → P1 to (the components of) Wi.

The Chow group CHr(X) is the group of r-cycles modulo rational equiv-
alence.

Observe that in the above definition we can replace the role of r+1-cycles
on X × P1 and their geometric fibres over 0,∞ by r + 1-cycles on X × U
for any non-empty Zariski open U ⊂ X and geometric fibres over any two
k-rational points p, q ∈ U .

Remark 4.6. Given some r + 1 dimensional irreducible subvariety V ⊂ X
together with some f ∈ k(V ), we may define (f) =

∑
S ordS(f)[S] where S

runs through the codimension 1 irreducible subvarieties of V . Here, ordS(−)
is the valuation centered on S if V is regular at the codimension 1 point
corresponding to S; more generally, ordS(f) is defined to be the length of
the OV,S-module OV,S/(f).

We readily check that (f) is rationally equivalent to 0: namely, we as-
sociate to (V, f) the closure W = Γf ⊂ X × P1 of the graph of the rational
map V $$% P1 determined by f . Then (f) = W [0]−W [∞].

Conversely, given an r+1-dimensional irreducible subvariety W on X×P1

which maps onto P1, the composition W ⊂ X × P1 pr2→ P1 determines f ∈
frac(W ) such that

(f) = W [0]−W [∞].

Thus, the definition of rational equivalence on r-cycles of X can be given
in terms of the equivalence relation generated by

{(f), f ∈ frac(W );W irreducible of dimension r + 1}

In particular, we conclude that the subgroup of principal divisors inside
the group of all locally principal divisors consists precisely of those locally
principal divisors which are rationally equivalent to 0.

The reader is referred to the beginning of [20] for a discussion of algebraic
cycles and equivalence relations on cycles.
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4.3 Chow Groups

One should view CH∗(X) as a homology/cohomology theory. These groups
are covariantly functorial for proper maps f : X → Y and contravariantly
functorial for flat maps W → X, so that they might best be viewed as some
sort of Borel-Moore homology theory.

Construction 1. Assume that X is integral and regular in codimension
1. Let L ∈ Pic(X) be a locally free sheaf of rank 1 (i.e., a “line bundle”
or “invertible sheaf”) and assume that Γ(L) ,= 0. Then any 0 ,= s ∈ Γ(L)
determines a well defined locally principal divisor on X, Z(s) ⊂ X. Namely,
if L|U ( OX|U is trivial when restricted to some open U ⊂ X, then sU ∈
L(U) determines an element of OX(U) well defined up to a unit in OX(U)
(i.e., an element of O∗

X(U)) so that the valuation vx(s) is well defined for
every x ∈ U (1). We define Z(s) by the property that Z(s)U = (sU )|U for
any open U ⊂ X restricted to which L is trivial, and where (sU ) denotes
the divisor of an element of OX(U) corresponding to sU under any (OX)|U
isomorphism L|U ( (OX)|U .

Theorem 4.7. (cf. [3]) Assume that X is an integral variety regular in
codimension 1. Let D(X) denote the group of locally principal divisors on
X modulo principal divisors. Then the above construction determines a well
defined isomorphism

Pic(X) ( D(X).

Moreover, if OX,x is a unique factorization domain for every x ∈ X, then
D(X) equals the group CH1(X) of codimension 1 cycles modulo rational
equivalence.

Proof. If s, s′ ∈ Γ(L) are non-zero global sections, then there exists some
f ∈ K = frac(OX) such that with respect to any trivialization of L on
some open covering {Ui ⊂ X} of X the quotient of the images of s, s′ in
OX(Ui) equals f . A line bundle L is trivial if and only if it is isomorphic to
OX which is the case if and only if it has a global section s ∈ Γ(X) which
never vanishes if and only if (s) = 0. If L1,L2 are two such line bundles with
non-zero global sections s1, s2, then (s1 ⊗ s2) = (s1) + (s2).

Thus, the map is a well defined homomorphism on the monoid of those
line bundles with a non-zero global section. By Serre’s theorem concerning
coherent sheaves generated by global sections, for any line bundle L there
exists a positive integer n such that L ⊗OX OX(n) is generated by global
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sections (and in particular, has non-zero global sections), where we have
implicitly chosen a locally closed embedding X ⊂ PM and taken OX(n) to
be the pull-back via this embedding of OPM (n). Thus, we can send such an
L ∈ Pic(X) to (s)− (w), where s ∈ Γ(L ⊗OX OX(n)) and w ∈ Γ(OX(n)).

The fact that Pic(X) → D(X) is an isomorphism is an exercise in un-
ravelling the formulation of the definition of line bundle in terms of local
data.

Recall that a domain A is a unique factorization domain if and only every
prime of height 1 is principal. Whenever OX,x is a unique factorization do-
main for every x ∈ X, every codimension 1 subvariety Y ⊂ X is thus locally
principal, so that the natural inclusion D(X) ⊂ CH1(X) is an equality.

Remark 4.8. This is a first example of relating bundles to cycles, and
moreover a first example of duality. Namely, Pic(X) is the group of rank 1
vector bundles; the group CH1(X) of is a group of cycles. Moreover, Pic(X)
is contravariant with respect X whereas Z1(X) is covariant with respect to
equidimensional maps. To relate the two as in the above theorem, some
smoothness conditions are required.

Example 4.9. Let X = AN . Then any N − 1-cycle (i.e., Weil divisor)
Z ∈ CHN−1(AN ) is principal, so that CHN−1(AN ) = 0.

More generally, consider the map µ : AN × A1 → PN × A1 which sends
(x1, . . . , xn), t to 〈t · x1, . . . , t · xn, 1〉, t. Consider an irreducible subvariety
Z ⊂ AN of dimension r > N not containing the origin and Z ⊂ PN be its
closure. Let W = µ−1(Z × A1). Then W [0] = ∅ whereas W [1] = Z. Thus,
CHr(AN ) = 0 for any r < N .

Example 4.10. Arguing in a similar geometric fashion, we see that the
inclusion of a linear plane PN−1 ⊂ PN induces an isomorphism CHr(PN−1) =
CHr(PN ) provided that r < N and thus we conclude by induction that
CHr(PN ) = Z if r ≤ N . Namely, consider µ : PN × A1 → PN × A1 sending
〈x0, . . . , xN 〉, t to 〈x), . . . , xN−1, t · xN 〉, t and set W = µ−1(Z × A1) for any
Z not containing 〈0, . . . , 0, 1〉. Then W [0] = prN∗(Z),W [1] = Z.

Example 4.11. Let C be a smooth curve. Then Pic(C) ( CH0(X).

Definition 4.12. If f : X → Y is a proper map of quasi-projective varieties,
then the proper push-forward of cycles determines a well defined homomor-
phism

f∗ : CHr(X) → CHr(Y ), r ≥ 0.
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Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z] is
sent to d · [f(Z)] ∈ CHr(Y ) where [k(Z) : k(f(Z))] = d if dim Z = dim f(Z)
and is sent to 0 otherwise.

If g : W → X is a flat map of quasi-projective varieties of relative dimen-
sion e, then the flat pull-back of cycles induces a well defined homomorphism

g∗ : CHr(X) → CHr+e(W ), r ≥ 0.

Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z]
is sent to the cycle on W associated to Z ×X W ⊂ W .

