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In Memoriam

These Proceedings are dedicated to the memory of Juan Antonio Rubio Rodriguez whose personal contributions
and support were fundamental to the establishment of the series of CERN–Latin-American Physics Schools.





Abstract

The CERN–Latin-American School of High-Energy Physics is intended to give young physicists an introduc-
tion to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain
lectures on quantum field theory, quantum chromodynamics, physics beyond the Standard Model, neutrino
physics, flavour physics and CP violation, particle cosmology, high-energy astro-particle physics, and heavy-
ion physics, as well as trigger and data acquisition, and commissioning and early physics analysis of the ATLAS
and CMS experiments. Also included are write-ups of short review projects performed by the student discus-
sions groups.
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Preface

The fifth School in the series of Latin-American Schools of High-Energy Physics took place from 15 to 28
March 2009 in Recinto Quirama, Antioquia, Colombia. It was organized by CERN with the support of the
Universidad Antonio Nariño, Bogotá and Universidad de Antioquia, Medellín.

The School was generously supported by CERN; CIEMAT, Spain; the Colombian Ministry of Education,
together with the University of Antioquia, Antonio Nariño University and the National University of Colombia,
Bogotá; the Brazilian Ministry of Science and Technology; and CLAF, the Centro Latino Americano de Física.
Our sincere thanks go to all the sponsors for making it possible to organize the School and for contributing to
its success.

Professor Marta Losada from the University Antonio Nariño, Bogotá, acted as local director for the School,
strongly assisted by Enrico Nardi from the University of Antioquia, Medellín. The other local committee
members were Carlos Quimbay from the National University of Colombia, Bogotá, and Juan Carlos Sanabria
from the University Los Andes, Bogotá. We are extremely grateful to Marta Losada and Enrico Nardi for their
excellent work in organizing the School and for creating such a wonderful atmosphere for the participants.

Fifty-nine students from 16 different countries, together with 11 Colombian ‘listeners’, attended the School.
Following the tradition of the School the students shared twin rooms mixing nationalities, and in particular the
Europeans mixed with Latin Americans.

The 12 lecturers came from Europe, Latin America and Israel. The lectures, which were in English, were
complemented by daily discussion sessions led by three physicists from Latin America and one from the USA.
The lectures were given in the main hall where the students also displayed their work in the form of posters on
a special evening session during the first week. The posters were left on display until the end of the School.

Our thanks are due to the lecturers and discussion leaders for their active participation in the School and for
making the scientific programme so stimulating. The students who in turn manifested their good spirits during
two intense weeks undoubtedly appreciated their personal contributions in answering questions and explaining
points of theory.

The School was hosted in the beautiful Hotel Recinto Quirama, a colonial-style hotel close to Medellín
Airport. We are indebted to the hotel for its friendly staff who certainly contributed to the good spirit of
the School and, in particular, to the hotel chef, Mr. Juan David Jaramillo, who provided a varied and much-
appreciated menu throughout the school.

We are very grateful to Danielle Métral for her efforts in the lengthy preparations for the School and for her
day-to-day care of the School. Her efficient work, friendly attitude, and continuous care of the participants and
their needs were highly appreciated.

The students will certainly remember several interesting excursions, which included visits to Santa Fé de
Antioquia, and El Peñol a 200-metre-high granite monolith with 650 steps that the participants climbed. They
greatly appreciated the excellent social programme, including horse riding and performances by local groups
that were organized by Enrico Nardi.

However, the success of the School was to a large extent due to the students themselves. Their poster
session was very well prepared and highly appreciated, and throughout the School they participated actively
during the lectures, in the discussion sessions, and in the different activities and excursions.

Egil Lillestøl and Nick Ellis
on behalf of the Organizing Committee
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Introductory lectures on quantum field theory∗

L. Álvarez-Gauméa, † and M. A. Vázquez-Mozob‡
a CERN, Geneva, Switzerland
b University of Salamanca, Salamanca, Spain

Abstract
In these lectures we present a few topics in quantum field theory in detail.
Some of them are conceptual and some more practical. They have been se-
lected because they appear frequently in current applications to particle physics
and string theory.

1 Introduction

These notes summarize the lectures presented at the 2005 CERN–CLAF school in Malargüe, Argentina
and the 2009 CERN–CLAF school in Medellín, Colombia. The audience on both occasions was com-
posed to a large extent of students in experimental high-energy physics with an important minority of
theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as
quantum field theory. For this reason the lectures were intended to provide a review of those parts of the
subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum
field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum
mechanics and special relativity.

The guiding principle in choosing the topics presented (apart to serve as introductions to later
courses) was to present some basic aspects of the theory thatpresent conceptual subtleties. Those topics
one often is uncomfortable with after a first introduction tothe subject. Among them we have selected:

– The need to introduce quantum fields, with the great complexity this implies.

– Quantization of gauge theories and the rôle of topology in quantum phenomena. We have included
a brief study of the Aharonov–Bohm effect and Dirac’s explanation of the quantization of the
electric charge in terms of magnetic monopoles.

– Quantum aspects of global and gauge symmetries and their breaking.

– Anomalies.

– The physical idea behind the process of renormalization ofquantum field theories.

– Some more specialized topics, like the creation of particles by classical fields and the very basics
of supersymmetry.

These notes have been written following closely the original presentation, with numerous clarifi-
cations. Sometimes the treatment given to some subjects hasbeen extended, in particular the discussion
of the Casimir effect and particle creation by classical backgrounds. Since no group theory was assumed,
we have included an Appendix with a review of the basic concepts.

For lack of space and on purpose, few proofs have been included. Instead, very often we illustrate a
concept or property by describing a physical situation where it arises. Full details and proofs can be found
in the many textbooks in the subject, and in particular in theones provided in the bibliography [1–10].

∗Based on lectures delivered by L.A.-G. at the 3rd CERN–CLAF School of High-Energy Physics, Malargüe (Argentina),
February 27th–March 12th, 2005 and at the 5th CERN–CLAF School of High-Energy Physics, Medellín (Colombia), 15th–28th
March, 2009

†Luis.Alvarez-Gaume@cern.ch
‡Miguel.Vazquez-Mozo@cern.ch, vazquez@usal.es
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Specially modern presentations, very much in the spirit of these lectures, can be found in Refs. [4,5,9,10].
We should nevertheless warn the reader that we have been a bitcavalier about references. Our aim has
been to provide mostly a (non-exhaustive) list of references for further reading. We apologize to those
authors who feel misrepresented.

1.1 A note about notation

Before starting it is convenient to review the notation used. Throughout these notes we will be using
the metricηµν = diag (1,−1,−1,−1). Derivatives with respect to the four-vectorxµ = (ct, ~x) will be
denoted by the shorthand

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
, ~∇
)
. (1.1)

As usual space-time indices will be labelled by Greek letters (µ, ν, . . . = 0, 1, 2, 3) while Latin indices
will be used for spatial directions (i, j, . . . = 1, 2, 3). In many expressions we will use the notation
σµ = (1, σi) whereσi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

Sometimes we make use of the Feynman slash notation/a = γµaµ. Finally, unless stated otherwise, we
work in natural units~ = c = 1.

2 Why do we need quantum field theory after all?

Despite the impressive success of quantum mechanics in describing atomic physics, it was immediately
clear after its formulation that its relativistic extension was not free of difficulties. These problems were
clear already to Schrödinger, whose first guess for a wave equation of a free relativistic particle was the
Klein–Gordon equation

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x) = 0. (2.1)

This equation follows directly from the relativistic ‘mass-shell’ identityE2 = ~p 2 +m2 using the corre-
spondence principle

E → i
∂

∂t
,

~p → −i~∇. (2.2)

Plane wave solutions to the wave equation (2.1) are readily obtained

ψ(t, ~x) = e−ipµxµ
= e−iEt+i~p·~x with E = ±ωp ≡ ±

√
~p 2 +m2. (2.3)

In order to have a complete basis of functions, one must include plane waves with bothE > 0 and
E < 0. This implies that given the conserved current

jµ =
i

2

(
ψ∗∂µψ − ∂µψ

∗ ψ
)
, (2.4)

its time-component isj0 = E and therefore does not define a positive-definite probability density.

A complete, properly normalized, continuous basis of solutions of the Klein-Gordon equation
(2.1) labelled by the momentum~p can be defined as

fp(t, ~x) =
1

(2π)2
√
2ωp

e−iωpt+i~p·~x,

2
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f−p(t, ~x) =
1

(2π)2
√
2ωp

eiωpt−i~p·~x. (2.5)

Given the inner product

〈ψ1|ψ2〉 = i

∫
d3x
(
ψ∗
1∂0ψ2 − ∂0ψ

∗
1 ψ2

)

the states (2.5) form an orthonormal basis

〈fp|fp′〉 = δ(~p − ~p ′),

〈f−p|f−p′〉 = −δ(~p − ~p ′), (2.6)

〈fp|f−p′〉 = 0. (2.7)

Energy

m

0

−m

Fig. 1: Spectrum of the Klein–Gordon wave equation

The wave functionsfp(t, x) describe states with momentum~p and energy given byωp =
√
~p 2 +m2.

On the other hand, the states|f−p〉 not only have a negative scalar product but they actually correspond
to negative energy states

i∂0f−p(t, ~x) = −
√
~p 2 +m2 f−p(t, ~x). (2.8)

Therefore the energy spectrum of the theory satisfies|E| > m and is unbounded from below (see Fig.
1). Although in a case of a free theory the absence of a ground state is not necessarily a fatal problem,
once the theory is coupled to the electromagnetic field this is the source of all kinds of disasters, since
nothing can prevent the decay of any state by emission of electromagnetic radiation.

The problem of the instability of the ‘first-quantized’ relativistic wave equation can be heuristically
tackled in the case of spin-1

2 particles, described by the Dirac equation

(
−iβ ∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) = 0, (2.9)

3
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Energy

m

−m

particle

antiparticle (hole)

photon

Dirac Sea

Fig. 2: Creation of a particle–antiparticle pair in the Dirac sea picture

where~α andβ are4× 4 matrices

αi =

(
0 iσi

−iσi 0

)
, β =

(
0 1
1 0

)
, (2.10)

with σi the Pauli matrices, and the wave functionψ(t, ~x) has four components. The wave equation (2.9)
can be thought of as a kind of ‘square root’ of the Klein–Gordon equation (2.1), since the latter can be
obtained as

(
−iβ ∂

∂t
+ ~α · ~∇−m

)†(
−iβ ∂

∂t
+ ~α · ~∇−m

)
ψ(t, ~x) =

(
∂2

∂t2
−∇2 +m2

)
ψ(t, ~x). (2.11)

An analysis of Eq. (2.9) along the lines of the one presented above for the Klein–Gordon equation
leads again to the existence of negative energy states and a spectrum unbounded from below as in Fig. 1.
Dirac, however, solved the instability problem by pointingout that now the particles are fermions and
therefore they are subject to Pauli’s exclusion principle.Hence, each state in the spectrum can be oc-
cupied by at most one particle, so the states withE = m can be made stable if we assume thatall the
negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum where all
negative energy states are occupied, the so-called Dirac sea, it also leads directly to the conclusion that a
single-particle interpretation of the Dirac equation is not possible. Indeed, a photon with enough energy
(E > 2m) can excite one of the electrons filling the negative energy states, leaving behind a ‘hole’ in
the Dirac sea (see Fig. 2). This hole behaves as a particle with equal mass and opposite charge that is
interpreted as a positron, so there is no escaping the conclusion that interactions will produce particle–
antiparticle pairs out of the vacuum.

In spite of the success of the heuristic interpretation of negative energy states in the Dirac equation,
this is not the end of the story. In 1929 Oskar Klein stumbled into an apparent paradox when trying to
describe the scattering of a relativistic electron by a square potential using Dirac’s wave equation [11]
(for pedagogical reviews see Refs. [12, 13]). In order to capture the essence of the problem without

4
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x

V(x)

V0Incoming

Reflected

Transmited

Fig. 3: Illustration of the Klein paradox

entering into unnecessary complication we will study Klein’s paradox in the context of the Klein–Gordon
equation.

Let us consider a square potential with heightV0 > 0 of the type shown in Fig. 3. A solution to
the wave equation in regions I and II is given by

ψI(t, x) = e−iEt+ip1x +Re−iEt−ip1x,

ψII(t, x) = Te−iEt+p2x, (2.12)

where the mass-shell condition implies that

p1 =
√
E2 −m2, p2 =

√
(E − V0)2 −m2. (2.13)

The constantsR andT are computed by matching the two solutions across the boundary x = 0. The
conditionsψI(t, 0) = ψII(t, 0) and∂xψI(t, 0) = ∂xψII(t, 0) imply that

T =
2p1

p1 + p2
, R =

p1 − p2
p1 + p2

. (2.14)

At first sight one would expect a behavior similar to the one encountered in the non-relativistic
case. If the kinetic energy is bigger thanV0 both a transmitted and reflected wave are expected, whereas
when the kinetic energy is smaller thanV0 one only expects to find a reflected wave, the transmitted wave
being exponentially damped within a distance of a Compton wavelength inside the barrier.

Indeed this is what happens ifE −m > V0. In this case bothp1 andp2 are real and we have a
partly reflected, and a partly transmitted wave. In the same way, ifE −m < V0 andE −m < V0 − 2m
thenp2 is imaginary and there is total reflection.

However, in the case whenV0 > 2m and the energy is in the rangeV0 − 2m < E − m < V0
a completely different situation arises. In this case one finds that bothp1 andp2 are real and therefore
the incoming wave function is partially reflected and partially transmitted across the barrier. This is a
shocking result, since it implies that there is a nonvanishing probability of finding the particle at any
point across the barrier with negative kinetic energy (E −m − V0 < 0)! This weird result is known as
Klein’s paradox.

5
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Fig. 4: Two regionsR1,R2 that are causally disconnected

As with the negative energy states, the Klein paradox results from our insistence in giving a single-
particle interpretation to the relativistic wave function. Actually, a multiparticle analysis of the paradox
[12] shows that what happens whenE −m > V0 − 2m is that the reflection of the incoming particle by
the barrier is accompanied by the creation of particle–antiparticle pairs out of the energy of the barrier
(notice that for this to happen it is required thatV0 > 2m, the threshold for the creation of a particle–
antiparticle pair).

Actually, this particle creation can be understood by noticing that the sudden potential step in Fig.
3 localizes the incoming particle with massm in distances smaller than its Compton wavelengthλ = 1

m .
This can be seen by replacing the square potential by anotherone where the potential varies smoothly
from 0 to V0 > 2m in distances scales larger than1/m. This case was worked out by Sauter shortly after
Klein pointed out the paradox [14]. He considered a situation where the regions withV = 0 andV = V0
are connected by a region of lengthd with a linear potentialV (x) = V0x

d . Whend > 1
m he found that

the transmission coefficient is exponentially small1.

The creation of particles is impossible to avoid whenever one tries to locate a particle of massm
within its Compton wavelength. Indeed, from Heisenberg’s uncertainty relation we find that if∆x ∼ 1

m ,
the fluctuations in the momentum will be of order∆p ∼ m and fluctuations in the energy of order

∆E ∼ m (2.15)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are enough to allow
the creation of particles out of the vacuum. In the case of a spin-12 particle, the Dirac sea picture shows
clearly how, when the energy fluctuations are of orderm, electrons from the Dirac sea can be excited to
positive energy states, thus creating electron–positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by relativistic invariance.
In non-relativistic quantum mechanics observables are represented by self-adjoint operators that in the
Heisenberg picture depend on time. Therefore measurementsare localized in time but are global in
space. The situation is radically different in the relativistic case. Because no signal can propagate faster

1In Section (9.1) we will see how, in the case of the Dirac field,this exponential behavior can be associated with the creation
of electron–positron pairs due to a constant electric field (Schwinger effect).
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than the speed of light, measurements have to be localized both in time and space. Causality demands
then that two measurements carried out in causally-disconnected regions of space-time not interfere with
each other. In mathematical terms this means that ifOR1 andOR2 are the observables associated with
two measurements localized in two causally-disconnected regionsR1,R2 (see Fig. 4), they satisfy

[OR1 ,OR2 ] = 0, if (x1 − x2)
2 < 0, for all x1 ∈ R1, x2 ∈ R2. (2.16)

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must depend on the
space-time positionxµ. Unlike the case in non-relativistic quantum mechanics, here the position~x is not
an observable, but just a label, similar to the case of time inordinary quantum mechanics. Causality is
then imposed microscopically by requiring

[O(x),O(y)] = 0, if (x− y)2 < 0. (2.17)

A smeared operatorOR over a space-time regionR can then be defined as

OR =

∫
d4xO(x) fR(x) (2.18)

wherefR(x) is the characteristic function associated withR,

fR(x) =

{
1 x ∈ R
0 x /∈ R

. (2.19)

Equation (2.16) follows now from the microcausality condition (2.17).

Therefore, relativistic invariance forces the introduction of quantum fields. It is only when we
insist on keeping a single-particle interpretation that wecrash against causality violations. To illustrate
the point, let us consider a single-particle wave functionψ(t, ~x) that initially is localized in the position
~x = 0

ψ(0, ~x) = δ(~x). (2.20)

Evolving this wave function using the HamiltonianH =
√
−∇2 +m2 we find that the wave function

can be written as

ψ(t, ~x) = e−it
√
−∇2+m2

δ(~x) =

∫
d3k

(2π)3
ei
~k·~x−it

√
k2+m2

. (2.21)

Integrating over the angular variables, the wave function can be recast in the form

ψ(t, ~x) =
1

2π2|~x|

∫ ∞

−∞
k dk eik|~x| e−it

√
k2+m2

. (2.22)

The resulting integral can be evaluated using the complex integration contourC shown in Fig. 5. The
result is that, for anyt > 0, one finds thatψ(t, ~x) 6= 0 for any~x. If we insist on interpreting the wave
functionψ(t, ~x) as the probability density of finding the particle at the location ~x in the timet we find
that the probability leaks out of the light cone, thus violating causality.

3 From classical to quantum fields

We have learned how the consistency of quantum mechanics with special relativity forces us to abandon
the single-particle interpretation of the wave function. Instead we have to consider quantum fields whose
elementary excitations are associated with particle states, as we will see below.

In any scattering experiment, the only information available to us is the set of quantum numbers
associated with the set of free particles in the initial and final states. Ignoring for the moment other
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Fig. 5: Complex contourC for the computation of the integral in Eq. (2.22)

quantum numbers like spin and flavor, one-particle states are labelled by the three-momentum~p and
span the single-particle Hilbert spaceH1

|~p〉 ∈ H1, 〈~p|~p ′〉 = δ(~p − ~p ′) . (3.1)

The states{|~p〉} form a basis ofH1 and therefore satisfy the closure relation
∫
d3p |~p〉〈~p| = 1 . (3.2)

The group of spatial rotations acts unitarily on the states|~p〉. This means that for every rotationR ∈
SO(3) there is a unitary operatorU(R) such that

U(R)|~p〉 = |R~p〉 (3.3)

whereR~p represents the action of the rotation on the vector~k, (R~p)i = Ri
jk

j . Using a spectral decom-

position, the momentum operator̂P i can be written as

P̂ i =

∫
d3p |~p〉 pi 〈~p| . (3.4)

With the help of Eq. (3.3) it is straightforward to check thatthe momentum operator transforms as a
vector under rotations:

U(R)−1 P̂ i U(R) =
∫
d3p |R−1~p〉 pi 〈R−1~p| = Ri

jP̂
j, (3.5)

where we have used that the integration measure is invariantunder SO(3).

Since, as we argued above, we are forced to deal with multiparticle states, it is convenient to
introduce creation–annihilation operators associated with a single-particle state of momentum~p

[a(~p), a†(~p ′)] = δ(~p − ~p ′), [a(~p), a(~p ′)] = [a†(~p), a†(~p ′)] = 0, (3.6)

such that the state|~p〉 is created out of the Fock space vacuum|0〉 (normalized such that〈0|0〉 = 1) by
the action of a creation operatora†(~p)

|~p〉 = a†(~p)|0〉, a(~p)|0〉 = 0 ∀~p. (3.7)
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Covariance under spatial rotations is all we need if we are interested in a non-relativistic theory.
However, in a relativistic quantum field theory we must preserve more than SO(3), actually we need
the expressions to be covariant under the full Poincaré group ISO(1, 3) consisting of spatial rotations,
boosts and space-time translations. Therefore, in order tobuild the Fock space of the theory we need
two key ingredients: first an invariant normalization for the states, since we want a normalized state in
one reference frame to be normalized in any other inertial frame. And secondly a relativistic invariant
integration measure in momentum space, so the spectral decomposition of operators is covariant under
the full Poincaré group.

Let us begin with the invariant measure. Given an invariant functionf(p) of the four-momentum
pµ of a particle of massm with positive energyp0 > 0, there is an integration measure which is invariant
under proper Lorentz transformations2

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p), (3.8)

whereθ(x) represent the Heaviside step function. The integration over p0 can be easily done using the
δ-function identity

δ[f(x)] =
∑

xi=zeros of f

1

|f ′(xi)|
δ(x− xi), (3.9)

which in our case implies that

δ(p2 −m2) =
1

2p0
δ
(
p0 −

√
~p 2 +m2

)
+

1

2p0
δ
(
p0 +

√
~p 2 +m2

)
. (3.10)

The second term in the previous expression corresponds to states with negative energy and therefore does
not contribute to the integral. We can then write

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) f(p) =

∫
d3p

(2π)3
1

2
√
~p 2 +m2

f
(√

~p 2 +m2, ~p
)
. (3.11)

Hence, the relativistic invariant measure is given by

∫
d3p

(2π)3
1

2ωp
with ωp ≡

√
~p 2 +m2. (3.12)

Once we have an invariant measure the next step is to find an invariant normalization for the states.
We work with a basis{|p〉} of eigenstates of the four-momentum operatorP̂µ

P̂ 0|p〉 = ωp|p〉, P̂ i|p〉 = ~p i|p〉. (3.13)

Since the states|p〉 are eigenstates of the three-momentum operator we can express them in terms of the
non-relativistic states|~p〉 that we introduced in Eq. (3.1)

|p〉 = N(~p)|~p〉 (3.14)

with N(~p) a normalization to be determined now. The states{|p〉} form a complete basis, so they should
satisfy the Lorentz-invariant closure relation

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| = 1 . (3.15)

2The factors of2π are introduced for later convenience.
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At the same time, this closure relation can be expressed, using Eq. (3.14), in terms of the non-relativistic
basis of states{|~p〉} as

∫
d4p

(2π)4
(2π)δ(p2 −m2) θ(p0) |p〉 〈p| =

∫
d3p

(2π)3
1

2ωp
|N(p)|2 |~p〉 〈~p|. (3.16)

Using now Eq. (3.4) for the non-relativistic states, expression (3.15) follows provided

|N(~p)|2 = (2π)3 (2ωp). (3.17)

Taking the overall phase in Eq. (3.14) so thatN(p) is real, we define the Lorentz-invariant states|p〉 as

|p〉 = (2π)
3
2

√
2ωp |~p〉, (3.18)

and given the normalization of|~p〉 we find the normalization of the relativistic states to be

〈p|p′〉 = (2π)3(2ωp)δ(~p − ~p ′). (3.19)

Although not obvious at first sight, the previous normalization is Lorentz invariant. Although it
is not difficult to show this in general, here we consider the simpler case of 1+1 dimensions where the
two components(p0, p1) of the on-shell momentum can be parametrized in terms of a single hyperbolic
angleλ as

p0 = m cosh λ, p1 = m sinhλ. (3.20)

Now, the combination2ωpδ(p
1 − p1′) can be written as

2ωpδ(p
1 − p1′) = 2m coshλ δ(m sinh λ−m sinhλ′) = 2δ(λ − λ′), (3.21)

where we have made use of the property (3.9) of theδ-function. Lorentz transformations in1 + 1
dimensions are labelled by a parameterξ ∈ R and act on the momentum by shifting the hyperbolic angle
λ→ λ+ ξ. However, Eq. (3.21) is invariant under a common shift ofλ andλ′, so the whole expression
is obviously invariant under Lorentz transformations.

To summarize what we did so far, we have succeed in constructing a Lorentz-covariant basis of
states for the one-particle Hilbert spaceH1. The generators of the Poincaré group act on the states|p〉 of
the basis as

P̂µ|p〉 = pµ|p〉, U(Λ)|p〉 = |Λµ
ν p

ν〉 ≡ |Λp〉 with Λ ∈ SO(1, 3). (3.22)

This is compatible with the Lorentz invariance of the normalization that we have checked above

〈p|p′〉 = 〈p|U(Λ)−1U(Λ)|p′〉 = 〈Λp|Λp′〉. (3.23)

OnH1 the operator̂Pµ admits the following spectral representation

P̂µ =

∫
d3p

(2π)3
1

2ωp
|p〉 pµ 〈p| . (3.24)

Using (3.23) and the fact that the measure is invariant underLorentz transformation, one can easily show
thatP̂µ transform covariantly under SO(1, 3)

U(Λ)−1P̂µU(Λ) =
∫

d3p

(2π)3
1

2ωp
|Λ−1p〉 pµ 〈Λ−1p| = Λµ

νP̂
ν . (3.25)
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A set of covariant creation–annihilation operators can be constructed now in terms of the operators
a(~p), a†(~p) introduced above

α(~p) ≡ (2π)
3
2

√
2ωpa(~p), α†(~p) ≡ (2π)

3
2

√
2ωpa

†(~p) (3.26)

with the Lorentz-invariant commutation relations

[α(~p), α†(~p ′)] = (2π)3(2ωp)δ(~p − ~p ′),

[α(~p), α(~p ′)] = [α†(~p), α†(~p ′)] = 0. (3.27)

Particle states are created by acting with any number of creation operatorsα(~p) on the Poincaré invariant
vacuum state|0〉 satisfying

〈0|0〉 = 1, P̂µ|0〉 = 0, U(Λ)|0〉 = |0〉, ∀Λ ∈ SO(1, 3). (3.28)

A general one-particle state|f〉 ∈ H1 can be then written as

|f〉 =
∫

d3p

(2π)3
1

2ωp
f(~p)α†(~p)|0〉, (3.29)

while an-particle state|f〉 ∈ H⊗n
1 can be expressed as

|f〉 =
∫ n∏

i=1

d3pi
(2π)3

1

2ωpi

f(~p1, . . . , ~pn)α
†(~p1) . . . α†(~pn)|0〉. (3.30)

That these states are Lorentz invariant can be checked by noticing that from the definition of the creation–
annihilation operators follows the transformation

U(Λ)α(~p)U(Λ)† = α(Λ~p) (3.31)

and the corresponding one for creation operators.

As we have argued above, the very fact that measurements haveto be localized implies the ne-
cessity of introducing quantum fields. Here we will considerthe simplest case of a scalar quantum field
φ(x) satisfying the following properties:

– Hermiticity.

φ†(x) = φ(x). (3.32)

– Microcausality. Since measurements cannot interfere with each other when performed in causally
disconnected points of space-time, the commutator of two fields has to vanish outside the relative
light-cone

[φ(x), φ(y)] = 0, (x− y)2 < 0. (3.33)

– Translation invariance.

ei
bP ·aφ(x)e−i bP ·a = φ(x− a). (3.34)

– Lorentz invariance.

U(Λ)†φ(x)U(Λ) = φ(Λ−1x). (3.35)
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– Linearity. To simplify matters we will also assume thatφ(x) is linear in the creation–annihilation
operatorsα(~p), α†(~p)

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
f(~p, x)α(~p) + g(~p, x)α†(~p)

]
. (3.36)

Sinceφ(x) should be hermitian we are forced to takef(~p, x)∗ = g(~p, x). Moreover,φ(x) satisfies
the equations of motion of a free scalar field,(∂µ∂

µ +m2)φ(x) = 0, only if f(~p, x) is a complete
basis of solutions of the Klein–Gordon equation. These considerations lead to the expansion

φ(x) =

∫
d3p

(2π)3
1

2ωp

[
e−iωpt+i~p·~xα(~p) + eiωpt−i~p·~xα†(~p)

]
. (3.37)

Given the expansion of the scalar field in terms of the creation–annihilation operators it can be
checked thatφ(x) and∂tφ(x) satisfy the equal-time canonical commutation relations

[φ(t, ~x), ∂tφ(t, ~y)] = iδ(~x − ~y) . (3.38)

The general commutator[φ(x), φ(y)] can also be computed to be

[φ(x), φ(x′)] = i∆(x− x′). (3.39)

The function∆(x− y) is given by

i∆(x− y) = −Im

∫
d3p

(2π)3
1

2ωp
e−iωp(t−t′)+i~p·(~x−~x ′)

=

∫
d4p

(2π)4
(2π)δ(p2 −m2)ε(p0)e−ip·(x−x′), (3.40)

whereε(x) is defined as

ε(x) ≡ θ(x)− θ(−x) =
{

1 x > 0
−1 x < 0

. (3.41)

Using the last expression in Eq. (3.40) it is easy to show thati∆(x − x′) vanishes whenx andx′

are space-like separated. Indeed, if(x− x′)2 < 0 there is always a reference frame in which both events
are simultaneous, and sincei∆(x − x′) is Lorentz invariant we can compute it in this reference frame.
In this caset = t′ and the exponential in the second line of (3.40) does not depend onp0. Therefore, the
integration overk0 gives

∫ ∞

−∞
dp0ε(p0)δ(p2 −m2) =

∫ ∞

−∞
dp0

[
1

2ωp
ε(p0)δ(p0 − ωp) +

1

2ωp
ε(p0)δ(p0 + ωp)

]

=
1

2ωp
− 1

2ωp
= 0. (3.42)

So we have concluded thati∆(x − x′) = 0 if (x− x′)2 < 0, as required by microcausality. Notice that
the situation is completely different when(x − x′)2 ≥ 0, since in this case the exponential depends on
p0 and the integration over this component of the momentum doesnot vanish.
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3.1 Canonical quantization

So far we have contented ourselves with requiring a number ofproperties in the quantum scalar field:
existence of asymptotic states, locality, microcausalityand relativistic invariance. With only these ingre-
dients we have managed to go quite far. The former can also be obtained using canonical quantization.
One starts with a classical free scalar field theory in Hamiltonian formalism and obtains the quantum
theory by replacing Poisson brackets by commutators. Sincethis quantization procedure is based on the
use of the canonical formalism, which gives time a privileged rôle, it is important to check at the end of
the calculation that the resulting quantum theory is Lorentz invariant. In the following we will briefly
overview the canonical quantization of the Klein–Gordon scalar field.

The starting point is the action functionalS[φ(x)] which, in the case of a free real scalar field of
massm, is given by

S[φ(x)] ≡
∫
d4xL(φ, ∂µφ) =

1

2

∫
d4x

(
∂µφ∂

µφ−m2φ2
)
. (3.43)

The equations of motion are obtained, as usual, from the Euler–Lagrange equations

∂µ

[
∂L

∂(∂µφ)

]
− ∂L
∂φ

= 0 =⇒ (∂µ∂
µ +m2)φ = 0. (3.44)

The momentum canonically conjugated to the fieldφ(x) is given by

π(x) ≡ ∂L
∂(∂0φ)

=
∂φ

∂t
. (3.45)

In the Hamiltonian formalism the physical system is described not in terms of the generalized coordinates
and their time derivatives but in terms of the generalized coordinates and their canonically conjugated
momenta. This is achieved by a Legendre transformation after which the dynamics of the system is
determined by the Hamiltonian function

H ≡
∫
d3x

(
π
∂φ

∂t
− L

)
=

1

2

∫
d3x

[
π2 + (~∇φ)2 +m2

]
. (3.46)

The equations of motion can be written in terms of the Poissonbrackets. Given two functional
A[φ, π], B[φ, π] of the canonical variables

A[φ, π] =

∫
d3xA(φ, π), B[φ, π] =

∫
d3xB(φ, π). (3.47)

Their Poisson bracket is defined by

{A,B} ≡
∫
d3x

[
δA

δφ

δB

δπ
− δA

δπ

δB

δφ

]
, (3.48)

where δ
δφ denotes the functional derivative defined as

δA

δφ
≡ ∂A
∂φ

− ∂µ

[
∂A

∂(∂µφ)

]
. (3.49)

Then, the canonically conjugated fields satisfy the following equal time Poisson brackets

{φ(t, ~x), φ(t, ~x ′)} = {π(t, ~x), π(t, ~x ′)} = 0,

{φ(t, ~x), π(t, ~x ′)} = δ(~x − ~x ′). (3.50)
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Canonical quantization proceeds now by replacing classical fields with operators and Poisson
brackets with commutators according to the rule

i{·, ·} −→ [·, ·]. (3.51)

In the case of the scalar field, a general solution of the field equations (3.44) can be obtained by working
with the Fourier transform

(∂µ∂
µ +m2)φ(x) = 0 =⇒ (−p2 +m2)φ̃(p) = 0, (3.52)

whose general solution can be written as3

φ(x) =

∫
d4p

(2π)4
(2π)δ(p2 −m2)θ(p0)

[
α(p)e−ip·x + α(p)∗eip·x

]

=

∫
d3p

(2π)3
1

2ωp

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
(3.53)

and we have requiredφ(x) to be real. The conjugate momentum is

π(x) = − i

2

∫
d3p

(2π)3

[
α(~p )e−iωpt+~p·~x + α(~p )∗eiωpt−~p·~x

]
. (3.54)

Now φ(x) andπ(x) are promoted to operators by replacing the functionsα(~p), α(~p)∗ by the
corresponding operators

α(~p ) −→ α̂(~p ), α(~p )∗ −→ α̂†(~p ). (3.55)

Moreover, demanding[φ(t, ~x), π(t, ~x ′)] = iδ(~x− ~x ′) forces the operatorŝα(~p), α̂(~p)† to have the com-
mutation relations found in Eq. (3.27). Therefore they are identified as a set of creation–annihilation
operators creating states with well-defined momentum~p out of the vacuum|0〉. In the canonical quanti-
zation formalism the concept of particle appears as a resultof the quantization of a classical field.

Knowing the expressions of̂φ andπ̂ in terms of the creation–annihilation operators we can proceed
to evaluate the Hamiltonian operator. After a simple calculation one arrives at the expression

Ĥ =

∫
d3p

[
ωpα̂

†(~p)α̂(~p) +
1

2
ωp δ(~0)

]
. (3.56)

The first term has a simple physical interpretation sinceα̂†(~p)α̂(~p) is the number operator of particles
with momentum~p. The second divergent term can be eliminated if we defined thenormal-ordered
Hamiltonian:Ĥ: with the vacuum energy subtracted

:Ĥ:≡ Ĥ − 〈0|Ĥ |0〉 =
∫
d3pωp α̂

†(~p ) α̂(~p ) . (3.57)

It is interesting to try to make sense of the divergent term inEq. (3.56). This term has two sources
of divergence. One is associated with the delta function evaluated at zero coming from the fact that we
are working in a infinite volume. It can be regularized for large but finite volume by replacingδ(~0) ∼ V .
Hence, it is of infrared origin. The second one comes from theintegration ofωp at large values of
the momentum and it is then an ultraviolet divergence. The infrared divergence can be regularized by
considering the scalar field to be living in a box of finite volumeV . In this case the vacuum energy is

Evac ≡ 〈0|Ĥ |0〉 =
∑

~p

1

2
ωp. (3.58)

3In momentum space, the general solution to this equation iseφ(p) = f(p)δ(p2 − m2), with f(p) a completely general
function ofpµ. The solution in position space is obtained by inverse Fourier transform.
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Region I Region II

Conducting plates

Region III

d

Fig. 6: Illustration of the Casimir effect. In regions I and II the spectrum of modes of the momentump⊥ is
continuous, while in the space between the plates (region II) it is quantized in units ofπ/d.

Written in this way the interpretation of the vacuum energy is straightforward. A free scalar quantum
field can be seen as an infinite collection of harmonic oscillators per unit volume, each one labelled by
~p. Even if those oscillators are not excited, they contributeto the vacuum energy with their zero-point
energy, given by12ωp. This vacuum contribution to the energy adds up to infinity even if we work at
finite volume, since even then there are modes with arbitrarily high momentum contributing to the sum,
pi = niπ

Li
, with Li the sides of the box of volumeV andni an integer. Hence, this divergence is of

ultraviolet origin.

3.2 The Casimir effect

The presence of a vacuum energy is not characteristic of the scalar field. It is also present in other
cases, in particular in quantum electrodynamics. Althoughone might be tempted to discard this infinite
contribution to the energy of the vacuum as unphysical, it has observable consequences. In 1948 Hendrik
Casimir pointed out [15] that although a formally divergentvacuum energy would not be observable, any
variation in this energy would be (see [16] for comprehensive reviews).

To show this he devised the following experiment. Consider acouple of infinite, perfectly con-
ducting plates placed parallel to each other at a distanced (see Fig. 6). Because the conducting plates fix
the boundary condition of the vacuum modes of the electromagnetic field these are discrete in between
the plates (region II), while outside there is a continuous spectrum of modes (regions I and III). In order
to calculate the force between the plates we can take the vacuum energy of the electromagnetic field
as given by the contribution of two scalar fields corresponding to the two polarizations of the photon.
Therefore we can use the formulas derived above.

A naive calculation of the vacuum energy in this system givesa divergent result. This infinity can
be removed, however, by substracting the vacuum energy corresponding to the situation where the plates
are removed

E(d)reg = E(d)vac − E(∞)vac . (3.59)

15

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

15



This substraction cancels the contribution of the modes outside the plates. Because of the boundary
conditions imposed by the plates the momentum of the modes perpendicular to the plates are quantized
according top⊥ = nπ

d , with n a non-negative integer. If we consider that the size of the plates is much
larger than their separationd we can take the momenta parallel to the plates~p‖ as continuous. Forn > 0
we have two polarizations for each vacuum mode of the electromagnetic field, each contributing like
1
2

√
~p 2
‖ + p2⊥ to the vacuum energy. On the other hand, whenp⊥ = 0 the corresponding modes of the

field are effectively (2+1)-dimensional and therefore there is only one polarization. Keeping this in mind,
we can write

E(d)reg = S

∫
d2p‖
(2π)2

1

2
|~p‖|+ 2S

∫
d2p‖
(2π)2

∞∑

n=1

1

2

√
~p 2
‖ +

(nπ
d

)2

− 2Sd

∫
d3p

(2π)3
1

2
|~p | (3.60)

whereS is the area of the plates. The factors of 2 take into account the two propagating degrees of
freedom of the electromagnetic field, as discussed above. Inorder to ensure the convergence of integrals
and infinite sums we can introduce an exponential damping factor4

E(d)reg =
1

2
S

∫
d2p⊥
(2π)2

e−
1
Λ
|~p‖ ||~p‖ |+ S

∞∑

n=1

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+(

nπ
d )

2
√
~p 2
‖ +

(nπ
d

)2

− Sd

∫ ∞

−∞

dp⊥
2π

∫
d2p‖
(2π)2

e
− 1

Λ

q

~p 2
‖+p2⊥

√
~p 2
‖ + p2⊥ (3.61)

whereΛ is an ultraviolet cutoff. It is now straightforward to see that if we define the function

F (x) =
1

2π

∫ ∞

0
y dy e−

1
Λ

q

y2+(xπ
d )

2
√
y2 +

(xπ
d

)2
=

1

4π

∫ ∞

( xπ
d )

2
dz e−

√
z

Λ
√
z (3.62)

the regularized vacuum energy can be written as

E(d)reg = S

[
1

2
F (0) +

∞∑

n=1

F (n)−
∫ ∞

0
dxF (x)

]
. (3.63)

This expression can be evaluated using the Euler–MacLaurinformula [17]
∞∑

n=1

F (n)−
∫ ∞

0
dxF (x) = −1

2
[F (0) + F (∞)] +

1

12

[
F ′(∞)− F ′(0)

]

− 1

720

[
F ′′′(∞)− F ′′′(0)

]
+ . . . (3.64)

Since for our functionF (∞) = F ′(∞) = F ′′′(∞) = 0 andF ′(0) = 0, the value ofE(d)reg is
determined byF ′′′(0). Computing this term and removing the ultraviolet cutoff,Λ → ∞ we find the
result

E(d)reg =
S

720
F ′′′(0) = − π2S

720d3
. (3.65)

Then, the force per unit area between the plates is given by

PCasimir = − π2

240

1

d4
. (3.66)

The minus sign shows that the force between the plates is attractive. This is the so-called Casimir effect.
It was experimentally measured in 1958 by Sparnaay [18] and since then the Casimir effect has been
checked with better and better precision in a variety of situations [16].

4Actually, one could introduce any cutoff functionf(p2⊥ + p2‖) going to zero fast enough asp⊥, p‖ → ∞. The result is
independent of the particular function used in the calculation.
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4 Theories and Lagrangians

Up to this point we have used a scalar field to illustrate our discussion of the quantization procedure.
However, nature is richer than that and it is necessary to consider other fields with more complicated be-
havior under Lorentz transformations. Before consideringother fields we pause and study the properties
of the Lorentz group.

4.1 Representations of the Lorentz group

In four dimensions the Lorentz group has six generators. Three of them correspond to the generators
of the group of rotations in three dimensions SO(3). In termsof the generatorsJi of the group a finite
rotation of angleϕ with respect to an axis determined by a unitary vector~e can be written as

R(~e, ϕ) = e−iϕ~e· ~J , ~J =




J1
J2
J3


 . (4.1)

The other three generators of the Lorentz group are associated with boostsMi along the three spatial
directions. A boost with rapidityλ along a direction~u is given by

B(~u, λ) = e−iλ ~u· ~M , ~M =




M1

M2

M3


 . (4.2)

These six generators satisfy the algebra

[Ji, Jj ] = iǫijkJk,

[Ji,Mk] = iǫijkMk, (4.3)

[Mi,Mj ] = −iǫijkJk .

The first line corresponds to the commutation relations of SO(3), while the second one implies that the
generators of the boosts transform like a vector under rotations.

At first sight, to find representations of the algebra (4.3) might seem difficult. The problem is
greatly simplified if we consider the following combinationof the generators

J±
k =

1

2
(Jk ± iMk). (4.4)

Using (4.3) it is easy to prove that the new generatorsJ±
k satisfy the algebra

[J±
i , J

±
j ] = iǫijkJ

±
k ,

[J+
i , J

−
j ] = 0. (4.5)

Then the Lorentz algebra (4.3) is actually equivalent to twocopies of the algebra ofSU(2) ≈ SO(3).
Therefore the irreducible representations of the Lorentz group can be obtained from the well-known rep-
resentations of SU(2). Since the latter ones are labelled bythe spins = k + 1

2 , k (with k ∈ N), any
representation of the Lorentz algebra can be identified by specifying (s+, s−), the spins of the represen-
tations of the two copies of SU(2) that made up the algebra (4.3).

To get familiar with this way of labelling the representations of the Lorentz group we study some
particular examples. Let us start with the simplest one(s+, s−) = (0,0). This state is a singlet under
J±
i and therefore also under rotations and boosts. Therefore wehave a scalar.

The next interesting cases are(12 ,0) and(0, 12). They correspond respectively to a right-handed
and a left-handed Weyl spinor. Their properties will be studied in more detail below. In the case of

17

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

17



Table 1: Representations of the Lorentz group

Representation Type of field
(0,0) Scalar
(12 ,0) Right-handed spinor
(0, 12) Left-handed spinor
(12 ,

1
2) Vector

(1,0) Selfdual antisymmetric 2-tensor
(0,1) Anti-selfdual antisymmetric 2-tensor

(12 ,
1
2), since from Eq. (4.4) we see thatJi = J+

i + J−
i the rules of addition of angular momentum

tell us that there are two states, one of them transforming asa vector and another one as a scalar under
three-dimensional rotations. Actually, a more detailed analysis shows that the singlet state corresponds
to the time component of a vector and the states combine to form a vector under the Lorentz group.

There are also more ‘exotic’ representations. For example we can consider the(1,0) and(0,1)
representations corresponding respectively to a selfdualand an anti-selfdual rank-two antisymmetric
tensor. In Table 1 we summarize the previous discussion.

To conclude our discussion of the representations of the Lorentz group we notice that under a
parity transformation the generators of SO(1,3) transformas

P : Ji −→ Ji, P :Mi −→ −Mi (4.6)

this means thatP : J±
i −→ J∓

i and therefore a representation(s1, s2) is transformed into(s2, s1). This
means that, for example, a vector(12 ,

1
2) is invariant under parity, whereas a left-handed Weyl spinor

(12 ,0) transforms into a right-handed one(0, 12) and vice versa.

4.2 Spinors

Weyl spinors. Let us go back to the two spinor representations of the Lorentz group, namely(12 ,0) and
(0, 12). These representations can be explicitly constructed using the Pauli matrices as

J+
i =

1

2
σi, J−

i = 0 for (12 ,0),

J+
i = 0, J−

i =
1

2
σi for (0, 12). (4.7)

We denote byu± a complex two-component object that transforms in the representations± = 1
2 of J i

±.
If we defineσµ± = (1,±σi) we can construct the following vector quantities

u†+σ
µ
+u+, u†−σ

µ
−u−. (4.8)

Notice that since(J±
i )† = J∓

i the hermitian conjugated fieldsu†± are in the(0, 12) and(12 ,0) respectively.

To construct a free Lagrangian for the fieldsu± we have to look for quadratic combinations of the
fields that are Lorentz scalars. If we also demand invarianceunder global phase rotations

u± −→ eiθu± (4.9)

we are left with just one possibility up to a sign

L±
Weyl = iu†±

(
∂t ± ~σ · ~∇

)
u± = iu†±σ

µ
±∂µu±. (4.10)
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This is the Weyl Lagrangian. In order to grasp the physical meaning of the spinorsu± we write the
equations of motion

(
∂0 ± ~σ · ~∇

)
u± = 0. (4.11)

Multiplying this equation on the left by
(
∂0 ∓ ~σ · ~∇

)
and applying the algebraic properties of the Pauli

matrices we conclude thatu± satisfies the massless Klein–Gordon equation

∂µ∂
µ u± = 0, (4.12)

whose solutions are

u±(x) = u±(k)e−ik·x, with k0 = |~k|. (4.13)

Plugging these solutions back into the equations of motion (4.11) we find
(
|~k| ∓ ~k · ~σ

)
u± = 0, (4.14)

which implies

u+ :
~σ · ~k
|~k|

= 1,

u− :
~σ · ~k
|~k|

= −1. (4.15)

Since the spin operator is defined as~s = 1
2~σ, the previous expressions give the chirality of the states

with wave functionu±, i.e., the projection of spin along the momentum of the particle. Therefore we
conclude thatu+ is a Weyl spinor of positive helicityλ = 1

2 , while u− has negative helicityλ = −1
2 .

This agrees with our assertion that the representation(12 ,0) corresponds to a right-handed Weyl fermion
(positive chirality) whereas(0, 12) is a left-handed Weyl fermion (negative chirality). For example, in
the Standard Model neutrinos are left-handed Weyl spinors and therefore transform in the representation
(0, 12) of the Lorentz group.

Nevertheless, it is possible that we were too restrictive inconstructing the Weyl Lagrangian (4.10).
There we constructed the invariants from the vector bilinears (4.8) corresponding to the product repre-
sentations

(12 ,
1
2) = (12 ,0)⊗ (0, 12) and (12 ,

1
2) = (0, 12)⊗ (12 ,0). (4.16)

In particular our insistence in demanding the Lagrangian tobe invariant under the global symmetry
u± → eiθu± rules out the scalar term that appears in the product representations

(12 ,0)⊗ (12 ,0) = (1,0) ⊕ (0,0), (0, 12)⊗ (0, 12) = (0,1) ⊕ (0,0). (4.17)

The singlet representations corresponds to the antisymmetric combinations

ǫabu
a
±u

b
±, (4.18)

whereǫab is the antisymmetric symbolǫ12 = −ǫ21 = 1.

At first sight it might seem that the term (4.18) vanishes identically because of the antisymmetry
of the ǫ-symbol. However, we should keep in mind that the spin-statistic theorem (more on this later)
demands that fields with half-integer spin have to satisfy the Fermi–Dirac statistics and therefore satisfy
anticommutation relations, whereas fields of integer spin follow the statistics of Bose–Einstein and, as a
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consequence, quantization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermionsu± are anticommuting Grassmann fields

ua±u
b
± + ub±u

a
± = 0. (4.19)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy the Fermi–Dirac statis-
tics) do not exist classically. The reason is that they satisfy the Pauli exclusion principle and therefore
each quantum state can be occupied, at most, by one fermion. Therefore the naïve definition of the clas-
sical limit as a limit of large occupation numbers cannot be applied. Fermion fields do not really make
sense classically.

Since the combination (4.18) does not vanish and we can construct a new Lagrangian

L±
Weyl = iu†±σ

µ
±∂µu± +

1

2
mǫabu

a
±u

b
± + h.c. (4.20)

This mass term, called of Majorana type, is allowed if we do not worry about breaking the global U(1)
symmetryu± → eiθu±. This is not the case, for example, of charged chiral fermions, since the Majorana
mass violates the conservation of electric charge or any other gauge U(1) charge. In the Standard Model,
however, there is no such problem if we introduce Majorana masses for right-handed neutrinos, since
they are singlet under all Standard Model gauge groups. Sucha term will, however, break the global
U(1) lepton number charge because the operatorǫabν

a
Rν

b
R changes the lepton number by two units

Dirac spinors. We have seen that parity interchanges the representations(12 ,0) and(0, 12), i.e., it
changes right-handed with left-handed fermions

P : u± −→ u∓. (4.21)

An obvious way to build a parity-invariant theory is to introduce a pair or Weyl fermionsu+ andu+.
Actually, these two fields can be combined in a single four-component spinor

ψ =

(
u+
u−

)
(4.22)

transforming in the reducible representation(12 ,0) ⊕ (0, 12).

Since now we have bothu+ andu− simultaneously at our disposal the equations of motion for
u±, iσµ±∂µu± = 0 can be modified, while keeping them linear, to

iσµ+∂µu+ = mu−

iσµ−∂µu− = mu+



 =⇒ i

(
σµ+ 0
0 σµ−

)
∂µψ = m

(
0 1
1 0

)
ψ. (4.23)

These equations of motion can be derived from the Lagrangiandensity

LDirac = iψ†
(
σµ+ 0
0 σµ−

)
∂µψ −mψ†

(
0 1
1 0

)
ψ. (4.24)

To simplify the notation it is useful to define the Diracγ-matrices as

γµ =

(
0 σµ−
σµ+ 0

)
(4.25)

and the Dirac conjugate spinorψ

ψ ≡ ψ†γ0 = ψ†
(

0 1
1 0

)
. (4.26)
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Now the Lagrangian (4.24) can be written in the more compact form

LDirac = ψ (iγµ∂µ −m)ψ. (4.27)

The associated equations of motion give the Dirac equation (2.9) with the identifications

γ0 = β, γi = iαi. (4.28)

In addition, theγ-matrices defined in (4.25) satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (4.29)

In D dimensions this algebra admits representations of dimension 2[
D
2
]. WhenD is even the Dirac

fermionsψ transform in a reducible representation of the Lorentz group. In the case of interest,D = 4,
this is easy to prove by defining the matrix

γ5 = −iγ0γ1γ2γ3 =
(

1 0
0 −1

)
. (4.30)

We see thatγ5 anticommutes with all otherγ-matrices. This implies that

[γ5, σµν ] = 0, with σµν = − i

4
[γµ, γν ]. (4.31)

Because of Schur’s lemma (see Appendix) this implies that the representation of the Lorentz group
provided byσµν is reducible into subspaces spanned by the eigenvectors ofγ5 with the same eigenvalue.
If we define the projectorsP± = 1

2(1± γ5) these subspaces correspond to

P+ψ =

(
u+
0

)
, P−ψ =

(
0
u−

)
, (4.32)

which are precisely the Weyl spinors introduced before.

Our next task is to quantize the Dirac Lagrangian. This will be done along the lines used for the
Klein–Gordon field, starting with a general solution to the Dirac equation and introducing the corre-
sponding set of creation–annihilation operators. Therefore we start by looking for a complete basis of
solutions to the Dirac equation. In the case of the scalar field the elements of the basis were labelled by
their four-momentumkµ. Now, however, we have more degrees of freedom since we are dealing with
a spinor which means that we have to add extra labels. Lookingback at Eq. (4.15) we can define the
helicity operator for a Dirac spinor as

λ =
1

2
~σ ·

~k

|~k|

(
1 0
0 1

)
. (4.33)

Hence, each element of the basis of functions is labelled by its four-momentumkµ and the corresponding
eigenvalues of the helicity operator. For positive energy solutions we then propose the ansatz

u(k, s)e−ik·x, s = ±1

2
, (4.34)

whereuα(k, s) (α = 1, . . . , 4) is a four-component spinor. Substituting in the Dirac equation we obtain

(/k −m)u(k, s) = 0. (4.35)

In the same way, for negative energy solutions we have

v(k, s)eik·x, s = ±1

2
, (4.36)
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wherev(k, s) has to satisfy

(/k +m)v(k, s) = 0. (4.37)

Multiplying Eqs. (4.35) and (4.37) on the left respectivelyby (/k ∓ m) we find that the momentum is
on the mass shell,k2 = m2. Because of this, the wave function for both positive- and negative-energy
solutions can be labeled as well using the three-momentum~k of the particle,u(~k, s), v(~k, s).

A detailed analysis shows that the functionsu(~k, s), v(~k, s) satisfy the properties

u(~k, s)u(~k, s) = 2m, v(~k, s)v(~k, s) = −2m,

u(~k, s)γµu(~k, s) = 2kµ, v(~k, s)γµv(~k, s) = 2kµ, (4.38)∑

s=± 1
2

uα(~k, s)uβ(~k, s) = (/k +m)αβ ,
∑

s=± 1
2

vα(~k, s)vβ(~k, s) = (/k −m)αβ ,

with k0 = ωk =
√
~k 2 +m2. Then, a general solution to the Dirac equation including creation and

annihilation operators can be written as:

ψ̂(t, ~x) =

∫
d3k

(2π)3
1

2ωk

∑

s=± 1
2

[
u(~k, s) b̂(~k, s)e−iωkt+i~k·~x + v(~k, s) d̂†(~k, s)eiωkt−i~k·~x

]
. (4.39)

The operatorŝb†α(~k, s), b̂α(~k) respectively create and annihilate a spin-1
2 particle (for example, an

electron) out of the vacuum with momentum~k and helicitys. Because we are dealing with half-integer
spin fields, the spin-statistics theorem forces canonical anticommutation relations for̂ψ which means
that the creation–annihilation operators satisfy the algebra5

{bα(~k, s), b†β(~k ′, s′)} = δ(~k − ~k ′)δαβδss′ ,

{bα(~k, s), bβ(~k ′, s′)} = {b†α(~k, s), b†β(~k ′, s′)} = 0. (4.40)

In the case ofda(~k, s), d
†
a(~k, s) we have a set of creation–annihilation operators for the corre-

sponding antiparticles (for example positrons). This is clear if we notice thatd†a(~k, s) can be seen as the
annihilation operator of a negative energy state of the Dirac equation with wave functionva(~k, s). As
we saw, in the Dirac sea picture this corresponds to the creation of an antiparticle out of the vacuum (see
Fig. 2). The creation–annihilation operators for antiparticles also satisfy the fermionic algebra

{dα(~k, s), d†β(~k ′, s′)} = δ(~k − ~k ′)δαβδss′ ,

{dα(~k, s), dβ(~k ′, s′)} = {d†α(~k, s), d†β(~k ′, s′)} = 0. (4.41)

All other anticommutators betweenbα(~k, s), b
†
α(~k, s) anddα(~k, s), d

†
α(~k, s) vanish.

The Hamiltonian operator for the Dirac field is

Ĥ =
∑

s=± 1
2

∫
d3k

[
ωkb

†
α(
~k, s)bα(~k, s)− ωkdα(~k, s)d

†
α(
~k, s)

]
. (4.42)

At this point we realize again the necessity of quantizing the theory using anticommutators instead of
commutators. Had we used canonical commutation relations,the second term inside the integral in
(4.42) would give the number operatord†α(~k, s)dα(~k, s) with a minus sign in front. As a consequence
the Hamiltonian would be unbounded from below and we would befacing again the instability of the

5To simplify notation, and since there is no risk of confusion, we now drop the hat to indicate operators.
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theory already noticed in the context of relativistic quantum mechanics. However, because of theanti-
commutationrelations (4.41), the Hamiltonian (4.42) takes the form

Ĥ =
∑

s=± 1
2

∫
d3k

[
ωkb

†
α(
~k, s)bα(~k, s) + ωkd

†
α(
~k, s)dα(~k, s)− ωkδ(~0)

]
. (4.43)

As with the scalar field, we find a divergent vacuum energy contribution due to the zero-point energy
of the infinite number of harmonic oscillators. Unlike the Klein–Gordon field, the vacuum energy is
negative. In Section 9.2 we will see that in certain types of theory called supersymmetric, where the
number of bosonic and fermionic degrees of freedom is the same, there is a cancellation of the vacuum
energy. The divergent contribution can be removed by the normal order prescription

:Ĥ:=
∑

s=± 1
2

∫
d3k

[
ωkb

†
α(
~k, s)bα(~k, s) + ωkd

†
α(
~k, s)dα(~k, s)

]
. (4.44)

Finally, let us mention that using the Dirac equation it is easy to prove that there is a conserved
four-current given by

jµ = ψγµψ, ∂µj
µ = 0. (4.45)

As we will explain further in Section 6 this current is associated to the invariance of the Dirac Lagrangian
under the global phase shiftψ → eiθψ. In electrodynamics the associated conserved charge

Q = e

∫
d3x j0 (4.46)

is identified with the electric charge.

4.3 Gauge fields

In classical electrodynamics the basic quantities are the electric and magnetic fields~E, ~B. These can be
expressed in terms of the scalar and vector potential(ϕ, ~A)

~E = −~∇ϕ− ∂ ~A

∂t
,

~B = ~∇× ~A. (4.47)

From these equations it follows that there is an ambiguity inthe definition of the potentials given by the
gauge transformations

ϕ(t, ~x) → ϕ(t, ~x) +
∂

∂t
ǫ(t, ~x), ~A(t, ~x) → ~A(t, ~x) + ~∇ǫ(t, ~x). (4.48)

Classically(ϕ, ~A) are seen as only a convenient way to solve the Maxwell equations, but without physical
relevance.

The equations of electrodynamics can be recast in a manifestly Lorentz-invariant form using the
four-vector gauge potentialAµ = (ϕ, ~A) and the antisymmetric rank-two tensor:Fµν = ∂µAν − ∂νAµ.
Maxwell’s equations become

∂µF
µν = jµ,

ǫµνση∂νFση = 0, (4.49)
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where the four-currentjµ = (ρ,~) contains the charge density and the electric current. The field strength
tensorFµν and the Maxwell equations are invariant under gauge transformations (4.48), which in covari-
ant form read

Aµ −→ Aµ + ∂µǫ. (4.50)

Finally, the equations of motion of charged particles are given, in covariant form, by

m
duµ

dτ
= eFµνuν , (4.51)

wheree is the charge of the particle anduµ(τ) its four-velocity as a function of the proper time.

The physical rôle of the vector potential becomes manifest only in quantum mechanics. Using the
prescription of minimal substitution~p → ~p − e ~A, the Schrödinger equation describing a particle with
chargee moving in an electromagnetic field is

i∂tΨ =

[
− 1

2m

(
~∇− ie ~A

)2
+ eϕ

]
Ψ. (4.52)

Because of the explicit dependence on the electromagnetic potentialsϕ and ~A, this equation seems to
change under the gauge transformations (4.48). This is physically acceptable only if the ambiguity does
not affect the probability density given by|Ψ(t, ~x)|2. Therefore, a gauge transformation of the electro-
magnetic potential should amount to a change in the (unobservable) phase of the wave function. This
is indeed what happens: the Schrödinger equation (4.52) is invariant under the gauge transformations
(4.48) provided the phase of the wave function is transformed at the same time according to

Ψ(t, ~x) −→ e−ie ǫ(t,~x)Ψ(t, ~x). (4.53)

Aharonov–Bohm effect.This interplay between gauge transformations and the phaseof the wave
function gives rise to surprising phenomena. The first evidence of the rôle played by the electromagnetic
potentials at the quantum level was pointed out by Yakir Aharonov and David Bohm [19]. Let us consider
a double-slit experiment as shown in Fig. 7, where we have placed a shielded solenoid just behind the
first screen. Although the magnetic field is confined to the interior of the solenoid, the vector potential is
non-vanishing also outside. Of course the value of~A outside the solenoid is a pure gauge, i.e.,~∇× ~A = ~0,
however, because the region outside the solenoid is not simply connected the vector potential cannot be
gauged to zero everywhere. If we denote byΨ

(0)
1 andΨ(0)

2 the wave functions for each of the two electron
beams in the absence of the solenoid, the total wave functiononce the magnetic field is switched on can
be written as

Ψ = e
ie

R

Γ1
~A·d~x

Ψ
(0)
1 + e

ie
R

Γ2
~A·d~x

Ψ
(0)
2

= e
ie

R

Γ1
~A·d~x [

Ψ
(0)
1 + eie

H

Γ
~A·d~xΨ(0)

2

]
, (4.54)

whereΓ1 andΓ2 are two curves surrounding the solenoid from different sides, andΓ is any closed loop
surrounding it. Therefore the relative phase between the two beams gets an extra term depending on the
value of the vector potential outside the solenoid as

U = exp

[
ie

∮

Γ

~A · d~x
]
. (4.55)

Because of the change in the relative phase of the electron wave functions, the presence of the vector
potential becomes observable even if the electrons do not feel the magnetic field. If we perform the
double-slit experiment when the magnetic field inside the solenoid is switched off we will observe the
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Fig. 7: Illustration of an interference experiment to show the Aharonov–Bohm effect.S represents the solenoid in
whose interior the magnetic field is confined.

usual interference pattern on the second screen. However, if now the magnetic field is switched on,
because of the phase (4.54), a change in the interference pattern will appear. This is the Aharonov–
Bohm effect.

The first question that comes up is what happens with gauge invariance. Since we said that~A
can be changed by a gauge transformation it seems that the resulting interference patters might depend
on the gauge used. Actually, the phaseU in (4.55) is independent of the gauge although, unlike other
gauge-invariant quantities like~E and ~B, non-local. Notice that, since~∇ × ~A = ~0 outside the solenoid,
the value ofU does not change under continuous deformations of the closedcurveΓ, so long as it does
not cross the solenoid.

The Dirac monopole.It is very easy to check that the vacuum Maxwell equations remain invariant
under the transformation

~E − i ~B −→ eiθ(~E − i ~B), θ ∈ [0, 2π] (4.56)

which, in particular, forθ = π
2 interchanges the electric and the magnetic fields:~E → ~B, ~B → − ~E.

This duality symmetry is, however, broken in the presence ofelectric sources. Nevertheless the Maxwell
equations can be ‘completed’ by introducing sources for themagnetic field(ρm,~m) in such a way that
the duality (4.56) is restored when supplemented by the transformation

ρ− iρm −→ eiθ(ρ− iρm), ~− i~m −→ eiθ(~− i~m). (4.57)

Again for θ = π/2 the electric and magnetic sources are interchanged.

In 1931 Dirac [20] studied the possibility of finding solutions to the completed Maxwell equation
with a magnetic monopole of chargeg, i.e., solutions to

~∇ · ~B = g δ(~x). (4.58)

Away from the position of the monopole,~∇ · ~B = 0 and the magnetic field can still be derived locally
from a vector potential~A according to~B = ~∇ × ~A. However, the vector potential cannot be regular

25

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

25



Dirac string

Γ
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Fig. 8: The Dirac monopole

everywhere since otherwise Gauss’s law would imply that themagnetic flux threading a closed surface
around the monopole should vanish, contradicting (4.58).

We look now for solutions to Eq. (4.58). Working in sphericalcoordinates we find

Br =
g

|~x|2 , Bϕ = Bθ = 0. (4.59)

Away from the position of the monopole (~x 6= ~0) the magnetic field can be derived from the vector
potential

Aϕ =
g

|~x| tan
θ

2
, Ar = Aθ = 0. (4.60)

As expected we find that this vector potential is actually singular around the half-lineθ = π (see Fig.
8). This singular line starting at the position of the monopole is called the Dirac string and its position
changes with a change of gauge but cannot be eliminated by anygauge transformation. Physically we
can see it as an infinitely thin solenoid confining a magnetic flux entering into the magnetic monopole
from infinity that equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge that is chosen it seems that the presence
of monopoles introduces an ambiguity. This would be rather strange, since Maxwell equations are gauge
invariant also in the presence of magnetic sources. The solution to this apparent riddle lies in the fact
that the Dirac string does not pose any consistency problem as long as it does not produce any physical
effect, i.e., if its presence turns out to be undetectable. From our discussion of the Aharonov–Bohm
effect we know that the wave function of charged particles picks up a phase (4.55) when surrounding a
region where magnetic flux is confined (for example the solenoid in the Aharonov–Bohm experiment).
As explained above, the Dirac string associated with the monopole can be seen as an infinitely thin
solenoid. Therefore the Dirac string will be unobservable if the phase picked up by the wave function of
a charged particle is equal to one. A simple calculation shows that this happens if

ei e g = 1 =⇒ e g = 2πn with n ∈ Z. (4.61)

26

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

26



Interestingly, this discussion leads to the conclusion that the presence of a single magnetic monopole
somewhere in the Universe implies for consistency the quantization of the electric charge in units of2πg ,
whereg is the magnetic charge of the monopole.

Quantization of the electromagnetic field.We now proceed to the quantization of the electro-
magnetic field in the absence of sourcesρ = 0, ~ = ~0. In this case the Maxwell equations (4.49) can be
derived from the Lagrangian density

LMaxwell = −1

4
FµνF

µν =
1

2

(
~E 2 − ~B 2

)
. (4.62)

Although in general the procedure to quantize the Maxwell Lagrangian is not very different from the
one used for the Klein–Gordon or the Dirac field, here we need to deal with a new ingredient: gauge
invariance. Unlike the cases studied so far, here the photonfield Aµ is not unambiguously defined
because the action and the equations of motion are insensitive to the gauge transformationsAµ → Aµ +
∂µε. A first consequence of this symmetry is that the theory has less physical degrees of freedom than
one would expect from the fact that we are dealing with a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing the electro-
magnetic potential before quantization. This can be done inseveral ways, for example by imposing the
Lorentz-gauge-fixing condition

∂µA
µ = 0. (4.63)

Notice that this condition does not fix completely the gauge freedom since Eq. (4.63) is left invariant
by gauge transformations satisfying∂µ∂µε = 0. One of the advantages, however, of the Lorentz gauge
is that it is covariant and therefore does not pose any dangerto the Lorentz invariance of the quantum
theory. Besides, applying it to the Maxwell equation∂µFµν = 0 one finds

0 = ∂µ∂
µAν − ∂ν (∂µA

µ) = ∂µ∂
µAν , (4.64)

which means that sinceAµ satisfies the massless Klein–Gordon equation the photon, the quantum of the
electromagnetic field, has zero mass.

Once gauge invariance is fixedAµ is expanded in a complete basis of solutions to (4.64) and the
canonical commutation relations are imposed

Âµ(t, ~x) =
∑

λ=±1

∫
d3k

(2π)3
1

2|~k|

[
ǫµ(~k, λ)â(~k, λ)e

−i|~k|t+i~k·~x + ǫµ(~k, λ)
∗ â†(~k, λ)ei|

~k|t−i~k·~x
]

(4.65)

whereλ = ±1 represent the helicity of the photon, andǫµ(~k, λ) are solutions to the equations of mo-
tion with well-defined momentum and helicity. Because of (4.63) the polarization vectors have to be
orthogonal tokµ

kµǫµ(~k, λ) = kµǫµ(~k, λ)
∗ = 0. (4.66)

The canonical commutation relations imply that

[â(~k, λ), â†(~k ′, λ′)] = iδ(~k − ~k ′)δλλ′

[â(~k, λ), â(~k ′, λ′)] = [â†(~k, λ), â†(~k ′, λ′)] = 0. (4.67)

Thereforêa(~k, λ), â†(~k, λ) form a set of creation–annihilation operators for photons with momentum~k
and helicityλ.

Behind the simple construction presented above there are a number of subtleties related to gauge
invariance. In particular the gauge freedom seems to introduce states in the Hilbert space with negative
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probability. A careful analysis shows that when gauge invariance is properly handled these spurious states
decouple from physical states and can be eliminated. The details can be found in standard textbooks
[1–10].

Coupling gauge fields to matter. Once we know how to quantize the electromagnetic field we
consider theories containing electrically charged particles, for example electrons. To couple the Dirac
Lagrangian to electromagnetism we use as guiding principlewhat we learned about the Schrödinger
equation for a charged particle. There we saw that the gauge ambiguity of the electromagnetic potential
is compensated with a U(1) phase shift in the wave function. In the case of the Dirac equation we know
that the Lagrangian is invariant underψ → eieεψ, with ε a constant. However, this invariance is broken
as soon as one identifiesε with the gauge transformation parameter of the electromagnetic field which
depends on the position.

Looking at the Dirac Lagrangian (4.27) it is easy to see that in order to promote the global U(1)
symmetry into a local one,ψ → eieε(x)ψ, it suffices to replace the ordinary derivative∂µ by a covariant
oneDµ satisfying

Dµ

[
eieε(x)ψ

]
= eieε(x)Dµψ. (4.68)

This covariant derivative can be constructed in terms of thegauge potentialAµ as

Dµ = ∂µ − ieAµ. (4.69)

The Lagrangian of a spin-12 field coupled to electromagnetism is written as

LQED = −1

4
FµνF

µν + ψ(i/D −m)ψ, (4.70)

invariant under the gauge transformations

ψ −→ eieε(x)ψ, Aµ −→ Aµ + ∂µε(x). (4.71)

Unlike the theories we have seen so far, the Lagrangian (4.70) describe an interacting theory. By
plugging (4.69) into the Lagrangian we find that the interaction between fermions and photons is

L(int)
QED = −eAµ ψγ

µψ. (4.72)

As advertised above, in the Dirac theory the electric current four-vector is given byjµ = eψγµψ.

The quantization of interacting field theories poses new problems that we did not meet in the case
of the free theories. In particular, in most cases it is not possible to solve the theory exactly. When this
happens the physical observables have to be computed in perturbation theory in powers of the coupling
constant. An added problem appears when computing quantum corrections to the classical result, since
in that case the computation of observables is plagued with infinities that should be taken care of. We
will go back to this problem in Section 8.

Non-Abelian gauge theories. Quantum electrodynamics (QED) is the simplest example of a
gauge theory coupled to matter based on the Abelian gauge symmetry of local U(1) phase rotations.
However, it is possible also to construct gauge theories based on non-Abelian groups. Actually, our
knowledge of the strong and weak interactions is based on theuse of such non-Abelian generalizations
of QED.

Let us consider a gauge groupGwith generatorsT a, a = 1, . . . ,dimG satisfying the Lie algebra6

[T a, T b] = ifabcT c. (4.73)

6Some basic facts about Lie groups have been summarized in Appendix A.
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A gauge field taking values on the Lie algebra ofG can be introducedAµ ≡ Aa
µT

a which transforms
under a gauge transformation as

Aµ −→ 1

ig
U∂µU

−1 + UAµU
−1, U = eiχ

a(x)Ta
, (4.74)

whereg is the coupling constant. The associated field strength is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (4.75)

Notice that this definition of theF a
µν reduces to the one used in QED in the Abelian case whenfabc = 0.

In general, however, unlike the case of QED the field strengthis not gauge invariant. In terms ofFµν =
F a
µνT

a it transforms as

Fµν −→ UFµνU
−1. (4.76)

The coupling of matter to a non-Abelian gauge field is done by introducing again a covariant
derivative. For a field in a representation ofG

Φ −→ UΦ (4.77)

the covariant derivative is given by

DµΦ = ∂µΦ− igAa
µT

aΦ. (4.78)

With the help of this we can write a generic Lagrangian for a non-Abelian gauge field coupled to scalars
φ and spinorsψ as

L = −1

4
F a
µνF

µν a + iψ/Dψ +DµφD
µφ− ψ [M1(φ) + iγ5M2(φ)]ψ − V (φ). (4.79)

In order to keep the theory renormalizable we have to restrict M1(φ) andM2(φ) to be at most linear in
φ whereasV (φ) has to be at most of quartic order. The Lagrangian of the Standard Model is of the form
(4.79).

4.4 Understanding gauge symmetry

In classical mechanics the use of the Hamiltonian formalismstarts with the replacement of generalized
velocities by momenta

pi ≡
∂L

∂q̇i
=⇒ q̇i = q̇i(q, p). (4.80)

Most of the time there is no problem in inverting the relations pi = pi(q, q̇). However, in some systems
these relations might not be invertible and result in a number of constraints of the type

fa(q, p) = 0, a = 1, . . . , N1. (4.81)

These systems are called degenerate or constrained [21,22].

The presence of constraints of the type (4.81) makes the formulation of the Hamiltonian formalism
more involved. The first problem is related to the ambiguity in defining the Hamiltonian, since the
addition of any linear combination of the constraints does not modify its value. Secondly, one has to
make sure that the constraints are consistent with the time evolution in the system. In the language of
Poisson brackets this means that further constraints have to be imposed in the form

{fa,H} ≈ 0. (4.82)
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Following [21] we use the symbol≈ to indicate a ‘weak’ equality that holds when the constraints
fa(q, p) = 0 are satisfied. Notice however that since the computation of the Poisson brackets involves
derivatives, the constraints can be used only after the bracket is computed. In principle the conditions
(4.82) can give rise to a new set of constraintsgb(q, p) = 0, b = 1, . . . , N2. Again these constraints
have to be consistent with time evolution and we have to repeat the procedure. Eventually this finishes
when a set of constraints is found that does not require any further constraint to be preserved by the time
evolution7.

Once we find all the constraints of a degenerate system we consider the so-called first class con-
straintsφa(q, p) = 0, a = 1, . . . ,M , which are those whose Poisson bracket vanishes weakly

{φa, φb} = cabcφc ≈ 0. (4.83)

The constraints that do not satisfy this condition, called second class constraints, can be eliminated by
modifying the Poisson bracket [21]. Then the total Hamiltonian of the theory is defined by

HT = piqi − L+
M∑

a=1

λ(t)φa. (4.84)

What has all this to do with gauge invariance? The interesting answer is that for a singular system
the first class constraintsφa generate gauge transformations. Indeed, because{φa, φb} ≈ 0 ≈ {φa,H}
the transformations

qi −→ qi +

M∑

a

εa(t){qi, φa},

pi −→ pi +

M∑

a

εa(t){pi, φa} (4.85)

leave invariant the state of the system. This ambiguity in the description of the system in terms of
the generalized coordinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

∂2L

∂q̇i∂q̇j
q̈j = − ∂2L

∂q̇i∂qj
q̇j +

∂L

∂qi
, (4.86)

we find that, in order to determine the accelerations in termsof the positions and velocities, the matrix
∂2L

∂q̇i∂q̇j
has to be invertible. However, the existence of constraints(4.81) precisely implies that the deter-

minant of this matrix vanishes and therefore the time evolution is not uniquely determined in terms of
the initial conditions.

Let us apply this to Maxwell electrodynamics described by the Lagrangian

L = −1

4

∫
d3 FµνF

µν . (4.87)

The generalized momentum conjugate toAµ is given by

πµ =
δL

δ(∂0Aµ)
= F 0µ. (4.88)

In particular for the time component we find the constraintπ0 = 0. The Hamiltonian is given by

H =

∫
d3x [πµ∂0Aµ − L] =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ π0∂0A0 +A0

~∇ · ~E
]
. (4.89)

7In principle it is also possible that the procedure finishes because some kind of inconsistent identity is found. In this case
the system itself is inconsistent as is the case with the LagrangianL(q, q̇) = q.
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Requiring the consistency of the constraintπ0 = 0 we find a second constraint

{π0,H} ≈ ∂0π
0 + ~∇ · ~E = 0. (4.90)

Together with the first constraintπ0 = 0 this one implies Gauss’s law~∇ · ~E = 0. These two constraints
have vanishing Poisson bracket and therefore they are first class. Therefore the total Hamiltonian is given
by

HT = H +

∫
d3x

[
λ1(x)π

0 + λ2(x)~∇ · ~E
]
, (4.91)

where we have absorbedA0 in the definition of the arbitrary functionsλ1(x) andλ2(x). Actually, we
can fix part of the ambiguity takingλ1 = 0. Notice that, becauseA0 has been included in the multipliers,
fixing λ1 amounts to fixing the value ofA0 and therefore it is equivalent to taking a temporal gauge. In
this case the Hamiltonian is

HT =

∫
d3x

[
1

2

(
~E 2 + ~B 2

)
+ ε(x)~∇ · ~E

]
(4.92)

and we are left just with Gauss’s law as the only constraint. Using the canonical commutation relations

{Ai(t, ~x), Ej(t, ~x
′)} = δijδ(~x− ~x ′) (4.93)

we find that the remaining gauge transformations are generated by Gauss’s law

δAi = {Ai,

∫
d3x′ ε ~∇ · ~E} = ∂iε, (4.94)

while leavingA0 invariant, so for consistency with the general gauge transformations the functionε(x)
should be independent of time. Notice that the constraint~∇ · ~E = 0 can be implemented by demanding
~∇ · ~A = 0 which reduces the three degrees of freedom of~A to the two physical degrees of freedom of
the photon.

So much for the classical analysis. In the quantum theory theconstraint~∇ · ~E = 0 has to be
imposed on the physical states|phys〉. This is done by defining the following unitary operator on the
Hilbert space

U(ε) ≡ exp

(
i

∫
d3x ε(~x) ~∇ · ~E

)
. (4.95)

By definition, physical states should not change when a gaugetransformations is performed. This is
implemented by requiring that the operatorU(ε) act trivially on a physical state

U(ε)|phys〉 = |phys〉 =⇒ (~∇ · ~E)|phys〉 = 0. (4.96)

In the presence of charge densityρ, the condition that physical states are annihilated by Gauss’s law
changes to(~∇ · ~E − ρ)|phys〉 = 0.

The role of gauge transformations in the quantum theory is very illuminating in understanding
the real rôle of gauge invariance [23]. As we have learned, the existence of a gauge symmetry in a
theory reflects a degree of redundancy in the description of physical states in terms of the degrees of
freedom appearing in the Lagrangian. In classical mechanics, for example, the state of a system is usually
determined by the value of the canonical coordinates(qi, pi). We know, however, that this is not the case
for constrained Hamiltonian systems where the transformations generated by the first class constraints
change the value ofqi andpi without changing the physical state. In the case of Maxwell theory for every
physical configuration determined by the gauge invariant quantities ~E, ~B there is an infinite number of
possible values of the vector potential that are related by gauge transformationsδAµ = ∂µε.
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Fig. 9: Compactification of the real line (a) into the circumferenceS1 (b) by adding the point at infinity

In the quantum theory this means that the Hilbert space of physical states is defined as the result of
identifying all states related by the operatorU(ε) with any gauge functionε(x) into a single physical state
|phys〉. In other words, each physical state corresponds to a whole orbit of states that are transformed
among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoidthe redundancy in the states a further
condition can be given that selects one single state on each orbit. In the case of Maxwell electrodynamics
the conditionsA0 = 0, ~∇ · ~A = 0 selects a value of the gauge potential among all possible ones giving
the same value for the electric and magnetic fields.

Since states have to be identified by gauge transformations the topology of the gauge group plays
an important physical rôle. To illustrate the point let us first deal with a toy model of a U(1) gauge theory
in 1+1 dimensions. Later we will be more general. In the Hamiltonian formalism gauge transformations
g(~x) are functions defined onR with values on the gauge group U(1)

g : R −→ U(1). (4.97)

We assume thatg(x) is regular at infinity. In this case we can add to the real lineR the point at infinity
to compactify it into the circumferenceS1 (see Fig. 9). Once this is doneg(x) are functions defined on
S1 with values onU(1) = S1 that can be parametrized as

g : S1 −→ U(1), g(x) = eiα(x), (4.98)

with x ∈ [0, 2π].

BecauseS1 does have a nontrivial topology,g(x) can be divided into topological sectors. These
sectors are labelled by an integer numbern ∈ Z and are defined by

α(2π) = α(0) + 2π n . (4.99)

Geometricallyn gives the number of times that the spatialS1 winds around theS1 defining the gauge
group U(1). This winding number can be written in a more sophisticated way as

∮

S1

g(x)−1dg(x) = 2πn , (4.100)

where the integral is along the spatialS1.

In R3 a similar situation happens with the gauge group8 SU(2). If we demandg(~x) ∈ SU(2) to be
regular at infinity|~x| → ∞ we can compactifyR3 into a three-dimensional sphereS3, exactly as we did
in 1+1 dimensions. On the other hand, the functiong(~x) can be written as

g(~x) = a0(x)1+ ~a(x) · ~σ (4.101)

8Although we present for simplicity only the case of SU(2), similar arguments apply to any simple group.
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and the conditionsg(x)†g(x) = 1, det g = 1 implies that(a0)2 + ~a 2 = 1. Therefore SU(2) is a
three-dimensional sphere andg(x) defines a function

g : S3 −→ S3. (4.102)

As was the case in 1+1 dimensions, here the gauge transformationsg(x) are also divided into topological
sectors labelled this time by the winding number

n =
1

24π2

∫

S3

d3x ǫijkTr
[(
g−1∂ig

) (
g−1∂ig

) (
g−1∂ig

)]
∈ Z. (4.103)

In the two cases analysed we find that due to the nontrivial topology of the gauge group manifold
the gauge transformations are divided into different sectors labelled by an integern. Gauge transforma-
tions with different values ofn cannot be smoothly deformed into each other. The sector withn = 0
corresponds to those gauge transformations that can be connected with the identity.

