School of Liberal Arts

Economics ETE - Sep 2023

Time: 3 Hours Marks: 50

SEM III - A080303T - Mathematical Economics

Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary

1.	Illustrate global maxima and global minima.	K1 CO1 (2)
2.	Suppose $g(x)$ and $h(x)$ both are the functions then Illustrate Product rule of derivative.	K2 CO2 (2)
3.	Differentiate the following equations $Q=36KL-K^2-L^2 \\ z=x^3+5xy^2+y^3$	K3 CO3 (2)
4.	Given that $TR=80q-2q^2$, derive a function for MR.	K4 CO4 (2)
5.	Calculate the Determinant	K4 CO5 (2)
	$A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 1 & 2 \\ 1 & 4 & 3 \end{bmatrix}$	
6.	Define Saddle point.	K3 CO1 (5)
7.	Find (a) the minors and (b) cofactors for the elements of the third row, given $\begin{bmatrix} 9 & 11 & 4 \\ 3 & 2 & 7 \\ 6 & 10 & 4 \end{bmatrix}$	K4 CO2 (5)
8.	Suppose the function you want to maximise is given as $\pi(q) = -1/2q^2 + 70q - 300$. Obtain the q that maximises $\pi(q)$.	K6 CO6 (6)
9.	(a) Find the critical points (b) Test whether the function is at a relative maximum or minimum. $z=2y^3-x^3+147x-54y+12$	K4 CO3 (8)
10.	Use Cramer's rule to solve given equations.	K5 CO4 (8)
	$\begin{array}{l} 11p_1 - p_2 - p_3 = 31 \\ -p_1 + 6p_2 - 2p_3 = 26 \\ -p_1 - 2p_2 + 7p_3 = 24 \end{array}$	

11. Use matrix algebra to solve for the unknown variables
$$x_1,x_2$$
 and x_3 given that
$$10x_1+3x_2+6x_3=76\\4x_1+5x_3=41\\5x_1+2x_2+2x_3=34$$
 K6 CO5 (8)

about:blank 1/1