Proposition 4.13. Let Y be a closed subvariety of X and let U = X\Y .
Let i : Y → X, j : U → X be the inclusions. Then the sequence

CHr(Y ) i∗→ CHr(X) j∗→ CHr(U)→ 0

is exact for any r ≥ 0.

Proof. If V ⊂ U is an irreducible subvariety of U of dimension r, then the
closure of V in X, V ⊂ X, is an irreducible subvariety of X of dimension r
with the property that j∗([V ]) = [V ]. Thus, we have an exact sequence

Zr(Y ) i∗→ Zr(X) j∗→ Zr(U) → 0.

If Z =
∑

i ni[Yi] is a cycle on X with j∗(Z) = 0 ∈ CHr(U), then j∗Z =∑
W,f (f) where each W ⊂ U is an irreducible subvarieties of U of dimension

r + 1 and f ∈ k(W ). Thus, Z ′ =
∑

i ni[Y i] −
∑

W,f (f) is an r-cycle on Y
with the property that i∗(Z ′) is rationally equivalent to Z. Exactness of the
asserted sequence of Chow groups is now clear.

Corollary 4.14. Let H ⊂ PN be a hypersurface of degree d. Then
CHN−1(PN\H) = Z/dZ.

The following “examples” presuppose an understanding of “smoothness”
briefly discussed in the next section.

Example 4.15. Mumford shows that if S is a projective smooth surface with
a non-zero global algebraic 2-form (i.e., H0(S, Λ2(ΩS)) ,= 0), then CH0(S)
is not finite dimensional (i.e., must be very large).

Bloch’s Conjecture predicts that if S is a projective, smooth surface with
geometric genus equal to 0 (i.e., H0(S, Λ2(ΩS)) = 0), then the natural map
from CH0(S) to the (finite dimensional) Albanese variety is injective.
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4.4 Smooth Varieties

We restrict our attention to quasi-projective varieties over a field k.

Definition 4.16. A quasi-projective variety X is smooth of dimension n
at some point x ∈ X if there exists an open neighborhood x ∈ U ⊂ X
and k polynomials f1, . . . , fk in n + k variables (viewed as regular functions
on An+k) vanishing at 0 ∈ An+k with Jacobian | ∂fi

∂xj
|(0) of rank k and an

isomorphism of U with Z(f1, . . . , fk) ⊂ An+k sending x to 0.
In more algebraic terms, a point x ∈ X is smooth if there exists an open

neighborhood x ∈ U ⊂ X and a map p : U → An sending x to 0 which is
flat and unramified at x.

Definition 4.17. Let X be a quasi-projective variety. Then K ′
0(X) is the

Grothendieck group of isomorphism classes of coherent sheaves on X, where
the equivalence relation is generated pairs ([E ], [E1] + [E2]) for short exact
sequences 0→ E1 → E → E2 → 0 of OX -modules.

Example 4.18. Let A = k[x]/x2. Consider the short exact sequence of
A-modules

0 → k → A→ k → 0

where k is an A-module via the augmentation map (i.e., x acts as multipli-
cation by 0), where the first map sends a ∈ k to ax ∈ A, and the second
map sends x to 0. We conclude that the class [A] of the rank 1 free module
equals 2[k].

On the other hand, because A is a local ring, K0(A) = Z, generated
by the class [A]. Thus, the natural map K0(SpecA) → K ′

0(SpecA) is not
surjective. The map is, however, injective, as can be seen by observing that
dimk(−) : K ′

0(SpecA) → Z is well defined.

Theorem 4.19. If X is smooth, then the natural map K0(X) → K ′
0(X) is

an isomorphism.

Proof. Smoothness implies that every coherent sheaf has a finite resolution
by vector bundles, This enables us to define a map

K ′
0(X) → K0(X)

by sending a coherent sheaf F to the alternating sum ΣN
i=1(−1)iEi, where

0 → EN → · · · E0 → F → 0 is a resolution of F by vector bundles.
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Injectivity follows from the observation that the composition

K0(X) → K ′
0(X) → K0(X)

is the identity. Surjectivity follows from the observation that F = ΣN
i=1(−1)iEi

so that the composition

K ′
0(X) → K0(X) → K ′

0(X)

is also the identity.

Perhaps the most important consequence of this is the following obser-
vation. Grothendieck explained to us how we can make K ′

0(−) a covariant
functor with respect to proper maps. (Every morphism between projective
varieties is proper.) Consequently, restricted to smooth schemes, K0(−) is
not only a contravariant functor but also a covariant functor for proper maps.

“Chow’s Moving Lemma” is used to give a ring structure on CH∗(X) on
smooth varieties as made explicit in the following theorem. The role of the
moving lemma is to verify for an r-cycle Z on X and an s-cycle W on X that
Z can be moved within its rational equivalence class to some Z ′ such that
Z ′ meets W “properly”. This means that the intersection of any irreducible
component of Z ′ with any irreducible component of W is either empty or of
codimension d− r − s, where d = dim(X).

Theorem 4.20. Let X be a smooth quasi-projective variety of dimension d.
Then there exists a pairing

CHr(X) ⊗ CHs(X) •→ CHd−r−s(X), d ≥ r + s,

with the property that if Z = [Y ], Z ′ = [W ] are irreducible cycles of dimen-
sion r, s respectively and if Y ∩W has dimension ≤ d− r− s, then Z •Z ′ is
a cycle which is a sum with positive coefficients (determined by local data)
indexed by the irreducible subvarieties of Y ∩W of dimension d− r − s.

Write CHs(X) for CHd−s(X). With this indexing convention, the in-
tersection pairing has the form

CHs(X)⊗ CHt(X) •→ CHs+t(X).

Proof. Classically, this was proved by showing the following geometric fact:
given a codimension r cycle Z and a codimension s cycle W =

∑
j mjRj

with r + s ≤ d, then there is another codimension r cycle Z ′ =
∑

i niYi
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rationally equivalent to Z (i.e., determining the same element in CHr(X))
such that Z ′ meets W “properly”; in other words, every component Ci,j,k of
each Yi ∩Rj has codimension r + s. One then defines

Z ′ • W =
∑

i,j,k

nimj · int(Yi ∩Rj , Ci,j,k)Ci,j,k

where int(Yi∩Rj, Ci,j,k) is a positive integer determined using local commu-
tative algebra, the intersection multiplicity. Furthermore, one shows that if
one chooses a Z ′′ rationally equivalent to both Z,Z ′ and also intersecting W
properly, then Z ′ • W is rationally equivalent to Z” • W .

A completely different proof is given by William Fulton and Robert
MacPherson (cf. [20]). They use a powerful geometric technique discov-
ered by MacPherson called deformation to the normal cone. For Y ⊂ X
closed, the deformation space MY (X) is a variety mapping to P1 defined as
the complement in the blow-up of X × P1 along Y × ∞ of the blow-up of
X ×∞ along Y ×∞. One readily verifies that Y × P1 ⊂ M(X,Y ) restricts
above ∞ ,= p ∈ P1 to the given embedding Y ⊂ X; and above ∞, restricts to
the inclusion of Y into the normal cone CY (X) = Spec(⊕n≥0In

Y /In1
Y ), where

IY ⊂ OX is the ideal sheaf defining Y ⊂ X. When Y ⊂ X is a regular closed
embedding, then this normal cone is a bundle, the normal bundle NY (X).