Now we can be a bit more formal. Let us consider a gauge theory in 3+1 dimensions with gauge
groupG and let us denote byG the set of all gauge transformationsG = {g : S3 → G}. At the same
time we defineG0 as the set of transformations inG that can be smoothly deformed into the identity. Our
theory will have topological sectors if

G/G0 6= 1. (4.104)

In the case of electromagnetism we have seen that Gauss’s lawannihilates physical states. For a non-
Abelian theory the analysis is similar and leads to the condition

U(g0)|phys〉 ≡ exp

[
i

∫
d3xχa(~x)~∇ · ~Ea

]
|phys〉 = |phys〉, (4.105)

whereg0(~x) = eiχ
a(~x)Ta

is in the connected component of the identityG0. The important point to
realize here is that only the elements ofG0 can be written as exponentials of the infinitesimal generators.
Since these generators annihilate the physical states thisimplies thatU(g0)|phys〉 = |phys〉 only when
g0 ∈ G0.

What happens then with the other topological sectors? Ifg ∈ G/G0 there is still a unitary operator
U(g) that realizes gauge transformations on the Hilbert space ofthe theory. However, sinceg is not in
the connected component of the identity, it cannot be written as the exponential of Gauss’s law. Still
gauge invariance is preserved ifU(g) only changes the overall global phase of the physical states. For
example, ifg1 is a gauge transformation with winding numbern = 1

U(g1)|phys〉 = eiθ|phys〉. (4.106)

It is easy to convince oneself that all transformations withwinding numbern = 1 have the same value
of θ modulo2π. This can be shown by noting that ifg(~x) has winding numbern = 1 theng(~x)−1 has
opposite winding numbern = −1. Since the winding number is additive, given two transformationsg1,
g2 with winding number 1,g−1

1 g2 has winding numbern = 0. This implies that

|phys〉 = U(g−1
1 g2)|phys〉 = U(g1)†U(g2)|phys〉 = ei(θ2−θ1)|phys〉 (4.107)

and we conclude thatθ1 = θ2 mod2π. Once we know this, it is straightforward to conclude that a gauge
transformationgn(~x) with winding numbern has the following action on physical states

U(gn)|phys〉 = einθ|phys〉, n ∈ Z. (4.108)

To find a physical interpretation of this result we are going to look for similar things in other
physical situations. One of them is borrowed from condensedmatter physics and refers to the quantum
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states of electrons in the periodic potential produced by the ion lattice in a solid. For simplicity we
discuss the one-dimensional case where the minima of the potential are separated by a distancea. When
the barrier between consecutive degenerate vacua is high enough we can neglect tunneling between
different vacua and consider the ground state|na〉 of the potential near the minimum located atx = na
(n ∈ Z) as possible vacua of the theory. This vacuum state is, however, not invariant under lattice
translations

eia
bP |na〉 = |(n + 1)a〉. (4.109)

However, it is possible to define a new vacuum state

|k〉 =
∑

n∈Z
e−ikna|na〉, (4.110)

which undereia bP transforms by a global phase

eia
bP |k〉 =

∑

n∈Z
e−ikna|(n+ 1)a〉 = eika|k〉. (4.111)

This ground state is labelled by the momentumk and corresponds to the Bloch wave function.

This looks very much the same as what we found for non-Abeliangauge theories. The vacuum
state labelled byθ plays a rôle similar to the Bloch wave function for the periodic potential with the
identification ofθ with the momentumk. To make this analogy more precise let us write the Hamiltonian
for non-Abelian gauge theories

H =
1

2

∫
d3x

(
~πa · ~πa + ~Ba · ~Ba

)
=

1

2

∫
d3x

(
~Ea · ~Ea + ~Ba · ~Ba

)
, (4.112)

where we have used the expression of the canonical momentaπia and we assume that the Gauss law
constraint is satisfied. Looking at this Hamiltonian we can interpret the first term within the brackets as
the kinetic energyT = 1

2~πa ·~πa and the second term as the potential energyV = 1
2
~Ba · ~Ba. SinceV ≥ 0

we can identify the vacua of the theory as those~A for whichV = 0, modulo gauge transformations. This
happens wherever~A is a pure gauge. However, since we know that the gauge transformations are labelled
by the winding number we can have an infinite number of vacua which cannot be continuously connected
with one another using trivial gauge transformations. Taking a representative gauge transformationgn(~x)
in the sector with winding numbern, these vacua will be associated with the gauge potentials

~A =
1

ig
gn(~x)

−1~∇gn(~x), (4.113)

modulo topologically trivial gauge transformations. Therefore the theory is characterized by an infinite
number of vacua|n〉 labelled by the winding number. These vacua are not gauge invariant. Indeed, a
gauge transformation withn = 1 will change the winding number of the vacua in one unit

U(g1)|n〉 = |n+ 1〉. (4.114)

Nevertheless a gauge invariant vacuum can be defined as

|θ〉 =
∑

n∈Z
e−inθ|n〉, with θ ∈ R (4.115)

satisfying

U(g1)|θ〉 = eiθ|θ〉. (4.116)
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We have concluded that the non-trivial topology of the gaugegroup has very important physical
consequences for quantum theory. In particular it implies an ambiguity in the definition of the vacuum.
Actually, this can also be seen in a Lagrangian analysis. In constructing the Lagrangian for the non-
Abelian version of Maxwell’s theory we only consider the term F a

µνF
µν a. However, this is not the only

Lorentz- and gauge-invariant term that contains just two derivatives. We can write the more general
Lagrangian

L = −1

4
F a
µνF

µν a +
θ

32π2
F a
µν F̃

µν a, (4.117)

whereF̃ a
µν is the dual of the field strength defined by

F̃ a
µν =

1

2
ǫµνσλF

σλ. (4.118)

The extra term in (4.117), proportional to~E a · ~B a, is actually a total derivative and does not change the
equations of motion or the quantum perturbation theory. Nevertheless it has several important physical
consequences. One of them is that it violates both parityP and the combination of charge conjugation
and parityCP . This means that since strong interactions are described bya non-Abelian gauge theory
with group SU(3) there is an extra source ofCP violation which puts a strong bound on the value ofθ.
One of the consequences of a term like (4.117) in the QCD Lagrangian is a non-vanishing electric dipole
moment for the neutron [24]. The fact that this is not observed imposes a very strong bound on the value
of theθ-parameter

|θ| < 10−9 . (4.119)

From a theoretical point of view it is still to be fully understood whyθ either vanishes or has a very small
value.

Finally, theθ-vacuum structure of gauge theories that we found in the Hamiltonian formalism
can also be obtained using path integral techniques from theLagrangian (4.117). The second term in
Eq. (4.117) gives then a contribution that depends on the winding number of the corresponding gauge
configuration.

5 Towards computational rules: Feynman diagrams

As the basic tool to describe the physics of elementary particles, the final aim of quantum field theory
is the calculation of observables. Most of the information we have about the physics of subatomic
particles comes from scattering experiments. Typically, these experiments consist of arranging two or
more particles to collide with a certain energy and to set up an array of detectors, sufficiently far away
from the region where the collision takes place, that register the outgoing products of the collision and
their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed fromquantum mechanical amplitudes
and how these amplitudes themselves can be evaluated in perturbative quantum field theory. We keep
our discussion rather heuristic and avoid technical details that can be found in standard texts [1–10]. The
techniques described will be illustrated with the calculation of the cross section for Compton scattering
at low energies.

5.1 Cross sections and S-matrix amplitudes

In order to fix ideas let us consider the simplest case of a collision experiment where two particles collide
to produce again two particles in the final state. The aim of such an experiment is a direct measurement
of the number of particles per unit timedNdt (θ, ϕ) registered by the detector flying within a solid angle
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Fig. 10: Schematic setup of a two-to-two-particles single scattering event in the centre-of-mass reference frame

dΩ in the direction specified by the polar anglesθ, ϕ (see Fig. 10). On general grounds we know that
this quantity has to be proportional to the flux of incoming particles9, fin. The proportionality constant
defines the differential cross section

dN

dt
(θ, ϕ) = fin

dσ

dΩ
(θ, ϕ). (5.1)

In natural unitsfin has dimensions of (length)−3 , and then the differential cross section has dimensions
of (length)2. It depends, apart from the direction(θ, ϕ), on the parameters of the collision (energy, impact
parameter, etc.) as well as on the masses and spins of the incoming particles.

Differential cross sections measure the angular distribution of the products of the collision. It is
also physically interesting to quantify how effective the interaction between the particles is to produce
a nontrivial dispersion. This is measured by the total crosssection, which is obtained by integrating the
differential cross section over all directions

σ =

∫ 1

−1
d(cos θ)

∫ 2π

0
dϕ

dσ

dΩ
(θ, ϕ). (5.2)

To get some physical intuition of the meaning of the total cross section we can think of the classical
scattering of a point particle off a sphere of radiusR. The particle undergoes a collision only when the
impact parameter is smaller than the radius of the sphere anda calculation of the total cross section yields
σ = πR2. This is precisely the cross area that the sphere presents toincoming particles.

In quantum mechanics in general and in quantum field theory inparticular, the starting point for
the calculation of cross sections is the probability amplitude for the corresponding process. In a scattering
experiment one prepares a system with a given number of particles with definite momenta~p1, . . . , ~pn. In
the Heisenberg picture this is described by a time-independent state labelled by the incoming momenta
of the particles (to keep things simple we consider spinlessparticles) that we denote by

|~p1, . . . , ~pn; in〉. (5.3)

9This is defined as the number of particles that enter the interaction region per unit time and per unit area perpendicular to
the direction of the beam.
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On the other hand, as a result of the scattering experiment a number k of particles with momenta
~p1

′, . . . , ~pk ′ are detected. Thus, the system is now in the ‘out’ Heisenbergpicture state

|~p1′, . . . , ~pk ′; out〉 (5.4)

labelled by the momenta of the particles detected at late times. The probability amplitude of detectingk
particles in the final state with momenta~p1′, . . . , ~pk ′ in the collision ofn particles with initial momenta
~p1, . . . , ~pn defines theS-matrix amplitude

S(in → out) = 〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉. (5.5)

It is very important to keep in mind that both the (5.3) and (5.4) are time-independent states in the
Hilbert space of a very complicated interacting theory. However, since both at early and late times the
incoming and outgoing particles are well apart from each other, the ‘in’ and ‘out’ states can be thought of
as two states|~p1, . . . , ~pn〉 and|~p1′, . . . , ~pk′〉 of the Fock space of the corresponding free theory in which
the coupling constants are zero. Then, the overlaps (5.5) can be written in terms of the matrix elements
of anS-matrix operator̂S acting on the free Fock space

〈~p1′, . . . , ~pk ′; out|~p1, . . . , ~pn; in〉 = 〈~p1′, . . . , ~pk ′|Ŝ|~p1, . . . , ~pn〉. (5.6)

The operator̂S is unitary,Ŝ† = Ŝ−1, and its matrix elements are analytic in the external momenta.

In any scattering experiment there is the possibility that the particles do not interact at all and the
system is left in the same initial state. Then it is useful to write theS-matrix operator as

Ŝ = 1+ iT̂ , (5.7)

where1 represents the identity operator. In this way, all nontrivial interactions are encoded in the matrix
elements of theT -operator〈~p1′, . . . , ~pk′|iT̂ |~p1, . . . , ~pn〉. Since momentum has to be conserved, a global
delta function can be factored out from these matrix elements to define the invariant scattering amplitude
iM

〈~p1′, . . . , ~pk′|iT̂ |~p1, . . . , ~pn〉 = (2π)4δ(4)

( ∑

initial

pi −
∑

final

p′f

)
iM(~p1, . . . , ~pn; ~p1

′, . . . , ~pk
′) . (5.8)

Total and differential cross sections can be now computed from the invariant amplitudes. Here we
consider the most common situation in which two particles with momenta~p1 and~p2 collide to produce
a number of particles in the final state with momenta~pi

′. In this case the total cross section is given by

σ =
1

(2ωp1)(2ωp2)|~v12|

∫ [ ∏

final
states

d3p′i
(2π)3

1

2ωp′i

]∣∣∣Mi→f

∣∣∣
2
(2π)4δ(4)

(
p1 + p2 −

∑

final
states

p′i

)
, (5.9)

where~v12 is the relative velocity of the two scattering particles. The corresponding differential cross
section can be computed by dropping the integration over thedirections of the final momenta. We will
use this expression later in Section 5.3 to evaluate the cross section of Compton scattering.

We see how particle cross sections are determined by the invariant amplitude for the corresponding
process, i.e.,S-matrix amplitudes. In general, in quantum field theory it isnot possible to compute
exactly these amplitudes. However, in many physical situations it can be argued that interactions are
weak enough to allow for a perturbative evaluation. In what follows we will describe howS-matrix
elements can be computed in perturbation theory using Feynman diagrams and rules. These are very
convenient book-keeping techniques allowing both to keep track of all contributions to a process at a
given order in perturbation theory, and to compute the different contributions.
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5.2 Feynman rules

The basic quantities to be computed in quantum field theory are vacuum expectation values of products
of the operators of the theory. Particularly useful are time-ordered Green functions,

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉, (5.10)

where|Ω〉 is the the ground state of the theory and the time-ordered product is defined

T
[
Oi(x)Oj(y)

]
= θ(x0 − y0)Oi(x)Oj(y) + θ(y0 − x0)Oj(y)Oi(x). (5.11)

The generalization to products with more than two operatorsis straightforward: operators are always
multiplied in time order, those evaluated at earlier times always to the right. The interest of these kinds
of correlation functions lies in the fact that they can be related toS-matrix amplitudes through the so-
called reduction formula. To keep our discussion as simple as possible we will not derive it or even write
it down in full detail. Its form for different theories can befound in any textbook. Here suffice it to
say that the reduction formula simply states that anyS-matrix amplitude can be written in terms of the
Fourier transform of a time-ordered correlation function.Morally speaking

〈~p1′, . . . , ~pm′; out|~p1, . . . , ~pn; in〉

⇓ (5.12)
∫
d4x1 . . .

∫
d4yn〈Ω|T

[
φ(x1)

† . . . φ(xm)†φ(y1) . . . φ(yn)
]
|Ω〉 eip1′·x1 . . . e−ipn·yn ,

whereφ(x) is the field whose elementary excitations are the particles involved in the scattering.

The reduction formula reduces the problem of computingS-matrix amplitudes to that of evaluating
time-ordered correlation functions of field operators. These quantities are easy to compute exactly in the
free theory. For an interacting theory the situation is morecomplicated, however. Using path integrals,
the vacuum expectation value of the time-ordered product ofa number of operators can be expressed as

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉 =

∫
DφDφ†O1(x1) . . .On(xn) e

iS[φ,φ†]

∫
DφDφ† eiS[φ,φ

†]
. (5.13)

For a theory with interactions, the path integral neither inthe numerator nor in the denominator is Gaus-
sian and they cannot be calculated exactly. However, Eq. (5.13) is still very useful. The actionS[φ, φ†]
can be split into the free (quadratic) piece and the interaction part

S[φ, φ†] = S0[φ, φ
†] + Sint[φ, φ

†]. (5.14)

All dependence on the coupling constants of the theory comesfrom the second piece. Expanding now
exp[iSint] in power series of the coupling constant we find that each termin the series expansion of both
the numerator and the denominator has the structure

∫
DφDφ†

[
. . .
]
eiS0[φ,φ†], (5.15)

where “. . .” denotes certain monomial of fields. The important point is that now the integration measure
only involves the free action, and the path integral in (5.15) is Gaussian and therefore can be computed
exactly. The same conclusion can be reached using the operator formalism. In this case the correlation
function (5.10) can be expressed in terms of correlation functions of operators in the interaction picture.
The advantage of using this picture is that the fields satisfythe free equations of motion and therefore
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can be expanded in creation–annihilation operators. The correlations functions are then easily computed
using Wick’s theorem.

Putting together all the previous ingredients we can calculateS-matrix amplitudes in a perturbative
series in the coupling constants of the field theory. This canbe done using Feynman diagrams and rules,
a very economical way to compute each term in the perturbative expansion of theS-matrix amplitude
for a given process. We will not detail the the construction of Feynman rules but just present them
heuristically.

For the sake of concreteness we focus on the case of QED first. Going back to Eq. (4.70) we
expand the covariant derivative to write the action

SQED =

∫
d4x

[
−1

4
FµνF

µν + ψ(i/∂ −m)ψ + eψγµψAµ

]
. (5.16)

The action contains two types of particle, fermions and photons, that we represent by straight and wavy
lines respectively

� �
The arrow in the fermion line does not represent the direction of the momentum but the flux of (negative)
charge. This distinguishes particles from antiparticles:if the fermion propagates from left to right (i.e.,
in the direction of the charge flux) it represents a particle,whereas when it goes from right to left it
corresponds to an antiparticle. Photons are not charged andtherefore wavy lines do not have orientation.

Next we turn to the interaction part of the action containinga photon field, a spinor and its conju-
gate. In a Feynman diagram this corresponds to the vertex

�
Now, in order to compute anS-matrix amplitude to a given order in the coupling constante for a process
with a certain number of incoming and outgoing asymptotic states one only has to draw all possible dia-
grams with as many vertices as the order in perturbation theory, and the corresponding number and type
of external legs. It is very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the conservation of the
electric charge. In addition one should only consider diagrams that are topologically non-equivalent, i.e.,
they cannot be smoothly deformed into one another keeping the external legs fixed10.

To show in a practical way how Feynman diagrams are drawn, we consider Bhabha scattering, i.e.,
the elastic dispersion of an electron and a positron:

e+ + e− −→ e+ + e−.

Our problem is to compute theS-matrix amplitude to the leading order in the electric charge. Because
the QED vertex contains a photon line and our process has photons neither in the initial nor the final states

10From the point of view of the operator formalism, the requirement of considering only diagrams that are topologically
non-equivalent comes from the fact that each diagram represents a certain Wick contraction in the correlation functionof
interaction-picture operators.
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we find that drawing a Feynman diagram requires at least two vertices. In fact, the leading contribution
is of ordere2 and comes from the following two diagrams, each containing two vertices:

�
e−

e+

e−

e+

+ (−1)×�
e−

e+

e−

e+

Incoming and outgoing particles appear respectively on theleft and the right of this diagram. Notice
how the identification of electrons and positrons is done comparing the direction of the charge flux with
the direction of propagation. For electrons the flux of charges goes in the direction of propagation,
whereas for positrons the two directions are opposite. These are the only two diagrams that can be
drawn at this order in perturbation theory. It is important to include a relative minus sign between
the two contributions. To understand the origin of this signwe have to remember that in the operator
formalism Feynman diagrams are just a way to encode a particular Wick contraction of field operators
in the interaction picture. The factor of−1 reflects the relative sign in Wick contractions representedby
the two diagrams, due to the fermionic character of the Diracfield.

We have learned how to draw Feynman diagrams in QED. Now one needs to compute the con-
tribution of each one to the corresponding amplitude using the so-called Feynman rules. The idea is
simple: given a diagram, each of its building blocks (vertices as well as external and internal lines) has
an associated contribution that allows the calculation of the corresponding diagram. In the case of QED
in the Feynman gauge, we have the following correspondence for vertices and internal propagators:

�α β =⇒
(

i

/p−m+ iε

)

βα

�µ ν =⇒ −iηµν
p2 + iε

�
α

β

µ =⇒ −ieγµβα(2π)4δ(4)(p1 + p2 + p3).

A change in the gauge would be reflected in an extra piece in thephoton propagator. The delta function
implementing conservation of momenta is written using the convention that all momenta are entering the
vertex. In addition, one has to perform an integration over all momenta running in internal lines with the
measure

∫
ddp

(2π)4
, (5.17)

and introduce a factor of−1 for each fermion loop in the diagram11.
11The contribution of each diagram comes also multiplied by a degeneracy factor that takes into account in how many ways

a given Wick contraction can be done. In QED, however, these factors are equal to 1 for many diagrams.
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In fact, some of the integrations over internal momenta can actually be done using the delta func-
tion at the vertices, leaving just a global delta function implementing the total momentum conservation in
the diagram [cf. Eq. (5.8)]. It is even possible that all integrations can be eliminated in this way. This is
the case when we have tree level diagrams, i.e., those without closed loops. In the case of diagrams with
loops there will be as many remaining integrations as the number of independent loops in the diagram.

The need to perform integrations over internal momenta in loop diagrams has important conse-
quences in quantum field theory. The reason is that in many cases the resulting integrals are ill-defined,
i.e., are divergent either at small or large values of the loop momenta. In the first case one speaks of
infrared divergencesand usually they cancel once all contributions to a given process are added together.
More profound, however, are the divergences appearing at large internal momenta. Theseultraviolet
divergencescannot be cancelled and have to be dealt with through the renormalization procedure. We
will discuss this problem in some detail in Section 8.

Were we computing time-ordered (amputated) correlation function of operators, this would be all.
However, in the case ofS-matrix amplitudes this is not the whole story. In addition to the previous
rules here one needs to attach contributions also to the external legs in the diagram. These are the wave
functions of the corresponding asymptotic states containing information about the spin and momenta of
the incoming and outgoing particles. In the case of QED thesecontributions are:

Incoming fermion:	α =⇒ uα(~p, s)

Incoming antifermion:
α =⇒ vα(~p, s)

Outgoing fermion:� α =⇒ uα(~p, s)

Outgoing antifermion:� α =⇒ vα(p, s)

Incoming photon:µ =⇒ ǫµ(~k, λ)

Outgoing photon:Æ µ =⇒ ǫµ(~k, λ)
∗

Here we have assumed that the momenta for incoming (outgoing) particles are entering (leaving) the
diagram. It is important also to keep in mind that in the computation ofS-matrix amplitudes all external
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states are on-shell. In Section 5.3 we illustrate the use of Feynman rules for QED with the case of
Compton scattering.

The application of Feynman diagrams to carry out computations in perturbation theory is ex-
tremely convenient. It provides a very useful book-keepingtechnique to account for all contributions to
a process at a given order in the coupling constant. This doesnot mean that the calculation of Feynman
diagrams is an easy task. The number of diagrams contributing to the process grows very fast with the
order in perturbation theory, and the integrals that appearin calculating loop diagrams also get very com-
plicated. This means that, generically, the calculation ofFeynman diagrams beyond the first few orders
very often requires the use of computers.

Above we have illustrated the Feynman rules with the case of QED. Similar rules can be computed
for other interacting quantum field theories with scalar, vector, or spinor fields. In the case of the non-
Abelian gauge theories introduced in Section 4.3 we have:

�α, i β, j =⇒
(

i

/p−m+ iε

)

βα

δij

�µ, a ν, b =⇒ −iηµν
p2 + iε

δab

�
α, i

β, j

µ, a =⇒ −igγµβαtaij

�
ν, b

σ, c

µ, a =⇒ g fabc
[
ηµν(pσ1 − pσ2 ) + permutations

]

�
µ, a

σ, c

ν, b

λ, d

=⇒ −ig2
[
fabef cde

(
ηµσηνλ − ηµληνσ

)
+ permutations

]

It is not our aim here to give a full and detailed description of the Feynman rules for non-Abelian
gauge theories. Suffice it to point out that, unlike the case of QED, here the gauge fields can interact
among themselves. Indeed, the three- and four-gauge field vertices are a consequence of the cubic and
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quartic terms in the action

S = −1

4

∫
d4xF a

µνF
µν a, (5.18)

where the non-Abelian gauge field strengthF a
µν is given in Eq. (4.75). The self-interaction of the non-

Abelian gauge fields has crucial dynamical consequences andit is at the very heart of its success in
describing the physics of elementary particles.

5.3 An example: Compton scattering

To illustrate the use of Feynman diagrams and Feynman rules we compute the cross section for the
dispersion of photons by free electrons, the so-called Compton scattering:

γ(k, λ) + e−(p, s) −→ γ(k′, λ′) + e−(p′, s′).

In brackets we have indicated the momenta for the different particles, as well as the polarizations and
spins of the incoming and outgoing photon and electrons respectively. The first step is to identify all
the diagrams contributing to the process at leading order. Taking into account that the vertex of QED
contains two fermion and one photon leg, it is straightforward to realize that any diagram contributing to
the process at hand must contain at least two vertices. Hencethe leading contribution is of ordere2. A
first diagram we can draw is:

�
k, λ

p, s

k′, λ′

p′, s′

This is, however, not the only possibility. Indeed, there isa second possible diagram:

�
k, λ

p, s

p′, s′

k′, λ′

It is important to stress that these two diagrams are topologically nonequivalent, since deforming one into
the other would require changing the label of the external legs. Therefore the leadingO(e2) amplitude
has to be computed adding the contributions from both of them.

Using the Feynman rules of QED we find� +� = (ie)2u(~p ′, s′)/ǫ ′(~k ′, λ′)∗
/p+ /k +me

(p+ k)2 −m2
e

/ǫ(~k, λ)u(~p, s)

+ (ie)2u(~p ′, s′)/ǫ(~k, λ)
/p− /k′ +me

(p − k′)2 −m2
e

/ǫ ′(~k ′, λ′)∗u(~p, s). (5.19)

Because the leading order contributions involve only tree-level diagrams, there is no integration over
internal momenta and therefore we are left with a purely algebraic expression for the amplitude. To get
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an explicit expression we begin by simplifying the numerators. The following simple identity turns out
to be very useful for this task

/a/b = −/b/a+ 2(a · b)1. (5.20)

Indeed, looking at the first term in Eq. (5.19) we have

(/p + /k +me)/ǫ(~k, λ)u(~p, s) = −/ǫ(~k, λ)(/p −me)u(~p, s) + /k/ǫ(~k, λ)u(~p, s)

+ 2p · ǫ(~k, λ)u(~p, s), (5.21)

where we have applied the identity (5.20) on the first term inside the parenthesis. The first term on
the right-hand side of this equation vanishes identically because of Eq. (4.35). The expression can be
further simplified if we restrict our attention to the Compton scattering at low energy when electrons are
nonrelativistic. This means that all spatial momenta are much smaller than the electron mass

|~p|, |~k|, |~p ′|, |~k ′| ≪ me. (5.22)

In this approximation we have thatpµ, p′µ ≈ (me,~0) and therefore

p · ǫ(~k, λ) = 0. (5.23)

This follows from the absence of temporal photon polarization. Then we conclude that at low energies

(/p+ /k +me)/ǫ(~k, λ)u(~p, s) = /k/ǫ(~k, λ)u(~p, s) (5.24)

and similarly for the second term in Eq. (5.19)

(/p− /k′ +me)/ǫ
′(~k′, λ′)∗u(~p, s) = −/k′/ǫ ′(~k′, λ′)∗u(~p, s). (5.25)

Next, we turn to the denominators in Eq. (5.19). As it was explained in Section 5.2, in computing
scattering amplitudes incoming and outgoing particles should have on-shell momenta,

p2 = m2
e = p′2 and k2 = 0 = k′2. (5.26)

Then, the two denominators in Eq. (5.19) simplify respectively to

(p+ k)2 −m2
e = p2 + k2 + 2p · k −m2

e = 2p · k = 2ωp|~k| − 2~p · ~k (5.27)

and

(p− k′)2 −m2
e = p2 + k′2 + 2p · k′ −m2

e = −2p · k′ = −2ωp|~k ′|+ 2~p · ~k ′. (5.28)

Working again in the low-energy approximation (5.22) thesetwo expressions simplify to

(p+ k)2 −m2
e ≈ 2me|~k|, (p− k′)2 −m2

e ≈ −2me|~k ′|. (5.29)

Putting together all these expressions we find that at low energies� +�
≈ (ie)2

2me
u(~p ′, s′)

[
/ǫ ′(~k ′λ′)∗

/k

|~k|
ǫ(~k, λ) + ǫ(~k, λ)

/k′

|~k ′|
/ǫ ′(~k ′λ′)∗

]
u(~p, s). (5.30)

44

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

44



Using now again the identity (5.20) a number of times as well as the transversality condition of the
polarization vectors (4.66) we end up with a handier equation� +� ≈ e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s)

+
e2

2me
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗

(
/k

|~k|
− /k′

|~k ′|

)
u(~p, s). (5.31)

With a little bit of effort we can show that the second term on the right-hand side vanishes. First we notice
that in the low-energy limit|~k| ≈ |~k ′|. If in addition we make use of the conservation of momentum
k − k ′ = p ′ − p and the identity (4.35)

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗
(
/k

|~k|
− /k′

|~k ′|

)
u(~p, s)

≈ 1

|~k|
u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s). (5.32)

Next we use the identity (5.20) to take the term(/p′ −me) to the right. Taking into account that in the
low-energy limit the electron four-momenta are orthogonalto the photon polarization vectors [see Eq.
(5.23)] we conclude that

u(~p ′, s′)/ǫ(~k, λ)/ǫ ′(~k ′, λ′)∗(/p′ −me)u(~p, s)

= u(~p ′, s′)(/p′ −me)/ǫ(~k, λ)/ǫ
′(~k ′, λ′)∗u(~p, s) = 0 (5.33)

where the last identity follows from the equation satisfied by the conjugate positive-energy spinor,
u(~p ′, s′)(/p′ −me) = 0.

After all these lengthy manipulations we have finally arrived at the expression of the invariant
amplitude for Compton scattering at low energies

iM =
e2

me

[
ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

]
u(~p ′, s′)

/k

|~k|
u(~p, s). (5.34)

The calculation of the cross section involves computing themodulus squared of this quantity. For many
physical applications, however, one is interested in the dispersion of photons with a given polarization
by electrons that are not polarized, i.e., whose spins are randomly distributed. In addition, in many
situations either we are not interested, or there is no way tomeasure the final polarization of the outgoing
electron. This is, for example, the situation in cosmology,where we do not have any information about
the polarization of the free electrons in the primordial plasma before or after the scattering with photons
(although we have ways to measure the polarization of the scattered photons).

To describe this physical situation we have to average over initial electron polarizations (since we
do not know them) and sum over all possible final electron polarizations (because our detector is blind
to this quantum number),

|iM|2 = 1

2

(
e2

me|~k|

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2 ∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
. (5.35)

The factor of 12 comes from averaging over the two possible polarizations ofthe incoming electrons.
The sums in this expression can be calculated without much difficulty. Expanding the absolute value
explicitly

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2
=
∑

s=± 1
2

∑

s′=± 1
2

[
u(~p, s)†/k†u(~p ′, s′)†

][
u(~p ′, s′)/ku(~p, s)

]
, (5.36)
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using thatγµ† = γ0γµγ0 and after some manipulation one finds that

∑

s=± 1
2

∑

s′=± 1
2

∣∣∣u(~p ′, s′)/ku(~p, s)
∣∣∣
2

=



∑

s=± 1
2

uα(~p, s)uβ(~p, s)


 (/k)βσ



∑

s′=± 1
2

uσ(~p
′, s′)uρ(~p

′, s′)


 (/k)ρα

= Tr
[
(/p+me)/k(/p

′ +me)/k
]
, (5.37)

where the final expression has been computed using the completeness relations in Eq. (4.38). The final
evaluation of the trace can be done using the standard Dirac matrices identities. Here we compute it
applying again the relation (5.20) to commute/p′ and/k. Using thatk2 = 0 and that we are working in
the low-energy limit we have12

Tr
[
(/p+me)/k(/p

′ +me)/k
]
= 2(p · k)(p′ · k)Tr 1 ≈ 8m2

e|~k|2. (5.38)

This gives the following value for the invariant amplitude

|iM|2 = 4e4
∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗

∣∣∣
2

(5.39)

Plugging|iM|2 into the formula for the differential cross section we get

dσ

dΩ
=

1

64π2m2
e

|iM|2 =
(

e2

4πme

)2 ∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
. (5.40)

The prefactor of the last equation is precisely the square ofthe so-called classical electron radiusrcl. In
fact, the previous differential cross section can be rewritten as

dσ

dΩ
=

3

8π
σT

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
, (5.41)

whereσT is the total Thomson cross section

σT =
e4

6πm2
e

=
8π

3
r2cl. (5.42)

The result (5.41) is relevant in many areas of Physics, but its importance is paramount in the study
of the cosmological microwave background (CMB). Just before recombination the universe is filled by
a plasma of electrons interacting with photons via Compton scattering, with temperatures of the order of
1 keV. Electrons are then non-relativistic (me ∼ 0.5 MeV) and the approximations leading to Eq. (5.41)
are fully valid. Because we do not know the polarization state of the photons before being scattered by
electrons we have to consider the cross section averaged over incoming photon polarizations. From Eq.
(5.41) we see that this is proportional to

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2
=


1
2

∑

λ=1,2

ǫi(~k, λ)ǫj(~k, λ)
∗


 ǫj(~k ′, λ′)ǫi(~k ′, λ′)∗. (5.43)

The sum inside the brackets can be computed using the normalization condition of the polarization
vectors,|~ǫ (~k, λ)|2 = 1, and the transversality condition~k · ~ǫ(~k, λ) = 0

1

2

∑

λ=1,2

∣∣∣ǫ(~k, λ) · ǫ′(~k ′, λ′)∗
∣∣∣
2

=
1

2

(
δij −

kikj

|~k|2

)
ǫ′j(~k

′, λ′)ǫ′i(~k
′, λ′)∗

12We also use the fact that the trace of the product of an odd number of Dirac matrices is always zero.
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=
1

2

[
1− |~ℓ · ~ǫ ′(~k ′, λ′)|2

]
, (5.44)

where~ℓ =
~k
|~k| is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polarizations parallel to
the direction of the incoming photon~ℓ, whereas the differential cross section reaches the maximum in the
plane normal to~ℓ. If photons would collide with the electrons in the plasma with the same intensity from
all directions, the result would be an unpolarized CMB radiation. The fact that polarization is actually
measured in the CMB carries crucial information about the physics of the plasma before recombination
and, as a consequence, about the very early universe (see forexample [25] for a thorough discussion).

6 Symmetries

6.1 Noether’s theorem

In classical mechanics and classical field theory there is a basic result that relates symmetries and con-
served charges. This is called Noether’s theorem and statesthat for each continuous symmetry of the
system there is conserved current. In its simplest version in classical mechanics it can be easily proved.
Let us consider a LagrangianL(qi, q̇i) which is invariant under a transformationqi(t) → q′i(t, ǫ) labelled
by a parameterǫ. This means thatL(q′, q̇′) = L(q, q̇) without using the equations of motion13. If ǫ≪ 1
we can consider an infinitesimal variation of the coordinates δǫqi(t) and the invariance of the Lagrangian
implies

0 = δǫL(qi, q̇i) =
∂L

∂qi
δǫqi +

∂L

∂q̇i
δǫq̇i =

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
δǫqi +

d

dt

(
∂L

∂q̇i
δǫqi

)
. (6.1)

Whenδǫqi is applied on a solution to the equations of motion the term inside the square brackets vanishes
and we conclude that there is a conserved quantity

Q̇ = 0 with Q ≡ ∂L

∂q̇i
δǫqi. (6.2)

Notice that in this derivation it is crucial that the symmetry depends on a continuous parameter since
otherwise the infinitesimal variation of the Lagrangian in Eq. (6.1) does not make sense.

In classical field theory a similar result holds. Let us consider for simplicity a theory of a single
field φ(x). We say that the variationsδǫφ depending on a continuous parameterǫ are a symmetry of the
theory if, without using the equations of motion, the Lagrangian density changes by

δǫL = ∂µK
µ. (6.3)

If this happens then the action remains invariant and so do the equations of motion. Working out now the
variation ofL underδǫφ we find

∂µK
µ =

∂L
∂(∂µφ)

∂µδǫφ+
∂L
∂φ

δǫφ = ∂µ

(
∂L

∂(∂µφ)
δǫφ

)
+

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δǫφ. (6.4)

If φ(x) is a solution to the equations of motion, the last terms disappears and we find that there is a
conserved current

∂µJ
µ = 0 with Jµ =

∂L
∂(∂µφ)

δǫφ−Kµ. (6.5)

13The following result can also be derived in more general situations where the Lagrangian changes by a total time derivative.
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Actually a conserved current implies the existence of a charge

Q ≡
∫
d3xJ0(t, ~x) (6.6)

which is conserved

dQ

dt
=

∫
d3x ∂0J

0(t, ~x) = −
∫
d3x ∂iJ

i(t, ~x) = 0, (6.7)

provided the fields vanish at infinity fast enough. Moreover,the conserved chargeQ is a Lorentz scalar.
After canonical quantization the chargeQ defined by Eq. (6.6) is promoted to an operator that generates
the symmetry on the fields

δφ = i[φ,Q]. (6.8)

As an example we can consider a scalar fieldφ(x)which under a coordinate transformationx→ x′

changes asφ′(x′) = φ(x). In particular performing a space-time translationxµ
′
= xµ + aµ we have

φ′(x)− φ(x) = −aµ∂µφ+O(a2) =⇒ δφ = −aµ∂µφ. (6.9)

Since the Lagrangian density is also a scalar quantity, it transforms under translations as

δL = −aµ∂µL. (6.10)

Therefore the corresponding conserved charge is

Jµ = − ∂L
∂(∂µφ)

aν∂νφ+ aµL ≡ −aνT µν , (6.11)

where we introduced the energy-momentum tensor

T µν =
∂L

∂(∂µφ)
∂νφ− ηµνL. (6.12)

We find that associated with the invariance of the theory withrespect to space-time translations there
are four conserved currents defined byT µν with ν = 0, . . . , 3, each one associated with the translation
along a space-time direction. These four currents form a rank-two tensor under Lorentz transformations
satisfying

∂µT
µν = 0. (6.13)

The associated conserved charges are given by

P ν =

∫
d3xT 0ν (6.14)

and correspond to the total energy-momentum content of the field configuration. Therefore the energy
density of the field is given byT 00 while T 0i is the momentum density. In the quantum theory thePµ

are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved charge is the global
phase invariance of the Dirac Lagrangian (4.27),ψ → eiθψ. For smallθ this corresponds to variations
δθψ = iθψ, δθψ = −iθψ which by Noether’s theorem result in the conserved charge

jµ = ψγµψ, ∂µj
µ = 0. (6.15)
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Thus implying the existence of a conserved charge

Q =

∫
d3xψγ0ψ =

∫
d3xψ†ψ. (6.16)

In physics there are several instances of global U(1) symmetries that act as phase shifts on spinors.
This is the case, for example, of the baryon and lepton numberconservation in the Standard Model. A
more familiar case is the U(1) local symmetry associated with electromagnetism. Notice that although
in this case we are dealing with a local symmetryθ → eα(x), the invariance of the Lagrangian holds
in particular for global transformations and therefore there is a conserved currentjµ = eψγµψ. In
Eq. (4.72) we saw that the spinor is coupled to the photon fieldprecisely through this current. Its time
component is the electric charge densityρ, while the spatial components are the current density vector ~.

This analysis can be carried over also to non-Abelian unitary global symmetries acting as

ψi −→ Uijψj, U †U = 1 (6.17)

and leaving invariant the Dirac Lagrangian when we have several fermions. If we write the matrixU in
terms of the hermitian group generatorsT a as

U = exp (iαaT
a) , (T a)† = T a, (6.18)

we find the conserved current

jµ a = ψiT
a
ijγ

µψj , ∂µj
µ = 0. (6.19)

This is the case, for example of the approximate flavor symmetries in hadron physics. The simplest
example is the isospin symmetry that mixes the quarksu andd

(
u
d

)
−→M

(
u
d

)
, M ∈ SU(2). (6.20)

Since the proton is a bound state of two quarksu and one quarkd while the neutron is made out of
one quarku and two quarksd, this isospin symmetry reduces at low energies to the well-known isospin
transformations of nuclear physics that mixes protons and neutrons.

6.2 Symmetries in the quantum theory

We have seen that in canonical quantization the conserved chargesQa associated to symmetries by
Noether’s theorem are operators implementing the symmetryat the quantum level. Since the charges are
conserved they must commute with the Hamiltonian

[Qa,H] = 0. (6.21)

There are several possibilities in the quantum mechanical realization of a symmetry:

Wigner–Weyl realization. In this case the ground state of the theory|0〉 is invariant under the
symmetry. Since the symmetry is generated byQa this means that

U(α)|0〉 ≡ eiαaQa|0〉 = |0〉 =⇒ Qa|0〉 = 0. (6.22)

At the same time the fields of the theory have to transform according to some irreducible representation
of the group generated by theQa. From Eq. (6.8) it is easy to prove that

U(α)φiU(α)−1 = Uij(α)φj , (6.23)
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whereUij(α) is an element of the representation in which the fieldφi transforms. If we consider now
the quantum state associated with the operatorφi

|i〉 = φi|0〉 (6.24)

we find that because of the invariance of the vacuum (6.22) thestates|i〉 transform in the same represen-
tation asφi

U(α)|i〉 = U(α)φiU(α)−1U(α)|0〉 = Uij(α)φj |0〉 = Uij(α)|j〉. (6.25)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group. In addition, since
[H,U(α)] = 0 all states in the same multiplet have the same energy. If we consider one-particle states,
then going to the rest frame we conclude that all states in thesame multiplet have exactly the same mass.

Nambu–Goldstone realization. In our previous discussion the result that the spectrum of the
theory is classified according to multiplets of the symmetrygroup depended crucially on the invariance
of the ground state. However this condition is not mandatoryand one can relax it to consider theories
where the vacuum state is not left invariant by the symmetry

eiαaQa|0〉 6= |0〉 =⇒ Qa|0〉 6= 0. (6.26)

In this case it is also said that the symmetry is spontaneously broken by the vacuum.

To illustrate the consequences of (6.26) we consider the example of a number of scalar fieldsϕi

(i = 1, . . . , N ) whose dynamics is governed by the Lagrangian

L =
1

2
∂µϕ

i∂µϕi − V (ϕ), (6.27)

where we assume thatV (φ) is bounded from below. This theory is globally invariant under the transfor-
mations

δϕi = ǫa(T a)ijϕ
j , (6.28)

with T a, a = 1, . . . , 12N(N − 1) the generators of the group SO(N).

To analyse the structure of vacua of the theory we construct the Hamiltonian

H =

∫
d3x

[
1

2
πiπi +

1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
(6.29)

and look for the minimum of

V(ϕ) =
∫
d3x

[
1

2
~∇ϕi · ~∇ϕi + V (ϕ)

]
. (6.30)

Since we are interested in finding constant field configurations, ~∇ϕ = ~0 to preserve translational invari-
ance, the vacua of the potentialV(ϕ) coincides with the vacua ofV (ϕ). Therefore the minima of the
potential correspond to the vacuum expectation values14

〈ϕi〉 : V (〈ϕi〉) = 0,
∂V

∂ϕi

∣∣∣∣
ϕi=〈ϕi〉

= 0. (6.31)

We divide the generatorsT a of SO(N ) into two groups: Those denoted byHα (α = 1, . . . , h)
that satisfy

(Hα)ij〈ϕj〉 = 0. (6.32)

14For simplicity we consider that the minima ofV (φ) occur at zero potential.
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This means that the vacuum configuration〈ϕi〉 is left invariant by the transformation generated byHα.
For this reason we call themunbroken generators. Notice that the commutator of two unbroken genera-
tors also annihilates the vacuum expectation value,[Hα,Hβ]ij〈ϕj〉 = 0. Therefore the generators{Hα}
form a subalgebra of the algebra of the generators of SO(N ). The subgroup of the symmetry group
generated by them is realized à la Wigner–Weyl.

The remaining generatorsKA, with A = 1, . . . , 12N(N − 1) − h, by definition do not preserve
the vacuum expectation value of the field

(KA)ij〈ϕj〉 6= 0. (6.33)

These will be called thebroken generators. Next we prove a very important result concerning the broken
generators known as the Goldstone theorem: for each generator broken by the vacuum expectation value
there is a massless excitation.

The mass matrix of the excitations around the vacuum〈ϕi〉 is determined by the quadratic part of
the potential. Since we assumed thatV (〈ϕ〉) = 0 and we are expanding around a minimum, the first
term in the expansion of the potentialV (ϕ) around the vacuum expectation values is given by

V (ϕ) =
∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

(ϕi − 〈ϕi〉)(ϕj − 〈ϕj〉) +O
[
(ϕ− 〈ϕ〉)3

]
(6.34)

and the mass matrix is

M2
ij ≡

∂2V

∂ϕi∂ϕj

∣∣∣∣
ϕ=〈ϕ〉

. (6.35)

In order to avoid a cumbersome notation we do not show explicitly the dependence of the mass matrix
on the vacuum expectation values〈ϕi〉.

To extract some information about the possible zero modes ofthe mass matrix, we write down the
conditions that follow from the invariance of the potentialunderδϕi = ǫa(T a)ijϕ

j . At first order inǫa

δV (ϕ) = ǫa
∂V

∂ϕi
(T a)ijϕ

j = 0. (6.36)

Differentiating this expression with respect toϕk we arrive at

∂2V

∂ϕi∂ϕk
(T a)ijϕ

j +
∂V

∂ϕi
(T a)ik = 0. (6.37)

Now we evaluate this expression in the vacuumϕi = 〈ϕi〉. Then the derivative in the second term cancels
while the second derivative in the first one gives the mass matrix. Hence we find

M2
ik(T

a)ij〈ϕj〉 = 0. (6.38)

Now we can write this expression for both broken and unbrokengenerators. For the unbroken ones, since
(Hα)ij〈ϕj〉 = 0, we find a trivial identity0 = 0. On the other hand for the broken generators we have

M2
ik(K

A)ij〈ϕj〉 = 0. (6.39)

Since(KA)ij〈ϕj〉 6= 0 this equation implies that the mass matrix has as many zero modes as broken
generators. Therefore we have proven Goldstone’s theorem:associated with each broken symmetry
there is a massless mode in the theory. Here we have presenteda classical proof of the theorem. In the
quantum theory the proof follows the same lines as the one presented here but one has to consider the
effective action containing the effects of the quantum corrections to the classical Lagrangian.
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As an example to illustrate this theorem, we consider a SO(3)invariant scalar field theory with a
‘mexican hat’ potential

V (~ϕ) =
λ

4

(
~ϕ 2 − a2

)2
. (6.40)

The vacua of the theory correspond to the configurations satisfying 〈~ϕ〉 2 = a2. In field space this equa-
tion describes a two-dimensional sphere and each solution is just a point in that sphere. Geometrically
it is easy to visualize that a given vacuum field configuration, i.e., a point in the sphere, is preserved
by SO(2) rotations around the axis of the sphere that passes through that point. Hence the vacuum
expectation value of the scalar field breaks the symmetry according to

〈~ϕ〉 : SO(3) −→ SO(2). (6.41)

Since SO(3) has three generators and SO(2) only one, we see that two generators are broken and there-
fore there are two massless Goldstone bosons. Physically these massless modes can be thought of as
corresponding to excitations along the surface of the sphere 〈~ϕ〉 2 = a2.

Once a minimum of the potential has been chosen we can proceedto quantize the excitations
around it. Since the vacuum only leaves invariant a SO(2) subgroup of the original SO(3) symmetry
group it seems that the fact that we are expanding around a particular vacuum expectation value of the
scalar field has resulted in a loss of symmetry. This is, however, not the case. The full quantum theory
is symmetric under the whole symmetry group SO(3). This is reflected in the fact that the physical
properties of the theory do not depend on the particular point of the sphere〈~ϕ〉 2 = a2 that we have
chosen. Different vacua are related by the full SO(3) symmetry and therefore should give the same
physics.

It is very important to realize that given a theory with a vacuum determined by〈~ϕ〉 all other
possible vacua of the theory are unaccessible in the infinitevolume limit. This means that two vacuum
states|01〉, |02〉 corresponding to different vacuum expectation values of the scalar field are orthogonal
〈01|02〉 = 0 and cannot be connected by any local observableΦ(x), 〈01|Φ(x)|02〉 = 0. Heuristically this
can be understood by noticing that in the infinite volume limit switching from one vacuum into another
one requires changing the vacuum expectation value of the field everywhere in space at the same time,
something that cannot be done by any local operator. Notice that this is radically different from our
expectations based on the quantum mechanics of a system witha finite number of degrees of freedom.

In high-energy physics the typical example of a Goldstone boson is the pion, associated with the
spontaneous breaking of the global chiral isospinSU(2)L × SU(2)R symmetry. This symmetry acts
independently in the left- and right-handed spinors as

(
uL,R
dL,R

)
−→ML,R

(
uL,R
dL,R

)
, ML,R ∈ SU(2)L,R . (6.42)

Presumably since the quarks are confined at low energies thissymmetry is spontaneously broken down
to the diagonal SU(2) acting in the same way on the left- and right-handed components of the spinors.
Associated with this symmetry breaking there is a Goldstonemode which is identified as the pion. No-
tice, nevertheless, that the SU(2)L×SU(2)R would be an exact global symmetry of the QCD Lagrangian
only in the limit when the masses of the quarks are zeromu,md → 0. Since these quarks have non-zero
masses the chiral symmetry is only approximate and as a consequence the corresponding Goldstone bo-
son is not massless. That is why pions have masses, although they are the lightest particle among the
hadrons.

Symmetry breaking appears also in many places in condensed matter. For example, when a solid
crystallizes from a liquid the translational invariance that is present in the liquid phase is broken to a
discrete group of translations that represent the crystal lattice. This symmetry breaking has Goldstone
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bosons associated which are identified with phonons which are the quantum excitation modes of the
vibrational degrees of freedom of the lattice.

The Higgs mechanism.Gauge symmetry seems to prevent a vector field from having a mass.
This is obvious once we realize that a term in the Lagrangian likem2AµA

µ is incompatible with gauge
invariance.

However, certain physical situations seem to require massive vector fields. This happened for
example during the 1960s in the study of weak interactions. The Glashow model gave a common de-
scription of both electromagnetic and weak interactions based on a gauge theory with group SU(2)×U(1)
but, in order to reproduce Fermi’s four-fermion theory of the β-decay it was necessary that two of the
vector fields involved be massive. Also in condensed matter physics massive vector fields are required
to describe certain systems, most notably in superconductivity.

The way out of this situation is found in the concept of spontaneous symmetry breaking discussed
previously. The consistency of the quantum theory requiresgauge invariance, but this invariance can be
realized à la Nambu–Goldstone. When this is the case the fullgauge symmetry is not explicitly present in
the effective action constructed around the particular vacuum chosen by the theory. This makes possible
the existence of mass terms for gauge fields without jeopardizing the consistency of the full theory, which
is still invariant under the whole gauge group.

To illustrate the Higgs mechanism we study the simplest example, the Abelian Higgs model: a
U(1) gauge field coupled to a self-interacting charged complex scalar fieldΦ with Lagrangian

L = −1

4
FµνF

µν +DµΦD
µΦ− λ

4

(
ΦΦ− µ2

)2
, (6.43)

where the covariant derivative is given by Eq. (4.69). This theory is invariant under the gauge transfor-
mations

Φ → eiα(x)Φ, Aµ → Aµ + ∂µα(x). (6.44)

The minimum of the potential is defined by the equation|Φ| = µ. We have a continuum of different
vacua labelled by the phase of the scalar field. None of these vacua, however, is invariant under the
gauge symmetry

〈Φ〉 = µeiϑ0 → µeiϑ0+iα(x) (6.45)

and therefore the symmetry is spontaneously broken. Let us study now the theory around one of these
vacua, for example〈Φ〉 = µ, by writing the fieldΦ in terms of the excitations around this particular
vacuum

Φ(x) =

[
µ+

1√
2
σ(x)

]
eiϑ(x). (6.46)

Independently of whether we are expanding around a particular vacuum for the scalar field we should
keep in mind that the whole Lagrangian is still gauge invariant under (6.44). This means that perform-
ing a gauge transformation with parameterα(x) = −ϑ(x) we can get rid of the phase in Eq. (6.46).
Substituting thenΦ(x) = µ+ 1√

2
σ(x) in the Lagrangian we find

L = −1

4
FµνF

µν + e2µ2AµA
µ +

1

2
∂µσ∂

µσ − 1

2
λµ2σ2

− λµσ3 − λ

4
σ4 + e2µAµA

µσ + e2AµA
µσ2. (6.47)

What are the excitations of the theory around the vacuum〈Φ〉 = µ? First we find a massive real scalar
field σ(x). The important point, however, is that the vector fieldAµ now has a mass given by

m2
γ = 2e2µ2. (6.48)
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The remarkable thing about this way of giving a mass to the photon is that at no point have we given up
gauge invariance. The symmetry is only hidden. Therefore inquantizing the theory we can still enjoy all
the advantages of having a gauge theory but at the same time wehave managed to generate a mass for
the gauge field.

It is surprising, however, that in the Lagrangian (6.47) we did not find any massless mode. Since
the vacuum chosen by the scalar field breaks theU(1) generator of U(1) we would have expected one
massless particle from Goldstone’s theorem. To understandthe fate of the missing Goldstone boson we
have to revisit the calculation leading to Eq. (6.47). Were we dealing with a global U(1) theory, the
Goldstone boson would correspond to excitation of the scalar field along the valley of the potential and
the phaseϑ(x) would be the massless Goldstone boson. However, we have to keep in mind that in com-
puting the Lagrangian we managed to get rid ofϑ(x) by shifting it intoAµ using a gauge transformation.
Actually, by identifying the gauge parameter with the Goldstone excitation we have completely fixed the
gauge, and the Lagrangian (6.47) does not have any gauge symmetry left.

A massive vector field has three polarizations: two transverse ones~k · ~ǫ (~k,±1) = 0 plus a longi-
tudinal one~ǫL(~k) ∼ ~k. In gauging away the massless Goldstone bosonϑ(x) we have transformed it into
the longitudinal polarization of the massive vector field. In the literature this is usually expressed saying
that the Goldstone mode is ‘eaten up’ by the longitudinal component of the gauge field. It is important
to realize that in spite of the fact that the Lagrangian (6.47) looks pretty different from the one we started
with, we have not lost any degrees of freedom. We started withthe two polarizations of the photon plus
the two degrees of freedom associated with the real and imaginary components of the complex scalar
field. After symmetry breaking we end up with the three polarizations of the massive vector field and the
degree of freedom of the real scalar fieldσ(x).

We can also understand the Higgs mechanism in the light of ourdiscussion of gauge symmetry
in Section 4.4. In the Higgs mechanism the invariance of the theory under infinitesimal gauge trans-
formations is not explicitly broken, and this implies that Gauss’s law is satisfied quantum mechanically,
~∇ · ~Ea|phys〉 = 0. The theory remains invariant under gauge transformationsin the connected com-
ponent of the identityG0, the ones generated by Gauss’s law. This does not pose any restriction on the
possible breaking of the invariance of the theory with respect to transformations that cannot be continu-
ously deformed to the identity. Hence in the Higgs mechanismthe invariance under gauge transformation
that is not in the connected component of the identity,G/G0, can be broken. Let us try to put it in more
precise terms. As we learned in Section 4.4, in the Hamiltonian formulation of the theory, finite energy
gauge field configurations tend to a pure gauge at spatial infinity

~Aµ(~x)−→
1

ig
g(~x)−1~∇g(~x), |~x| → ∞ . (6.49)

The set transformationsg0(~x) ∈ G0 that tend to the identity at infinity are the ones generated byGauss’s
law. However, one can also consider in general gauge transformationsg(~x)which, as|~x| → ∞, approach
any other elementg ∈ G. The quotientG∞ ≡ G/G0 gives a copy of the gauge group at infinity. There
is no reason, however, why this group should not be broken, and in general it is if the gauge symmetry
is spontaneously broken. Notice that this is not a threat to the consistency of the theory. Properties
like the decoupling of unphysical states are guaranteed by the fact that Gauss’s law is satisfied quantum
mechanically and are not affected by the breaking ofG∞.

The Abelian Higgs model discussed here can be regarded as a toy model of the Higgs mechanism
responsible for giving mass to theW± andZ0 gauge bosons in the Standard Model. In condensed matter
physics the symmetry breaking described by the nonrelativistic version of the Abelian Higgs model can
be used to characterize the onset of a superconducting phasein the BCS theory, where the complex scalar
field Φ is associated with the Cooper pairs. In this case the parameter µ2 depends on the temperature.
Above the critical temperatureTc, µ2(T ) > 0 and there is only a symmetric vacuum〈Φ〉 = 0. When,
on the other hand,T < Tc thenµ2(T ) < 0 and symmetry breaking takes place. The onset of a non-zero
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mass of the photon (6.48) below the critical temperature explains the Meissner effect: the magnetic fields
cannot penetrate inside superconductors beyond a distanceof the order1/mγ .

7 Anomalies

So far we did not worry too much about how classical symmetries of a theory are carried over to the
quantum theory. We have implicitly assumed that classical symmetries are preserved in the process of
quantization, so they are also realized in the quantum theory.

This, however, does not necessarily have to be the case. Quantizing an interacting field theory is a
very involved process that requires regularization and renormalization and sometimes, it does not matter
how hard we try, there is no way for a classical symmetry to survive quantization. When this happens
one says that the theory has ananomaly(for a review see Ref. [26]). It is important to avoid here the
misconception that anomalies appear due to a bad choice of the way a theory is regularized in the process
of quantization. When we talk about anomalies we mean a classical symmetry thatcannotbe realized in
the quantum theory, no matter how smart we are in choosing theregularization procedure.

In the following we analyse some examples of anomalies associated with global and local sym-
metries of the classical theory. In Section 8 we will encounter yet another example of an anomaly, this
time associated with the breaking of classical scale invariance in the quantum theory.

7.1 Axial anomaly

Probably the best known examples of anomalies appear when weconsider axial symmetries. If we
consider a theory of two Weyl spinorsu±

L = iψ∂/ψ = iu†+σ
µ
+∂µu+ + iu†−σ

µ
−∂µu− with ψ =

(
u+
u−

)
(7.1)

the Lagrangian is invariant under two types of global U(1) transformations. In the first one both helicities
transform with the same phase, this is avectortransformation:

U(1)V : u± −→ eiαu±, (7.2)

whereas in the second one, the axialU(1), the signs of the phases are different for the two chiralities

U(1)A : u± −→ e±iαu±. (7.3)

Using Noether’s theorem, there are two conserved currents,a vector current

Jµ
V = ψγµψ = u†+σ

µ
+u+ + u†−σ

µ
−u− =⇒ ∂µJ

µ
V = 0 (7.4)

and an axial vector current

Jµ
A = ψγµγ5ψ = u†+σ

µ
+u+ − u†−σ

µ
−u− =⇒ ∂µJ

µ
A = 0. (7.5)

The theory described by the Lagrangian (7.1) can be coupled to the electromagnetic field. The
resulting classical theory is still invariant under the vector and axial U(1) symmetries (7.2) and (7.3).
Surprisingly, upon quantization it turns out that the conservation of the axial current (7.5) is spoiled by
quantum effects

∂µJ
µ
A ∼ ~ ~E · ~B. (7.6)

To understand more clearly how this result comes about we study first a simple model in two
dimensions that captures the relevant physics involved in the four-dimensional case [27]. We work in
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Minkowski space in two dimensions with coordinates(x0, x1) ≡ (t, x) and where the spatial direction
is compactified to a circleS1. In this setup we consider a fermion coupled to the electromagnetic field.
Notice that since we are living in two dimensions the field strengthFµν has only one independent com-
ponent that corresponds to the electric field along the spatial direction,F 01 ≡ E (in two dimensions there
are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of the algebra of
γ-matrices

{γµ, γν} = 2ηµν with η =

(
1 0
0 −1

)
. (7.7)

In two dimensions the dimension of the representation of theγ-matrices is2[
2
2
] = 2. Here take

γ0 ≡ σ1 =

(
0 1
1 0

)
, γ1 ≡ iσ2 =

(
0 1

−1 0

)
. (7.8)

This is a chiral representation since the matrixγ5 is diagonal15

γ5 ≡ −γ0γ1 =
(

1 0
0 −1

)
. (7.9)

Writing the two-component spinorψ as

ψ =

(
u+
u−

)
(7.10)

and defining as usual the projectorsP± = 1
2(1±γ5)we find that the componentsu± of ψ are respectively

a right- and left-handed Weyl spinor in two dimensions.

Once we have a representation of theγ-matrices we can write the Dirac equation. Expressing it in
terms of the componentsu± of the Dirac spinor we find

(∂0 − ∂1)u+ = 0, (∂0 + ∂1)u− = 0. (7.11)

The general solution to these equations can immediately be written as

u+ = u+(x
0 + x1), u− = u−(x0 − x1). (7.12)

Henceu± are two wave packets moving along the spatial dimension respectively to the left(u+) and
to the right(u−). Notice that according to our convention the left-movingu+ is a right-handed spinor
(positive helicity) whereas the right-movingu− is a left-handed spinor (negative helicity).

If we want to interpret (7.11) as the wave equation for two-dimensional Weyl spinors we have the
following wave functions for free particles with well-defined momentumpµ = (E, p).

u
(E)
± (x0 ± x1) =

1√
L
e−iE(x0±x1) with p = ∓E. (7.13)

As is always the case with the Dirac equation we have both positive and negative energy solutions. For
u+, sinceE = −p, we see that the solutions with positive energy are those with negative momentum
p < 0, whereas the negative energy solutions are plane waves withp > 0. For the left-handed spinoru−
the situation is reversed. Besides, since the spatial direction is compact with lengthL the momentump
is quantized according to

p =
2πn

L
, n ∈ Z. (7.14)
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Fig. 11: Spectrum of the massless two-dimensional Dirac field

p

E E

p

0,+ 0,−

Fig. 12: Vacuum of the theory

The spectrum of the theory is represented in Fig. 11.

Once we have the spectrum of the theory the next step is to obtain the vacuum. As with the Dirac
equation in four dimensions we fill all the states withE ≤ 0 (Fig. 12). Exciting of a particle in the Dirac
sea produces a positive energy fermion plus a hole that is interpreted as an antiparticle. This gives us the
clue on how to quantize the theory. In the expansion of the operatoru± in terms of the modes (7.13) we
associate positive energy states with annihilation operators whereas the states with negative energy are

15In any even number of dimensionsγ5 is defined to satisfy the conditionsγ2
5 = 1 and{γ5, γµ} = 0.
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associated with creation operators for the corresponding antiparticle

u±(x) =
∑

E>0

[
a±(E)v

(E)
± (x) + b†±(E)v

(E)
± (x)∗

]
. (7.15)

The operatora±(E) acting on the vacuum|0,±〉 annihilates a particle with positive energyE and mo-
mentum∓E. In the same wayb†±(E) creates out of the vacuum an antiparticle with positive energy E
and spatial momentum∓E. In the Dirac sea picture the operatorb±(E)† is originally an annihilation
operator for a state of the sea with negative energy−E. As in the four-dimensional case the problem of
the negative energy states is solved by interpreting annihilation operators for negative energy states as
creation operators for the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion ofu± in Eq. (7.15) satisfy the usual algebra

{aλ(E), a†λ′(E
′)} = {bλ(E), b†λ′(E

′)} = δE,E′δλλ′ , (7.16)

where we have introduced the labelλ, λ′ = ±. Also,aλ(E), a†λ(E) anticommute withbλ′(E′), b†λ′(E′).

The Lagrangian of the theory

L = iu†+(∂0 + ∂1)u+ + iu†−(∂0 − ∂1)u− (7.17)

is invariant under both U(1)V , Eq. (7.2), and U(1)A, Eq. (7.3). The associated Noether currents are in
this case

Jµ
V =

(
u†+u+ + u†−u−
−u†+u+ + u†−u−

)
, Jµ

A =

(
u†+u+ − u†−u−
−u†+u+ − u†−u−

)
. (7.18)

The associated conserved charges are given, for the vector current by

QV =

∫ L

0
dx1

(
u†+u+ + u†−u−

)
(7.19)

and for the axial current

QA =

∫ L

0
dx1

(
u†+u+ − u†−u−

)
. (7.20)

Using the orthonormality relations for the modesv(E)
± (x)

∫ L

0
dx1 v

(E)
± (x) v

(E′)
± (x) = δE,E′ (7.21)

we find for the conserved charges:

QV =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E) + a†−(E)a−(E)− b†−(E)b−(E)

]
,

QA =
∑

E>0

[
a†+(E)a+(E)− b†+(E)b+(E)− a†−(E)a−(E) + b†−(E)b−(E)

]
. (7.22)

We see thatQV counts the net number (particles minus antiparticles) of positive helicity states plus the
net number of states with negative helicity. The axial charge, on the other hand, counts the net number of
positive helicity states minus the number of negative helicity ones. In the case of the vector current we
have subtracted a formally divergent vacuum contribution to the charge (the ‘charge of the Dirac sea’).

In the free theory there is of course no problem with the conservation of eitherQV orQA, since the
occupation numbers do not change. What we want to study is theeffect of coupling the theory to electric

58

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

58



p

E

Fig. 13: Effect of the electric field

field E . We work in the gaugeA0 = 0. Instead of solving the problem exactly we are going to simulate
the electric field by adiabatically varying in a long timeτ0 the vector potentialA1 from zero value to
−Eτ0. From our discussion in section 4.3 we know that the effect ofthe electromagnetic coupling in the
theory is a shift in the momentum according to

p −→ p− eA1, (7.23)

wheree is the charge of the fermions. Since we assumed that the vector potential varies adiabatically,
we can assume it to be approximately constant at each time.

Then, we have to understand what is the effect of (7.23) on thevacuum depicted in Fig. 12. What
we find is that the two branches move as shown in Fig. 13 resulting in some of the negative energy states
of thev+ branch acquiring positive energy while the same number of the empty positive energy states of
the other branchv− will become empty negative energy states. Physically this means that the external
electric fieldE creates a number of particle–antiparticle pairs out of the vacuum. Denoting byN ∼ eE
the number of such pairs created by the electric field per unittime, the final values of the chargesQV

andQA are

QA(τ0) = (N − 0) + (0−N) = 0,

QV (τ0) = (N − 0)− (0−N) = 2N. (7.24)

Therefore we conclude that the coupling to the electric fieldproduces a violation in the conservation of
the axial charge per unit time given by∆QA ∼ eE . This implies that

∂µJ
µ
A ∼ e~E , (7.25)

where we have restored~ to make clear that the violation in the conservation of the axial current is a
quantum effect. At the same time∆QV = 0 guarantees that the vector current remains conserved also
quantum mechanically,∂µJ

µ
V = 0.
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We have just studied a two-dimensional example of the Adler–Bell–Jackiw axial anomaly [28].
The heuristic analysis presented here can be made more precise by computing the quantity

Cµν = 〈0|T
[
Jµ
A(x)J

ν
V (0)

]
|0〉 =�Jµ

A
γ

. (7.26)

The anomaly is given then by∂µCµν . A careful calculation yields the numerical prefactor missing in
Eq. (7.25) leading to the result

∂µJ
µ
A =

e~
2π
ενσFνσ, (7.27)

with ε01 = −ε10 = 1.

The existence of an anomaly in the axial symmetry that we haveillustrated in two dimensions is
present in all even dimensional space-times. In particularin four dimensions the axial anomaly is given
by

∂µJ
µ
A = − e2

16π2
εµνσλFµνFσλ. (7.28)

This result has very important consequences in the physics of strong interactions as we will see in what
follows

7.2 Chiral symmetry in QCD

Our knowledge of the physics of strong interactions is basedon the theory of Quantum Chromodynamics
(QCD) [29]. This is a non-Abelian gauge theory with gauge group SU(Nc) coupled to a numberNf of
quarks. These are spin-1

2 particlesQi f labelled by two quantum numbers: colori = 1, . . . , Nc and flavor
f = 1, . . . , Nf . The interaction between them is mediated by theN2

c − 1 gauge bosons, the gluonsAa
µ,

a = 1, . . . , N2
c − 1. In the real worldNc = 3 and the number of flavors is six, corresponding to the

number of different quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom (b).

For the time being we are going to study a general theory of QCDwith Nc colors andNf flavors.
Also, for reasons that will be clear later we are going to workin the limit of vanishing quark masses,
mf → 0. In this cases the Lagrangian is given by

LQCD = −1

4
F a
µνF

a µν +

Nf∑

f=1

[
iQ

f
LD/ Q

f
L + iQ

f
RD/ Q

f
R

]
, (7.29)

where the subscriptsL andR indicate respectively left- and right-handed spinors,Qf
L,R ≡ P±Qf , and

the field strengthF a
µν and the covariant derivativeDµ are respectively defined in Eqs. (4.75) and (4.78).

Apart from the gauge symmetry, this Lagrangian is also invariant under a global U(Nf )L×U(Nf )R acting
on the flavor indices and defined by

U(Nf )L :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → Qf

R

U(Nf )R :





Qf
L → Qf

L

Qr
R → ∑

f ′(UR)ff ′Qf ′
R

(7.30)
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with UL, UR ∈ U(Nf ). Actually, since U(N )=U(1)×SU(N ) this global symmetry group can be written
as SU(Nf )L×SU(Nf )R×U(1)L×U(1)R. The Abelian subgroup U(1)L×U(1)R can now be decomposed
into their vector U(1)B and axial U(1)A subgroups defined by the transformations

U(1)B :





Qf
L → eiαQf

L

Qf
R → eiαQf

R

U(1)A :





Qf
L → eiαQf

L

Qf
R → e−iαQf

R

(7.31)

According to Noether’s theorem, associated with these two Abelian symmetries we have two conserved
currents:

Jµ
V =

Nf∑

f=1

Q
f
γµQf , Jµ

A =

Nf∑

f=1

Q
f
γµγ5Q

f . (7.32)

The conserved charge associated with vector chargeJµ
V is actually the baryon number defined as the

number of quarks minus number of antiquarks.

The non-Abelian part of the global symmetry group SU(Nf )L×SU(Nf )R can also be decomposed
into its vector and axial subgroups, SU(Nf )V × SU(Nf )A, defined by the following transformations of
the quarks fields

SU(Nf )V :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(UL)ff ′Qf ′
R

SU(Nf )A :





Qf
L → ∑

f ′(UL)ff ′Qf ′
L

Qf
R → ∑

f ′(U
−1
R )ff ′Qf ′

R

(7.33)

Again, the application of Noether’s theorem shows the existence of the following non-Abelian conserved
charges

JI µ
V ≡

Nf∑

f,f ′=1

Q
f
γµ(T I)ff ′Qf ′

, JI µ
A ≡

Nf∑

f,f ′=1

Q
f
γµγ5(T

I)ff ′Qf ′
. (7.34)

To summarize, we have shown that the initial chiral symmetryof the QCD Lagrangian (7.29) can be
decomposed into its chiral and vector subgroups according to

U(Nf )L × U(Nf )R = SU(Nf )V × SU(Nf )A × U(1)B × U(1)A. (7.35)

The question to address now is which part of the classical global symmetry is preserved by the quantum
theory.

As argued in Section 7.1, the conservation of the axial currents Jµ
A andJa µ

A can in principle be
spoiled due to the presence of an anomaly. In the case of the Abelian axial currentJµ

A the relevant
quantity is the correlation function

Cµνσ ≡ 〈0|T
[
Jµ
A(x)j

a ν
gauge(x

′)jb σgauge(0)
]
|0〉 =

Nf∑

f=1


�Jµ

A

Qf g

Qf

g

Qf



symmetric

(7.36)

Hereja µ
gauge is the non-Abelian conserved current coupling to the gluon field

ja µ
gauge ≡

Nf∑

f=1

Q
f
γµτaQf , (7.37)
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where, to avoid confusion with the generators of the global symmetry, we have denoted byτa the gen-
erators of the gauge group SU(Nc). The anomaly can be read now from∂µCµνσ. If we impose Bose
symmetry with respect to the interchange of the two outgoinggluons and gauge invariance of the whole
expression,∂νCµνσ = 0 = ∂σC

µνσ, we find that the axial Abelian global current has an anomaly given
by16

∂µJ
µ
A = −g

2Nf

32π2
εµνσλF a

µνF
a µν . (7.38)

In the case of the non-Abelian axial global symmetry SU(Nf )A the calculation of the anomaly
is made as above. The result, however, is quite different since in this case we conclude that the non-
Abelian axial currentJa µ

A is not anomalous. This can easily be seen by noticing that associated with
the axial current vertex we have a generatorT I of SU(Nf ), whereas for the two gluon vertices we have
the generatorsτa of the gauge group SU(Nc). Therefore, the triangle diagram is proportional to the
group-theoretic factor


�JIµ

A
Qf g

Qf

g

Qf



symmetric

∼ tr T I tr {τa, τ b} = 0 (7.39)

which vanishes because the generators of SU(Nf ) are traceless.

From here we would conclude that the non-Abelian axial symmetry SU(Nf )A is nonanomalous.
However, this is not the whole story since quarks are chargedparticles that also couple to photons. Hence
there is a second potential source of an anomaly coming from the the one-loop triangle diagram coupling
JI µ
A to two photons

〈0|T
[
JI µ
A (x)jνem(x

′)jσem(0)
]
|0〉 =

Nf∑

f=1


�JIµ

A
Qf γ

Qf

γ

Qf



symmetric

(7.40)

wherejµem is the electromagnetic current

jµem =

Nf∑

f=1

qf Q
f
γµQf , (7.41)

with qf the electric charge of thef -th quark flavor. A calculation of the diagram in (7.40) showsthe
existence of an Adler–Bell–Jackiw anomaly given by

∂µJ
I µ
A = − Nc

16π2




Nf∑

f=1

(T I)ff q
2
f


 εµνσλFµνFσλ, (7.42)

whereFµν is the field strength of the electromagnetic field coupling tothe quarks. The only chance for
the anomaly to cancel is that the factor between brackets in this equation be identically zero.

16The normalization of the generatorsT I of the global SU(Nf ) is given bytr (T IT J) = 1
2
δIJ .
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Before proceeding let us summarize the results found so far.Because of the presence of anomalies
the axial part of the global chiral symmetry SU(Nf )A and U(1)A are not realized quantum mechanically
in general. We found that U(1)A is always affected by an anomaly. However, because the right-hand
side of the anomaly equation (7.38) is a total derivative, the anomalous character ofJµ

A does not explain
the absence of U(1)A multiplets in the hadron spectrum, since a new current can beconstructed which
is conserved. In addition, the nonexistence of candidates for a Goldstone boson associated with the
right quantum numbers indicates that U(1)A is not spontaneously broken either, so it has be explicitly
broken somehow. This is the so-called U(1)-problem which was solved by ’t Hooft [30] who showed
how the contribution of quantum transitions between vacua with topologically nontrivial gauge field
configurations (instantons) results in an explicit breaking of this symmetry.

Owing to the dynamics of the SU(Nc) gauge theory the axial non-Abelian symmetry is sponta-
neously broken due to the presence at low energies of a vacuumexpectation value for the fermion bilinear

Q
f
Qf

〈0|Qf
Qf |0〉 6= 0 (No summation inf !). (7.43)

This nonvanishing vacuum expectation value for the quark bilinear actually breaks chiral invariance
spontaneously to the vector subgroup SU(Nf )V , so the only subgroup of the original global symmetry
that is realized by the full theory at low energy is

U(Nf )L × U(Nf )R −→ SU(Nf )V × U(1)B. (7.44)

Associated with this breaking, a Goldstone boson should appear with the quantum numbers of the broken
non-Abelian current. For example, in the case of QCD the Goldstone bosons associated with the sponta-
neously symmetry breaking induced by the vacuum expectation values〈uu〉, 〈dd〉 and〈(ud− du)〉 have
been identified as the pionsπ0, π±. These bosons are not exactly massless because of the nonvanishing
mass of theu andd quarks. Since the global chiral symmetry is already slightly broken by mass terms in
the Lagrangian, the associated Goldstone bosons also have masses although they are very light compared
to the masses of other hadrons.

In order to have a better physical understanding of the role of anomalies in the physics of strong
interactions we particularize now our analysis of the case of real QCD. Since theu andd quarks are
much lighter than the other four flavors, QCD at low energies can be well described by including only
these two flavors and ignoring heavier quarks. In this approximation, from our previous discussion we
know that the low-energy global symmetry of the theory is SU(2)V ×U(1)B , where now the vector group
SU(2)V is the well-known isospin symmetry. The axial U(1)A current is anomalous due to Eq. (7.38)
with Nf = 2. In the case of the non-Abelian axial symmetry SU(2)A, taking into account thatqu = 2

3e
andqd = −1

3e and that the three generators of SU(2) can be written in termsof the Pauli matrices as
TK = 1

2σ
K we find

∑

f=u,d

(T 1)ff q
2
f =

∑

f=u,d

(T 1)ff q
2
f = 0,

∑

f=u,d

(T 3)ff q
2
f =

e2

6
. (7.45)

ThereforeJ3µ
A is anomalous.

Physically, the anomaly in the axial currentJ3 µ
A has an important consequence. In the quark

model, the wave function of the neutral pionπ0 is given in terms of those for theu andd quark by

|π0〉 = 1√
2

(
|ū〉|u〉 − |d̄〉|d〉

)
. (7.46)

The isospin quantum numbers of|π0〉 are those of the generatorT 3. Actually the analogy goes further
since∂µJ

3 µ
A is the operator creating a pionπ0 out of the vacuum

|π0〉 ∼ ∂µJ
3µ
A |0〉. (7.47)
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This leads to the physical interpretation of the triangle diagram (7.40) withJ3 µ
A as the one-loop contri-

bution to the decay of a neutral pion into two photons

π0 −→ 2γ . (7.48)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [31] presented a calcula-
tion, using current algebra techniques, according to whichthe decay of the pion into two photons should
be suppressed. This however contradicted the experimentalevidence that showed the existence of such a
decay. The way out of this paradox, as pointed out in [28], is the axial anomaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with the regularization of divergences in
quantum field theory. A QED evaluation of the triangle diagram leads to a divergent integral that has to
be regularized somehow. It is in this process that the Adler–Bell–Jackiw axial anomaly appears resulting
in a nonvanishing value for theπ0 → 2γ amplitude17.

The existence of anomalies associated with global currentsdoes not necessarily mean difficulties
for the theory. On the contrary, as we saw in the case of the axial anomaly it is its existence that allows
for a solution of the Sutherland–Veltman paradox and an explanation of the electromagnetic decay of the
pion. The situation, however, is very different if we deal with local symmetries. A quantum mechanical
violation of gauge symmetry leads to all kinds of problems, from lack of renormalizability to nonde-
coupling of negative norm states. This is because the presence of an anomaly in the theory implies that
the Gauss law constraint~∇ · ~Ea = ρa cannot be consistently implemented in the quantum theory. As a
consequence states that classically are eliminated by the gauge symmetry become propagating fields in
the quantum theory, thus spoiling the consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left- and right-
handed fermions transform in different representations ofthe gauge group. Physically, the most inter-
esting example of such theories is the electroweak sector ofthe Standard Model where, for example,
left-handed fermions transform as doublets under SU(2) whereas right-handed fermions are singlets. On
the other hand, QCD is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

L = −1

4
F a µνF a

µν + i

N+∑

i=1

ψ
i
+D/

(+)ψi
+ + i

N−∑

j=1

ψ
j
−D/

(−)ψj
−, (7.49)

where the chiral fermionsψi
± transform according to the representationsτai,± of the gauge groupG

(a = 1, . . . ,dimG). The covariant derivativesD(±)
µ are then defined by

D(±)
µ ψi

± = ∂µψ
i
± + igAK

µ τ
K
i,±ψ

i
±. (7.50)

As for global symmetries, anomalies in the gauge symmetry appear in the triangle diagram with one
axial and two vector gauge current vertices

〈0|T
[
ja µ
A (x)jb νV (x′)jc σV (0)

]
|0〉 =


 jaµA jbνV

jcσV



symmetric

(7.51)

17An early computation of the triangle diagram for the electromagnetic decay of the pion was made by Steinberger [32].
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where gauge vector and axial currentsja µ
V , ja µ

A are given by

jaµV =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ +

N−∑

j=1

ψ
j
−τ

a
−γ

µψj
−,

jaµA =

N+∑

i=1

ψ
i
+τ

a
+γ

µψi
+ −

N−∑

i=1

ψ
j
−τ

a
−γ

µψj
−. (7.52)

Luckily, we do not have to compute the whole diagram in order to find an anomaly cancellation condition,
it is enough that we calculate the overall group theoreticalfactor. In the case of the diagram in Eq. (7.51)
for every fermion species running in the loop this factor is equal to

tr
[
τai,±{τ bi,±, τ ci,±}

]
, (7.53)

where the sign± corresponds respectively to the generators of the representation of the gauge group for
the left- and right-handed fermions. Hence the anomaly cancellation condition reads

N+∑

i=1

tr
[
τai,+{τ bi,+, τ ci,+}

]
−

N−∑

j=1

tr
[
τaj,−{τ bj,−, τ cj,−}

]
= 0. (7.54)

Knowing this we can proceed to check the anomaly cancellation in the Standard Model SU(3)×SU(2)×U(1).
Left-handed fermions (both leptons and quarks) transform as doublets with respect to the SU(2) factor
whereas the right-handed components are singlets. The charge with respect to the U(1) part, the hyper-
chargeY , is determined by the Gell-Mann–Nishijima formula

Q = T3 + Y, (7.55)

whereQ is the electric charge of the corresponding particle andT3 is the eigenvalue with respect to the
third generator of the SU(2) group in the corresponding representation:T3 = 1

2σ
3 for the doublets and

T3 = 0 for the singlets. For the first family of quarks (u, d) and leptons (e, νe) we have the following
field content

quarks:

(
uα

dα

)

L, 1
6

uα
R, 2

3
dα
R, 2

3

leptons:

(
νe
e

)

L,− 1
2

eR,−1 (7.56)

whereα = 1, 2, 3 labels the color quantum number and the subscript indicatesthe value of the weak
hyperchargeY . Denoting the representations of SU(3)×SU(2)×U(1) by (nc, nw)Y , with nc andnw
the representations of SU(3) and SU(2) respectively andY the hypercharge, the matter content of the
Standard Model consists of a three-family replication of the representations:

left-handed fermions: (3, 2)L1
6

(1, 2)L− 1
2

(7.57)

right-handed fermions: (3, 1)R2
3

(3, 1)R− 1
3

(1, 1)R−1.