This enables a regular closed embedding (e.g., the diagonal δ : X →
X×X for X smooth) to be deformed into the embedding of the 0-section of
the normal bundle Nδ(X)(X ×X). One defines the intersection of Z,W as
the intersection of δ(X), Z×W and thus one reduces the problem of defining
intersection product to the special case of intersection of the 0-section of the
normal bundle NX(X×X) with the normal cone N(Z×W )∩δ(X)(Z×W ).

4.5 Chern classes and Chern character

The following construction of Chern classes is due to Grothendieck (cf. [19]);
it applies equally well to topological vector bundles (in which case the Chern
classes of a topological vector bundle over a topological space T are elements
of the singular cohomology of T ).

If E is a rank r + 1 vector bundle on a quasi-projective variety X, we
define P(E) = Proj (SymOXE) → X to be the projective bundle of lines in
E . Then P(E) comes equipped with a canonical line bundle OP(E)(1); for X
a point, P(E) = Pr and OP(E)(1) = OPr(1).
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Construction 2. Let E be a rank r vector bundle on a smooth, quasi-
projective variety X of dimension d. Then CH∗(P(E)) is a free module over
CH∗(X) with generators 1, ζ, ζ2, . . . , ζr−1, where ζ ∈ CH1(P(E)) denotes
the divisor class associated to OP(E)(1). .

We define the i-th Chern class ci(E) ∈ CH i(X) of E by the formula

CH∗(P(E)) = CH∗(X)[ζ]/
r∑

i=0

(−1)iπ∗(ci(E)) · ζr−i.

We define the total Chern class c(E) by the formula

c(E) =
r∑

i=0

ci(E)

and set ct(E) =
∑r

i=0 ci(E)ti. Then the Whitney sum formula asserts that
ct(E ⊕ F) = ct(E) · ct(F).

We define the Chern roots, α1, . . . , αr of E by the formula

ct(E) =
r∏

i=1

(1 + αit)

where the factorization can be viewed either as purely formal or as occurring
in F(E). Observe that ck(E) is the k-th elementary symmetric function of
these Chern roots.

In other words, the Chern classes of the rank r vector bundle E are
given by the expression for ζr ∈ CHr(P(E)) in terms of the generators
1, ζ, . . . , ζr−1. Thus, the Chern classes depend critically on the identification
of the first Chern class ζ of OP(E)(1) and the multiplicative structure on
CH∗(X). The necessary structure for such a definition of Chern classes is
called an oriented multiplicative cohomology theory. The splitting principle
guarantees that Chern classes are uniquely determined by the assignment of
first Chern classes to line bundles.

Grothendieck introduced many basic techniques which we now use as a
matter of course when working with bundles. The following splitting princi-
ple is one such technique, a technique which enable one to frequently reduce
constructions for arbitrary vector bundles to those which are a sum of line
bundles.
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Proposition 4.21. (Splitting Principle) Let E be a rank r +1 vector bundle
on a quasi-projective variety X. Then p∗1 : CH∗(X) → CH∗+r(P(E)) is split
injective and p∗1(E) = E1 is a direct sum of a rank r bundle and a line bundle.

Applying this construction to E1 on P(E), we obtain p2 : P(E1) → P(E);
proceeding inductively, we obtain

p = pr ◦ · · · ◦ p1 : F(E) = P(Er−1) → X

with the property that p∗ : K0(X) → K0(F(E)) is split injective and p∗(E) is
a direct sum of line bundles.

One application of the preceding proposition is the following definition
(due to Grothendieck) of the Chern character.

Construction 3. Let X be a smooth, quasi-projective variety, let E be a
rank r vector bundle over X, and let π : F(E) → X be the associated bundle
of flags of E . Write π∗(E) = L1⊕ · · · ⊕Lr, where each Li is a line bundle on
F(E). Then ct(π∗(E)) =

∏r
i=1(1⊕ c1(Li))t.

We define the Chern character of E as

ch(E) =
r∑

i=1

{1 + c1(Li) +
1
2
c1(Li)2 +

1
3!

c1(Li)3 + · · · } =
r∑

i=1

exp(ct(Li)),

where this expression is verified to lie in the image of the injective map
CH∗(X) ⊗ Q → CH∗(F(E)) ⊗ Q. (Namely, one can identify chk(E) as the
k-th power sum of the Chern roots, and therefore expressible in terms of the
Chern classes using Newton polynomials.)

Since π∗ : K0(X) → K0(F(E)), π∗ : CH∗(X) → CH∗(F(E)) are ring
homomorphisms, the splitting principle enables us to immediately verify that
ch is also a ring homomorphism (i.e., sends the direct sum of bundles to the
sum in CH∗(X) of Chern characters, sends the tensor product of bundles to
the product in CH∗(X) of Chern characters).

4.6 Riemann-Roch

Grothendieck’s formulation of the Riemann-Roch theorem is an assertion of
the behaviour of the Chern character ch with respect to push-forward maps
induced by a proper smooth map f : X → Y of smooth varieties. It is
not the case that ch commutes with the these push-forward maps; one must
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modify the push forward map in K-theory by multiplication by the Todd
class.

This modification by multiplication by the Todd class is necessary even
when consideration of the push-forward of a divisor. Indeed, the Todd class

td : K0(X) → CH∗(X)

is characterized by the properties that

i. td(L) = c1(L)/(1 − exp(−c1(L)) = 1 + 1
2c1(L) + · · · ;

ii. td(E1 ⊕ E2) = td(E1) · td(E2); and

iii. td ◦ f∗ = f∗ ◦ td.

The reader is recommended to consult [19] for an excellent exposition of
Grothendieck’s Riemann-Roch Theorem.

Theorem 4.22. (Grothendieck’s Riemann-Roch Theorem)
Let f : X → Y be a projective map of smooth varieties. Then for any

x ∈ K0(X), we have the equality

ch(f!(x)) · td(TY ) = f∗(ch(x) · td(TX))

where TX , TY are the tangent bundles of X,Y and td(TX), td(TY ) are their
Todd classes.

Here, f! : K0(X) → K0(Y ) is defined by identifying K0(X) with K ′
0(X),

K0(Y ) with K ′
0(Y ), and defining f! : K ′

0(X) → K ′
0(Y ) by sending a coherent

sheaf F on X to
∑

i(−1)iRif∗(F ). The map f∗ : CH∗(X) → CH∗(Y ) is
proper push-forward of cycles.

Just to make this more concrete and more familiar, let us consider a
very special case in which X is a projective, smooth curve, Y is a point, and
x ∈ K0(X) is the class of a line bundle L. (Hirzebruch had earlier proved a
version of Grothendieck’s theorem in which the target Y was a point.)

Example 4.23. Let C be a projective, smooth curve of genus g and let
f : C → SpecC be the projection to a point. Let L be a line bundle on C
with first Chern class D ∈ CH1(C). Then

f!([L]) = dimL(C)− dimH1(C,L) ∈ Z,
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and ch : K0(SpecC) = Z → A∗(SpecC) = Z is an isomorphism. Let K ∈
CH1(C) denote the “canonical divisor”, the first Chern class of the line
bundle ΩC , the dual of TC . Then

td(TC) =
−K

1− (1 + K + 1
2K2)

= 1− 1
2
K.

Recall that deg(K) = 2g − 2. Since ch([L]) = 1 + D, we conclude that

f∗(ch([L]) · td(TC)) = f∗((1 + D) · (1− 1
2
K)) = deg(D) − 1

2
deg(K).

Thus, in this case, Riemann-Roch tell us that

dimL(C)− dimH1(C,L) = deg(D) + 1− g.

For our purpose, Riemann-Roch is especially important because of the
following consequence.

Corollary 4.24. Let X be a smooth quasi-projective variety. Then

ch : K0(X) ⊗Q → CH∗(X)⊗Q

is a ring isomorphism.

Proof. The essential ingredient is the Riemann-Roch theorem. Namely, we
have a natural map CH∗(X) → K ′

0(X) sending an irreducible subvariety W
to the OX-module OW . We show that the composition with the Chern char-
acter is an isomorphism by applying Riemann-Roch to the closed immersion
W\Wsing → X\Wsing.

5 Some Difficult Problems

As we discuss in this lecture, many of the basic problems formulated years
ago for algebraic K-theory remain unsolved. This remains a subject in which
much exciting work remains to be done.

5.1 K∗(Z)

Unfortunately, there are few examples (rings or varieties) for which a com-
plete computation of the K-groups is known. As we have seen earlier,
one such complete computation is the K-theory of an arbitrary finite field,



56 E.M. Friedlander

K∗(Fq). Indeed, general theorems of Quillen give us the complete computa-
tions

K∗(Fq[t]) = K∗(Fq), K∗(Fq([t, t−1]) = K∗(Fq)⊕K∗−1(Fq).

Perhaps the first natural question which comes to mind is the following:
“what is the K-theory of the integers.”

In recent years, great advances have been made in computing K∗(OK)
of a ring of integers in a number field K (e.g., Z inside Q).

• K0(OK)⊗Q is 1 dimensional by the finiteness of the class number of
K (Minkowski).

• K1(OK)⊗Q has dimension r1 + r2 − 1, where r1, r2 are the numbers
of real and complex embeddings of K. (Dirichlet).

• Quillen proved that Ki(OK) is a finitely generated abelian group for
any i.

• For i > 1, Borel determined

Ki(OK)⊗Q =






0, i ≡ 0 (mod 4)
r1 + r2, i ≡ 1 (mod 4)
0, i ≡ 2 (mod 4)
r2, i ≡ 3 (mod 4)

(1)

in terms of the numbers r1, r2.

• K∗(OK , Z/2) has been computed by Rognes-Weibel as a corollary of
Voevodsky’s proof of the Milnor Conjecture.

• K∗(Z, Z/p) follows in all degrees not divisible by 4 from the Bloch-Kato
Conjecture, now seemingly proved by Rost and Voevodsky.

Here is a table of the values of K∗(Z) whose likely inaccuracy is due to
my confusion of indexing of Bernoulli numbers. Many more details can be
found in [27].
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Theorem 5.1. The K-theory of Z is given by (according to Weibel’s survey
paper): 





K8k = ?0?, 0 < k

K8k+1 = Z⊕ Z/2, 0 < k

K8k+2 = Z/2c2k+1 ⊕ Z/2
K8k+3 = Z/2d4k+2, i ≡ 3
K8k+4 = ?0?
K8k+5 = Z
K8k+6 = Z/c2k+2

K8k+7 = Z/d4k+4

(2)

Here, ck/dk is defined to be the reduced expression for Bk/4k, where Bk is
the k-th Bernoulli number (defined by

t

et − 1
= 1 +

∞∑

k=1

Bk

(2k)!
t2k .

Challenge 5.2. Prove the vanishing of K4i(Z), i > 0.

5.2 Bass Finiteness Conjecture

This is one of the most fundamental and oldest conjectures in algebraic K-
theory. Very little progress has been made on this in the past 35 years.

Conjecture 5.3. (Bass finiteness) Let A be a commutative ring which is
finitely generated as an algebra over Z. Is K ′

n(A) (i.e., the Quillen K-theory
of mod(A)) finitely generated for all n?

In particular, if A is regular as well as commutative and finitely generated
over Z, is each Kn(A) a finitely generated abelian group?

This conjecture seems to be very difficult, even for n = 0. There are
similar finiteness conjectures for the K-theory of projective varieties over
finite fields.

Example 5.4. Here is an example of Bass showing that we must assume
A is regular or consider G∗(A). Let A = Z[x, y]/x2. Then the ideal (x)
is infinitely additively generated by x, xy, xy2, . . . . On the other hand, if
t ∈ (x), then 1 + t ∈ A∗, so that we see that K1(A) is not finitely generated.
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Example 5.5. As pointed out by Bass, it is elementary to show (using
general theorems of Quillen and Quillen’s computation of the K-theory of
finite fields) that if A is finite, then Gn(A) ( Gn(A/radA) is finite for every
n ≥ 0. Subsequently, Kuku proved that Kn(A) is also finite whenever A is
finite (see [32]).

There are many other finiteness conjectures involving smooth schemes
of finite type over a finite field, Z or Q. Even partial solutions to these
conjectures would represent great progress.

5.3 Milnor K-theory

We recall Milnor K-theory, a major concept in Professor Vishik’s lectures.
This theory is motivated by Matsumoto’s presentation of K2(F ) (mentioned
in Lecture 1),

Definition 5.6. (Milnor) Let F be a field with multiplicative group of units
F×. The Milnor K-group KMilnor

n (F ) is defined to be the n-th graded piece
of the graded ring defined as the tensor algebra

⊕
n≥0(F

×)⊗n modulo the
ideal generated by elements {a, 1− a} ∈ F ∗ ⊗ F ∗, a ,= 1 ,= 1− a.

In particular, K1(F ) = KMilnor
1 (F ),K2(F ) = KMilnor

2 (F ) for any field
F , and KMilnor

n (F ) is a quotient of Λn(F×). For F an infinite field, Suslin
in [24] proved that there are natural maps

KMilnor
n (F ) → Kn(F ) → KMilnor

n (F )

whose composition is (−1)n−1(n− 1)!. This immediately implies, for exam-
ple, that the higher K-groups of a field of high transcendence degree are
very large.

Remark 5.7. It is difficult to even briefly mention K2 of fields without also
mentioning the deep and import theorem of Mekurjev and Suslin [23]: for
any field F and positive integer n,

K2(F )/nK2(F ) ( H2(F, µ⊗2
n ).

In particular, H2(F, µ⊗2
n ) is generated by products of elements in H1(F, µn) =

µn(F ).
Moreover, if F contains the nth roots of unity, then

K2(F )/nK2(F ) ( nBr(F ),
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where nBr(F ) denotes the subgroup of the Brauer group of F consisting of
elements which are n-torsion. In particular, nBr(F ) is generated by “cyclic
central simple algebras”.

The most famous success of K-theory in recent years is the following
theorem of Voevodsky [26], establishing a result conjectured by Milnor.

Theorem 5.8. Let F be a field of characteristic ,= 2. Let W (F ) denote the
Witt ring of F , the quotient of the Grothendieck group of symmetric inner
product spaces modulo the ideal generated by the hyperbolic space 〈1〉 ⊕ 〈−1〉
and let I = ker{W (F ) → Z/2} be given by sending a symmetric inner
product space to its rank (modulo 2). Then the map

KMilnor
n (F )/2 · KMilnor

n (F ) → In/In+1, {a1, . . . , an} 0→
n∏

i=1

(〈ai〉 − 1)

is an isomorphism for all n ≥ 0. Here, 〈a〉 is the 1 dimensional symmetric
inner product space with inner product (−,−)a defined by (c, d)a = acd.