In computing the triangle diagram we have 10 possibilities depending on which factor of the gauge group
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SU(3)×SU(2)×U(1) couples to each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2) U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to check that some of them do not give rise to anomalies. For example, the anomaly for
the SU(3)3 case cancels because left- and right-handed quarks transform in the same representation.
In the case of SU(2)3 the cancellation happens term by term because of the Pauli matrices identity
σaσb = δab + iεabcσc that leads to

tr
[
σa{σb, σc}

]
= 2 (trσa) δbc = 0. (7.58)

However, the hardest anomaly cancellation condition to satisfy is the one with three U(1)’s. In this case
the absence of anomalies within a single family is guaranteed by the nontrivial identity

∑

left

Y 3
+ −

∑

right

Y 3
− = 3× 2×

(
1

6

)3

+ 2×
(
−1

2

)3

− 3×
(
2

3

)3

− 3×
(
−1

3

)3

− (−1)3

=

(
−3

4

)
+

(
3

4

)
= 0. (7.59)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice that this result
holds even if a right-handed sterile neutrino is added sincesuch a particle is a singlet under the whole
Standard Model gauge group and therefore does not contribute to the triangle diagram. Therefore we see
how the matter content of the Standard Model conspires to yield a consistent quantum field theory.

In all our discussion of anomalies we considered the computation of one-loop diagrams only.
It may happen that higher loop orders impose additional conditions. Fortunately this is not so: the
Adler–Bardeen theorem [33] guarantees that the axial anomaly receives contributions only from one-
loop diagrams. Therefore, once anomalies are cancelled (ifpossible) at one-loop we know that there will
be no new conditions coming from higher-loop diagrams in perturbation theory.

The Adler–Bardeen theorem, however, only applies in perturbation theory. It is nonetheless possi-
ble that nonperturbative effects can result in the quantum violation of a gauge symmetry. This is precisely
the case pointed out by Witten [34] with respect to the SU(2) gauge symmetry of the Standard Model.
In this case the problem lies in the nontrivial topology of the gauge group SU(2). The invariance of the
theory with respect to gauge transformations which are not in the connected component of the identity
makes all correlation functions equal to zero. Only when thenumber of left-handed SU(2) fermion dou-
blets is even does gauge invariance allow for a nontrivial theory. It is again remarkable that the family
structure of the Standard Model makes this anomaly cancel

3×
(
u
d

)

L

+ 1×
(
νe
e

)

L

= 4 SU(2)-doublets, (7.60)

where the factor of 3 comes from the number of colors.
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8 Renormalization

8.1 Removing infinities

From its very early stages, quantum field theory was faced with infinities. They emerged in the calcula-
tion of most physical quantities, such as the correction to the charge of the electron due to the interactions
with the radiation field. The way these divergences were handled in the 1940s, starting with Kramers,
was physically very much in the spirit of the quantum theory emphasis in observable quantities: since
the observed magnitude of physical quantities (such as the charge of the electron) is finite, this number
should arise from the addition of a ‘bare’ (unobservable) value and the quantum corrections. The fact
that both of these quantities were divergent was not a problem physically, since only its finite sum was
an observable quantity. To make thing mathematically sound, the handling of infinities requires the in-
troduction of some regularization procedure which cuts thedivergent integrals off at some momentum
scaleΛ. Morally speaking, the physical value of an observableOphysical is given by

Ophysical = lim
Λ→∞

[O(Λ)bare +∆O(Λ)~] , (8.1)

where∆O(Λ)~ represents the regularized quantum corrections.

To make this qualitative discussion more precise we computethe corrections to the electric charge
in quantum electrodynamics. We consider the process of annihilation of an electron–positron pair to
create a muon–antimuon paire−e+ → µ+µ−. To lowest order in the electric chargee the only diagram
contributing is

!e− µ+

e+

γ

µ−

However, the corrections at ordere4 to this result requires the calculation of seven more diagrams

"e− µ+

e+ µ−

+#e− µ+

e+

µ−

+$µ+e−

µ−e+

+%e− µ+

e+ µ−

+&e− µ+

e+

µ−
+'µ+
e+

µ−
e−

+(µ+e+

µ−e−

In order to compute the renormalization of the charge we consider the first diagram which takes
into account the first correction to the propagator of the virtual photon interchanged between the pairs
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due to vacuum polarization. We begin by evaluating

) =
−iηµα
q2 + iǫ


*α β




−iηβν
q2 + iǫ

, (8.2)

where the diagram between brackets is given by

+α β ≡ Παβ(q) = i2(−ie)2(−1)

∫
d4k

(2π)4
Tr (/k +me)γ

α(/k + /q +me)γ
β

[k2 −m2
e + iǫ] [(k + q)2 −m2

e + iǫ]
. (8.3)

Physically this diagram includes the correction to the propagator due to the polarization of the vacuum,
i.e., the creation of virtual electron–positron pairs by the propagating photon. The momentumq is the
total momentum of the electron–positron pair in the intermediate channel.

It is instructive to look at this diagram from the point of view of perturbation theory in nonrelativis-
tic quantum mechanics. In each vertex the interaction consists of the annihilation (creation) of a photon
and the creation (annihilation) of an electron–positron pair. This can be implemented by the interaction
Hamiltonian

Hint = e

∫
d3xψγµψAµ. (8.4)

All fields inside the integral can be expressed in terms of thecorresponding creation-annihilation opera-
tors for photons, electrons and positrons. In quantum mechanics, the change in the wave function at first
order in the perturbationHint is given by

|γ, in〉 = |γ, in〉0 +
∑

n

〈n|Hint|γ, in〉0
Ein − En

|n〉 (8.5)

and similarly for |γ, out〉, where we have denoted symbolically by|n〉 all the possible states of the
electron–positron pair. Since these states are orthogonalto |γ, in〉0, |γ, out〉0, we find to ordere2

〈γ, in|γ′, out〉 = 0〈γ, in|γ′, out〉0 +
∑

n

0〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉0
(Ein − En)(Eout − En)

+O(e4). (8.6)

Hence, we see that the diagram of Eq. (8.2) really corresponds to the order-e2 correction to the photon
propagator〈γ, in|γ′, out〉

,γ γ′
−→ 0〈γ, in|γ′, out〉0

-γ γ′
−→

∑

n

〈γ, in|Hint|n〉 〈n|Hint|γ′, out〉
(Ein − En)(Eout −En)

. (8.7)
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Once we have understood the physical meaning of the Feynman diagram to be computed we
proceed to its evaluation. In principle there is no problem in computing the integral in Eq. (8.2) for
nonzero values of the electron mass. However, since here we are going to be mostly interested in seeing
how the divergence of the integral results in a scale-dependent renormalization of the electric charge, we
will set me = 0. This is something safe to do, since in the case of this diagram we are not inducing
new infrared divergences in taking the electron as massless. Doing someγ-matrices gymnastics it is not
complicated to show that the polarization tensorΠµν(q) defined in Eq. (8.3) can be written as

Πµν(q) =
(
q2ηµν − qµqν

)
Π(q2) (8.8)

with

Π(q2) =
4e2

3q2

∫
d4k

(2π)4
k2 + k · q

[k2 + iǫ] [(k + q)2 + iǫ]
. (8.9)

Although by naïve power counting we could conclude that the previous integral is quadratically diver-
gent, it can be seen that the quadratic divergence actually cancels leaving behind only a logarithmic one.
In order to handle this divergent integral we have to figure out some procedure to render it finite. This
can be done in several ways, but here we choose to cut the integrals off at a high energy scaleΛ, where
new physics might be at work,|p| < Λ. This gives the result

Π(q2) ≃ e2

12π2
log

(
q2

Λ2

)
+ finite terms. (8.10)

If we were to send the cutoff to infinityΛ → ∞ the divergence blows up and something has to be done
about it.

If we want to make sense out of this, we have to go back to the physical question that led us to
compute Eq. (8.2). Our primordial motivation was to computethe corrections to the annihilation of two
electrons into two muons. Including the correction to the propagator of the virtual photon we have

. =/ +0
= ηαβ (veγ

αue)
e2

4πq2

(
vµγ

βuµ

)
+ ηαβ (veγ

αue)
e2

4πq2
Π(q2)

(
vµγ

βuµ

)

= ηαβ (veγ
αue)

{
e2

4πq2

[
1 +

e2

12π2
log

(
q2

Λ2

)]}(
vµγ

βuµ

)
. (8.11)

Now let us imagine that we are performing ae− e+ → µ−µ+ with a centre-of-mass energyµ. From the
previous result we can identify the effective charge of the particles at this energy scalee(µ) as

1 = ηαβ (veγ
αue)

[
e(µ)2

4πq2

](
vµγ

βuµ

)
. (8.12)

This charge,e(µ), is the quantity that is physically measurable in our experiment. Now we can make
sense of the formally divergent result (8.11) by assuming that the charge appearing in the classical La-
grangian of QED is just a ‘bare’ value that depends on the scale Λ at which we cut off the theory,
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e ≡ e(Λ)bare. In order to reconcile (8.11) with the physical results (8.12) we must assume that the
dependence of the bare (unobservable) chargee(Λ)bare on the cutoffΛ is determined by the identity

e(µ)2 = e(Λ)2bare

[
1 +

e(Λ)2bare
12π2

log

(
µ2

Λ2

)]
. (8.13)

If we still insist in removing the cutoffΛ → ∞ we have to send the bare charge to zeroe(Λ)bare → 0
in such a way that the effective coupling has the finite value given by the experiment at the energy scale
µ. It is not a problem, however, that the bare charge is small for large values of the cutoff, since the
only measurable quantity is the effective charge that remains finite. Therefore all observable quantities
should be expressed in perturbation theory as a power seriesin the physical couplinge(µ)2 and not in
the unphysical bare couplinge(Λ)bare.

8.2 The beta-function and asymptotic freedom

We can look at the previous discussion, and in particular Eq.(8.13), from a different point of view. In
order to remove the ambiguities associated with infinities we have been forced to introduce a dependence
of the coupling constant on the energy scale at which a process takes place. From the expression of the
physical coupling in terms of the bare charge (8.13) we can actually eliminate the cutoffΛ, whose value
after all should not affect the value of physical quantities. Taking into account that we are working in
perturbation theory ine(µ)2, we can express the bare chargee(Λ)2bare in terms ofe(µ)2 as

e(Λ)2 = e(µ)2
[
1 +

e(µ)2

12π2
log

(
µ2

Λ2

)]
+O[e(µ)6]. (8.14)

This expression allows us to eliminate all dependence in thecutoff in the expression of the effective
charge at a scaleµ by replacinge(Λ)bare in Eq. (8.13) by the one computed using (8.14) at a given
reference energy scaleµ0

e(µ)2 = e(µ0)
2

[
1 +

e(µ0)
2

12π2
log

(
µ2

µ20

)]
. (8.15)

From this equation we can compute, at this order in perturbation theory, the effective value of the
coupling constant at an energyµ, once we know its value at some reference energy scaleµ0. In the
case of the electron charge we can use as a reference Thomson scattering at energies of the order of the
electron massme ≃ 0.5 MeV, where the value of the electron charge is given by the well-known value

e(me)
2 ≃ 1

137
. (8.16)

With this we can computee(µ)2 at any other energy scale applying Eq. (8.15), for example atthe electron
massµ = me ≃ 0.5MeV. However, in computing the electromagnetic coupling constant at any other
scale we must take into account the fact that other charged particles can run in the loop in Eq. (8.11).
Suppose, for example, that we want to calculate the fine structure constant at the mass of theZ0-boson
µ =MZ ≡ 92 GeV. Then we should include in Eq. (8.15) the effect of other fermionic Standard Model
fields with masses belowMZ . Doing this, we find18

e(MZ)
2 = e(me)

2

[
1 +

e(me)
2

12π2

(∑

i

q2i

)
log

(
M2

Z

m2
e

)]
, (8.17)

18In the first version of these notes the argument used to show the growing of the electromagnetic coupling constant could
have led to confusion to some readers. To avoid this potential problem we include in the equation for the running coupling
e(µ)2 the contribution of all fermions with masses belowMZ . We thank Lubos Motl for bringing this issue to our attention.
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whereqi is the charge in units of the electron charge of thei-th fermionic species running in the loop and
we sum over all fermions with masses below the mass of theZ0 boson. This expression shows how the
electromagnetic coupling grows with energy. However, in order to compare with the experimental value
of e(MZ)

2 it is not enough to include the effect of fermionic fields, since theW± bosons also can run
in the loop (MW < MZ ). Taking this into account, as well as threshold effects, the value of the electron
charge at the scaleMZ is found to be [35]

e(MZ)
2 ≃ 1

128.9
. (8.18)

This growing of the effective fine structure constant with energy can be understood heuristically
by remembering that the effect of the polarization of the vacuum shown in the diagram of Eq. (8.2)
amounts to the creation of a plethora of electron–positron pairs around the location of the charge. These
virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge and decrease its
value at long distances (i.e. lower energies).

The variation of the coupling constant with energy is usually encoded in quantum field theory in
thebeta functiondefined by

β(g) = µ
dg

dµ
. (8.19)

In the case of QED the beta function can be computed from Eq. (8.15) with the result

β(e)QED =
e3

12π2
. (8.20)

The fact that the coefficient of the leading term in the beta function is positiveβ0 ≡ 1
6π > 0 gives us

the overall behavior of the coupling as we change the scale. Equation (8.20) means that, if we start at an
energy where the electric coupling is small enough for our perturbative treatment to be valid, the effective
charge grows with the energy scale. This growing of the effective coupling constant with energy means
that QED is infrared safe, since the perturbative approximation gives better and better results as we go to
lower energies. Actually, because the electron is the lighter electrically charged particle and has a finite
nonvanishing mass, the running of the fine structure constant stops at the scaleme in the well-known
value 1

137 . Were other charged fermions with masses belowme present in Nature, the effective value of
the fine structure constant in the interaction between theseparticles would run further to lower values at
energies below the electron mass.

On the other hand, if we increase the energy scale,e(µ)2 grows until at some scale the coupling
is of order one and the perturbative approximation breaks down. In QED this is known as the problem
of the Landau pole but in fact it does not pose any serious threat to the reliability of QED perturbation
theory: a simple calculation shows that the energy scale at which the theory would become strongly
coupled isΛLandau ≃ 10277 GeV. However, we know that QED does not live that long! At muchlower
scales we expect electromagnetism to be unified with other interactions, and even if this is not the case
we will enter the uncharted territory of quantum gravity at energies of the order of1019 GeV.

So much for QED. The next question that one may ask at this stage is whether it is possible to
find quantum field theories with a behavior opposite to that ofQED, i.e., such that they become weakly
coupled at high energies. This is not a purely academic question. In the late 1960s a series of deep-
inelastic scattering experiments carried out at SLAC showed that the quarks behave essentially as free
particles inside hadrons. The apparent problem was that no theory was known at that time that would
become free at very short distances: the example set by QED seemed to be followed by all the theories
that were studied. This posed a very serious problem for quantum field theory as a way to describe
subnuclear physics, since it seemed that its predictive power was restricted to electrodynamics but failed
miserably when applied to describe strong interactions.
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Fig. 14: Beta function for a hypothetical theory with three fixed points g∗1 , g∗2 andg∗3 . A perturbative analysis
would capture only the regions shown in the boxes.

Nevertheless, this critical time for quantum field theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [36] and David Politzer [37] showed that non-Abelian gauge theories
can actually display the required behavior. For the QCD Lagrangian in Eq. (7.29) the beta function is
given by19

β(g) = − g3

16π2

[
11

3
Nc −

2

3
Nf

]
. (8.21)

In particular, for real QCD (NC = 3,Nf = 6) we haveβ(g) = − 7g3

16π2 < 0. This means that for a theory
that is weakly coupled at an energy scaleµ0 the coupling constant decreases as the energy increases
µ→ ∞. This explain the apparent freedom of quarks inside the hadrons: when the quarks are very close
together their effective color charge tends to zero. This phenomenon is calledasymptotic freedom.

Asymptotic free theories display a behavior that is opposite to that found above in QED. At high
energies their coupling constant approaches zero whereas at low energies they become strongly coupled
(infrared slavery). These features are at the heart of the success of QCD as a theory of strong interactions,
since this is exactly the type of behavior found in quarks: they are quasi-free particles inside the hadrons
but the interaction potential between them increases at large distances.

Although asymptotic free theories can be handled in the ultraviolet, they become extremely com-
plicated in the infrared. In the case of QCD it is still to be understood (at least analytically) how the
theory confines color charges and generates the spectrum of hadrons, as well as the breaking of the chiral
symmetry (7.43).

In general, the ultraviolet and infrared properties of a theory are controlled by the fixed points of
the beta function, i.e., those values of the coupling constant g for which it vanishes

β(g∗) = 0. (8.22)

Using perturbation theory we have seen that for both QED and QCD one of such fixed points occurs
at zero coupling,g∗ = 0. However, our analysis also showed that the two theories present radically

19The expression of the beta function of QCD was also known to ’tHooft [38]. There are even earlier computations in the
Russian literature [39].
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different behavior at high and low energies. From the point of view of the beta function, the difference
lies in the energy regime at which the coupling constant approaches its critical value. This is in fact
governed by the sign of the beta function around the criticalcoupling.

We have seen above that when the beta function is negative close to the fixed point (the case of
QCD) the coupling tends to its critical value,g∗ = 0, as the energy is increased. This means that the
critical point isultraviolet stable, i.e., it is an attractor as we evolve towards higher energies. If, on the
contrary, the beta function is positive (as happens in QED) the coupling constant approaches the critical
value as the energy decreases. This is the case of aninfrared stablefixed point.

This analysis that we have motivated with the examples of QEDand QCD is completely general
and can be carried out for any quantum field theory. In Fig. 14 we have represented the beta function for
a hypothetical theory with three fixed points located at couplings g∗1 , g∗2 andg∗3 . The arrows in the line
below the plot represent the evolution of the coupling constant as the energy increases. From the analysis
presented above we see thatg∗1 = 0 andg∗3 are ultraviolet stable fixed points, while the fixed pointg∗2 is
infrared stable.

In order to understand the high- and low-energy behavior of aquantum field theory it is then
crucial to know the structure of the beta functions associated with its couplings. This can be a very
difficult task, since perturbation theory only allows the study of the theory around ‘trivial’ fixed points,
i.e., those that occur at zero coupling like the case ofg∗1 in Fig. 14. On the other hand, any ‘nontrivial’
fixed point occurring in a theory (likeg∗2 andg∗3) cannot be captured in perturbation theory and requires
a full nonperturbative analysis.

The moral to be learned from our discussion above is that dealing with the ultraviolet divergences
in a quantum field theory has the consequence, among others, of introducing an energy dependence in
the measured value of the coupling constants of the theory (for example the electric charge in QED).
This happens even in the case of renormalizable theories without mass terms. These theories are scale
invariant at the classical level because the action does notcontain any dimensionful parameter. In this
case the running of the coupling constants can be seen as resulting from a quantum breaking of classical
scale invariance: different energy scales in the theory aredistinguished by different values of the coupling
constants. Remembering what we learned in Section 7, we conclude that classical scale invariance is an
anomalous symmetry. One heuristic way to see how the conformal anomaly comes about is to notice
that the regularization of an otherwise scale-invariant field theory requires the introduction of an energy
scale (e.g., a cutoff). This breaking of scale invariance cannot be restored after renormalization.

Nevertheless, scale invariance is not lost forever in the quantum theory. It is recovered at the
fixed points of the beta function where, by definition, the coupling does not run. To understand how
this happens we go back to a scale-invariant classical field theory whose fieldφ(x) transforms under
coordinate rescalings as

xµ −→ λxµ, φ(x) −→ λ−∆φ(λ−1x), (8.23)

where∆ is called the canonical scaling dimension of the field. An example of such a theory is a massless
φ4 theory in four dimensions

L =
1

2
∂µφ∂

µφ− g

4!
φ4, (8.24)

where the scalar field has canonical scaling dimension∆ = 1. The Lagrangian density transforms as

L −→ λ−4L[φ] (8.25)

and the classical action remains invariant20.
20In aD-dimensional theory the canonical scaling dimensions of the fields coincide with its engineering dimension:∆ =

D−2
2

for bosonic fields and∆ = D−1
2

for fermionic ones. For a Lagrangian with no dimensionful parameters classical scale
invariance follows then from dimensional analysis.
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We look at the free theoryg = 0 for a moment. Now there are no divergences and all correlation
functions can be exactly computed. In particular we consider the momentum spacen-point correlation
function

G0(p1, . . . , pn)(2π)
4δ(4)(p1 + . . . + pn)

=

∫
d4x1 . . . d

4xn e
ip1·x1+...+ipn·xn〈0|T

[
φ0(x1) . . . φ0(xn)

]
|0〉, (8.26)

where byφ0(x) we denote the free field operator. Applying the rescaling (8.23) we find the following
transformation for the correlation function

G0(p1, . . . , pn) −→ λ4(n−1)−n∆G0(λp1, . . . , λpn). (8.27)

For the free theory the only relevant correlation function is the two-point function, where we have (re-
member that we are dealing with a massless theory)

G0(p
2) =

i

p2
−→ λ2G0(λ

2p2) =
i

p2
. (8.28)

The transformation of any other correlation function follows from this result and Wick’s theorem, that
allows to write any the2n-correlation function as sum of products ofn 2-point correlation functions
(correlation functions with an odd number of fields are identically zero).

We turn to the interacting theory. Things now get much more complicated, since correlation
functions cannot be exactly computed in general. However, when the theory sits at the critical coupling
we can use a few useful facts. For example, since the criticaltheory is scale invariant, it should either
contain only massless one-particle states or have continuous spectrum. To keep the argument simple, we
consider the first possibility. Hence, the exact two-point function should have a pole atp2 = 0, and close
to this pole the correlation function has the form

G(p2;µ) ≈ iZ(µ)

p2
, (8.29)

whereZ(µ), called the field renormalization, depends on the scale. Theanomalous dimensionγ(g) is
then defined by the equation

γ(g) =
1

2
µ
d

dµ
logZ. (8.30)

This new function is the analog of the beta function (8.19) for the field renormalizationZ(µ). Moreover,
at the critical pointg(µ) = g∗ and the anomalous dimension is independent of the energy,γ∗ = γ(g∗).
In this case Eq. (8.30) can be integrated to give

Z(µ) = Z0

(
µ

µ0

)2γ∗

, (8.31)

whereZ0 andµ0 are some reference values. Then, we find that the two-point function at the critical point
is invariant under the rescaling

G(p2;µ) −→ λ2(1−γ∗)G(λ2p2;λµ). (8.32)

Here we have presented a rather sketchy and heuristic argument. A more thorough analysis (using
for example the Callan–Symanzik equation [1–10]) shows that at the critical point alln-point correlation
functions are invariant under the rescaling

G(p1, . . . , pn;µ) −→ λ4(n−1)−n(∆+γ∗)G(λp1, . . . , λpn;λµ). (8.33)
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Fig. 15: Systems of spins in a two-dimensional square lattice

Comparing (8.32) and (8.33) with (8.27) we see that this invariance is analogous to that of the free
(scale-invariant) theory. Now, however, the fields transform under rescalings with an anomalous scaling
dimension given by

∆anom = ∆+ γ∗, (8.34)

with ∆ the canonical scaling dimension of the corresponding field.This justifies the name given to the
functionγ(g) defined in Eq. (8.30). Notice, however, that strictly speakingγ(g) represents an anomalous
dimension for the theory only at the critical couplingg∗.

The previous discussion clarifies a little bit the high-energy properties of an asymptotically free
theory like QCD. The fact that the fixed point occurs at zero coupling might give the wrong impression
that the theory at the critical point is just the one obtainedby settingg = 0 in the action. Life, however,
is more complicated than that. What we have seen above shows that although the critical theory is a free
scale-invariant field theory, the fields have anomalous scaling dimensions which are different from the
ones of the ‘naive’ free theory. These anomalous dimensionscarry the dynamical information about the
high-energy behavior of the asymptotically free theory.

8.3 The renormalization group

In spite of its successes, the renormalization procedure presented above can be seen as some kind of pre-
scription or recipe to get rid of the divergences in an ordered way. This discomfort about renormalization
was expressed on occasion by comparing it with “sweeping theinfinities under the rug”. However, thanks
to Ken Wilson to a large extent [40], the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying the value of the
parameters that appear in the Lagrangian.

Statistical mechanics.Wilson’s ideas are both simple and profound and consist in thinking about
quantum field theory as the analog of a thermodynamical description of a statistical system. To be more
precise, let us consider an Ising spin system in a two-dimensional square lattice like the one depicted in
Fig 15. In terms of the spin variablessi = ±1

2 , wherei labels the lattice site, the Hamiltonian of the
system is given by

H = −J
∑

〈i,j〉
si sj, (8.35)

where〈i, j〉 indicates that the sum extends over nearest neighbors andJ is the coupling constant between
neighboring spins (here we consider that there is no external magnetic field). The starting point to study
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Fig. 16: Decimation of the spin lattice. Each block in the upper lattice is replaced by an effective spin computed
according to the rule (8.39). Notice also that the size of thelattice spacing is doubled in the process.

the statistical mechanics of this system is the partition function defined as

Z =
∑

{si}
e−βH , (8.36)

where the sum is over all possible configurations of the spinsandβ = 1
T is the inverse temperature.

For J > 0 the Ising model presents spontaneous magnetization below acritical temperatureTc, in any
dimension higher than one. Away from this temperature correlations between spins decay exponentially
at large distances

〈sisj〉 ∼ e
− |xij |

ξ , (8.37)

with |xij | the distance between the spins located in thei-th andj-th sites of the lattice. This expression
serves as a definition of the correlation lengthξ which sets the characteristic length scale at which spins
can influence each other by their interaction through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spin system. We can
capture the relevant physics by integrating out somehow thephysics at short scales. A way in which this
can be done was proposed by Leo Kadanoff [41] and consists in dividing our spin system in spin-blocks
like the ones shown in Fig. 16. Now we can construct another spin system where each spin-block of the
original lattice is replaced by an effective spin calculated according to some rule from the spins contained
in each blockBa

{si : i ∈ Ba} −→ s (1)
a . (8.38)

For example, we can define the effective spin associated withthe blockBa by taking the majority rule
with an additional prescription in case of a draw

s (1)
a =

1

2
sgn

(∑

i∈Ba

si

)
, (8.39)
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where we have used the sign function,sign(x) ≡ x
|x| , with the additional definitionsgn(0) = 1. This

procedure is called decimation and leads to a new spin systemwith a doubled lattice space.

The idea now is to rewrite the partition function (8.36) onlyin terms of the new effective spins
s

(1)
a . Then we start by splitting the sum over spin configurations into two nested sums, one over the

spin-blocks and a second one over the spins within each block

Z =
∑

{~s}
e−βH[si] =

∑

{~s (1)}

∑

{~s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si]. (8.40)

The interesting point now is that the sum over spins inside each block can be written as the exponential
of a new effective Hamiltonian depending only on the effective spins,H(1)[s

(1)
a ]

∑

{s∈Ba}
δ

[
s (1)
a − sign

(∑

i∈Ba

si

)]
e−βH[si] = e−βH(1)[s

(1)
a ]. (8.41)

The new Hamiltonian is of course more complicated

H(1) = −J (1)
∑

〈i,j〉
s
(1)
i s

(1)
j + . . . (8.42)

where the dots stand for other interaction terms between theeffective spin block. These new terms appear
because in the process of integrating out short distance physics we induce interactions between the new
effective degrees of freedom. For example the interaction between the spin-block variabless(1)i will in
general not be restricted to nearest neighbors in the new lattice. The important point is that we have
managed to rewrite the partition function solely in terms ofthis new (renormalized) spin variabless (1)

interacting through a new HamiltonianH(1)

Z =
∑

{s (1)}
e−βH(1)[s

(1)
a ]. (8.43)

Let us now think about the space of all possible Hamiltoniansfor our statistical system including
all kinds of possible couplings between the individual spins compatible with the symmetries of the sys-
tem. If we denote byR the decimation operation, our previous analysis shows thatR defines a map in
this space of Hamiltonians

R : H → H(1). (8.44)

At the same time the operationR replaces a lattice with spacinga by another one with double spacing
2a. As a consequence the correlation length in the new lattice measured in units of the lattice spacing is
divided by two,R : ξ → ξ

2 .

Now we can iterate the operationR an indefinite number of times. Eventually we might reach a
HamiltonianH⋆ that is not further modified by the operationR

H
R−→ H(1) R−→ H(2) R−→ . . .

R−→ H⋆. (8.45)

The fixed-point HamiltonianH⋆ is scale invariantbecause it does not change asR is performed. Notice
that because of this invariance the correlation length of the system at the fixed point does not change
underR. This fact is compatible with the transformationξ → ξ

2 only if ξ = 0 or ξ = ∞. Here we will
focus on the case of nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifyingthe values of the coupling constants
associated with all possible interaction terms between individual spins of the lattice. If we denote by
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Oa[si] these (possibly infinite) interaction terms, the most general Hamiltonian for the spin system under
study can be written as

H[si] =

∞∑

a=1

λaOa[si], (8.46)

whereλa ∈ R are the coupling constants for the corresponding operators. These constants can be thought
of as coordinates in the space of all Hamiltonians. Therefore the operationR defines a transformation in
the set of coupling constants

R : λa −→ λ(1)a . (8.47)

For example, in our case we started with a Hamiltonian in which only one of the coupling constants
is different from zero (sayλ1 = −J). As a result of the decimationλ1 ≡ −J → −J (1) while some
of the originally vanishing coupling constants will take a nonzero value. Of course, for the fixed point
Hamiltonian the coupling constants do not change under the scale transformationR.

Physically the transformationR integrates out short distance physics. The consequence forphysics
at long distances is that we have to replace our Hamiltonian by a new one with different values for the
coupling constants. That is, our ignorance of the details ofthe physics going on at short distances results
in a renormalizationof the coupling constants of the Hamiltonian that describesthe long range physical
processes. It is important to stress that althoughR is sometimes called a renormalization group trans-
formation, in fact this is a misnomer. Transformations between Hamiltonians defined byR do not form
a group: since these transformations proceed by integrating out degrees of freedom at short scales they
cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations withξ = ∞
are associated with phase transitions. From our previous discussion we can conclude that the space
of Hamiltonians is divided into regions corresponding to the basins of attraction of the different fixed
points. We can ask ourselves now about the stability of thosefixed points. Suppose we have a statistical
system described by a fixed-point HamiltonianH⋆ and we perturb it by changing the coupling constant
associated with an interaction termO. This is equivalent to replacingH⋆ by the perturbed Hamiltonian

H = H⋆ + δλO, (8.48)

whereδλ is the perturbation of the coupling constant correspondingto O (we can also consider pertur-
bations in more than one coupling constant). At the same timethinking of theλa’s as coordinates in the
space of all Hamiltonians, this corresponds to moving slightly away from the position of the fixed point.

The question to decide now is in which direction the renormalization group flow will take the
perturbed system. Working at first order inδλ there are three possibilities:

– The renormalization group flow takes the system back to the fixed point. In this case the corre-
sponding interactionO is calledirrelevant.

– R takes the system away from the fixed point. If this is what happens the interaction is called
relevant.

– It is possible that the perturbation actually does not takethe system away from the fixed point at
first order inδλ. In this case the interaction is said to bemarginal and it is necessary to go to
higher orders inδλ in order to decide whether the system moves towards or away from the fixed
point, or whether we have a family of fixed points.

Therefore we can picture the action of the renormalization group transformation as a flow in the
space of coupling constants. In Fig. 17 we have depicted an example of such a flow in the case of a
system with two coupling constantsλ1 andλ2. In this example we find two fixed points, one at the
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Fig. 17: Example of a renormalization group flow

originO and another atF for a finite value of the couplings. The arrows indicate the direction in which
the renormalization group flow acts. The free theory atλ1 = λ2 = 0 is a stable fixed point since any
perturbationδλ1, δλ2 > 0 makes the theory flow back to the free theory at long distances. On the
other hand, the fixed pointF is stable with respect to certain types of perturbation (along the line with
incoming arrows) whereas for any other perturbations the system flows either to the free theory at the
origin or to a theory with infinite values for the couplings.

Quantum field theory. Let us see now how these ideas of the renormalization group apply to
Field Theory. Let us begin with a quantum field theory defined by the Lagrangian

L[φa] = L0[φa] +
∑

i

giOi[φa], (8.49)

whereL0[φa] is the kinetic part of the Lagrangian andgi are the coupling constants associated with the
operatorsOi[φa]. In order to make sense of the quantum theory we introduce a cutoff in momentaΛ. In
principle we include all operatorsOi compatible with the symmetries of the theory.

In Section 8.2 we saw how in the case of QED and QCD, the value ofthe coupling constant
changed with the scale from its value at the scaleΛ. We can understand now this behavior along the lines
of the analysis presented above for the Ising model. If we would like to compute the effective dynamics
of the theory at an energy scaleµ < Λ we only have to integrate out all physical models with energies
between the cutoffΛ and the scale of interestµ. This is analogous to what we did in the Ising model by
replacing the original spins by the spin block. In the case offield theory the effective actionS[φa, µ] at
scaleµ can be written in the language of functional integration as

eiS[φ
′
a,µ] =

∫

µ<p<Λ

∏

a

Dφa eiS[φa,Λ]. (8.50)

HereS[φa,Λ] is the action at the cutoff scale

S[φa,Λ] =

∫
d4x

{
L0[φa] +

∑

i

gi(Λ)Oi[φa]

}
(8.51)

and the functional integral in Eq. (8.50) is carried out onlyover the field modes with momenta in the
rangeµ < p < Λ. The action resulting from integrating out the physics at the intermediate scales
betweenΛ andµ depends not on the original field variableφa but on some renormalized fieldφ′a. At
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the same time the couplingsgi(µ) differ from their values at the cutoff scalegi(Λ). This is analogous to
what we learned in the Ising model: by integrating out short distance physics we ended up with a new
Hamiltonian depending on renormalized effective spin variables and with renormalized values for the
coupling constants. Therefore the resulting effective action at scaleµ can be written as

S[φ′a, µ] =
∫
d4x

{
L0[φ

′
a] +

∑

i

gi(µ)Oi[φ
′
a]

}
. (8.52)

This Wilsonian interpretation of renormalization sheds light on what in Section 8.1 might have looked
just a smart way to get rid of the infinities. The running of thecoupling constant with the energy scale
can be understood now as a way of incorporating into an effective action at scaleµ the effects of field
excitations at higher energiesE > µ.

As in statistical mechanics there are also quantum field theories that are fixed points of the renor-
malization group flow, i.e., whose coupling constants do notchange with the scale. We have encountered
them already in Section 8.2 when studying the properties of the beta function. The most trivial example
of such theories are massless free quantum field theories, but there are also examples of four-dimensional
interacting quantum field theories which are scale invariant. Again we can ask the question of what hap-
pens when a scale-invariant theory is perturbed with some operator. In general the perturbed theory is not
scale invariant anymore but we may wonder whether the perturbed theory flows at low energies towards
or away from the theory at the fixed point.

In quantum field theory this can be decided by looking at the canonical dimensiond[O] of the
operatorO[φa] used to perturb the theory at the fixed point. In four dimensions the three possibilities are
defined by:

– d[O] > 4: irrelevant perturbation. The running of the coupling constants takes the theory back to
the fixed point.

– d[O] < 4: relevant perturbation. At low energies the theory flows away from the scale-invariant
theory.

– d[O] = 4: marginal deformation. The direction of the flow cannot be decided only on dimensional
grounds.

As an example, let us consider first a massless fermion theoryperturbed by a four-fermion inter-
action term

L = iψ∂/ψ − 1

M2
(ψψ)2. (8.53)

This is indeed a perturbation by an irrelevant operator, since in four dimensions[ψ] = 3
2 . Interactions

generated by the extra term are suppressed at low energies since typically their effects are weighted by
the dimensionless factorE

2

M2 , whereE is the energy scale of the process. This means that as we try
to capture the relevant physics at lower and lower energies the effect of the perturbation is weaker and
weaker rendering in the infrared limitE → 0 again a free theory. Hence, the irrelevant perturbation in
(8.53) makes the theory flow back to the fixed point.

On the other hand, relevant operators dominate the physics at low energies. This is the case, for
example, of a mass term. As we lower the energy the mass becomes more important and once the energy
goes below the mass of the field its dynamics is completely dominated by the mass term. This is, for
example, how Fermi’s theory of weak interactions emerges from the Standard Model at energies below
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the mass of theW± boson

2u e+

d

W+

νe
=⇒3u

e+

d

νe

At energies belowMW = 80.4 GeV the dynamics of theW+ boson is dominated by its mass term and
therefore becomes nonpropagating, giving rise to the effective four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators dominate the dynamics
in the infrared, taking the theory away from the fixed point, irrelevant perturbations become suppressed
in the same limit. Finally we consider the effect of marginaloperators. As an example we take the
interaction term in massless QED,O = ψγµψAµ. Taking into account that ind = 4 the dimension of
the electromagnetic potential is[Aµ] = 1, the operatorO is a marginal perturbation. In order to decide
whether the fixed-point theory

L0 = −1

4
FµνF

µν + iψD/ ψ (8.54)

is restored at low energies or not, we need to study the perturbed theory in more detail. This we have
done in Section 8.1 where we learned that the effective coupling in QED decreases at low energies. Then
we conclude that the perturbed theory flows towards the fixed point in the infrared.

As an example of a marginal operator with the opposite behavior we can write the Lagrangian for
a SU(Nc) gauge theory,L = −1

4F
a
µνF

a µν , as

L = −1

4

(
∂µA

a
ν − ∂νA

a
µ

)
(∂µAa ν − ∂νAaµ)− 4gfabcAa

µA
b
ν ∂

µAc ν

+ g2fabcfadeAb
µA

c
νA

dµAe ν ≡ L0 +Og, (8.55)

i.e., a marginal perturbation of the free theory described by L0, which is obviously a fixed point under
renormalization group transformations. Unlike the case ofQED we know that the full theory is asymp-
totically free, so the coupling constant grows at low energies. This implies that the operatorOg becomes
more and more important in the infrared and therefore the theory flows away the fixed point in this limit.

It is very important to notice here that in the Wilsonian viewthe cutoff is not necessarily regarded
as just some artifact to remove infinities but actually has a physical origin. For example, in the case of
Fermi’s theory ofβ-decay there is a natural cutoffΛ = MW at which the theory has to be replaced by
the Standard Model. In the case of the Standard Model itself the cutoff can be taken at Planck scale
Λ ≃ 1019 GeV or the Grand Unification scaleΛ ≃ 1016 GeV, where new degrees of freedom are
expected to become relevant. The cutoff serves the purpose of cloaking the range of energies at which
new physics has to be taken into account.

Provided that in the Wilsonian approach the quantum theory is always defined with a physical
cutoff, there is no fundamental difference between renormalizable and nonrenormalizable theories. Ac-
tually, a renormalizable field theory, like the Standard Model, can generate nonrenormalizable operators
at low energies such as the effective four-fermion interaction of Fermi’s theory. They are not sources
of any trouble if we are interested in the physics at scales much below the cutoff,E ≪ Λ, since their
contribution to the amplitudes will be suppressed by powersof E/Λ.

9 Special topics

9.1 Creation of particles by classical fields

Particle creation by a classical source.In a free quantum field theory the total number of particles
contained in a given state of the field is a conserved quantity. For example, in the case of the quantum

81

INTRODUCTORY LECTURES ON QUANTUM FIELD THEORY

81



scalar field studied in Section 3 the number operator commutes with the Hamiltonian

n̂ ≡
∫

d3k

(2π)3
α†(~k)α(~k), [Ĥ, n̂] = 0. (9.1)

This means that any states with a well-defined number of particle excitations will preserve this number
at all times. The situation, however, changes as soon as interactions are introduced, since in this case
particles can be created and/or destroyed as a result of the dynamics.

Another case in which the number of particles might change isif the quantum theory is coupled to a
classical source. The archetypical example of such a situation is the Schwinger effect, in which a classical
strong electric field produces the creation of electron–positron pairs out of the vacuum. However, before
plunging into this more involved situation we can illustrate the relevant physics involved in the creation
of particles by classical sources with the help of the simplest example: a free scalar field theory coupled
to a classical external sourceJ(x). The action for such a theory can be written as

S =

∫
d4x

[
1

2
∂µφ(x)∂

µφ(x)− m2

2
φ(x)2 + J(x)φ(x)

]
, (9.2)

whereJ(x) is a real function of the coordinates. Its identification with a classical source is obvious once
we calculate the equations of motion

(
∇2 +m2

)
φ(x) = J(x). (9.3)

Our plan is to quantize this theory but, unlike the case analysed in Section 3, now the presence of the
sourceJ(x) makes the situation a bit more involved. The general solution to the equations of motion can
be written in terms of the retarded Green function for the Klein–Gordon equation as

φ(x) = φ0(x) + i

∫
d4x′GR(x− x′)J(x′), (9.4)

whereφ0(x) is a general solution to the homogeneous equation and

GR(t, ~x) =

∫
d4k

(2π)4
i

k2 −m2
e−ik·x = i θ(t)

∫
d3k

(2π)3
1

2ωk

(
e−iωkt+~k·~x − eiωkt−i~p·~x

)
, (9.5)

with θ(x) the Heaviside step function. The integration contour to evaluate the integral overp0 surrounds
the poles atp0 = ±ωk from above. SinceGR(t, ~x) = 0 for t < 0, the functionφ0(x) corresponds to the
solution of the field equation att→ −∞, before the interaction with the external source21.

To make the argument simpler we assume thatJ(x) is switched on att = 0, and only lasts for a
time τ , that is

J(t, ~x) = 0 if t < 0 or t > τ. (9.6)

We are interested in a solution of (9.3) for times after the external source has been switched off,t > τ .
In this case the expression (9.5) can be written in terms of the Fourier modes̃J(ω,~k) of the source as

φ(t, ~x) = φ0(x) + i

∫
d3k

(2π)3
1

2ωk

[
J̃(ωk, ~k)e

−iωkt+i~k·~x − J̃(ωk, ~k)
∗eiωkt−i~k·~x

]
. (9.7)

On the other hand, the general solutionφ0(x) has already been computed in Eq. (3.53). Combining this
result with Eq. (9.7) we find the following expression for thelate time general solution to the Klein–
Gordon equation in the presence of the source

φ(t, x) =

∫
d3k

(2π)3
1√
2ωk

{[
α(~k) +

i√
2ωk

J̃(ωk, ~k)

]
e−iωkt+i~k·~x

21We could have taken instead the advanced propagatorGA(x), in which caseφ0(x) would correspond to the solution to the
equation at large times, after the interaction withJ(x).
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+

[
α∗(~k)− i√

2ωk
J̃(ωk, ~k)

∗
]
eiωkt−i~k·~x

}
. (9.8)

We should not forget that this is a solution valid for timest > τ , i.e., once the external source has been
disconnected. On the other hand, fort < 0 we find from Eqs. (9.4) and (9.5) that the general solution is
given by Eq. (3.53).

Now we can proceed to quantize the theory. The conjugate momentumπ(x) = ∂0φ(x) can be
computed from Eqs. (3.53) and (9.8). Imposing the canonicalequal time commutation relations (3.50)
we find thatα(~k), α†(~k) satisfy the creation–annihilation algebra (3.27). From our previous calculation
we find that fort > τ the expansion of the operatorφ(x) in terms of the creation–annihilation operators
α(~k), α†(~k) can be obtained from the one fort < 0 by the replacement

α(~k) −→ β(~k) ≡ α(~k) +
i√
2ωk

J̃(ωk, ~k),

α†(~k) −→ β†(~k) ≡ α†(~k)− i√
2ωk

J̃(ωk, ~k)
∗. (9.9)

Actually, sinceJ̃(ωk, ~k) is ac-number, the operatorsβ(~k), β†(~k) satisfy the same algebra asα(~k), α†(~k)
and therefore can be interpreted as well as a set of creation–annihilation operators. This means that we
can define two vacuum states,|0−〉, |0+〉 associated with both sets of operators

α(~k)|0−〉 = 0

β(~k)|0+〉 = 0



 ∀ ~k. (9.10)

For an observer att < 0, α(~k) andα(~k) are the natural set of creation–annihilation operators
in terms of which to expand the field operatorφ(x). After the usual zero-point energy subtraction the
Hamiltonian is given by

Ĥ(−) =

∫
d3k ωk α

†(~k)α(~k) (9.11)

and the ground state of the spectrum for this observer is the vacuum|0−〉. At the same time, a second
observer att > τ will also see a free scalar quantum field (the source has been switched off att = τ ) and
consequently will expandφ in terms of the second set of creation–annihilation operatorsβ(~k), β†(~k). In
terms of these operators the Hamiltonian is written as

Ĥ(+) =

∫
d3k ωk β

†(~k)β(~k). (9.12)

Then for this late-time observer the ground state of the Hamiltonian is the second vacuum state|0+〉.
In our analysis we have been working in the Heisenberg picture, where states are time-independent

and the time dependence comes in the operators. Therefore the states of the theory are globally defined.
Suppose now that the system is in the ‘in’ ground state|0−〉. An observer att < 0 will find that there are
no particles

n̂(−)|0−〉 = 0. (9.13)

However the late-time observer will find that the state|0−〉 contains an average number of particles given
by

〈0−|n̂(+)|0−〉 =
∫

d3k

(2π)3
1

2ωk

∣∣∣J̃(ωk, ~k)
∣∣∣
2
. (9.14)
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Fig. 18: Pair creation by an electric field in the Dirac sea picture

Moreover, |0−〉 is no longer the ground state for the ‘out’ observer. On the contrary, this state has a
vacuum expectation value for̂H(+)

〈0−|Ĥ(+)|0−〉 =
1

2

∫
d3k

(2π)3

∣∣∣J̃(ωk, ~k)
∣∣∣
2
. (9.15)

The key to understand what is going on here lies in the fact that the external source breaks the
invariance of the theory under space-time translations. Inthe particular case we have studied here where
J(x) has support over a finite time interval0 < t < τ , this implies that the vacuum is not invariant
under time translations, so observers at different times will make different choices of vacuum that will
not necessarily agree with each other. This is clear in our example. An observer int < τ will choose the
vacuum to be the lowest energy state of her Hamiltonian,|0−〉. On the other hand, the second observer
at late timest > τ will naturally choose|0+〉 as the vacuum. However, for this second observer, the
state|0−〉 is not the vacuum of his Hamiltonian, but actually an excitedstate that is a superposition of
states with a well-defined number of particles. In this senseit can be said that the external source has the
effect of creating particles out of the ‘in’ vacuum. Besides, this breaking of time translation invariance
produces a violation in the energy conservation as we see from Eq. (9.15). Particles are actually created
from the energy pumped into the system by the external source.

The Schwinger effect.A classical example of creation of particles by an external field was pointed
out by Schwinger [42] and consists of the creation of electron–positron pairs by a strong electric field. In
order to illustrate this effect we are going to follow a heuristic argument based on the Dirac sea picture
and the WKB approximation.

In the absence of an electric field the vacuum state of a spin-1
2 field is constructed by filling all the

negative energy states as depicted in Fig. 2. Let us now connect a constant electric field~E = −E~ux in
the range0 < x < L created by an electrostatic potential

V (~r) =





0 x < 0
E(x− x0) 0 < x < L

EL x > L
. (9.16)

After the field has been switched on, the Dirac sea looks like that in Fig. 18. In particular we find that if
EL > 2m there are negative energy states atx > L with the same energy as the positive energy states in
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the regionx < 0. Therefore it is possible for an electron filling a negative energy state with energy close
to −2m to tunnel through the forbidden region into a positive energy state. The interpretation of such a
process is the production of an electron–positron pair out of the electric field.

We can compute the rate at which such pairs are produced by using the WKB approximation.
Focusing for simplicity on an electron on top of the Fermi surface nearx = L with energyE0, the
transmission coefficient in this approximation is given by22

TWKB = exp

[
−2

∫ 1
eE

“

E0+
√

m2+~p 2
T

”

1
eE

“

E0−
√

m2+~p 2
T

”

dx

√
m2 − [E0 − eE(x− x0)]

2 + ~p 2
T

]

= exp
[
− π

eE
(
~p 2
T +m2

)]
, (9.17)

wherep2T ≡ p2y + p2z. This gives the transition probability per unit time and perunit cross sectiondydz
for an electron in the Dirac sea with transverse momentum~pT and energyE0. To get the total probability
per unit time and per unit volume we have to integrate over allpossible values of~pT andE0. Actually,
in the case of the energy, because of the relation betweenE0 and the coordinatex at which the particle
penetrates into the barrier we can writedE0

2π = eE
2πdx and the total probability per unit time and per unit

volume for the creation of a pair is given by

W = 2

(
eE
2π

)∫
d2pT
(2π)2

e−
π
eE (~p

2
T +m2) =

e2E2

4π3
e−

π m2

eE , (9.18)

where the factor of2 accounts for the two polarizations of the electron.

Then production of electron–positron pairs is exponentially suppressed and is only sizeable for
strong electric fields. To estimate its order of magnitude itis useful to restore the powers ofc and~ in
(9.18)

W =
e2E2

4π3c~2
e−

π m2c3

~eE (9.19)

The exponential suppression of the pair production disappears when the electric field reaches the critical
valueEcrit at which the exponent is of order one

Ecrit =
m2c3

~e
≃ 1.3× 1016 Vcm−1. (9.20)

This is indeed a very strong field which is extremely difficultto produce. A similar effect, however,
takes place also in a time-varying electric field [43] and there is the hope that pair production could be
observed in the presence of the alternating electric field produced by a laser.

The heuristic derivation that we followed here can be made more precise in QED. There the decay
of the vacuum into electron–positron pairs can be computed from the imaginary part of the effective
actionΓ[Aµ] in the presence of a classical gauge potentialAµ

iΓ[Aµ] ≡4+5 +6 + . . .

= log det

[
1− ie/A

1

i∂/ −m

]
. (9.21)

22Notice that the electron satisfies the relativistic dispersion relationE =
p

~p 2 +m2+V and therefore−p2x = m2− (E−
V )2 + ~p 2

T . The integration limits are set by those values ofx at whichpx = 0.
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This determinant can be computed using the standard heat kernel techniques. The probability of pair
production is proportional to the imaginary part ofiΓ[Aµ] and gives

W =
e2E2

4π3

∞∑

n=1

1

n2
e−nπ m2

eE . (9.22)

Our simple argument based on tunneling in the Dirac sea gave only the leading term of Schwinger’s result
(9.22). The remaining terms can be also captured in the WKB approximation by taking into account the
probability of production of several pairs, i.e., the tunneling of more than one electron through the barrier.

Here we have illustrated the creation of particles by semiclassical sources in quantum field theory
using simple examples. Nevertheless, what we learned has important applications to the study of quan-
tum fields in curved backgrounds. In quantum field theory in Minkowski space-time the vacuum state
is invariant under the Poincaré group and this, together with the covariance of the theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles contained in a quan-
tum state. The breaking of such invariance, as happened in the case of coupling to a time-varying source
analysed above, implies that it is not possible anymore to define a state which would be recognized as
the vacuum by all observers.

This is precisely the situation when fields are quantized on curved backgrounds. In particular, if
the background is time-dependent (as happens in a cosmological setup or for a collapsing star) different
observers will identify different vacuum states. As a consequence what one observer calls the vacuum
will be full of particles for a different observer. This is precisely what is behind the phenomenon of
Hawking radiation [44]. The emission of particles by a physical black hole formed from gravitational
collapse of a star is the consequence of the fact that the vacuum state in the asymptotic past contains
particles for an observer in the asymptotic future. As a consequence, a detector located far away from
the black hole detects a stream of thermal radiation with temperature

THawking =
~c3

8πGN kM
(9.23)

whereM is the mass of the black hole,GN is Newton’s constant andk is Boltzmann’s constant. There
are several ways in which these results can be obtained. A more heuristic way is perhaps to think of this
particle creation as resulting from quantum tunneling of particles across the potential barrier posed by
gravity [45].

9.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum field theory
is that our knowledge of the fundamental interactions in Nature is based on the idea of symmetry, and
in particular gauge symmetry. The Lagrangian of the Standard Model can be written just including all
possible renormalizable terms (i.e., with canonical dimension smaller o equal to 4) compatible with the
gauge symmetry SU(3)×SU(2)×U(1) and Poincaré invariance. All attempts to go beyond start with the
question of how to extend the symmetries of the Standard Model.

As explained in Section 5.1, in a quantum field theoretical description of the interaction of elemen-
tary particles the basic observable quantity to compute is the scattering orS-matrix giving the probability
amplitude for the scattering of a number of incoming particles with a certain momentum into some final
products

A(in −→ out) = 〈~p1′, . . . ;out|~p1, . . . ; in〉. (9.24)

An explicit symmetry of the theory has to be necessarily a symmetry of theS-matrix. Hence it is fair to
ask what is the largest symmetry of theS-matrix.
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Let us ask this question in the simple case of the scattering of two particles with four-momentap1
andp2 in thet-channel

7p1p2

p′1

p′2

We will make the usual assumptions regarding positivity of the energy and analyticity. Invariance of the

theory under the Poincaré group implies that the amplitude can only depend on the scattering angleϑ
through

t = (p′1 − p1)
2 = 2

(
m2

1 − p1 · p′1
)
= 2

(
m2

1 − E1E
′
1 + |~p1||~p1′| cos ϑ

)
. (9.25)

If there would be any extra bosonic symmetry of the theory it would restrict the scattering angle to a set
of discrete values. In this case theS-matrix cannot be analytic since it would vanish everywhereexcept
for the discrete values selected by the extra symmetry.

Actually, the only way to extend the symmetry of the theory without renouncing the analyticity of
the scattering amplitudes is to introduce ‘fermionic’ symmetries, i.e., symmetries whose generators are
anticommuting objects [46]. This means that in addition to the generators of the Poincaré group23 Pµ,
Mµν and the ones for the internal gauge symmetriesG, we can introduce a number of fermionic gen-
eratorsQI

a, Qȧ I (I = 1, . . . ,N ), whereQȧ I = (QI
a)

†. The most general algebra that these generators
satisfy is theN -extended supersymmetry algebra [47]

{QI
a, Qḃ J} = 2σµ

aḃ
Pµδ

I
J ,

{QI
a, Q

J
b } = 2εabZIJ , (9.26)

{QI
ȧ, Q

J
ḃ } = −2εȧḃZ

IJ
, (9.27)

whereZIJ ∈ C commute with any other generator and satisfyZIJ = −ZJI . Besides we have the
commutators that determine the Poincaré transformations of the fermionic generatorsQI

a,Qȧ J

[QI
a, P

µ] = [Qȧ I , P
µ] = 0,

[QI
a,M

µν ] =
1

2
(σµν) b

a Q
I
b , (9.28)

[Qa I ,M
µν ] = −1

2
(σµν) ḃ

ȧ Qḃ I ,

whereσ0i = −iσi, σij = εijkσk andσµν = (σµν)†. These identities simply mean thatQI
a, Qȧ J

transform respectively in the(12 ,0) and(0, 12) representations of the Lorentz group.

We know that the presence of a global symmetry in a theory implies that the spectrum can be
classified in multiplets with respect to that symmetry. In the case of supersymmetry start with the case
caseN = 1 in which there is a single pair of superchargesQa,Qȧ satisfying the algebra

{Qa, Qḃ} = 2σµ
aḃ
Pµ, {Qa, Qb} = {Qȧ, Qḃ} = 0. (9.29)

Notice that in theN = 1 case there is no possibility of having central charges.

We study now the representations of the supersymmetry algebra (9.29), starting with the massless
case. Given a state|k〉 satisfyingk2 = 0, we can always find a reference frame where the four-vectorkµ

23The generatorsMµν are related with the ones for boost and rotations introducedin Section 4.1 byJ i ≡ M0i, M i =
1
2
εijkM jk. In this section we also use the ‘dotted spinor’ notation, inwhich spinors in the(1

2
,0) and(0, 1

2
) representations of

the Lorentz group are indicated respectively by undotted (a, b, . . .) and dotted (̇a, ḃ, . . .) indices.
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takes the formkµ = (E, 0, 0, E). Since the theory is Lorentz covariant we can obtain the representation
of the supersymmetry algebra in this frame where the expressions are simpler. In particular, the right-
hand side of the first anticommutator in Eq. (9.29) is given by

2σµ
aḃ
Pµ = 2(P 0 − σ3P 3) =

(
0 0
0 4E

)
. (9.30)

Therefore the algebra of supercharges in the massless case reduces to

{Q1, Q
†
1} = {Q1, Q

†
2} = 0,

{Q2, Q
†
2} = 4E. (9.31)

The commutator{Q1, Q
†
1} = 0 implies that the action ofQ1 on any state gives a zero-norm state of the

Hilbert space||Q1|Ψ〉|| = 0. If we want the theory to preserve unitarity we must eliminate these null
states from the spectrum. This is equivalent to settingQ1 ≡ 0. On the other hand, in terms of the second
generatorQ2 we can define the operators

a =
1

2
√
E
Q2, a† =

1

2
√
E
Q†

2, (9.32)

which satisfy the algebra of a pair of fermionic creation–annihilation operators,{a, a†} = 1, a2 =
(a†)2 = 0. Starting with a vacuum statea|λ〉 = 0 with helicity λ we can build the massless multiplet

|λ〉, |λ+ 1
2 〉 ≡ a†|λ〉. (9.33)

Here we consider two important cases:

– Scalar multiplet: we take the vacuum state to have zero helicity |0+〉 so the multiplet consists of a
scalar and a helicity-12 state

|0+〉, | 12〉 ≡ a†|0+〉. (9.34)

However, this multiplet is not invariant under the CPT transformation which reverses the sign of
the helicity of the states. In order to have a CPT-invariant theory we have to add to this multiplet
its CPT-conjugate which can be obtained from a vacuum state with helicity λ = −1

2

|0−〉, | −1
2〉. (9.35)

Putting them together we can combine the two zero-helicity states with the two fermionic ones
into the degrees of freedom of a complex scalar field and a Weyl(or Majorana) spinor.

– Vector multiplet: now we take the vacuum state to have helicity λ = 1
2 , so the multiplet contains

also a massless state with helicityλ = 1

| 12 〉, |1〉 ≡ a†| 12〉. (9.36)

As with the scalar multiplet we add the CPT conjugate obtained from a vacuum state with helicity
λ = −1

| − 1
2 〉, | − 1〉, (9.37)

which together with (9.36) give the propagating states of a gauge field and a spin-12 gaugino.
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In both cases we see the trademark of supersymmetric theories: the number of bosonic and fermionic
states within a multiplet are the same.

In the case of extended supersymmetry we have to repeat the previous analysis for each supersym-
metry charge. At the end, we haveN sets of fermionic creation–annihilation operators{aI , a†I} = δIJ ,

(aI)
2 = (a†I)

2 = 0. Let us work out the case ofN = 8 supersymmetry. Since for several reasons we do
not want to have states with helicity larger than2, we start with a vacuum state|−2〉 of helicity λ = −2.
The rest of the states of the supermultiplet are obtained by applying the eight different creation operators
a†I to the vacuum:

λ = 2 : a†1 . . . a
†
8| − 2〉

(
8

8

)
= 1 state,

λ =
3

2
: a†I1 . . . a

†
I7
| − 2〉

(
8

7

)
= 8 states,

λ = 1 : a†I1 . . . a
†
I6
| − 2〉

(
8

6

)
= 28 states,

λ =
1

2
: a†I1 . . . a

†
I5
| − 2〉

(
8

5

)
= 56 states,

λ = 0 : a†I1 . . . a
†
I4
| − 2〉

(
8

4

)
= 70 states, (9.38)

λ = −1

2
: a†I1a

†
I2
a†I3| − 2〉

(
8

3

)
= 56 states,

λ = −1 : a†I1a
†
I2
| − 2〉

(
8

2

)
= 28 states,

λ = −3

2
: a†I1| − 2〉

(
8

1

)
= 8 states,

λ = −2 : | − 2〉 1 state.

Putting together the states with opposite helicity we find that the theory contains:

– 1 spin-2 fieldgµν (a graviton),

– 8 spin-32 gravitino fieldsψI
µ,

– 28 gauge fieldsA[IJ ]
µ ,

– 56 spin-12 fermionsψ[IJK],

– 70 scalarsφ[IJKL],

where by[IJ...] we have denoted that the indices are antisymmetrized. We seethat, unlike the massless
multiplets ofN = 1 supersymmetry studied above, this multiplet is CPT invariant by itself. As in the
case of the masslessN = 1 multiplet, here we also find as many bosonic as fermionic states:

bosons: 1 + 28 + 70 + 28 + 1 = 128 states,
fermions: 8 + 56 + 56 + 8 = 128 states.

Now we study briefly the case of massive representations|k〉, k2 = M2. Things become simpler
if we work in the rest frame whereP 0 =M and the spatial components of the momentum vanish. Then,
the supersymmetry algebra becomes:

{QI
α, Qβ̇ J} = 2Mδαβ̇δ

I
J . (9.39)
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We proceed now in a similar way to the massless case by definingthe operators

aIα ≡ 1√
2M

QI
α, a†α̇ I ≡

1√
2M

Qα̇ I . (9.40)

The multiplets are found by choosing a vacuum state with a definite spin. For example, forN = 1 and
taking a spin-0 vacuum|0〉 we find three states in the multiplet transforming irreducibly with respect to
the Lorentz group:

|0〉, a†α̇|0〉, εα̇β̇a†α̇a
†
β̇
|0〉, (9.41)

which, once transformed back from the rest frame, correspond to the physical states of two spin-0 bosons
and one spin-12 fermion. ForN -extended supersymmetry the corresponding multiplets canbe worked
out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root of many of the
interesting properties of supersymmetric theories. For example, in Section 4 we computed the divergent
vacuum energy contributions for each real bosonic or fermionic propagating degree of freedom as24

Evac = ±1

2
δ(~0)

∫
d3pωp, (9.42)

where the sign± corresponds respectively to bosons and fermions. Hence, for a supersymmetric the-
ory the vacuum energy contribution exactly cancels betweenbosons and fermions. This boson–fermion
degeneracy is also responsible for supersymmetric quantumfield theories being less divergent than non-
supersymmetric ones.
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Appendix: A crash course in group theory

In this Appendix we summarize some basic facts about group theory. Given a groupG a representation
of G is a correspondence between the elements ofG and the set of linear operators acting on a vector
spaceV , such that for each element of the groupg ∈ G there is a linear operatorD(g)

D(g) : V −→ V (A.43)

satisfying the group operations

D(g1)D(g2) = D(g1g2), D(g−1
1 ) = D(g1)

−1, g1, g2 ∈ G. (A.44)

The representationD(g) is irreducible if and only if the only operatorsA : V → V commuting with all
the elements of the representationD(g) are the ones proportional to the identity

[D(g), A] = 0, ∀g ⇐⇒ A = λ1, λ ∈ C . (A.45)

More intuitively, we can say that a representation is irreducible if there is no proper subspaceU ⊂ V
(i.e.,U 6= V andU 6= ∅) such thatD(g)U ⊂ U for every elementg ∈ G.

24For a boson, this can be read off Eq. (3.56). In the case of fermions, the result of Eq. (4.44) gives the vacuum energy
contribution of the four real propagating degrees of freedom of a Dirac spinor.

90

L. ÁLVAREZ-GAUMÉ AND M.A. VÁZQUEZ-MOZO

90



Here we are specially interested in Lie groups whose elements are labelled by a number of con-
tinuous parameters. In mathematical terms this means that aLie group is a manifoldM together with
an operationM × M −→ M that we will call multiplication that satisfies the associativity property
g1 · (g2 · g3) = (g1 · g2) · g3 together with the existence of unityg1 = 1g = g, for everyg ∈ M and
inversegg−1 = g−1g = 1.

The simplest example of a Lie group is SO(2), the group of rotations in the plane. Each element
R(θ) is labelled by the rotation angleθ, with the multiplication acting asR(θ1)R(θ2) = R(θ1 + θ2).
Because the angleθ is defined only modulo2π, the manifold of SO(2) is a circumferenceS1.

One of the interesting properties of Lie groups is that in a neighborhood of the identity element
they can be expressed in terms of a set of generatorsT a (a = 1, . . . ,dimG) as

D(g) = exp[−iαaT
a] ≡

∞∑

n=0

(−i)n
n!

αa1 . . . αanT
a1 . . . T an , (A.46)

whereαa ∈ C are a set of coordinates ofM in a neighborhood of1. Because of the general Baker–
Campbell–Haussdorf formula, the multiplication of two group elements is encoded in the value of the
commutator of two generators, that in general has the form

[T a, T b] = ifabcT c, (A.47)

wherefabc ∈ C are called the structure constants. The set of generators with the commutator operation
form the Lie algebra associated with the Lie group. Hence, given a representation of the Lie algebra
of generators we can construct a representation of the groupby exponentiation (at least locally near the
identity).

We illustrate this concept with some particular examples. For SU(2) each group element is la-
belled by three real numberαi, i = 1, 2, 3. We have two basic representations: one is the fundamental
representation (or spin12 ) defined by

D 1
2
(αi) = e−

i
2
αiσi

, (A.48)

with σi the Pauli matrices. The second one is the adjoint (or spin 1) representation which can be written
as

D1(αi) = e−iαiJi
, (A.49)

where

J1 =




0 0 0
0 0 1
0 −1 0


 , J2 =




0 0 −1
0 0 0
1 0 0


 , J3 =




0 1 0
−1 0 0
0 0 0


 . (A.50)

Actually, J i (i = 1, 2, 3) generate rotations around thex, y andz axis respectively. Representations of
spinj ∈ N+ 1

2 can also be constructed with dimension

dimDj(g) = 2j + 1. (A.51)

As a second example we consider SU(3). This group has two basic three-dimensional representa-
tions denoted by3 and3 which in QCD are associated with the transformation of quarks and antiquarks
under the color gauge symmetry SU(3). The elements of these representations can be written as

D3(α
a) = e

i
2
αaλa , D3(α

a) = e−
i
2
αaλT

a (a = 1, . . . , 8), (A.52)
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whereλa are the eight hermitian Gell-Mann matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , (A.53)

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =




1√
3

0 0

0 1√
3

0

0 0 − 2√
3


 .

Hence the generators of the representations3 and3 are given by

T a(3) =
1

2
λa, T a(3) = −1

2
λTa . (A.54)

Irreducible representations can be classified in three groups: real, complex and pseudoreal.

– Real representations: a representation is said to be real if there is asymmetric matrixS which acts
as intertwiner between the generators and their complex conjugates

T
a
= −ST aS−1, ST = S. (A.55)

This is for example the case of the adjoint representation ofSU(2) generated by the matrices (A.50)

– Pseudoreal representations: are the ones for which anantisymmetric matrixS exists with the
property

T
a
= −ST aS−1, ST = −S. (A.56)

As an example we can mention the spin-1
2 representation of SU(2) generated by1

2σ
i.

– Complex representations: finally, a representation is complex if the generators and their complex
conjugate are not related by a similarity transformation. This is for instance the case of the two
three-dimensional representations3 and3 of SU(3).

There are a number of invariants that can be constructed associated with an irreducible represen-
tationR of a Lie groupG and that can be used to label such a representation. IfT a

R are the generators
in a certain representationR of the Lie algebra, it is easy to see that the matrix

∑dimG
a=1 T a

RT
a
R commutes

with every generatorT a
R. Therefore, because of Schur’s lemma, it has to be proportional to the identity25.

This defines the Casimir invariantC2(R) as

dimG∑

a=1

T a
RT

a
R = C2(R)1. (A.57)

A second invariantT2(R) associated with a representationR can also be defined by the identity

TrT a
RT

b
R = T2(R)δ

ab. (A.58)

25Schur’s lemma states that a representation of a group is irreducible if and only if all matrices commuting with every element
of the representation are proportional to the identity.
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Actually, taking the trace in Eq. (A.57) and combining the result with (A.58) we find that both invariants
are related by the identity

C2(R) dimR = T2(R) dimG, (A.59)

with dimR the dimension of the representationR.

These two invariants appear frequently in quantum field theory calculations with non-Abelian
gauge fields. For exampleT2(R) comes about as the coefficient of the one-loop calculation ofthe beta-
function for a Yang–Mills theory with gauge groupG. In the case of SU(N), for the fundamental repre-
sentation, we find the values

C2(fund) =
N2 − 1

2N
, T2(fund) =

1

2
, (A.60)

whereas for the adjoint representation the results are

C2(adj) = N, T2(adj) = N. (A.61)

A third invariantA(R) is specially important in the calculation of anomalies. As discussed in Sec-
tion 7, the chiral anomaly in gauge theories is proportionalto the group-theoretical factorTr

[
T a
R{T b

R, T
c
R}
]
.

This leads us to defineA(R) as

Tr
[
T a
R{T b

R, T
c
R}
]
= A(R), dabc (A.62)

wheredabc is symmetric in its three indices and does not depend on the representation. Therefore, the
cancellation of anomalies in a gauge theory with fermions transformed in the representationR of the
gauge group is guaranteed if the corresponding invariantA(R) vanishes.

It is not difficult to prove thatA(R) = 0 if the representationR is either real or pseudoreal. Indeed,
if this is the case, then there is a matrixS (symmetric or antisymmetric) that intertwines the generators
T a
R and their complex conjugatesT

a
R = −ST a

RS
−1. Then, using the hermiticity of the generators we can

write

Tr
[
T a
R{T b

R, T
c
R}
]
= Tr

[
T a
R{T b

R, T
c
R}
]T

= Tr
[
T
a
R{T

b
R, T

c
R}
]
. (A.63)

Now, using (A.55) or (A.56) we have

Tr
[
T
a
R{T

b
R, T

c
R}
]
= −Tr

[
ST a

RS
−1{ST b

RS
−1, ST c

RS
−1}
]
= −Tr

[
T a
R{T b

R, T
c
R}
]
, (A.64)

which proves thatTr
[
T a
R{T b

R, T
c
R}
]

and thereforeA(R) = 0whenever the representation is real or pseu-
doreal. Since the gauge anomaly in four dimensions is proportional toA(R) this means that anomalies
appear only when the fermions transform in a complex representation of the gauge group.
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Quantum ChromoDynamics

M. H. Seymour
University of Manchester, UK, and CERN, Geneva, Switzerland

Abstract
These lectures on QCD stress the theoretical elements that underlie a wide
range of phenomenological studies, particularly gauge invariance, renormal-
ization, factorization and infrared safety. The three parts cover the basics of
QCD, QCD at tree level, and higher order corrections.

1 Basics of QCD

1.1 Introduction

QCD is the theory of the strong nuclear force, one of the four fundamental forces of nature. It describes
the interactions of quarks, via their colour quantum numbers. It is an unbroken gauge theory. The gauge
bosons are gluons. It has a similar structure to QED, but withone important difference: the gauge group
is non-Abelian, SU(3), and hence the gluons are self-interacting. This results in a negativeβ-function
and hence asymptotic freedom at high energies and strong interactions at low energies.

These strong interactions are confining: only colour-singlet states can propagate over macroscopic
distances. The only stable colour singlets are quark–antiquark pairs, mesons, and three-quark states,
baryons. In high energy reactions, like deep inelastic scattering, the quark and gluon constituents of
hadrons act as quasi-free particles, partons. Such reactions can be factorized into the convolution of
non-perturbative functions that describe the distribution of partons in the hadron, which cannot be cal-
culated from first principles (at present) but are universal(process-independent), with process-dependent
functions, which can be calculated as perturbative expansions in the coupling constantαS.

Beyond leading order inαS, the parton distribution functions and coefficient functions become
intermixed. They can still be factorized, but the parton distribution functions become energy-dependent.
Although the input distributions at some fixed energy scale still cannot be calculated, the energy depen-
dence is given by perturbative evolution equations.

In sufficiently inclusive cross sections, called infrared safe, the non-perturbative distributions can-
cel and distributions can directly be calculated in perturbation theory. Non-perturbative corrections are
then suppressed by powers of the high energy scale. The most important examples are jet cross sections,
where jets of hadrons have a direct connection to the perturbatively-calculable quarks and gluons.

This course will attempt to give a brief overview of the subject. The approach will be pretty
phenomenological, with most results stated rather than derived. I will however attempt to sketch in most
cases roughly how they would be derived. One thing I will not have time to go into in much detail will
be heavy quarks: in most cases we will treat the d, u, s, c and b quarks as massless and neglect the top
quark, an approximation that I will motivate in Section 1.9.

It is hard to give a better introduction to the subject than the book ‘QCD and Collider Physics’, by
Keith Ellis, James Stirling and Bryan Webber [1]. So I will follow the ESW approach and notation pretty
closely. In most cases they will be able to give you a few more details and references to much more
detailed treatments if you want to go further. For a much moredetailed treatment of the formulation of
QCD and its renormalization in particular Peskin and Schroeder [2] is also unbeatable.

As there are many parallels with QED I will have to assume prior knowledge of the basics of QED
and that you can calculate a few simple cross sections. However we start by recapitulating a few features.

97



1.2 Basics of QED

QED is a gauge theory with gauge group U(1). It can be derived using the gauge principle. The classical
Lagrangian density forn types of non-interacting fermion is

Lferm =

n∑

i

f̄i(i6∂ −mi)fi, (1.1)

wherefi is a spinor-valued wave function describing plane waves of momentumpi, f̄i its Dirac conjugate
f †i γ

0, 6a is shorthand forγµaµ andγµ are Dirac spinor matrices with anticommutation relation

{γµ, γν} = 2gµν . (1.2)

The Lagrangian density (1.1) is invariant under global changes of gauge,

fi → f ′i = exp(ieiθ)fi, (1.3)

whereei is an arbitrary flavour-dependent parameter, which will turn out to be proportional to electric
charge. We can derive QED by asking how we would need to modify(1.1) to make it also invariant under
local changes of gauge,

fi(x) → f ′i(x) = exp(ieiθ(x))fi(x). (1.4)

This can be done by introducing a new vector-valued fieldAµ, which transforms under the same change
of gauge like

Aµ(x) → A′
µ(x) = Aµ(x) +

i

e

(
∂µ exp(iθ(x))

)
exp(−iθ(x)), (1.5)

and by replacing the derivative∂µ by the covariant derivative,

Dµ = ∂µ + ieQ̂ Aµ, (1.6)

whereQ̂ is the charge operator, defined by

Q̂ fi = eifi. (1.7)

SinceAµ is a new field that we have introduced, we must make it physicalby adding a kinetic
term,

Lkin = −1

4
FµνF

µν , (1.8)

where the field strength tensorFµν is defined by

Fµν = ∂µAν − ∂νAµ. (1.9)

The classical QED Lagrangian density is therefore given by

Lclassical = −1

4
FµνF

µν +
n∑

i

f̄i(i6D −mi)fi. (1.10)

This is now invariant under local changes of gauge.

Perturbative calculations are made according to the Feynman rules. These can be read off from
the action, defined by

S = i

∫
d4xL. (1.11)

There is however one complication. The photon propagator∆γ,µν(p) is derived from the inverse of the
bilinear term inAµ:

∆γ,µν(p)× i
[
p2gνσ − pνpσ

]
= δσµ. (1.12)

2
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This does not have an inverse. However, we can exploit the gauge invariance of the theory to rewrite
it in a physically equivalent form that is invertible. Sincethe Lagrangian density is gauge invariant, we
can choose some convenient gauge to work in and the final answer should be independent of which we
chose. For example, in the covariant gauge, we have the condition

∂µAµ = 0 (1.13)

at every space-time point. We can therefore add an extra termto the Lagrangian density

Lgauge−fixing = − 1

2λ
(∂µAµ)

2 , (1.14)

whereλ is an arbitrary parameter, and provided we work in a covariant gauge we cannot have changed the
physics, since we have only added zero. (This is essentiallyjust the method of undetermined Lagrange
multipliers for minimizing an action subject to a constraint: the constraint is (1.13) and the multiplier is
1/2λ.) The final results must clearly be independent ofλ, although it will appear at intermediate steps of
calculations. Common choices areλ = 1 (Feynman gauge) andλ→ 0 (Landau gauge). For arbitraryλ,
we must now solve

∆γ,µν(p)× i
[
p2gνσ − (1− 1

λ
)pνpσ

]
= δσµ, (1.15)

which yields

∆γ,µν =
i

p2

(
−gµν + (1− λ)

pµpν
p2

)
. (1.16)

Clearly the Feynman gauge offers significant calculationaladvantages, so we use it for most of the rest
of this course.

Another popular class of gauges are the axial (or physical) gauges, defined in terms of an arbitrary
vectorn, by

Lgauge−fixing = − 1

2λ
(nµAµ)

2 . (1.17)

These have the result that an on-shell photon has two polarization states, which, in the(n+p) rest-frame,
are purely transverse to its direction. The penalty is that the propagator becomes more complicated,

∆γ,µν =
i

p2

(
−gµν +

nµpν + pµnν
n·p − (n2 + λ p2)pµpν

(n·p)2
)
. (1.18)

Obviously some simplification is obtained by settingn2 = 0 andλ → 0 (the ‘lightcone’ gauge), but
practical calculations are still considerably more complicated than in covariant gauges. In particular, if
making a numerical calculation, it is difficult to guaranteethat the spurious singularitiesn·p→ 0 cancel
as they should.

We therefore have the Feynman rules (in Feynman gauge):

∆i =
i

6p−mi
= i

6p+mi

p2 −m2
i

, (1.19)

∆γ,µν = i
−gµν
p2

, (1.20)

Γµ
γfif̄i

= −i eieγµ. (1.21)

To calculate the cross section for a given process, we must write down all possible diagrams,
use the Feynman rules to give us the amplitudeiM, use Dirac algebra and trace theorems to calcu-
late

∑ |M|2, where the sum is over all unobserved quantum numbers for example spin, divide by the
overcounting of incoming states, and integrate over phase space:

σ =
1

S

1

2s

∫
dΓ

∑
|M|2. (1.22)

3
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An element ofn-body phase space is given by

dΓ =
n∏

i=1

(
d4pi
(2π)4

(2π)δ(p2i −m2
i )

)
(2π)4δ4(ptot −

∑n
i pi) (1.23)

=

n∏

i=1

(
d3pi

(2π)32Ei

)
(2π)4δ4(ptot −

∑n
i pi). (1.24)

For example, the cross section fore+e− → µ+µ− is calculated as follows. The amplitude is

iM = v̄(pe+)(ie)γ
µu(pe−) i

−gµν
(pe+ + pe−)

2
ū(pµ−)(ie)γνv(pµ+) (1.25)

=
−ie2

(pe+ + pe−)2
v̄(pe+)γ

µu(pe−) ū(pµ−)γµv(pµ+) (1.26)

and hence ∑
|M|2 = (4πα)2

s2
Tr {6pe+γµ6pe−γν} Tr

{
6pµ−γµ6pµ+γν

}
, (1.27)

whereα = e2/4π ands = (pe+ + pe−)
2, or

∑
|M|2 =

16(4πα)2

s2
(
pµ
e+
pνe− + pµ

e−p
ν
e+ − pe+ ·pe−gµν

) (
pµ−,µpµ+,ν + pµ+,µpµ−,ν − pµ+ ·pµ−gµν

)

(1.28)

= 8(4πα)2
t2 + u2

s2
, (1.29)

wheret = (pe− − pµ−)2 andu = (pe− − pµ+)2 = −s− t. The cross section is therefore

σ =
1

4

1

2s

∫ 0

−s

dt

8πs
8(4πα)2

t2 + u2

s2
(1.30)

=
4πα2

3s
. (1.31)

1.3 SU(3) and colour

QCD can be derived in exactly the same way as QED: we start fromthe Lagrangian density for a set
of non-interacting quarks and modify it in just such a way that it is invariant under changes of gauge.
The only difference is that instead of the gauge transformation being a simple phase (U(1) group), we
consider a non-Abelian group SU(Nc). This has several important consequences. Fermion charges will
come inNc different types, called colours, they will be quantized (incontrast to the electric chargesei,
which could take any value) and, most importantly, the gaugebosons will be self-interacting.

It has been well-known since the early days of QCD that there are three colours, for example
from baryon wave functions, the totale+e− cross section (which is proportional toNc) andπ0 decay
rate (which is proportional toN2

c ). However, in most calculations it is useful to keep the number of
coloursNc arbitrary until the very last step when it is set equal to three. TheNc-dependent coefficients
are a useful diagnostic tool in understanding the physical origins of different terms, comparing different
calculations and tracking down errors.

We start by restating briefly some features of SU(N ), the group ofN×N unitary matrices (U †U =
1) with determinant +1. LetU be an element of SU(N ) that is infinitesimally close to the identity and
write it as

U = 1 + iG, (1.32)
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whereG has infinitesimal entries. It must be hermitian (G† = G) and traceless. One can choose a basis
set ofN2 − 1 matrices,tA, A = 1, . . . , N2 − 1, such that anyG can be written as

G =

N2−1∑

A

ǫAtA, (1.33)

whereǫA are infinitesimal numbers. Note that I will always denote colour indices that run from 1 toN
by a and from 1 toN2−1 byA. ThetA are called the generators of the group and define its fundamental
representation. You can show that[tA, tB ] is antihermitian and traceless and hence can be written as a
linear combination of othertCs,

[tA, tB ] ≡ i fABCtC , (1.34)

wherefABC are a set of real constants, called the structure constants of the group. It is straightfor-
ward to see thatfABC is antisymmetric inA,B, and with a little more work, one can prove that it is
antisymmetric in all its indices. Equation (1.34) defines the Lie algebra of the group.

We can also define a set of(N2−1)× (N2−1) matrices that obey the same algebra:

(
TA
)
BC

≡ −ifABC , (1.35)

[TA, TB ] = i fABCTC . (1.36)

These define the group’s adjoint representation.

Although we started with elements infinitesimally close to the identity matrix, we can calculate an
arbitrary elementU by stringing together an infinite number of infinitesimal elements,

U = lim
N→∞

(1 + iθAtA/N)N = exp(iθAtA) ≡ exp(it·θ). (1.37)

SinceU is unitary andtA hermitian, we have

U−1 = exp(−it·θ). (1.38)

There are several identities we will require time and time again:

Tr(tAtB) = 1
2δ

AB ≡ TRδ
AB (1.39)

∑

A

tAabt
A
bc =

N2 − 1

2N
δac ≡ CF δac (1.40)

Tr(TCTD) =
∑

A,B

fABCfABD = NδCD ≡ CAδ
CD, (1.41)

where the constantsCF andCA are the Casimir operators of the fundamental and adjoint representations
of the group respectively. Although we know the numerical values of these constants:

TR =
1

2
, (1.42)

CF =
4

3
, (1.43)

CA = 3, (1.44)

it is good practice, as I said, to leave them unexpanded in allalgebraic results.

In fact for practical calculations one only requires these,and other similar, identities and never an
explicit representation fortA or fABC .
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1.4 The QCD Lagrangian

The classical Lagrangian density forn non-interacting quarks with massesmi is

Lquarks =

n∑

i

q̄ai (i6∂ −mi)abq
b
i , (1.45)

where the factor(i6∂−mi)ab is proportional to the identity matrix in colour space. Thisis invariant under
global SU(Nc) transformations,

qa → q′a = exp(it·θ)abqb. (1.46)

To make it invariant under local transformations,

qa(x) → q′a(x) = exp(it·θ(x))abqb(x), (1.47)

we have to introduce the covariant derivative,

Dµ,ab = ∂µ 1ab + igs (t·Aµ)ab, (1.48)

whereAA
µ are coloured vector fields that transform in just the right way that we have

D′
µ,abq

′
b(x) = exp(it·θ(x))abDµ,bcqc(x), (1.49)

giving

t·A′
µ = exp(it·θ(x)) t·Aµ exp(−it·θ(x)) + i

gs

(
∂µ exp(it·θ(x))

)
exp(−it·θ(x)). (1.50)

We again have to introduce a kinetic term for this new field,

Lkin = −1

4
FA
µνF

µν
A , (1.51)

whereFA
µν is the non-Abelian field strength tensor. However, the definition we used in QED (1.9) does

not result in an invariant Lagrangian density under transformation (1.50). One must add an extra term,

FA
µν = ∂µA

A
ν − ∂νA

A
µ − gsf

ABCAB
µA

C
ν , (1.52)

and only then is (1.51) invariant under gauge transformations.

This extra term has profound consequences for the theory: itmeans that gluons are self-interacting,
through three- and four-point vertices. This will turn out to give rise to asymptotic freedom at high
energies and strong interactions at low energies, among themost fundamental properties of QCD. We
therefore see that these are absolute requirements of the SU(Nc) gauge symmetry.

Before reading off the Feynman rules we again have to fix the gauge. This proceeds in exactly the
same way as in QED, leading to, in covariant gauges,

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2
. (1.53)

Finally, it turns out that in a non-Abelian gauge theory, it is necessary to add one extra term
to the Lagrangian density, related to the need for ghost particles. These are beyond the scope of this
course, but basically they arise because when a non-Abeliangauge theory is renormalized it is possible
for unphysical degrees of freedom to propagate freely. These are cancelled off by introducing into the
theory an unphysical set of fields, the ghosts, which are scalars but have Fermi statistics. For practical
purposes it is enough to know that there exist Feynman rules for ghosts and that in every diagram with
a closed loop of internal gluons containing only triple-gluon vertices, we must add a diagram with the
gluons in the loop replaced by ghosts. It is worth noting thatin physical gauges, as the name suggests,
ghost contributions always vanish and they can be ignored.

The final Lagrangian is therefore

LQCD = −1

4
FA
µνF

µν
A +

n∑

i

q̄ai (i6D −mi)abq
b
i −

1

2λ

(
∂µAA

µ

)2
+ Lghost. (1.54)
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1.5 Feynman rules

Just as in QED it is straightforward to read off the Feynman rules from the action. We obtain in Feynman
gauge (only the gluon propagator is gauge dependent)

∆ab
i = δab

i

6p−mi
= δabi

6p+mi

p2 −m2
i

, (1.55)

∆AB
g,µν = δABi

−gµν
p2

, (1.56)

Γµ
gqq̄ = −i gs tA γµ, (1.57)

Γggg = −gsfABC
[
(p − q)λgµν + (q − r)µgνλ + (r − p)νgλµ

]
. (1.58)

Note that, apart from the triple-gluon vertex, the only difference relative to QED is in the colour struc-
ture: propagators are diagonal in colour and the vertex for agluon of colourA to scatter a quark of
colour b to a quark of colourc contains(tA)cb. Note also that unlike QED the quark–gluon vertex is
flavour-independent (it is straightforward to check that, unlike in QED, we cannot introduce a flavour-
dependence into the gauge transformation, Eq. (1.47) and retain gauge invariance). In the triple-gluon
vertex, the three gluons have momentap, q, r, Lorentz indicesµ, ν, λ and colour indicesA,B,C respec-
tively. The momenta are all ingoing:p+ q + r = 0.

The Feynman rules for ghosts and for the four-gluon vertex can be found in ESW [1] (p. 10). They
will not be needed for this course.

Note also that in analogy with QED the strong chargegs is usually substituted byαS,

αS ≡ g2s
4π
. (1.59)

1.6 e+e− → qq̄

One of the most fundamental quantities in QCD is the totale+e− annihilation cross section to hadrons.
We will see in a later lecture that to leading order inαS this is equal to the totale+e− → qq̄ cross
section. The calculation is very similar to that fore+e− → µ+µ−, the only difference being in the
colour structure. The photon is colour blind, so the Feynmanrule for a photon to couple to a quark
contains a trivial colour matrix,δab. Summing over colours and dividing by the number of incoming
colour states (1 in this case since electrons are not coloured), we therefore obtain

σ(e+e− → qq̄) = σ(e+e− → µ+µ−)× e2q ×
∑

a,b

δabδba. (1.60)

We obtain ∑

a,b

δabδba =
∑

a

δaa = Nc, (1.61)

and hence

Rhad ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=
∑

q

e2qNc. (1.62)

1.7 e+e− → qq̄g

This process will be important for the higher order corrections toσ(e+e− → hadrons) and particularly
for the study of three-jet final states ine+e− annihilation, among the most important test-beds for QCD.

There are two Feynman diagrams, shown in Fig. 1.1. We label the momenta and colourse−(p−)+
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Fig. 1.1: Feynman diagrams for the processe+e− → qq̄g

e+(p+) → qa(p1) + q̄b(p2) + gA(p3). For the matrix element we obtain

iM = v̄(p+)(ie)γ
µu(p−) i

−gµν
s

ε∗λA (1.63)

ūa(p1)

{
(−igs)tAabγλ

6p1 + 6p3
(p1 + p3)2

(−ieeq)γν + (−ieeq)γν
−6p2 − 6p3
(p2 + p3)2

(−igs)tAabγλ
}
vb(p2).

We will evaluate the cross section from this matrix element later. Here we are interested in the colour
algebra. Using the fact that the spin sum of a massless vectorparticle is proportional to the colour identity
matrix, ∑

spin

ε∗µA ε
ν
B = −gµνδAB , (1.64)

we obtain
∑

|M|2 ∝
∑

a,b,A

tAab
(
tAab
)∗

=
∑

a,b,A

tAabt
A
ba =

∑

A

Tr(tAtA) = CFTr(1) = CFNc, (1.65)

where the first step uses the fact thattA are hermitian, the second is simply a trivial rewrite, switching to
matrix notation, the third uses Eq. (1.40) and the fourth uses the fact that the matrix being traced is the
identity matrix of the fundamental representation, i.e. theNc × Nc identity matrix. Note that since the
colour factor of the lowest order process isNc, we can associateCF with the emission of the additional
gluon. Since the emission probability of a gluon from a quarkis proportional toCF , and we will later
see that that from a gluon is proportional toCA, CF andCA are sometimes referred to as the squares of
the colour charges of the quark and gluon respectively.

Performing the trace Dirac algebra on the matrix element, wefinally obtain

∑
|M|2 =

16CFNce
4e2qg

2
s

s p1 ·p3 p2 ·p3
(
(p1 ·p+)2 + (p2 ·p+)2 + (p1 ·p−)2 + (p2 ·p−)2

)
. (1.66)

(Note the misprint in ESW [1] — their result is a factor of 4 toolarge.)

1.8 The coupling constant αS and renormalization

As we mentioned above, in practical calculations,αS is usually used rather thangs. Besides the quark
masses, which we will neglect in most of this course,gs is the only parameter in the QCD Lagrangian
and therefore assumes a central role in our study of QCD. However, it is nota priori clear that parameters
in the Lagrangian are physically observable quantities — any physical observable can be calculated as a
function of them (at least in perturbation theory) and theirvalues can be extracted from measured values
of physical observables, but they are not necessarily themselves physical. It is worthwhile therefore
to consider whether we can reformulate our theory in such a way that one physical observable can be
written as a function of another. This reformulation is known as renormalization.
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(a) (b) (c) (d)

Fig. 1.2: When a quark–gluon vertex (a) is corrected by a loop (b), one must decide whether to describe it as a
correction to the vertex (c), or to the rest of the diagram (d)

In this section I give a very handwaving description of renormalization, which I believe conveys the
important physical point. Of course for practical calculations one needs a much more precise definition
of the renormalization prescription, which I describe at the end.

We redefinegs to be the strength of the quark–gluon coupling, as in Fig. 1.2a. At first sight, this
seems like a trivial statement and at the lowest order of perturbation theory it is — the two definitions
are identical. However, when we calculate higher orders of perturbation theory, we encounter loop
corrections like the one in Fig. 1.2b, which correct the vertex. To avoid double-counting, we must
uniquely decide whether these corrections are part of the vertex, as in Fig. 1.2c, or the rest of the diagram,
as in Fig. 1.2d. One way to decide is to introduce arenormalization scaleµR and say that physics at
high scales (therefore short distances) aboveµR is part of the vertex and physics at lower scales (longer
distances) belowµR is part of the rest of the diagram. Of course, this is simply a book-keeping device,
which does not change the physics, it simply ensures that each physical contribution to the process is
counted once and only once. SinceµR is a completely arbitrary book-keeping scale, introduced by hand,
its value should not affect the physical prediction — changing it simply moves contributions between
what we call the vertex and what we call the rest of the diagram. Since the amount of physics that we
include in the vertex depends onµR, and we definedgs to be the strength of the vertex, it is clear thatgs
must now be a function ofµR.

It is worth mentioning that, although I definedgs as the strength of the quark–gluon vertex, I could
equally well have defined it as the strength of the triple-gluon vertex. It is one of the remarkable features
of gauge theories that, as a direct result of the gauge symmetry, I would get exactly the same result for the
renormalized couplinggs(µR). That is, the equality of the strengths of the quark–gluon and triple-gluon
vertices is true even after renormalization.

When it is clear that I am talking about the renormalization scale, I will henceforth drop the
subscriptR.

1.8.1 Renormalization group equation

As I said, varyingµ moves physical contributions (loop corrections) around within a calculation, but it
should not change the result of the physical calculation. Wecan use this fact to derive an equation for
how gs varies as a function ofµ. This is one of a set of equations that together describe how the whole
theory varies with renormalization scale (and scheme), which formally form a group.

We study this by considering a dimensionless physical observableR that is a function of only one
physical scaleQ2 (think ofRhad at

√
s = Q for example). Assume that this observable is not sensitive

to quark masses (we will return to this point shortly). Afterrenormalization,R can only be a function of
Q2, µ2 andαS(µ

2). By dimensional analysis, the only way the dimensionless functionR can depend on
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the dimensionful variablesQ2 andµ2 is through their ratio. We can therefore write

R = R(Q2/µ2, αS(µ
2)). (1.67)

We can use the fact thatR, as a physical quantity, must be independent of the value ofµ, and the chain
rule for partial derivatives, to write

µ2
d

dµ2
R(Q2/µ2, αS) = 0 =

[
µ2

∂

∂µ2
+ µ2

∂αS

∂µ2
∂

∂αS

]
R (1.68)

≡
[
µ2

∂

∂µ2
+ β(αS)

∂

∂αS

]
R , (1.69)

i.e.,β(αS) ≡ µ2 ∂αS
∂µ2 . There are several points to note about this.

– A physical solution is provided byR(1, αS(Q)), i.e., by setting the renormalization scale equal to
the physical scale in the problem.

– Q-dependence of the physical quantityR comes about only because of the renormalization of the
theory and would not be present in the classical theory. Thusmeasuring theQ-dependence ofR
directly probes the quantum structure of the theory.

– By rearranging Eq. (1.69), one can derive theµ2 dependence ofαS from a calculation ofR,

β(αS) = −
µ2 ∂R

∂µ2

∂R
∂αS

. (1.70)

– If αS is small,R is perturbatively calculable and henceβ(αS) is too.

Theβ function of QCD is now known to four-loop accuracy,

β(αS) = −α2
S(β0 + β1αS + β2α

2
S + β3α

2
S + . . .). (1.71)

Although the higher orders are essential for quantitative calculation, they are not for qualitative under-
standing: almost all QCD phenomenology can be understood using the one loop result,

β0 =
11CA − 4TRNf

12π
, (1.72)

whereNf is the number of quark flavours that can appear in loops, to be discussed further shortly.

Note thatβ0 is positive and hence that theβ function is negative, at least whenαS is small.
This results in asymptotic freedom: the fact that the interactions become weak at high energies (short
distances) and infrared slavery: the fact that they become strong at low energy.

If we neglect the higher orders, we can solve the renormalization group equation exactly, to obtain
αS at some scaleQ as a function of its value at the renormalization scaleµ,

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)β0 ln
Q2

µ2

. (1.73)

1.8.2 Choosingµ2

Although physical quantities do not depend onµ, a calculation truncated at a finite order of perturbation
theory does. We must therefore choose some value forµ. To illustrate this, suppose that our dimension-
less physical quantityR has a perturbative expansion that starts atO(αS),

R = R1αS + . . . , (1.74)
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Fig. 1.3: A measurement ofαS at any scaleQ fixes which curve our universe lies on, but to compare measurements
at different scales we have to agree to label the curves in a standard way, for example usingαS(Mz)

then if we truncate at leading order,
R ≈ R1αS, (1.75)

our truncated expression forR(1, αS(Q)) can be expanded as a power series inαS(µ
2)

R(1, αS(Q
2)) ≈ R1αS(Q

2) (1.76)

= R1αS(µ
2)

[
1− β0αS(µ

2) ln
Q2

µ2
+ β20α

2
S(µ

2) ln2
Q2

µ2
+ . . .

]
. (1.77)

The leading order result in renormalized perturbation theory is the first term of this series, i.e.,R1αS(µ
2).

It is therefore clear that althoughµ is completely arbitrary, choosing it far fromQ guarantees a large
truncation error (note that the converse is not true). One should therefore chooseµ2 ‘close’ toQ2, but
how close is close?

The conventional approach is to setµ = Q and to use theµ variation in a reasonable range, e.g.,
Q/2 to 2Q as an estimate of the truncation uncertainty. It should be clear from the foregoing discussion
that this is an extremely arbitrary procedure. However, thefolklore is that in almost all cases where
higher order corrections have been calculated, they have fallen within the band given by this procedure.

1.8.3 MeasuringαS

Theβ function tells us howαS varies with scale, but it does not tell us the value ofαS at any particular
scale: we need an experimental measurement to do that. Effectively β(αS) defines a family of curves,
as illustrated in Fig. 1.3, and one measurement at any scale is sufficient to tell us which curve our
universe lies on. However, in order to compare and combine measurements ofαS at different scales,
we have to agree on some convenient labeling of the curves. The measurement at any given scale can
then be converted into a measurement of the label. Historically, this was often done using the ‘QCD
scale’,ΛQCD, described in the next section, but more recently it has beenrealized that the value of
αS at some fixed scale at which it is relatively small is a lot moreconvenient. Since some of the best
measurements come fromZ0 decays, it has become universal to useαS(Mz) as the label. We will discuss
the measurements ofαS further in Section 3.1.4.
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1.8.4 The ‘QCD Scale’,Λ

As I just mentioned, this is another way to label the running coupling, which is to construct a renormal-
ization group invariant scale fromαS(µ). Although the Lagrangian of massless QCD has no scale, the
renormalization process introduces a dimensionful parameter,

Λ2 = µ2 exp−
∫ αS(µ

2) dx

β(x)
≈ µ2e−1/β0αS(µ

2), (1.78)

where the approximation uses only the one-loop term in theβ function1.1. This process by which a
scaleless theory gets a physically observable scale by the introduction of the unphysical renormalization
scale is known as dimensional transmutation.

At leading order,Λ has a simple interpretation, it is the scale at which the coupling becomes
infinite. However, this interpretation is not self-consistent, since it relies on a truncation of the pertur-
bation series in a region in which the coupling is large, ultimately divergent. More generally,Λ can be
viewed as a renormalization group invariant parameterization of the scale at which the theory becomes
non-perturbative. All non-perturbative quantities, for example the hadron masses, would be expected to
be of orderΛ.

However,Λ is not a very practically useful label for the value ofαS. This is because its precise
value, for a given measured value ofαS, depends strongly on the theoretical input used in the calculation,
for example which order of perturbation theory we truncateβ at, which renormalization scheme we use,
the number of flavours we assume, the way we match the running coupling at the flavour thresholds, etc.

In principle any labeling suffers from these problems, but by using the value ofαS in a region
where it is small, and where the scale is not too different from that at which the measurements are made,
the impact onαS(Mz) is small, whereasΛ is related to the region whereαS is large, far away from where
the measurements are made, and these effects are large.

1.8.5 Renormalization in practice

To give a simple physical picture of renormalization, I havedescribed it in terms of a cutoff on the scale
of the physical effects that are included in different components of a Feynman diagram calculation. How-
ever, in practice, this definition is extremely unattractive, because it breaks Lorentz and gauge invariance,
two of the fundamental symmetries of our theory. If calculating in this scheme, these symmetries will
get violated by a truncation at any finite order of perturbation theory and only restored in an all orders
calculation. There are other simple schemes that work well in certain cases, for example the Pauli–Villars
regularization, but the only known scheme consistent with all the symmetries of QCD, and hence guar-
anteed to work at any order of perturbation theory, isdimensional regularization. In this section I give a
very brief description of how this works in practice. The difference betweenµ andµR will be (slightly)
relevant here, so I temporarily reinstate the subscript.

The basic observation is that the loop corrections that we have been discussing are divergent in
four or more space-time dimensions, but are finite in less than four dimensions. We therefore choose
to calculate our Feynman diagrams ind < 4 dimensions (we always work in Minkowski space, with
one time dimension andd−1 space dimensions). With a little thought, we can analytically continue

1.1Note that the definition in the first equality of Eq. (1.78), while formally renormalization group invariant, is not prac-
tically useful, since the lower limit of the integration is not defined (corresponding to the fact that any definition ofΛ that
differs by a multiplicative constant is equally renormalization group invariant). For perturbative calculations, various def-
initions, equivalent to Eq. (1.78) to the order to which theyare defined, can be used. For non-perturbative calculations,
for example in lattice QCD, the precise definition is more critical. A commonly-used convention (see for example [3]) is

Λ2 = µ2 exp



− 1
β0αS(µ

2)
− β1

β2
0
logαS(µ

2)−
R αS(µ

2)

0
dx

„

1
β(x)

+
1− β1

β0
x

β0x2

«ff

. In contrast to the definition given in [1], for

example, this can be seen to depend only on theβ function atαS(µ
2) and at smaller values, so is well-defined perturbatively

and, as can be easily checked, is exactly renormalization scheme invariant.
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the number of dimensions to be a complex number such that at the end of the calculation, after the
renormalization prescription has been followed, we can letit smoothly tend back to 4 and obtain finite
results. We therefore defined = 4− 2ǫ and consider theǫ→ 0+ limit.

By counting the dimensionality of terms in the Lagrangian, we discover that the coupling constant
becomes dimensionful ind 6= 4 dimensions. This is not very convenient, so we define a dimensionless
parameterαS, by introducing a completely arbitrary scaleµ,

α
(d)
S = αS µ

2ǫ, (1.79)

whereα(d)
S is the dimensionfuld-dimensional coupling.µ is called the regularization scale. It is often set

equal to the renormalization scaleµR, but I consider this confusing since we have not yet renormalized
the theory, so, for now, I keep them distinct and only set themequal again at the end of this section.

When calculating loop corrections, we then find terms that have 1/ǫ singularities for smallǫ.
These have the right form to be absorbed by a redefinition (i.e. a renormalization) of the coupling. Since
we also want the renormalized coupling to be dimensionless,we have to introduce a dimensionful scale
at which the renormalization is performed,µR. To make this concrete, at one-loop order, the prescription
is straightforward: after calculating all the one-loop diagrams, rewrite all occurrences ofαS in terms of
the renormalized coupling,

αS(µR) = αS + β0 F (ǫ)

(
µ2

µ2R

)ǫ
1

ǫ
α2

S . (1.80)

ProvidedF (0) = 1, once this substitution has been made, the amplitude is finite. That is, theǫ poles
that this expression produces exactly cancel those from theone-loop calculation. Moreover, the arbitrary
scaleµ cancels from the amplitude at this point. One is left with a finite amplitude that depends only on
µR andαS(µR), in exactly the same way as discussed earlier.

The arbitrary functionF (ǫ) = 1 + O(ǫ) defines the renormalization scheme. More precisely, it
defines what finite parts of the loop amplitude are subtractedinto the renormalized coupling, in addition
to the divergent part. The MS, or minimal subtraction, scheme, is defined by subtracting nothing else,

FMS(ǫ) = 1. (1.81)

The most commonly used scheme is theMS, or modified minimal subtraction, scheme, in which one
identifies some additional overall factors coming from the analytical continuation of the angular inte-
grations in the one-loop calculation. Since they are universal it is convenient to subtract them into the
coupling,

FMS(ǫ) =
(4π)ǫ

Γ(1− ǫ)
= 1 + (ln 4π − γE)ǫ, (1.82)

whereΓ is the Euler gamma function andγE the Euler gamma constant,γE ≈ 0.577216. Note that the
two expressions on the right-hand side of Eq. (1.82) differ at orderǫ2. Different practitioners use either
of the two definitions, resulting in a finite difference at twoloops that is straightforward to keep track of.

1.9 Quark masses and decoupling

The quark massesmq are also parameters of the Lagrangian and face the same issues: for a physical
calculation we should redefine them in a physical way. For theelectron mass, we have a simple definition:
we can isolate a single electron and ‘weigh’ it in the laboratory. That is, we can define its mass through
the classical limit. We cannot use the same procedure for quarks, because confinement means that we
can never take a single quark off to our laboratory to weigh itindividually. We must therefore define
some other renormalization procedure.
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It is possible to proceed in close analogy with the coupling strength. We renormalize our the-
ory at the same scaleµ. We encounter gluon loop corrections to the quark propagator and absorb
the part of them at scales aboveµ into the definition of the mass. We therefore obtain a ‘running’
(i.e. scale-dependent) mass. Just like for the coupling, wecan obtain a renormalization group equation
with perturbatively-calculable coefficients,

µ2

m

dm

dµ2
= − 1

π
αS(µ

2) + . . . . (1.83)

At leading order it can be solved exactly, to give

m(µ2) =M
[
αS(µ

2)
] 1
πβ0 , (1.84)

whereM is a renormalization group invariant constant (c.f.ΛQCD). Note that increasingµ2 decreasesm2.
Thus quarks appear to get lighter as they are probed at scalesfurther and further above their masses.

An alternative scheme, which is often used in electroweak physics, and in the physics of heavy
mesons, is thepole mass. Here one definesmq to be the pole of the propagatori( 6 p +mq)/(p

2 −m2
q)

to all orders. This is very useful forQ ∼ mq, but it turns out that it is similar to a running mass scheme
with µ of ordermq and hence generates large logarithms and a large truncationerror forQ≫ mq.

If our dimensionless observableR is finite for massless quarks then the quark mass effects must
vanish smoothly as the mass goes to zero. Therefore the mass effects must be suppressed by(mq/Q)n,
with n ≥ 1. If there are quarks with mass much greater thanQ, they can only affect our observable
through loop corrections. A dimensional argument shows that such corrections must be suppressed by
(Q/mq)

n, with n ≥ 2.

These observations form the basis of the decoupling theorem, in which quarks heavier than our
physical scale can be ignored, and quarks lighter than it canbe treated as massless. Thus, for most QCD
calculations, we work withNf flavours of massless quark (recall theNf that appeared inβ0). Care must
be taken whenQ is close to a quark mass, or we study a range of processes at scales that span a quark
mass, but in fact for most of the phenomenology considered inthis course we can simply takeNf to be
fixed,Nf = 5.

1.10 Summary

We have seen that QCD is a gauge theory. The fact that the gaugesymmetry is non-Abelian predicts that
the gluon is self-interacting. This leads to the fact that the theory becomes strongly interacting at low
energies, and hence non-perturbative, and weakly interacting at high energies so that perturbation theory
can be used.

The main tools that we will use to study QCD are thefactorizationof non-perturbative effects and
the renormalizationanddecouplingof high-energy physics. These allow us to use perturbation theory
and, in particular, the Feynman rules, to study the phenomenology of QCD.

2 QCD phenomenology at tree level

Leading order perturbation theory, together with the one-loop renormalization group equation is enough
to understand a wide variety of QCD phenomenology. In this section, we briefly review the phenomenol-
ogy of QCD before introducing the complications of loop corrections to it in the following section. Most
of the salient ideas are introduced in the context ofe+e− annihilation and deep inelastic scattering, but
apply equally well to hadron collisions and photoproduction, which we discuss more briefly at the end.

2.1 The cross section for e+e− → hadrons

One of the most striking features ofe+e− annihilation events is the fact that many of them produce many
hadrons. In trying to calculate the cross section for this process, however, we are immediately faced with
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a problem: the Lagrangian does not contain any information about hadrons, so there are no Feynman
rules involving them. Even if there were, calculating all the diagrams for events involving thirty or forty
particles would be prohibitively complicated, let alone integrating them over the corresponding phase
space to produce a total cross section. Fortunately a simpleapplication of the Feynman rules of QED,
together with some simple symmetry arguments, allows us to make a surprisingly strong statement about
the cross section fore+e− annihilation to hadrons.

We postulate that the matrix element for the sum of all diagrams in which a virtual photon with
Lorentz indexν and momentumq produces a particular set ofn hadrons with momenta{p1 . . . pn} is
known and parameterize it by a functionTν(n, q, {p1 . . . pn}). Using this function, it is straightforward
to write down the matrix element for the full process,

M = {v̄(q2)eγµu(q1)}
−gµν
q2

Tν(n, q, {p1 . . . pn}) (2.1)

and hence the phase-space integral for its total cross section. The total cross section to produce any
number of any type of hadrons is then simply given by the sum ofthis integral over hadron type and
multiplicity (both generically represented by

∑
n),

σ =
1

2s

1

4

e2

s2
Tr(6q2γµ6q1γν) (2.2)

×
∑

n

∫
dPSn Tµ(n, q, {p1 . . . pn}) T ∗

ν (n, q, {p1 . . . pn}). (2.3)

We then define a new two-index tensor,Hµν , to represent this sum of integrals,

Hµν(q) ≡
∑

n

∫
dPSn Tµ T

∗
ν , (2.4)

which after the integration and summation can only be a function of q2.1. Now, there are only two
possible Lorentz covariant two-index tensor functions of one four-vector,gµν andqµqν. We therefore pa-
rameterizeHµν as a linear combination of these, with coefficients that are functions of the only available
Lorentz scalar,q2,

Hµν = A(q2)gµν +B(q2)qµqν . (2.5)

Finally, since the theory is gauge invariant (in practice boiling down to invariance under the change
εµ → εµ + qµ for the polarization vector of a photon of momentumq), Hµν must be perpendicular to
bothqµ andqν ,

qµHµν = qνHµν = 0, (2.6)

giving a relation between the two functions,

A = −q2B. (2.7)

The final step is to realize thatB(s) has to be dimensionless. Since it is a function of only one dimen-
sionful parameter, it must therefore be constant. We therefore have the fundamental prediction that (for
energies well above all hadron masses) the cross section to produce any number of hadrons is propor-
tional to that to produce a muon–antimuon pair,

R(e+e−) ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= constant, (2.8)

2.1Can you spot the flaw in this argument? It assumes that all information about the hadron momenta is washed out by the
integration, which is only true if they are massless. In general sincep2h is fixed atm2

h during the integration,H also depends
in a complicated way on the masses of all possible hadrons. Infact we will shortly justify, on the basis of a space-time picture,
neglecting these, in the limit thatq2 is much greater than allm2

h. It also ignores any other masses in the problem, like the Z
mass, which we remedy later on.
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Fig. 2.1: Space-time sketch of the production of a hadron ine+e− annihilation

without knowing anything about the interactions of hadrons!

In order to go further than this and try to predict this constant, or learn something from its mea-
surement, we need a specific model of the production of hadrons. This is provided by thequark parton
model. Of course this can be more rigorously derived, but I find it more useful to illustrate the physics
with a space-time argument, see Fig. 2.1. Since the photon ishighly virtual, it is produced and decays to
quarks in a small space-time volume,t ∼ 1/

√
s. On the other hand, the wavefunction of a hadron with

mass∼ mhad has spatial extent∼ 1/mhad and hence the confinement of a quark pair into the hadron
takest ∼ 1/mhad. Thus there is no time for the confinement to affect the annihilation cross section and
we expect

σ(e+e− → hadrons) ≈ σ(e+e− → quarks), (2.9)

and the Feynman rules do tell us how to calculate that.

In fact, we can go further than that and use an argument from quantum mechanics to postulate the
form of the corrections to this approximation. Over a regionof size∼ 1/

√
s, the amount by which the

wave function of a hadron with spatial extent∼ 1/mhad, could vary is∼ mhad/
√
s and the corrections

should be at least this to some positive power,

σ(e+e− → hadrons) = σ(e+e− → quarks)×
(
1 +O

(
mhad√
s

)n)
. (2.10)

On the basis of the space-time picture, we can only justify that the corrections to the quark parton model
are suppressed by some (positive) power of the ratio of scales. In practice,n is believed to be 6 fore+e−

annihilation, making these corrections so small as to be almost impossible to measure. For most cross
sections however,n is 2, and for jet cross sections, 1.

We calculated the cross section fore+e− → qq̄ in Section 1.6 and obtained

Re+e− ≡ σ(hadrons)

σ(muons)
= Nc

∑

q

e2q , (2.11)

where the sum overq is over all quark flavours that are kinematically allowed, i.e. for which
√
s > 2mq.

If we ignore effects close to threshold, such as the formation of bound states, we can expect a plot of
Re+e− against

√
s to present a series of steps at twice the quark masses and be flat in between. In

principle one can read off the quark masses and charges from this plot.

Looking at the data in Fig. 2.2, we see that the general trend is as expected, but there are clearly
corrections that are not accounted for by the quark parton model. One of these is the effect of higher

16

M.H. SEYMOUR

112



��������������������������������������������������������������������������������

0

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

exclusive data

e+e– → hadrons

QCD

γγ2

Crystal Ball

PLUTO

BES

ω Φ J/ψ1S ψ2S

ψ3770

√s   (GeV)

R

0

1

2

3

4

5

6

5 6 7 8 9 10 11 12 13 14

e+e– → hadrons

QCD

PLUTO

LENA

Crystal Ball

MD1

JADE

MARK J

ϒ1S ϒ2S 3S 4S

ϒ10860

ϒ11020

√s   (GeV)

R

Fig. 2.2: Data onRe+e− as a function of centre-of-mass energy. Upper two panels taken from [4], lower from
ESW [1]. The bands (red above, white below) show the QCD prediction, while the horizontal lines in the lower
panel show the quark parton model expectations.
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Fig. 2.3: Calculation ofRhad as a function of centre-of-mass energy

order QCD corrections, which we include in the next lecture.Another is the effect of theZ0 boson,
which is clearly seen at the high energy end of Fig. 2.2, whichwe include shortly.

Before including theZ0 contribution, it is worth remarking on a historical ambiguity that affects
this figure. Although people wrote

R ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

they often didn’t actually use that formula to show their experimental results, but rather

R ≡ σ(e+e− → hadrons)
4πα2

3s

,

using the leading order QED result for the denominator. Clearly many of the experimental and theoretical
systematic errors would be smaller if the former was used, although of course the statistical errors would
be larger, by around a factor of 2. More recent measurements,for example from LEP, have used the more
honest notation in which the numerator and denominator are calculated or measured in the same way.
This is sometimes calledRhad to differentiate it fromR.

In Fig. 2.3 I show the calculation ofRhad in the quark parton model, including theZ0 contribution.
It is clear thatγ–Z interference is important, even far from the Z peak. However, exactly on the peak the
interference is zero (you might like to think about a simple explanation for why) andRhad is given to a
good approximation by the Z contribution alone,

Rhad = Nc

∑
q v

2
q + a2q

v2µ + a2µ
= 20.095, (2.12)

wherevi andai are the vector and axial couplings of theZ0 to fermion typei. I note for future reference
that the value including the photon contribution is 19.984.This number compares well with the LEP
average measured value of20.767 ± 0.025. However, the difference is still large on the scale of the
experimental uncertainty, again indicating a clear need for the QCD corrections.
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Fig. 2.4: Decay ofτ lepton to hadrons

2.1.1 τ decays

We conclude this section by mentioning the closely-relatedprocess ofτ decay to hadrons, depicted in
Fig. 2.4. One can apply exactly the same arguments to the blobin this diagram as to annihilation of
e+e− to hadrons. The only differences are that we have a virtual W boson producing hadrons instead
of a virtual photon, and that we have an integral over all virtualities of the W between theτ mass and
zero, rather than a single virtuality fixed by the beam energies. Nevertheless exactly the same arguments
follow through and one obtains

Rτ ≡ B(τ → hadrons)
B(τ → µ)

= Nc

∑

i,j

|Vij |2 ≈ Nc, (2.13)

where the sum is over the flavours of quark and antiquark that can appear in the W decay andV is the
CKM matrix. Since aτ− can decay tōud or ūs, to a good approximation this sum iscos2 θC + sin2 θC
and the final result follows.

We will see later that this process provides an excellent measurement ofαS.

2.2 Deep inelastic scattering

Historically, the quark model developed as a way of rationalizing the vast array of strongly-interacting
particles that had been found by the 1960s. However, it was not clear whether quarks were really physical
constituents of hadrons, or merely a convenient mathematical language to describe the hadrons’ wave
functions. The decisive evidence came from deep inelastic scattering experiments at SLAC. Today, deep
inelastic scattering experiments give us by far the best information about the internal structure of the
proton.

2.2.1 Quarks as partons in hadronic scattering

The classic probe of nuclear structure is electron–nucleusscattering. Assuming the scattering takes place
by exchanging a single photon, measuring the kinematics of the scattered electron uniquely constrains
that of the photon. The scattered electron has two non-trivial kinematic variables, its energy and scat-
tering angle. These can more conveniently be converted intothe photon virtuality (Q2 ≡ −q ·q) and
energy in the nucleus rest frameν. Q2 controls the resolving power of the photon,Q2 ∼ 1/λ2. For
fixed smallQ2 ≪ 1/R2, whereR is the nuclear radius, the photon is absorbed elastically bythe nucleus,
giving a narrow peak in theν distribution atν = Q2/2MN . For increasedQ2 ∼ 1/R2 one begins to
resolve nuclear resonances as additional peaks at higherν. Finally, for largeQ2 ≫ 1/R2, one resolves
the proton constituents of the nucleus, with the photon being absorbed elastically by individual protons.
These show up as a peak atν = Q2/2Mp, broadened by the internal motion of the proton within the
nucleus.

The scattering of electrons off hadrons, protons for example, is exactly analogous: at lowQ2 one
sees only elastic proton scattering, but asQ2 is increased, the photon can be elastically absorbed by the
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Fig. 2.5: Deep inelastic scattering

(charged) quark constituents of the proton. (Eventually atvery largeQ2 andν something new happens
relative to the nuclear case, but we will not discuss that until the next lecture.)

We are interested in the region of Deep (Q2 ≫ M2
p ) Inelastic (W 2 ≫ M2

p , whereW is the
invariant mass of the photon–proton system) Scattering, DIS. We are therefore justified in neglecting the
proton mass throughout, provided we do not work in the protonrest-frame, which is not well defined in
that case. This is most conveniently done by working in termsof Lorentz-invariant variables.

2.2.2 Lorentz-invariant variables

It is convenient to describe this in terms of Lorentz-invariant variables. We label the momenta as shown
in Fig. 2.5. For an electron of momentumk to scatter to one of momentumk′ by exchanging a photon of
momentumq with a proton of momentump we again have, for fixed centre-of-mass energys, only two
independent kinematic variables,

s = (k + p)2, (2.14)

Q2 = −q2, (2.15)

x =
Q2

2p·q , (2.16)

in terms of which we can calculate two other commonly-used variables

W 2 = (p+ q)2 = Q2 1− x

x
, (2.17)

y =
p·q
p·k =

Q2

xs
. (2.18)

The kinematic limits are

Q2 < s, (2.19)

x >
Q2

s
. (2.20)

The coverage of the(x,Q2) plane by the HERA, and earlier fixed target, DIS experiments is shown in
Fig. 2.6

2.2.3 Structure functions

Since we do not yet know anything about the internal structure of protons, we cannot calculate the matrix
element for the interaction of a photon with the proton to produce some arbitrary stateX. However, like
in the case ofe+e− to hadrons we can get a surprisingly long way just by considering the properties that
that matrix element must satisfy.
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We parameterize the matrix element for a proton of momentump to absorb a photon of momentum
q and Lorentz indexµ to produce an arbitrary set of hadronsX with fixed momenta{pX} as

e Tµ(p, q; {pX}). (2.21)

We therefore have the matrix element squared for the whole process

1

4
|M|2 = 1

4

e4

Q4
Tr
{
6kγµ6k′γν

}
Tµ(p, q; {pX})T ∗

ν (p, q; {pX}). (2.22)

For convenience we define the Lorentz tensor

Lµν = Tr
{
6kγµ6k′γν

}
. (2.23)

If the stateX consists ofn hadrons, then then+1-body phase space for the whole process can be
factorized into a part describing the electron kinematics times then-body phase space forX,

dPS =
Q2

16π2sx2
dQ2 dx dPSX . (2.24)

This is as far as we can go for a specific stateX, but we can get further by integrating over the phase
space ofX and summing over all possible statesX. We define

∑

X

∫
dPSX

1

4
|M|2 ≡ e4

Q4
LµνHµν , (2.25)
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or ∑

X

∫
dPSX Tµ(p, q; {pX})T ∗

ν (p, q; {pX}) = Hµν . (2.26)

Since we have summed and integrated out all dependence onX, Hµν can only depend on the vectorsp
andq. Since the electromagnetic and strong interactions conserve parity, it must be symmetric inµ and
ν. There are only four possible symmetric two-index tensors that can be constructed from two vectors,
so we can parameterize the hadronic tensor as a linear combination of them:

Hµν = −H1gµν +H2
pµpν
Q2

+H4
qµqν
Q2

+H5
pµqν + qµpν

Q2
, (2.27)

where theHs are scalar functions of the only two Lorentz scalars available q·q = −Q2 andp·q = Q2/2x,
i.e., ofx andQ2 only (nots). (Note that we neglectp·p =M2

p since we work in the limit|q·q|, p·q ≫ p·p.)
If we includeZ0 exchange (or charged current scattering) we can construct one further tensor,

which is antisymmetric inµ and ν, H3 ǫµνλσp
λqσ, whereǫµνλσ is the totally antisymmetric Lorentz

tensor.

Contracting withLµν we find thatH4 andH5 cannot contribute to physical cross sections (think
about a simple explanation why not) and we have

LµνHµν = 4k ·k′H1 + 4
p·k p·k′
Q2

H2. (2.28)

Redefining (just a matter of convention)H1 = 4πF1 andH2 = 8πxF2, we obtain the final result for the
scattering cross section

d2σ

dx dQ2
=

4πα2

xQ4

[
y2xF1(x,Q

2) + (1− y)F2(x,Q
2)
]
. (2.29)

Without knowing anything about the interactions of hadrons, we have been able to derive thes depen-
dence of the scattering cross section for fixedx andQ2 (which enters through they dependence: recall
y = Q2/xs).

TheFs are called the structure functions of the proton. It is common to see other linear combina-
tions of the structure functions,

FT (x,Q
2) = 2xF1(x,Q

2), (2.30)

FL(x,Q
2) = F2(x,Q

2)− 2xF1(x,Q
2), (2.31)

which correspond to scattering of transverse and longitudinally polarized photons respectively. We there-
fore have

d2σ

dx dQ2
=

2πα2

xQ4

[
(1 + (1− y)2)FT (x,Q

2) + 2(1 − y)FL(x,Q
2)
]
. (2.32)

In fact the most common form you will see this in nowadays is

d2σ

dx dQ2
=

2πα2

xQ4

[
(1 + (1− y)2)F2(x,Q

2)− y2FL(x,Q
2)
]
. (2.33)

For the majority of current data,y2 is small andFL can be neglected: only close to the kinematic limit,
or for very precise data, need it be considered.

We have isolated all the non-trivialx andQ2 dependence into the two functionsF2(x,Q
2) and

FL(x,Q
2), but we still have no idea how those functions behave. If we make the assumption that the
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Fig. 2.7: In the Breit frame, the proton of diameter2R is contracted to a pancake of thickness4RxMp/Q (a) so
that a photon of high virtualityQ interacts incoherently with a single parton within it (b)

interaction of the photon with the innards of the proton doesnot involve any dimensionful scale, then we
immediately get the result that the dimensionlessFs cannot depend on the dimensionfulQ2 and we get

d2σ

dx dQ2
=

2πα2

xQ4

[
(1 + (1− y)2)F2(x)− y2FL(x)

]
, (2.34)

known as Bjorken scaling. Experimentally this is true to a pretty good approximation, but given that
the proton is supposed to consist of quarks, bound together with a distance scale∼ 1/Mp, how can the
interaction possibly beMp-independent? The answer to this lies in the parton model.

2.2.4 Parton distribution functions and Bjorken scaling

Although it is of course Lorentz-invariant, the parton model is most easily formulated in a frame in which
the proton is fast moving. Most convenient is the so-called Breit frame, in which the photon has zero
energy and collides head-on with the proton. In this frame, the proton energy isQ/2x. Assuming that in
its own restframe it is a sphere of radiusR, in the Breit frame it is massively Lorentz contracted to a flat
pancake, still with transverse diameter2R, but with length4RxMp/Q≪ 2R, as illustrated in Fig. 2.7a.
The transverse size of the photon is∼ 1/Q≪ 2R. The photon therefore interacts with a tiny fraction of
a thin disk, so provided that the quarks are sufficiently dilute the photon is not able to resolve the quarks’
interactions and they act as if they were free. That is, the photon effectively collides with a single free
quark, as illustrated in Fig. 2.7b.

Since they act as if they do not interact, their interactionsdo not introduce a dimensionful scale,
and so the structure functions will obey Bjorken scaling.

More precisely, we suppose that the proton consists of a bundle of comoving partons, which carry
a range of the proton’s momentum. We posit probability distribution functions (more often called parton
distribution functions, pdfs), such that partons of typeq carry a fraction of the proton’s momentum
betweenη andη+dη a fractionfq(η)dη of the time. Provided that these partons are pointliker2 ≪ 1/Q2

and dilutefq(η) ≪ Q2R2, the photons will scatter incoherently off individual partons. The cross section
can then be factorized as the convolution of the pdfs with thecross section for parton scattering,

d2σ(e+ p(p))

dx dQ2
=
∑

q

∫ 1

0
dη fq(η)

d2σ(e + q(ηp))

dx dQ2
. (2.35)

We will calculate the partonic cross section shortly, but first let me point out a couple of features it must
have.

Firstly if we assume that the scattering is elastic, then theoutgoing parton must be on mass-shell.
Since we are then considering a two-to-two collision, whichhas only one nontrivial kinematic variable,
the double-differential cross section inx andQ2 must be proportional to aδ function fixing one of the
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variables. Specifically, if we assume that the partons are massless, then we obtain the relation

(q + ηp)2 = 2η p·q −Q2 = 0, (2.36)

or
η = x. (2.37)

Secondly if we assume that the struck partons are the quarks of the quark model, they must be
fermions. Simply from helicity conservation, we can then show thatFL = 0. This is known as the
Callan–Gross relation and was one of the first proofs that thequarks of the quark model really were the
partons of the parton model. (If the partons were instead scalars we would haveFT = 0 and hence
completely differenty-dependence of the cross section.)

2.2.5 Scattering cross sections

To calculate the parton model prediction for the structure functions, we need the matrix elements for
eq → eq. These can be obtained by crossing symmetry from those fore+e− → qq̄. That is,

∑
|M|2 = 8(4πα)2 e2qNc

(pe ·pq)2 + (pe ·p′q)2
(pe ·p′e)2

. (2.38)

Converting to the kinematic variables we defined earlier, wehave

∑
|M|2 = 8(4πα)2 e2qNc

1 + (1− y)2

y2
. (2.39)

Using (2.24), we have

dPS =
Q2

16π2sx2
dQ2 dx dPSX . (2.40)

SinceX consists only of one massless parton, we have

dPSX =
d4pX
(2π)3

δ(p2X) (2π)4δ4(ηp+ q − pX) (2.41)

= (2π)δ((ηp + q)2) (2.42)

=
2πx

Q2
δ(η − x). (2.43)

The full cross section is therefore

dσ

dx dQ2
=

1

4Nc

1

2ŝ

Q2

16π2sx2
2πx

Q2
δ(x − η)

∑
|M|2 (2.44)

=
1

4Nc

y2

16πQ4
δ(x− η)

∑
|M|2, (2.45)

where the factor of1/Nc is the average over incoming colours. We therefore have

dσ(e+ q)

dx dQ2
=

2πα2

Q4
δ(x− η) e2q

(
1 + (1− y)2

)
(2.46)

and hence
dσ(e + p)

dx dQ2
=

2πα2

xQ4

(
1 + (1− y)2

)∑

q

e2q xfq(x). (2.47)

Comparing (2.47) with (2.33) we therefore have

F2(x,Q
2) =

∑

q

e2q xfq(x), (2.48)
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Fig. 2.8: The structure functionF2 as a function ofx for variousQ2 values, exhibiting Bjorken scaling, taken from
ESW [1]

FL(x,Q
2) = 0. (2.49)

Note thatF2 isQ2-independent, showing Bjorken scaling.

Although we will see that QCD corrections do violate Bjorkenscaling, it is satisfied pretty well
by the data, as can be seen in Fig. 2.8.

2.2.6 Charged current neutrino DIS

We can consider charged current neutrino scattering in exactly the same way. Since the scattering takes
place by the weak interaction, parity is violated, allowingone additional Lorentz structure,

L
ν
ν̄
µν = Le

µν ± 2iǫµνρσk
ρk′σ, (2.50)

Hµν = −H1g
µν +H2

pµpν

Q2
− i

Q2
ǫµνρσpρqσH3, (2.51)

⇒ L
ν
ν̄
µνH

µν = 2Q2H1 +Q2 1− y

x2y2
H2 ±

Q2

xy
H3 (1− y/2). (2.52)

Thus, definingH3 = 8πxF3, we have a third structure functionF3:

d2σ(νν̄ + p)

dx dQ2
=
G2

F

4πx

(
M2

w

Q2 +M2
w

)2 [(
1 + (1− y)2

)
F

ν
ν̄
2 − y2F

ν
ν̄
L ±

(
1− (1− y)2

)
xF

ν
ν̄
3

]
, (2.53)

whereGF is the Fermi constant andMw theW boson mass. In the parton model we have

F
ν
ν̄
2 (x,Q2) =

∑

q

2xfq(x) +
∑

q̄

2xfq̄(x), (2.54)

xF
ν
ν̄
3 (x,Q2) =

∑

q

2xfq(x)−
∑

q̄

2xfq̄(x), (2.55)

where the sums for neutrino scattering are over all partons that can absorb aW+, i.e., d, s,̄u and c̄ and
for antineutrino over those that can absorb aW−, i.e., u, c,̄d ands̄.
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Fig. 2.9: Parton distribution function set A from the Martin-Roberts-Stirling group, taken from ESW [1]

2.2.7 Global fits

It is also possible to measure DIS on the neutron, or at least on deuterium from which the neutron
structure functions can be derived. Using strong isospin symmetry, we have the relations

fu/n(x) = fd/p(x), (2.56)

fū/n(x) = fd̄/p(x), (2.57)

fd/n(x) = fu/p(x), (2.58)

fs/n(x) = fs/p(x), (2.59)

and so on. It is conventional to always refer to the proton case, dropping the “/p” subscript. We therefore
have the slightly confusing result forF en

2 shown below, in whichfd is multiplied by(2/3)2, and so on.

We therefore have

F ep
2 = 1

9xfd +
4
9xfu +

1
9xfd̄ +

4
9xfū +

1
9xfs +

1
9xfs̄ +

4
9xfc +

4
9xfc̄, (2.60)

F en
2 = 4

9xfd +
1
9xfu +

4
9xfd̄ +

1
9xfū +

1
9xfs +

1
9xfs̄ +

4
9xfc +

4
9xfc̄, (2.61)

F νp
2 = 2xfd + 2xfū + 2xfs + 2xfc̄, (2.62)

xF νp
3 = 2xfd − 2xfū + 2xfs − 2xfc̄, (2.63)

F ν̄p
2 = 2xfu + 2xfd̄ + 2xfc + 2xfs̄, (2.64)

xF ν̄p
3 = 2xfu − 2xfd̄ + 2xfc − 2xfs̄. (2.65)

If we make the assumption thatfs̄ = fs andfc̄ = fc, then we have six unknowns for six pieces of data
so, given precise enough data, we could solve for all the pdfsexactly. In practice of course it is never so
simple and one must make global fits to as wide a variety of dataas possible.

One gets typical results like those shown in Fig. 2.9. Note that this uses the common notation of
defining valence quark distributions,

fuv ≡ fu − fū, (2.66)
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fdv ≡ fd − fd̄. (2.67)

Non-valence quarks are generically referred to as the sea.

2.2.8 Sum rules

Having results for the pdfs, one can form interesting integrals over them, for example,
∫ 1

0
dx fuv(x) = 2, (2.68)

∫ 1

0
dx fdv(x) = 1. (2.69)

Various such integrals can be constructed directly from thestructure functions. It is worth checking that
you can reproduce the physical interpretation of each.

2.2.8.1 The Gross–Llewellyn-Smith sum rule

1
2

∫ 1

0
dx
(
F νp
3 + F ν̄p

3

)
= 3, (2.70)

which counts the number of valence quarks in the proton. In QCD this provides a useful measurement
of αS, because the right-hand side is actually equal to3

(
1− αS

π +O(α2
S)
)
.

2.2.8.2 The Adler sum rule

1
2

∫ 1

0

dx

x

(
F ν̄p
2 − F νp

2

)
= 1, (2.71)

which counts the difference between the number of up and downvalence quarks. This has the property
that it is exact even in QCD, i.e., all higher order corrections vanish.

2.2.8.3 The Gottfried sum rule
∫ 1

0

dx

x
(F ep

2 − F en
2 ) ≈ 0.23, (2.72)

where the result is experimental. This is sensitive to the difference between the number of up and down
sea quarks: it would be 1/3 if they were equal.

2.2.8.4 The momentum sum rule

Finally, we have the particularly significant result

1
2

∫ 1

0
dx
(
F νp
2 + F ν̄p

2

)
≈ 0.5, (2.73)

where the result is again experimental. This tells us that only about half of the proton’s momentum is
carried by quarks and antiquarks.

2.3 Hadronic collisions

2.3.1 The Drell–Yan process

If the parton model is correct, the parton distribution functions should be universal. We should therefore
be able to use the DIS measurements to make predictions for other hadronic scattering processes. The
classic example is the so-called Drell–Yan process, of lepton pair production in hadron collisions,

h1 + h2 → µ+ + µ− +X, (2.74)
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where the stateX goes unmeasured. In the parton model this arises as the sum over all quark types of

q + q̄ → µ+ + µ−. (2.75)

The cross section can be written as the convolution of pdfs with a partonic cross section, exactly like in
DIS:

dσ(h1(p1) + h2(p2) → µ+µ−)
dM2

=
∑

q

∫ 1

0
dη1fq/h1

(η1)

∫ 1

0
dη2fq̄/h2

(η2)
dσ(q(η1p1) + q̄(η2p2) → µ+µ−)

dM2
,

(2.76)
whereM is the mass of theµ+µ− pair. Note that since the partonic cross section contains aδ(M2 −
η1η2s) term, binning the data inM gives extra information about the pdfs. In fact, binning also in the
rapidity of the lepton pair, defined by

y ≡ 1

2
ln
Eµ+µ− + pz,µ+µ−

Eµ+µ− − pz,µ+µ−
, (2.77)

bothη values are fixed, providing a direct measurement of the parton distribution functions (the partonic
cross section can easily be obtained by crossing thee+e− → qq̄ one we calculated in Section 1.6, divided
by a factor ofN2

c for the average over incoming colours):

d2σ

dM2dy
=

4πα2

3NcM2s

∑

q

e2qfq/h1
(eyM/

√
s)fq̄/h2

(e−yM/
√
s). (2.78)

Note that the caseh1 = h2 = p provides a particularly good measure of the sea quark distribution
functions, which are hard to extract from DIS data.

2.3.2 Prompt photon and jet production

Although we have not yet mentioned gluons, we will see in the next lecture that there is also a non-zero
pdf for the gluon,fg(η), as can also be inferred from the momentum sum rule mentionedearlier. As well
as being important for higher order corrections to the processes given above, there are many processes in
which they participate at tree level. The most important of these are prompt photon production,

h1 + h2 → γ +X, (2.79)

and jet production

h1 + h2 → q + q +X, (2.80)

h1 + h2 → q + q̄ +X, (2.81)

h1 + h2 → q + g +X, (2.82)

h1 + h2 → g + g +X, etc. (2.83)

The gluon pdf is used in exactly the same way as the quark ones,and hadronic cross sections
can still be calculated as the sum of convolutions of pdfs with partonic cross sections. Prompt photon
production receives contributions from two partonic processes,

q + q̄ → γ + g, (2.84)

q + g → γ + q. (2.85)

In the caseh1 = h2 = p, the latter dominates, providing a measure of the gluon pdf.However there is a
slight complication, in that processes (2.84), (2.85) are proportional toαS, which is less well-known than
α, which controls the other processes we have studied. In factthis is always the case, that measurements
of the gluon pdf actually measureαS × fg in general. The QCD corrections to this process turn out to be
a lot larger than any of the others we have considered, further complicating this measurement.
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2.4 Summary

We have considered the tree-level phenomenology ofe+e− annihilation, deep inelastic scattering and,
more briefly, hadron collisions. It is remarkable how much QCD phenomenology can be understood
using tree level results. However, we have to worry thatαS is not so small, so higher order corrections
must be important. Equally importantly, it would be nice to see whether, and if so how, the parton model
emerges from QCD.

We discuss both these issues in the next lecture.

3 Higher order corrections

3.1 e+e− annihilation at one loop

In this section, I go through the calculation of the NLO correction to thee+e− → hadrons cross section
in some detail. I will briefly describe some of the more technical aspects of the calculation, for those
interested, in Section 3.1.2, but those who are not can safely skip this section, since I recap the important
results at the start of Section 3.1.3.

In discussing thee+e− → hadrons cross section at tree level, we assumed that quarks produce
hadrons with probability 1. Therefore we calculated thee+e− → qq̄ cross section in Section 1.6. In
discussing jet cross sections, we extended this to say that all partons produce hadrons with probability 1.
Therefore we should calculate the total cross section to produce any number or type of partons. At
leading order this makes no difference, since the only possible process ise+e− → qq̄, but at orderαS we
have to calculate and sum the cross sections forqq̄ andqq̄g final states. We start with the latter.

Recall that the totalqq̄g cross section is divergent,

σ = σ0 CF
αs

2π

∫
dx1 dx2

x21 + x22
(1− x1)(1 − x2)

, (3.1)

where the region of integration is the upper right triangle of the unit square, bordered by the linesx1 = 1
andx2 = 1, which are the singular regions. This divergence must be regularized in some way, before we
can make progress.

First though we discuss the origin of the divergences. They arise from propagator factors that
diverge,

1

(p+ k)2
=

1

2p·k =
1

2Eω(1 − cos θ)
≈ 1

Eωθ2
, (3.2)

whereE andω are the quark and gluon energies andθ is the angle between them.

In the collinear limit,θ → 0, one in principle obtains1/θ4 in the matrix element squared, but in
fact the numerators always contribute a factor ofθ2, so one obtains

|M|2 ∼ 1

θ2
. (3.3)

In the soft limit,ω → 0, one has in the interference between diagrams in which the gluon is attached to
quark 1 and quark 2,

|M|2 ∼ p1 ·p2
p1 ·k p2 ·k

∼ 1

ω2
. (3.4)

In terms ofω andθ the phase space is given by

d3k

2ω
= 1

2 ωdω sin θ dθ dφ ∼ ωdω θdθ. (3.5)

We therefore have logarithmic singularities in both the soft and collinear limits. We generically refer to
both of these as the infrared limit.
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3.1.1 Regularization

As in the discussion of renormalization, the simplest way wecould regularize this cross section is with
a cutoff, for example on the transverse momentum of the gluon, which would prevent the integration
entering both the soft and collinear regions. However, we will see that infrared singularities cancel
between different contributions, in this caseqq̄ andqq̄g, so we must use a regularization that can be
consistently applied in all contributions. It is not clear that this is the case for a cutoff, since it must be
applied in both real and virtual contributions, which have very different structures. Instead, to ensure
consistent application across all processes, it is better to modify the theory in such a way that some
dimensionless parameterǫ regulates the divergences. Then the complete calculation can be performed in
this modified theory and at the end of the calculation, when all the divergences have cancelled, the limit
ǫ → 0 can be smoothly taken. Remarkably, dimensional regularization, which we used for ultraviolet
singularities, also provides a consistent regulator for infrared singularities, as we shall discuss in detail
shortly.

Another regularization scheme, which actually works well in QED, and for simple processes in
QCD, is the gluon (or photon) mass regularization. We introduce a non-zero gluon massm2

g = ǫQ2.
This prevents the propagators from reaching zero and diverging: for massless quarks the minimum value
ism2

g and for a quark of massmq it is 2mqmg. With this modification one can recalculate the differential
cross section and integrate it to give a finite result,

σqq̄g = σ0 CF
αs

2π

(
log2

1

ǫ
− 3 log

1

ǫ
+ 7− π2

3
+O(ǫ)

)
. (3.6)

However, since a non-zero gluon mass violates gauge invariance, this method is bound to fail in general.
In particular, it is not suitable for any process in which anylowest order contributions have external
gluons. As in the ultraviolet case, the only scheme that is known to be consistent with all the symmetries
of QCD, and hence to work to arbitrary orders in arbitrary processes, is dimensional regularization.

The reason why I said that it is remarkable that dimensional regularization works in the infrared
limit is the fact that the two limits have non-overlapping regions of applicability in the complexd plane.
Ultraviolet-singular integrals are regularized by working in d < 4 dimensions, but infrared-singular inte-
grals are only rendered finite by working ind > 4 dimensions. However, by carefully splitting contribu-
tions that are singular in both the infrared and ultravioletone can consider the regularization schemes that
are used in each as independent. In each region, one considers the appropriate dimensionality (d = 4−2ǫ
with ǫ > 0 in the ultraviolet and withǫ < 0 in the infrared) and then analytically continues to the whole
complexǫ plane. Since analytical continuation is unique, this givesa unique result for each, in the region
of applicability of the other, and the two can be combined before the limitǫ → 0 is taken. This subtlety
leads to some surprising results, for example for the self-energy of a massless quark, discussed below.

As the calculation of cross sections in dimensional regularization is rather technical, it is rare to
see it done in summer school lectures, but I think it brings out some interesting points, so I at least
sketch how the calculation works in Section 3.1.2. As I said,those who disagree can safely skip ahead
to Section 3.1.3.

3.1.2 Aside: Real and virtual corrections in dimensional regularization

It is straightforward to generalize the Feynman rules tod dimensions and fairly straightforward to gener-
alize the Dirac algebra. The result is thatd-dimensional matrix elements still have propagators∼ 1/p2,
but that the numerators becomed dependent. (It is worth mentioning the closely-related dimensional
reduction scheme, which is often used for supersymmetry calculations, since conventional dimensional
regularization violates supersymmetry. In this scheme oneworks ind dimensions, but modifies the the-
ory in such a way that fermions and massless vector bosons still have 2 spin states, instead ofd−2
as in dimensional regularization. The result is that the matrix elements themselves are equal to the 4-
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dimensional ones and it is only on performing the loop and phase space integrals that thed dimensionality
gets introduced.)

3.1.2.1 Phase space integrals

We will have to integrate overd-dimensional phase space. We begin by considering integer values of
d and then continue the results to real values. It is straightforward to write down the basic integration
measure,

ddk δ+(k
2) =

dd−1k

2ω
=

1

2
ωd−3dω dΩd−2, (3.7)

whereω is the energy ofk anddΩd−2 is an element ofd−2-dimensional solid angle. The only difficulty
concerns the evaluation of integrals over this solid angle.In four dimensions we have

k = ω(1; sinφ sin θ, cosφ sin θ, cos θ) (4 dimensions), (3.8)

whereθ andφ are the usual spherical polar coordinates withθ the polar angle andφ the azimuthal angle.
In five dimensions we have

k = ω(1; sinψ sinφ sin θ, cosψ sinφ sin θ, cosφ sin θ, cos θ) (5 dimensions), (3.9)

whereψ is an azimuthal angle in the additional dimension. Generalizing tod dimensions, we haved− 4
additional azimuths and we writek generically as

k = ω(1; . . . , cosφ sin θ, cos θ) (d dimensions), (3.10)

where the ellipsis represents ad−3-vector of lengthsinφ sin θ containingd − 4 azimuths. Depending
on the complexity of the calculation, more or less of these additional components have to be specified
precisely. In fact in our case, since we only consider the relative orientations of three momenta that have
zero total momentum, and therefore all lie in a plane, it is sufficient to specify

k = ω(1; . . . , cos θ) (d dimensions), (3.11)

where the ellipsis represents ad−2-vector of lengthsin θ containingd− 3 azimuths.

We can see how to integrate over the additional azimuths by again considering integerd and then
generalizing,

∫
dΩ1 =

∫
dφ = 2π, (3.12)

∫
dΩ2 =

∫
dφ sin θ dθ = 4π, (3.13)

∫
dΩ3 =

∫
dψ sinφdφ sin2 θ dθ = 2π2, (3.14)

and so on. We have a recursion relation
∫
dΩn =

∫
dΩn−1 sinn−1 θ dθ, (3.15)

which is solved by

Ωn ≡
∫
dΩn =

2π(n+1)/2

Γ[(n+ 1)/2]
. (3.16)

We are now equipped to tackle the phase space integral, and see how the dimensional regularization
succeeds in regularizing our integrals.
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Fig. 3.1: One-loop diagrams fore+e− → qq̄

3.1.2.2 Regularization

Since the form of the propagator factors is unchanged ind dimensions, and it is these that dominate the
singular region, it is straightforward to read off the behaviour in the regularized theory. In the soft region
we have ∫

0
ω1−2ǫdω

1

ω2
=

∫

0

dω

ω1+2ǫ
∼ − 1

2ǫ
, ǫ < 0, (3.17)

and in the collinear region
∫

0
sin1−2ǫ θ dθ

1

θ2
∼
∫

0

dθ

θ1−2ǫ
∼ − 1

2ǫ
, ǫ < 0. (3.18)

Since our cross section is divergent in both limits, and theycan overlap, i.e., a radiated gluon can be both
soft and collinear, we expect the total cross section to be oforder1/ǫ2. Note, as a consistency check,
that the integrands are positive definite and that, in the region in which they are well-defined,ǫ < 0, the
results are positive (and divergent asǫ→ 0).

3.1.2.3 Totale+e− → qq̄g cross section

We now have all the ingredients we need to calculate the differential cross section fore+e− → qq̄g and
to integrate it over all phase space in dimensional regularization. We obtain

σqq̄g = σ0 CF
αs

2π
H(ǫ)

(
2

ǫ2
+

3

ǫ
+

19

2
− π2 +O(ǫ)

)
, (3.19)

whereσ0 is the lowest order cross section andH(ǫ) is a smooth function, withH(0) = 1, that we will not
ultimately need to know. Note that, as we anticipated from Eqs. (3.17) and (3.18), this result is positive,
and divergent like1/ǫ2 asǫ→ 0.

So far, the regularization scheme has succeeded in quantifying the degree of divergence of the total
three-parton cross section, but it has not helped us solve the problem of the divergence, by recovering a
finite result for a physical cross section. As we already anticipated above, this will come by calculating
the loop correction toe+e− → qq̄.

3.1.2.4 σ(e+e− → qq̄) at one loop

We already made the point that to calculate the total cross section for e+e− → hadrons, we must sum
over alle+e− → partons processes. At this order of perturbation theoryqq̄ is the only other process that
contributes. There are three diagrams, shown in Fig. 3.1. They are down by one power ofαS relative to
the tree-level diagram,

M1 ∝ αSM0. (3.20)

Therefore|M1|2 is two powers down and hence negligible at the order to which we are working. How-
ever, since the final state is the same as that of the tree-level diagram, the two interfere, and their inter-
ference,IRe{M∗

0M1} does contribute at orderαS.
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In quantum mechanics, you know that we must sum over all unobserved quantum numbers at the
amplitude level. Since the gluon momentum is unconstrainedby the outgoing quark momenta, we must
sum overall gluon momenta, ∫

ddk. (3.21)

Note that there is no mass-shell-constraining delta-function: the virtual integral is over all arbitrary on-
and off-shell momenta.

We begin with the first two diagrams, which are proportional to the self-energy of a massless quark.
It is actually easy to see that these have to be zero in dimensional regularization: the value of the integral
has dimensionsEd−4, but by Lorentz invariance the result of the integral can only be a function of the
square of the quark’s momentum,p2 = 0, so there is nothing that can provide this dimensionality3.1.
The only way these two facts can be reconciled is if the integral is zero. However, if we examine the
integrand somewhat closer, this is very surprising, because it is positive definite. How can a positive
definite quantity integrate to zero?

The answer to this question comes from a subtle use of dimensional regularization. In fact this
integral is divergent in both the infrared and ultraviolet.If we split the integral into two parts by introduc-
ing an arbitrary separation scaleΛ, then we obtain an ultraviolet contribution∼ Λ−2ǫ/ǫ and an infrared
contribution∼ −Λ−2ǫ/ǫ. Each is positive in its domain of applicability (ǫ > 0 andǫ < 0 respectively),
but after analytically continuing each to arbitraryǫ, they are exactly equal and opposite, giving a zero
result for these diagrams.

Turning to the third diagram, the vertex correction, we find that it is also divergent in the infrared
and ultraviolet regions. However, its ultraviolet divergence is exactly equal and opposite to the one from
the sum of the two self-energy diagrams. Therefore the sum ofthe three diagrams is ultraviolet finite and
no renormalization is needed at this order. This actually follows directly from the Ward identity of QED.
Thus, one simply has to evaluate the vertex correction diagram in dimensional regularization, to obtain
the complete orderαS contribution toe+e− → qq̄. We find that the infrared divergences do not cancel,
and we obtain

σqq̄ = σ0 CF
αs

2π
H(ǫ)

(
− 2

ǫ2
− 3

ǫ
− 8 + π2 +O(ǫ)

)
. (3.22)

Dimensional regularization has succeeded in regularizingthe divergence of this contribution as well.
This time, however, the result is negative and divergent asǫ → 0. This should not surprise us, as we
already noted that this is an interference term, so there is no requirement that it be positive, as there was
for σqq̄g. In fact a quick glance at Eqs. (3.19) and 3.22) shows us that the divergences are going to cancel
between them.

3.1.3 The total cross section

In the previous section we discussed how dimensional regularization provides finite results for the total
cross sections for thee+e− → qq̄ ande+e− → qq̄g processes, which each diverge asǫ → 0. For the
benefit of those who slept through it, I restate them here:

σqq̄ = σ0 CF
αs

2π
H(ǫ)

(
− 2

ǫ2
− 3

ǫ
− 8 + π2 +O(ǫ)

)
, (3.23)

σqq̄g = σ0 CF
αs

2π
H(ǫ)

(
2

ǫ2
+

3

ǫ
+

19

2
− π2 +O(ǫ)

)
. (3.24)

According to our earlier discussion, the total cross section for e+e− → hadrons is given by the sum of
the two. It is finite, so the limitǫ→ 0 can be taken,

3.1In fact this statement relies on working in a covariant gauge. In a lightcone gauge for example, the self-energy can depend
onn·p. This diagram is not then zero, but of course the final answer for the sum of the three diagrams is gauge invariant.
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σe+e−→hadrons = σ0

(
1 + CF

αS

2π

3

2

)
(3.25)

= σ0

(
1 +

αS

π

)
. (3.26)

Of course, this would be useless if it depended on the regularization procedure. The proof of its indepen-
dence is beyond us here, but it is worth demonstrating it, by comparison with another scheme, the gluon
mass regularization, in which we have

σqq̄ = σ0CF
αS

2π

[
− log2

1

ǫ
+ 3 log

1

ǫ
− 11

2
+
π2

3
+O (ǫ)

]
, (3.27)

σqq̄g = σ0CF
αS

2π

[
log2

1

ǫ
− 3 log

1

ǫ
+ 7− π2

3
+O (ǫ)

]
, (3.28)

σhad = σ0

[
1 +

αS

π

]
. (3.29)

Note that the individual cross sections have completely different forms in the different schemes, but that
the sum of the two is scheme independent.

Equation (3.26) is one of the most fundamental quantities inQCD and is certainly one of the
most well-calculated and measured. Despite the fact that itis a relative small correction to the total rate,
experimental and theoretical systematic errors are so small that they can almost be neglected — even
with the large statistics ofτ decays andZ decays at LEP, the statistical errors dominate. This means that
not only does it provide one of the most accurate measurements, but its quoted accuracy is rather easy
to interpret and implement in global analyses for example, unlike measurements that are dominated by
systematics.

Equation (3.26) is now known up to orderα3
S. As discussed in Section 1.8, renormalization intro-

duces a renormalization scale dependence intoαs and the coefficient functions beyond the first one,

σe+e−→hadrons = σ0

(
1 +

αS(µ)

π
+ C2

(
µ2

s

)(
αS(µ)

π

)2

+ C3

(
µ2

s

)(
αS(µ)

π

)3
)
. (3.30)

Reducing this renormalization-scale dependence is one of the biggest reasons for going to higher orders.
As can be seen in Fig. 3.2, the scale-dependence is indeed significantly smaller at each order, giving
stability over a wider range ofµ. It can also be seen that providedµ is of orderQ, the higher order
corrections are relatively small. We will see shortly that simply taking the leading order result with
µ =

√
s does surprisingly well and is certainly sufficient to understand the phenomenology.

3.1.4 αS measurements

As I mentioned above, the experimental measurement ofRe+e− gives one of the best measurements
of αs. In fact the LEP combined value ofRhad is

R(LEP ) = 20.767 ± 0.025, (3.31)

while the tree-level prediction is
R0(Mz) = 19.984. (3.32)

Combining the two, and simply using the leading order resultwith µ =Mz, we obtain our first measure-
ment ofαS,

αS(Mz) = 0.124 ± 0.004, (3.33)

surprisingly close to the value using the four-loop result [5], 0.119 ± 0.003.

As we discussed in Section 1.8.3, since QCD predicts the scale dependence ofαS, one measure-
ment at any scale is sufficient to give a prediction for all scales. We can therefore phrase measurements
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Fig. 3.2: The QCD prediction for the corrections toRe+e− at
√
s = 33 GeV as a function of renormalization scale

at leading, next-to-leading, and next-to-next-to-leading order, taken from ESW [1]

at other scales either as tests of QCD throughout the intervening energy range or, by translating them all
into measurements at a single scale, as different measurements of the same quantity that can be combined
to give a better overall measurement.

As an example, the average measurement ofR over several energy points around 34 GeV is

R(PETRA) = 3.88 ± 0.03, (3.34)

while the tree-level prediction is
R0(34 GeV) = 3.69. (3.35)

Again using the leading order result, we obtain

αS(34 GeV) = 0.162 ± 0.026. (3.36)

Finally, using the one-loop renormalization group equation, we can convert this into a measurement of
αS(Mz),

αS(Mz) = 0.134 ± 0.018. (3.37)

This is in good agreement with the value from LEP, although with much larger uncertainties, simply due
to the fact that the statistics of the PETRA experiments weremuch lower.

As a final example, we considerτ decays. The QCD corrections to the hadronic decay rate actually
have two effects: on the ratio of branching fractions,Rτ , as discussed earlier, and also directly on the
total decay rate of theτ . These can form the basis for two analyses in which the experimental errors are
largely independent. The combined result for the two is

αS(Mτ = 1.77 GeV) = 0.34 ± 0.01. (3.38)

This time, because we are translating over such a wide energyrange the one-loop renormalization group
equation does not do quite such a good job,

α
(one-loop)
S (Mz) = 0.1272 ± 0.0014, (3.39)

compared to the four-loop value [5]

αS(Mz) = 0.1212 ± 0.0011, (3.40)
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Fig. 3.3: Results of a recent compilation ofαS values [5,6]

but it is not so far out. Note in this case the phenomenon of the‘incredible shrinking error’. Although the
measurement at theτ mass scale has a precision of about 3%, after evolving it toMz the relative uncer-
tainty gets scaled down by the ratio of the twoαs values, andτ decays give the best single measurement
of αs(Mz).

The results of a recent compilation [5, 6] are shown in Fig. 3.3. The scale dependence shows
excellent agreement with the predictions of perturbative QCD over a wide energy range. When translated
into measurements ofαS(Mz), the separate measurements cluster strongly around the average value,

α
(average)
S (Mz) = 0.1204 ± 0.0009. (3.41)

3.2 Deep inelastic scattering revisited

The parton model I described in the last lecture assumed thatthe partons are non-interacting. But we
know that they do interact via QCD, so what will happen when weconsider these interactions? We
will discover that the structure functions do become slowly(logarithmically) varying withQ2. We start
by considering the next-to-leading order QCD corrections to quark scattering. We will find that these,
if calculated naively, would be divergent, but that these divergences can be absorbed into the parton
distribution functions. These will then become scale-dependent, giving rise to theQ2-dependence of the
structure functions.

3.2.1 NLO corrections to DIS

The next-to-leading order corrections come from three sources (recalling that we sum and integrate over
all final statesX, so we must sum over all contributions in which any kind of parton is scattered):

1. One-loop corrections toeq → eq,
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2. eq → eqg,

3. eg → eqq̄.

The third contribution is completely new in QCD and is not present in the parton model. We come back
to it in a later section. The other two can more genuinely be thought of as higher-order corrections to the
parton model process. We start with the second.

There are two contributing diagrams. The matrix element squared can be obtained by crossing
from e+e− → qq̄g (1.66). Labeling the momenta as

e(k) + q(ηp) → e(k′) + q(p1) + g(p2), (3.42)

we obtain

∑
|M|2 =

8CFNce
4e2qg

2
s

k ·k′ p1 ·p2 ηp·p2
(
(p1 ·k)2 + (ηp·k)2 + (p1 ·k′)2 + (ηp·k′)2

)
. (3.43)

As usual the phase space is given by (2.24),

dPS =
Q2

16π2sx2
dQ2 dx dPSX . (3.44)

This timeX consists of two partons so is non-trivial,

dPSX =
d cos θ dφ

32π2
, (3.45)

whereθ andφ refer to the direction ofp1 in the centre-of-mass system ofηp+q. It is conventional to
replacecos θ by the manifestly Lorentz-invariant variablez,

z ≡ p1 ·p
q ·p = 1

2 (1− cos θ), (3.46)

with range0 < z < 1, giving

dPSX =
dz dφ

16π2
. (3.47)

It will later be instructive to know the transverse momentumof p1 in this frame,

k2⊥ = Q2
(η
x
− 1
)
z(1 − z). (3.48)

Note also that the caseη = x corresponds to a massless final state. Kinematically this can only happen
if either p1 or p2 are infinitely soft (i.e., have zero energy), or if they are exactly collinear.

We therefore have

dσ2(e+ q)

dx dQ2
=

1

4Nc

1

2ŝ

Q2

16π2sx2

∫
dz dφ

16π2
8CFNce

4e2qg
2
s

k ·k′ p1 ·p2 ηp·p2
(
(p1 ·k)2 + (ηp·k)2 + (p1 ·k′)2 + (ηp·k′)2

)
.

(3.49)
Rewriting in terms of our kinematic variables and averagingoverφ, we have

〈
(p1 ·k)2 + (ηp·k)2 + (p1 ·k′)2 + (ηp·k′)2

k ·k′ p1 ·p2 ηp·p2

〉

φ

=
1

y2Q2

(
(1 + (1− y)2)

[
1 + x2p
1− xp

1 + z2

1− z
+ 3− z − xp + 11xpz

]
− y2

[
8zxp

])
, (3.50)

wherexp = x/η. Two things are already clear: at this order we will have a non-zero longitudinal struc-
ture function,FL(x,Q

2); and thez integration, which runs from 0 to 1, will give a divergent contribution
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to F2. This should worry us, since we are calculating a physical cross section, but let us continue for a
while and see what happens.

Putting everything together we have

dσ2(e+ q)

dx dQ2
=
CFα

2e2qαS

2ηx2y2s2

∫ 1

0
dz

(
(1 + (1− y)2)

[
1 + x2p
1− xp

1 + z2

1− z
+ 3− z − xp + 11xpz

]
− y2

[
8zxp

])
,

(3.51)
and hence

F2(x,Q
2) =

∑

q

∫ 1

x
dxp e

2
q

x

xp
fq

(
x

xp

)
CFαS

2π

∫ 1

0
dz

(
1 + x2p
1− xp

1 + z2

1− z
+ 3− z − xp + 11xpz

)
.

(3.52)
The divergence atz → 1 corresponds to kinematic configurations in which the outgoing gluon becomes
exactly collinear with the incoming quark. Therefore in theFeynman diagram in which the gluon is
attached to the incoming quark, the internal quark line becomes on-shell, causing the divergence. Note
also that the coefficient of the divergence itself diverges at the pointxp = 1, at which the gluon is
infinitely soft.

In order to study the divergence, let us first regulate it by calculating the contribution from emission
with k2⊥ > µ2 (and assumeµ2 ≪ Q2 for simplicity). Sincek2⊥ is proportional to(1−z) this will give us
finite integrals. At any time, the full result can be obtainedby settingµ→ 0. We therefore obtain

F2(x,Q
2) =

∑

q

∫ 1

x
dxp e

2
q

x

xp
fq

(
x

xp

)
αS

2π

(
P̂ (xp) log

Q2

µ2
+R(xp)

)
, (3.53)

where the functionR(xp) is finite. In the following we will not keep track of this function, although it
would be essential for quantitative analysis. The functionP (xp) we introduced in (3.53) is called the
splitting function (or more strictly speaking the unregularized splitting function),

P̂ (x) = CF
1 + x2

1− x
. (3.54)

It actually describes the probability distribution of quarks produced in a splitting process,q → qg in
which the produced quark has a fractionx of the original quark’s momentum. (We will quantify this
statement slightly more shortly.)

Obviously by regulating the divergence we have not removed it: physical cross sections are still
supposed to be obtained by settingµ → 0, in which caseF2 is logarithmically divergent. However,
before discussing what happens to this divergence, let us consider the virtual one-loop correction to
eq → eq. Since this diagram contains two quark-gluon couplings, when squared it would give anO(α2

S)
correction. However, since it has the same final state as the lowest order diagram, we must consider the
interference between the two, and this interference isO(αS), so we must include it.