Suslin also proved the following theorem, the first confirmation of a series
of conjectures which now seem to be on the verge of being settled.

Theorem 5.9. Let F be an algebraic closed field. If F has characteristic 0
and i > 0, then K2i(F ) is a Q vector space and K2i−1(F ) is a direct sum of
Q/Z and a rational vector space. If F has characteristic p > 0 and i > 0,
then K2i(F ) is a Q vector space and K2i−1(F ) is a direct sum of ⊕" ,=pQ"/Z"

and a rational vector space.

Question 5.10. What information is reflected in the uncountable vector
spaces Kn(C) ⊗ Q? Are there interesting structures to be obtained from
these vector spaces?

5.4 Negative K-groups

Bass introduced negative algebraic K-groups, groups which vanish for regular
rings or, more generally, smooth varieties. These negative K-groups measure
the failure of K-theory in positive degree to obey “homotopy invariance” and
“localization” (i.e.,

K∗(X) ?= K∗(X × A1), K∗(X)⊕K∗−1(X) ?= K∗(X × A1\{0}).

Very recently, there has been important progress in computing these
negative K-groups by Cortinas, Haesemeyer, Schlicting, and Weibel.
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Question 5.11. Can negative K-groups give useful invariants for the geo-
metric study of singularities?

5.5 Algebraic versus topological vector bundles

Let X be a complex projective variety, and let Xan denote the topological
space of complex points of X equipped with the analytic topology. Then any
algebraic vector bundle E → X naturally determines a topological vector
bundle Ean → Xan. This determines a natural map

K0(X) → K0
top(X

an).

Challenge 5.12. Understand the kernel and image of the above map, espe-
cially after tensoring with Q:

CH∗(X) ⊗Q ( K0(X) ⊗Q → K0
top(X

an)⊗ ( Hev(Xan, Q). (3)

The kernel of (3) can be identified with the subspace of CH∗(X) ⊗ Q
consisting of rational equivalence classes of algebraic cycles on X which are
homologically equivalent to 0.

The image of (3) can be identified with those classes in H∗(Xan, Q) rep-
resented by algebraic cycles – the subject of the Hodge Conjecture!

In positive degree, the analogue of our map is uninteresting.

Proposition 5.13. If X is a complex projective variety, then the natural
map

Ki(X) ⊗Q → K−i
top(X

an), i > 0

is the 0-map.

5.6 K-theory with finite coefficients

Although the map in positive degrees

Ki(X) → K−i
top(X

an)

is typically of little interest, the situation changes drastically if we consider
K-theory mod-n.

As an example, we give the following special case of a theorem of Suslin.
Recall that (Spec C)an is a point, which we denote by +.
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Theorem 5.14. (cf. [25]) The map

Ki(Spec C) → K−i
top(+)

is the 0-map for i > 0. On the other hand, for any positive integer n and
any integer i ≥ 0, the map

Ki(Spec C, Z/n) → K−i
top(+, Z/n)

is an isomorphism.

How can the preceding theorem be possibly correct? The point is that
K2i−1(Spec C) is a divisible group with torsion subgroup Q/Z. Then, we see
that this Q/Z in odd degree integral homotopy determines a Z/n in even
degree mod-n homotopy. This is exactly what K−∗

top(+) determines in even
mod-n homotopy degree.

The K-groups modulo n are defined to be the homotopy groups modulo
n of the K-theory space (or spectrum).

Definition 5.15. For positive integers i, n > 1, let M(i, Z/n) denote the
C.W. complex obtained by attaching an i-cell Di to Si−1 via the map
∂(Di) = Si−1 → Si−1 given by multiplication by n.

For any connected C.W. complex, we define

πi(X, Z/n) ≡ [M(i, Z/n),X], i, n > 1.

If X = Ω2Y , we define

πi(X, Z/n) ≡ [M(i + 2, Z/n), Y ], i ≥ 0, n > 1.

Since Si−1 → M(i, Z/n) is the cone on the multiplication by n map
Si−1 n→ Si−1, we have long exact sequences

· · · → πi(X) n→ πi(X) → πi(X/Z/n) → πi−1(X) → · · ·

Perhaps this is sufficient to motivate our next conjecture, which we might
call the Quillen-Lichtenbaum Conjecture for smooth complex algebraic vari-
eties. The special case in which X = Spec C is the theorem of Suslin quoted
above.

Conjecture 5.16. (Q-L for smooth C varieties) If X is a smooth complex
variety of dimension d, then is the natural map

Ki(X, Z/n) → Ktop
i (Xan, Z/n)

an isomorphism provided that i ≥ d− 1 ≥ 0?
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Remark In “low” degrees, K∗(X, Z/n) should be more interesting and will
not be periodic. For example, Ktop

ev (X, Z/n) has a contribution from the
Brauer group of X whereas K0(X, Z/n) does not.

5.7 Etale K-theory

It is natural to try to find a good “topological model” for the mod-n algebraic
K-theory of varieties over fields other than the complex numbers. Suslin’s
Theorem in its full generality can be formulated as follows

Theorem 5.17. If k is an algebraically closed field of characteristic p ≥ 0,
then there is a natural isomorphism

K∗(k, Z/n) &→ Ket
∗ (Spec k, Z/n), (n, p) = 1.

Moreover, if the characteristic of k is a positive integer p, then Ki(k, Z/p) =
0, for all i > 0.

We have stated the previous theorem in terms of etale K-theory although
this is not the way Suslin formulated his theorem. We did this in order
to introduce the etale topology, a Grothendieck topology associated to the
etale site. For this site, the distinguished morphisms E are etale morphisms
of schemes. A map of schemes f : U → V is said to be etale (or “smooth
of relative dimension 0) if there exist affine open coverings {Ui} of U , {Vj}
of V such that the restriction to Ui of f lies in some Vj and such that the
corresponding map of commutative rings Ai ← Rj is unramified (i.e., for
all homomorphisms from R to a field k, A⊗R k ← k is a finite separable k
algebra) and flat.

The etale topology was introduced by Grothendieck partly to reinter-
pret Galois cohomology of fields and partly to algebraically realize singular
cohomology of complex algebraic varieties. The following “comparison theo-
rem” proved by Michael Artin and Alexander Grothendieck is an important
property of the etale topology. (See, for example, [21].)

Theorem 5.18. (Artin, Grothendieck) If X is a complex algebraic variety,
then

H∗
et(X, Z/n) ( H∗

sing(X
an, Z/n).

Here, H∗
et(X, Z/n) denotes the derived functors of the global section functor

applied to the constant sheaf Z/n on the etale site.
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The etale topology not only enables us to define etale cohomological
groups, but also etale homotopy types. Using the etale homotopy type, etale
K-theory (defined by Bill Dwyer and myself) can be defined in a manner
similar to topological K-theory.