We could obtain the result for the one-loop diagram by crossing frome+e− → qq̄. However, to
illustrate the physics, it is sufficient to recall a few of itsfeatures. Firstly, since the external particles
are the same as in the lowest-order process, the kinematics must be the same. In particular, it can only
contribute at the pointη = x. Secondly, as in thee+e− case, the interference of the one-loop and tree-
level diagrams is divergent and negative. In fact the kinematic regions in which the one-loop integrand
diverges are exactly the same as those of theeq → eqg contribution we have just considered: when the
gluon is soft, or is collinear with either of the quarks.

It turns out that the divergence is exactly right to cancel the one we obtained above atxp → 1. In
fact one finds that after including the one-loop contribution, one gets exactly the same formula as (3.53)
except that the unregularized splitting functionP̂ (xp) is replaced by the regularized one,P (xp),

P (x) = P̂ (x) + Pvirtual(x). (3.55)
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Since the one-loop contribution has the same kinematics as the lowest-order process,Pvirtual(x) must be
proportional toδ(1− x). P (x) is therefore a distribution.

To define it, we will need to use a mathematical trick called the plus-distribution. Given some
function f(x), which is well-defined for all0 ≤ x < 1, we define a distributionf(x)+ on the region
0 ≤ x ≤ 1, as

f(x)+ = f(x)− δ(1− x)

∫ 1

0
dx′f(x′). (3.56)

The plus-distribution is most useful when the functionf(x) is divergent atx → 1. This means that for
any other functiong(x), which is smooth atx = 1, we have the property

∫ 1

0
dx f(x)+ g(x) =

∫ 1

0
dx f(x) (g(x)− g(1)) . (3.57)

Provided thatg(x) goes tog(1) sufficiently quickly, this integral is finite.

After including the virtual contribution, the splitting function is given by

P (x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1 − x)

]
. (3.58)

This is actually the first correction to a function that describes the momentum distribution of quarks
within quarks,

P(x) ≡ δ(1 − x) +
αS

2π
log

Q2

Q2
0

P (x) +O(α2
S log

2), (3.59)

where the distribution is defined to be a pure quark at scaleQ0 and probed at scaleQ.

Inserting the full splitting function into (3.53), we find that the divergence atxp → 1 cancels
between the real and virtual terms, but the divergence forxp < 1 due to the regionz → 1 still remains.

3.2.2 Factorization of divergences

To understand why the results are still divergent even afterincluding the virtual terms, and what ulti-
mately happens to the divergences, we consider their physical origin. Like thee+e− annihilation case,
we have singularities from regions in which the real gluon iscollinear with either the incoming or out-
going quark, or is soft, and also from the virtual graph, as illustrated in Fig. 3.4. All these contributions
were present ine+e− annihilation, but there we found that the divergences all cancelled to give a finite
contribution. Why is the present situation different? In fact we find that here the magnitudes of the
divergences are such as to cancel, but that the divergences arise in different regions of thexp integral, so
are prevented from cancelling.

In thee+e− case, we argued that the singular regions of real emission were indistinguishable from
the lowest order process, since an infinitely soft gluon could not produce any hadrons and the jets pro-
duced by two collinear partons were indistinguishable froma single jet with their combined momentum.
This statement is true here for the soft and final-state collinear contributions, but not the initial-state
contribution. The final state of this contribution is indeedindistinguishable from the lowest order pro-
cess (it has an additional jet collinear with the outgoing proton remnant, but this too gives a jet and
the superposition of the two is indistinguishable from the proton remnant in the lowest order process).
However, because we have used the parton model, we must convolute the partonic cross sections over an
arbitrary (measured from experiment) probability distribution function, processes with different incom-
ing momenta are effectively distinguishable. In all the singular regions, the final state of the process is
massless, and this fact fixes the incoming momentum (to the valueQ/2x in the Breit frame), but in the
initial-state singular process it is the internal line whose momentum gets fixed, as indicated in Fig. 3.4.
Thus the incoming momentum in (c) is larger than in the other cases and its divergence, atη > x, cannot
cancel the others, atη = x.
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(a) (b)

(c) (d)

Fig. 3.4: Divergent contributions to DIS: (a) soft, (b) final-state collinear, (c) initial-state collinear, and (d) virtual.
The labelp shows which momentum in each contribution is fixed by the massless final-state condition.

As I mentioned earlier, these divergences come from the virtuality of the internal particle van-
ishing and hence the propagator diverging. Using the uncertainty principle, vanishingly small virtuality
corresponds to arbitrarily long time-scales. This seems tobe in direct contradiction with the assumption
underlying the parton model, that the virtual photon takes an extremely rapid snapshot of the proton.

The problem is actually one of overcounting. We first introduced the pdfs, which are supposed to
contain all information about the internal structure of theproton. Presumably this internal structure is
the result of QCD interactions. We then tried to calculate the QCD corrections to the quark scattering
cross sections, integrating over all final states, so all energy-scales. But these QCD corrections should
somehow already be included in the internal dynamics of the proton.

To resolve this overcounting, we have to separate (or ‘factorize’) the different types of physics at
different energy scales. Like in our discussion of renormalization, I will first try to give the physical
picture in terms of a cutoff, before returning later to describe how factorization works in practice in
dimensional regularization. We introduce the factorization scaleµ, and call all physics at scales belowµ
part of the hadron wave function, and lump it into the parton distribution functions, and call all physics
at scales aboveµ part of the partonic scattering cross section (or ‘coefficient function’).

Therefore we do in fact have a transverse momentum cutoff in theeq → eqg process and the form
of (3.53) is correct.

Since physics at scales belowµ is included in the pdfs and physics above is not, the pdfs them-
selves must becomeµ-dependent. We therefore have

F2(x,Q
2) =

∑

q

e2q

∫ 1

x
dxp

x

xp
fq

(
x

xp
, µ2
){

δ(1 − xp) +
αS

2π

(
P (xp) log

Q2

µ2
+R(xp)

)
+O(α2

S)

}
,

(3.60)
where the functionR(xp) is not necessarily the same one as earlier, as the virtual contributions could
have introduced some additional finite terms.

Note that the structure functions are nowQ2-dependent, violating Bjorken scaling. However,
they also appear to beµ2 dependent, which should worry us:µ was introduced in a completely ad hoc
theoretical way: it simply separates physical processes into two parts that are dealt with in different ways,
and the final result, which is the sum of the two parts, should not depend on where the separation was
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made. We return to discuss this point in more detail after calculating theµ2-dependence of the pdfs.

It is important to emphasize that, although we have derived these formulae for the higher order
corrections to DIS, the leading logarithmic behaviour is universal. In particular, for any quark-induced
process with a hard scaleQ, we expect a hadronic cross section of the form

σh(ph) =
∑

q

∫
dη fq

(
η, µ2

){
σq(ηph) +

αS

2π
log

Q2

µ2

∫
dz P (z)σq(zηph)

}
, (3.61)

whereσq(p) is the partonic cross section for a quark of flavourq and momentump.

3.2.3 DGLAP evolution equation

Although the pdfs are fundamentally non-perturbative and cannot be predicted from first principles at
present, physics at scales close toµ2 can be described perturbatively. We can therefore calculate theµ2-
dependence of the pdfs so that, given their value at some starting scaleµ0, for example from experimental
measurements, we can calculate their values at all higher scalesµ.

To do this, we use the fact just noted, that physical cross sections should not depend onµ2. There-
fore we should have

µ2
dF2(x,Q

2)

dµ2
= 0, (3.62)

or at least, since we are working atO(αS),

µ2
dF2(x,Q

2)

dµ2
= O(α2

S). (3.63)

Applying this to (3.60), we obtain

µ2
d

dµ2
fq
(
x, µ2

)
=
αS

2π

∫ 1

x

dxp
xp

fq

(
x

xp
, µ2
)
P (xp) +O(α2

S). (3.64)

Equation (3.64) is called the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (or DGLAP, or GLAP, or
Altarelli–Parisi for short) evolution equation. Note thatthe rate of change of the pdf at somex value
depends on its value at all higherxs.

To understand its physical content, it is useful to rewrite the splitting function,

P (x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1 − x)

]
= CF

(
1 + x2

1− x

)

+

, (3.65)

to give

µ2
d

dµ2
fq
(
x, µ2

)
= CF

αS

2π

∫ 1

x

dxp
xp

fq

(
x

xp
, µ2
)

1 + x2p
1− xp

− CF
αS

2π
fq
(
x, µ2

) ∫ 1

0
dxp

1 + x2p
1− xp

. (3.66)

The first term represents the fact that the pdf at a givenx value is increased by quarks with higher
x’s reducing their momentum fractions by radiating gluons. The second term represents the fact that
it is decreased by the quarks at thatx reducing their momentum fractions by radiating gluons. Each
contribution is divergent due to emission withxp → 1, i.e., infinitely soft gluon emission, involving an
infinitely small change inx. However the two divergences exactly cancel because the number of quarks
being lost to thisx value by infinitely soft gluon emission is equal to the numberbeing gained.

The DGLAP equation is most easily solved in moment space. Forany functionf(x), we define

fN =

∫ 1

0
dxxN−1 f(x), (3.67)
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the Mellin transform. Taking moments of both sides of (3.64), we obtain

µ2
d

dµ2
fqN

(
µ2
)

=
αS

2π

∫ 1

0
dxxN−1

∫ 1

x

dxp
xp

fq

(
x

xp
, µ2
)
P (xp) +O(α2

S) (3.68)

=
αS

2π
PNfqN (µ2). (3.69)

It is common to introduce the notation

γN (αS) =
αS

2π
PN +O(α2

S), (3.70)

whereγN is known as the anomalous dimension. If we assume that the coupling αS is fixed, we can
easily solve (3.69) with the boundary condition of given values forfqN at some fixed scaleµ0,

fqN(µ2) = fqN (µ20)

(
µ2

µ20

)γN (αS)

. (3.71)

However, as we have seen, the renormalization of QCD means that the coupling constant becomes
scale dependent,αS(µ

2), according to renormalization group equation

µ2
d

dµ2
αS(µ

2) = β(αS(µ
2)) = −β0

2π
α2

S(µ
2) +O(α3

S). (3.72)

Inserting the solution of the running coupling, Eq. (1.73),into (3.69), we obtain

fqN (µ2) = fqN (µ20)

(
αS(µ0)

αS(µ)

)PN
β0

. (3.73)

Having the solution forfq in momentN -space, we have to convert it back tox-space. This is done
by the Inverse Mellin Transform, wherefqN is continued to the complex plane,

fq(x) =
1

2πi

∫

C
dN fqN x

−N , (3.74)

where the contourC runs parallel to the imaginary axis to the right of all poles.Because of the complexity
of this process, the DGLAP equation is often solved simply by‘brute force’ numerical solution of (3.64).

BeyondO(αS) the general structure of (3.69) and (3.72) remains unchanged: the anomalous di-
mension andβ function simply become power series inαS.

3.2.4 Scheme/scale dependence

Factorization, as introduced above, may seem pretty arbitrary. However it can be proved to all orders in
perturbation theory. The most convenient way to do this is touse, instead of the transverse momentum
cutoff we used above, dimensional regularization. When we calculate the NLO cross section ind dimen-
sions, the divergence shows up as a pole,1/ǫ. The coefficient multiplying this pole turns out to be the
same splitting function we encountered earlier.

In d dimensions, we obtain for the structure function up toO(αS),

F2(x,Q
2) =

∑

q

e2q

∫ 1

x
dxp

x

xp
f̄q

(
x

xp

){
δ(1 − xp) +

αS

2π

((
4πµ2

Q2

)ǫ −1

ǫ
P (xp) +R(xp)

)
+O(ǫ)

}
,

(3.75)
whereµ is the scale introduced to make the coupling constant dimensionless. Note that I have sneakily
added a bar tofq and that it is scale independent.̄fq is known as the bare pdf. We now note that the
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distribution functions themselves are not physical observables, only their convolution with coefficient
functions is. I can therefore define a modified set of distribution functions as follows:

x f̄q(x) ≡
∫ 1

x
dxp

x

xp
fq

(
x

xp
, µ2F

){
δ(1 − xp)−

αS

2π

((
4πµ2

µ2F

)ǫ −1

ǫ
P (xp) +K(xp)

)}
, (3.76)

whereµF is the (completely arbitrary again) factorization scale, and K(xp) is a completely arbitrary
finite function to be discussed shortly. (To fit in with the standard notation, I should really multiply all
occurrences ofαS by 1/Γ(1 − ǫ) = 1 − γEǫ + O(ǫ2), but this will merely change the values ofR(xp)
andK(xp) which I do not specify anyway.) Combining (3.75) and (3.76),we end up with

F2(x,Q
2) =

∑

q

e2q

∫ 1

x
dxp

x

xp
fq

(
x

xp
, µ2F

){
δ(1 − xp)

+
αS

2π

(
P (xp) log

Q2

µ2F
+R(xp)−K(xp)

)
+O(α2

S)

}
. (3.77)

Note that this has the identical form to (3.60), except for the finite function. It is clear from (3.76) that
fq(x, µ

2
F ) depends on the functionK(xp). It therefore seems like we have no predictive power: the

pdf and coefficient function each depend on the completely arbitrary functionK(xp) and the completely
arbitrary scaleµF (note that all dependence onµ has again completely cancelled. As I said in the context
of renormalization, many textbooks simply set it equalµ right from the start, but I consider this slightly
confusing as they have quite different physical meaning. Having performed this manoeuvre, I henceforth
drop the subscriptF ). However, the factorization theorem proves, firstly that for any physical quantity,
all dependence onK(xp) andµ will cancel and secondly that the scheme- and scale-dependent pdfs,
fq(x, µ

2) are universal (i.e., process-independent).

Two schemes are in common use, theMS scheme in whichK(xp) is zero, and the DIS scheme in
whichK(xp) = R(xp), i.e. in which forµ = Q the parton model result is exact.

To understand the physical content of the scheme-dependence, it is worth while going back to the
case with a cutoff. If, instead of a cut on transverse momentum we had used a cut on the virtuality of the
internal quark line to separate the pdf from the coefficient function, we would have got exactly the same
form as (3.60) except thatR(xp) would have been a different function. In particular, it would differ by a
log[(1− xp)/xp] term, together with some non-logarithmic terms. In fact, all logarithmic terms turn out
to be the same with apt cutoff as in theMS scheme, so for many purposes the two can be considered
equivalent.

Although dependence on the scheme and scale must cancel in physical quantities, it is only guar-
anteed to do so after calculating to infinite orders of perturbation theory. At any finite order there can be
some residual dependence. We must therefore have a procedure for choosing a value ofµ. Essentially
the identical discussion we had for the renormalization scale choice applies here. One can show that a
structure like (3.60) continues to all orders of perturbation theory and that for every power ofαS, one
gets a power oflogQ2/µ2. Thus every order of perturbation theory contains terms likeαn

S log
mQ2/µ2,

m ≤ n. It is clear that ifµ is a long way fromQ, the log can be large enough to compensate the smallness
of αS and the perturbative series will not converge quickly. One should therefore chooseµ ‘not too far’
fromQ.

It is worth mentioning that one can set up DGLAP evolution equations for theQ2-dependence
of the structure functions,F2 andFL, themselves. These are then automatically scheme- and scale-
independent even at finite orders of perturbation theory. This is sometimes known as the scheme-
independent scheme.
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Pqq(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
Pqg(x) = TR

[
x2 + (1− x)2

]

Pgq(x) = CF

[
1 + (1− x)2

x

]
Pgg(x) = CA

[
2x

(1− x)+
+ 2

1− x

x
+ 2x(1− x)

]

+β0δ(1 − x)

Fig. 3.5: The four DGLAP splitting functions of QCD

3.2.5 Initial-state gluons

As mentioned right at the start of this section, we also obtain O(αS) corrections from the processeg →
eqq̄. Most of what we said above carries over in a straightforwardway. Although there is no soft
singularity or virtual term to cancel it, there is a collinear singularity. This corresponds to a two-step
process in which a gluon splits to aq–q̄ pair, one of which interacts with the photon. The singularity
again corresponds to the virtuality of the internal quark line going to zero. This singularity can again be
absorbed into a factorized universal pdf for the gluon. We end up with an additional contribution to the
structure function of

F2(x,Q
2) =

∑

q

e2q

∫ 1

x
dxp

x

xp
fg

(
x

xp
, µ2
){

αS

2π

(
Pqg(xp) log

Q2

µ2
+Rg(xp)−Kqg(xp)

)
+O(α2

S)

}
,

(3.78)
where the sum overq is over all ‘light’ flavours. We now have four different typesof splitting function,
illustrated in Fig. 3.5. The DGLAP equation now becomes a setof coupled equations:

µ2
d

dµ2
fa
(
x, µ2

)
=
∑

b

αS

2π

∫ 1

x

dxp
xp

fb

(
x

xp
, µ2
)
Pab(xp) +O(α2

S). (3.79)

In moment space, this can be conveniently written as a matrixequation (in general of(2Nf+1)×(2Nf+1)
matrices, but for simplicity we show the case of only one flavour of quark):

µ2
d

dµ2




fqN
fq̄N
fgN


 =




γqqN (αS(µ)) 0 γqgN (αS(µ))
0 γqqN (αS(µ)) γqgN (αS(µ))

γgqN (αS(µ)) γgqN (αS(µ)) γggN (αS(µ))






fqN
fq̄N
fgN


 . (3.80)

Exactly the same solution is obtained, but in matrix notation,




fqN(µ2)
fq̄N (µ2)
fgN(µ2)


 = exp

∫ µ2

µ2
0

dµ′2

µ′2




γqqN (αS(µ
′)) 0 γqgN (αS(µ

′))
0 γqqN (αS(µ

′)) γqgN (αS(µ
′))

γgqN (αS(µ
′)) γgqN (αS(µ

′)) γggN (αS(µ
′))






fqN (µ20)
fq̄N (µ20)
fgN (µ20)


 .

(3.81)
This is even more troublesome to do by the Inverse Mellin Transform, so the full set of DGLAP equations
is almost always solved numerically.

Note that at higher orders of perturbation theory, even the zero entries in (3.80) become non-zero,
as do contributions likePqq′(x).
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Fig. 3.6: Fit to theF2 data over a wide range ofQ2 values, exhibiting violation of Bjorken scaling

3.2.6 Violation of Bjorken scaling

As we already noted, the factorization of initial-state singularities introduces a logarithmicQ2 depen-
dence into the structure functions and therefore a slow violation of Bjorken scaling. There is a close
analogy with the renormalization of one-scale cross sections, where the energy-dependence was entirely
due to the quantum corrections. Although the pdfs at some lowscale are entirely non-perturbative and
must be fit to data, the scale-dependence is entirely predicted by QCD and provides a stringent test over
a wide range of energy scales. The result is impressive, see Fig. 3.6.

3.3 Summary

NLO calculations are hard! This is mainly because the real and virtual corrections are each divergent
and must be regularized in some self-consistent way, for example with dimensional regularization. Un-
like the ultraviolet divergences, which are isolated in well-localized pieces of the loop calculation and
can effectively be removed by a redefinition of the Feynman rules, these divergences arise in different
partonic contributions to physical observables. They musttherefore be kept explicit until the very end of
the calculation when all the partonic contributions are combined. Only then, provided our observable is
infrared safe, will the real and virtual divergences cancelto yield a finite result.

Processes with incoming partons have extra divergences, arising from a miscancellation of the
initial-state-collinear real and virtual contributions,which appear at different points in the integral over
incoming momentum fraction. (It is worth mentioning that the same argument applies to the final-state
distributions of identified hadrons, for example the momentum distribution of pions produced ine+e−

annihilation.) These divergences have to be factorized into the non-perturbative, but universal, parton
distribution functions at some factorization scaleµF . This extra scale in the structure functions allows
them to beQ2-dependent. ThisQ2-dependence is entirely driven by theµ2F -dependence of the parton
distribution functions, which is predicted by the DGLAP evolution equations. Thus structure function
data over a wide range ofQ2 provide a stringent test of perturbative QCD.
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4 Summary

In this short course on QCD phenomenology, I have resisted the temptation to review the many important
tests and studies of QCD that have been made over the years andhave instead tried to concentrate on the
key ideas that underpin them. These are:

– The gauge invariance of the theory, which allows us to writedown the Lagrangian and which
predicts some of the most important features of the theory: the universality of the coupling constant
and the self-coupling of gluons, which ultimately leads to the negativeβ function and hence to
asymptotic freedom at high energies and strong interactions at low energies.

– Renormalization and decoupling, which allow us to make predictive calculations at finite en-
ergy, without knowing the full structure of the theory to arbitrarily high energy and without the
introduction of arbitrarily many input parameters. Renormalization is related to the quantum
structure of the theory and introduces a dimensionful scaleinto even the scaleless Lagrangian of
massless QCD, giving rise to energy-dependence of one-scale observables that would be energy-
independent in the classical theory.

– Factorization and evolution, which allow us to use perturbation theory to calculate the interactions
of hadrons, since all the non-perturbative physics gets factorized, into universal functions that can
be measured in one process, like DIS, and then used to predictthe cross sections for any other
process. Again, this introduces a scale dependence into theparton model so that the structure
functions of DIS, and other one-scale observables such as the Drell–Yan cross section, become
scale dependent.

– Infrared safety, which ensure that the infrared singularities associated with soft and collinear emis-
sion cancel between real and virtual contributions, allowing the perturbative calculation of jet cross
sections, without a detailed understanding of the mechanism by which partons become jets.

Together, these allow us to make sense of QCD, without havingto solve the theory at all possible scales:
unknown or uncalculable high- and low-energy effects can berenormalized, factorized and cancelled
away. After all this, it is remarkable that most QCD phenomenology can be understood at least qual-
itatively from leading order perturbation theory with the one-loop renormalization group and DGLAP
evolution equations. Higher order corrections, while essential for quantitative analysis, do not change
this simple picture dramatically.
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Abstract
These notes cover (i)electroweak symmetry breakingin the Standard Model
(SM) and the Higgs boson, (ii)alternatives to the SM Higgs bosonincluding
an introduction to composite Higgs models and Higgsless models that invoke
extra dimensions, (iii) the theory and phenomenology ofsupersymmetry, and
(iv) variousfurther beyond topics, including Grand Unification, proton decay
and neutrino masses, supergravity, superstrings and extradimensions.

1 The Standard Model, electroweak symmetry breaking and the Higgs boson

In this first Lecture, we review the electroweak sector of theStandard Model (SM) (for more detailed ac-
counts, see, e.g., [1–3]), with particular emphasis on the nature of electroweak symmetry breaking. The
theory grew out of experimental information on charged-current weak interactions, and of the realisation
that the four-point Fermi description ceases to be valid above

√
s = 600 GeV [3]. Electroweak theory

was able to predict the existence of neutral-current interactions, as discovered by the Gargamelle Collab-
oration in 1973 [4]. One of its greatest subsequent successes was the detection in 1983 of theW± and
Z0 bosons [5–8], whose existences it had predicted. Over time,thanks to the accumulating experimental
evidence, theSU(2)L ⊗ U(1)Y electroweak theory andSU(3)C quantum electrodynamics, collectively
known as the Standard Model, have come to be regarded as the correct description of electromagnetic,
weak and strong interactions up to the energies that have been probed so far. However, although the
SM has many successes, it also has some shortcomings, as we also indicate. In subsequent Lectures we
discuss ideas for rectifying (at least some of) these defects: see also [9–11].

The particle content of the SM is summarized in Table 1. Within the SM, the electromagnetic
and weak interactions are described by a Lagrangian that is symmetric under local weak isospin and
hypercharge gauge transformations, described using theSU(2)L ⊗ U(1)Y group (theL subindex refers
to the fact that the weakSU(2) group acts only the left-handed projections of fermion states;Y is the
hypercharge). We can write theSU(2)L ⊗ U(1)Y part of the SM Lagrangian as

L = −1

4
Fa
µνF

aµν

+ iψ/Dψ + h.c.

+ ψiyijψjφ+ h.c.

+ |Dµφ|2 − V (φ) . (1)

This is short enough to write on a T-shirt!

The first line is the kinetic term for the gauge sector of the electroweak theory, witha running over
the total number of gauge fields: three associated withSU(2)L, which we shall callB1

µ, B2
µ, B3

µ, and
one withU(1)Y , which we shall callAµ. Their field-strength tensors are

F a
µν = ∂νB

a
µ − ∂µBa

ν + gεbcaB
b
µB

c
ν for a = 1, 2, 3 (2)

fµν = ∂νAµ − ∂µAν . (3)

∗Based on lectures by John Ellis at the 2009 CERN–CLAF School of High-Energy Physics, Medellín, Colombia.
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Table 1: Particle content of the Standard Model with a minimal Higgs sector.

Bosons Scalars
γ,W+,W−, Z0, g1...8 φ (Higgs)

Fermions
Quarks (each with 3 colour charges) Leptons

2/3 :
−1/3 :

(
u
d

)
,

(
c
s

)
,

(
t
b

)
neutral:
−1 :

(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)

In Eq. (2),g is the coupling constant of the weak-isospin groupSU(2)L, and theεbca are its structure
constants. The last term in this equation stems from the non-Abelian nature ofSU(2). At this point,
all of the gauge fields are massless, but we will see later thatspecific linear combinations of the four
electroweak gauge fields acquire masses through the Higgs mechanism.

The second line in Eq. (1) describes the interactions between the matter fieldsψ, described by
Dirac equations, and the gauge fields.

The third line is the Yukawa sector and incorporates the interactions between the matter fields and
the Higgs field,φ, which are responsible for giving fermions their masses when electroweak symmetry
breaking occurs.

The fourth and final line describes the scalar or Higgs sector. The first piece is the kinetic term
with the covariant derivative defined here to be

Dµ = ∂µ +
ig′

2
AµY +

ig

2
τ ·Bµ , (4)

whereg′ is theU(1) coupling constant, andY andτ ≡ (τ1, τ2, τ3) (the Pauli matrices) are, respectively,
the generators ofU(1) andSU(2). The second piece of the final line of (1) is the Higgs potential V (φ).

Whereas the first two lines of (1) have been confirmed in many different experiments, there isno
experimental evidence for the last two lines and one of the main objectives of the LHC is to discover
whether it is right, needs modification, or is simply wrong.

1.1 The Higgs mechanism inU(1)

To explain the Higgs mechanism of mass generation, we first apply it to the gauge groupU(1), and
then extend it to the full electroweak groupSU(2)L ⊗ U(1)Y . Thus, we first consider the following
Lagrangian for a single complex scalar field:

L = (∂µφ)
∗ (∂µφ)− V (φ∗φ) , (5)

with the potential defined as
V (φ∗φ) = µ2 (φ∗φ) + λ (φ∗φ)2 , (6)

whereµ2 andλ > 0 are real constants. This Lagrangian is clearly invariant under globalU(1) phase
transformations

φ→ eiαφ , (7)

for α some rotation angle. Equivalently, it is invariant under aSO(2) rotational symmetry, which is
made evident by writingL in terms of the decomposition of the complex scalar field intotwo real fields
φ1 andφ2: φ ≡ φ1 + iφ2.

If we chooseµ2 > 0 in (8), the sole vacuum state has〈φ〉 = 0. Perturbing around this vacuum
reveals that, in this case, the scalar-sector Lagrangian simply factors into two Klein–Gordon Lagrangians,
one forφ1 and the other forφ2, with a common mass. The symmetry of the original Lagrangianis
preserved in this case.
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However, whenµ2 < 0, the Lagrangian (5) exhibits spontaneous breaking of theU(1) global
symmetry, which introduces a massless scalar particle known as a Goldstone boson, as we now show.
In order to make manifest this breaking of theU(1) symmetry present in Eq. (5), we first minimize the
potential (6) so as to identify the vacuum expectation value, or v.e.v., of the scalar field. To do this, we
first write the Higgs potential as

V (φ∗φ) = µ2
(
φ21 + φ22

)
+ λ

(
φ21 + φ22

)2
, (8)

and note that minimization with respect toφ∗φ yields the value

φ21 + φ22 = −µ2/ (2λ) , (9)

i.e., there is a set of equivalent minima lying around a circle of radius
√
−µ2/ (2λ), whenµ2 < 0 as

assumed. The quanta of the Higgs field arise when a particularground state is chosen and perturbed.
Reflecting the appearance of spontaneous symmetry breakingwe may, without loss of generality, choose
for instance

φ1,vac =
√
−µ2/ (2λ) ≡ v/

√
2 , φ2,vac = 0 . (10)

Perturbations around this vacuum may be parametrized by

η/
√
2 ≡ φ1 − v/

√
2 , ξ/

√
2 ≡ φ2 , (11)

so that the perturbed complex scalar isφ = (v + η + iξ) /
√
2, whereη andξ are real fields. In terms of

these, the Lagrangian becomes

L =

[
1

2
(∂µη) (∂µη)−

µ2

2
η2
]
+

1

2
(∂µξ) (∂µξ)

− λ

2

[
(v + η)2 + ξ2

]2
− µ2vη − µ2

2
ξ2 − 1

2
µ2v2 . (12)

The first and second terms describe two scalar particles: thefirst, η, is massive withm2
η = −µ2 > 0 (we

recall thatµ2 < 0), and the second,ξ, is massless, the Goldstone boson.

We now discuss how this spontaneous symmetry breaking manifests itself in the presence of a
U(1) gauge field. For this purpose, we make the Lagrangian (5) invariant under localU(1) phase trans-
formations, i.e.,

φ→ eiα(x)φ . (13)

This requires the introduction of a gauge fieldAµ that transforms as follows underU(1):

A′
µ → Aµ + (1/q) ∂µα (x) , (14)

and replacing the space-time derivatives by covariant derivatives

Dµ = ∂µ + iqAµ , (15)

whereq is the conserved charge. Replacing the derivatives in Eq. (5) and adding a kinetic term for the
Aµ field, the Lagrangian becomes

L = [(∂µ − iqAµ)φ
∗] [(∂µ + iqAµ)φ]− V (φ∗φ)− 1

4
FµνFµν . (16)

The last term in this equation,(1/4)FµνFµν , with Fµν ≡ ∂νAµ − ∂µAν , is the kinetic term, which is
separately invariant under the transformation (14) of the gauge field.
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We now repeat the minimization of the potentialV (φ) and write the Lagrangian in terms of the
perturbations around the ground state, Eqs. (11):

L =

{
1

2

[
(∂µη) (∂µη)− µ2η2

]
+

1

2
(∂µξ) (∂µξ)−

1

4
FµνFµν +

1

2
q2v2AµAµ

}

+ vq2AµAµη +
q2

2
AµAµη

2 + q (∂µξ)Aµ (v + η)− q (∂µη)Aµξ

− µ2vη − µ2

2
ξ2 − λ

2

[
(v + η) + ξ2

]2 − µ2v

2
. (17)

The first three terms again describe a (real) scalar particle, η, of mass
√
−µ2 and a massless Goldstone

boson,ξ. The fourth term describes the free gauge field. However, whereas previously the Lagrangian
described a massless boson field [see Eq. (12)], now it contains a term proportional toAµAµ, which
gives the gauge field a mass of

mA = qv , (18)

from which we see that the boson field has acquired a mass that is proportional to the vacuum expectation
value of the Higgs field. Indeed, the last two terms in the firstline of Eq. (12) are identical with the Proca
Lagrangian for aU(1) gauge boson of massm.

The rest of the terms in Eq. (12) define couplings between the fieldsAµ, η andξ, among which is a
bilinear interaction couplingAµ and∂µξ. In order to give the correct propagating particle interpretation
of (12), we must diagonalize the bilinear terms and remove this term. This is easily done by exploiting
the gauge freedom of theAµ field to replace

Aµ → A′
µ = Aµ +

1

qv
∂µξ , (19)

which is accompanied by the local phase transformation

φ→ φ′ = e−iξ(x)/vφ = (v + η) /
√
2 . (20)

After making this transformation, the fieldξ no longer appears, and the Lagrangian (12) takes the sim-
plified form

L =
1

2

[
(∂µ) (∂µ)− µ2η2

]
− 1

4
FµνFµν +

q2v2

2
Aµ ′A′

µ + . . . . (21)

where the. . . represent trilinear and quadrilinear interactions.

The interpretation of (21) is that the Goldstone bosonξ that appeared when the globalU(1) sym-
metry was broken by the choice of an asymmetric ground state whenµ2 < 0 has been absorbed (or
‘eaten’) by the gauge fieldAµ, with the effect of generating a mass. Another way to understand this is
to recall that, whereas a massless gauge boson has only two degrees of freedom, or polarization states
(which are transverse), a massive gauge boson must have a third (longitudinal) polarization state. In
the Higgs mechanism, this is supplied by the Goldstone bosonof the spontaneously-brokenU(1) global
symmetry.

At first sight, the Higgs mechanism may seem somewhat artificial. From one point of view, it
is merely a description of the breaking of electroweak symmetry, rather than an explanation of how a
massless gauge boson may become massive. As Quigg says [12],the electroweak symmetry is broken
becauseµ2 < 0, and we must chooseµ2 < 0, because otherwise electroweak symmetry is not broken.
From another point of view, theonly consistent formulation of an interacting massive gauge boson isvia
the Higgs mechanism, and the spontaneous breaking of symmetry is a mathematical ruse for describing
this phenomenon.
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1.2 The Higgs mechanism inSU(2)L ⊗ U(1)Y

Following closely in both spirit and notation the book by Quigg [12], we now consider the weak-isospin
doublet

L =

(
ν
e

)

L

, (22)

with the left-handed neutrino and electron states defined by

νL =
1

2
(1− γ5) ν , eL =

1

2
(1− γ5) e . (23)

The operator(1− γ5) /2 is of course the left-handed helicity projector, andν, e are solutions of the
free-field Dirac equation. Within the SM, we consider the neutrino to be massless, and it does not have
a corresponding right-handed component, i.e.,

νR =
1

2
(1 + γ5) ν = 0 . (24)

Hence, the only right-handed lepton,eR, constitutes a weak-isospin singlet, i.e.,

R = eR =
1

2
(1 + γ5) e . (25)

We write initially the Lagrangian as

L = Lgauge+ Lleptons (26)

Lgauge = −1

4
F a
µνF

aµν − 1

4
fµνf

µν (27)

Lleptons = R

(
∂µ + i

g′

2
AµY

)
R+ Liγµ

(
∂µ + i

g′

2
AµY + i

g

2
τ ·Bµ

)
L , (28)

where the field-strength tensors,Fµν andfµν , were defined in Eqs. (2) and (3), respectively. Here,g′/2
is the coupling constant associated to the hypercharge groupU(1)Y , andg/2 is the coupling to the weak-
isospin groupSU(2)L. So far, we are presented with four massless bosons (Aµ,B1

µ,B2
µ,B3

µ); the Higgs
mechanism will select linear combinations of these to produce three massive bosons (W±, Z0) and a
massless one (γ).

The Higgs field is now a complexSU(2) doublet

φ =

(
φ+

φ0

)
, (29)

with φ+ andφ0 scalar fields. We need to add the Lagrangian

LHiggs = (Dµφ)
† (Dµφ)− V

(
φ†φ
)
, (30)

with the Higgs potential given by analogy to Eq. (6) as

V
(
φ†φ

)
= µ2

(
φ†φ

)
+ λ

(
φ†φ

)2
, (31)

with λ > 0. We should also include the interaction Lagrangian betweenthis scalar field and the fermionic
matter fields, which occurs through Yukawa couplings,

LYukawa= −Ge

[
Rφ†L + LφR

]
. (32)

As we see later, these terms give rise to masses for the matterfermions.
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Fig. 1: Scalar potentialV
(
φ†φ

)
with λ > 0 andµ2 < 0

A plot of the Higgs potential is presented in Fig. 1.2, where we see that〈φ〉 = 0 is an unstable
local minimum of the effective potential ifµ2 < 0, and that the minimum is at some〈φ〉 6= 0 with an
arbitrary phase, leading to spontaneous symmetry breaking. Minimizing the Higgs potential, we obtain

∂

∂ (φ†φ)
V
(
φ†φ

)
= µ2 + 2λ〈φ〉0 = µ2 + 2λ

[(
φ+vac

)2
+
(
φ0vac

)2]
= 0 . (33)

Choosingφ+vac = 0 andφ0vac =
√
−µ2/ (2λ), the v.e.v. of the scalar field becomes

〈φ〉0 =

(
0

v/
√
2

)
, (34)

with v ≡
√
−µ2/λ. Selecting a particular v.e.v. breaks, of course, bothSU(2)L andU(1)Y symmetries.

Nevertheless, an invariance under theU(1)EM symmetry is preserved, with the charge operator as the
generator. In the preceding section, we saw one example of the general theorem that, for every broken
generator (i.e., every generator that does not leave the vacuum invariant), there would (in the absence of
the Higgs mechanism) be a Goldstone boson.

In general, a generatorG leaves the vacuum invariant if

eiαG〈φ〉0 ≃ (1 + iαG) 〈φ〉0 = 〈φ〉0 , (35)

which is satisfied whenG〈φ〉0 = 0. Let’s test whether the generators ofSU(2)L ⊗ U(1)Y satisfy this
condition:

τ1〈φ〉0 =

(
0 1
1 0

)(
0

v/
√
2

)
=

(
v/
√
2

0

)
(36)

τ2〈φ〉0 =

(
0 −i
i 0

)(
0

v/
√
2

)
=

(
−iv/

√
2

0

)
(37)

τ3〈φ〉0 =

(
1 0
0 −1

)(
0

v/
√
2

)
=

(
0

−v/
√
2

)
(38)

Y 〈φ〉0 = 〈φ〉0 . (39)

Thus, none of the generators leave the vacuum invariant. However, we note that

Q〈φ〉0 =
1

2
(τ3 + Y ) 〈φ〉0 = 0 , (40)
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which is what we expected: the linear combination of generators corresponding to electric charge remains
unbroken. Correspondingly, as we shall now see, whilst the photon remains massless, the other three
gauge bosons acquire mass.

To see this, we now consider perturbations around the choiceof vacuum. The full perturbed scalar
field is

φ = exp

(
iξ · τ
2v

)(
0

(v + η) /
√
2

)
. (41)

However, in analogy to what we did for theU(1) Higgs in the previous section to rotate the Goldstone
bosonξ away, we are also able here to gauge-transform the scalarφ and the gauge and matter fields, i.e.,

φ → φ′ = exp

(−iξ · τ
2v

)
φ =

(
0

(v + η) /
√
2

)
. (42)

τ ·Bµ → τ ·B′
µ (43)

L → L′ = exp

(−iξ · τ
2v

)
L , (44)

while theAµ and R remain invariant. It is possible to show thatτ · B′
µ = τ · Bµ − ξ × Bµ · τ −

(1/g) ∂µ (ξ · τ).
In the unitary gauge, we can write the perturbed state as

〈φ〉0 → φ =

(
0

(v + η) /
√
2

)
, (45)

and the Lagrangian in the Yukawa sector, Eq. (32), becomes

LYukawa= −Ge

[
eRφ

†
(
νL
eL

)
+ (νL eL)φeR

]
= −Ge

v + η√
2

(eReL + eLeR) . (46)

Defininge ≡ (eR, eL) ande ≡ (eL, eR)
T yields

LYukawa= −
Gev√

2
ee− Geη√

2
ee , (47)

so that the electron has acquired a mass

me = Gev/
√
2 . (48)

Clearly, this mechanism may be applied to all the SM fermions, with the general feature that their masses
are proportional to their Yukawa couplings to the Higgs field1. This implies that the preferred decays of
a Higgs boson into generic fermionsf are into heavier species, as long as the Higgs mass> 2mf .

To see the effect of spontaneous symmetry breaking on the scalar-sector Lagrangian,LHiggs in
Eq. (30), it is useful to calculate first

φ†φ =

(
v + η√

2

)2

, (49)

so that

V
(
φ†φ

)
= µ2

(
v + η√

2

)2

+ λ

(
v + η√

2

)4

, (50)

and we also need

Dµφ = ∂µφ+
ig′

2
AµY φ+

ig

2
τ ·Bµφ , (51)

1The Higgs couplings to quarks also induce their Cabibbo–Kobayashi–Maskawa mixing — see Eq. (93) below.
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whose first term is simply

∂µφ =

(
0

∂µη/
√
2

)
. (52)

Using Eqs. (36)–(39), we calculate the second and third terms, i.e.,

ig′

2
AµY φ =

ig′

2
Aµφ =

ig′

2
Aµ

(
0

(v + η) /
√
2

)
, (53)

(τ ·Bµ)φ = B1
µ

(
(v + η) /

√
2

0

)
+B2

µ

(
−i (v + η) /

√
2

0

)
+B3

µ

(
0

− (v + η) /
√
2

)
.(54)

Hence,

Dµφ =




ig
2

(
v+η√

2

) (
B1

µ − iB2
µ

)

1√
2
∂µη +

(
v+η√

2

)
i
2

(
ig′Aµ − igB3

µ

)


 (55)

and

(Dµφ)† (Dµφ) =
g2

8
(v + η)2 |B1

µ − iB2
µ|2 +

1

2
(∂µη) (∂

µη) +
1

8
(v + η)2

(
g′Aµ − gB3

µ

)2
. (56)

With this, the scalar-sector Lagrangian becomes

LHiggs =

{
1

2
(∂µη) (∂

µη)− µ2

2
η2 +

v2

8

[
g2|B1

µ − iB2
µ|2 +

(
g′Aµ − gB3

µ

)2]
}

+

{
1

8

(
η2 + 2vη

) [
g2|B1

µ − iB2
µ|2 +

(
g′Aµ − gB3

µ

)2]

− 1

4
η4 − λvη3 − 3

2
λv2η2 −

(
λv3 + µ2v

)
η −

(
λv4

4
+
µ2v2

2

)}
. (57)

From the second term inside the first curly brackets, we see that theη field has acquired a mass; indeed,
it is the Higgs boson, with non-zero mass. The terms inside the second curly brackets either describe
interactions between the gauge and Higgs fields, or are constants that do not affect the physics.

It is convenient to define the charged gauge fieldsW±
µ as linear combinations of the massless

fieldsB1
µ andB2

µ, i.e.,

W±
µ ≡

B1
µ ∓ iB2

µ√
2

, (58)

and, analogously,

Zµ ≡
−g′Aµ + gB3

µ√
g2 + g′ 2

, (59)

Aµ ≡
gAµ + g′B3

µ√
g2 + g′ 2

. (60)

Writing the original fieldsAµ,Bi
µ in terms of the new fields, we have

B1
µ =

√
2

2

(
W−

µ +W+
µ

)
, B2

µ =

√
2

2

(
W−

µ −W+
µ

)
, (61)

B3
µ =

g′√
g2 + g′ 2

(
Aµ +

g

g′
Zµ

)
, Aµ =

g√
g2 + g′ 2

(
Aµ −

g′

g
Zµ

)
. (62)

Making these replacements in the broken scalar-sector Lagrangian, Eq. (57), leads to

LHiggs =

[
1

2
(∂µη) (∂µη)−

µ2

2
η2
]

+
v2g2

8
W+ µW+

µ +
v2g2

8
W− µW−

µ +

(
g2 + g′ 2

)
v2

8
ZµZµ
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+ ... , (63)

and it is evident now that while the photon fieldAµ is massless due to the unbrokenU(1)EM symmetry
(i.e., the symmetry undereiQα(x) rotations), the vector bosonsW± andZ0 have masses

mW = gv/2 , mZ = (v/2)
√
g2 + g′ 2 . (64)

We see again that the Higgs couplings to other particles, in this case theW± andZ0, are related to their
masses.

We also see that the masses of the neutral and charged weak-interaction bosons are related through

mZ = mW

√
1 + g′ 2/g2 . (65)

Experimentally, the weak gauge boson masses are known to high accuracy to be [13]

mW = 80.399 ± 0.023 GeV , mZ = 91.1875 ± 0.0021 GeV , (66)

which can be compared in detail with (65) only after the inclusions of radiative corrections. Meanwhile,
the current experimental upper limit on the photon mass, based on plasma physics, is very stringent:
mγ < 10−18 eV [14]. For the Higgs mass, we see from (57) that

mH = −2µ2 . (67)

A priori, however, there is no theoretical prediction within the Standard Model, sinceµ is not deter-
mined by any of the known parameters of the Standard Model. Later we will see various ways in which
experiments constrain the Higgs mass.

We can introduce a weak mixing angleθW to parametrize the mixing of the neutral gauge bosons,
defined by

tan (θW ) = g′/g , (68)

so that

cos (θW ) =
g√

g2 + g′ 2
, sin (θW ) =

g′√
g2 + g′ 2

. (69)

With this, we can write, from Eqs. (59) and (60),

Zµ = − sin (θW )Aµ + cos (θW )B3
µ , (70)

Aµ = cos (θW )Aµ + sin (θW )B3
µ . (71)

The relation (65) between the masses ofW± andZ0 becomes

mW = mZ cos (θW ) , (72)

and it is common practice to define the ratio

ρ =
m2

W

m2
Z cos2 (θW )

. (73)

According to the Standard Model, this is equal to unity at thetree level, a prediction that has been well
tested by experiment, including radiative corrections. The value ofsin2 (θW ) is obtained from measure-
ments of theZ pole and neutral-current processes, and depends on the renormalization prescription. The
2008 Particle Data Group review [13] states values ofsin2 (θW ) = 0.2319(14) andρ = 1.0004+0.0008

−0.0004 .

Therefore, after the spontaneous breaking of the electroweakSU(2)L⊗U(1)Y symmetry, we have
ended up with what we desired: three massive gauge bosons (W±, Z0) that mediate weak interactions,
one massless gauge boson (A) corresponding to the photon, and an extra, massive, Higgs boson (H).
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1.3 QCD

The QCD Lagrangian has a structure similar to that of the electroweak Lagrangian [13], being also a
gauge theory, but based on the groupSU(3) and without spontaneous symmetry breaking:

LQCD = −1

4
F a
µνF

a µν + i
∑

q

ψ
i
qγ

µ (Dµ)ij ψ
j
q −

∑

q

mqψ
i
qψqi , (74)

F a
µν = ∂µA

a
ν − ∂νAa

µ − gsfabcAb
µA

c
ν , (75)

(Dµ)ij = δij∂µ + igs
∑

a

λai,j
2
Aa

µ , (76)

with gs the strong coupling constant,fabc the SU(3) structure constants, andλi (i = 1, . . . , 8) the
generators ofSU(3) (which can be taken to be the eight traceless Gell-Mann matrices). Note also that
ψi
q is the free-field Dirac spinor representing a quark of colouri and flavourq and theAa

µ (a = 1, . . . , 8)
are the eight gluon fields. As is well known, QCD and non-Abelian gauge theories possess the property
of asymptotic freedom:αs ≡ g2s/4π obeys the renormalization-group equation (RGE) that determines
its evolution as a function of the effective scaleQ:

Q
dαs

dQ
= 2β0αs + ... , (77)

where

β0 = 11− 2

3
nq (78)

andnq is the number of quark flavours with masses≪ Q. In addition to (76), which specifies QCD at the
perturbative level, its full specification of its vacuum at the non-perturbative level requires an additional
angle parameter,θQCD, that violates both parity P and CP [15]2.

1.4 Parameters of the Standard Model

The transformation from being one of the possible explanations of electromagnetic, weak and strong
phenomena into a description in outstanding agreement withexperiments is reflected in the dozens of
electroweak precision measurements available today [13,16,17]. These are sensitive to quantum correc-
tions at and beyond the one-loop level, which are essential for obtaining agreement with the data. The
calculations of these corrections rely upon the renormalizability (calculability) of the SM3, and depend
on the masses of heavy virtual particles, such as the top quark and the Higgs boson and possibly other
particles beyond the SM. The consistency with the data may beused to constrain the masses of these
particles.

Many of these observables have quadratic sensitivity to themass of the top quark, e.g.,

s2W ≡ 1−m2
W /m

2
Z ∋ −

2α

16π sin2 (θW )

m2
t

m2
Z

. (79)

This effect was used before the discovery of the top quark to predict successfully its mass [18], and
the consistency of the prediction with experiment can be used to constrain possible new physics beyond
the SM, particularly mass-squared differences between isospin partner particles, that would contribute
analogously to (79). Many electroweak observables are alsologarithmically sensitive to the mass of the
Higgs boson, e.g.,

s2W ∋ 5α

24π
ln

(
m2

H

m2
W

)
(80)

2The upper limit on the electric dipole moment of the neutron tells us that|θQCD| < O(10−9) [13].
3A crucial aspect of this is cancellation of anomalous triangle diagrams between quarks and leptons, which may be a hint of

an underlying Grand Unified Theory — see Lecture 4.
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whenmH ≫ mW . If there were no Higgs boson, or nothing to do its job4, radiative corrections such
as (80) would diverge, and the SM calculations would become meaningless. Two examples of precision
electroweak observables, namely the coupling of theZ0 boson to leptons and the mass of theW boson,
are shown in Fig. 2.
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ef
f

mt= 173.1 ± 1.3 GeV
mH= 114...1000 GeV
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   ∆α

August 2009

80.3
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80.5
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m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

August 2009

Fig. 2: Left: LEP and SLD measurements ofsin2 θW and the leptonic decay width of theZ0, Γll, compared with
the SM prediction for different values ofmt andmH . Right: The predictions formt andmW made in the SM
using LEP1 and SLD data (dotted mango-shaped contour) for different values ofmH , compared with the LEP2
and Tevatron measurements (ellipse). The arrows show the additional effects of the uncertainty in the value ofαem

at theZ0 peak [16].

Table 2 and Fig. 1.4 [17] compare the predicted (fitted) and experimentally measured values for
several parameters of the Standard Model; the agreement is usually better than1σ. This is a remarkable
success for a theory that, as we have seen, can be written downin only a few lines.

The agreement of the precision electroweak observables with the SM can be used to predictmH ,
just as it was used previously to predictmt. Since the early 1990s [19], this method has been used to
tighten the vise on the Higgs, providing ever-stronger indications that it is probably relatively light, as
hinted in Fig. 4. The latest estimate of the Higgs mass is [16]

mH = 89+35
−26 GeV. (81)

Although the central value is somewhat below the lower limitof 114.4 GeV set by direct searches at
LEP [20], there is consistency at the 1-σ level, and no significant discrepancy.A priori, the relatively
light mass range (81) suggests that the Higgs boson interacts relatively weakly, with a small quartic
couplingλ, though there is no theoretical consensus on this: see the discussion in the next Lecture.

This success is very impressive. However, our rejoicing is muted by the fact that to specify the
SM we need at least 19 input parameters in order to calculate physical processes, namely:

• three coupling parameters, which we can choose to be the strong coupling constant,αs, the fine
structure constant,αem, and the weak mixing angle,sin2 (θW );

• two parameters that specify the shape of the Higgs potential, µ2 andλ (or, equivalently,mH and
mW ormZ);

• six quark masses (or the six Yukawa couplings for the quarks);

4See Lecture 2 for a discussion of possible alternatives.
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Table 2: Fit and experimental values of some SM quantities, as obtained using theGfitter package [17]. For all
the observables listed, exceptAl (LEP) andAl (SLD), the fit values shown are the results of ‘complete fits’,i.e.,
the results of using all the inputs, including the input value of the parameter that is being fit, to calculate the result.
For the two exceptions, the fit values shown were calculated using all inputs except their own. Consult [17] for a
description of each observable.

Parameter Input value Fit value
MZ [GeV] 91.1875 ± 0.0021 91.1876 ± 0.0021
ΓZ [GeV] 2.4952 ± 0.0023 2.4956 ± 0.0015
σ0had 41.540 ± 0.037 41.478 ± 0.014
R0

l 20.767 ± 0.025 20.741 ± 0.018

A0,l
FB 0.0171 ± 0.0010 0.01624 ± 0.0002

Al (LEP) 0.1465 ± 0.0033 0.1473 ± 0.0009

Al (SLD) 0.1513 ± 0.0021 0.1465+0.0007
−0.0010

sin2 φleff (QFB) 0.2324 ± 0.0012 0.23151+0.00010
−0.00012

A0,c
FB 0.0707 ± 0.0035 0.0737 ± 0.0005

A0,b
FB 0.0992 ± 0.0016 0.1032+0.0007

−0.0006

Ac 0.670 ± 0.027 0.6679+0.00042
−0.00036

Ab 0.923 ± 0.020 0.93463+0.00007
−0.00008

R0
c 0.1721 ± 0.0030 0.17225 ± 0.00006

R0
b 0.21629 ± 0.00066 0.21577 ± 0.00005

∆α
(5)
had

(
M2

Z

)
2768 ± 22 2764+22

−21

MW [GeV] 80.399 ± 0.023 80.371+0.008
−0.011

ΓW [GeV] 2.098 ± 0.048 2.092 ± 0.001
mc [GeV] 1.25 ± 0.09 1.25± 0.09
mb [GeV] 4.20 ± 0.07 4.20± 0.07
mt [GeV] 173.1 ± 1.3 173.6 ± 1.2

• four parameters (three mixing angles and one weak CP-violating angle) for the Cabibbo-Kobayashi-
Maskawa matrix [see Eq. (93) below];

• three charged-lepton masses (or the corresponding Yukawa couplings);

• one parameter to allow for non-perturbative CP violation inQCD,θQCD.

Moreover, because we now know that neutrinos have mass and that they mix (see, e.g., [21, 22]), the
Standard Model must be extended to incorporate this fact. Therefore, we also need to specify three neu-
trino masses and three mixing angles plus a CP-violating phase for the neutrino mixing matrix, bringing
the grand total to 26 parameters. Additionally, if neutrinos turn out to be Majorana particles, so that they
are their own antiparticles, two more CP-violating phases need to be specified. Notice that at least 20 of
the parameters relate to flavour physics.

Many of the ideas for physics beyond the SM that are discussedlater have been motivated by
attempts to reduce the number of its parameters, or understand their origins, or at least to make them
seem less unnatural, as discussed in subsequent Lectures.

1.5 Bounds on the Standard Model Higgs boson mass

1.5.1 Upper bounds from unitarity

As already emphasized, if there were no Higgs boson, and nothing analogous to replace it, the Standard
Model would not be a calculable, renormalizable theory. This incompleteness is reflected in the be-
haviours of physical quantities as the Higgs mass increases. The most basic example of this isW+W−
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Fig. 3: Comparison between direct measurements and the results of afit using theGfitter package [17]

scattering [23], whose high-energys-wave amplitude grows withmH :

T ∼ −4GF√
2
m2

H . (82)

Imposing the unitarity bound|T | < 1, one finds the upper limitM2
H < 4π

√
2/GF , which is strengthened

to

M2
H <

8π
√
2

3GF
∼ 1 TeV2 (83)

when one makes a coupled analysis including theZ0Z0 channel.

A related effect is seen in the behaviour of the quartic self-couplingλ of the Higgs field. Like
any of the Standard Model parameters,λ is subject to renormalizationvia loop corrections. Loops of
fermions, most importantly the top quark, tend todecreaseλ as the renormalization scaleΛ increases,
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Fig. 4: Theχ2 likelihood function formH in a global electroweak fit. The blue band around the (almost)parabolic
solid curve represents the theoretical uncertainty: the other curves indicate the effects of different calculations of
the renormalization ofαem and of including low-energy data. The shaded regions are those excluded by LEP and
by the Tevatron [16].

whereas loops of bosons tend toincreaseλ. In particular, if the Higgs mass& mt, the positive renor-
malization due to the Higgs self-coupling itself is dominant, andλ increases uncontrollably withΛ. The
larger the value ofmH , the larger the low-energy value ofλ, and the smaller the value ofΛ at whichλ
blows up. In general, one should regard the limiting value ofΛ, also for smallermH , as a scale where
novel non-perturbative dynamics must set in. This behaviour is seen in the upper part of Fig. 5, where we
see, for example, that ifmH = 170 GeV, thenΛ ∼ 1019 GeV, whereas ifmH = 300 GeV, the coupling
λ blows up at a scaleΛ ∼ 106 GeV. One may ask: under what circumstances doesmH ∼ Λ itself? The
answer is whenmH ∼ 700 GeV: if the Higgs boson were heavier than this mass, the Higgsself-coupling
would blow up at a scale smaller than its mass. In this case, Higgs physics would necessarily be described
by some new strongly-interacting theory, cf., the technicolour theories described in Lecture 2.

1.5.2 Lower bounds from vacuum stability

Looking at lower values ofmH in Fig. 5, we see an uneventful range ofmH extending down tomH ∼
130 GeV, where (as far as we know) the SM could continue to be validall the way to the Planck scale. At
lowermH , there is a band below which the present electroweak vacuum becomes unstable at some scale
Λ < 1019 GeV. For example, if the Higgs is slightly above the present experimental lower limit from
LEP,mH ∼ 115 GeV, the present electroweak vacuum is unstable against decay into a vacuum with
〈|φ|〉 ∼ 107 GeV. This instability is due to the negative renormalization of λ by the top quark, which
overcomes the positive renormalization due toλ itself, and drivesλ < 0 5.

If mH is only slightly below the top band, and above the middle band, it is true that the present

5The widths of the boundary bands indicate the uncertaintiesin these calculations.
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widths of the bands reflect the uncertainties inmt andαs(mZ) (added quadratically). The perturbativity upper
bound (sometimes referred to as ‘triviality’ bound) is given for λ = π (lower bold line [blue]) andλ = 2π

(upper bold line [blue]). Their difference indicates the theoretical uncertainty in this bound. The absolute vacuum
stability bound is displayed by the light shaded [green] band, while the less restrictive finite-temperature and zero-
temperature metastability bounds are medium [blue] and dark shaded [red], respectively. The grey hatched areas
indicate the LEP [20] and Tevatron [24] exclusion domains. Figure taken from [25].

electroweak vacuum is in principle unstable against decay into a state with〈|φ|〉 > Λ, but it would not
have decayed during the conventional thermal expansion of the Universe at finite temperatures. Below
the middle band but above the lowest band, the vacuum would have decayed to a correspondingly large
value of〈|φ|〉 at some finite temperature, but its present-day (low-temperature) lifetime is longer than the
age of the Universe. Below the lowest band, the lifetime for decay to a vacuum with〈|φ|〉 > Λ would be
less than the present age of the Universe at low temperatures, and we should really watch out!

In fact, as we see shortly, such low values ofmH are almost excluded by LEP searches for the SM
Higgs boson, as also seen in Fig. 5.

One could in principle avoid this vacuum instability by introducing some new physics at an energy
scale< Λ: what type of physics [26]? One needs to overcome the negative effects of renormalization of
λ by loops with the top quark circulating. The sign of renormalization could be reversed by loops with
some boson circulating, potentially restoring the stability of the electroweak vacuum. However, then
one should consider the renormalization of the quartic coupling between the Higgs and the new boson.
It turns out that the renormalization of this coupling is in turn very unstable, and that the best way to
stabilize this coupling would be to introduce a new fermion.

These new scalars and fermions look very much like the partners of the top quark and Higgs
bosons, respectively, that are predicted by supersymmetry[26]. In Lecture 3 we will study in more detail
the renormalization of mass and vacuum parameters in a supersymmetric theory.

1.5.3 Results from searches at LEP and the Tevatron

As seen in Fig. 2, searches for the reactione+e− → Z0 + H at LEP established a lower limit on the
possible mass of a SM Higgs boson [20]:

mH > 114.4 GeV (84)
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Fig. 6: Dependence onMH of the∆χ2 function obtained from the global fit of the SM parameters to precision
electroweak data [25], excluding (left) or including (right) the results from direct searches at LEP and the Tevatron

at the 95% confidence level. The lower limit (84) is somewhat higher than the central value of the SM
Higgs mass preferred by the global precision electroweak fit(81), but there is no significant tension be-
tween these two pieces of information. Figure 6 shows theχ2 likelihood function obtained by combining
the LEP search and the global electroweak fit. At the 95% confidence level, one finds [20]

mH < 157 GeV, 186 GeV, (85)

depending whether one uses precision electroweak data alone, or includes also the lower limit (84) from
the direct search at LEP. Theχ2 function obtained by combining the LEP limit (84) with the precision
electroweak fit is shown in Fig. 6. Notice the little blip atmH ∼ 115 GeV, reflecting the hint of a signal
found in the last run at the highest LEP energies: this was only at the 1.7-σ level, insufficient to claim
any evidence.

Searches at the Fermilab Tevatron collider have recently started to exclude a region of mass for
the SM Higgs boson, as also seen in Figs. 2, 5 and 6. At the time of writing, these searches exclude [24]

163 GeV < mH < 166 GeV (86)

at the 95% confidence level, as seen in Fig. 7. At smaller masses, the Tevatron 95% confidence level
upper limit on Higgs production and decay is only a few times bigger than the SM expectations, and the
integrated luminosity is expected to double over the next couple of years.

Figure 6 also includes the effect on theχ2 likelihood function of combining the Tevatron search
with the global electroweak fit and the LEP search. We see fromthis that the ‘blow-up’ regionmH >
180 GeV is strongly disfavoured: above the 99% confidence level if the Tevatron data are included,
compared with 96% if they are dropped [25]. The combination of all the data yields a 68% confidence
level range [17]

mH = 116+16
−1.3 GeV. (87)

The Tevatron is expected to continue running until late 2011, accumulatingO(10)/fb of integrated lumi-
nosity. That could be sufficient to exclude a SM Higgs boson over all the mass range between (84) and
(86), which would exclude all the preferred range (85) — a very intriguing possibility! Alternatively,
perhaps the Tevatron will find some evidence for a Higgs bosonwith a mass within this range?
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Fig. 8: Left: the dominant mechanisms for producing a SM Higgs bosonat the LHC at 14 TeV, and right: the most
important branching ratios for a SM Higgs boson, taken from [27]

1.5.4 LHC prospects

The search for the Higgs boson is one of the main raisons d’être of the LHC. Many mechanisms may
make important contributions to SM Higgs production at the LHC. If the Higgs boson is relatively light,
as suggested above, the dominant production mechanisms areexpected to begg → H andW+W− →
H, where theW± are radiated off incoming quarks:q →Wq′.

As already mentioned, the fact that Higgs couplings to otherparticles are proportional to their
masses implies that the Higgs prefers to decay into the heaviest particles that are kinematically accessible.
As seen in Fig. 8, this means that a Higgs lighter than∼ 130 GeV prefers to decay intōbb, whereas a
heavier Higgs prefers to decay intoW+W− andZ0Z0. However, couplings to lighter particles can
become important under certain circumstances. For example, whilst there is no tree-level coupling to
gluons because they are massless, one is induced by loops of heavy particles such as the top quark. For
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the same reason, there is no tree-level Higgs coupling to photons, but the Higgs boson may decay into
γγ via top andW± loops. Although this decay has a very small branching ratio,it is very distinctive
experimentally, and may be detectable at the LHC if the SM Higgs weighs< 130 GeV.

Figure 9 displays estimates of the sensitivities of CMS (left) [28] and ATLAS (right) [29] to a
SM Higgs boson. A fraction of an inverse femtobarn per experiment may suffice to exclude a Higgs
boson over a large range of masses from∼ 150 GeV to∼ 400 GeV. An integrated luminosity∼ 1/fb
per experiment would be needed to discover a Higgs boson witha mass in a similar range, but more
luminosity would be required ifmH < 150 GeV. Indeed, a luminosity∼ 5/fb per experiment would be
needed for discovery over all the displayed range ofmH , down to the LEP limit. One way or another,
the LHC will be able determine whether or not there is a SM Higgs boson.

1.6 Issues beyond the Standard Model

The Standard Model, however, is not expected to be the final description of the fundamental interactions,
but rather an effective low-energy (up to a few TeV) manifestation of a more complete theory.

Some of the outstanding questions in the Standard Model are:

• How is electroweak symmetry broken? In other words, how do gauge bosons acquire mass?
We have seen that the Standard Model incorporates the Higgs mechanism in the form of a single
weak-isospin doublet with a non-zero v.e.v. in order to generate the gauge boson masses, but this
is not the only possible way in which the electroweak symmetry can be broken. For instance,
there could be more than one Higgs doublet, the Higgs could bea pseudo-Goldstone boson (with
a low mass relative to the mass scale of some new interaction)or electroweak symmetry could be
broken by a condensate of new particles bound by a new strong interaction. We cover a few of the
possibilities in Lecture 2.

• How do fermions acquire mass?Electroweak symmetry breaking is a necessary, but not a suffi-
cient, condition to generate the fermion masses. There alsoneeds to be a mechanism that generates
the required Yukawa couplings [see Eq. (46)] between the fermions and the (effective) Higgs field.
The separation between electroweak symmetry breaking and the generation of fermion masses is
made evident in models of dynamical symmetry breaking, suchas technicolour (see Section 2),
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where the breaking is carried out by the formation of a condensate of particles associated to a new
interaction, a process which, while breaking electroweak symmetry and giving masses to the gauge
bosons, does not necessarily give masses to the fermions. This situation is resolved by adding new
interactions which are responsible for generating the fermion masses. Within the Standard Model,
there are no predictions for the values of the Yukawa couplings. Moreover, the values required
to generate the correct masses for the three charged leptonsand the six quarks span six orders of
magnitude, which presumably makes the mechanism for the generation of the couplings highly
non-trivial.

• The hierarchy problem. Why should the Higgs mass remain low,mH . 1 TeV, in the face of di-
vergent quantum loop corrections? Following [3], the Higgsmass can be expanded in perturbation
theory as

m2
H

(
p2
)
= m2

0,H + Cg2
∫ Λ2

p2
dk2 + . . . , (88)

wherem2
0,H is the tree-level (classical) contribution to the Higgs mass squared,g is the coupling

constant of the the theory,C is a model-dependent constant, andΛ is the reference scale up to
which the Standard Model is assumed to remain valid. The integrals represent contributions at
loop level and are apparently quadratically divergent. If there is no new physics, the reference
scale is high, like the Planck scale,Λ ∼ MPl ≈ 1019 GeV or, in Grand Unified Theories (GUTs),
Λ ∼ MGUT ≈ 1015 − 1016 GeV (see Lecture 4). Clearly, both choices result in large corrections
to the Higgs mass. In order for these to be small, there are twoalternatives: either the relative
magnitudes of the tree-level and loop contributions are finely tuned to yield a net contribution
that is small (a feature that is disliked by physicists, but which Nature might have implemented),
or there is a new symmetry, like supersymmetry, that protects the Higgs mass, as discussed in
Lecture 3.

• The vacuum energy problem. The value of the scalar potential, Eq. (31), at the v.e.v.〈φ〉0 of the
Higgs boson is

V
(
〈φ†φ〉0

)
=
µ2v2

4
< 0 . (89)

Hence, because the Higgs mass ism2
H = −2µ2, this corresponds to a uniform vacuum energy

density

ρH = −m
2
Hv

2

8
. (90)

Taking v =
(
GF

√
2
)−1/2 ≈ 246 GeV for the Higgs v.e.v. and using the current experimental

lower bound on the Higgs mass [13],mH & 114.4 GeV, we have

−ρH & 108 GeV4 . (91)

On the other hand, if the apparent accelerated expansion of the Universe — originally inferred
from observations of type 1A supernovae [30] — is attributedto a non-zero cosmological constant
corresponding to∼ 70% of the total energy density of the Universe [13], the required energy
density should be

ρvac∼ 10−46 GeV4 , (92)

which is at least 54 orders of magnitude lower than the corresponding density from the Higgs field,
and of the opposite sign! The character of this dark energy remains unexplained [31,32], and will
probably remain so until we have a full quantum theory of gravity.

• How is flavour symmetry broken? Part of the flavour problem in the Standard Model is, of
course, related to the widely different mass assignments ofthe fermions ascribed to the Yukawa
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couplings, which also set the mixing angles between flavour and mass eigenstates. Mixing oc-
curs both in the quark and the lepton sectors, the former being parametrized by the Cabibbo–
Kobayashi–Maskawa (CKM) matrix and the latter, by the Maki–Nakagawa–Sakata (MNS) matrix.
These are complex rotation matrices, and can each be writtenin terms of three mixing angles and
one CP-violating phase (δ) [13]:

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 , (93)

wherecij ≡ cos (θij), sij ≡ sin (θij). While the off-diagonal elements in the quark sector are
rather small (of order10−1 to 10−3), so that there is little mixing between quark families, in the
lepton sector the off-diagonal elements (except for[VMNS]e3, which is close to zero) are of order
1, so that the mixing between neutrino families is large. TheStandard Model does not provide an
explanation for this difference.

• What is dark matter? The observation that galaxy rotation curves do not fall off with radial
distance from the galactic centre can be explained by postulating the existence of a new type of
weakly-interacting matter,dark matter, in the halos of galaxies. Supporting evidence from the cos-
mic microwave background (CMB) indicates that the dark matter makes up∼ 25% of the energy
density of the Universe [33]. Dark matter is usually thoughtto be composed of neutral relic parti-
cles from the early Universe. Within the Standard Model, neutrinos are the only candidate massive
neutral relics. However, they contribute only with a normalized density ofΩν & 1.2 (2.2)× 10−3

if the mass hierarchy is normal (inverted), or no more than10% if the lightest mass eigenstate lies
around 1 eV, that is, if the hierarchy is degenerate [3]. On top of that, structure formation indicates
that dark matter should be cold, i.e., non-relativistic at the time of structure formation, whereas
neutrinos would have been relativistic particles. Within the Minimal Supersymmetric extension of
the Standard Model (MSSM), the lightest supersymmetric partner, called aneutralino, is a popular
dark matter candidate [34].

• How did the baryon asymmetry of the Universe arise?The antibaryon density of the Universe
is negligible, whilst the baryon-to-photon ratio has been determined, using WMAP data6 of the
CMB [35] to be

η =
nb − nb
nγ

≃ nb
nγ

= 6.12 (19) × 10−10 , (94)

wherenb, nb, andnγ are the number densities of baryons, antibaryons, and photons, respectively.
The fact that the ratio is not zero is intriguing consideringthat, in a cosmology with an inflationary
epoch, conventional thermal equilibrium processes would have yielded an equal number of parti-
cles and antiparticles. In 1967, Sakharov [36] establishedthree necessary conditions (more fully
explained in [37]) for the particle–antiparticle asymmetry of the Universe to be generated:

1. violation of the baryon number,B;

2. microscopic C and CP violation;

3. loss of thermal equilibrium.

Otherwise, the rate of creation of baryons equals the rate ofdestruction, and no net asymme-
try results. In the perturbative regime, the Standard ModelconservesB; however, at the non-
perturbative level,B violation is possible through the triangle anomaly [15]. The loss of thermal
equilibrium may occur naturally through the expansion of the Universe, and CP violation enters
the Standard Model through the complex phase in the CKM matrix [13]. However, the CP viola-
tion observed so far, which is described by the Kobayashi–Maskawa mechanism of the Standard

6We use here values from the three-year WMAP analysis [35], rather than the five-year analysis [33], in order to be consistent
with the values quoted by the Particle Data Group [13] summary tables.
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Model, is known to be insufficient to explain the observed value of the ratioη, and new physics
is needed. One possible solution lies in leptogenesis scenarios, where the baryon asymmetry is a
result of a previously existing lepton asymmetry generatedby the decays of heavy sterile neutri-
nos [38].

• Quantization of the electric charge. It is an experimental fact that the charges of all observed
particles are simple multiples of a fundamental charge, which we can take to be the electron charge,
e. Dirac [39–41] proved that the existence of even a single magnetic monopole (a magnet with only
one pole) is sufficient to explain the quantization of the electric charge, but the particle content of
the Standard Model (see Table 1) does not include magnetic monopoles. Hence, in the absence of
any indication for a magnetic monopole, the explanation of charge quantization must lie beyond
the Standard Model. Indeed, so far there has only been one candidate monopole detection event
in a single superconducting loop [42], in 1982, and the monopole interpretation of the event has
now been largely discounted. One expects monopoles to be very massive and non-relativistic at
present, in which case time-of-flight measurements in the low-velocity regime (β ≡ v/c ≪ 1)
become important. The best current direct upper limit on thesupermassive monopole flux comes
from cosmic-ray observations [13]:

Φ1pole< 1.0× 10−15 cm−2sr−1s−1 , (95)

for 1.1×10−4 < β < 0.1. An alternative route towards charge quantization isvia a Grand Unified
Theory (GUT) (see Lecture 4). Such a theory implies the existence of magnetic monopoles that
would be so massive that their cosmological density would besuppressed to an unobservably small
value by cosmological inflation.

• How to incorporate gravitation? One of the most obvious shortcomings of the Standard Model
is that it does not incorporate gravitation, which is described on a classical level by general rela-
tivity. However, the consistency of our physical theories requires a quantum theory of gravity. The
main difficulty in building a quantum field theory of gravity is its non-renormalizability. String
theory [43] and loop quantum gravity [44] constitute attempts at building a quantized theory of
gravity. If one could answer this question, one would surelyalso be able to solve the dark energy
problem. Conversely, solving the dark energy problem presumably requires a complete quantum
theory of gravity.

2 Electroweak symmetry breaking beyond the Standard Model

2.1 Theorists are getting cold feet

After so many years, it seems that we will soon know whether a Higgs boson exists in the way predicted
by the Standard Model, or not. Closure at last!

Like the prospect of an imminent hanging, the prospect of imminent Higgs discovery concentrates
wonderfully the minds of theorists, and many theorists withcold feet are generating alternative models,
as prolifically as monkeys on their laptops. These serve the invaluable purpose of providing benchmarks
that can be compared and contrasted with the SM Higgs. Experimentalists should be ready to search for
reasonable alternatives, already at the Tevatron and also at the LHC once it is up and running, and they
should be on the look-out for tell-tale deviations from the SM predictions if a Higgs boson should appear.

Even within the SM with a single elementary Higgs boson, questions are being asked. As dis-
cussed in the previous section, within this framework the experimental data seem to favour a light Higgs
boson. However, the interpretation of the precision electroweak data has been challenged. Even if one
accepts the data at face value, the SM fit may need to take into account non-renormalizable, higher-
dimensional interactions that could conspire to permit a heavier SM Higgs boson? In this section, in
addition to these possibilities, we explore several mechanisms of electroweak symmetry breaking be-
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yond the minimal Higgs, i.e., a single elementarySU(2) Higgs doublet whose potential is arranged to
have a non-zero v.e.v.

Any successful model of electroweak symmetry breaking mustgive masses to the matter fermions
as well as the weak gauge bosons. This could be achieved usingeither a single boson, as in the SM, or
two of them, as in the Minimal Supersymmetric extension of the Standard Model (MSSM)7, or by some
composite of new fermions with new strong interactions thatgenerate a non-zero v.e.v. as in (extended)
technicolour models, or by some Higgsless mechanism.

We do know, however, that the energy scale at which EWSB must occur isO(1) TeV [45]. This
scale is set by the decay constant of the three Goldstone bosons that, through the Higgs mechanism, are
transformed into the longitudinal components of the weak gauge bosons:

Fπ =
(
GF

√
2
)−1/2

≈ 246 GeV . (96)

If there is any new physics associated to the breaking of electroweak symmetry, it must occur near this
energy scale. Another way to see how this energy scale emerges is to considers-waveWW scattering.
In the absence of a direct-channel Higgs pole, this amplitude would violate the unitarity limit at an energy
scale∼ 1 TeV (82).

It is the scale of 1 TeV, and the typical values of QCD and electroweak cross sections at this
energy,σ ≃ 1 nb–1 fb, that set the energy and luminosity requirements of the LHC:

√
s = 14 TeV and

L = 1034 cm−2 s−1 for pp collisions [13]. This energy scale is to be contrasted with the energy scale
of the other unexplained broken symmetry in the SM, namely flavour symmetry, which is completely
unknown: it may lie anywhere from 1 TeV up to the Planck scale,MP = 1.22 × 1019 GeV.

There are some general constraints that any proposed model of electroweak symmetry breaking
must satisfy [46]. First, the model must predict a value of the ρ parameter, Eq. (73), that agrees with
the valueρ ≈ 1 found experimentally. The desired valueρ = 1 is found automatically in models that
contain only Higgs doublets and singlets, but would be violated in models with scalar fields in larger
SU(2) representations. A second constraint comes from the strictupper limits on flavour-changing
neutral currents (FCNCs). These are absent at tree level in the minimal Higgs model, a fact that is in
general not true in non-minimal models.

2.2 Interpretation of the precision electroweak data

It is notorious that the two most precise measurements at theZ0 peak, namely the asymmetries measured
with leptons (particularlyAℓ(SLD)) and hadrons (particularlyA0,b

FB), do not agree very well [47], as seen
in Table 2 and Fig. 1.48. Within the SM, they favour different values ofmH , around 40 and 500 GeV,
respectively, as seen in Fig. 10. Most people think that thisdiscrepancy is just a statistical fluctuation,
since the totalχ2 of the global electroweak fit is acceptable (χ2 = 17.3 for 13 d.o.f., corresponding to
a probability of 18% [16]), but it may also reflect the existence of an underestimated systematic error.
However, if there were a big error inA0,b

FB, the preferred value ofmH would be pulled uncomfortably
low by the other data, whereas if there was a big error in the interpretation of the leptonic datamH would
be pulled towards much higher values. On the other hand, if wetake both pieces of data at face value,
perhaps the discrepancy is evidence for new physics at the electroweak scale. In this case there would be
no firm basis for the prediction of a light Higgs boson, which is based on a Standard Model fit, and no fit
value ofmH could be trusted?

7We leave the treatment of the Higgs sector within the MSSM fora later section.
8Another anomaly is exhibited by the NuTeV data on deep-inelasticν−N scattering [48], but this is easier to explain away

as due to our lack of understanding of hadronic effects.
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Fig. 10: The 68% confidence level ranges formH that are indicated by various individual electroweak measure-
ments [16]

2.3 Higher-dimensional operators within the SM

The Standard Model should be regarded simply as an effectivelow-energy theory, to be embeded within
some more complete and satisfactory theory. Therefore, oneshould anticipate that the renormalizable
dimension-four interactions of the SM could be supplemented by higher-dimensional operators of the
general form:

Leff = LSM +Σi
ci
Λp
i

O4+p
i , (97)

whereΛi is a scale at which the supplementary interactionO4+p
i of dimension4 + p appears to be

generated. A global fit to the precision electroweak data suggests that, if the Higgs is indeed light, the
coefficients of these additional interactions are small:

Λi > O(10) TeV (98)

for ci = ±1. It is then a problem to understand the ‘little hierarchy’ between the electroweak scale and
Λi.

However, conspiracies are in principle possible, which could allow mH to be large, even if one
takes the precision electroweak data at face value [49]. Examples are shown in Fig. 11, where one sees
corridors of allowed parameter space extending up to a heavyHiggs mass, ifΛi ≪ 10 TeV. A theory that
predicts a heavy Higgs boson but remains consistent with theprecision electroweak data should predict
a correlation of the type seen in Fig. 11. At the moment, this may seem unnatural to us, but Nature may
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Fig. 11: The 68%, 90%, 99% and 99.9% confidence levels fit for global electroweak fits including two different
types of higher-dimensional operators, demosntrating that they might conspire with a relatively heavy Higgs boson
to yield and acceptable fit [49]

know better. In any case, any theory beyond the SM must link the value ofmH and the scales of these
higher-dimensional effective operators in some way.

2.4 Little Higgs

One way to address the ‘little hierarchy problem’ and explain the lightness of the Higgs boson (if it is
light) is by treating it as a pseudo-Goldstone boson corresponding to a spontaneously broken approxi-
mate global symmetry of a new strongly-interacting sector at some higher mass scale, the ‘little Higgs’
scenario [50]. Such a theory would work by analogy with the pions in QCD, which have masses far
below the generic mass scale of the strong interactions∼ 1 GeV.

If the Higgs is a pseudo-Goldstone boson, its mass is protected from acquiring quadratically-
divergent loop corrections [51]. This occurs as a result of the particular manner in which the gauge and
Yukawa couplings break the global symmetries: more than onecouplng must be turned on at a time in
order for the symmetry to be broken, a feature known as ‘collective symmetry breaking’ [52, 53]. As
a consequence, the quadratic divergences that would normally appear in the SM are cancelled by new
particles, sometimes in unexpected ways. For example, the top-quark loop contribution to the Higgs
mass-squared has the general form

δm2
H,top(SM) ∼ (115GeV )2

(
Λ

400 GeV

)2

. (99)

As illustrated in Fig. 12, in little Higgs models this is cancelled by the loop contribution due to a new
heavy top-like quarkT with charge +2/3 that is a singlet ofSU(2)L, leaving a residual logarithmic
divergence:

δm2
H,top(LH) ∼ 6GFm

2
t√

2π2
m2

T log
Λ

mT
. (100)

Analogously, the quadratic loop divergences associated with the gauge bosons and the Higgs boson of
the Standard Model are cancelled by loops of new gauge bosonsand Higgs bosons in little Higgs models.

The net result is a spectrum containing a relatively light Higgs boson and other new particles that
may be somewhat heavier:

MT < 2 TeV
( mH

200 GeV

)2
,MW ′ < 6 TeV

( mH

200 GeV

)2
,MH++ < 10 TeV. (101)
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Fig. 12: Left: If the Standard Model Higgs boson weighs around 200 GeV, the top-quark loop contribution to its
physical mass (calculated here with a loop momentum cutoff of 10 TeV) must cancel delicately against the tree-
level contribution. Right: In ‘little Higgs’ models, the top-quark loop is cancelled by loops containing a heavier
charge-2/3 quark [50].