For this theory, there is an Atiyah-Hirzebruch spectral sequence

Ep,q
2 = Hp

et(X,Kq
et(+)) ⇒ Kp+q

et (X, Z/n)

provided that OX is a sheaf of Z[1/n]-modules. If we let µn denote the etale
sheaf of n-th roots of unity and let µ⊗q/2

n denote µ⊗j
n if q = 2j and 0 if j is

odd, then this spectral sequence can be rewritten

Ep,q
2 = Hp

et(X,µ⊗q/2)⇒ Ket
q−p(X, Z/n).

Using etale K-theory, we can reformulate and generalize the Quillen-
Lichtenbaum Conjecture (originally stated for SpecK, where K is a number
field), putting this conjecture in a quite general context.

Conjecture 5.19. (Quillen-Lichtenbaum) Let X be a smooth scheme of
finite type over a field k, and assume that n is a positive integer with 1/n in
k or A. Then the natural map

Ki(X, Z/n) → Ket
i (X, Z/n)

is an isomorphism for i−1 greater or equal to the mod-n etale cohomological
dimension of X.

This conjecture appears to be proven, or near-proven, thanks to the work
of Rost and Voevodsky on the Bloch-Kato Conjecture.

5.8 Integral conjectures

There has been much progress in understanding K-theory with finite coef-
ficients, but much less is known about the result of tensoring the algebraic
K-groups with Q.

The following theorem of Soulé is proved by investigating the group ho-
mology of general linear groups over fields. Soulé proves a vanishing theorem
for more general rings R with a range depending upon the “stable range” of
R.
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Theorem 5.20. (Soulé) For any field F ,

Kn(F )(s)Q = 0, s > n.

Here Kn(F )(s)Q is the s-eigenspace with respect to the action of the Adams
operations on Kn(F ).

This motivates the following Beilinson-Soulé vanishing conjecture, part
of the Beilinson Conjectures discussed in the next lecture. This conjecture
is now known if we replace the coefficients Z(n) by their finite coefficients
analogue Z/'(n).

Conjecture 5.21. (Beilinson-Soulé) For any field F , the motivic cohomol-
ogy groups Hp(SpecF, Z(n)) equal 0 for p < 0.

Yet another auxillary K-theory has been developed to investigate K-
theory of complex varieties, especially some aspects involving rational coef-
ficients (cf. [22]).

Theorem 5.22. (Friedlander-Walker) Let X be a complex quasi-projective
variety. The map from the algebraic K-theory spectrum K(X) to the topo-
logical K-theory spectrum Ktop(Xan) factors through the “semi-topological
K-theory spectrum Ksst(X).

K(X) → Ksst(X) → Ktop(Xan).

The first map induces an isomorphism in homotopy groups modulo n, whereas
the second map induces an isomorphism for certain special varieties and typ-
ically induces an isomorphism after “inverting the Bott element.”

This semi-topological K-theory is related to cycles modulo algebraic
equivalence is much the same way as usual algebraic K-theory is related
to Chow groups (cycles modulo rational equivalence).

One important aspect of this semi-topological K-theory is that leads to
conjectures which are “integral” whose reduction modulo n give the familiar
Quillen-Lichtenbaum Conjecture.

We state one precise form of such a conjecture, essentially due to Suslin.

Conjecture 5.23. Let X be a smooth, quasi-projective complex variety.
Then the natural map

Ksst
i (X) → K−i

top(X
an)

is an isomorphism for i ≥ dim(X) − 1 and a monomorphism for i =
dim(X) − 2.
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Now, we also have a “good semi-topological model” for the K-theory of
quasi-projective varieties over R, the real numbers. This is closely related
to “Atiyah Real K-theory rather than the topological K-theory we have
discussed at several points in these lectures.

Challenge 5.24. Develop a semi-topological K-theory for varieties over an
arbitrary field.

5.9 K-theory and Quadratic Forms

another topic of considerable interest is Hermetian K-theory in which we
take into account the presence of quadratic forms. Perhaps this topic is best
left to Professor Vishik!

6 Beilinson’s vision partially fulfilled

6.1 Motivation

In this lecture, we will discuss Alexander Beilinson’s vision of what algebraic
K-theory should be for smooth varieties over a field k (cf. [28], [30], and [31]).
In particular, we will provide some account of progress towards the solution
of these conjectures. Essentially, Beilinson conjectures that algebraic K-
theory can be computed using a spectral sequence of Atiyah-Hirzebruch
type using “motivic complexes” Z(n) which satisfy various good properties
and whose cohomology plays the role of singular cohomology in the Atiyah-
Hirzebruch spectral sequence for topological K-theory.

Although our goal is to describe conjectures which would begin to “ex-
plain” algebraic K-theory, let me start by mentioning one (of many) reasons
why algebraic K-theory is so interesting to algebraic geometers (and alge-
braic number theorists). It has been known for some time that there can not
be an algebraic theory whose values on complex algebraic varieties is integral
(or even rational) singular homology of the associated analytic space. Indeed,
Jean-Pierre Serre observed that this is not possible even for smooth projec-
tive algebraic curves because some such curves have automorphism groups
which do not admit a representation which would be implied by functorial-
ity. On the other hand, algebraic K-theory is in some sense integral – we
define it without inverting residue characteristics or considering only mod-n
coefficients. Thus, if we can formulate a sensible Atiyah-Hirzebruch type
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spectral sequence converging to algebraic K-theory, then the E2-term offers
an algebraic formulation of integral cohomology.

Before we launch into a discussion of Beilinson’s Conjectures, let us recall
two results relating algebraic cycles and algebraic K-theory which precede
these conjectures.

The first is the theorem of Grothendieck mentioned earlier relating alge-
braic K0(X) to the Chow ring of algebraic cycles modulo algebraic equiva-
lence.

Theorem 6.1. If X is a smooth variety over a field k, then the Chern
character determines an isomorphism

ch : K0(X) ⊗Q ( CH∗(X) ⊗Q.

The second is Bloch’s formula proved in degree 2 by Bloch and in general
by Quillen.

Theorem 6.2. Let X be a smooth variety over a field and let Ki denote
the Zariski sheaf associated to the presheaf U 0→ Ki(U) for an open subset
U ⊂ X. Then there is a convergent spectral sequence of the form

Ep,q
2 = Hp

Zar(X,Kq) ⇒ Kq−p(X).

6.2 Statement of conjectures

We now state Beilinson’s conjectures and use these conjectures as a frame-
work to discuss much interesting mathematics. It is worth emphasizing that
one of the most important aspects of Beilinson’s conjectures is its explicit
nature: Beilinson conjectures precise values for algebraic K-groups, rather
than the conjectures which preceded Beilinson which required the degree to
be large or certain torsion to be ignored.

Conjecture 6.3. (Beilinson’s Conjectures) For each n ≥ 0 there should
be complexes Z(n), n ≥ 0 of sheaves on the Zariski site of smooth quasi-
projective varieties over a field k, (Sm/k)Zar which satisfy the following:

1. Z(0) = Z, Z(1) ( O∗[−1].

2. Hn(SpecF, Z(n)) = KMilnor
n (F ) for any field F finitely generated over

k.

3. H2n(X, Z(n)) = CHn(X) whenever X is smooth over k.
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4. Vanishing Conjecture: Z(n) is acyclic outside of [0, n]:

Hp(X, Z(n)) = 0, p < 0.