The extraT quark, in particular, should be accessible to the LHC. In addition, there should be more
new strongly-interacting physics at some energy scale at orabove 10 TeV, to provide the ultra-violet
completion of the theory.

2.5 Technicolour

Little Higgs models are particular examples of composite Higgs models, of which the prototypes were
technicolour models [54, 55]. In these models, electroweaksymmetry is broken dynamically, by the
introduction of a new non-Abelian gauge interaction [56–58] that becomes strong at the TeV scale. The
building blocks are massless fermions called technifermions and new force-carrying fields called tech-
nigluons. As in the SM, the left-handed components of the technifermions are assigned to electroweak
doublets, while the right-handed components form electroweak singlets, and both components carry hy-
percharge. AtΛEW ∼ 1 TeV the technicolour coupling becomes strong, which leads to the formation of
condensates of technifermions with v.e.v.’s

〈φ〉 = 〈fLfR〉 ≡ v . (102)

Because the left-handed technifermions carry electroweakquantum numbers, but the right-handed ones
do not, the formation of this technicondensate breaks electroweak symmetry.

The massless technifermions have the chiral symmetry group

Gχ = SU(2ND)L ⊗ SU(2ND)R ⊃ SU(2)L ⊗ SU(2)R , (103)

whereND is the number of technifermion doublets. When the condensate forms, this large global sym-
metry is broken down to

Sχ = SU(2ND) ⊃ SU(2)V , (104)

whereV refers to the vector combination of left and right currents,and4N2
D − 1 massless Goldstone

bosons appear, with decay constantF TC
π . Similarly to the Higgs mechanism in the SM, three of these

bosons are ‘eaten’ and become the longitudinal components of the W± andZ0 weak bosons, which
acquire masses [45]

mW =
g

2

√
NDF

TC
π , mZ =

1

2

√
g2 + g′ 2

√
NDF

TC
π =

mW

cos (θW )
. (105)
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The scaleΛTC at which technicolour interactions become strong is related to the magnitude of elec-
troweak symmetry breaking, namely to the weak scale, by:

ΛTC = few× F TC
π , F TC

π = Fπ/
√
ND , (106)

whereFπ = v ≈ 246 GeV. The breaking of the chiral symmetry in technicolour is reminiscent of
chiral symmetry in QCD, which provides a working precedent for the model9. Technicolour guarantees
ρ = m2

W /
(
m2

Z cos (θW )
)
= 1+O (α) through a custodialSU(2)R flavour symmetry inGχ [45], which

is traceable to the quantum numbers assigned to the technifermions.

Dynamical symmetry breaking addresses the problem of quadratic divergences in the Higgs mass-
squared, such as (99), by introducing a composite Higgs boson that ‘dissolves’ at the scaleΛTC. In
this way, it makes loop corrections to the electroweak scale‘naturally’ small. Moreover, technicolour
has a plausible mechanism for stabilizing the weak scale farbelow the Planck scale. The idea is that
technicolour, being an asymptotically-free theory, couples weakly at very high energies∼ 1016 GeV,
and then evolves to become strong at lower energies∼ 1 TeV [54]. However, writing down an explicit
GUT scenario based on this scenario has proved elusive.

As described above, the simplest technicolour models couldprovide masses for the gauge bosons
W± andZ0, but not to the matter fermions. Additions to technicolour could allow for quark and
lepton masses by introducing new interaction with technifermions, as in ‘extended technicolour’ mod-
els [55, 60]. However, these had severe problems with flavour-changing neutral interactions [61] and a
proliferation of relatively light pseudo-Goldstone bosons that have not been seen by experiment [62].

Moreover, a generic problem with technicolour models is presented by the global electroweak fit
discussed in the first Lecture. The preference within the SM for a relatively light Higgs boson (81) may
be translated into constraints on the possible vacuum polarization effects due to generic new physics
models. QCD-like technicolour models have many strongly-interacting dynamical scalar resonances in
the TeV range, e.g., a scalar analogous to theσ meson of QCD that corresponds naively to a relatively
heavy Higgs boson, which is disfavoured by the data [63]. Such a model can be reconciled with the
electroweak data only if some other effect is postulated to cancel the effects of its large mass. One
strategy for evading this problem is offered by ‘walking technicolour’ theories [64], where the coupling
strength evolves slowly, i.e., walks. However, the loss of the close analogy with QCD makes it more
difficult to calculate so reliably in such models: lattice techniques may come to the rescue here.

2.6 Interpolating models

So far, we have examined two extreme scenarios: the orthodoxinterpretation of the SM in which the
Higgs is elementary and relatively light, and hence interacts only weakly, and strongly-coupled models
exemplified by technicolour. The weakly-coupled scenario would require additional TeV-scale parti-
cles to stabilize the Higgs mass by cancelling out the quadratic divergences such as (99). A prototype
for such models is provided by supersymmetry, as discussed in the next Lecture. On the other hand,
strongly-coupled models such as technicolour introduce many resonances that are required by unitarity
and generate important contributions to the oblique radiative corrections, e.g., a vector resonanceρ in
W+W− scattering would induce

δρ ∼ m2
W

m2
ρ

(107)

whereρ was defined in (73), and the experimental upper limit|ρ| < 10−3 at the 95% confidence level
imposesmρ > 2.5 TeV.

One way to interpolate between these two extreme scenarios,and provide a basis for determin-
ing how far from the light-SM-Higgs scenario the data permitus to go, is to consider models in which

9The condensation phenomenon also occurs in solid-state physics: dynamical symmetry breaking in superconductors is
achieved by the formation of Cooper pairs [59], which are condensates of electron pairs with charge−2e.
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the unitarization of theW+W− scattering amplitude is shared between a light Higgs boson with mod-
ified couplings and a vector resonance with massmρ and couplinggρ, whose relative importance is
parametrized by the combination

ξ ≡ v
gρ
mρ

. (108)

The SM is recovered in the limitξ → 0, but its decay branching ratios may differ considerably asξ
increases towards the strong-coupling limitξ = 1, as seen in Fig. 13. Thus, one signature for such
models at the LHC may be the observation of a Higgs boson with couplings that differ from those of the
SM.

Fig. 13: The dependences of Higgs branching ratios on the parameterξ (108), formH = 120 GeV (left) and
180 GeV (right) [65]

Another way to probe such models is to look for effects inW+
L W

+
L scattering. Unfortunately,

at the LHC theW± bosons that are flashed off from incoming energetic quarks:q → Wq′ have pre-
dominantly transverse polarizations, so thatσ(W+

T W
+
T → W+

T W
+
T ) ≫ σ(W+

L W
+
T → W+

T LW
+
T ) and

σ(W+
L W

+
L →W+

L W
+
L ) for all mW+W+ in the SM, and there is an accidental very small factor [65]:

dσLL/dt

dσTT /dt
=

1

2304

(
mW+W+

mW

)4

ξ2 , (109)

which implies that, even forξ = 1, σ(W+
L W

+
L → W+

L W
+
L ) > σ(W+

T W
+
T → W+

T W
+
T ) only for

mW+W+ > 1.2 TeV, which is unlikely to be accessible at the LHC, as seen in Fig. 14. An alternative
possibility for the LHC may be double-Higgs productionvia the reactionW+W− → HH, which may
be greatly enhanced as compared with its rate in the SM, as also seen in Fig. 14 — though its observability
may be a different matter.

2.7 Higgsless models and extra dimensions

As has already been discussed, if there is nothing like a SM Higgs boson,s-waveWW scattering reaches
the unitarity limit atmW+W− ∼ 1 TeV (83). An immediate reaction might be: Who cares? Some non-
perturbative strong dynamics will necessarily restore unitarity, even in the absence of a Higgs boson.
However, more detailed study in specific models has shown that this strong dynamics is apparently
incompatible with the precision data: one needs some perturbative mechanism to break the electroweak
symmetry.

How can one break a gauge symmetry? Breaking it explicitly would destroy the renormalizability
(calculability) of the gauge theory, whereas breaking the symmetry spontaneously by the v.e.v. of some
field everywhere in space does retain the renormalizability(calculability) of the gauge symmetry. But
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Fig. 14: Left; the cross sectionsσ(W+
T W

+
T → W+

T W
+
T ), σ(W+

L W
+
T → W+

T LW
+
T ), and σ(W+

L W
+
L →

W+
L W

+
L ), as functions ofξ (108). Right: cross sections for double Higgs production [65].

that is the Higgs approach that we are trying to escape: Is there another way? The alternative is to
break the electroweak symmetryvia boundary conditions. This is impossible in conventional3 + 1-
dimensional space-time, because it has no boundaries. However, it becomes an option if we postulate
finite-size (small) extra space dimensions [66–68].

To see how this works, let us first consider the particle spectrum in the simplest possible model
with one extra dimension compactified on a circleS1 of radiusR with internal coordinate (fifth dimen-
sion)y, as illustrated in Fig. 15. In this case, the wave function ofa bosonφ at y andy + 2πR must be
identified:

φ(y + 2πR) = φ(y) , (110)

so that one can expand the five-dimensional field as follows:

φ(x, y) =
∑

n

1√
2δn0πR

(
cos
(ny
R

)
φ+n (x) + sin

(ny
R

)
φ−n (x)

)
. (111)

Theφ±n are the four-dimensional Kaluza–Klein [69,70] modes of thefield, which appear in four dimen-
sions as particles with masses

mn = pny =
n

R
, (112)

and the functionscos, sin(ny/R) describe the localizations of these modes along the extra dimension.
the lowest-lying mode has a flat wave function (n = 0), and the excitations haven > 0.

We now consider what happens if we ‘fold’ the circle by identifying y ∼ −y. Mathematically,
this is the simplestorbifold S1/Z2, also illustrated in Fig. 15. At the same time as identifyingy ∼ −y,
we can also identify the fieldφ up to a sign:

φ(−y) = Uφ(y) : U2 = 1. (113)

This has the effect of projecting out half the Kaluza–Klein wave functions (111). If we chooseU = +1,
we select the even wave functionscos(ny/R) and hence the Kaluza–Klein modesφ+n (x) whereas, if
we chooseU = −1, we select the odd wave functionssin(ny/R) and hence the Kaluza–Klein modes
φ−n (x). The ‘even’ particles include the massless mode withn = 0 whereas all the ‘odd’ particles are
massive. The projectionU serves to give masses to all the states that are asymmetric.

This mechanism can be extended to break gauge symmetry [66–68]. Let us consider a five-
dimensional theory with a gauge fieldAµ,5, and let us identify it on the orbifoldy ∼ −y up to a discrete
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Fig. 15: Compactification on a circleS1 of radiusR with internal coordinate (fifth dimension)y, illustrating the
possible orbifolding of this modelvia the identificationS1/Z2

gauge transformationU : U2 = 1:

Aµ = +UAµ(y)U
†, (114)

A5 = −UA5(y)U
†. (115)

The gauge symmetry group is broken at the end-points of the orbifold y = 0, πR: the surviving subgroup
is the one that commutes withU , and asymmetric particles acquire masses as described above. In this
way, one could imagine breakingSU(2) ⊗ U(1)→ U(1) with a suitable orbifold construction.

It is a general feature of this construction that a vector resonance should appear inWZ scattering,
corresponding to the lowest-lying Kaluza–Klein excitation. The production of such a particle at the LHC
has been considered in the context of a Higgsless model, and could well be observable, as seen in Fig. 16.

Fig. 16: Left: calculations of the possible modifications ofσ(W+Z0 → W+Z0). Right: simulations of the
possible numbers of events at the LHC [65].

You might wonder whether this type of vector resonance bearsany relation to the vector reso-
nances discussed previously in the context of new strong dynamics. The answer is yes: as was first
emphasized in the context of string theory, a strong coupling is equivalent to a new compactified di-
mension, and there is in general a ‘holographic’ relation between four- and five-dimensional theories,
the former being considered as boundaries of the five-dimensional ‘bulk’ theory. These ideas enable
the strongly-interacting models of electroweak symmetry breaking discussed in this Lecture, and many
others, to be related through a unified description à la M-theory [71], as seen in Fig. 17 [72]. The alter-
native is a weakly-interacting model of electroweak symmetry breaking, which is favoured, naively, by
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the indications from precision electroweak data of a light Higgs boson. In the next Lecture we discuss
supersymmetry, which is the most developed such alternative.

Fig. 17: Relations between different models of electroweak symmetry breaking [72]

3 Supersymmetry

We have seen that the Standard Model is a valid description ofphysical phenomena at energies lower than
a few hundreds of GeV. However, there are various reasons to think that supersymmetry might appear
at the TeV scale, and hence play an important role in new discoveries at the LHC, which will explore
energies of the order of a TeV. In this Lecture we present and discuss supersymmetric models, with a
focus on the phenomenological consequences of supersymmetry.

We first give a brief historical introduction and summarize the motivations for supersymmetry in
particle physics. Subsequently we discuss the general formal structure of a physical supersymmetric
theory. We then continue with some theoretical notions and applications to ‘low-energy’ particle physics
around the TeV scale. Among the possible models, we focus on the Minimal Supersymmetric Standard
Model (MSSM), which provides a basis for analysing supersymmetric phenomenology. Within the con-
text of the MSSM, we discuss the principal experimental constraints on supersymmetry, and then discuss
possible aspects of the detection of supersymmetry.

3.1 History and motivations

3.1.1 What is supersymmetry?

Supersymmetry is a radically new type of symmetry that transforms a bosonic state into a fermionic state,
or vice versa, with∆S = ±1/2, whereS is the spin. Denoting the supersymmetry generator byQ, we
may write schematically:

Q|Boson〉 = |Fermion〉 (116)

Q|Fermion〉 = |Boson〉. (117)

Formally, supersymmetry is an extension of the space-time symmetry reflected in the Poincaré group,
and this was a principal motivation leading to its discovery. Initially, it was also hoped that one could
use supersymmetry to combine the external space-time symmetries with internal symmetries. However,
this prospect seems more distant, as discussed below.

3.1.2 Milestones

There were several attempts in the 1960s to combine internaland external symmetries, but Coleman
and Mandula [73] showed in 1967 that it is impossible to combine these types of symmetry,via a fa-

30

M. BUSTAMANTE, L. CIERI AND J. ELLIS

174



mous no-go theorem that is discussed later in more detail. However, their proof assumed that the new
symmetry should be generated by bosonic charges of integer spin. In 1971, Golfand and Likhtman [74]
discovered an extension of the Poincaré group using fermionic charges of half-integer spin. In the same
year, Ramond [75], Neveu and Schwarz [76] proposed supersymmetric models in two dimensions, with
the aim of obtaining strings with fermionic states that could accommodate baryons. A few years later,
in 1973, Volkov and Akulov [77] tried to apply a nonlinear realization of supersymmetry to neutrinos in
four dimensions, but their theory did not describe correctly the low-energy interactions of neutrinos.

In the same year, Wess and Zumino [78, 79] proposed the first four-dimensional supersymmetric
field theories of interest from the phenomenological point of view. Specifically, they showed how to
construct supersymmetric field theories linking scalars with fermions of spin1/2 [78], and also fermions
of spin 1/2 with gauge particles of spin 1 [79]. Then, together with Iliopoulos and Ferrara, Zumino
discovered that supersymmetry would eliminate many of the divergences present in other field theo-
ries [80, 81]. At first, these ultraviolet properties were regarded as curiosities, in particular because
not all logarithmic divergences were eliminated, but attempts were made to construct phenomenologi-
cal supersymmetric models, for example theories unifying matter particles and Higgs fields in the same
supermultiplet. Subsequently, in 1976, two groups [82, 83]found a local version of supersymmetry in
which the supersymmetry transformation depends on the space-time coordinates. This theory necessarily
includes a description of gravitation, and hence has been called supergravity.

3.1.3 Why supersymmetry?

Following these formal developments, the phenomenology ofsupersymmetry has been studied inten-
sively, and models based on supersymmetry are considered tobe among the most serious candidates for
physics beyond the SM [84–86]. Why introduce supersymmetryin particle physics? What makes it so
attractive for particle physicists?

The reasons for its introduction in particle physics are principally physical, and quite diverse in
nature, as we now discuss.

• The very special properties of supersymmetric field theories are helpful in addressing the natu-
ralness of a (relatively) light Higgs boson. In the previousLectures we have discussed the existence of
enormous radiative corrections to the Higgs mass-squared,m2

H , which feels the virtual effects of any par-
ticle that couples directly or indirectly to the Higgs field.For example, the correction due to a fermionic
loop such as that in Fig. 18(a) yields10:

∆m2
H = −

y2f
8π2

[2Λ2 + 6m2
f ln(Λ/mf ) + ...], (118)

whereΛ is an ultraviolet cutoff used to represent the scale up to which the SM remains valid, at which
new physics appears. We see that the mass of the Higgs diverges quadratically withΛ and, if we suppose
that the SM remains valid up to the Planck scale,MP ≃ 1019 GeV, thenΛ = MP and this correction
is 1030 times bigger than the reasonable value of the mass-squared of the Higgs, namely(102) GeV)2!
Moreover, there is a similar correction coming from a loop ofa scalar fieldS, such as that in Fig. 18(b):

∆m2
H =

λS
16π2

[Λ2 − 2m2
S ln(Λ/mS) + ...], (119)

whereΛS is the quartic coupling to the Higgs boson.

Comparing (118) and (119), we see that the divergent contributions terms∝ Λ2 are cancelled if,
for every fermionic loop of the theory there is also a scalar loop withλS = 2y2f . We will see later that
supersymmetry imposes exactly this relationship!Thus supersymmetric field theories have no quadratic
divergences, at both the one- and multi-loop levels, which enables a large hierarchy between different

10For this calculation, we define the Yukawa coupling of the Higgs boson to a fermion, as usual,via: yfHψψ.
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S

Fig. 18: One-loop quantum corrections to the mass-squared of the Higgs boson due to (a) a fermionic loop, (b) a
scalar boson loop

physical mass scales to be maintained in a natural way. In addition, other logarithmic corrections to
couplings also vanish in a supersymmetric theory [87].

• A second circumstantial hint in favour of supersymmetry is the fact, discussed in the previous
Lecture, that precision electroweak data prefer a relatively light Higgs boson weighing less than about
150 GeV [16]. This is perfectly consistent with calculations in the minimal supersymmetric extension of
the Standard Model (MSSM), in which the lightest Higgs bosonweighs less than about 130 GeV [88].

• A third motivation for supersymmetry is provided by the astrophysical necessity of cold dark
matter, which has a density ofΩCDMh

2 = 0.1099 ± 0.0062 according to the recent measurements of
WMAP [33]. This dark matter could be provided by a neutral, weakly-interacting particle weighing less
than about 1 TeV, such as the lightest supersymmetric particle (LSP)χ [34]. In many supersymmetric
models, a conserved quantum number calledR parity guarantees that the LSP is stable. As the Universe
expanded and cooled, all the particles present at high energies and densities would have annihilated,
disintegrated, or combined to form baryons, atoms, etc., except for stable weakly-interacting particles
such as the neutrinos and the LSP. The latter would be presentin the Universe as a relic from the Big
Bang, and could have the right density to constitute the majority of the cold dark matter favoured by
cosmologists.

• Fourthly, let us consider the couplings that characterize each of the fundamental forces. As
seen in the left panel of Fig. 19, it has been known for a long time now that if we evolve them with
energy according to the renormalization-group equations of the Standard Model, we find that they never
quite become equal at the same scale. However, as seen in the right panel of Fig. 19, when we include
supersymmetric particles in the evolution of the couplings, they appear to intersect at exactly the same
energy scale (about2 × 1016 GeV) [89]. Nobody is forced to believe in such a ‘Grand Unification’ on
the basis of this possible unification of the couplings, but it is very intriguing that supersymmetry favours
unification with high precision.

• Fifthly, supersymmetry seems to be essential for the consistency of string theory [90], although
this argument does not really restrict the mass scale at which supersymmetric particles should appear.

• A final hint for supersymmetry may be provided by the anomalous magnetic moment of the
muon,gµ−2, whose experimental value [91] seems to differ from that calculated in the SM, in a manner
that could be explained by contributions from supersymmetric particles. The amount of this discrepancy
depends on how one calculates the SM contributions togµ − 2, in particular that due to low-energy
hadronic vacuum polarization, and to a lesser extent that due to light-by-light scattering. The most direct
way to calculate the hadronic vacuum polarization contribution is to use low-energy data one+e− →
hadrons: these do not agree perfectly, but may be combined toyield a discrepancy [92]

δaµ ≡ δ

(
gµ − 2

2

)
= (24.6 ± 8.0) × 10−10, (120)

a discrepancy of 3.1σ, as illustrated in Fig. 20. Alternatively, and less directly, one may useτ decay
data, in which case the discrepancy is reduced to about 2σ.
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Fig. 19: The measurements of the gauge coupling strengths at LEP (a) do not evolve to a unified value if there is
no supersymmetry but do (b) if supersymmetry is included [89]
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Fig. 20: SM calculations ofaµ ≡ (gµ − 2)/2 disagree with the experimental measurement [91], particularly if
they are based on low-energye+e− data [73].

As we have seen, there are several arguments that motivate the study of supersymmetry11. Al-
though there are no experimental proofs of its existence, supersymmetry combines so many attractive
and useful characteristics that it deserves to be studied indetail.

3.2 The structure of a supersymmetric theory

3.2.1 Interlude on ‘spinorology’

In order to lay the basis for the theoretical description of supersymmetry [84], we first present the nota-
tions and conventions that we use in the rest of the section [11,87].

11Other extensions of the SM also address some of these issues,though perhaps none do so as naturally as supersymmetry.
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•We choose theWeyl representationfor theγ matrices:

γµ =

(
0 σµ

σµ 0

)
, (121)

with σµ = (12, σ
i), σµ = (12,−σi) whereσi are the Pauli matrices, andγ5 = iγ0γ1γ2γ3 =

diag(−12,12). We also use{γµ, γν} = 2ηµν , whereηµν = diag(+1,−1,−1,−1) is the Minkowski
metric, that may be used to lower or to raise Lorentz indexes.

• A Weyl spinordescribes a particle of spin1/2 and given chirality. It has two components, which we
label with Greek letters,ψα, ξβ, . . . whereα, β, ... = 1, 2. A spinorψα orψL will denote a particle with

left chirality, whereas we denote byψ
α̇

orψR a spinor with right chirality. These are related by complex
conjugation:

(ψα)
∗ = ψα̇ , (122)

(ψ
α̇
)∗ = ψα . (123)

We also use the matrixεαβ = εα̇β̇ ≡ iσ2 andεαβ = εα̇β̇ ≡ −iσ2, which allows us to raise and lower the
spinorial indicesα andβ.

• A Dirac spinor is constructed out of two Weyl spinors, and describes a particle with both chiralities. It
is a spinor of four components, which we denote here using capital Greek letters:Ψ, χ, Φ, ... In terms of
Weyl spinors, we have

Ψ =

(
ψL

ψR

)
=

(
ψα

ηα̇

)
. (124)

The projection operatorsPR,L = 1
2(1 ± γ5) allow us to select the right or left chiralty, respectively:

ΨR,L = PR,LΨ.

• A charge conjugate spinoris a spinor to which charge conjugation has been applied. It describes the
antiparticle of a given particle, with opposite internal opposite charge.

Ψc = CΨ
T
=

(
ηα

ψ
α̇

)
, (125)

where the charge conjugation matrixC can be written:

C = iγ0γ2. (126)

• A Majorana spinoris constructed out of a single Weyl spinor, but possesses four components that are
interrelated by charge conjugation, so thatΨM = Ψc

M :

ΨM =

(
ψL

−iσ2(ψL)
∗

)
=

(
ψα

ψ
α̇

)
. (127)

3.2.2 The supersymmetry algebra and supermultiplets

As was described before, supersymmetry combines the space-time transformations of the Poincaré group
with transformations of an internal symmetry. Prior to the advent of supersymmetry, there had been many
previous attempts to combine internal and external symmetries, but they had always failed, for a reason
demonstrated by Coleman and Mandula [73]. All the previous attempts used bosonic charges, scalar (or
vector) such as the electromagnetic charge (or momentum operator):

〈SpinJ |Q|SpinJ〉 = q, (128)
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〈SpinJ |Pµ|SpinJ〉 = pµ. (129)

Conservation of momentum in any2→ 2 collision implies

p(1)µ + p(2)µ = p(3)µ + p(4)µ . (130)

Consider now a tensor chargeΣµν : by Lorentz invariance, its diagonal matrix elements in anyparticle
state|a〉 must be of the form

〈a|Σµν |a〉 = αgµν + βpµpν . (131)

Conservation of the tensor charge during a2→ 2 collision would require

p(1)µ p(1)ν + p(2)µ p(2)ν = p(3)µ p(3)ν + p(4)µ p(4)ν . (132)

This is compatible with the linear relation (130) of conventional momentum conservation iff

p(1)µ = p(3)µ or p(4)µ , (133)

implying that only exactly forward and backward scatteringare allowed: no need to place any detectors
at large angles! This proof can easily be extended to bosoniccharges with any number of indices.
However, it makes the crucial assumption that the diagonal matrix element〈a|Q|a〉 6= 0, which is not
true in supersymmetry, enabling it to evade the Coleman–Mandula no-go theorem.

Supersymmetry is generated byspinorial chargesQα which have vanishing diagonal matrix ele-
ments:〈a|Qα|a〉 = 0. Being spinors, theQα anti-commute in the same way as other fermionic fields. It
is possible to introduce more generators, but in the simplest version of supersymmetry there is just a pair
of generators,Qα andQ̄α̇, that are complex spinors transforming inequivalently under the Lorentz group.
This isN = 1 supersymmetry, which is essentially the only case that we consider in these notes. The
initial reason for this choice is pedagogical, but in the following section we give some physical reasons
for such a choice.

The algebra of the supersymmetry (like that of any other symmetry) is summarized in the com-
mutation (and anticommutation) relations of its generators, i.e., its Lie (super)algebra. In addition to
the commutation relations of the Poincaré algebra, the supersymmetry algebra includes the following
relations for the generatorsQα y Q̄α̇:

[Pµ, Qα] = 0 = [Pµ, Q̄α̇], (134)

{Qα, Q̄β̇} = 2(σµ)αβ̇P
µ, (135)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (136)

{Mµν , Qα} =
1

2
(σµν)

β
αQβ, (137)

{Mµν , Q̄α̇} =
1

2
(σµν)

β̇
α̇Q̄β̇. (138)

What is the significance ofQα? First,Q is a charge in the sense of Noether’s theorem, i.e, it is the charge
conserved by the symmetry. As a conserved charge, it commutes with the Hamiltonian of the system and
is invariant under translations, see (134). Since it possesses spin 1/2 and has two complex components,
it can be written as a Weyl spinor, or alternatively as a Majorana spinor with 4 components: as such, its
commutation relations with the Lorentz generators are completely determined, see (137) and (138). The
non-trivial anticommutation relation above is (135): schematically{Q, Q̄} ∼ P , which means thatQ is
the ‘square root’ of a space-time translation.

If we want to apply supersymmetry to particle physics, we must know how to arrange particles
in irreducible representations (supermultiplets), and their transformation properties. Therefore, we now
study the supermultiplets and detail their contents. We recall that the Poincaré group has two Casimir
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invariant elements, the spin invariantW 2 = W µWµ, whereW µ = 1
2ǫ

µνρσPνMρσ is the Pauli-Lubanski
vector, and the mass invariantP 2 = PµPµ, wherePµ is the four-momentum. In a multiplet of the
Poincaré group, the particles have the same masses and the same spins. However, in the case of super-
symmetry,W 2 is not an invariant of the algebra, so only mass is conserved,not spin:

[P 2, Qα] = 0, (139)

[W 2, Qα] 6= 0. (140)

Thus, in a supermultiplet, the particles have the same mass but different spins. We can nevertheless
modifyW to obtain a new invariant whose eigenvalues are of the form2j(j + 1)m4 with j = 0, 12 , 1, ...
the quantum number of this ‘superspin’. This modifiedW is an invariant, so every irreductible represen-
tation can be characterized by a pair[m, j], and the relation between the spinS andj is deduced from
the relation:MS = Mj ,Mj +

1
2 ,Mj − 1

2 ,Mj . Within a given supermultiplet, there are particles of the
same mass and the same superspin. In addition, an important property of any supermultiplet is that there
are equal numbers of bosonic and fermionic degrees of freedom: nB = nF .

We can construct now two different supermultiplets:

⊲ The fundamental representation[m, 0] is called a chiral supermultiplet. The valuej = 0 implies
MS = 0,+1

2 ,−1
2 , 0, and this supermultipletΨ contains two real scalar fields described by a single

complex scalar field (the sfermion),φ, and a two-component Weyl fermionic field of spin 1/2,ψ with the
same mass:

Ψ = (φ,ψα, F ). (141)

What isF? In order that the supersymmetry be preserved in loops, where the particles are not on-shell,
i.e., P 2 6= M2, it is necessary that the fermionic and bosonic degrees of freedom be balanced also
off-shell. This is an issue because an off-shell Weyl fermion possesses 4 spin degrees of freedom, as
opposed to 2 on-shell. It is necessary to add to the on-shell content of this representation another scalar
complex fieldF that does not propagate, and does not correspond to a physical particle. This is termed
an auxiliary field, and does not have a kinetic term, and the equation of motionF = F ∗ = 0 may be
used to eliminate it when on-shell.

⊲ The second representation we use later is the vector (or gauge) supermultiplet[m, 1/2], denoted
by Φ. Its field content is obtained in the same way: a Weyl fermion (or, equivalently, a Majorana
fermion), called the gauginoλaα, a gauge boson (of zero mass)Aµ

a , and in the presence of any chiral
supermultiplet, an auxiliar real scalar field,Da:

Φ = (λaα, A
a
µ,D

a), (142)

wherea is an index of the gauge group.

These two representations may be used to accommodate the particles of the SM and their super-
partners. However, before doing so, we first construct with these two representations generic supersym-
metric field theories.

3.3 Supersymmetric field theories

Before discussing supersymmetric models in general, and particularly the minimal supersymmetric ex-
tension of the SM (the MSSM), we first present, without detailed derivations, the general structure of a
field theory with supersymmetry. We first introduce the modelof Wess and Zumino [78] without inter-
actions to see how the fields transform. Then we introduce theinteractions, which will lead us to the
new notion of the superpotential. Finally, we discuss gaugefields in a supersymmetric theory. At the end
of this section, we will have accumulated enough theoretical baggage to understand the structure of the
MSSM, and be able to study concretely its experimental predictions.
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3.3.1 The action for free bosons and fermions is globally supersymmetric

The simplest supersymmetric action is the combination of actions for a non-interacting massless complex
scalarφand a spin-1/2 fermionψ:

S =

∫
d4x (Lscalar + Lfermion) : (143)

Lscalar = −∂µφ∂µφ∗, (144)

Lfermion = −iψ†σ̄µ ∂µψ. (145)

If we introduce an infinitesimal supersymmetric global transformation parameterǫα, which is a Weyl
fermion independent of the space-time coordinates (∂µǫα = 0), and apply it to the scalar fieldφ, the
result must be proportional to the fermionic fieldψ:

δφ = ǫαψα and δφ∗ = ǭα̇ ψ̄
α̇, (146)

leading to
δLscalar = −ǫα (∂µψα) ∂µφ

∗ − ∂µφ ǭα̇ (∂µψ̄α̇). (147)

Since the mass dimensions of free boson and fermion fields are

[φ] = 1, [ψ] =
3

2
, (148)

the infinitesimal fermionǫα must have the dimensionality(mass)−1/2:

[ǫ] = −1

2
, (149)

in contrast to an usual Weyl fermion that has dimension(mass)3/2 (148). By simple dimensional count-
ing, the infinitesimal transformation of the fermion field must therefore be proportional to the derivative
of the boson field:

δψα = i(σµǫ†)α ∂µφ and δψ̄α̇ = −i(ǫ σµ)α̇ ∂µφ∗. (150)

Combining (146) and (150) and using the equations of motion,we see that the sumδLscalar+δLfermion

is a total divergence. This implies that the combined action, which is the space-time integral of the two
free LagrangiansLscalar + Lfermion, is invariant under this pair of transformations.

Does this transformation correspond to a supersymmetry transformation? To convince ourselves
that this is the case, it is enough to start from a fermionψ or from a bosonφ, and to apply these transfor-
mations twice. We find the following chain:

φ→ ψ → ∂φ, ψ → ∂φ→ ∂ψ, (151)

which means that in both cases the combined effects of two successive supersymmetry transformations
are equivalent to a space-time derivative∂µ, and hence to the momentum operatorPµ ∼ i∂µ. Thus
we recover the result of the previous section, namelyQ2 ∼ P , and our transformations satisfy the
supersymmetric algebra. This free Lagrangian model is actually the simplest Wess–Zumino model with
a single chiral supermultiplet, without mass and without interactions.

If we wish to preserve supersymmetryoff-shell, which will be essential once we include interac-
tions, we cannot use the equations of motion to demonstrate supersymmetry. To overcome this problem,
as discussed earlier, the actionS must be modified by the addition of a term that contains an auxiliary
fieldF :

S =
∫
d4x (Lscalar + Lfermion + Laux), (152)

Laux = F ∗ F, (153)
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In theon-shellcase, the equation of motion forF would yieldF = F ∗ = 0. However, its introduction
modifies the supersymmetry transformations of the fieldsψ andφ off-shell. Specifically, the transforma-
tion of the fieldψ is affected by the scalar fieldF . To see this, we first observe that the dimension of the
fieldF is of (mass)2, so that its only possible transformation law is

δF = i ǭα̇ (σµ)βα̇ ∂µψβ and δF ∗ = −i ∂µψ̄β̇ (σ̄µ)α
β̇
ǫα . (154)

The variation of the termLaux in S therefore gives

δLaux = i ǭ (σµ) ∂µψ F
∗ − i ∂µψ̄ (σ̄µ) ǫ F. (155)

In theon-shellcase, as we have already seen, the equation of motion forF would yieldF = F ∗ = 0,
and the variation (154) would also vanish, thanks to the equation of motion forψ. To compensate the
variation (155) in theoff-shellcase, we see that we require a supplementary term in the transformation
law forψ:

δψα = i(σµǭ)α ∂µφ+ ǫαF et δψ̄α̇ = −i(ǫ σµ)α̇ ∂µφ∗ + ǭα̇F ∗. (156)

Once again, the supplementary term vanishes when the on-shell conditionF = 0 is applied. For simple
dimensional reasons, the transformations ofφ are not affected. It is easy to check thatδS = 0 without
using the equations of motion, and hence supersymmetry continues to be satisfied off-shell, thanks to the
appearance of the auxiliary fieldF .

In fact, the auxiliary field plays an additional role. We mustnot forget that we have not observed
supersymmetry in the range of energies explored so far. Hence, if supersymmetry exists at all in Nature,
it must be broken in some way. The auxiliary fieldF (and the other auxiliary fieldD that we meet later)
serve to break supersymmetry if their v.e.v.s are non-zero,as we will see in the last part of this section.

3.3.2 Interactions of the chiral multiplets

We now add to the theory interactions between the scalar and fermion fields that comprise chiral super-
multiplets. The most general form of interaction that is at most quadratic in the fermion fields is

Lint = −
1

2
W ij(φ, φ∗)ψiψj + V (φ, φ∗) + c.c. (157)

We do not demonstrate it in detail, but the quantityW ij must be an analytic function of the fieldsφi,
i.e., it does not depend on theφ∗i , in order to ensure that the variation due to a supersymmetrytransfor-
mation of the first term ofLint can be compensated by the variation of another term (basically because
supersymmetry transformsψi into φi andvice versa). For the same reason,W ij must be completely
symmetric. HenceW ij must be of the form:

W ij =
∂2W (φ)

∂φi ∂φj
, (158)

where the objectW is called thesuperpotential. In order for the model to be renormalizable, the term in
(157) that is bilinear in the fermion fieldsψi can have at most a linear dependence on the scalar fieldsφi,
implying thatW can be at most cubic:

W =
1

2
mijφiφj +

1

6
yijkφiφjφk (159)

in the context of a renormalizable theory. Remarkably, apart from wave-function renormalization of the
fields, there is no intrinsic renormalization of the superpotential parameters.

In general, the superpotential has dimension(mass)3. The quadratic term inW (159) provides
the (symmetric) mass matrixmij of the fermions, which is equal to the mass matrix of the scalar bosons,
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by virtue of supersymmetry. The trilinear term inW provides the matrix of Yukawa couplingsyijk

betweeen a scalar and two fermions, and summarizes all the interactions that are not gauge interactions.
As already noted,W is an analytical function of the complex fieldsφi, which has an importance that we
discuss later.

The requirement thatLint be invariant under supersymmetry transformations also determines the
form of the potentialV . In presence of interactions, i.e., if the superpotential is non-zero, the auxiliary
fieldsF i introduced earlier (153) can be written in the form:

Fi = −
∂W (φ)

∂φi
= −W ∗

i , F ∗i = −∂W (φ)

∂φi
= −W i. (160)

We may therefore write the Lagrangian without introducing explicitly the F fields, in which case the
potentialV of the theory is:

V =W ∗
i W

i = FiF
∗i. (161)

That is automatically non-negative, since it is a sum of modulus-squared terms. If we use the general
form (159) of the superpotential, we have the general Lagrangian:

L = −∂µφ∂µφ∗−iψ†σ̄µ ∂µψ−
1

2
mijψiψj−

1

2
m∗

ijψ
†iψ†j−V −1

2
yijkφiψjψk−

1

2
y∗ijkφ

∗iψ†jψ†k, (162)

whereV is given by (161), (160) and (159). It is easy to see from (159)that the boson and fermion
masses are equal, as one would expect from supersymmetry.

3.3.3 Supersymmetric gauge theories

In addition to chiral fermions (quarks, leptons), the SM contains gauge fields of spin 1 (W andZ bosons,
photons and gluons). In the section dedicated to the supersymmetry algebra, we saw that vector super-
multiplets would provide the appropriate frameworks for such gauge fields. We now study the properties
of such a supermultiplet, both with and without interactions [79]. We recall that a vector supermultiplet
contains a massless gauge bosonAµ

a and a massless Weyl fermion, the gauginoλa, both in the adjoint
representation of the gauge group. In order to go off-shell,one must introduce an auxiliary real scalar
fieldDa analogous to the auxiliary fieldF introduced for the chiral supermultiplet.

The form of the Lagrangian is completely determined by the condition of gauge invariance and of
renormalizability:

Lgauge = −
1

4
F a
µνF

aµν − iλa†σ̄µDµλ
a +

1

2
DaDa, (163)

where the gauge covariant derivativeDµ andF a
µν take the forms:

F a
µν = ∂µA

a
ν − ∂νAa

µ − gfabcAb
µA

c
ν , (164)

Dµλ
a = ∂µλ

a − gfabcAb
µ, (165)

as usual for a gauge theory. Remarkably, this Lagrangian is already supersymmetric, as can be checked
using the following supersymmetry transformations for thefields of the vector supermultiplet:

δAa
µ =

1√
2

(
ǫ†σ̄µλa + λa†σ̄µǫ

)
, (166)

δλaα = − i

2
√
2
(σµσ̄νǫ)αF

a
µν +

1√
2
ǫαD

a, (167)

δDa =
i√
2

(
ǫ†σ̄µDµλ

a −Dµλ
a†σ̄µǫ

)
. (168)

In the absence of any interactions with chiral supermultiplets, the equation of motion for the auxiliary
fieldDa is simplyDa = 0, as seen directly from the Lagrangian (163), since it does not have a kinetic
term and therefore does not propagate.
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However, in the SM the gauge fields do interact with the chiralfermions. Hence, in our super-
symmetric version we have to consider interactions betweenchiral supermultiplets and vector supermul-
tiplets. As in the SM, the usual derivatives∂µ of the fermions must be replaced by gauge-covariant
derivativesDµ, and the same applies to their scalar supersymmetric partners. The supersymmetric trans-
formation laws of the chiral supermultiplets must be changed to take into account the variations of these
new terms. As a result, the equation of motion forDa becomes:

Da = −g(φ∗T aφ), (169)

where theT a are the generators of the gauge group andg is its coupling constant, and the full scalar
potential is

V = FiF
∗i +

1

2

∑

a

DaDa =W ∗
i W

i +
1

2

∑

a

g2(φ∗T aφ)2. (170)

This potential is completely determined by the Yukawa couplings (via theF term) and by the gauge
interactions (via theD term). The full scalar potential is automatically non-negative, which is important
for the spontaneous breaking of the symmetry.

In a globally supersymmetric theory, spontaneous breakingmay occurvia a v.e.v. for theD term
or theF term, either of which would give a positive contribution to the vacuum energy. However, it
is difficult to construct models that are interesting for phenomenology, and most model-builders pursue
the spontaneous breaking of local supersymmetry in the context of a supergravity theory, in which this
positive contribution may be cancelled.

3.4 Low-energy supersymmetric models

In this section we apply the results obtained in the previoussection, with the objective of supersym-
metrizing the Standard Model while preserving its successful characteristics. The minimal supersym-
metric extension of the SM is called the MSSM [85, 86]. We willpresent its particle content (including
the nomenclature of the new particles), we will discuss how the electroweak symmetry may broken, and
we will outline an effective framework for describing the breaking of supersymmetry. Later we will
present typical predictions of the MSSM. Along the way, we will also mention possible variants of the
MSSM, because Nature might very well have chosen a path more complex than this minimal model.

3.4.1 How many supersymmetries?

As well as mentioned already, the number of supersymmetric generatorsQα may beN ≥ 1. Super-
symmetric theories withN ≥ 2 have some characteristic advantages, e.g., they have fewerdivergences,
which make them very interesting theoretically. Specifically, in theN = 2 case there is only a finite
number of divergent Feynman diagrams, and in theN = 4 case there are none, i.e., any theory with
N = 4 supersymmetries is intrinsically finite, and it is easy to construct finiteN = 2.

Unfortunately, it is not possible to construct realistic models withN ≥ 2, because they do not
allow the violation of parity that is observed in the weak interactions. This is because a supermultiplet
of a theory withN ≥ 2 supersymmetries necessarily incorporates both left- and right-handed fermions
in the same supermultiplet: applying a supersymmetry chargeQ changes the helicity by 1/2, so applying
two charges relates states with helicity±1/2, implying that they are in the same representation of the
gauge group, and hence have the same interactions. This contradicts experimental observations, which
tell us, for example, that the left-handed electron (which forms part of a doublet in the SM) does not
have the same interaction withW bosons as the right-handed electron (which is a singlet withzero
electroweak isospin that does not feel theSU(2) weak interaction). Models withN ≥ 2 cannot describe
the physics of the SM particles observed at low energy.
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3.4.2 The particle content in the MSSM

The supermultiplets in the minimalN = 1 case are

• the chiral supermultiplet that includes a fermion of spin 1/2 and a boson of spin 0,

• the vector supermultiplet that includes a boson of spin 1 andone fermion of spin 1/2.

Could we link the particles of the SM in such multiplets, i.e., could we associate quarks and leptons
with the bosonsW , Z, the photon, and so on? The answer is no, because this would raise problems for
the conservation of their quantum numbers. Specifically, the gauge bosons and the fermions do not have
the same transformation properties under the SM gauge group, since they possess different quantum
numbers, e.g., quarks are triplets of the colour group whereas gauge bosons are either octets (the gluons)
or singlets (the other gauge bosons), and leptons carry lepton numbers whereas gauge bosons do not.
SimpleN = 1 supersymmetry does not modify these quantum numbers, so we cannot associate any
gauge boson with a known fermion orvice versa. Therefore, we have to postulate unseen supersymmetric
partners for all the known particles. Table 3 lists, for every SM particle, the name, spin and notation for
its spartner.

Table 3: Particle content of the MSSM

Particle Spartner Spin

quarks q squarks̃q 0
→ top t stopt̃
→ bottom b sbottom̃b
...
leptons l sleptons̃l 0
→ electrone selectroñe
→muonµ smuonµ̃
→ tauτ stauτ̃
→ neutrinosνℓ sneutrinosν̃ℓ
gauge bosons gauginos 1/2
→ photonγ photinoγ̃
→ bosonZ Zino Z̃
→ bosonB Bino B̃
→ bosonW Wino W̃
→ gluong gluino g̃

Higgs bosonsH±,0
i higgsinosH̃±,0

i 1/2

Before going on to the following sections, we make a few observations. First, we note that the
spartners of SM fermions and gauge bosons are of lower spin.A priori, one could have considered
associating the fermions of the SM with spartners of spin 1, and the gauge bosons with spartners of
spin 3/2. However, to introduce a particle of spin 1 would require introducing a new gauge interaction,
and hence a non-minimal model. Also, introducing particlesof spin> 1 would make the theory non-
renormalizable, i.e., it would no longer be possible to absorb the divergences in perturbation theory in a
finite number of physical quantities12.

Secondly, we recall that in the SM the right-handed fermionshave different interactions from the
left-handed fermions, e.g., being singlets ofSU(2) instead of doublets. In supersymmetry, the left- and
right-handed must belong to different supermultiplets, and have distinct spartners, e.g.,qL → q̃L and

12Supergravity does allow a restricted numberN ≤ 8 of spin-3/2 gravitino partners of the spin-2 graviton to be introduced,
but they do not carry conventional gauge interactions.
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qR → q̃R. These two squarks are quite different, and we use the chirality indexL orR to identify them,
even though the concept of handedness does not make physicalsense for a scalar particle, whose only
helicity is λ = 0. In general, thef̃L and f̃R mix, and the physical mass eigenstates are combinations
of them. In constructing the Yukawa interactions of the MSSM, it is often convenient to work with
superfields that comprise conjugates of thef̃R and their scalar spartners: these are left-handed chiral
supermultiplets denoted byF c.

Thirdly, we note that, besides the new spartners, at least two doublets of Higgs bosons are required.
To understand why, we recall that, in the study of supersymmetric theories, we introduced the notion of
the superpotential. This governs all the possible Yukawa interactions of the matter particles with the
Higgs fields. In the SM, if we use a Higgs fieldh to give masses to the quarks of type ‘down’,via
Yukawa couplingsqd̄h, we could use the complex conjugate fieldh∗ to give masses to quarks of type
‘up’, via couplingsqūh∗. However, we recall that in a supersymmetric theory the superpotential is
an analytic function of the superfields that cannot depend ontheir complex conjugates. Therefore, we
must use separate Higgs supermultiplets (denoted by capital letters) with opposite hypercharge quantum
numbers, and interactions of the formsQDcHd andQU cHu. Charged leptons may acquire masses
through interactions of the formLEcHd. We also note that pairs of Higgs superfields are needed in order
to cancel the triangle anomalies that would be generated by higgsino fermion loops.

Fourthly, we note that in general thẽγ, Z̃, W̃ and H̃ mix, and the experimentally observable
mass eigenstates are combinations of these gauginos and higgsinos that are generally named neutralinos
Ñ0

1,2,3,4, which have zero electrical charge, and charginosC̃±
1,2

13, which are electrically charged and mix

theW̃± and theH̃±.

3.4.3 Interactions in the MSSM

The MSSM is the minimal supersymmetric extension of the Standard Model [85,86]. The quarks and the
leptons are put together in chiral superfields with their superpartners that have the same charges under
SU(3)C , SU(2)L y U(1)Y . The gauge bosons are placed with their fermionic superpartners in vector
superfields. The superpotential of the MSSM is

W = YuQU cHu + YdQDcHd + YeLEcHd + µHuHd, (171)

where we recall that theQ andL are the superfields containing the left-handed quarks and leptons,
respectively, and theU c,Dc andEc are the superfields containing the left-handed antiquarks and an-
tileptons, which are the charge conjugates of the right-handed quarks and leptons. Note that, for clarity,
we have suppressed theSU(2) indexes. TheY are3 × 3 Yukawa matrices in flavour space, and do not
have dimensions. After electroweak symmetry breaking, they give the masses to the quarks and leptons
as well as the CKM angles and phases. As already mentioned, two Higgs doublets,Hu y Hd, are needed
because of the analytical form of the superpotential.

TheµHuHd term is permitted by the symmetries of the MSSM and is required in order to have a
suitable vacuum after electroweak symmetry breaking. The quantityµ has the dimension of a mass, and
phenomenology requires it to be of the order of a TeV. The origin of µ is a puzzle: it might be associated
to the scale of supersymmetry breaking.

The superpotential (171) determines all the non-gauge interactions of the MSSM, thanks to the
formula (157), and the form of the effective potential of thetheory is given by formula (170).

The next-to-minimal supersymmetric extension of the Standard Model (NMSSM) [93] is the sim-
plest extension of the MSSM. In this model, the particle content is modified by the addition of a new
singlet chiral supermultipletS, with some additional superpotential terms:

WNMSSM =
1

6
kS3 +

1

2
µSS

2 + λSHuHd +WMSSM . (172)

13These are often denoted bỹχ0
1,2,3,4 andχ̃±

1,2, respectively.
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The principal interest of the NMSSM is to propose a solution to theµ problem. Specifically, if the scalar
part ofS has a non-zero vacuum espectation value〈S〉, the last term in (172) gives an effectiveµ term:
µeff = λ〈S〉. Assuming that a soft supersymmetry-breaking scalar mass for S also appears inLsoft,
its v.e.v. is naturally of the order ofmsoft ∼ O(1) TeV, the typical mass scale of the other scalars and
gauginos. Thus the effective value ofµ is of the order of 1 TeV, rather than being a parameter whose
magnitude is independent of the scale of supersymmetry breaking.

Phenomenologically the NMSSM differs from the MSSM becauseit allows the lightest Higgs
boson to become heavier. In addition, the fermionic partnerof S can mix with the four neutralinos of
the MSSM. Thus the experimental signatures of the NMSSM may differ significantly from those of the
MSSM.

3.4.4 Soft supersymmetry breaking

We have discussed so far the supersymmetric aspects of the MSSM. However, we know that supersym-
metry must be broken: the selectron weighs more than the electron, squarks weigh more than quarks,
etc. Therefore, we must introduce into the model the breaking of supersymmetry. However, the mech-
anism and the effective scale of its breaking are still unknown. Hence we adopt thead hocstrategy of
parametrizing the breaking of supersymmetry in terms of effective soft14 low-energy supersymmetry-
breaking terms that are added to the Lagrangian [94]. For a general supersymmetric theory, the form of
these soft supersymmetry-breaking termsLsoft in the Lagrangian is

L ⊃ Lsoft = −
1

2
(Mλλ

aλa + c.c)−m2
ijφ

∗
jφi + (

1

2
bijφiφj +

1

6
aijkφiφjφk + c.c). (173)

This breaks supersymmetry explicitly, since only the the gauginosλa and the scalarsφi have mass terms,
and the trilinear terms with coefficientsaijk are also not of supersymmetric form. In the case of the
MSSM,Lsoft takes the following general form in terms of the spartner fields of the MSSM:

−Lsoft =
1

2
(M3g̃g̃ +M2W̃ W̃ +M1B̃B̃ + c.c)

+ Q̃†m2
QQ̃+ ¯̃U †m2

Ū
¯̃U + ¯̃D†m2

D
¯̃D + ¯̃L†m2

L
¯̃L+ ¯̃E†m2

Ē
¯̃E

+ ( ¯̃U †aU Q̃Hu − ¯̃D†aDQ̃Hd − ¯̃E†aEL̃Hd + c.c)

+ m2
Hu
H∗

uHu +m2
Hd
H∗

dHd + (bHuHd + c.c). (174)

The massesM3, M2 andM1 of the gauginos are complex in general, which introduces 6 parameters.
The quantitiesmQ,mL andmū, are the mass matrices of the squarks and sleptons, which arehermitian
3 × 3 matrices in family space, adding 45 more unknown parameters. The couplingsaU , aD, ..., are
also complex3 × 3 matrices, characterized by 54 parameters. In addition, thequadratic couplings of
the Higgs bosons introduce 4 more parameters, so that the whole Lsoft contains a total of 109 unknown
parameters, including many that violate CP!

Supersymmetry itself is a very powerful principle whose implementation introduces only one new
parameter (µ) in the MSSM. However, in our present state of ignorance, thebreaking of supersymmetry
introduces many new parameters. On the other hand, the number of soft parameters can be reduced by
postulating symmetries or making supplementary hypotheses. Measuring the parameters of soft super-
symmetry breaking would allow us to go beyond the phenomenological parametrization (174), and open
the way to testing models of the high-energy dynamics that breaks supersymmetry.

14Here, the adjective ‘soft’ means that they do not introduce quadratic divergences.
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3.4.5 Electroweak symmetry breaking and supersymmetric Higgs bosons

As we have already seen, the Higgs sector of the MSSM containstwo complex doublets:

Hu =

(
H0

u

H−
u

)
, Hd =

(
H+

d

H0
d

)
. (175)

Electroweak symmetry breaking is a little bit more complicated than its analogue in the Standard Model.
At tree level, we can write the effective scalar potential (after simplifications whose details we do not
reproduce):

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − b(H0
uH

0
d + c.c)

+
1

8
(g22 + g21)(|H0

u|2 − |H0
d |2)2. (176)

The terms proportional to|µ|2 originate from theF terms in the supersymmetric effective potential, and
the terms proportional to the gauge couplings(g1, g2) originate from theD terms. The other terms
originate fromLsoft (without mentioning the other scalars that do not play any role here). Spontaneous
electroweak symmetry breaking can arise with this form of potential if theb parameter satisfies:

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

), (177)

In addition, we want the potential to be bounded from below. Thus

2b < 2|µ|2 +m2
Hu

+m2
Hd

(178)

at tree level15. After electroweak symmetry breaking, both the fieldsH0
u andH0

d must develop v.e.v.’s,
in order to give masses to all the quarks and leptons:

< H0
u >= vu, < H0

d >= vd. (179)

Comparing with the Standard Model, we have

v2 = v2u + v2d =
2m2

Z

(g22 + g21)
. (180)

Conventionally, one defines also thetan β parameter:

tan β =
vu
vd

: 0 < β <
π

2
. (181)

At the minimun of the potential
∂V

∂H0
u

=
∂V

∂H0
d

= 0, (182)

giving the two relations

|µ|2 +m2
Hu

= b tan β − mZ

2
cos2 β,

|µ|2 +m2
Hd

= b cot β +
mZ

2
cos2 β. (183)

These expressions are important because they relate a measurable quantity,mZ , to the soft parameters.
We note that some amount of fine-tuning would be required if the soft parameters were much larger than
mZ . We note also that the vacuum conditions (183) do not depend on the phase ofµ.

15As we shall see shortly, radiative corrections to the effective potential play important roles.
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The two complex Higgs doublets of the MSSM have a total of8 degrees of freedom. However, the
Higgs mechanism for electroweak breaking uses 3 degrees of freedom to give longitudinal polarization
states, and hence masses, to the twoW bosons and to theZ boson. Therefore, five physical Higgs bosons
remain in the spectrum. Of these, two are neutral Higgs bosons that are even under the CP transformation,
calledh0andH0. In addition, there is one neutral Higgs boson that is odd under CP, calledA0. The final
two Higgs bosons are charged, theH±.

At tree level, the masses of the supersymetric Higgs bosons are:

m2
h0,H0 =

1

2

(
m2

A0 +m2
Z ∓

√
(m2

A0 +m2
Z)

2 − 4m2
A0m

2
Z cos2 2β

)
, (184)

m2
A0 =

2b

sin 2β
, (185)

m2
H± = m2

A0 +m2
W , (186)

and the mass of theh0 is bounded from above by:

mh0 < | cos 2β|mZ . (187)

This upper limit onmh0 may be traced to the fact that the quartic Higgs couplingλ is fixed in the MSSM,
being equal to the square of the electroweak gauge coupling (up to numerical factors). This means that
λ and hencemh0 cannot be very large.

However, the above relations are valid only at tree level, and the masses of Higgs scalars have
one-loop radiative corrections that are not negligible [88]. The most important corrections formh are
those due to the top quark and squark:

∆m2
h =

3m4
t

4π2v2
ln

(
mt̃1

mt̃2

m2
t

)
+

3m4
t

8π2v2
f(m2

t̃1
,m2

t̃2
, µ, tan β), (188)

wheremt̃1,2
are the physical masses of the stops (that are mixtures oft̃R andt̃L), andf(m2

t̃1
,m2

t̃2
, µ, tan β)

is a non-logarithmic function that can be found in [10]. The correction∆m2
h depends quartically on the

mass of the top, making it more important than the one-loop corrections due to other quarks, leptons, and
gauge multiplets. After including this correction, the mass of the lightest Higgs boson may be as large as

mh . 130 GeV , (189)

for masses of sparticles about a TeV. This is seen in Fig. 21, which showsmh as a function ofmA0 for
different values oftan β. As noted, the range (189) for the mass of the lightest supersymetric Higgs
boson is in perfect agreement with the indications providedby the electroweak data, as discussed in
Lecture 1! This is just one of many attractive features of supersymmetry that we review here.

3.4.6 R parity and dark matter

We introduced above the superpotential (174) of the MSSM, which includes only the Yukawa interactions
of the SM. However, gauge invariance, Lorentz invariance, and analyticity in the SM fields would allow
us to introduce in the superpotential other terms that do nothave any correspondence with the SM, and
do not preserve either baryon number and/or lepton number16. These terms are

WRPV = λijkLiLjEk + λ′ijkLiQjD
c
k + λ′′ijkU

c
iD

c
jD

c
k + µ′iLiHu, (190)

16The conservation ofB andL in the SM is an accidental symmetry of its renormalizable interactions that isa priori not
obligatory. As we see later in the context of Grand Unified Theories, the SM, non-renormalizable terms that violateL or B
may be added to the SM Lagrangian. In the MSSM, suchL- andB-violating may appear at the renormalizable level.
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Fig. 21: The mass of the lightest supersymmetric Higgs boson as a function ofmA0 for different values oftanβ

whereλ, λ′ andλ′′ are arbitrary dimensionless coupling constants, and theµ′i are parameters with the
dimension of a mass.

These parameters are subject to strong phenomenological restrictions. For example, a combination
of the second and third terms would induce rapid disintegration of the protonvia squark exchange,
whereas the proton is very stable, with a lifetime exceeding∼ 1033 years. This implies that the product
of such terms must be strongly suppressed [95]:

|λ′λ′′| < O(10−9). (191)

One way to avoid all such terms is to add to the MSSM a new symmetry calledR-parity, given by the
following combination baryon number, lepton number, and spin S:

R = (−1)3(B−L)+2S . (192)

This is a multiplicatively-conserved quantum number in theSM, since all the SM particles and Higgs
bosons have evenR parity:R = +1. On the other hand, all the sparticles have oddR parity (R = −1).

Conservation ofR parity would have important phenomenological consequences:

• The sparticles are produced in even numbers (usually two at time), for example:p̄ p → q̃ g̃ X,
e+ e− → µ̃+ µ̃−.

• Each sparticle decays into another sparticle (or into an oddnumber of them), for example:
q̃ → q g̃, µ̃→ µ γ̃.

• The lightest sparticle (LSP) must be stable, since it hasR = −1. If it is electrically neutral, it
can interact only weakly with ordinary matter, and may be a good candidate for the non-baryonic dark
matter that is required by cosmology [34].

The dark matter particles should have neither electric charge nor strong interactions, otherwise
they would be visible or detectable, e.g., through their binding to ordinary matter to form what would look
like anomalous heavy nuclei, which have never been seen. We therefore expect any dark matter particle
to have only weak interactions, in which case, if it was produced at a collider such as the LHC, it would
carry energy–momentum away invisibly. Accordingly, most LHC searches for supersymmetry focus on
events with missing transverse momentum, though searches for signatures ofR-violating models are also
considered.
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The existence of a stable, weakly-interacting LSP is a very important prediction of the MSSM, but
its nature and its total contribution to the density of dark matter depend on the parameters of the MSSM.
One weakly-interacting candidate was the lightest sneutrino, but this has already been excluded by direct
searches at LEP and by experiments searching directly for dark matter. The remaining candidate particles
are the lightest neutralinoχ of spin 1/2, and the gravitino of spin 3/2. As we discuss later, there are
chances to detect a neutralino LSP at the LHC in events with missing energy, or directly as astrophysical
dark matter. On the other hand, the interactions of the gravitino are so weak that it could not be detected
as astrophysical dark matter, and could only be detected indirectly in collider experiments.

3.5 Phenomenology of supersymmetry

As we have seen, the soft supersymmetry-breaking sector of the MSSM has over a hundred parameters.
This renders very difficult the interpretation of experimental constraints and (hopefully) the extraction
of the experimental values of these parameters. A simplifying hypothesis is to assumeuniversalityat a
certain scale before renormalization, leading us to the constrained MSSM (CMSSM):

• The gaugino masses are assumed to be equal at some input GUT orsupergravity scale:M3 =
M2 =M1 = m1/2;

• The scalar masses of squarks and sleptons are assumed to be universal at the same scale:m2
Q =

m2
Uc = ... = m2

0, as are the soft supersymmetry-breaking contributions to the Higgs massesm2
Hu

=
m2

Hd
= m2

0;

• The trilinear couplings are related by a universal coefficient A0 to the corresponding Yukawa
couplings:au = A0yu, ad = A0yd, ae = A0ye.

Simplifying the MSSM to the CMSSM reduces the number of parameters from over one hundred
to only 4:m1/2,m0, A0, tan β and the sign ofµ [the magnitude ofµ is fixed by the electroweak vacuum
conditions: see (183]. The CMSSM hypothesis is very practical from a phenomenological point of view,
though questionable from a purely theoretical point of view. The CMSSM and the simplification of
Lsoft are inspired by simple supergravity models where the breaking of supersymmetry is mediated by
gravity, though minimal supergravity models actually impose two additional constraints. On the other
hand, generic string models often lead to different patterns of soft supersymmetry breaking.

Dropping universality for squarks or sleptons with the samequantum numbers but in different gen-
erations would lead to problems with flavour-changing neutral interactions, and Grand Unified Theories
relate the soft supersymmetry-breaking masses of squarks and sleptons with different quantum numbers.
However, there is no strong theoretical or phenomenological reason to postulate universality for the soft
supersymmetry-breaking contributions to the Higgs masses. One may relax this assumption for the Higgs
scalar masses-squaredm2

H by assuming the same single-parameter non-universal Higgsmass parameter
(the NUHM1), or by allowing the non-universal Higgs mass parameters to be different (the NUHM2).

3.6 Renormalization of the soft supersymmetry-breaking parameters

In our ignorance of the underlying mechanism of supersymmetry breaking, it is usually assumed that this
occurs at some large mass scale far above a TeV, perhaps around the grand unification or Planck scale.
The soft supersymmetry-breaking parameters therefore undergo significant renormalization between this
input scale and the electroweak scale. Although quadratic divergences are absent from a softly-broken
supersymmetric theory, it still has logarithmic divergences that may be treated using the renormalization
group (RG).

At leading order in the RG, which resums the leading one-looplogarithms, the renormalizations
of the soft gaugino massesMa are the same as for the corresponding gauge couplings:

Q
dMa

dQ
= βaMa, (193)
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whereβa is the standard one-loop renormalization coefficient including supersymmetric particles that is
discussed in more detail in the next Lecture. As a result of (193), to leading order

Ma(Q) =
αa(Q)

αGUT
m1/2 (194)

if the gauge couplingsαa and the gaugino masses are assumed to unify at the same large mass scale
MGUT . As a consequence of (194), one expects the gluino to be heavier than the wino:mg̃/mW̃ =
α3/α2 at leading order.

The soft supersymmetry-breaking scalar masses-squaredm2
0 acquire renormalizations related to

the gaugino massesvia the gauge couplings, and to the scalar masses and trilinear parametersAλ via the
Yukawa couplings:

Qdm2
0

dQ
=

1

16π2
[
−g2aM2

a + λ2(m2
0 +A2

λ)
]
. (195)

The latter effect is significant for the stop squark, one of the Higgs multiplets, and possibly the other
third-generation sfermions iftan β is large. For the other sfermions, at leading order one has

m2
0(Q) = m2

0 +Cm2
1/2, (196)

where the coefficientC depends on the gauge quantum numbers of the corresponding sfermion. Conse-
quently, one expects the squarks to be heavier than the sleptons. Specifically, in the CMSSM one finds
at the electroweak scale that

squarks : m2
q̃ ∼ m2

0 + 6m2
1/2, (197)

left-handed sleptons:m2
ℓ̃L

∼ m2
0 + 0.5m2

1/2, (198)

right-handed sleptons:m2
ℓ̃R

∼ m2
0 + 0.15m2

1/2. (199)

The difference between the left and right slepton masses mayhave implications for cosmology, as we
discuss later. A small difference is also expected between the masses of the left and right squarks, but
this is relatively less significant numerically.

The CKM mixing between quarks is related in the SM to off-diagonal entries in the Yukawa cou-
pling matrix, and shows up in leading-order charged-current interactions and flavour-changing neutral
current (FCNC) interactions induced at the loop level. One would expect additional FCNCs to be in-
duced by similar loop diagrams involving squarks, which would propagate through the RGEs (195) and
induce flavour-violating terms in the sfermion mass matrices. However, experiment imposes important
upper limits on such additional supersymmetric flavour effects. As already discussed, these would be
suppressed (though non-zero) if the soft supersymmetry-breaking scalar masses of all sfermions with
the same quantum numbers were the same before renormalization. The hypothesis of Minimal Flavour
Violation (MFV) is that flavour mixing of squarks and sleptons is induced only by the CKM mixing in
the quark sector and the corresponding MNS mixing in the lepton sector: see the next Lecture. The MFV
hypothesis requires also that the soft supersymmetry-breaking trilinear parametersA be universal for
sfermions with the same quantum numbers:Aλ = A0λ. However, the MFV hypothesis does permit the
appearance of 6 additional phases beyond those in the CKM model for quarks: 3 phases for the different
gaugino mass parameters, and 3 phases for the differentA0 coefficients [96].

Results of typical numerical calculations of these renormalization effects in the CMSSM are shown
in Fig. 22. An important effect illustrated there is that theRGEs may drivem2

Hu
negative at some low

renormalization scaleQN , thanks to the top quark Yukawa coupling appearing in (195)17. A negative
value ofm2

Hu
would trigger electroweak symmetry breaking at a scale∼ QN . Since the negative value of

17The effect of the Yukawa coupling is toincreasem2
0 asQ increases, i.e., todecreasem2

0 asQ decreases.
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m2
Hu

is due to the logarithmic renormalization by the top quark Yukawa coupling, electroweak symmetry
breaking appears at a scale exponentially smaller than the input GUT or Planck scale:

mW

MGUT,P
= exp

(
−O(1)

αt

)
: αt ≡

λ2t
4π
. (200)

In this way, it is possible for the electroweak scale to be generated naturally at a scale∼ 100 GeV if the
top quark is heavy:mt ∼ 60 to 100 GeV, a realization that long predated the discovery ofjust such a
heavy top quark.
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Fig. 22: Calculations of the renormalization of soft supersymmetry-breaking sparticle masses, assuming univer-
sal scalar and gaugino massesm0,m1/2 at the GUT scale. Note that strongly-interacting sparticles have larger
physical masses at low scales, and them2

Hu
is driven negative, triggering electroweak symmetry breaking.

3.6.1 Sparticle masses and mixing

There are aspects of sparticle masses and mixing that are important for phenomenology, as we now dis-
cuss.

Sfermions: As we have seen, each flavour of charged lepton or quark has both left- and right-handed
componentsfL,R, and these have separate spin-0 boson superpartnersf̃L,R. These have different isospins
I = 1

2 , 0, but may mix as soon as the electroweak gauge symmetry is broken. Thus, for each flavour we
should consider a2× 2 mixing matrix for thef̃L,R, which takes the following general form:

M2
f̃
≡



m2

f̃LL
m2

f̃LR

m2
f̃LR

m2
f̃RR


 . (201)

The diagonal terms may be written in the form

m2
f̃LL,RR

= m2
f̃L,R

+mD2

f̃L,R
+m2

f , (202)

wheremf is the mass of the corresponding fermion,m̃2
f̃L,R

is the soft supersymmetry-breaking mass

discussed in the previous section, andmD2

f̃L,R
is a contribution due to the quarticD terms in the effective
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potential:
mD2

f̃L,R
= m2

Z cos 2β (I3 + sin2 θWQem), (203)

where the term∝ I3 is non-zero only for thẽfL. Finally, the off-diagonal mixing term takes the general
form

m2
f̃L,R

= mf

(
Af + µtan β

cot β

)
for f =e,µ,τ,d,s,b

u,c,t . (204)

It is clear thatf̃L,R mixing is likely to be important for thẽt, and it may also be important for thẽbL,R
andτ̃L,R if tan β is large.

We also see from (202) that the diagonal entries for thet̃L,R would be different from those of
the ũL,R andc̃L,R, even if their soft supersymmetry-breaking masses were universal, because of them2

f

contribution. In fact, we also expect non-universal renormalization ofm2
t̃LL,RR

(and alsom2
b̃LL,RR

and

m2
τ̃LL,RR

if tan β is large), because of Yukawa effects analogous to those discussed previously for the

renormalization of the soft Higgs masses. For these reasons, the t̃L,R are not usually assumed to be
degenerate with the other squark flavours.

Charginos: These are the supersymmetric partners of theW± andH±, which mix through a2 × 2
matrix

−1

2
(W̃−, H̃−) MC

(
W̃+

H̃+

)
+ herm.conj. (205)

where

MC ≡
(

M2

√
2mW sin β√

2mW cos β µ

)
. (206)

HereM2 is the unmixedSU(2) gaugino mass andµ is the Higgs mixing parameter introduced previously.

Neutralinos: These are characterized by a4 × 4 mass mixing matrix [34], which takes the following
form in the(W̃ 3, B̃, H̃0

2 , H̃
0
1 ) basis :

mN =




M2 0 −g2v2√
2

g2v1√
2

0 M1
g′v2√

2

−g′v1√
2

−g2v2√
2

g′v2√
2

0 µ

g2v1√
2

−g′v1√
2

µ 0




(207)

Note that this has a structure similar toMC (206), but with its entries replaced by2 × 2 submatrices.
As has already been mentioned, one often assumes that theSU(2) andU(1) gaugino massesM1,2 are
universal at the GUT or supergravity scale, so that

M1 ≃M2
α1

α2
, (208)

so the relevant parameters of (207) are generally taken to beM2 = (α2/αGUT )m1/2, µ andtan β.

In the limit M2 → 0, the lightest neutralinoχ would be approximately a photino, and it would
be approximately a higgsino in the limitµ → 0. However, these idealized limits are excluded by un-
successful LEP and other searches for neutralinos and charginos. Possibilities that persist are thatχ be
approximately a Bino,̃B, or that it has a substantial higgsino component.
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3.7 Constraints on the MSSM

Most of the current constraints on possible physics beyond the SM are negative and, specifically, no
sparticle has ever been detected. The concordance with the SM predictions means that, in general, one
can only set lower limits on the possible masses of supersymmetric particles. However, there are two
observational indications of physics beyond the SM that may, in the supersymmetric context, be used
for settingupper limits of the masses of the supersymmetric particles. As discussed earlier, these two
hints for new physics are the anomalous magnetic moment of the muon,gµ− 2, which seems to disagree
with the prediction of the SM (at least if this is calculated using low-energye+e− data as an input),
and the density of cold dark matterΩCDM . However, these discrepancies may be explained either with
supersymmetry or with other possible extensions of the SM, so their interpretations require special care.
Nevertheless, these may be regarded as additional phenomenological motivations for supersymmetry,
in addition to the more theoretical motivations described in the beginning of this section, such as the
naturalness of the hierarchy of mass scales in physics, grand unification, string theory, etc. Therefore, in
addition to considering the more direct searches for supersymmetry, it is also natural to ask whatgµ − 2
andΩCDM may imply for the parameters of supersymmetric models. Figure 23 compiles the impacts
of various constraints on supersymmetry, assuming that thesoft supersymmetry-breaking contributions
m1/2,m0 to the different scalars and gauginos are each universal at the GUT scale (the scenario called
the CMSSM), and that the lightest sparticle is the lightest neutralinoχ.
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Fig. 23: The CMSSM(m1/2,m0) planes for (a)tanβ = 10 and (b)tanβ = 55, assumingµ > 0, A0 = 0,

mt = 173.1 GeV andmb(mb)
MS
SM = 4.25 GeV. The near-vertical (red) dot-dashed lines are the contours for

mh = 114 GeV, and the near-vertical (black) dashed line is the contour mχ± = 104 GeV. Also shown by the
dot-dashed curve in the lower left is the region excluded by the LEP boundmẽ > 99 GeV. The medium (dark
green) shaded region is excluded byb→ sγ, and the light (turquoise) shaded area is the cosmologically preferred
region. In the dark (brick red) shaded region, the LSP is the charged̃τ1. The region allowed by the measurement
of gµ− 2 at the 2-σ level, assuming thee+e− calculation of the Standard Model contribution, is shaded (pink) and
bounded by solid black lines, with dashed lines indicating the 1-σ ranges (updated from [98]).

Experiments at LEP and the Tevatron collider, in particular, have made direct searches for super-
symmetry using the missing-energy-momentum signature. LEP established lower limits∼ 100 GeV on
the masses of many charged sparticles without strong interactions, such as sleptons and charginos. The
Tevatron collider has established the best lower limits on the masses of squarks and gluinos,∼ 400 GeV.
In view of the greater renormalization of the squark and gluino masses than for charginos and sleptons,
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see (194) and (199), these two sets of limits are quite complementary.

Another important constraint is provided by the LEP lower limit on the Higgs mass:mH >
114.4 GeV [20]. This holds in the Standard Model, for the lightest Higgs bosonh in the general MSSM
for tan β <∼ 8, and almost always in the CMSSM for alltan β, at least as long as CP is conserved18.
Sincemh is sensitive to sparticle masses, particularlymt̃ via the loop corrections (188), the Higgs limit
also imposes important constraints on the soft supersymmetry-breaking CMSSM parameters, principally
m1/2 [98], as seen in Fig. 23.

Important constraints are imposed on the CMSSM parameter space by flavour physics, specifically
the agreement with data of the SM prediction for the decayb → sγ, as well as the upper limit on the
decayBs → µ+µ−, which is important at largetan β in particular.

We see in Fig. 23 that narrow strips of the(m1/2,m0) planes are compatible [98] with the range
of the astrophysical cold dark matter density favoured by WMAP and other experiments. However, these
strips vary withtan β andA0. In fact, foliation by these WMAP strips covers large fractions of the
(m1/2,m0) plane astan β andA0 are varied. Away from these narrow strips, the relic neutralino density
exceeds the WMAP range over most of the(m1/2,m0) planes shown in Fig. 23. In its left panel, the
relic density is reduced into the WMAP range only in the shaded strip atm0 ∼ 100 GeV that extends
to m1/2 ∼ 900 GeV. This reduction is brought about by co-annihilations between the LSPχ (which is
mainly a Bino) and sleptons that are only slightly heavier, most notably the lighter stau and the right
selectron and smuon, which are significantly lighter than the left sleptons, as discussed earlier. In the
right panel of Fig. 23 fortan β = 50, this co-annihilation strip moves to largerm0. Also, it is extended to
largerm1/2, as a result of a reduction in the relic density due to rapidχ− χ annihilations though direct-
channel heavy Higgs (H,A) states. In addition to these visible WMAP regions, there isin principle
another allowed strip at very large values ofm0, called the focus-point region, where the LSP becomes
relatively light and acquires a substantial higgsino component, favouring annihilationviaW+W− final
states.

Finally, also shown in the two panels of Fig. 23 are the regions favoured by the supersymmetric
interpretation of the discrepancy (120) between the experimental measurement ofgµ − 2 and the value
calculated in the SM using low-energye+e− data [98]. The favoured regions are displayed as bands
corresponding to±2σ. We see that they can be used to setupper limits on the sparticle masses! In
particular,gµ − 2 disfavours the focus-point region, wherem0 is so large that the supersymmetric con-
tribution togµ − 2 is negligible, and also the region at largetan β and largem1/2 where the neutralinos
may annihilate rapidly though direct-channel heavy-Higgsstates.

3.8 Frequentist analysis of the supersymmetric parameter space

In a recent paper [99] the likely range of parameters of the CMSSM and NUHM1 has been estimated
using a frequentist approach, by building aχ2 likelihood function with contributions from the various
relevant observables, including precision electroweak physics,gµ−2, the lower limit on the lightest Higgs
boson mass (taking into taking into account the theoreticaluncertainty in theFeynHiggs calculation of
Mh [100]), the experimental measurement of BR(b→ sγ)(which agrees with the SM), the experimental
upper limit on BR(Bs → µ+µ−), andΩCDM . This frequentist analysis used a Markov chain Monte
Carlo technique to sample thoroughly the(m0,m1/2) plane up to masses of several TeV, including the
focus-point and rapid-annihilation regions, for a wide range of values ofA0 andtan β.

We display in Fig. 24 the∆χ2 functions in the(m0,m1/2) planes for the CMSSM (left plot)
and for the NUHM1 (right plot). The parameters of the best-fitCMSSM point arem0 = 60 GeV,
m1/2 = 310 GeV, A0 = 130 GeV, tan β = 11, andµ = 400 GeV (corresponding nominally to
Mh = 114.2 GeV and an overallχ2 = 20.6 for 19 d.o.f. with a probability of 36%), which are very

18The lower bound on the lightest MSSM Higgs boson may be relaxed significantly if CP violation feeds into the MSSM
Higgs sector [97].
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close to the ones previously reported in Ref. [101]. The corresponding parameters of the best-fit NUHM1
point arem0 = 150 GeV, m1/2 = 270 GeV, A0 = −1300 GeV, tan β = 11, andm2

h1
= m2

h2
=

−1.2 × 106 GeV2 or, equivalently,µ = 1140 GeV, yieldingχ2 = 18.4 (corresponding to a similar fit
probability to the CMSSM) andMh = 120.7 GeV. The similarities between the best-fit values ofm0,
m1/2 andtan β in the CMSSM and the NUHM1 suggest that the model frameworks used are reasonably
stable: if they had been very different, one might well have wondered what would be the effect of
introducing additional parameters, as in the NUHM2 with twonon-universality parameters in the Higgs
sector.
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Fig. 24: The∆χ2 functions in the(m0,m1/2) planes for the CMSSM (left plot) and for the NUHM1 (right plot),
as found in frequentist analyses of the parameter spaces. Wesee that the co-annihilation regions at lowm0 and
m1/2 are favoured in both cases [101].

These best-fit points are both in the co-annihilation regionof the(m0,m1/2) plane, as can be seen
in Fig. 24. The C.L. contours extend to slightly larger values ofm0 in the CMSSM, while they extend to
slightly larger values ofm1/2 in the NUHM1, as was already shown in Ref. [101] for the 68% and95%
C.L. contours. However, the qualitative features of the∆χ2 contours are quite similar in the two models,
indicating that the preference for smallm0 andm1/2 are quite stable and do not depend on details of
the Higgs sector. We recall that it was found in Ref. [101] that the focus-point region was disfavoured
at beyond the 95% C.L. in both the CMSSM and the NUHM1. We see inFig. 24 that this region is
disfavoured at the level∆χ2 ∼ 8 in the CMSSM and> 9 in the NUHM1.

The favoured values of the particle masses in both models aresuch that there are good prospects
for detecting supersymmetric particles in CMS [28] and ATLAS [29] even in the early phase of the LHC
running with reduced centre-of-mass energy and limited luminosity, as seen in Fig. 25. The best-fit
points and most of the 68% confidence level regions are withinthe region of the(m0,m1/2) plane that
could be explored with 100/pb of data at 14 TeV in the centre ofmass, and hence perhaps with 200/fb
of data at 10 TeV19. Almost all the 95% confidence level regions would be accessible to the LHC with
1/fb of data at 14 TeV. As seen in Fig. 25, in substantial partsof these regions there are good prospects
for detectingq̃ → qℓ+ℓ−χ decays, which are potentially useful for measuring sparticle mass parameters,
and the lightest supersymmetric Higgs boson may also be detectable inq̃ decays.

The best-fit spectra in the CMSSM and NUHM1 are shown in Fig. 26: they are relatively similar,
though the heavier Higgs bosons, the gluinos, and the squarks may be somewhat heavier in the CMSSM,
whereas the heavier charginos and neutralinos may be heavier in the NUHM1 [101]. There are con-
siderable uncertainties in these spectra, as seen in Fig. 27[99]. However, in general there are strong

19The comparisons are made with experimental simulations fortanβ = 10 andA0 = 0, whereas the frequentist analysis
sampled all values oftanβ andA0. As it happens, the preferred values oftanβ in both the CMSSM and the NUHM1 are
quite close to 10: the value ofA0 is relatively unimportant for the experimental analysis.
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Fig. 25: The (m0,m1/2) planes in the CMSSM (upper) and the NUHM1 (lower) fortanβ = 10 andA0 = 0.
The dark shaded areas at lowm0 and highm1/2 are excluded due to a scalar tau LSP, the light shaded areas at
low m1/2 do not exhibit electroweak symmetry breaking. The nearly horizontal line atm1/2 ≈ 160 GeV in the
lower panel hasmχ̃±

1
= 103 GeV, and the area below is excluded by LEP searches. Just above this contour at low

m0 in the lower panel is the region that is excluded by trileptonsearches at the Tevatron. Shown in each plot is
the best-fit point [101], indicated by a star, and the 68 (95)%C.L. contours from the fit as dark grey/blue (light
grey/red) overlays, scanned over alltanβ andA0 values. The plots also show some5 σ discovery contours for
CMS [28] with 1 fb−1 at 14 TeV, 100 pb−1 at 14 TeV and 50 pb−1 at 10 TeV centre-of-mass energy [101].

correlations between the different sparticle masses, as exemplified in Fig. 28, though the correlation is
weaker, e.g., for the lighter stau and the LSP in the NUHM120.