5. Motivic spectral sequences for X smooth over k:

Ep,q
2 = Hp−q(X, Z(−q)) ⇒ K−p−q(X),

Ep,q
2 = Hp−q(X, Z/'(−q)) ⇒ K−p−q(X, Z/'), if 1/' ∈ k.

6. Beilinson-Lichtenbaum Conjecture:

Z(n)⊗L Z/' ( τ≤nRπ∗µ⊗n
" , if 1/' ∈ k

where π : etale site → Zariski site is the natural “forgetful continuous
map” and τ≤n indicates truncation.

7. H i(X, Z(n)) ⊗Q ( K2n−i(X)(n)
Q .

In other words, Beilinson conjectures that there should be a bigraded
motivic cohomology groups Hp(X, Z(q)) computed as the Zariski cohomology
of motivic complexes Z(q) of sheaves which satisfy good properties and are
related to algebraic K-theory as singular cohomology is related to topological
K-theory.

6.3 Status of Conjectures

Bloch’s higher Chow groups CHq(X,n) (cf. [29]) serve as motivic cohomol-
ogy groups which are known to satisfy most of the conjectures, where the
correspondence of indexing is as follows:

CHq(X,n) ( H2q−n(X, Z(q)). (1)

Furthermore, Suslin and Voevodsky have formulated complexes Z(q), q ≥ 0
and Voevodsky has proved that the (hyper-)cohomology groups of these
complexes satisfy the relationship to Bloch’s higher Chow groups as in (1).

Presumably, these constructions will be discussed in detail in the lectures
of Professor Levine. For completeness, I sketch the definitions. Recall that
the standard (algebro-geometric) n-simplex ∆n over a field F (which we
leave implicit) is given by SpecF [t0, . . . , tn]/Σiti = 1.
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Definition 6.4. Let X be a quasi-projective variety over a field. For any
q, n ≥ 0, we define zq(X,n) to be the free abelian group on the set of cycles
W ⊂ X × ∆n of codimension q which meet all faces X × ∆i ⊂ X × ∆n

properly. This admits the structure of a simplicial abelian group and thus
a chain complex with boundary maps given by restrictions to (codimension
1) faces.

The Bloch higher Chow group CHq(X,n) is defined by

CHq(X,n) = H2q−n(zq(X, ∗)).

The values of Bloch’s higher Chow groups are “correct”, but they are
not given as (hyper)-cohomology of complexes of sheaves and they are so
directly defined that abstract properties for them are difficult to prove. The
Suslin-Voevodsky motivic cohomology groups fit in a good formalism as en-
visioned by Beilinson and agree with Bloch’s higher Chow groups as verified
by Voevodsky.

Definition 6.5. Let X be a quasi-projective variety over a field. For any
q ≥ 0, we define the complex of sheaves in the cdh topology (the Zariski
topology suffices if X is smooth over a field of characteristic 0)

Z(q) = C∗(cequi(Pn, 0)/cequi(Pn−1, 0))[−2n]

defined as the shift 2n steps to the right of the complex of sheaves whose
value on a Zariski open subset U ⊂ X is the complex

j 0→ cequi(Pn, 0)(∆j)/cequi(Pn−1)(U ×∆j)

where cequi(Pn, 0)(U ×∆j) is the free abelian group on the cycles on Pn ×
U ×∆j which are equidimensional of relative dimension 0 over U ×∆j.

Conjecture (1) is essentially a normalization, for it specifies what Z(0)
and Z(1) must be. Bloch verified Conjecture 2 (essentially, a result of Suslin),
Conjecture 3, and Conjecture 7 (the latter with help from Levine) for his
higher Chow groups. Bloch and Lichtenbaum produced a motivic spectral
sequence for X = Spec k; this was generalized to a verification of the full
Conjecture (5) by Friedlander and Suslin, and later proofs were given by
Levine and then Suslin following work of Grayson.

The Beilinson-Lichtenbaum conjecture in some sense “identifies” mod-'
motivic cohomology in terms of etale cohomology. Suslin and Voevodsky
proved that this Conjecture (6) follows from the following:
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Conjecture 6.6. (Bloch-Kato Conjecture) For fields F finitely generated
over k,

KMilnor
n ⊗ Z/' ( Hn

et(SpecF, µ⊗n
" ).

In particular, the Galois cohomology of the field F is generated multiplica-
tively by classes in degree 1.

For ' = 2, the Bloch-Kato Conjecture is a form of Milnor’s Conjecture
which has been proved by Voevodsky. For ' > 2, a proof of Bloch-Kato
Conjecture has apparently been given by Rost and Voevodsky, although not
all details have been made available. This conjecture will be the main focus
of Professor Weibel’s lectures.

This leaves Conjecture (4), one aspect of this is the following Vanishing
Conjecture due to Beilinson and Soulé.

Conjecture 6.7. For fields F ,

Kp(F )(q)Q = 0, 2q ≤ p, p > 0.

Reindexing according to Conjecture (7), this becomes

H i(SpecF, Z(q)) = 0, i ≤ 0, q ,= 0.

The status of this Conjecture (4), and in particular the Beilinson-Soué
vanishing conjecture, is up in the air. Experts are not at all convinced that
this conjecture should be true for a general field F . It is known to be true
for a number field.

6.4 The Meaning of the Conjectures

Let us begin by looking a bit more closely at the statement

Z(1) ( O∗[−1]

of Conjecture (1).

Convention If C∗ is a cochain complex (i.e., the differential increases degree
by 1, d : Ci → Ci+1), we define the chain complex C∗[n] for any n ∈ Z as
the shift of C∗ “n places to the right”. In other words, (C∗[n])j = C∗−j.

In particular, O∗[−1] is the complex (of Zariski sheaves) with only one
non-zero term, the sheaf O∗ of units, placed in degree -1 (i.e., shifted 1 place
to the left). In particular,

H∗
Zar(X,O∗[−1]) = H∗−1

Zar (X,O∗);
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thus,
Pic(X) = H1

Zar(X,O∗
X) = H2(X, Z(1)).

This last equality is a special case of item (3).
Perhaps it would be useful to be explicit about what we mean by the

cohomology of a complex C∗ of Zariski sheaves on X. A quick way to define
this is as follows: find a map of complexes C∗ → I∗ with each Ij an injective
object in the category of sheaves (an injective sheaf) such that the map on
cohomology sheaves is an isomorphism; in other words, for each j, the map
of presheaves

ker{d : Cj → Cj+1}/im{d : Cj−1 → Cj}

→ ker{d : Ij → Ij+1}/im{d : Ij−1 → Ij}

induces an isomorphism on associated sheaves

Hj(C∗) ( Hj(I∗)

for each j. A fundamental property of this cohomology is the existence of
“hypercohomology spectral sequences”

′Ep,q
1 = Hp(X,Cq) ⇒ Hp+q(X,C∗)

Ep,q
2 = Hq(X,Hj(C∗)) ⇒ Hp+q(X,C∗)

Conjecture (2) helps to pin down motivic cohomology by specifying what
the top dimensional motivic cohomology (thanks to Conjecture (4)) should
be for a field. Since Milnor K-theory and algebraic K-theory of the field k are
different, this difference must be reflected in the other motivic cohomology
groups of the field and tied together with the spectral sequence of Conjecture
(5).

Conjecture (2) can be viewed as “arithmetic” for it deals with subtle
invariants of the field k. Conjecture (3) is “geometric”, stating that motivic
cohomology reflects global geometric properties of X. Observe that since we
are taking Zariski cohomology, Hn(Spec k,−) = 0 for n > 0 and this item
simply says that CH0(Speck) = Z, CHn(Spec k) = 0, n > 0.

Bloch has also proved that the spectral sequence of Conjecture (5) col-
lapses after tensoring with Q; indeed, Conjecture (7) proved by Bloch is a
refinement of this “rational collapse”. Conjectures (3) and (5) together with
this collapsing gives Grothendieck’s isomorphism K(X)Q ( CH∗(X). By
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simply re-indexing, one can write the spectral sequence of Conjecture (5) in
the more familiar “Atiyah-Hirzebruch manner”

Ep,q
2 = Hp(X,Z(−q/2)) ⇒ K−p−q(X)

where Z(−q/2) = 0 if q is not an even non-positive integer and Z(−q/2) =
Z(i) is −q = 2i ≥ 0.

Let me try to “draw” this spectral sequence, using the notation

K(q)
q−i ≡ H i(X, Z(q)

as in Conjecture (7).

Z

0 O∗ Pic(X)

0? K(2)
2 K(2)

1 CH2(X)

0? K(3)
3 K(3)

2 K(3)
1 CH3(X)

0? K(4)
4 K(4)

3 K(4)
2 K(4)

1 CH4(X)

In this picture, the associated graded of K0 is given by the right-most diag-
onal, then gr(K1) by the next diagonal to the left, etc. The top horizontal
row is the “weight 0” part of K∗, the next row down is the “weight 1” part
of K∗, etc. There is conjectured vanishing at and to the left of the positions
with 0? in the picture – i.e., to the left.

6.5 Etale cohomology

Our final task is to introduce the etale topology and attempt to give some
understanding why Conjecture (6) of the Beilinson Conjectures comparing
mod-' motivic cohomology with mod-' etale cohomology makes motivic co-
homology more understandable.
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Grothendieck had the insight to realize that one could formulate sheaves
and sheaf cohomology in a setting more general than that of topological
spaces. What is essential in sheaf theory is the notion of a covering, but
such a covering need not consist of open subsets.

Definition 6.8. A (Grothendieck) site is the data of a category C/X of
schemes over a given scheme X which is closed under fiber products and
a distinguished class of morphisms (e.g., Zariski open embeddings; or etale
morphisms) closed under composition, base change and including all iso-
morphisms. A covering of an object Y ∈ C/X for this site is a family of
distinguished morphisms {gi : Ui → Y } with the property that Y = ∪igi(Ui).

The data of the site C/X together with its associated family of coverings
is called a Grothendieck topology on X.

The reader is referred to [33] for a foundational treatment of etale coho-
mology and to [21] for an overview.

Example 6.9. Recall that a map f : U → X of schemes is said to be etale if
it is flat, unramified, and locally of finite type. Thus, open immersions and
covering space maps are examples of etale morphisms. If f : U → X is etale,
then for each point u ∈ U there exist affine open neighborhoods SpecA ⊂ U
of u and SpecR ⊂ X of f(u) so that A is isomorphic to (R[t]/g(t))h for some
monic polynomial g(t) and some h so that g′(t) ∈ (R[t]/g(t))h is invertible.

The (small) etale site Xet has objects which are etale morphisms Y → X
and coverings {Ui → Y } consist of families of etale maps the union of whose
images equals Y . The big etale site XET has objects Y → X which are
locally of finite type over X and coverings {Ui → Y } defined as for Xet

consisting of families of etale maps the union of whose images equals Y .
If k is a field, we shall also consider the site (Sm/k)et which is the full
subcategory of (Spec k)ET consisting of smooth, quasi-projective varieties Y
over k.

An instructive example is that of X = SpecF for some field F . Then an
etale map Y → X with Y connected is of the form SpecE → SpecF , where
E/F is a finite separable field extension.

Definition 6.10. A presheaf sets (respectively, groups, abelian groups,
rings, etc) on a site C/X is a contravariant functor from C/X to (sets) (resp.,
to groups, abelian groups, rings, etc). A presheaf P : (C/X)op → (sets) is
said to be a sheaf if for every covering {Ui → Y } in C/X the following
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sequence is exact:

P (Y ) →
∏

i

P (Ui)
→→

∏

i,j

P (Ui ×X Uj).

(Similarly, for presheaves of groups, abelian presheaves, etc.) In other words,
if for every Y , the data of a section s ∈ P (Y ) is equivalent to the data of
sections si ∈ P (Ui) which are compatible in the sense that the restrictions
of si, sj to Ui ×X Uj are equal.

The category of abelian sheaves on a Grothendieck site C/X is an abelian
category with enough injectives, so that we can define sheaf cohomology in
the usual way. If F : C/X)op → (Ab) is an abelian sheaf, then we define

H i(XC/X , F ) = RiΓ(X,F ).

Etale cohomology has various important properties. We mention two in
the following theorem.

Theorem 6.11. Let X be a quasi-projective, complex variety. Then the etale
cohomology of X with coefficients in (constant) sheaf Z/n, H∗(Xet, Z/n), is
naturally isomorphic to the singular cohomology of Xan,

H∗(Xet, Z/n) ( H∗
sing(X

an, Z/n).

Let X = Speck, the spectrum of a field. Then an abelian sheaf on X for
the etale topology is in natural 1-1 correspondence with a (continuous) Galois
module for the Galois group Gal(k/k). Moreover, the etale cohomology of X
with coefficients in such a sheaf F is equivalent to the Galois cohomology of
the associated Galois module,

H∗(ket, F ) ( H∗(Gal(F/F ), F (k)).

From the point of view of sheaf theory, the essence of a continuous map
g : S → T of topological spaces is a mapping from the category of open
subsets of T to the open subsets of S. In the context of Grothendieck
topologies, we consider a map of sites g : C/X → D/Y , a functor from C/Y
to cC/X which takes distinguished morphisms to distinguished morphisms.
In particular, for example, Conjecture (6) of Beilinson’s Conjectures involves
the map of sites

π : Xet → XZar, (U ⊂ X) 0→ U → X.
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Such a map of sites induces a map on sheaf cohomology: if F : (D/Y )op →
(Ab) is an abelian sheaf on C/Y , then we obtain a map

H∗(YD/Y , F ) → H∗(XC/X , g∗F ).

6.6 Voevodsky’s sites

We briefly mention two Grothendieck sites introduced by Voevodsky which
are central to his approach to motivic cohomology. The reader can find
details in [34].

Definition 6.12. The Nisnevich site on smooth quasi-projective varieties
over a field k, (Sm/k)Nis, is determined by specifying that a covering {Ui →
U} of some U ∈ (Sm/k) is an etale covering with the property that for each
point x ∈ U there exists some i and some point ũ ∈ Ui such that the induced
map on residue fields k(u) → k(ũ) is an isomorphism.

Definition 6.13. The cdh (or completely decomposed, homotopy) site on
smooth quasi-projective varieties over a field k, (Sm/k)cdh, is determined as
the site whose coverings of a smooth variety X are generated by Nisnevich
coverings of X and coverings {Y → X, X ′ → X} consisting of a closed
immersion i : Y → X and a proper map g : X ′ → X with the property that
the restriction of g to g−1(X\i(Y )) is an isomorphism.
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