Finally, a result from this frequentist analysis that also concerns LHC physics, but away from
the high-energy frontier. We see in Fig. 29 that the branching ratio forBs → µ+µ− may well exceed
considerably its value in the SM, particularly at largetan β. This is true to some extent in the CMSSM,
and even more so in the NUHM1. Particularly in the latter case, this decay might perhaps be accessible
to the LHCb experiment during initial LHC running. Therefore, there may be important competition for
ATLAS and CMS in their quest to discover supersymmetry!

20This reflects the possible appearance of rapid direct-channel annihilations also at lowm1/2 and lowtanβ, allowing an
escape from the co-annihilation region wheremχ ∼ mτ̃1 .
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Fig. 26: The spectra at the best-fit points: left — in the CMSSM withm1/2 = 311 GeV,m0 = 63 GeV,A0 =

243 GeV, tanβ = 11.0, and right — in the NUHM1 withm1/2 = 265 GeV,m0 = 143 GeV,A0 = −1235 GeV,
tanβ = 10.4, andµ = 1110 GeV [101].

4 Further beyond: GUTs, string theory and extra dimensions

4.1 Grand unification

Gauge theories, particularly non-Abelian Yang–Mills theories, are the only suitable framework for de-
scribing interactions in particle physics. In the SM, thereare three different gauge groupsSU(3)C ,
SU(2)L, andU(1)Y , and correspondingly there are three different couplings.It is logical to look for a
single, more powerful non-Abelian grand unified gauge groupwith a single couplinggGUT that would
enable us to unify the three couplings, and might provide interesting relations between the other different
SM parameters such as Yukawa couplings and hence fermion masses21. As a first approximation, we
assume that the effects of the gravitational interaction are negligible, which is generally true if the grand
unification scaleMGUT is significantly smaller that the Planck mass. As we see later, it turns out that
typical estimations, based on extrapolation to very high energies of the known physics of the SM [102],
give a grand unification scale of the order of1016 GeV, which is about a thousand times smaller than the
Planck scaleMP l = O(1019) GeV.

Postulating a single group to describe all the interactionsof particle physics also implies new
relations between the matter particles themselves, as wellas new gauge bosons. Specifically, if the
symmetry changes then the representations, and hence the organization of the particles into multiplets,
also change. There are some hints for this in low-energy physics, such as charge quantization and the
correlation of fractional electrical charges with colour charges, and the cancellation of anomalies between
the leptons and the quarks that also lead us to anticipate an organization simpler than the SM.

Clearly, one must recover the Standard Model at low energy, implying that in these Grand Unified
Theories (GUTs) one must also study the breaking of the GUT groupG→ SU(3)C⊗SU(2)L⊗U(1)Y .

This section begins with a presentation of the renormalization-group evolution equations of the
three SM gauge couplings and studies their possible unification at some GUT scale. Subsequently, some
specific examples of GUTs are discussed, notably the prototype based on the groupSU(5), which makes

21In this section, we denote the couplings byg1 for theU(1) subgroup,g2 for SU(2), andg3 for SU(3), which have the
appropriate normalizations for grand unification [see later].
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Fig. 29: The correlation between the branching ratio forBs → µ+µ− andtanβ in the CMSSM (left panel) and
in the NUHM1 (right panel) [99].

possible a simple discussion of many properties of GUTs. This is followed by a short discussion of
typical predictions of these models, such as the decay of theproton and the relations between the masses
of the quarks and leptons. We finish by discussing some of the advantages, problems, and perspectives
of GUT models.

4.1.1 The evolution equations for gauge couplings

The first apparent obstacle to the philosophy of grand unification is the fact that the strong coupling
strengthα3 = g23/4π is much stronger than the electroweak couplings at present-day energies:α3 ≫
α2, α1. However, the strong coupling is asymptotically free [9]:

α3(Q) ≃ 12π

(33− 2Nq) ln(Q2/Λ2
3)

+ . . . , (209)

whereNq is the number of quarks,Λ3 ≃ few hundred MeV is an intrinsic scale of the strong in-
teractions, and the dots in (209) represent higher-loop corrections to the leading one-loop behaviour
shown. The other SM gauge couplings also exhibit logarithmic violations analogous to (209). For ex-
ample, the fine-structure constantαem = 1/137.035999084(51) is renormalized to effective value of
αem(mZ) ∼ 1/128 at theZ mass scale. The renormalization-group evolution for theSU(2) gauge
coupling corresponding to (209) is

α2(Q) ≃ 12π

(22− 2Nq −NH/2) ln(Q2/Λ2
2)

+ . . . , (210)

where we have assumed equal numbers of quarks and leptons, andNH is the number of Higgs doublets.
Taking the inverses of (209) and (210), and then taking theirdifference, we find

1

α3(Q)
− 1

α2(Q)
=

(
11 +NH/2

12π

)
ln

(
Q2

m2
X

)
+ . . . . (211)

Note that we have absorbed the scalesΛ3 andΛ2 into a single grand unification scaleMX whereα3 =
α2.

Evaluating (211) whenQ = O(MW ), whereα3 ≫ α2 = 0(αem), we derive the characteristic
feature [102]

mGUT

mW
= exp

(
O
(

1

αem

))
, (212)
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i.e., the grand unification scale is exponentially large. Aswe see in more detail later, in most GUTs there
are new interactions mediated by bosons weighingO(mX) that cause protons to decay with a lifetime
αm4

X . In order for the proton lifetime to exceed the experimentallimit, we needmX
>∼ 1014 GeV and

henceαem
<∼ 1/120 in (212) [103]. On the other hand, if the neglect of gravity isto be consistent, we

needmX
<∼ 1019 GeV and henceαem

>∼ 1/170 in (212) [103]. The fact that the measured value of the
fine-structure constantαem lies in this allowed range may be another hint favouring the GUT philosophy.

Further empirical evidence for grand unification is provided by the prediction it makes for the
neutral electroweak mixing angle [102]. Calculating the renormalization of the electroweak couplings,
one finds

sin2 θW =
αem(mW )

α2(mW )
≃ 3

8

[
1− αem

4π

110

9
ln
m2

X

m2
W

]
, (213)

which can be evaluated to yieldsin2 θW ∼ 0.210 to 0.220, if there are only SM particles with masses
<∼ mX [102]. This is to be compared with the experimental valuesin2 θW = 0.23120 ± 0.00015 in the
MS renormalization scheme. Considering thatsin2 θW coulda priori have had any value between 0 and
1, this is an impressive qualitative success. The small discrepancy can be removed by adding some extra
particles, such as the supersymmetric particles in the MSSM.

To see this explicitly, we may write

sin2 θ(mZ) =
g′2

g22 + g′2
=

3

5

g21(mZ)

g22(mZ) +
3
5g

2
1(mZ)

, (214)

whereg1 is defined in such a way that its quadratic Casimir coefficient, summed over all the particles in
a single generation, is the same as forg2 andg3, which is the appropriate normalization within a GUT.
Using the one-loop RGEs, we can then write

sin2 θ(mZ) =
1

1 + 8x

[
3x+

αem(mZ)

α3(mZ)

]
=

1

5

(
b2 − b3
b1 − b2

)
, (215)

where thebi are the one-loop coefficients in the RGEs for the different SMcouplings. Their values in
the SM (on the left) and the MSSM (on the right) are:

4

3
NG − 11 ← b3 → 2NG − 9 = −3 (216)

1

6
NH +

4

3
NG −

22

3
← b2 → 1

2
NH + 2NG − 6 = +1 (217)

1

10
NH +

4

3
NG ← b1 → 3

10
NH + 2NG =

33

5
(218)

23

218
= 0.1055 ← x → 1

7
. (219)

Experimentally, usingαem(mZ) = 1/128, α3 = 0.119 ± 0.003, sin2 θW (mZ) = 0.2315, we find

x =
1

6.92 ± 0.07
, (220)

in striking agreement with the MSSM prediction in (219)!

Another qualitative success is the prediction of theb quark mass [104, 105]. In many GUTs,
such as the minimalSU(5) model, discussed shortly, theb quark and theτ lepton have equal Yukawa
couplings when renormalized at the GUT sale. The renormalization group then tells us that

mb

mτ
≃
[
ln

(
m2

b

m2
X

)] 12
33−2Nq

. (221)
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Usingmτ = 1.78 GeV, we predict thatmb ≃ 5 GeV, in agreement with experiment. Happily, this pre-
diction remains successful if the effects of supersymmetric particles are included in the renormalization-
group calculations [106].

To examine the GUT predictions forsin2 θW etc. in more detail, one needs to study the renorma-
lization-group equations beyond the leading one-loop order. Through two loops, one finds that

Q
∂αi(Q)

∂Q
= − 1

2π

(
bi +

bij
4π

αj(Q)

)
[αi(Q)]2 , (222)

where thebi receive the one-loop contributions

bi =




0
−22

3
−11


+Ng




4
3

4
3

4
3




+NH




1
10
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6

0




(223)

from gauge bosons,Ng matter generations andNH Higgs doublets, respectively, and at two loops

bij =




0 0 0

0 −136
3 0
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. (224)

It is important to note that these coefficients are all independent of any specific GUT model, depending
only on the light particles contributing to the renormalization.

Including supersymmetric particles as in the MSSM, one finds[107]

bi =




0

−6

−9




+Ng




2

2

2




+NH




3
10

frac12

0



, (225)

and

bij =




0 0 0

0 −24 0

0 0 −54
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, (226)

again independent of any specific supersymmetric GUT.

One can use these two-loop equations to make detailed calculations ofsin2 θW in different GUTs.
These confirm that non-supersymmetric models are not consistent with the determinations of the gauge
couplings from LEP and elsewhere [108]. Previously, we argued that these models predicted a wrong
value forsin2 θW , given the experimental value ofα3. In Fig. 19(a) we see the converse, namely that
extrapolating the experimental determinations of theαi using the non-supersymmetric renormalization-
group equations (223), (224) does not lead to a common value of the gauge couplings at any renormaliza-
tion scale. In contrast, we see in Fig. 19(b) that extrapolation using the supersymmetric renormalization-
group equations (225), (226)doeslead to possible unification atMGUT ∼ 1016 GeV [89], if the spartners
of the SM particles weigh∼ 1 TeV.
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Turning this success around, and assumingα3 = α2 = α1 atMGUT with no threshold corrections
at this scale, one may estimate that [109]

sin2 θW (MZ)

∣∣∣∣
MS

= 0.2029 +
7αem

15α3
+
αem

20π

[
−3 ln

(
mt

mZ

)
+

28

3
ln

(
mg̃

mZ

)

−32

3
ln

(
mW̃

mZ

)
− ln

(
mA

mZ

)
− 4 ln

(
µ

mZ

)
+ . . .

]
. (227)

Setting all the sparticle masses to 1 TeV reproduces approximately the value ofsin2 θW observed exper-
imentally. Can one invert this successful argument to estimate the supersymmetric particle mass scale?
One can show [110] that the sparticle mass thresholds in (227) can be lumped into the parameter

Tsusy ≡ |µ|
(
m2

W

mg̃

)14/19 (
m2

A

µ2

)3/38
(
m2

W̃

µ2

)2/19 3∏

i=1




m3
ℓ̃Li
m7

q̃i

m2
ℓ̃Ri

m5
ũi
m3

d̃i




1/19

. (228)

If one assumes sparticle mass universality at the GUT scale,then [110]

Tsusy ≃ |µ|
(
α2

α3

)3/2

≃ µ

7
, (229)

approximately. The measured value ofsin2 θW is consistent withTsusy ∼ 100 GeV to 1 TeV, roughly
as expected from the hierarchy argument. However, the uncertainties are such that one cannot use this
consistency to constrainTsusy very tightly [111]. In particular, even if one accepts the universality
hypothesis, there could be important model-dependent threshold corrections around the GUT scale [109,
112].

4.1.2 Specific GUTs

What groups may be used to construct a GUT [113]?

First, suitable groups must be sufficiently large to includethe SM. The latter is of rank four, i.e.,
there are four simultaneously-diagonalizable symmetry generators22: SU(3)C have two,SU(2)L one,
andU(1)Y one also. It is striking that all of the diagonal generators are traceless: this is trivial for the
non-Abelian groupsSU(3)C andSU(2)L, but non-trival forU(1)Y , and a possible hint that it should
be embedded in a non-Abelian GUT group. Therefore, we must first find in the Cartan classification of
Lie groups a group of rank higher than or equal to four. Secondly, a GUT group must possess complex
representations, in order that the matter particles and their antiparticles (described by complex conjugate
spinors) could be in inequivalent representations. Thirdly, we should also keep track of the hypercharges
Y = Q− T3. One of the major puzzles of the SM is why

∑

q,ℓ

Qi = 3Qu + 3Qd +Qe = 0. (230)

In the SM, the hypercharge assignments area priori independent of theSU(3) × SU(2)L assignments,
although constrained by the fact that quantum consistency requires the resulting triangle anomalies to
cancel. In a simple GUT group, the relation (230) is automatic: wheneverQ is a generator of a simple
gauge group,

∑
RQ = 0 for particles in any representationR, cf., the values ofI3 in any representation

of SU(2).

There are only two groups of rank 4 that have complex representations and hence are suitable
a priori for GUTs, namelySU(5) andSU(3) ⊗ SU(3). However,SU(3) ⊗ SU(3) does not allow

22Each one is associated with a quantum number, a ‘charge’, that may be used to label particle states.
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simultaneously the leptons to have an integer electric charge and the quarks to have a fractional electric
charge. Moreover, if one tried to useSU(3) × SU(3), one would need to embed the electroweak gauge
group in the secondSU(3) factor. This would be possible only if

∑
qQq = 0 =

∑
ℓQℓ, which is not

the case for the known quarks and leptons. Therefore, attention has focused onSU(5) [113] as the only
possible rank-4 GUT group.

The groupSU(5) is the simplest GUT group capable of including the SM. Other possible GUT
groups have higher rank, and groups that are commonly used areSO(10), the only suitable simple group
of rank 5 with complex representations, and the exceptionalgroupE6 of rank 6. As examples that may
help understand the new physics that appears when the symmetry of the SM is enhanced, we are first
going to study key aspects of the groupSU(5) and then, more briefly, some aspects of the groupSO(10).

TheSU(5) group

As in the SM, particles must be arranged in suitable representations ofSU(5). This group has a
fundamental spinorial representation of dimension 5 and a 2-index antisymmetric spinorial representation
of dimension 10. Together they are suitable for accommodating the fermions of a given generation, which
consist of3× 2× 2 = 12 quarks + 2 charged leptons + 1 neutrino. To see how this may be done, we first
decompose the smallest representations ofSU(5) in terms of representations ofSU(3)⊗ SU(2):

5̄ = (3̄,1) + (1,2), (231)

10 = (3̄,1) + (3,2) + (1,1). (232)

For example, in (231) the representation5̄ of SU(5) can accommodate a colour antitriplet that is also an
SU(2) singlet, and a colour singlet that is also anSU(2) doublet. In addition, it is necessary that the sum
of the charges in each of these two multiplets be zero. The only possible combination of first-generation
fermions in the SM is:

5̄ : (ψi)L =




d̄1
d̄2
d̄3
e−

−νe




L

, (233)

and the rest of the first-generation fermions may be accommodated uniquely, as follows:

10 : (χij)L =
1√
2




0 ū3 −ū2 u1 d1
−ū3 0 ū1 u2 d2
u2 −ū1 0 u3 d3
−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0




L

, (234)

where we neglect the eventual mixings between the fermions in different generations. We must repeat
the previous classification of fermions in10 + 5̄ representations for the other two generations: there is
no explanation inSU(5) for the presence of three generations23.

After discussing the matter fermions, we now discuss the GUTgauge bosons. Groups of type
SU(N) haveN2 − 1 symmetry generators in an adjoint representation (e.g.,SU(3)C has 8 gluons,
SU(2) has 2W bosons, etc.), so thatSU(5) has 24 gauge bosons. Of these 24 gauge bosons, 12
correspond to the SM gluons,W±, Z0 andγ, and 12 are new. Decomposing this 24-dimensional adjoint
representation into representations ofSU(3) ⊗ SU(2)⊗ U(1), we find

24 = (3,2,
5

3
)⊕ (3̄,2,−5

3
)

︸ ︷︷ ︸
new bosons

⊕ (8,1, 0)︸ ︷︷ ︸
gluons Ga

⊕ (1,3, 0)︸ ︷︷ ︸
Wi

⊕ (1,1, 0)︸ ︷︷ ︸
B

, (235)

23The pairing of̄5 and10 representations is free of triangle anomalies.
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where the third numbers in the parentheses are the hypercharges of the multiplets. The new bosons,
calledX andY , have electric charges 4/3 and 2/3, respectively, carry leptoquark quantum numbers, are
coloured and have isospin 1/224. In matrix notation,

A =

24∑

a=1

TaA
a =




Gi Gi Gi X̄ Ȳ
Gi Gi Gi X̄ Ȳ
Gi Gi Gi X̄ Ȳ
X X X Wi Wi

Y Y Y Wi Wi



, (236)

where theTa are the generators ofSU(5) represented by5 × 5 matrices (the equivalents forSU(5) of
the Pauli matrices ofSU(2)). The basis is chosen so thatSU(3)C corresponds to the first three lines
and columns, andSU(2)L to the last two lines. The top-left and bottom-right blocks therefore contain
the gluons andW bosons, respectively, and theU(1) bosonB (not shown) corresponds to a traceless
diagonal generator.

The remaining steps in constructing anSU(5) GUT are the choices of representations for Higgs
bosons, first to breakSU(5) → SU(3) × SU(2) × U(1) and subsequently to break the electroweak
SU(2) × U(1)Y → U(1)em. The simplest choice for the first stage is an adjoint24 of Higgs bosonsΦ
with a v.e.v.

< 0|Φ|0 >=




1 0 0
... 0 0

0 1 0
... 0 0

0 0 1
... 0 0. . . . . . . . . . . . . . . . . . . . . .

0 0 0
... −3

2 0

0 0 0
... 0 −3

2




×O(mGUT ). (237)

It is easy to see that this v.e.v. preserves colourSU(3), which reshuffles the first three rows and columns,
weakSU(2), which reshuffles the last two rows and columns, and the hyperchargeU(1), which is a
diagonal generator. The subsequent breaking ofSU(2) × U(1)Y → U(1)em is most economically
accomplished by a5 representation of Higgs bosonsH:

< 0|φ|0 >= (0, 0, 0, 0, 1) × 0(mW ). (238)

It is clear that this v.e.v. has anSU(4) symmetry which yields [104] the relationmb = mτ before
renormalization that leads, after renormalization (221),to a successful prediction formb in terms ofmτ .
However, the same trick does not work for the first two generations, indicating a need for epicycles in
this simplest GUT model [114].

Making the minimalSU(5) GUT supersymmetric, as motivated by the naturalness of the gauge
hierarchy, is not difficult [94]. One must replace the above GUT multiplets by supermultiplets:̄5 F̄ and
10 T for the matter particles,24 Φ for the GUT Higgs fields that breakSU(5) → SU(3) × SU(2) ×
U(1). The only complication is that one needs both5 and 5̄ Higgs representationsH andH̄ to break
SU(2) × U(1)Y → U(1)em, just as two doublets were needed in the MSSM to cancel anomalies and
give masses to all the matter fermions. The simplest possible form of the Higgs potential is specified by
the superpotential [94]:

W = (µ+
3λ

2
M) + λH̄ΦH + f(Φ) (239)

24They have direct interactions with quarks and leptons, which we discuss in the next section.
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whereµ = O(1) TeV andM = O(MGUT ), andf(Φ) is chosen so that∂f/∂Φ = 0 when

< 0|Φ|0 >=M




1 0 0
... 0 0

0 1 0
... 0 0

0 0 1
... 0 0. . . . . . . . . . . . . . . . . . . . . .

0 0 0
... −3

2 0

0 0 0
... 0 −3

2




. (240)

Inserting this into the second term of (239), one finds termsλMH̄3H3, −3/2λMH̄2H2 for the colour-
triplet and weak-doublet components ofH̄ andH, respectively. Combined with the bizarre coefficient
of the first term, these lead to terms

W ∋ (µ+
5λ

2
M)H̄3H3 + µH̄2H2. (241)

Thus we have heavy Higgs triplets with massesO(MGUT ) and light Higgs doublets with massesO(µ).
However, this requires fine tuning the coefficient of the firstterm inW (239) to about 1 part in1013! In
the absence of supersymmetry, such fine tuning would be destroyed by quantum loop corrections [105].

A primary advantage of supersymmetry is that its no-renormalization theorems [80,81] guarantee
that this fine tuning isnatural, in the sense that quantum corrections do not destroy it, unlike the situation
without supersymmetry. On the other hand, supersymmetry alone does not explain theorigin of the
hierarchy. A second advantage of supersymmetry, as we saw earlier in this section, is that it would make
possible a much more precise unification of the gauge couplings. However, a potential snag is that the
exchanges of the supersymmetric partners of the heavy Higgstriplets H̄3,H3 may cause rapid proton
decay, as discussed later.

Another possible GUT group that is frequently studied isSO(10) [113,115]. It is a group of rank
5, that containsSU(5) ⊗ U(1). The principal advantage ofSO(10) over SU(5) is that it possesses
a fundamental spinorial representation of dimension 16 that can accommodate all the fermions of one
generation, as well as a singlet right-handed neutrino, thanks to its decomposition in terms ofSU(5)
representations25

16 = 10⊕ 5̄⊕ 1. (242)

The appearance of anSU(5) singlet provides a natural framework for the physics of the neutrinos and the
seesaw mechanism26. In SO(10) the number of gauge bosons rises to 45, which includes 33 additional
gauge bosons beyond the SM, and therefore many possible interactions, including additional options for
proton decay. In addition, the breaking ofSO(10) is more complicated than that ofSU(5), because it is
done in two steps. One may pass fromSO(10) to SU(5) ⊗ U(1) or SU(4) ⊗ SU(2)L ⊗ SU(2)R, and
then toSU(2)⊗U(1). The Higgs sector is potentially quite extensive, and may include large multiplets
of dimensions 10, 16, 45, 54, 120 and 126, depending on the model.

4.1.3 Baryon decay

Baryon instability is to be expected on general grounds, since there is no exact gauge symmetry to guar-
antee that baryon numberB is conserved. Indeed, baryon decay is a generic prediction of GUTs, which
we illustrate with the simplestSU(5) model, that is anyway embedded in larger and more complicated

25TheSO(10) group is anomaly-free, so this decomposition explains finally the freedom from anomalies ofSU(5) and the
SM.

26In SU(5), singlet right-handed neutrinos could be added ‘by hand’, in which case they would have no gauge interactions. In
the case ofSO(10), the gauge interactions ofSO(10) do not have any direct influence on accessible neutrino phenomenology,
but may provide interesting restrictions on their Yukawa interactions.
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Fig. 30: Diagrams contributing to baryon decay (a) in minimalSU(5) and (b) in minimal supersymmetricSU(5)

GUTs. We see in (236) that there are two species of gauge bosons in SU(5), calledX andY , that
couple the colourSU(3) indices (1,2,3) to the electroweakSU(2) indices (4,5). As we can see from the
matter representations (234), these may enable two quarks or a quark and lepton to annihilate, as seen
in Fig. 30(a). Combining these possibilities leads to an interaction with∆B = ∆L = 1. The forms of
effective four-fermion interactions mediated by the exchanges of massiveZ andY bosons, respectively,
are [105]

(
ǫijkuRk

γµuLj

) g2X
8m2

X

(2eR γ
µ dLi + eL γ

µ dRi) ,

(
ǫijkuRk

γµdLj

) g2Y
8m2

X

(νL γ
µ dRi) , (243)

up to generation mixing factors.

Since the gauge couplingsgX = gY = g3,2,1 in anSU(5) GUT, andmX ≃ mY , we expect that

GX ≡
g2X
8m2

X

≃ GY ≡
g2Y
8m2

Y

. (244)

It is clear from (243) that the baryon decay amplitudeA ∝ GX , and hence the baryonB → ℓ+ meson
decay rate

ΓB = cG2
Xm

5
p, (245)

where the factor ofm5
p comes from dimensional analysis, andc is a coefficient that depends on the GUT

model and the non-perturbative properties of the baryon andmeson.

The decay rate (245) corresponds to a proton lifetime

τp =
1

c

m4
X

m5
p

. (246)

It is clear from (246) that the proton lifetime is very sensitive tomX , which must therefore be calculated
very precisely. In minimalSU(5), the best estimate was

mX ≃ (1 to 2)× 1015 × ΛQCD (247)

whereΛQCD is the characteristic QCD scale in theMS prescription with four active flavours. Making an
analysis of the generation mixing factors [116], one finds that the preferred proton (and bound neutron)
decay modes in minimalSU(5) are

p→ e+π0 , e+ω , ν̄π+ , µ+K0 , . . .

n→ e+π− , e+ρ− , ν̄π0 , . . . , (248)
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and the best numerical estimate of the lifetime is

τ(p→ e+π0) ≃ 2× 1031±1 ×
(

ΛQCD

400 MeV

)4

y . (249)

This is inprima facieconflict with the latest experimental lower limit

τ(p→ e+π0) > 8.2× 1033 y (250)

from super-Kamiokande [117]. However, this failure of minimalSU(5) is not as conclusive as the failure
of its prediction forsin2 θW .

We saw earlier that supersymmetric GUTs, includingSU(5), fare better withsin2 θW . They also
predict a larger GUT scale [107]:

mX ≃ 2× 1016 GeV, (251)

so thatτ(p → e+π0) is considerably longer than the experimental lower limit. However, this is not
the dominant proton decay mode in supersymmetricSU(5) [118]. In this model, there are important
∆B = ∆L = 1 interactions mediated by the exchange of colour-triplet higgsinosH̃3, dressed by
gaugino exchange as seen in Fig. 30(b) [119], these give

GX → O
(
λ2g2

16π2

)
1

mH̃3
m̃
, (252)

whereλ is a generic Yukawa coupling. Taking into account colour factors and the values ofλ for more
massive particles, it was found [118] that decays into neutrinos and strange particles should dominate:

p→ ν̄K+ , n→ ν̄K0 , . . . (253)

Because there is only one factor of a heavy massmH̃3
in the denominator of (252), these decay modes are

expected to dominate overp→ e+π0 etc. in minimal supersymmetricSU(5). The current experimental
limit is τ(p → ν̄K+) > 1033y [120]. Calculating carefully the other factors in (252) [121], it seems
that the modes (253) may be close to detectability in this model, possibly even too close for comfort, in
which case a more complicated supersymmetric GUT might be needed.

There are non-minimal supersymmetric GUT models such as flippedSU(5) [122] in which the
H̃3- exchange mechanism (252) is suppressed. In such models,p → e+π0 may again be the preferred
decay mode [123]. However, this is not necessarily the case,as colour-triplet Higgs boson exchange
may also be important, in which casep → µ+K0 could be dominant [124], or there may be non-
intuitive generation mixing in the couplings of theX andY bosons, offering the possibilityp → µ+π0

etc. Therefore, the continuing search for proton decay should be open-minded about the possible decay
modes. The current experimental limits for these process are τ(p → e+π0) > 1033y [117], τ(p →
µ+K0) > 1033y [120], andτ(p→ µ+π0) > 1033y [117].

4.1.4 Neutrino masses and oscillations

The experimental upper limits on neutrino masses are far below the corresponding lepton masses [13].
From studies of the end-point of tritiumβ decay, we have

mνe
<∼ 2 eV, (254)

to be compared withme = 0.511 MeV. Neglecting mixing effects, from studies ofπ → µνµ decays, we
have

mνµ < 190 keV, (255)
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to be compared withmµ = 105 MeV, and from studies ofτ → pions +ντ , again neglecting mixing
effects, we have

mντ < 18.2 MeV, (256)

to be compared withmτ = 1.78 GeV.

On the other hand, there is no good symmetry reason to expect the neutrino masses to vanish. We
expect masses to vanish only if there is a corresponding exact gauge symmetry, cf.,mγ = 0 in QED with
an unbrokenU(1) gauge symmetry.

However, although there is no candidate gauge symmetry to ensuremν = 0, this is a prediction of
the SM. We recall that the neutrino couplings to charged leptons take the form

Jµ = ēγµ(1− γ5)νe + µ̄γµ(1− γ5)νµ + τ̄ γµ(1− γ5)ντ , (257)

and that only left-handed neutrinos have ever been detected. In the cases of charged leptons and quarks,
their masses arise in the SM from couplings between left- andright-handed componentsvia a Higgs
field:

gHf̄f H∆I= 1
2
,∆L=0 f̄RfL + h.c.→ mf = gHf̄f 〈0|H∆I= 1

2
,∆L=0|0〉. (258)

Such a left–right coupling is conventionally called a Diracmass. The following questions arise for
neutrinos: if there is noνR, can one havemν 6= 0? On the other hand, if there is aνR, why are the
neutrino masses so small?

The answer to the first question is positive, because it is possible to generate neutrino massesvia
the Majorana mechanism that involves theνL alone. This is possible because an(fR) field is in fact
left-handed:(fR) = (f c)L = fTLC, where the superscriptT denotes a transpose, andC is a 2 × 2
conjugation matrix. We can therefore imagine replacing

(fR)fL → fTL C fL, (259)

which we denote byfL · fL. In the cases of quarks and charged leptons, one cannot generate masses in
this way, becauseqL · qL has∆Qem, ∆(colour) 6= 0 andℓL · ℓL has∆Qem 6= 0. However, the coupling
νL · νL is not forbidden by such exact gauge symmetries, and would lead to a neutrino mass:

mM νTL C νL = mM (νc)LνL ≡ mM νL · νL. (260)

Such a combination has non-zero net lepton number∆L = 2 and weak isospin∆I = 1. There is no
corresponding Higgs field in the SM or in the minimalSU(5) GUT, but there is no obvious reason to
forbid one. If one were present, one could generate a Majorana neutrino massvia the renormalizable
coupling

g̃Hν̄ν H∆I=1,∆L=L νL · νL ⇒ mM = g̃Hν̄ν〈0|H∆I=1,∆L=2|0〉. (261)

However, one could also generate a Majorana mass without such an additional Higgs field,via a non-
renormalizable coupling to the conventional∆I = 1

2 SM Higgs field:

1

M

(
H∆I= 1

2
νL

)
·
(
H∆I= 1

2
νL

)
⇒ mM =

1

M
〈0|H∆I= 1

2
|0〉2, (262)

whereM is some (presumably heavy mass scale:M ≫ mW ).

The simplest possibility for generating a non-renormalizable interaction of the form (262) would
bevia the exchange of a heavy fieldN that is a singlet ofSU(3)× SU(2)× U(1) or SU(5):

1

M
→ λ2

MN
, (263)
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where one postulates a renormalizable couplingλH∆I=1/2νL ·N . As already mentioned, such a heavy
singlet field appears automatically in extensions of theSU(5) GUT, such asSO(10), though it does not
actuallyrequire the existence of any new GUT gauge bosons.

We now have all the elements we need for the see-saw mass matrix [125] favoured by GUT model-
builders:

(νL, N) ·
(
mM mD

mD MM

) (
νL
N

)
, (264)

where theνL · νL Majorana massmM might arise from a∆I = 1 Higgs with couplingg̃Hν̄ν , (261),
the νL · N Dirac massmD could arise from a conventional Yukawa couplingλ (263) and should be
of the same order as a conventional quark or lepton mass, andMM could a priori beO(MGUT )

27.
Diagonalizing (264) and assuming thatmM = 0 or that〈0|H∆I=1|0〉 = O(m2

W /mGUT ), as generically
expected in GUTs, one obtains the mass eigenstates

νL + 0

(
mW

mX

)
N : m = O

(
m2

W

MGUT

)
, (265)

N + 0

(
mW

mX

)
νL : M = O(MGUT ). (266)

We see that one mass eigenstate (265) is naturally much lighter than the electroweak scale, whereas the
other (266) is naturally much heavier.

There is evidence for atmospheric neutrino oscillations [127] betweenνµ andντ with ∆m2
A ∼

(10−2 to 10−3) eV2 and a large mixing angle:sin2 θ23 >∼ 0.9. In addition, there is evidence [128]
for solar neutrino oscillations with∆m2

S ≃ 10−5 eV2 and sin2 θ12 ∼ 0.6. We also know that the
third neutrino mixing angleθ13 must be small, but it is an open experimental question just how small
it may be. The pattern of MNS neutrino mixing seems very different from that of CKM quark mixing,
perhaps reflecting special ingredients related to the see-saw mechanism. Other open questions include
the magnitude of the CP-violating phase in the neutrino mixing matrix (analogous to the Kobayashi–
Maskawa phase in quark mixing), and also the sequence of neutrino mass eigenstates.

CP-violating decays of heavy singlet neutrinos provide a simple mechanism for generating the
baryon number of the Universe [129], by first providing a lepton asymmetry that is subsequently con-
verted partially into a baryon asymmetry by non-perturbative electroweak interactions [15]. Essential
ingredients in this scenario are the violation of lepton number via Majorana neutrino masses and CP
violation [38]. The CP-violating phase observable in neutrino oscillations does not play a direct role
in this scenario for baryogenesis [130], but its observation would nevertheless be of great conceptual
importance.

4.2 Local supersymmetry and supergravity

Why study a local theory of supersymmetry [82,83]? One motivation is the analogy with gauge theories,
in which bosonic symmetries are made local. Another is that local supersymmetry necessarily involves
the introduction of gravity. Since both gravity and (surely!) supersymmetry exist, this seems an inevitable
step. It also leads to the possibility of unifying all the particle interactions including gravity, which was
one of our original motivations for supersymmetry. Moreover, it is interesting that local supersymmetry
(supergravity) admits an elegant mechanism for supersymmetry breaking [131], analogous to the Higgs
mechanism in gauge theories, which allows us to address moreseriously the possible existence of a
cosmological constant.

27It is often assumed that there are three singlet neutrinosN , but this need not be the case. If there were only two, one of the
light neutrinos would be massless. On the other hand, there could be many more than three [126].
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The basic building block in a supergravity theory [82, 83] isthe graviton supermultiplet, which
contains particles with helicities(2, 3/2), the latter being the gravitino of spin3/2. Why is this required
when one makes supersymmetry local?

We recall the basic global supersymmetry transformation laws (150, 151) for bosons and fermions.
Consider now the combination of two such global supersymmetry transformations

[δ1, δ2] (φ or ψ) = −(ξ̄2γµξ1) (i ∂µ) (φ or ψ) + . . . (267)

The operator(i ∂µ) corresponds to the momentumPµ, and we see again that the combination of two
global supersymmetry transformations is a translation. Consider now what happens when we consider
local supersymmetry transformations characterized by a varying spinorξ(x). It is evident that the in-
finitesimal translation̄ξ2γµξ1 in (267) is nowx-dependent, and the previous global translation becomes
a local coordinate transformation, as occurs in General Relativity.

How do we make the theory invariant under such local supersymmetry transformations? Consider
again the simplest globally supersymmetric model containing a free spin-1/2 fermion and a free spin-0
boson (143), and make the local versions of the transformations (151), we can obtain

δL = ∂µ(· · · ) + 2ψ̄γµ ∂/S(∂
µξ(x)) + herm. conj. (268)

In contrast to the global case, the actionA =
∫
d4xL is not invariant, because of the second term in

(268). To cancel it out and restore invariance, we need more fields.

We proceed by analogy with gauge theories. In order to make the kinetic term(iψ̄∂/ψ) invariant
under gauge transformationsψ → eiǫ(x)ψ, we need to cancel a variation

−ψ̄∂µψ∂µǫ(x), (269)

which is done by introducing a coupling to a gauge boson

gψ̄γµψA
µ(x) , (270)

and the corresponding transformation

δAµ(x) =
1

g
∂µǫ(x). (271)

In the supersymmetric case, we cancel the second term in (268) by a coupling

κψ̄γµ∂/Sψ
µ(x) (272)

to a spin-3/2 spinorψµ(x), representing a gauge fermion or gravitino, with the corresponding transfor-
mation

δψµ = −2

κ
∂µξ(x), (273)

whereκ ≡ 8π/m2
P .

For completeness, let us at least write down the Lagrangian for the graviton–gravitino supermulti-
plet

L = − 1

2κ2
√−gR− 1

2
ǫµνρσψ̄µγ5γνDρψσ, (274)

whereg denotes the determinant of the metric tensor

gµν = ǫmµ ηmnǫ
µ
ν , (275)

ǫmµ is the vierbein andηmn the Minkowski metric tensor, andDρ is a covariant derivative

Dρ ≡ ∂ρ +
1

4
ωmn
ρ [γm, γn], (276)
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whereωmn
ρ is the spin connection. This is the simplest possible generally-covariant model of a spin-3/2

field. It is remarkable that it is invariant under the local supersymmetry transformations

δǫmµ =
x

2
ξ̄(x)γmψµ(x),

δωmn
µ = 0, δψµ =

1

x
Dµξ(x), (277)

just as the simplest possible(1/2, 0) theory (143) was globally supersymmetric, and also the action of
an adjoint spin-1/2 field in a gauge theory.

As already remarked, supergravity admits an elegant analogue of the Higgs mechanism of spon-
taneous symmetry breaking [131]. Just as one combines the two polarization states of a massless gauge
field with the single state of a massless Goldstone boson to obtain the three polarization states of a mas-
sive gauge boson, one may combine the two polarization states of a massless gravitinoψµ with the two
polarization states of a massless Goldstone fermionλ to obtain the four polarization states of a mas-
sive spin-3/2 particlẽG. This super-Higgs mechanism corresponds to a spontaneous breakdown of local
supersymmetry, since the massless gravitonG has a different mass from the gravitinõG:

mG = 0 6= mG̃. (278)

This is the only known consistent way of breaking local supersymmetry, just as the Higgs mechanism is
the only way to generatemW 6= 0.

Moreover, this can be achieved while keeping zero vacuum energy (cosmological constant), at
least at the tree level. The reason for this is the appearancein local supersymmetry (supergravity) of a
third term in the effective potential (170), which has anegativesign [131]. There is no time in these
lectures to discuss this exciting feature in detail: the interested reader is referred to the original literature
and the simplest example [132]. In this particular case,Λ = V = 0 for anyvalue of the gravitino mass,
for which reason it was named no-scale supergravity [133].

Again, there is no time to discuss here details of the coupling of supergravity to matter [131].
However, it is useful to have in mind the general features of the theory in the limit whereκ→ 0, but the
gravitino massmG̃ ≡ m3/2 remains fixed. One generally has non-zero gaugino massesm1/2 ∝ m3/2,
and their universality is quite generic. One also has non-zero scalar massesm0 ∝ m3/2, but their univer-
sality is much more problematic, and even violated in generic string models. It was this failing that partly
refuelled interest in gauge-mediated models. A generic supergravity theory also yields non-universal
trilinear soft supersymmetry-breaking couplingsAλλφ

3 : Aλ ∝ m3/2 and bilinear scalar couplings
Bµµφ

2 : Bµ ∝ m3/2. Therefore, supergravity may generate the full menagerie of soft supersymmetry-
breaking terms:

−1

2

∑

a

m1/2a ṼaṼa −
∑

i

m2
0i |φi|2 −

(∑

λ

Aλλφ
3 + h.c.

)
−
(∑

µ

Bµµφ
2 + h.c.

)
. (279)

In a minimal supergravity (mSUGRA) framework, the gaugino massesm1/2, scalar massesm0, and
trilinear couplngsA are universal, as assumed in the CMSSM, but there are specificconditions:B =
A− 1, and the gravitino mass is fixed:m3/2 = m0. The former condition is more restrictive than in the
CMSSM, and the latter condition implies that the gravitino is the LSP in significant regions of parameter
space. Hence, the CMSSM and mSUGRA are distinct scenarios [134].

Since these soft supersymmetry-breaking parameters are generated at the supergravity scale near
mP ∼ 1019 GeV, the soft supersymmetry-breaking parameters are renormalized as discussed earlier.
The analogous parameters in gauge-mediated models would also be renormalized, but to a different
extent, because the mediation scale≪ mP . This difference may provide a signature of such models, as
discussed elsewhere [135,136].
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Also renormalized is the vacuum energy (cosmological constant), which is a potential embarass-
ment. Loop corrections in a non-supersymmetric theory are quartically divergent, whereas those in a
generic supergravity theory are only quadratically divergent, suggesting a contribution to the cosmolog-
ical constant of orderm2

3/2m
2
P , perhapsO(10−32)m4

P ! Particular models may have a one-loop quantum

correction of orderm4
3/2 = O(10−64)m2

P , but more magic (a new symmetry?) is needed to suppress the
cosmological constant to the required level

Λ <∼ 10−123m4
P . (280)

This is one of the motivations for seeking a fundamental Theory of Everything including gravity.

Once upon a time, supergravity was considered a possible candidate for such a Theory of Every-
thing, particularly the maximalN = 8 supergravity in 4 dimensions. However, this candidature would
need two elements that are still lacking: a proof that the theory is finite, or at least renormalizable, and a
demonstration of how it could lead to a low-energy theory resembling the SM, e.g.,via the formation of
bound states: see Ref. [137] for a review of these issues. In the meantime, string theory [90] is the most
plausible candidate for a Theory of Everything.

4.3 Towards a Theory of Everything

4.3.1 Problems in quantum gravity

One of the most important unfinished tasks for understandingthe Universe and the fundamental inter-
actions is the unification of the two great theories of the 20th century: general relativity and quantum
mechanics. To write such a unified Theory of Everything is oneof the major challenges for physicists in
our century. The solution of the problem of the cosmologicalconstant, for example, will have to find a
place in the frame of such a Theory of Everything.

Gravity is a puzzle for conventional quantum theory, in particular because incontrollable, non-
renormalizable infinities appear when one tries to calculate Feynman diagrams that contain loops with
gravitons. These correction terms diverge increasingly rapidly as the order of the perturbative calculation
increases, essentially because the coupling of gravity hasnegative mass dimensionality, being∝ 1/M2

P ,
whereMP ≃ 1.2× 1019 GeV.

There are also non-perturbative problems in the quantization of gravity, which first appeared in
connection with black holes. We recall that a black hole is a non-perturbative solution of the equations
of General Relativity, in which the curvature of space-timeinduced by gravitational forces becomes
so strong that no particle can escape the event horizon. The existence of this horizon is linked to the
existence of entropyS and a non-zero temperatureT of the black hole. From the pioneering work of
Bekenstein and Hawking [138] on black-hole thermodynamics, we know that the mass of a black hole is
proportional to the surface areaA of its horizon, which is related in turn to its entropy:

S =
1

4
A . (281)

The appearance of non-zero entropy means that the quantum description of a black hole must involve
mixed states. The intuition underlying this feature is thatinformation can be lost through the event
horizon. To see how this may happen, consider, for example, apure quantum-mechanical pair state
|A,B〉 ≡ ∑

i ci|Ai〉|Bi〉 prepared near the horizon, and what happens if one of the particles, sayA,
falls through the horizon whileB escapes, as seen in Fig. 31. In this case, all the informationabout the
component|Ai〉 of the wave function is lost, so that

∑

i

ci|AiBi〉 →
∑

i

|ci|2|Bi〉〈Bi| (282)

andB emerges in a mixed state, as in Hawking’s original treatmentof the black-hole radiation that bears
his name [138]. The problem is that conventional quantum mechanics does not permit the evolution of a
pure initial state into a mixed final state.
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Fig. 31: If a pair of particles|A〉 |B〉 is produced near the horizon of a black hole, and one of them (|A〉, say) falls
in, the remaining particle|B〉 will appear to be in a mixed state, since the state of|A〉 is unobservable

For a discussion of these and other open problems in quantum black hole physics, see Ref. [139].
Many theorists consider that these problems point to a fundamental conflict between the proudest achieve-
ments of early-twentieth-century physics, namely quantummechanics and General Relativity. One or the
other should be modified, and perhaps both. Since quantum mechanics is sacred to field theorists, most
particle physicists prefer to modify General Relativity byelevating it to string theory, as we now discuss.

4.3.2 Introduction to string theory

As was just mentioned, one of the major issues of quantum gravity is that it has an infinite number of
infinities. These divergences can be traced to the absence ofa short-distance cut-off in conventional field
theories, where the particles are points. The problem is that one can in principle approach infinitely near
a point particle, giving rise to interactions of infinite strength:

∫ Λ→∞
d4k

(
1

k2

)
↔
∫

1/Λ→0
d4x

(
1

x6

)
∼ Λ2 →∞. (283)

Such divergences can be avoided or removed if one replaces point particles by extended objects. The
simplest possibility is to extend in just one dimension, leading to a theory of strings. In such a the-
ory, instead of point particles moving along one-dimensional world lines, one has strings moving over
two-dimensional world sheets. Historically, closed loopsof string have been the most popular, and the
corresponding world sheet would be tubes. The ‘wiring diagrams’ generated by the Feynman rules of
conventional point-like particle theories become ‘plumbing circuits’ generated by the junctions and con-
nections of these tubes of closed string. One could imagine generalizing this idea to higher-dimensional
extended objects such as membranes describing world volumes, etc., and we return later to this option.

Back in the early 1960s, there existed a quantum theory of theelectromagnetic force (QED), but
successful descriptions of the weak and strong forces were not yet known. At that time, theoretical
efforts were concentrated on developing a theory that woulddetermine the scattering (S) matrix, which
describes on-mass-shell scattering amplitudes, which should possess certain properties abstracted from
quantum field theory, such as unitarity and maximal analyticproperties. These characteristics would
ensure the requirements of causality and non-negative probabilities. A key idea in those years was
maximal analyticity in the angular momentum plane, i.e., that the conventional partial-wave amplitudes
al(s) defined in the first instance for discrete angular momental = 0, 1, ..., can be extended uniquely
to analytic functions ofl, a(l, s). These have isolated ‘Regge’ poles that move along Regge trajectories
l = α(s) in the complex angular-momentum plane. The values ofs for which l take suitable discrete
values correspond to a physical hadron states. Experimental results indicated that the Regge trajectories
are approximately linear, with a common slopeα′:

α(s) = α(0) + α′s, (284)
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whereα′ ∼ 1.0(GeV)−2. These ideas were insufficient to determine theS matrix, and additional prin-
ciples were invoked, such as thebootstrapidea, according to which the exchanges of hadrons in crossed
channels provide forces that are responsible for forming hadronic bound states. In the narrow-resonance
approximation, i.e., if resonance decay widths are negligible compared to their masses, the scattering
amplitude can be expanded in an infinite series ofs-channel poles, and this should give the same result
as its expansion in an infinite series oft-channel poles due to exchanged particles. The narrow-resonance
version of the bootstrap idea, which was called duality, hada precise formulation with a definite solution.

The decisive contribution to the solution was made by Veneziano in 1968 [140]: he gave an an-
alytic formula that exhibited duality with linear Regge trajectories. Its structure was the sum of three
Euler beta functions [141]:

T = A(s, t) +A(s, u) +A(t, u) : A(s, t) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s)− α(t)) , (285)

whereα is a linear Regge trajectory, withα(s) = α(0) + α′s as described above. In the course of the
next few years, several further breakthroughs were achieved. Virasoro [142] showed how to generalize
the Veneziano formula to one with full symmetry in the three Mandelstam invariantss, t, u. Multi-
particle generalizations of the Veneziano and Virasoro formulas were constructed and shown to factorize
consistently on a finite spectrum of single-particle statesat each energy level, which could be described
by an infinite number of simple harmonic oscillators. This surprising result led to the first ideas of
strings [143]: they could be interpreted as the scattering modes of a relativistic string: open strings in the
Veneziano case and closed strings in the Virasoro case28.

While looking for a way to incorporate baryons into the string framework, in 1971 Ramond [75]
constructed a dual-resonance model generalization of the Dirac equation. The solutions of this equa-
tion gave the spectrum of a noninteracting fermionic string. In combination with work by Neveu and
Schwarz [76], this led to a unified interacting theory of bosons and fermions, which was essentially a
prototype for what later came to be known as superstring theory. The action of this theory has two-
dimensional global supersymmetry on the world-sheet, described by infinitesimal fermionic transforma-
tions of the type discussed in the previous Lecture.

Initially, it was regarded as a disadvantage that this first incarnation of string theory was not able to
accommodate the point-like partons seen inside hadrons at this time. In retrospect, this was the converse
of the quantum-gravity motivation for string theory mentioned at the beginning of this section, which dis-
favours point-like structures. Then in 1973 along came QCD which incorporated these point-like scaling
properties and provided a qualitative understanding of confinement that has now become quantitative
with the advent of modern lattice calculations. Thus stringtheory languished as a candidate model of the
strong interactions, though there is still hope that some asyet undiscovered variant of string theory might
provide a useful alternative description of the strong interactions. In the mean time, interest was sparked
in 1973 by the realization that string theory predicted the existence of a massless spin-2 state [144].
Could this be the graviton? It was known that in any consistent theory of a massless spin-2 particle
its low-energy interactions would be identical with those of general relativity. Might string theory be
a consistent high-energy completion of this theory, in which case it might be the longsought Theory of
Everything?

As already mentioned, one of the primary reasons for studying extended objects in connection
with quantum gravity is the softening of divergences associated with short-distance behaviour. Since
the string propagates on a world sheet, the basic formalism is two-dimensional. Accordingly, string
vibrations may be described in terms of left- and right-moving waves:

φ(r, t)→ φL(r − t), φR(r + t). (286)

28It still seems amazing that the mathematical formulae preceded the string interpretation [141].
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If the string has no boundary, as for a closed string, the left- and right-movers are independent. When
quantized, they may be described by a two-dimensional field theory. Compared to a four-dimensional
theory, it is relatively easy to make a two-dimensional fieldtheroy finite. In this case, it has conformal
symmetry, which has an infinite-dimensional symmetry groupin two dimensions. However, as you
already know from gauge theories, one must be careful to ensure that this classical symmetry is not
broken at the quantum level by anomalies. If the quantum string theory is to be consistent in a flat
background space-time, the conformal anomaly fixes the number of left- and right-movers each to be
equivalent to 26 free bosons if the theory has no supersymmetry, or 10 boson/fermion supermultiplets if
the theory hasN = 1 supersymmetry on the world sheet. There are other importantquantum consistency
conditions, and it was the demonstration by Green and Schwarz [145] that certain string theories are
completely anomaly-free that opened the floodgates of theoretical interest in string theory as a potential
Theory of Everything.

Among consistent string theories, one may enumerate the following. Thebosonic stringexists
in 26 dimensions, but this is not even its worst problem! It contains no fermionic matter degrees of
freedom, and the flat-space vacuum is intrinsically unstable. Superstringsexist in 10 dimensions, have
fermionic matter and also a stable flat-space vacuum. On the other hand, the ten-dimensional theory
is left-right symmetric, and the incorporation of parity violation in four dimensions is not trivial. The
heterotic stringwas originally formulated in 10 dimensions, with parity violation already incorporated,
since the left- and right movers were treated differently. This theory also has a stable vacuum, but still
suffers from the disadvantage of having too many dimensions. Four-dimensional heterotic stringsmay
be obtained either by compactifying the six surplus dimensions: 10 = 4 + 6 compact dimensions with
sizeR ∼ 1/mP , or by direct construction in four dimensions, replacing the missing dimensions by other
internal degrees of freedom such as fermions or group manifolds or ...? In this way it was possible to
incorporate a GUT-like gauge group [122] or even something resembling the Standard Model.

What are the general features of such string models? First, they predict there are no more than
10 dimensions, which agrees with the observed number of 4. Secondly, they suggest that the rank
of the four-dimensional gauge group should not be very large, in agreement with the rank 4 of the
Standard Model29. Thirdly, the simplest four-dimensional string models do not accommodate large
matter representations [146], such as an8 of SU(3) or a3 of SU(2), again in agreement with the known
representation structure of the Standard Model. Fourthly,simple string models predict fairly successfully
the mass of the top quark, from the requirement that the theory make sense at all energies up to the Planck
mass. Fifthly, string theory makes a fairly successful prediction for the gauge unification scale in terms
of mP . If the intrinsic string couplinggs is weak, one predicts

MGUT = O(g) × mP√
8π
≃ few× 1017GeV, (287)

whereg is the gauge coupling, which isO(20) higher than the value calculated on the basis of LEP
measurement of the gauge couplings. Nevertheless, it wouldbe nice to obtain closer agreement, and
this provides the major motivation for considering strongly-coupled string theory, which corresponds to
a large internal dimensionl > m−1

GUT , as we discuss next.

4.3.3 M theory

As was already said, the bosonic string model has many more disadvantages than other models. It has 26
dimensions, does not contain fermions, and has an unstable vacuum. Consequently, physicists focused
on superstring models, of which five types exist:

• Type IIA, that reduces at low energy to a non-chiralN = 2 supergravity ind = 10 dimensions;

• Type IIB, that reduces at low energy to a chiralN = 2 supergravity ind = 10 dimensions;

29However, the number of gauge symmetries may be enhanced by non-perturbative effects.
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• The heteroticE(8)×E(8) theory, that reduces at low energy to anN = 1 supergravity ind = 10,
connected to a Yang–Mills gauge theory with anE(8) × E(8) gauge group;

• The heterotic theorySO(32), that reduces at low energy to anN = 1 supergravity ind = 10,
connected to a Yang–Mills gauge theory with anSO(32) gauge group;

• Type I, that contains simultaneously opened and closed strings, and that reduces at low energy to
anN = 1 supergravity ind = 10 connected to a Yang–Mills gauge theory with anSO(32) gauge
group.

These theories all look different. For example, the Type I theory is the only one that contains
simultaneously open and closed strings, whereas the otherscontain only closed strings. In addition, the
low-energy gauge structures of the five theories are different. It seems then, that we have five distinct
theories that may describe gravity at the quantum level. Howmay we understand this? Is it possible that
there is a link between the different theories?

Current developments involve going beyond strings to consider higher-dimensional extended ob-
jects, such as generalized membranes with various numbers of internal dimensions. These can be re-
garded as solitons (non-perturbative classical solutions) of string theory [147], with masses

m ∝ 1

gs
, (288)

somewhat analogously to monopoles in gauge theory. It is evident from (288) that such membrane-
solitons become light in the limit of strong string coupling: gs →∞.

It was observed some time ago that there should be a strong-coupling/weak-coupling duality be-
tween elementary excitations and monopoles in supersymmetric gauge theories. These ideas were con-
firmed in a spectacular solution ofN = 2 supersymmetric gauge theory in four dimensions [148].
Similarly, it was shown that there are analogous dualities in string theory [149], whereby solitons in
some strongly-coupled string theory are equivalent to light string states in some other weakly-coupled
string theory. Indeed, it appears that all string theories are related by such dualities. A peculiarity of this
discovery is that the string coupling strengthgs is related to an extra dimension in such a way that its
sizeR→∞ asgs →∞. This then leads to the idea of an underlying 11-dimensionalframework called
M theory [71] that reduces to the different string theories indifferent strong/weak-coupling linits, and
reduces to eleven-dimensional supergravity in the low-energy limit (see Fig. 32).

A particular class of string solitons calledD-branes offers a promising approach to the black
hole information paradox mentioned previously. Accordingto this picture, black holes are viewed as
solitonic balls of string, and their entropy simply counts the number of internal string states. These are
in principle countable, so string theory may provide an accounting system for the information contained
in black holes. Within this framework, the previously paradoxical process (282) becomes

|A,B〉+ |BH〉 → |B′〉+ |BH ′〉 (289)

and the final state is pure if the initial state was. The apparent entropy of the final state in (282) is now
interpreted as entanglement with the state of the black hole. The ‘lost’ information is encoded in the
black-hole state, and this information could in principle be extracted if we measured all properties of this
ball of string [150].

In practice, we do not know how to recover this information from macroscopic black holes, so
they appear to us as mixed states. What about microscopic black holes, namely fluctuations in the
space-time background with∆E = O(mP ), that last for a period∆t = O(1/mP ) and have a size
∆x = O(1/mP )? Do these steal information from us, or do they give it back tous when they decay?
Most people think there is no microscopic leakage of information in this way, but not all of us [151]
are convinced. The neutral kaon system is among the most sensitive experimental areas for testing this
speculative possibility.
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Fig. 32: The different limits of theM theory are joined by different duality relations. The numbers16 and32 are
the numbers of spinor components in the theory.

How large might the extra dimension be inM theory? Remember that the naïve string unification
scale (287) is about 20 times larger thanmGUT as inferred from LEP data. If one wants to maintain
consistency of LEP data with supersymmetric GUTs, it seems that the extra dimension may be relatively
large, with sizeL11 ≫ 1/mGUT ≃ 1/1016 GeV≫ 1/mP [152]. This may be traced to the fact that the
gravitational interaction strength, although growing rapidly as a power of energy

σG ∼ E2/m4
P , (290)

is still much smaller than the gauge coupling strength atE = mGUT . However, if an extra space-time
dimension appears at an energyE < mGUT , the gravitational interaction strength grows faster, as indi-
cated in Fig. 33. Unification with gravity around1016 GeV then becomes possible,if the gauge couplings
do not also acquire a similar higher-dimensional kick. Thuswe are led to the startling capacitor-plate
framework for fundamental physics shown in Fig. 34.

Each capacitor plate isa priori ten-dimensional, and the bulk space between them isa priori
eleven-dimensional. Six dimensions are compactified on a scaleL6 ∼ 1/mGUT , leaving a theory which
is effectively five-dimensional in the bulk and four-dimensional on the walls. Conventional gauge in-
teractions and observable matter particles are hypothesized to live on one capacitor plate, and there are
other hidden gauge interactions and matter particles living on the other plate. The fifth dimension has a
characteristic size which is estimated to beO(1012 to 1013 GeV)−1. Physics at smaller energies (large
distances) looks effectively four-dimensional, whereas gravitational physics at larger energies (smaller
distances) looks five-dimensional, and the strength of the gravitational coupling rises rapidly to unify
with the gauge couplings. Supersymmetry breaking is expected to originate on the hidden capacitor
plate in this scenario, and to be transmitted to the observable wall by gravitational-strength interactions
in the bulk.

The phenomenological richness of this speculativeM -theory approach is only beginning to be
explored, and it remains to be seen whether it offers a realistic phenomenological description. However,
it does embody all the available theoretical wisdom as well as offering the prospect of unifying all the
observable gauge interactions with gravity at a single effective scale∼ mGUT , including the interac-
tions of the Standard Model. As such, it constitutes our bestcontemporary guess about the Theory of
Everything within and beyond the Standard Model.
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Fig. 33: Sketch of the possible evolution of the gauge couplings and the gravitational couplingG: if there is a
large fifth dimension with size≫ m−1

GUT ,G may be unified with the gauge couplings at the GUT scale [152]
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Fig. 34: The capacitor-plate scenario favoured in eleven-dimensionalM theory. The eleventh dimension has a
sizeL11 ≫M−1

GUT , whereas dimensions5, ..., 10 are compactified on a small manifoldK with characteristic size
∼M−1

GUT . The remaining four dimensions form (approximately) a flat Minkowski spaceM4 [152].

4.4 Extra dimensions

We have seen that string theories suggest that there may be extra unseen dimensions of space, but this
speculation did not originate with string theorists. The idea of extra dimensions was first developed
by Kaluza [69] and Klein [70]. They noticed that gravitational and electromagnetic interactions, being
so alike in many ways, could be descendants of a common ancestor. Indeed, if we formulate a theory
with extra spatial dimensions, it is possible to unify gravity and electromagnetism. In the same way,
non-Abelian gauge fields can be unified with Einstein’s gravity in more complicated models with extra
dimensions. Thus, the first reason why extra dimensions werestudied was to unify the gravitational and
gauge interactions. These initial discussions concerned gravitation at the classical level. If you want
to quantize gravity, you would be well advised to look at the best available candidate, namely string or
M-theory, which, as we have seen, can be formulated consistently in a space with six or seven extra
dimensions. From this point of view, the quantization of gravitational interactions becomes a second
reason for extra dimensions.
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In all the scenarios considered above, the extra dimensionswere very small, close to the Planck
size or perhaps somewhat larger, but undetectable in conceivable experiments.

However, it was suggested by Antoniadis [153] that an extra dimension might be a good way to
break supersymmetry, in which case its size would be∼ 1/ TeV, in which case it might have some
observable manifestations at the LHC.

Another suggestion, discussed in Lecture 2, was the possibility that boundary conditions in an
extra dimension might be used to break the electroweak gaugesymmetry. In this case also, the size of
the extra dimension should be∼ 1/ TeV, and potentially detectable at the LHC [66–68].

Arkani-Hamed, Dimopoulos and Dvali (ADD) [154] went even further, observing that the Higgs
mass hierarchy problem might be addressed in models with large extra dimensions, if they were of a
millimetre or micron in size. Because the extra dimensions are so large in the ADD framework, their
effects might be measurable even in low-energy table-top experiments. These models can be embedded
in string theory framework, as discussed in Ref. [155]. The main ingredients of the simplest ADD
scenario are [156]:

• The particles of the SM live on a 3-brane, while gravity spreads to all 4+N dimensions;

• There is a new fundamental scale of gravity in extra dimensions,M∗, which together with the
ultraviolet completion scale of the SM is around a few TeV or so, thus eliminating the Higgs mass
hierarchy problem;

• N extra dimensions are compactified.

If we define in this context the 4-dimensional Planck mass

M2
P l =M2+N

∗ (2πL)N , (291)

and postulate that the quantum gravity scaleM∗ ∼ TeV, we can estimate the size of the extra dimensions
to be

L ∼ 10−17+30/Ncm . (292)

For one extra dimension,N = 1, we obtainL ∼ 1013 cm, which is excluded within the ADD framework,
because gravity would have become higher-dimensional at distances∼ 1013 cm. On the other hand, for
N = 2 we getL ∼ 10−2 cm. This case is very interesting, because it predicts a modification of the
4-dimensional laws of gravity at submillimeter distances —which has become the subject of active
experimental studies [156]. For largerN , the value ofL should decrease but, even forN = 6, L is very
large compared to1/MP .

Randall and Sundrum (RS) went much further still [157], showing that a model with aninfinite
warped extra dimension could provide an attractive way to reformulate the hierarchy problem. In this
scenario, 4-dimensional gravity on a brane is obtained through the phenomenon of localization of gravity.
The brane is embedded in a 5-dimension bulk space with negative cosmological constant. In this case
we find a relation between the 4-dimensional Planck mass andM∗

M2
P l =M3

∗ (2L). (293)

This is similar to the relation between the fundamental scaleM∗, the sizeL of the extra dimension, and
the Planck massMP in the ADD model with one extra dimension (291). This similarity is based on the
fact that in both theories the effective size of the extra dimension that is felt by the zero-mode graviton is
finite and∼ L.

So, are extra dimensions very small, small, large or infinite, and how do we tell? There are several
ways to search for extra dimensions in experiments at the TeVscale at the LHC.

Typical examples in theories with TeV-scale extra dimensions are the appearance of Kaluza–Klein
excitations, corresponding to particle wave functions that wrap themselves around the extra dimension.
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These show up as resonances that can appear in cross sectionsat specific energies related to the compact-
ification scale. These Kaluza–Klein excitations occur in ‘towers’ that can be understood by analogy with
a quantum-mechanical particle in a potential well. Its energy is quantized due to the boundary conditions
at the walls of the well. In our case, the supplementary dimension plays the role of the wall of the well.

In models with very large extra dimensions, there are many Kaluza–Klein excitations of the gravi-
ton, which may be detectablevia missing-energy events.

Another speculative possibility is the creation of a microscopic black hole [158]. Any concentra-
tion of energy or massm will be transformed into a black hole if it is squeezed below its Schwarzschild
radius:G/m. The larger the mass, the easier it can be squeezed below its Schwarzschild radius. More-
over, as we have seen, extra dimensions can increase the value ofG. Hence, if there are a few extra
dimensions of sufficient size, it is conceivable that collisions in the LHC might squeeze a pair of partons
below their combined Schwarzschild radius, and hence create a microscopic black hole. These should
evaporate rapidly, since Hawking radiation implies that the black hole loses energy at a rate inversely
proportional to its mass. Studies performed by the CMS [28] and ATLAS [29] collaborations have
demonstrated that such Hawking radiation would be visible in the LHCvia energetic jets, leptons and
photons, as well as missing energy carried away by neutrinos. See Fig. 35 for some results for simulated
black hole production at the LHC [159].
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Fig. 35: Left: a comparison of the missing transverse momentum spectra in the SM, in a typical supersymmetric
model, and in two black hole scenarios, and right: the results of a fit to the number of extra dimensionsn and
the higher-dimensional Planck massMPL on the basis of simulated black hole production at the LHC, taken from
Ref. [159].

4.5 And now for something completely different?

In 1982, Prime Minister Thatcher of the United Kingdom visited CERN: I was placed in the receiving
line, and introduced as a theoretical physicist. “So what dotheoretical physicistsdo?” she boomed. I
replied that “We think of things for the experimentalists tolook for, and we hope they find something
different”. Mrs Thatcher was not sure about this, and asked “Wouldn’t it be better if they found what you
had predicted?” My response was that “In that case, we would not be learning anything new.” In the same
spirit, let us hope that new experiments, particularly at the LHC, will soon reveal new physics beyond
the Standard Model. Perhaps it will look something like the possibilities discussed in these Lectures, but
let us hope that it will take us beyond the beyonds imagined bytheorists.

References
[1] P. Q. Hung and C. Quigg, Science210, 1205 (1980).

78

M. BUSTAMANTE, L. CIERI AND J. ELLIS

222



[2] S. Weinberg, Int. J. Mod. Phys. A23, 1627 (2008).

[3] C. Quigg, arXiv:0905.3187 [hep-ph].

[4] F. J. Hasertet al. [Gargamelle Collaboration], Phys. Lett. B46, 121 (1973); Phys. Lett. B46, 138
(1973).

[5] G. Arnisonet al. [UA1 Collaboration], Phys. Lett. B122, 103 (1983).

[6] M. Banneret al. [UA2 Collaboration], Phys. Lett. B122, 476 (1983).

[7] P. Bagnaiaet al. [UA2 Collaboration], Phys. Lett. B129, 130 (1983).

[8] C. Rubbia, Rev. Mod. Phys.57, 699 (1985).

[9] J. R. Ellis,Beyond the Standard Model for Hill Walkers, arXiv:hep-ph/9812235.

[10] J. R. Ellis,Supersymmetry for Alp Hikers, arXiv:hep-ph/0203114.

[11] J. Welzel, D. Gherson and J. R. Ellis,Nouvelles Physiques des Particules, arXiv:hep-ph/0506163.

[12] C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Addison-
Wesley, Reading, MA, 1997).

[13] C. Amsleret al. [Particle Data Group], Phys. Lett. B667, 1 (2008).

[14] D. D. Ryutov, Plasma Phys. Control. Fusion49, B429 (2007).

[15] G. ’t Hooft, Phys. Rev. Lett.37, 8 (1976); Phys. Rev. D14, 3432 (1976) [Erratum-ibid. D18, 2199
(1978)].

[16] ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD Collaborations, LEP and Tevatron Electroweak
Working Groups, SLD Electroweak and Heavy Flavour Groups, arXiv:0911.2604.

[17] H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Moenig and J. Stelzer, Eur. Phys. J. C60, 543
(2009) [arXiv:0811.0009 [hep-ph]].

[18] J. R. Ellis and G. L. Fogli, Phys. Lett. B231, 189 (1989).

[19] J. R. Ellis, G. L. Fogli and E. Lisi, Phys. Lett. B274, 456 (1992).

[20] S. Schaelet al. [ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs
Boson Searches], Eur. Phys. J. C47 (2006) 547 [arXiv:hep-ex/0602042].

[21] B. Kayser, in theProceedings of 32nd SLAC Summer Institute on Particle Physics (SSI 2004):
Nature’s Greatest Puzzles, Menlo Park, CA, 2004, pp. L004 [arXiv:hep-ph/0506165].

[22] R. N. Mohapatraet al., Rep. Prog. Phys.70, 1757 (2007) [arXiv:hep-ph/0510213].

[23] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. Lett.38, 883 (1977); Phys. Rev. D16, 1519
(1977).

[24] Tevatron New Phenomena & Higgs Working Group, arXiv:0911.3930;
http://tevnphwg.fnal.gov/results/SM_Higgs_Fall_09/.

[25] J. Ellis, J. R. Espinosa, G. F. Giudice, A. Hoecker and A.Riotto, Phys. Lett. B679, 369 (2009)
[arXiv:0906.0954 [hep-ph]].

[26] J. R. Ellis and D. Ross, Phys. Lett. B506, 331 (2001) [arXiv:hep-ph/0012067].

[27] A. Djouadi, Phys. Rep.457, 1 (2008) [arXiv:hep-ph/0503172].

[28] G. L. Bayatianet al. [CMS Collaboration], J. Phys. G34, 995 (2007).

[29] G. Aadet al. [The ATLAS Collaboration], arXiv:0901.0512 [hep-ex].

[30] A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J.116, 1009 (1998)
[arXiv:astro-ph/9805201];
S. Perlmutteret al. [Supernova Cosmology Project Collaboration], Astrophys.J.517, 565 (1999)
[arXiv:astro-ph/9812133].

[31] A. Dobado and A. L. Maroto, Astrophys. Space Sci.320, 167 (2009) [arXiv:0802.1873 [astro-
ph]].

[32] A. Harvey, Eur. J. Phys.30, 877 (2009).

79

BEYOND THE STANDARD MODEL FOR MONTAÑEROS

223



[33] J. Dunkleyet al. [WMAP Collaboration], Astrophys. J. Suppl.180, 306 (2009) [arXiv:0803.0586
[astro-ph]];
E. Komatsuet al.[WMAP Collaboration], Astrophys. J. Suppl.180, 330 (2009) [arXiv:0803.0547
[astro-ph]].

[34] J. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive andM. Srednicki, Nucl. Phys. B238, 453
(1984);
see also H. Goldberg, Phys. Rev. Lett.50, 1419 (1983).

[35] D. N. Spergelet al. [WMAP Collaboration], Astrophys. J. Suppl.170, 377 (2007) [arXiv:astro-
ph/0603449].

[36] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz.5, 32 (1967) [JETP Lett.5, 24 (1967)].

[37] J. M. Cline, arXiv:hep-ph/0609145.

[38] A. Pilaftsis, J. Phys. Conf. Ser.171, 012017 (2009) [arXiv:0904.1182 [hep-ph]].

[39] P. A. M. Dirac, Proc. Roy. Soc. Lond. A133, 60 (1931).

[40] P. A. M. Dirac, Phys. Rev.74, 817 (1948).

[41] P. A. M. Dirac, inProceedings Orbis Scientiae: New Pathways in High-Energy Physics, Coral
Gables, 1976, Vol. I, A. Perlmutter (ed.) (Plenum, New York,1976), pp. 1–14.

[42] B. Cabrera, Phys. Rev. Lett.48, 1378 (1982).

[43] J. H. Schwarz and N. Seiberg, Rev. Mod. Phys.71, S112 (1999) [arXiv:hep-th/9803179].

[44] A. Ashtekar, Nuovo Cim.122B, 135 (2007) [arXiv:gr-qc/0702030].

[45] K. D. Lane, arXiv:hep-ph/9401324.

[46] J. F. Gunion, H. E. Haber, G. Kane, and S. Dawson,The Higgs Hunter’s Guide(Perseus Publish-
ing, New York,1990).

[47] M. S. Chanowitz, Phys. Rev. D66, 073002 (2002) [arXiv:hep-ph/0207123].

[48] G. P. Zelleret al. [NuTeV Collaboration], Phys. Rev. Lett.88, 091802 (2002) [Erratum-ibid.90,
239902 (2003)] [arXiv:hep-ex/0110059].

[49] R. Barbieri and A. Strumia, arXiv:hep-ph/0007265.

[50] For a review of little Higgs models, see M. Schmaltz and D. Tucker-Smith, Annu. Rev. Nucl. Part.
Sci.55, 229 (2005) [arXiv:hep-ph/0502182].

[51] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B513, 232 (2001) [arXiv:hep-
ph/0105239].

[52] H. C. Cheng and I. Low, JHEP0408, 061 (2004) [arXiv:hep-ph/0405243].

[53] M. Perelstein, Prog. Part. Nucl. Phys.58, 247 (2007) [arXiv:hep-ph/0512128].

[54] E. Farhi and L. Susskind, Phys. Rept.74, 277 (1981).

[55] C. T. Hill and E. H. Simmons, Phys. Rep.381, 235 (2003) [Erratum-ibid.390, 553 (2004)]
[arXiv:hep-ph/0203079].

[56] S. Weinberg, Phys. Rev. D19, 1277 (1979).

[57] L. Susskind, Phys. Rev. D20, 2619 (1979).

[58] A. Martin, arXiv:0812.1841 [hep-ph].

[59] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev.108, 1175 (1957).

[60] T. Appelquist, M. Piai and R. Shrock, Phys. Rev. D69, 015002 (2004) [arXiv:hep-ph/0308061].

[61] S. Dimopoulos and J. R. Ellis, Nucl. Phys. B182, 505 (1982).

[62] J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and P. Sikivie, Nucl. Phys. B182, 529 (1981).

[63] J. R. Ellis, G. L. Fogli and E. Lisi, Phys. Lett. B343, 282 (1995).

[64] M. T. Frandsen, arXiv:0710.4333 [hep-ph].

[65] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, in preparation.

80

M. BUSTAMANTE, L. CIERI AND J. ELLIS

224



[66] S. K. Rai, Int. J. Mod. Phys. A23, 823 (2008) [arXiv:hep-ph/0510339].

[67] R. Barbieri, G. Marandella and M. Papucci, Phys. Rev. D66, 095003 (2002) [arXiv:hep-
ph/0205280].

[68] J. F. Gunion and B. Grzadkowski, arXiv:hep-ph/0004058.

[69] Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Klasse 996 (1921); Reprinted with an
English translation inModern Kaluza–Klein Theories, eds. T. Appelquist, A. Chodos and P.G.O.
Freund (Addison-Wesley, Menlo Park, 1987).

[70] O. Klein, Z. Phys.37, 895 (1926); Reprinted with an English translation inModern Kaluza–Klein
Theories, eds. T. Appelquist, A. Chodos and P.G.O. Freund (Addison-Wesley, Menlo Park, 1987).

[71] For a review, see: Miao Li, hep-th/9811019.

[72] H. C. Cheng, arXiv:0710.3407 [hep-ph].

[73] S. R. Coleman and J. Mandula, Phys. Rev.159, 1251 (1967).

[74] Yu. A. Golfand and E. P. Likhtman, JETP Lett.13, 323 (1971) [Pisma Zh. Eksp. Teor. Fiz.13, 452
(1971)].

[75] P. Ramond, Phys. Rev. D3, 2415 (1971).

[76] A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971).

[77] D. V. Volkov and V. P. Akulov, Phys. Lett. B46, 109 (1973).

[78] J. Wess and B. Zumino, Phys. Lett. B49, 52 (1974); Nucl. Phys. B70, 39 (1974).

[79] J. Wess and B. Zumino, Nucl. Phys. B78, 1 (1974).

[80] J. Iliopoulos and B. Zumino, Nucl. Phys.B76, 310 (1974).

[81] S. Ferrara, J. Iliopoulos and B. Zumino, Nucl. Phys.77, 413 (1974).

[82] D. Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev.D13, 3214 (1976).

[83] S. Deser and B. Zumino, Phys. Lett.62B, 335 (1976).

[84] P. Fayet and S. Ferrara, Phys. Rep.32, 249 (1977).

[85] H. P. Nilles, Phys. Rep.110, 1 (1984).

[86] H. E. Haber and G. L. Kane, Phys. Rep117, 75 (1985).

[87] S. P. Martin,A Supersymmetry Primer, arXiv:hep-ph/9709356.

[88] Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys.85, 1 (1991);
J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257, 83 (1991);
H. E. Haber and R. Hempfling, Phys. Rev. Lett.66, 1815 (1991).

[89] J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett.260, 131 (1991);
U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett.B260, 447 (1991);
P. Langacker and M. Luo, Phys. Rev.D44, 817 (1991);
C. Giunti, C. W. Kim and U. W. Lee, Mod. Phys. Lett. A6, 1745 (1991).

[90] M. B. Green, J. H. Schwarz and E. Witten,Superstring Theory(Cambridge Univ. Press, 1987).

[91] H. N. Brown et al. [Muon g-2 Collaboration], Phys. Rev. Lett.86, 2227 (2001) [arXiv:hep-
ex/0102017].

[92] M. Davier, A. Hoecker, B. Malaescu, C. Z. Yuan and Z. Zhang, arXiv:0908.4300 [hep-ph].

[93] J. R. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev. D39, 844 (1989).

[94] S. Dimopoulos and H. Georgi, Nucl. Phys.B193, 150 (1981).

[95] R. Barbieriet al., arXiv:hep-ph/0406039.

[96] J. R. Ellis, J. S. Lee and A. Pilaftsis, Phys. Rev. D76, 115011 (2007) [arXiv:0708.2079 [hep-ph]].

[97] M. Carena, J. R. Ellis, A. Pilaftsis and C. E. Wagner, Nucl. Phys. B586, 92 (2000) [arXiv:hep-
ph/0003180], Phys. Lett. B495, 155 (2000) [arXiv:hep-ph/0009212]; and references therein.

[98] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, Phys. Lett. B 565, 176 (2003) [arXiv:hep-

81

BEYOND THE STANDARD MODEL FOR MONTAÑEROS

225



ph/0303043].

[99] O. Buchmuelleret al., arXiv:0907.5568 [hep-ph].

[100] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, Comput. Phys. Commun.180,
1426 (2009).

[101] O. Buchmuelleret al., JHEP0809, 117 (2008) [arXiv:0808.4128 [hep-ph]].

[102] H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett.33, 451 (1974).

[103] J. Ellis and D.V. Nanopoulos, Nature292, 436 (1981).

[104] M. Chanowitz, J. Ellis and M. K. Gaillard, Nucl. Phys.B128, 506 (1977).

[105] A. J. Buras, J. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys.B135, 66 (1978).

[106] D. V. Nanopoulos and D. A. Ross, Phys. Lett.118B, 99 (1982).

[107] S. Dimopoulos and H. Georgi [94];
S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev.D24, 1681 (1981);
L. Ibàñez and G. G. Ross, Phys. Lett.105B, 439 (1981).

[108] J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett.B249, 441 (1990).

[109] J. Ellis, S. Kelley and D. V. Nanopoulos, Nucl. Phys.B373, 55 (1992).

[110] P. Langacker and N. Polonsky, Phys. Rev.D47, 4028 (1993).

[111] F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi,Nuovo Cimento104A, 1817 (1991);
F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, NuovoCimento105A, 1210 (1992).

[112] R. Barbieri and L. J. Hall, Phys. Rev. Lett.68, 752 (1992);
J. Hisano, T. Moroi, K. Tobe and T. Yanagida, Phys. Lett.B342, 138 (1995).

[113] H. Georgi and S. L. Glashow, Phys. Rev. Lett.32, 438 (1974).

[114] J. Ellis and M. K. Gaillard, Phys. Lett.88B, 315 (1979).

[115] H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.)93, 193 (1975).

[116] J. Ellis, M. K. Gaillard and D. V. Nanopoulos, Phys. Lett. 91B, 67 (1980).

[117] H. Nishino et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.102, 141801 (2009)
[arXiv:0903.0676 [hep-ex]].

[118] J. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys.B202, 43 (1982);
S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett.112B, 133 (1982).

[119] S. Weinberg, Phys. Rev.D26, 287 (1982),
N. Sakai and T. Yanagida, Nucl. Phys.B197, 533 (1982).

[120] K. Kobayashi et al. [Super-Kamiokande Collaboration], Phys. Rev. D72, 052007 (2005)
[arXiv:hep-ex/0502026].

[121] J. Ellis, D. V. Nanopoulos and S. Rudaz, Nucl. Phys.B202, 43 (1982).

[122] I. Antoniadis, J. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett.B194, 231 (1987) and
B231, 65 (1989).

[123] J. Ellis, J. S. Hagelin, S. Kelley and D. V. Nanopoulos,Nucl. Phys.B311, 1 (1988).

[124] B. A. Campbell, J. Ellis and S. Rudaz, Phys. Lett.141B, 229 (1984).

[125] T. Yanagida,Proc. Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba,
Japan, 1979 (KEK, Japan, 1979, report KEK-79-18);
R. Slansky, Talk at theSanibel Symposium, Palm Coast, FL, USA, 1979, Caltech preprint CALT-
68-709 (1979).

[126] J. R. Ellis and O. Lebedev, Phys. Lett. B653, 411 (2007) [arXiv:0707.3419 [hep-ph]].

[127] Y. Fukudaet al. [Super-Kamiokande Collaboration], Phys. Rev. Lett.81, 1562 (1998).

[128] Q. R. Ahmadet al. [SNO Collaboration], Phys. Rev. Lett.89, 011301 (2002) [arXiv:nucl-
ex/0204008].

82

M. BUSTAMANTE, L. CIERI AND J. ELLIS

226



[129] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).

[130] J. R. Ellis and M. Raidal, Nucl. Phys. B643, 229 (2002) [arXiv:hep-ph/0206174].

[131] J. Polonyi, Hungary Central Inst. Res., KFKI-77-93;
E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. Van Nieuwenhuizen, Nucl. Phys.
B147, 105 (1979).

[132] E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Phys. Lett.133B, 61 (1983).

[133] J. Ellis, A.B. Lahanas, D.V. Nanopoulos and K.A. Tamvakis, Phys. Lett.134B, 429 (1984).

[134] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, Phys. Rev. D70, 055005 (2004) [arXiv:hep-
ph/0405110].

[135] A. Strumia, Phys. Lett.B409, 213 (1997).

[136] J. R. Ellis, K. A. Olive and P. Sandick, Phys. Lett. B642, 389 (2006) [arXiv:hep-ph/0607002];
JHEP0706, 079 (2007) [arXiv:0704.3446 [hep-ph]]; JHEP0808, 013 (2008) [arXiv:0801.1651
[hep-ph]].

[137] J. Alexandre, J. Ellis and N. E. Mavromatos, arXiv:0901.2532 [hep-th].

[138] J. Bekenstein, Phys. Rev.D12, 3077 (1975);
S. Hawking, Commun. Math. Phys.43, 199 (1975).

[139] A. Strominger, arXiv:0906.1313 [hep-th].

[140] G. Veneziano, Nuovo Cimento57A, 190 (1968) and Phys. Rep.C9, 199 (1974).

[141] J. H. Schwarz, arXiv:0708.1917 [hep-th].

[142] M. A. Virasoro, Phys. Rev.177, 2309 (1969).

[143] Y. Nambu,Proc. Int. Conf. on Symmetries and Quark Models, Wayne State University, Detroit,
MI, USA, 1969 (Gordon and Breach, New York, 1970), p. 269;
P. Goddard, J. Goldstone, C.Rebbi and C. Thorn, Nucl. Phys.B181, 502 (1981).

[144] J. Scherk and J. H. Schwarz, Nucl. Phys. B81, 118 (1974).

[145] M.B. Green and J.H. Schwarz, Phys. Lett.149B, 117 (1984) and151B, 21 (1985).

[146] H. Dreiner, J. Lopez, D. V. Nanopoulos and D. B. Reiss, Phys. Lett.B216, 283 (1989).

[147] J. Polchinski, Phys. Rev. Lett.75, 4724 (1995) [arXiv:hep-th/9510017].

[148] N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994) [Erratum-ibid. B430, 485 (1994)]
[arXiv:hep-th/9407087].

[149] C. M. Hull and P. K. Townsend, Nucl. Phys. B438, 109 (1995) [arXiv:hep-th/9410167].

[150] For a recent take on this, see S. B. Giddings, arXiv:0911.3395 [hep-th].

[151] J. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Mod. Phys. Lett.A10, 425 (1995) and references
therein.

[152] P. Horava and E. Witten, Nucl. Phys.B460, 506 (1996) and Nucl. Phys.B475, 94 (1996);
P. Horava, Phys. Rev.D54, 7561 (1996).

[153] I. Antoniadis, Phys. Lett. B246, 377 (1990).

[154] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263 (1998) [arXiv:hep-
ph/9803315]; N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Rev. D59, 086004 (1999)
[arXiv:hep-ph/9807344].

[155] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B436, 257 (1998)
[arXiv:hep-ph/9804398].

[156] G. Gabadadze, arXiv:hep-ph/0308112.

[157] L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690 (1999) [arXiv:hep-th/9906064].

[158] S. B. Giddings and S. D. Thomas, Phys. Rev. D65, 056010 (2002) [arXiv:hep-ph/0106219];
S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett.87, 161602 (2001) [arXiv:hep-ph/0106295].

83

BEYOND THE STANDARD MODEL FOR MONTAÑEROS

227



[159] C. M. Harris, M. J. Palmer, M. A. Parker, P. Richardson,A. Sabetfakhri and B. R. Webber, JHEP
0505, 053 (2005) [arXiv:hep-ph/0411022].

84

M. BUSTAMANTE, L. CIERI AND J. ELLIS

228



Neutrino physics

P. Herńandez
IFIC, Universidad de València and CSIC, E-46071 Valencia,Spain

Abstract
The topics discussed in this lecture include: general properties of neutrinos in
the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neu-
trino oscillations both in vacuum and in matter, an overviewof the experimen-
tal evidence for neutrino masses and of the prospects in neutrino oscillation
physics. We also briefly review the relevance of neutrinos inleptogenesis and
in beyond-the-Standard-Model physics.

1 Neutrinos in the Standard Model

LEP era established the validity of the Standard Model (SM) with an accuracy below the per cent level.
The SM is based on the gauge groupSU(3) × SU(2) × UY (1) that is spontaneously broken to the
subgroupSU(3)color × U(1)em. All the fermions of the SM fall into irreducible representations of this
group with the quantum numbers summarized in Table 1 [1].

Neutrinos are the most elusive particles of this table. Theydo not carry electromagnetic or colour
charge, but only the weak charge under the spontaneously broken subgroup. For this reason they are
extremely weakly interacting, since their interactions are mediated by massive gauge bosons.

The history of neutrinos goes back to W. Pauli who postulatedthe existence of the electron neutrino
in an attempt to restore energy–momentum conservation inβ decay, but he did so with great regret:I
have done a terrible thing, I have postulated a particle thatcannot be detected. Fortunately Pauli was
wrong, not only have neutrinos been detected but they have been extremely useful in establishing the two
most striking features of Table 1: the left–handedness of the weak interactions (the left–right asymmetry
of the table) and the family structure (the three–fold repetition of the same representations).

In the SM only the left-handed fields carry theSU(2) charge, where by left-handed we denote the
negative chirality component (i.e., eigenstate ofγ5 with eigenvalue minus one) of the fermion field [1]:

Ψ = ΨR +ΨL =

(
1 + γ5

2

)

︸ ︷︷ ︸
PR

Ψ+

(
1− γ5

2

)

︸ ︷︷ ︸
PL

Ψ . (1)

For relativistic fermions (i.e., massless), it is easy to see that the chiral projectors are equivalent to the
projectors on helicity components:

PR,L =
1

2

(
1± s · p

|p|

)
+O

(mi

E

)
, (2)

where the helicity operatorΣ = s·p
|p| measures the component of the spin in the direction of the spatial

momentum. Therefore for massless fermions only the left-handed states (with the spin pointing in the
opposite direction to the momentum) carrySU(2) charge. This is not inconsistent with Lorenzt invari-
ance, since for a fermion travelling at the speed of light, the helicity is the same in any reference frame.
In other words, the helicity operator commutes with the Hamiltonian for a massless fermion and is thus
a good quantum number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic
building block of any Lorenzt invariant and unitary field theory, requires that for any left-handed fermion,
there exists a right-handed antiparticle, with opposite charge, but the right-handed particle state may not
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Table 1: Irreducible fermionic representations in the Standard Model: (ISU(3), ISU(2))Y

(1,2)− 1
2

(3,2)− 1
6

(1,1)−1 (3,1)− 2
3

(3,1)− 1
3

(
νe
e

)

L

(
ui

di

)

L

eR uiR diR

(
νµ
µ

)

L

(
ci

si

)

L

µR ciR siR

(
ντ
τ

)

L

(
ti

bi

)

L

τR tiR biR

π+
+

e+νe
pp eνe

S Sνe e+

Fig. 1: Kinematics of pion decay

exist. This is precisely what happens with neutrinos in the SM. Since only the left-handed states carry
charge and their masses were compatible with zero when the SMwas established, they were postulated
to be Weyl fermions: i.e., a left-handed particle and a right-handed antiparticle.

Under parity, a left-handed particle state transforms intoa right-handed particle state, thus the
left-handedness of the weak interactions implies a maximalviolation of parity, which is nowhere more
obvious than in the neutrino sector, where the reflection of aSM neutrino in a mirror is nothing.

The weak current is thereforeV −A since it only couples to the left fields:̄ΨLγµΨL = Ψ̄γµ(1−
γ5)/2Ψ. This structure is clearly seen in the kinematics of weak decays involving neutrinos, such as the
classic example of pion decay toeνe orµνµ. In the limit of vanishing electron or muon mass, this decay is
forbidden, because the spin of the initial state is zero and thus it is impossible to conserve simultaneously
momentum and angular momentum if the two recoiling particles must have opposite helicities, as shown
in Fig. 1. Thus the ratio of the decay rates to electrons and muons, in spite of the larger phase space in

the former, is strongly suppressed by the factor
(

me
mµ

)2
∼ 2× 10−5.

Another profound consequence of the chiral nature of the weak interaction is anomaly cancella-
tion. The chiral coupling of fermions to gauge fields leads generically to inconsistent gauge theories due
to chiral anomalies: if any of the diagrams depicted in Fig. 2is non-vanishing, the weak current is con-
served at tree level but not at one loop, implying a catastrophic breaking of gauge invariance. Anomaly
cancellation is the requirement that all these diagrams vanish, which imposes strong constraints on the
hypercharge assignments of the fermions in the SM, which aremiraculouslysatisfied:

GGB︷ ︸︸ ︷∑

i=quarks

Y L
i − Y R

i =

WWB︷ ︸︸ ︷∑

i=doublets

Y L
i =

Bgg︷ ︸︸ ︷∑

i

Y L
i − Y R

i =

B3

︷ ︸︸ ︷∑

i

(Y L
i )3 − (Y R

i )3 = 0, (3)

whereY L/R
i are the hypercharges of the left/right components of the fermionic field i, and the triangle
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W,B,G, g γ5

W,B,G, g

W,B,G, g

Fig. 2: Triangle diagrams that can give rise to anomalies.W,B,G are the gauge bosons associated to the
SU(2), UY (1), SU(3) gauge groups, respectively, andg is the graviton

Fig. 3: Z0 resonance from the ALEPH experiment at LEP. Data are compared to the case ofNν = 2, 3 and 4

diagram corresponding to each of the sums is indicated abovethe bracket.

Concerning the family structure, we know, thanks to neutrinos, that there are exactly three families
in the SM. An extra SM family with quarks and charged leptons so heavy that they remain unobserved,
would also have massless neutrinos that would have been produced inZ0 decay, modifying its width,
which has been measured at LEP with an impressive precision,as shown in Fig. 3. This measurement
excludes any number of standard neutrino families different from three [2]:

Nν = 2.984 ± 0.008. (4)

2 Neutrino masses and mixings

When the SM was invented, there were only upper limits on the neutrino masses so these were con-
jectured to be zero. The direct limit on neutrino masses comes from the precise measurement of the
end-point of the lepton energy spectrum in weak decays, which gets modified if neutrinos are massive.
In particular the most stringent limit is obtained from tritium β-decay for the electron neutrino:

H3 →3 He+ e− + ν̄e. (5)
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Fig. 4: Effect of a neutrino mass in the end-point of the lepton energy spectrum inβ decay

Figure 4 shows the effect of a neutrino mass in the end-point electron energy spectrum in this decay. The
functional form of this curve isK(Ee) ∝

√
(E0 −Ee)((E0 − Ee)2 −m2

ν)
1/2. The best limit has been

obtained by the Mainz and Troitsk experiments [3]:

mνe < 2.2 eV (Mainz), mνe < 2.1 eV (Troitsk) , (6)

both at95% CL. The direct limits on the other two neutrino masses are much weaker. The best limit on
theνµ mass (mνµ < 170 keV [4]) was obtained from the end-point spectrum of the decay π+ → µ+νµ,
while that on theντ mass was obtained at LEP (mντ < 18.2 MeV [5]) from the decayτ → 5πντ .

As we shall see, there is now strong evidence that neutrinos are indeed massive, although ex-
tremely light, below the stringent bound of Eq. (6).

Neutrino masses can be easily accommodated in the SM. A massive fermion necessarily has two
states of helicity, since it is always possible to reverse the helicity of a state that moves at a slower speed
than light by looking at it from a boosted reference frame. Infact a mass can be thought of as the strength
of the coupling between the two helicity states:

m ψLψR + h.c. (7)

In order to include such a coupling in the SM for the neutrinoswe need to identify the neutrino right-
handed state, which in the SM is absent. It turns out there aretwo ways to proceed:

Dirac massive neutrinos

We can enlarge the SM by adding a set of three right-handed neutrino states, which would be singlets
underSU(3)×SU(2)×UY (1), but coupled to matter just through the neutrino masses. This coupling has
to be of the Yukawa type to preserve the gauge symmetry in sucha way that the masses are proportional
to the vacuum expectation value of the Higgs field,v, exactly like for the remaining fermions [1]:

λν LL Φ̃ νR + h.c. → mν = λν v, (8)

whereLL = (νL lL) is the lepton doublet and̃Φ is the scalar doublet that gets a vacuum expectation
value〈Φ̃〉 = (v 0). There are two important consequences of proceeding in thisway. Firstly there is a
new hierarchy problem in the SM to be explained: why neutrinos are much lighter than the remaining
leptons, even those in the same family (see Fig. 5). Secondly, lepton number,L, which counts the number
of leptons minus that of antileptons, remains an exactly conserved global symmetry at the classical level
1, just as baryon number,B, is.

1As usualB + L is broken by the anomaly and onlyB − L remains exact at all orders.
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Fig. 5: Fermion spectrum in the Standard Model

φφ

ψψ
L L

c

Fig. 6: Majorana coupling of the light neutrinos to the Higgs field

Majorana massive neutrinos

For neutral particles, Majorana realized that one can get rid of half of the degrees of freedom in a massive
Dirac spinor in a Lorenzt-invariant way by identifying the right-handed state with the antiparticle of the
left-handed state:

νR → (νL)
c = Cν̄TL = Cγ0ν

∗
L, (9)

whereC is the operator of charge conjugation in spinor space.

Neutrinos are the only particles for which this possibilityis compatible with charge conservation,
because they are charged only under the spontaneously broken subgroup of the SM and thus a Majorana
mass term can be written in a gauge invariant way by includingtwo Higgs fields, as shown in Fig. 6:

1

M
LT
LC ανΦ̃

T Φ̃ LL + h.c. , (10)

where an energy scale,M , has been introduced for dimensional reasons, so that the coupling αν is
adimensional. Upon spontaneous symmetry breaking, these couplings become Majorana neutrino masses
of the form

mν = αν
v2

M
. (11)

If the scaleM is much higher than the electroweak scalev, a strong hierarchy between the neutrino and
the charged lepton masses arises naturally.
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Fig. 7: Neutrino masses in the see-saw model

2.1 See-saw models

It is interesting to consider the simplest example to explain the origin of the scaleM in the Majorana
masses. This is the famous see-saw model of Gell-Mann, Ramond, Slansky, and Yanagida [6]. In this
model, the Majorana effective interaction of Eq. (10) results from the interchange of very heavy right-
handed Majorana neutrinos, as depicted in Fig. 7. The SM Lagrangian is enlarged with the terms

δLν
Y = L̄Lλ̃ν Φ̃ NR +

1

2
NT

RC MR NR + h.c. , (12)

that is a Yukawa coupling of the lepton doublet and the heavy singlets plus a Majorana mass term for the
singlets. Upon spontaneous symmetry breaking these couplings become mass terms:

δLν
Y → 1

2

(
νTL NR

T
)
C

(
0 λ̃νv

λ̃Tν v MR

)(
νL
NR

)
. (13)

Whenv ≪MR, the diagonalization of the mass matrix can be done in perturbation theory:

M = M(0) +M(1) ≡
(
0 0
0 MR

)
+

(
0 λ̃νv

λ̃Tν v 0

)
. (14)

To second order we find:

UTMU =

(−v2λ̃ν 1
MR

λ̃Tν 0

0 MR

)
U =

(
1 λ̃ν

v
MR

− v
MR

λ̃Tν 1

)
. (15)

There are three light Majorana neutrinos (ν ′L ≃ νL + λ̃ν
v

MR
NR) with a mass matrix:

v2λ̃ν
1

MR
λ̃Tν , (16)

and three heavy ones (N ′
R ≃ NR − v

MR
λ̃Tν νL) with the mass matrixMR.

Equivalently we say that the heavy Majoranas can be integrated out leaving a trace of higher
dimensional operators:

Ld=5
eff =

1

2
LT
LC Φ̃T

(
λ̃ν

1

MR
λ̃Tν

)
Φ̃ LL (17)

Ld=6
eff = O

(
1

M2
R

)
... (18)

The one with lowest dimension is the one we obtained from symmetry arguments in Eq. (10).

A few observations are in place:
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µ−

D

Dirac or Majorana

Fig. 8: A neutrino beam fromπ+ decay (νµ) could interact in the magnetized detector producing aµ+ only if
neutrinos are Majorana.

– The new physics scaleM in Eq. (10) is simply related to the masses of the heavy Majorana
neutrinos and the Yukawa couplings:

αν

M
→ λ̃ν

1

MR
λ̃Tν . (19)

As we shall see, data imply there is at least onemν ≥ 0.05 eV. If λ̃ν ∼ O(1) then:

v < MR ∼ 1015 GeV< MPlanck, (20)

and the masses are close to the typical Grand Unification (GUT) scale.

– In order to give non-vanishing masses to all the three left-handed neutrinos, the number of Majo-

rana singlets must satisfyNR ≥ NL = 3. The reason is that the matrixλ̃ν︸︷︷︸
NL×NR

1

MR︸︷︷︸
NR×NR

λ̃Tν︸︷︷︸
NR×NL

has

NL −NR zero modes.

2.2 Majorana versus Dirac

The consequences of the SM neutrinos being massive Majoranaparticles are profound:

– A new physics scaleM must exist and is accessible in an indirect way through neutrino masses.

– Lepton number is not conserved: a Majorana mass violates the conservation of all the charges
carried by the fermion, including the global charges such aslepton number. As we shall see in
Section 6, the dynamics associated to the scaleM could be responsible for the generation of the
baryon asymmetry in the Universe.

– The anomaly cancellation conditions fix all the hypercharges (i.e., there is only one possible choice
for the hypercharges that satisfies Eq. (3)), which implies that electromagnetic charge quantization
is the only possibility in a field theory with the same matter content as the SM.

It is clear that establishing the Majorana nature of neutrinos is of great importance. In principle
there are very clear signatures, such as the one depicted in Fig. 8, where aνµ beam fromπ+ decay is
intercepted by a detector. In the Dirac case, the interaction of neutrinos on the detector via a charged
current interaction will produce aµ− in the final state. If neutrinos are Majorana, a wrong-sign muon
in the final state is also possible. Unfortunately the rate for µ+ production is suppressed bymν/E in
amplitude with respect to theµ−. For example, forEν = O(1) GeV andmν ∼ O(1) eV the cross–
section for this process will be roughly10−18 times the usual CC neutrino cross-section, which means it
is impossible to detect.

The best hope of observing a rare process of this type seems tobe the search for neutrinoless
double–beta decay (2β0ν), the right diagram of Fig. 9. The background to this processis the standard
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Experiment Nucleus |mee|
Heidelberg-Moscow I 76Ge < 0.34–1.1 eV(90% CL) [9]

Heidelberg-Moscow II 76Ge 0.2–0.6 eV [10]

CUORICINO 120Te < 0.2–1.1 eV(90% CL) [11]
NEMO-3 100Mo < 0.6–2 eV(90% CL) [12]

Table 2: Present bounds from various neutrinoless double-beta-decay experiments

double–beta decay depicted on the left of Fig. 9, which has been observed to take place with a lifetime
of T2β2ν > 1019–1021 years.

If the source ofL violation is just the Majoranaν mass, the inverse lifetime for this process is
given by

T−1
2β0ν ≃ G0ν

︸︷︷︸
Phase

∣∣M0ν
∣∣2

︸ ︷︷ ︸
NuclearM.E.

∣∣∣∣∣
∑

i

(
V ei

MNS

)2
mi

∣∣∣∣∣

2

︸ ︷︷ ︸
|mee|2

, (21)

wheremee is the 11 entry in the neutrino mass matrix in the flavour basis. In spite of the suppression in
the neutrino mass (over the energy of this proccess), the neutrinoless mode has a larger phase factor than
the2ν mode, and as a result the lifetime is expected to be of the order

T−1
2β0ν ∼

(mν

E

)2
109 T−1

2β2ν , (22)

which could be observable for neutrino masses in the eV range. Several experiments have set stringent
upper bounds on|mee| and there is even a controversial positive signal, as shown in Table 2.

W

2β2ν

W

eL

eL

νeL

νeL

uL

uLdL

dL

W

2β0ν

×

W

eL

eL

mL

νeL

νeL

uL

uLdL

dL

Fig. 9: 2β decay: normal (left) and neutrinoless (right)

2.3 Neutrino mixing

Generically, neutrino masses imply neutrino mixing [7, 8],because the Yukawa couplings need not be
flavour diagonal:

LDirac
m = νiL (λνv)ij ν

j
R + h.c. (23)

LMajorana
m =

1

2

v2

M
νiL

T
C (αν)ij ν

j
L + h.c. (24)
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Fig. 10: Quark and lepton mixing

Instead, in the mass eigenbasis for all the leptons, the charged weak couplings are not diagonal, in
complete analogy with the quark flavour sector (see Fig. 10):

LDirac = l̄iLγµW
+
µ V

ij
MNSν

j
L +

1

2
νiLγµZµν

i
L + νiLmiν

i
R + h.c. (25)

LMajorana = l̄iLγµW
+
µ Ṽ

ij
MNSν

j
L +

1

2
νiLγµZµν

i
L +

1

2
νiL

T
Cmiν

i
L + h.c. (26)

The number of parameters that are in principle observable inthe lepton mixing matrix (VMNS for
Dirac andṼMNS for Majorana) can easily be computed by counting the number of independent real and
imaginary elements of the Yukawa matrices and eliminating those that can be absorbed in field redefi-
nitions. The allowed field redefinitions are the unitary rotations of the fields that leave the Lagrangian
invariant in the absence of lepton masses, but are not symmetries of the full Lagrangian when lepton
masses are included.

In the Dirac case, it is possible to rotate independently theleft-handed lepton doublet, together
with the right-handed charged leptons and neutrinos, that isU(n)3, for a generic number of familiesn.
However, this includes total lepton number which remains a symmetry of the massive theory and thus
cannot be used to reduce the number of physical parameters inthe mass matrix. The parameters that can

be absorbed in field redefinitions are thus the parameters of the groupU(n)3/U(1) (that is 3(n2−n)
2 real,

3(n2+n)−1
2 imaginary).

In the case of Majorana neutrinos, there is no independent right-handed neutrino field, nor is lepton
number a good symmetry. Therefore the number of field redefinitions is the number of parameters of the
elements inU(n)2 (that isn2 − n real andn2 + n imaginary).

The resulting real physical parameters are the mass eigenstates and the mixing angles, while the
resulting imaginary parameters are CP-violating phases. All this is summarized in Table 3. Dirac and
Majorana neutrinos differ only in the number of observablesphases. For three families (n = 3), there is
just one Dirac phase and three in the Majorana case.

A standard parametrization of the mixing matrices is given by

VMNS =



1 0 0
0 c23 s23
0 −s23 c23





c13 0 s13
0 1 0

−s13 0 c13






c12 s12e
iδ 0

−s12eiδ c12 0
0 0 1


 (27)

ṼMNS = VMNS(θ12, θ13, θ23, δ)



1 0 0
0 eiα1 0
0 0 eiα2


 . (28)

3 Neutrino oscillations

The fact that neutrinos are such weakly interacting particles allows them to have coherence over very
long distances. For example, a neutrino with an energy ofO(1 MeV) moving in lead, which has a
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Table 3: Number of real and imaginary parameters in the Yukawa matrices, of those that can be absorbed in field
redefinitions. The difference between the two is the number of observable parameters: the lepton masses (m),
mixing angles (θ), and phases (φ).

Yukawas Field redefinitions No. m No. θ No. φ

Dirac λl, λν U(n)3/U(1)L

4n2
3(n2 − n)

2
,
3(n2 + n)− 1

2
2n

n2 − n

2

(n − 2)(n − 1)

2

Majorana λl, α
T
ν = αν U(n)2

3n2 + n n2 − n, n2 + n 2n
n2 − n

2

n2 − n

2

p

n

e+R

νi

U∗
ei

νi

l−L

e+R

νe

Uil

Fig. 11: Neutrino oscillations

density ofρ = 7.9 g/cm3, has a mean free pathl ∼ 1
σρ ∼ 4× 1016 metres∼ 4 light-years.

Neutrinos are necessarily produced in a flavour eigenstate,that is, in a precise combination of the
mass eigenstates, which are the true eigenstates of the freeHamiltonian. After some distanceL, where
neutrinos have evolved freely, the mass eigenstate components in the original flavour state get different
phases and, as a result, there is a non-zero probability thatthe flavour measured atL is a different one
[7], as shown in Fig. 11.

There has been a lot of discussion about what is the rigorous way to define such a transition proba-
bility. This is not straightforward because, in quantum field theory (which is required since neutrinos are
relativistic), we are used to considering processes in which there is no knowledge of the position in space
or time where the interaction took place, and it is then a goodapproximation to consider asymptotic
states that are simply plane waves, with well-defined energy–momentum. In this case this is not pos-
sible, because we must distinguish the macroscopic distance that separates the source of neutrinos and
the detector. This implies that it cannot be a good approximation to consider asymptotic states of well-
defined momentum at least in the direction between source anddetector. This fact has often confused the
derivation and even led to incorrect results.

Let us consider that neutrinos are produced as wave packets localized around the source position
x0 = (t0,x0) in a flavour stateα:

|να(x)〉 =
∑

j

Vαj

∫
d3k

(2π)3
fj(k)e

−ikj0(t−t0)eik(x−x0)|νj〉 , (29)

wherekj0
2
= k2 +m2

j , since the state being asymptotic must be on-shell andVαj is the mixing matrix.
The wave packetsfj(k) depend on the production process (uncertainty in momentum of the initial states,
kinematics), but we do not need to know the exact form. For example we can consider a Gaussian:

fi(k) ∼ e−(k−q̄i)2/(2σ2
i ) . (30)
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We expect that, neglecting neutrino masses, the wave packets are the same for all the mass eigenstates:

fi(k) ∼ f(k) +O (mi/|k|) ∼ e−(k−q)2/(2σ2) . (31)

Let us forget about the proper normalization of the state forthe time being. Let us consider that the
neutrino produced is moving in the direction of a detector located at some distance down the beam lineL
in theẑ direction (thereforeq = (0, 0, qz)), where we want to measure the flavour of the state in Eq. (29).
The probability that we measure a state with flavourβ at any pointx is∼ |〈νβ |να(x)〉|2, where

|νβ〉 =
∑

j

Vβj |νj〉. (32)

The amplitude is then

〈νβ |να(x)〉 =
∑

i

V ∗
βiVαi

∫
d3k fi(k)e

−iki0(t−t0)eik(x−x0). (33)

Note that we measure neither the time of the measurement nor the spatial̂x and ŷ components, so we
can integrate over them:

P (να → νβ) ∼
∫
dt dx̂ dŷ|〈νβ |να(x)〉|2 =

∑

i,j

V ∗
βiVαiVβjV

∗
αj ×

∫

k

∫
dk′z fi(k)f

∗
j (k

′)δ
(√

m2
i + k2z + k2x + k2y −

√
m2

j + k′z
2 + k2x + k2y

)
ei(kz−k′z)L. (34)

Up to exponentially small terms and neglecting effects ofO(mi/|k|) everywhere else than in the phase
factor (where they are enhanced byL), we obtain

P (να → νβ) ∼
∑

i,j

V ∗
βiVαiVβjV

∗
αj

∫

k
|f(k)|2 |k|

|kz|
e
−i

∆m2
jiL

2|kz | , (35)

where∆m2
ji = m2

i −m2
j .

Now, we have to care about the normalization. The simplest way to compute it is by requiring that
the probability be one ifα = β in the case of zero or equal neutrino masses (i.e.,∆m2

ji = 0). Doing this
we finally obtain

P (να → νβ) =
∑

i,j

V ∗
βjVαjVβiV

∗
αi

∫

k
e
−i

∆m2
ijL

2|kz |
|k|
|kz |

|f(k)|2/
∫

k

|k|
|kz|

|f(k)|2

≃
∑

i,j

V ∗
βjVαjVβiV

∗
αie

−i
∆m2

ijL

2|qz | , (36)

where in the last equality we have assumed that the phase factor does not change very much in the
range of momenta of the wave packet, so that it can be taken outof the integral. The probability for the
flavour transition is thus a periodic function of the distance between source and detector, hence the name
neutrino oscillationsfirst described by Pontecorvo [7].

DefiningW jk
αβ ≡ [VαjV

∗
βjV

∗
αkVβk] and using the unitarity of the mixing matrix, we can rewrite the

probability in the more familiar way:

P (να → νβ) = δαβ − 4
∑

k>j

Re[Wjk
αβ ] sin

2

(
∆m2

jk L

4Eν

)
(37)
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Fig. 12: Two-family oscillation probability as a function of the neutrino energy at fixed baseline ofL = 730 km
(left) and as a function of the baseline at fixed neutrino energyEν = 2 GeV (right)

± 2
∑

k>j

Im[Wjk
αβ ] sin

(
∆m2

jk L

2Eν

)
, (38)

where the± refers to neutrinos/antineutrinos and|q| = |qz| ≃ Eν .

We refer to anappearanceor disappearanceoscillation probability when the initial and final
flavours are different (α 6= β) or the same (α = β), respectively. Note that oscillation probabilities
show the expected GIM suppression of any flavour changing process: they vanish if the neutrinos are
degenerate.

In the simplest case of two-family mixing, the mixing matrixdepends on just one mixing angle:

VMNS =

(
cos θ sin θ
− sin θ cos θ

)
, (39)

and there is only one mass square difference∆m2. The oscillation probability of Eq. (38) simplifies to
the well-known expression

P (να → νβ) = sin2 2θ sin2
(
∆m2 L

4Eν

)
, α 6= β . (40)

The probability is the same for neutrinos and antineutrinosbecause there are no imaginary entries in the
mixing matrix. It is a sinusoidal function of the distance between source and detector, with a period
determined by the oscillation length:

Losc (km) = 2π
Eν(GeV)

1.27∆m2(eV2)
, (41)

which is proportional to the neutrino energy and inversely proportional to the neutrino mass square differ-
ence. The amplitude of the oscillation is determined by the mixing angle. It is maximal forsin2 2θ = 1
or θ = π/4. This oscillation probability as a function of the neutrinoenergy and the baseline is shown
in Fig. 12

It is important to stress that there is an intrinsic limit to coherence, since the size of the wave
packet is non-zero. Indeed the last equality of Eq. (36) requires that the phase factor varies slowly in the
range of momenta of the wave packet. This condition is not satisfied whenL becomes too large. The
decoherence length,LD, can be estimated as

∣∣∣∣∣
∆m2

ijLD

2

(
1

|qz|
− 1

|qz|+ σ

)∣∣∣∣∣ ∼ 2π ⇒ LD ∼ Losc
|qz|
σ

. (42)
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that is the phase factor changes by2π when the momentum in thêz direction varies within oneσ from
the central value, whereσ is the width of the wave packet in momentum space [see Eq. (30)] When the
baseline satisfiesL ≫ LD, neutrinos do not oscillate because the phase factor averages to zero all the
terms withi 6= j in Eq. (36). The flavour transition probability then becomesindependent ofL:

P (να → νβ) =
∑

i

|VαiVβi|2 = 2cos2 θ sin2 θ =
1

2
sin2 2θ. (43)

In practice, the smearing inL andEν produces the same effect. WhenL≫ Losc, the oscillations are so
fast that any real experiment will measure the average:

〈P (να → νβ)〉 =
1

2
sin2 2θ, (44)

which is exactly the same result as in the case of no coherence.

Note that the ’smoking gun’ for neutrino oscillations is notthe flavour transition, which can occur
in the presence of neutrino mixing without oscillations, but the peculiarL/Eν dependence. An idealized
experiment looking for neutrino oscillations should then be able to tell flavour on one hand and should
be performed at a baseline such thatL ∼ Losc(Eν) in order to observe the oscillatory pattern, which
measures the neutrino mass square difference. Note that neutrino oscillations are not sensitive to the
absolute mass scale though.

3.1 Matter effects

When neutrinos propagate in matter (Earth, Sun, etc.), the amplitude for their propagation is modified
owing to coherent forward scattering on electrons and nucleons [13]:

W±

e

νee

νe

Z0

νe,µ,τ

p, n, ep, n, e

νe,µ,τ

The effective Hamiltonian density resulting from the charged current interaction is

HCC =
√
2GF [ēγµPLνe][ν̄eγ

µPLe] =
√
2GF [ēγµPLe][ν̄eγ

µPLνe]. (45)

Since the medium is not polarized, the expectation value of the electron current is simply the number
density of electrons:

〈ēγµPLe〉unpol.medium = δµ0Ne. (46)

Including also the neutral current interactions in the sameway, the effective Hamiltonian for neutrinos
in the presence of matter is

Heff = Hvac+ ν̄Vmγ
0(1− γ5)ν (47)

Vm =



(GF√

2

(
Ne − Nn

2

)
0 0

0 GF√
2

(
−Nn

2

)
0

0 0 GF√
2

(
−Nn

2

)


 , (48)
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whereNn is the number density of neutrons. The matter potential in the center of the Sun isVe ∼
10−11 eV and in the EarthVe ∼ 10−13 eV. In spite of these tiny values, these effects are non-negligible
in neutrino oscillations.

The plane wave solutions to the modified Dirac equation satisfy a different dispersion relation and
as a result, the phases of neutrino oscillation phenomena change. The new dispersion relation becomes

E − Vm −Mν = (±|p| − Vm)
1

E +Mν − Vm
(±|p| − Vm) h = ±, (49)

whereh = ± indicate the two helicity states and we have neglected effects of O(VMν). This is a
reasonable approximation sincemν ≫ Vm. For the positive energy states we then have

E > 0 E2 = |p|2 +M2
ν + 4EVm h = − E2 = |p|2 +M2

ν , h = +, (50)

while for the negative energy onesVm → −Vm andh→ −h.

The effect of matter can be simply accommodated in an effective mass matrix:

M̃2
ν =M2

ν ± 4EVm. (51)

The effective mixing matrix̃VMNS is the one that takes us from the original flavour basis to thatwhich
diagonalizes this effective mass matrix:



m̃2

1 0 0
0 m̃2

2 0
0 0 m̃2

3


 = Ṽ †

MNS


M2

ν ± 4E



Ve 0 0
0 Vµ 0
0 0 Vτ




 ṼMNS. (52)

Note that the number of physical parameters is the same but the effective mixing angles and masses
depend on the energy.

3.2 Neutrino oscillations in constant matter

In the case of two flavours, the effective mass and mixing angle have relatively simple expressions:

sin2 2θ̃ =

(
∆m2 sin 2θ

)2
(
∆m2 cos 2θ ∓ 2

√
2GFENe

)2
+ (∆m2 sin 2θ)2

(53)

∆m̃2 =

√(
∆m2 cos 2θ ∓ 2

√
2E GF Ne

)2
+ (∆m2 sin 2θ)2, (54)

where the sign∓ corresponds to neutrinos/antineutrinos. The corresponding oscillation amplitude has a
resonance [13, 14], when the neutrino energy satisfies

√
2GF Ne ∓

∆m2

2E
cos 2θ = 0 ⇒ sin2 2θ̃ = 1 ∆m̃2 = ∆m2 sin 2θ. (55)

The oscillation amplitude is therefore maximal independently of the value of the vacuum mixing angle.

We also note that

– oscillations vanish atθ = 0, because the oscillation length becomes infinite forθ = 0;

– the resonance is only there forν or ν̄ but not both;

– the resonance condition depends on the sign(∆m2 cos 2θ):
resonance observed inν → sign(∆m2 cos 2θ) > 0,
resonance observed in̄ν → sign(∆m2 cos 2θ) < 0.
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3.3 Neutrino oscillations in variable matter

In the Sun the density of electrons is not constant. However,if the variation is sufficiently slow, the
eigenstates ofHeff change slowly with the density and we can assume that the neutrino produced in
a local eigenstate remains in the same eigenstate along the trajectory. This is the so-calledadiabatic
approximation.

Let us suppose that neutrinos are crossing the Sun. We consider here two-family mixing for
simplicity. At any point in the trajectory, it is possible todiagonalize the Hamiltonian fixing the matter
density to that at the given point. The resulting eigenstates can be written as

|ν̃1〉 = |νe〉 cos θ̃ − |νµ〉 sin θ̃, (56)

|ν̃2〉 = |νe〉 sin θ̃ + |νµ〉 cos θ̃. (57)

Neutrinos are produced close to the centrex = 0 where the electron density,Ne(0), is very large. Let us
suppose that it satisfies

2
√
2GFNe(0) ≫ ∆m2 cos 2θ. (58)

Then the diagonalization of the mass matrix at this point gives

θ̃ ≃ π

2
⇒ |νe〉 ≃ |ν̃2〉 (59)

in such a way that an electron neutrino is mostly the second mass eigenstate. When neutrinos exit the
Sun, atx = R⊙, the matter density falls to zero,Ne(R⊙) = 0, and the local effective mixing angle is the
one in vacuum,̃θ = θ. If θ is small, the eigenstatẽν2 is mostlyνµ according to Eq. (57).

Therefore an electron neutrino produced atx = 0 is mostly the eigenstatẽν2, but this eigenstate
outside the Sun is mostlyνµ. There is maximumνe → νµ conversion if the adiabatic approximation is a
good one. This is the famous MSW effect [13, 14]. The evolution of the eigenstates is shown in Fig. 13:
the MSW effect would occur when there is a level crossing in the absence of mixing. The conditions for
this to happen are:

– Resonant condition: the density at the production is above the critical one

Ne(0) >
∆m2 cos 2θ

2
√
2EGF

. (60)

– Adiabaticity: the splitting of the levels is large compared to energy injected in the system by the
variation ofNe(r). A measurement of this is given byγ which should be much larger than one:

γ =
sin2 2θ

cos 2θ

∆m2

2E

1

|∇ logNe(r)|
> γmin > 1, (61)

where∇ = ∂/∂r.

At fixed energy both conditions give the famous MSW triangles, if plotted on the plane(log(sin2 2θ), log(∆m2)):

log
(
∆m2

)
< log

(
2
√
2GFNe(0)E

cos 2θ

)
(62)

log
(
∆m2

)
> log

(
γmin2E∇ logNe

cos 2θ

sin2 2θ

)
. (63)

For example, takingNe(r) = Nc exp(−r/R0), R0 = R⊙/10.54, Nc = 1.6 × 1026 cm−3, E = 1 MeV,
these curves are shown in Fig. 14.

As we shall see, the deficit of electron neutrinos coming fromthe Sun has been interpreted in
terms of an MSW effect in neutrino propagation in the Sun. Before the recent experiments SNO and
KamLAND that we shall discuss in Section 4.1, there were several solutions possible inside the expected
MSW triangle: SMA, LMA and LOW as shown in Fig. 15. The famous SMA and LOW solutions are
now history.
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Fig. 13: Evolution of the eigenstates as a function of the distance tothe centre of the Sun

Fig. 14: MSW triangle: in the region between the two lines the resonance and adiabaticity conditions are both
satisfied for neutrinos of energy 1 MeV

4 Evidence for neutrino oscillations

Nature has been kind enough to provide us with two natural sources of neutrinos (the Sun and the at-
mosphere) where neutrino flavour transitions have been observed in a series of ingenious experiments,
that started back in the 1960s with the pioneering experiment of R. Davies. This effort has already been
rewarded once with the Nobel prize of 2002.

4.1 The solar puzzle

The Sun is an intense source of neutrinos produced in the chain of nuclear reactions that burn hydrogen
into helium:

4p −→ 4He + 2e+ + 2νe. (64)

The expected spectral flux ofνe in the absence of oscillations is shown in Fig. 16. The prediction of
this flux obtained by J. Bahcall and collaborators [16] is theresult of a detailed simulation of the solar
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Fig. 15: Neutrino oscillation solutions to the solar neutrino deficit in year 2000 (taken from Ref. [15])

Fig. 16: Spectrum of solar neutrinos. The different bands indicate the threshold of the different detection tech-
niques.

interior and has been improved over many years. It is the so-called standard solar model (SSM).

Neutrinos coming from the Sun have been detected with several experimental techniques that
have a different neutrino energy threshold as indicated in Fig. 16. On the one hand, the radiochemical
techniques, used in the experiments Homestake (chlorine,37Cl)[17], Gallex/GNO [18] and Sage [19]
(using gallium,71Ga, and germanium,71Ge, respectively), can count the total number of neutrinos with
a rather low threshold (Eν > 0.81 MeV in Homestake andEν > 0.23 MeV in Gallex and Sage), they
cannot get any information on the directionality, the energy of the neutrinos, nor the time of the event.
On the other hand, Kamiokande [20] pioneered a new techniqueto observe solar neutrinos using water
Cherenkov detectors. The signal comes from elastic neutrino scattering on electrons (ES),νe + e− →
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Fig. 17: Left: distribution of solar neutrino events as a function ofthe zenith angle of the Sun. Right: seasonal
variation of the solar neutrino flux in SuperKamiokande.

νe + e−, that can be observed from the Cherenkov radiation emitted by the recoiling electrons. These
are real-time experiments that provide information on the directionality and the energy of the neutrinos
by measuring the recoiling electron. Unfortunately, the threshold for these types of experiments is much
higher,≥ 5 MeV. All these experiments have consistently observed a number of solar neutrinos between
1/3 and 1/2 of the number expected in the SSM and for a long timethis was referred to as thesolar
neutrino problem or deficit.

The progress in this field over the past ten years has been enormous culminating in a solution to
this puzzle that no longer relies on the predictions of the standard solar model.

There have been three milestones.

1998: SuperKamiokande [21] measured the solar neutrino deficit with unprecedented precision.
Furthermore the measurement of the direction of the events demonstrated that the neutrinos measured
definitely come from the Sun: the left plot of Fig. 17 shows thedistribution of the events as a function
of the zenith angle of the Sun. A seasonal variation of the fluxis expected since the distance between
the Earth and the Sun varies seasonally. The right plot of Fig. 17 shows that the measured variation is in
perfect agreement with that expectation. If the deficit ofνe in the Sun is interpreted in terms of neutrino
oscillations, two very important observables to discriminate between different solutions are the spectral
distribution of the events shown in the left plot of Fig. 18, which shows a rather flat spectrum, and the
day/night asymmetry. The latter is important because neutrinos arriving from the Sun at night have to
cross the Earth and some of the possible solutions are such that matter effects in neutrino propagation in
the Earth are relevant. The analysis of solar data in year 2000 in terms of neutrino oscillations of theνe
into some other type indicated a number of possible solutions as shown in Fig. 15.

2001: The SNO experiment [22] measured the flux of solar neutrinosusing the three reactions:

(CC) νe + d→ p+ p+ e− Ethres> 5 MeV (65)

(NC) νx + d→ p+ n+ νx x = e, µ, τ Ethres> 2.2 MeV (66)

(ES) νe + e− → νe + e− Ethres> 5 MeV (67)

Since the CC reaction is only sensitive to electron neutrinos, while the NC one is sensitive to all the types
that couple to theZ0 boson, the comparison of the fluxes measured with both reactions can establish if
there areνµ andντ in the solar flux independently of the normalization given bythe SSM. The neutrino
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Fig. 18: Left: Distribution of the solar neutrino events as a function of the electron energy. Right: Day–night
distribution of the solar neutrino events in SuperKamiokande.
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fluxes measured by the three reactions by SNO are:

φCC = 1.67(9) × 106 cm−2s−1, φNC = 5.54(48) × 106 cm−2s−1, φES = 1.77(26) × 106 cm−2s−1.
(68)

These measurements demonstrate that the Sun shines(νµ, ντ ) about two times more than it shines
νe, which constitutes the first direct demonstration of flavourtransitions in the solar flux! Furthermore
the NC flux that measures all active species in the solar flux, is compatible with the totalνe flux expected
according to the SSM as shown in Fig. 19.

The post-SNO global fits of all solar data shown in Fig. 20 (left) in terms of neutrino oscillations
are quite different from those in Fig. 15. Of all the possiblesolutions, only the one at the largest mixing
angle and mass square difference survives, the famous LMA solution.

2002: The solar oscillation is confirmed with reactor neutrinos in the KamLAND experiment [24].
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This is 1kton of liquid scintillator which measures the flux of reactor neutrinos produced in a cluster of
nuclear plants around Kamioka. The average distance is〈L〉 = 175 km. Neutrinos are detected via
inverseβ-decay which has a threshold energy of about2.6 MeV:

ν̄e + p→ e+ + n Eth > 2.6 MeV . (69)

The fortunate circumstance that

〈Eν(1 MeV)〉/L(100 km) ∼ 10−5 eV2 (70)

is in the range indicated by solar data, and that the expectedmixing angle is large, implies that a large de-
pletion of the expected antineutrino flux (which is known to afew per cent accuracy) should be observed
together with a significant energy dependence.

Figure 21 shows the latest KamLAND results [25] for the spectral distribution of events as well
as as a function of the ratioEν/L. They have recently lowered the energy threshold and have sensitivity
to geoneutrinos. The measurements of geoneutrinos could have important implications in geophysics.
Concerning the sensitivity to the oscillation parameters,Fig. 22 shows the present determination of
the solar oscillation parameters from KamLAND and other solar experiments. The precision in the
determination of∆m2

solar is spectacular and shows that neutrino experiments are entering the era of
precision physics.
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Fig. 23: Comparison of solar neutrino fluxes measured by the different experiments before Borexino (left) and
after (right). Presented by the Borexino Collaboration at Neutrino 2008.

Last year new data was presented by a new solar neutrino experiment Borexino [26]. It is the
lowest-threshold real-time solar neutrino experiment andthe only one that could measure the flux of the
monocromatic7Be neutrinos:

Φ(7Be) = 5.08(25) × 109 cm−2s−1 .

The relevance of Borexino is illustrated in Fig. 23. The result is in agreement with the oscillation inter-
pretation of other solar and reactor experiments and it addsfurther information to disfavour alternative
exotic interpretations of the data.
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line corresponds to a recent full 3D simulation. Taken from the last reference in Ref. [27].

In summary, solar neutrinos experiments have made fundamental discoveries in particle physics
and are now becoming useful for other applications, such as aprecise understanding of the Sun and the
Earth.

4.2 Atmospheric neutrino anomaly

Neutrinos are also produced in the atmosphere when primary cosmic rays impinge on it producingK,π
that subsequently decay. The fluxes of such neutrinos can be predicted within a 10–20% accuracy to be
those in the left plot of Fig. 24.

Clearly, atmospheric neutrinos are an ideal place to look for neutrino oscillation since theEν/L
span several orders of magnitude, with neutrino energies varying from a few hundred MeV to103 GeV
and distances between production and detection varying from 10–104 km, as shown in Fig. 25 (right).

Many of the uncertainties in the predicted fluxes cancel whenthe ratio of muon to electron events
is considered. The first indication of a problem was found when a deficit was observed precisely in this
ratio by several experiments: Kamiokande [28], IMB [29], Soudan2 [30], Macro [31].

In 1998, SuperKamiokande clarified to a large extent the origin of this anomaly [32]. This experi-
ment can distinguish muon and electron events, measure the direction of the outgoing lepton (the zenith
angle with respect to the Earth’s axis) which is correlated to that of the neutrino ( the higher the energy
the higher the correlation), in such a way that they could measure the variation of the flux as a function
of the distance travelled by the neutrinos. Furthermore, they considered different samples of events:
sub-GeV (lepton with energy below1 GeV) ), multi-GeV (lepton with energy above1 GeV), together
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with stopping and through-going muons that are produced on the rock surrounding Superkamiokande.
The different samples correspond to different parent neutrino energies as can be seen in Fig. 25 (left).
The number of events for the different samples as a function of the zenith angle of the lepton are shown
in Fig. 26.

While the electron events observed are in agreement with predictions, a large deficit of muon
events was found with a strong dependence on the zenith angle: the deficit was almost 50% for those
events corresponding to neutrinos coming from belowcos θ = −1, while there is no deficit for those
coming from above. The quality of the fit to the neutrino oscillation hypothesisνµ → ντ is shown in
the plot. The perfect fit to the oscillation hypothesis is rather non-trivial given the sensitivity of this
measurement to theEν (different samples) andL (zenith angle) dependence. The significance of the
Eν/L dependence has been presented recently by the SuperKamiokande Collaboration [34], as shown
in Fig. 27.

Appropriate neutrino beams to search for the atmospheric oscillation can easily be produced at
accelerators if the detector is located at a long baseline ofa few hundred kilometres, since

|∆m2
atmos| ∼

Eν(1− 10 GeV)
L(102 − 103 km)

. (71)

A conventionalneutrino beam is produced from protons hitting a target and producingπ andK:

p → Target→ π+,K+ → νµ(%νe, ν̄µ, ν̄e) (72)

νµ → νx. (73)

Those of a selected charge are focused and are left to decay ina long decay tunnel producing a neutrino
beam of mostly muon neutrinos (or antineutrinos) with a contamination of electron neutrinos of a few
per cent. The atmospheric oscillation can be established bystudying, as a function of the energy, either
the disappearance of muon neutrinos or, if the energy of the beam is large enough, the appearance ofτ
neutrinos.

There are three such conventional beams: KEK–Kamioka (L = 235 km), Fermilab–Soudan (L =
730 km), CERN-Gran Sasso (L = 730 km). The latter being the only one sensitive toντ appearance.
The K2K experiment at Kamioka has already presented a positive signal forνµ disappearance [35],
confirming the atmospheric oscillation. Their result is shown in Fig. 28. More recently also the MINOS
experiment has presented a positive result as shown in Fig. 29.
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Fig. 26: Zenith angle distribution for fully-contained single-ring e-like andµ-like events, multi-ringµ-like events,
partially contained events, and upward-going muons. The points show the data and the solid lines show the Monte
Carlo events without neutrino oscillation. The dashed lines show the best-fit expectations forνµ ↔ ντ oscillations
(from Ref. [33]).
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Fig. 29: Left: Ratio of measured to expected (in absence of oscillations) neutrino events in MINOS as a functions
of neutrino energy. Right: Determination of oscillation parameters from MINOS data compared to K2K and
Super-K.

4.3 Reactor experiments in the atmospheric range

Experiments that look for the disappearance of reactorν̄e at anEν/L ∼ ∆m2
atmoshave also been per-

formed [36, 37, 38]. The most sensitive of these has been Chooz [38]. No disappearance of̄νe was
observed, which excludes the parameter range shown in Fig. 30. Although SuperKamiokande had al-
ready established that atmosphericνe/ν̄e do not seem to oscillate in the atmospheric range, the sensitivity
of SuperKamiokande to this oscillation turns out to be much worse than that of Chooz because of the
presence of electron and muon neutrinos in the atmospheric flux. It is in the context of three-neutrino
mixing that the negative signal of Chooz has been most relevant, as we shall see.

4.4 LSND

Finally, an accelerator experiment, LSND, has found an appearance signal that could be interpreted in
terms of neutrino flavour transitions [39]. They observed a surplus of electron events in a muon neutrino
beam fromπ+ decaying in flight (DIF) and a surplus of positron events in a neutrino beam fromµ+

decaying at rest (DAR). The interpretation of this data in terms of neutrino oscillations gives the range
shown by a coloured band in Fig. 31:

π+ → µ+ νµ
νµ → νe DIF (28± 6/10 ± 2)

µ+ → e+νeν̄µ
ν̄µ → ν̄e DAR (64± 18/12 ± 3)

Part of this region was already excluded by the experiment KARMEN [40] that has unsuccessfully
searched for̄νµ → ν̄e in a similar range.

In 2006 the first results from MiniBOONE were presented. Thisexperiment was designed to
search forνµ → νe transitions in the region of the LSND signal. They did not findconfirmation of
LSND as shown in Fig. 31
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4.5 Three-neutrino mixing

As we have seen there is experimental evidence for neutrino oscillation pointing to three distinct neutrino
mass square differences:

|∆m2
Sun|︸ ︷︷ ︸

∼8·10−5 eV2

≪ |∆m2
atmos|︸ ︷︷ ︸

∼2.5·10−3 eV2

≪ |∆m2
LSND|︸ ︷︷ ︸

>0.1 eV2

(74)

Clearly the mixing of the three standard neutrinosνe, νµ, ντ can only explain two of the anomalies, so
the explanation of the three sets of data would require the existence of a sterileν species, since only three
light neutrinos can couple to theZ0 boson.

The existence of extra light sterile neutrinos could accomodate a third splitting, but all such sce-
narios give a very poor fit to all data.

It is now the standard scenario to consider three-neutrino mixing dropping the LSND result. The
two independent neutrino mass square differences are assigned to the solar and atmospheric ones:

∆m2
13 = m2

3 −m2
1 = ∆m2

atmos, ∆m2
12 = m2

2 −m2
1 = ∆m2

Sun . (75)

With this convention, the mixing anglesθ23 andθ12 in the parametrization of Eq. (28) correspond approx-
imately to the ones measured in atmospheric and solar oscillations, respectively. This is because solar
and atmospheric anomalies approximately decouple as independent 2-by-2 mixing phenomena thanks
to the hierarchy between the two mass splittings,|∆m2

atmos| ≫ |∆m2
Sun| , on the one hand and the

fact that the angleθ13, which measures the electron component of the third mass eigenstate element
sin θ13 = (VMNS)e3, is small.

To see this, let us first consider the situation in whichEν/L ∼ ∆m2
13. We can thus neglect the

solar mass square difference in front of the atmospheric oneandEν/L. The oscillation probabilities
obtained in this limit are given by

P (νe → νµ) ≃ s223 sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
, (76)

P (νe → ντ ) ≃ c223 sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
, (77)

P (νµ → ντ ) ≃ c413 sin2 2θ23 sin2
(
∆m2

13L

4Eν

)
. (78)

Only two angles enter these formulae:θ23 andθ13. The latter is the only one that enters the disappearance
probability forνe in this regime:

P (νe → νe) = 1− P (νe → νµ)− P (νe → ντ ) ≃ sin2 2θ13 sin2
(
∆m2

13L

4Eν

)
. (79)

This is precisely the measurement of the Chooz experiment. Therefore the result of Chooz constrains the
angleθ13 to be unobservably small.

If θ13 is set to zero in Eq. (78), the only probability that survivesis theνµ → ντ one, which has
the same form as a 2-family mixing formula Eq. (40) if we identify

(∆m2
atmos, θatmos) → (∆m2

13, θ23) . (80)

Instead ifEν/L ∼ ∆m2
12, the atmospheric oscillation its too rapid and gets averaged out. The

survival probability for electrons in this limit is given by:

P (νe → νe) ≃ c413

(
1− sin2 2θ12 sin2

(
∆m2

12L

4Eν

))
+ s413. (81)
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Again it depends only on two angles,θ12 andθ13, and in the limit in which the latter is zero, the survival
probability measured in solar experiments has the form of two-family mixing if we identify

(∆m2
Sun, θSun) → (∆m2

12, θ12) . (82)

The results that we have shown of solar and atmospheric experiments have been analysed in terms of
2-family mixing. The previous argument indicates that whenfits are done in the context of 3-family
mixing nothing changes very much, thanks to the strong constrain set by Chooz onθ13.

Figure 32 shows the result of a recent global analysis of all data for the different parameters. The
2σ limits are

θ23 = 36.9◦ − 51.3◦ θ12 = 32.3◦ − 37.8◦ θ13 < 10.3◦

∆m2
12 = 7.66(35) × 10−5 eV2 ∆m2

23 = 2.38(27) × 10−3 eV2 . (83)

In summary, all the data, except LSND, can be explained if theneutrino spectrum has a structure
as shown in Fig. 33. The neutrino mixing matrix is approximately given by

|VMNS| ≃



0.77 −−0.86 0.5−−0.63 0−−0.22
0.22 −−0.56 0.44 −−0.73 0.57 −−0.80
0.21 −−0.55 0.40 −−0.71 0.59 −−0.82


 , (84)

and we do not know anything about the phases(δ, α1, α2). Note the striking difference between this
mixing matrix and the CKM matrix which is approximately diagonal:

VCKM ≃




1 O(λ) O(λ3)
O(λ) 1 O(λ2)
O(λ3) O(λ2) 1


 λ ∼ 0.2. (85)

The main features are

– Large mixing angles, in particular one is close to maximal.

– There is an intriguing near tri-bimaximal mixing pattern

Vtri-bi ≃




√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2


 .

5 Prospects in neutrino physics

After the next generation of neutrino experiments that are under construction, we shall probably still be
far from having complete knowledge of the neutrino mass matrix. There remain several fundamental
questions to be answered:

1. Are neutrinos Dirac or Majorana particles?

2. Is total lepton number conserved or violated?

3. What is the absolute neutrino mass scale? Is it a new physics scale?

4. What is the neutrino mass spectrum: i.e.,∆m2
atmos> or < 0 ?

5. Is there CP violation in the lepton sector?

6. What is the value ofθ13?
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Fig. 32: Fits to the standard3ν-mixing scenario including all available neutrino oscillation data (from Ref. [42])
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Fig. 33: Possible neutrino spectra consistent with solar and atmospheric data

The best hope addressing the first three questions lies in more precise experiments searching for
neutrinoless double-β decay, measuring the end-point ofβ decay as well as cosmological measurements.
Figure 34 shows the present constraints on the combination of parameters that is directly measured in
2β0ν experiments:

mββ ≡ |mee| = |c213(m1c
2
12 +m2eiα1s212) +m3e

iα2s213| , (86)

and in cosmology:
Σ ≡ m1 +m2 +m3 . (87)

The cosmological data included in this fit is only that from the cosmic microwave background (CMB).

Note that a lot of information onmββ is already provided by neutrino oscillation experiments. If
the hierarchy is inverse (m3 ≪ m1,m2 ∼

√
|∆m2

atmos|), there is a lower bound onmββ ≥ 10−2 eV, as
shown by the red (I.H.) band. Instead, if the hierarchy is normalm3 ∼

√
|∆m2

atmos| ≫ m1,m2, there is
no lower bound because neitherθ13 norm1 is bounded from below, as shown by the blue (N.H.) band.
The horizontal band shows the controversial claim of a positive signal [10].

Fig. 34: Present constraints onmββ andΣ from neutrino experiments and CMB data (from Ref. [43])
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A plethora of forthcoming experiments that will improve these constraints are under construction.

KATRIN [44] is an experiment to measure the spectrum of tritium β decay that is expected to
improve the sensitivity to the element:

me ≡
√
m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 (88)

to about0.2 eV, which is an improvement of one order of magnitude with respect to the present limit in
Eq. (6). Concerning0νββ [45] the next step of several experiments using different detector techniques
(CUORE, EXO, GENIUS, Majorana, etc.) is to reach the level ofprecision ofmββ ∼ 0.1 eV, which
would allow testing the positive claim in a definite way. Further in the future there are also proposals
to improve this precision by another order of magnitude reaching the10−2 eV level, which could be
sufficient to explore the full parameter space in the case of the inverse hierarchy. The measurement of a
non-zeromββ would not only prove that neutrinos are Majorana and that lepton number is violated, but
might give the best determination of the lightest neutrino mass, and even help in establishing the neutrino
mass hierarchy.

Concerning cosmology, it is quite impressive that the sensitivity to the neutrino matter component
of the Universe has already reached the eV range. Further significant improvements are expected in the
near future (e.g., by PLANCK) that can push present limits byat least one order of magnitude.

Concerning the last three fundamental questions above, they can be studied in more precise neu-
trino oscillation experiments in the atmospheric range (i.e., 〈Eν〉/L ∼ ∆m2

atmos) optimized to measure
the subleading transitions involvingνe. In particular,νe ↔ νµ and ν̄e ↔ ν̄µ are the so-calledgolden
measurements [46], while theνe ↔ ντ and ν̄e ↔ ν̄τ , being experimentally more challenging, are the
silver ones [47].

5.1 CP violation in neutrino oscillations

As in the quark sector, the mixing matrix of three neutrinos has CP violating phases. The so-called Dirac
phase,δ, induces CP violation in neutrino oscillations, that is a difference betweenP (να → νβ) and
P (ν̄α → ν̄β), for α 6= β. As we saw in the general expression of Eq. (38), CP violationis possible if
there are imaginary entries in the mixing matrix that make Im[W jk

αβ ≡ [UαjU
∗
βjU

∗
αkUβk] 6= 0. By CPT,

disappearance probabilities cannot violate CP however, because under CPT

P (να → νβ) = P (ν̄β → ν̄α) , (89)

so in order to observe a CP or T-odd asymmetry the initial and final flavour must be different,α 6= β:

ACP
αβ ≡ P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
, AT

αβ ≡ P (να → νβ)− P (νβ → να)

P (να → νβ) + P (νβ → να)
. (90)

In the case of 3-family mixing it is easy to see that the CP(T)-odd terms in the numerator are the same
for all transitionsα 6= β:

ACP(T)-odd
νανβ

=
sin δc13 sin 2θ13

solar︷ ︸︸ ︷
sin 2θ12

∆m2
12L

4Eν

atmos︷ ︸︸ ︷
sin 2θ23 sin

2 ∆m
2
13L

4Eν

PCP-even
νανβ

. (91)

As expected, the numerator is GIM suppressed in all the∆m2
ij and all the angles, because if any of them

is zero, the CP-odd phase becomes unphysical.

In order to maximize this asymmetry, it is necessary to perform experiments in the atmospheric
range〈Eν〉/L ∼ ∆m2

atmos, so that the GIM suppression is minimized. In this case, onlytwo small pa-
rameters remain in the CP-odd terms: the solar splitting,∆m2

Sun(i.e., small compared to the other scales,
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Fig. 35: Comparison of theνe ↔ νµ/ν̄e ↔ ν̄µ (left) andνµ ↔ ντ /ν̄µ ↔ ν̄τ (right) oscillation probabilities for
Eν = 500 MeV, θ13 = 8◦ andδ = 90◦ as a function of the distance

∆m2
atmos and〈Eν〉/L), and the angleθ13. The asymmetry is then larger in the subleading transitions:

νe → νµ(ντ ), because the CP-even terms in the denominator are also suppressed by the same small
parameters. Indeed a convenient approximation for theνe ↔ νµ transitions is obtained expanding to
second order in both small parameters [46]:

Pνeνµ(ν̄eν̄µ) = s223 sin2 2θ13 sin2
(
∆m2

13 L

4Eν

)
≡ P atmos

+ c223 sin2 2θ12 sin2
(
∆m2

12 L

4Eν

)
≡ P solar

+ J̃ cos

(
±δ − ∆m2

13 L

4Eν

)
∆m2

12 L

4Eν
sin

(
∆m2

13 L

4Eν

)
≡ P inter, (92)

whereJ̃ ≡ c13 sin 2θ13 sin 2θ12 sin 2θ23. This approximate formula is obtained as an expansion to
second order in the parametersθ13 and∆m2

Sun. The first term corresponds to the atmospheric oscillation,
the second one is the solar one and there is an interference term which has the information on the phase
δ. Depending on the value ofθ13, it is possible that the atmospheric term dominates over theother two,
in such a way that the CP-even terms are suppressed inθ213, or if it is the solar term that dominates,
the suppression is in(∆m2

Sun)
2. The asymmetries in these two regimes show therefore the following

dependence on the small parameters:

P atmos≫ P solar → ACP,T
νeνµ(ντ )

∼ ∆m2
12L/Eν

sin 2θ13
,

P solar ≫ P atmos → ACP,T
νeνµ(ντ )

∼ sin 2θ13
∆m2

12L/Eν
,

P solar ≃ P atmos → ACP,T
νeνµ(ντ )

= O(1) . (93)

Therefore asymmetries in the subleading transitions are expected to be rather large, specially when the
solar and atmospheric terms are comparable.

In contrast, the asymmetries in the leadingνµ → ντ transition in the atmospheric range are much
smaller, because the CP-even terms are unsuppressed in eachof the two small parameters. The difference
between the neutrino and antineutrino oscillation probabilities for the leading and subleading channels
are shown in Fig. 35.

5.2 The neutrino spectrum

The oscillation probabilities in matter can also be approximated by an expansion to second order in the
two small parameters:θ13 and∆m2

12 [46]. The result has the same structure as in vacuum:

Pνeνµ(ν̄eν̄µ) = s223 sin2 2θ13

(
∆13

B±

)2

sin2
(
B±L
2

)
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Fig. 36: P (νe → νµ) andP (ν̄e → ν̄µ) as a function of the baselineL in kilometres, at a neutrino energy
Eν/L = |∆m2

13|/2π and forθ13 = 8◦ andδ = 0 (solid) and90◦ (dashed)

+c223 sin2 2θ12

(
∆12

A

)2

sin2
(
AL

2

)

+J̃
∆12

A
sin(

AL

2
)
∆13

B±
sin

(
B±L
2

)
cos

(
±δ − ∆13 L

2

)
, (94)

where

B± = |A±∆13| ∆ij =
∆m2

ij

2Eν
A =

√
2GFNe . (95)

This formula shows a resonant enhancement of the atmospheric term in the the neutrino or antineutrino
oscillation probability (depending on the sign of∆m2

13) channel when

2EνA ∼ |∆m2
13| . (96)

Considering the electron number density in the Earth, the resonant energy isEν ∼ 10−−20 GeV. This
resonance is illustrated in Fig. 36, which shows theνe → νµ oscillation probability for neutrinos and
antineutrinos, as a function of the baseline, for neutrino energy constrained to the first atmospheric
peak, i.e.,Eν/L = |∆m2

13|/2π. The difference between the neutrino and anti-neutrino oscillation
probabilities induced by matter effects becomes comparable to that due to maximal CP-violation for
L = O(1000) km. This is approximately the baseline where matter effectsand CP violation can both be
measured simultaneously. At much longer distances, mattereffects completely hide CP-violation effects
and vice versa.

5.3 The measurement of θ13 and δ

5.3.1 Theoretical challenge

In the future, we shall face the challenge of extracting simultaneouslyθ13, δ and also the hierarchy from
the measurement of the oscillation probabilitiesνµ ↔ νe and ν̄µ ↔ ν̄e. This turns out to be non-
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Fig. 37: Equiprobability curvesPνeνµ(Eν/L, θ13, δ) = Meas1 andPν̄eν̄µ(Eν/L, θ13, δ) = Meas2 on the plane
(θ13, δ). They generically cross at two points: the true solution(θ13, δ) and a fake one.

trivial even in principle, because of the existence of degeneracies [48]. In fact, at fixedEν , L there are
generically two solutions for(θ13, δ) that give the same probabilities for neutrinos and antineutrinos.

This is due to the periodicity inδ: if the equiprobability curves for neutrinos and antineutrinos on
the plane(θ13, δ) cross at one point (at the true solution), they must cross at least once more as shown in
Fig. 37.

The fake solution has a strong dependence on the ratioEν/L in vacuum.

Normally neutrino beams are not monochromatic, soEν/L is not fixed. If we consider as the
measurement the integrated signals (after integrating in energy the probability× flux × cross section),
the same argument holds and a fake solution appears generically although it has a more complicated
dependence on〈Eν〉 andL.

Besides, the fact that other oscillation parameters will also not be known at the time of this mea-
surement, such as the sign(∆m2

13) or sign(cos θ23), increases the difficulty further: these unknowns will
also bias the extraction ofθ13 andδ leading to additional fake solutions, the so-called eight-fold degen-
eracy [49].

Several strategies for resolving these degeneracies have been proposed. Given the energy de-
pendence of the fake solutions, it is very useful to have a detector with good neutrino energy resolution.
Figure 38 shows the oscillation probability as a function ofthe neutrino energy for some values of(θ13, δ)
with that corresponding to the fake solution(θfake

13 (〈Eν〉/L), δfake(〈Eν〉/L)). The curves cross at〈Eν〉
but differ quite significantly at other energies.

Another possibility is to consider performing several experiments with differing〈Eν〉/L or with
different matter effects.

Finally, the measurement of other oscillation probabilities beside the golden one can help. For
example, if a precise measurement of the disappearance probability for νe is done in the atmospheric
range, with an improved Chooz-type experiment, this could provide a measurement ofθ13 that does not

35

NEUTRINO PHYSICS

263



Fig. 38: Oscillation probability for neutrinos and antineutrinos as a function of the energy, for some true values of
θ13 andδ, and for the fake solutions (dashed curves)

depend onδ at all [50].

Similarly, if we combine the golden measurement with the silver one:νe → ντ andν̄e → ν̄τ , the
fake solutions can be excluded [47].

5.3.2 Experimental challenge

The challenge is to measure for the first time thesmallsubleading transitionsνe ↔ νµ andν̄e ↔ ν̄µ with
〈Eν〉/L ∼ |∆m2

atmos|. The need to be above the muon threshold implies that rather long baselines are
required as shown in Fig. 39. There are many ideas being pursued. Let us briefly describe the different
proposals.

5.3.3 Future reactor experiments

Reactor neutrinos have an energy in the range of MeV and therefore can only look at the disappearance
channel̄νe → ν̄e. It has been pointed out before that reactor neutrinos have provided the most stringent
limit on the angleθ13. A future upgrade of this type of experiments is possible, byincreasing the detector
size and reducing the systematics by intercepting the beam with both a near and a far detector. The
experiment Double-Chooz is under construction and expectsto reach a sensitivity limit ofsin2 2θ13 ≥
0.03, with the advantage that being a disappearance measurement, there is no ambiguity due to the CP
phaseδ or any other parameter.

5.3.4 Future superbeam experiments

Neutrino beams produced at accelerators have already been constructed to measure the disappearance of
νµ in the atmospheric range (K2K and MINOS), as well as the apperance channelνµ → ντ (OPERA).
As we have seen, these experiments have confirmed the leadingatmospheric oscillation, but they will
improve the sensitivity to the unknowns very little.
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Fig. 39: Energy of the proposed future neutrino oscillation experiments: Nufact,β-beam, superbeams (T2K and
NOvA) and reactors. Theatmandsolarblack bands correspond to the first atmospheric and solar oscillation peaks,
respectively.

Theseconventionalbeams result from the decay of pions and kaons produced from an intense
proton beam that hits a target. They are thus mostlyνµ (or ν̄µ depending on the polarity) with a per cent
contamination ofνe. Neutrino beams of this type but with much higher intensity,the so-calledsuper-
beams, could be obtained with new megawatt proton sources, however, the sensitivity to the subleading
transitionνµ → νe is limited by systematics. Not only can the flavour and spectral composition of these
beams not be determined with good accuracy, but the irreducible background ofνe is the limiting factor.
One way to reduce this background is to use an off-axis configuration. Pion decay kinematics implies
that a detector located off-axis intercepts a beam with a much better defined energy, and this allows the
beam background to be reduced below the1% level.

Two projects using off-axis superbeams are being pursued. The first one is T2K in Japan [51],
that is expected to start taking data in 2009. It will use the SuperKamiokande detector to intercept a
beam produced in J-PARC, which corresponds to a baseline of 295 km. If sin2 2θ13 ≥ 0.01−−0.02, an
appearance ofνe will be observed, although the experiment will have no sensitivity to CP violation nor to
the mass hierarchy. The second project is NOvA in the USA [52]. The NUMI beam at Fermilab will be
intercepted off-axis by a new detector located810 km away. It is expected to reach a similar sensitivity
to θ13 as T2K, but ifsin2 2θ13 ≥ 0.05, the comparison of theν andν̄ appearance signals could provide
the first determination of the neutrino hierarchy.

5.3.5 Neutrino factory and β beams

The measurement of leptonic CP violation will probably require a further step. New ideas to obtain
neutrino beams with reduced systematics have been activelydiscussed in recent years. At theNeutrino
Factory(NF) [53] neutrinos are produced fromµ+ orµ− which are accelerated to some reference energy
and are allowed to decay in a storage ring with long straight sections (see Fig. 40). Subleading transitions

37

NEUTRINO PHYSICS

265



Fig. 40: Possible layout of a CERN-based Neutrino Factory complex

Fig. 41: Possible layout of a CERN-basedβ beam

can be searched for by looking for wrong-sign muons in a massive magnetized detector:

µ− → e− νµ ν̄e ;

ν̄e → ν̄µ → µ+

νµ → νµ → µ−. (97)

A similar situation is found in the case of theβ beam(BB)[54]. This is a neutrino beam obtained
from boosted radioactive ions, such as18

10Ne or 6He++, which are accelerated and circulated in a storage
ring where they decay, producing a pureνe or ν̄e beam, respectively (see Fig. 41):

6He
++ → 6

3Li
+++

e− ν̄e

ν̄e → ν̄µ → µ+ (98)
18
10Ne → 18

9F
−
e+ νe

νe → νµ → µ−.

The golden transition can be searched for in this case by counting muons. It is not necessary to measure
their charge, so the detector does not need to be magnetized.
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Fig. 42: Left: νe andν̄e fluxes in the BB from1018 18Ne/3 × 1018 6He ion decays per year atγ = 100/60 and
L = 130 km. Right:νe andν̄e fluxes at the NF from2× 1020 50 GeVµ−/µ+ decays andL = 3000 km.

The neutrino fluxesνe andν̄e at the NF or BB can be known with a very good accuracy, since they
are easily obtained from the number of muons or ions decayingin the storage ring and the well-known
muon or ion decay kinematics:

dΦNF

dSdy

∣∣∣∣
θ≃0

≃ Nµ

πL2
12γ2y2(1− y), (99)

with y = Eν
Eµ

and

dΦBB

dSdy

∣∣∣∣
θ≃0

≃ Nβ

πL2

γ2

g(ye)
y2(1− y)

√
(1− y)2 − y2e , (100)

andy = Eν
2γE0

, ye = me/E0, g(ye) ≡ 1
60

{√
1− y2e(2− 9y2e − 8y4e) + 15y4e log

[
ye

1−
√

1−y2e

]}
. Nµ and

Nβ are the muons or ions decaying per year. Note that both fluxes increase with theγ factor of the parent
particle asγ2.

These fluxes are shown in Fig. 42 for two standard setups for the NF and the BB. Although the
fluxes at the neutrino factory are larger by at least one orderof magnitude, the need to magnetize the
detector in the NF is a big limitation to how massive it can be in practice. In the case of theβ beam no
magnetization is needed, which opens the possibility to usevery massive water Cherenkov detectors, like
those that have been proposed to improve the limits on protondecay and to study supernova neutrinos
[55].

In both the Neutrino Factory and theβ-beam designs, the energy of the parent muon or ion (which
is proportional to the average neutrino energy) can be optimized within a rather large range, since this is
fixed by the acceleration scheme that is part of the machine design. Once the energy is fixed, the baseline
is also fixed by the atmospheric oscillation length. This optimization is, however, a complex problem
because there are often contradicting requirements in the maximization of the intensity, the minimiza-
tion of backgrounds, having useful spectral information, measuring thesilver channel in addition to the
goldenone, having sizeable matter effects, etc. This optimization was done for the NF some years ago
and a muon energy of a few tens of GeV and a baseline of a few thousand kilometres is considered a
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Fig. 43: Left: Sensitivity limit to leptonic CP violation in the plane (sin2 2θ13, δ) of superbeams (SPL, T2KHK),
the wide band beam (WBB), Neutrino Factory (NF) andβ beams (BB). The bands correspond to most/least con-
servative assumptions concerning the facility/detectors. Right: Sensitivity limits to the neutrino mass hierarchy in
the same facilities. Taken from Ref. [56].

reference setup [46]. For the BB, a scenario with a neutrino beam of a few GeV and distances of a few
hundred kilometers is close to optimal.

Figure 43 shows a comparison of the physics reach for CP violation and the neutrino hierarchy
of the NF and BB complexes with other second-generation superbeams that have also been proposed as
alternatives (SPL, T2HK, WBB). Even though this is probablynot yet the end of the story as regards
optimization/comparison, these plots show that reaching the realm ofsin2 2θ13 ∼ 10−4 will be possible
in the future, both for leptonic CP violation and the neutrino hierarchy.

6 Leptogenesis

The Universe is made of matter. The matter–antimatter asymmetry is measured to be

ηB ≡ Nb −Nb̄

Nγ
∼ 6.15(25) × 10−10 . (101)

It has been known for a long time that all the ingredients to generate dynamically such an asymmetry
from a symmetric initial state are present in the laws of particle physics. These ingredients were first put
forward by Sakharov:

Baryon number violation

B + L is anomalous in the SM [57] both with and without massive neutrinos, whileB − L is
preserved if the light neutrinos are Dirac particles. At high T in the early Universe,B + L violating
transitions could be in thermal equilibrium [58] due to the thermal excitation of configurations with
topological charge called sphalerons, see Fig. 44.

These processes violate baryon and lepton numbers by the same amount:

∆B = ∆L. (102)

If there are heavy Majorana singlets, as in the see-saw models, there is an additional source ofL violation
(andB − L). If a lepton charge is generated at temperatures where the sphalerons are still in thermal
equilibrium, a baryon charge can be generated.

Deviation from thermal equilibrium

Sphalerons are in equilibrium forT ≥ 100 GeV [59], which means that in order to get these
processes out of equilibrium it is necessary to go to the electroweak phase transition.
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Fig. 44: Artistic view of a sphaleron

Electroweak baryogenesis which has been extensively studied both in the SM and in the most
popular extensions like the MSSM, is currently disfavouredin the SM because the out-of-equilibrium
condition is not well met: the electroweak phase transitionis not strongly first order.

A different out-of-equilibrium condition is met in theL violation processes associated to the heavy
Majorana singlets [60]. These singlets are in equilibrium until they decouple at a temperature similar to
their masses. Since their masses must be significantly larger than the electroweak scale if we are to
explain the smallness of neutrino masses, sphalerons are still in equilibrium when the heavy Majorana
singlets decouple. Therefore if a lepton number is generated in their decay, inducing a lepton number
abundanceYL, the equilibrium of sphaleron processes implies that a baryon abundance will also be
present [61]:

YB = aYB−L =
a

a− 1
YL a =

28

79
in SM . (103)

C andCP violation

In order for lepton number to be generated in the decay of these Majorana singlets, it is necessary
that CP and C be violated in the decays:

ǫ1 =
Γ(N → Φl)− Γ(N → Φl̄)

Γ(N → Φl) + Γ(N → Φl̄)
6= 0 . (104)

In fact this is generically the case since, as we have seen, there are new CP-violating phases in the
neutrino mixing matrices which induce an asymmetry at the one-loop level (see Fig. 45).

These processes can then produce a net lepton asymmetry if the number distributions of the Ma-
jorana singlets,NN , differ from the thermal ones. This can occur close to the decoupling temperature,
when the density of the heavy neutrinos gets exponentially suppressed, but they are so weakly interacting
that they cannot follow the fast depletion (in other words ifthe decay rate is slower than the expansion
of the Universe close to the decoupling temperature) and

NN > N thermal
N . (105)

This is shown in Fig. 46. The final asymmetry is given by
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Fig. 45: Tree-level and one-loop diagrams contributing to heavy neutrino decays
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Fig. 46: Abundance of the heavy Majorana singlets at the decoupling temperature and the lepton number generated
in the decay

YB = 10−2

CP-asym︷︸︸︷
ǫ1

eff. factor︷︸︸︷
κ , (106)

whereκ is an efficiency factor which depends on the non-equilibriumdynamics. Therefore a relation
between the baryon number of the Universe and the neutrino flavour parameters inǫ1 exists.

An interesting question is whether the baryon asymmetry canbe predicted quantitatively from the
measurements at low energies of the neutrino mass matrix. Unfortunately this is not the case generically
because the asymmetryǫ1 depends on more parameters than those that are observable atlow energies.

As we saw in Section 2.1, at least three heavy Majorana neutrinos of massesMi are needed to give
masses to the three light neutrinos. The asymmetry in the decay of the lighest of them in the minimal
model withM2,3 ≫M1 is [62]

ǫ1 = − 3

16π

∑

i

Im[(λ̃†ν λ̃ν)2i1]

(λ̃†λ̃)11

M1

Mi
. (107)

Instead, at low energies, there is sensitivity only to the neutrino mass matrix:

λ̃ν
1

MR
λ̃Tν , (108)

whereMR is the heavy Majorana mass matrix. The two combinations are different and the measurement
of the matrix in Eq. (108) does not allow one to computeǫ1. This is because in general the number of
parameters measurable at high energies in the see-saw modelis larger than at low energies. The counting
of parameters forn generations before and after integrating out the heavy fields is shown Table 4 (see
Section 2.3 for explanations).

If the prediction of the lepton asymmetry is not possible, itshould at least be possible to constrain
the neutrino mass matrix, assuming that the lepton asymmetry explains the measured baryon asymmetry.

42

P. HERNÁNDEZ

270



Table 4: Number of physical parameters in the see-saw model withn families and the same number of right-
handed Majorana neutrinos at high and low energies

Yukawas Field redefinitons No. m No. θ No. φ

see-saw Yl, Yν ,MR =MT
R U(n)3

E ≥Mi 5n2 + n 3(n2−n)
2 , 3(n

2+n)
2 3n n2 − n n2 − n

see-saw Yl, α
T
ν = αν U(n)2

E ≪Mi 3n2 + n n2 − n, n2 + n 2n n2−n
2

n2−n
2

Indeed, various upper bounds can be derived on the generatedasymmetry, through a bound onǫ1
or onκ. In particularǫ1 has been shown to satisfy

|ǫ1| ≤
8

16π

M1

v2
|∆m2

atm|1/2 , (109)

and therefore leptogenesis in this model requires that the lightest heavy neutrino is rather heavy:

M1 ≥ O(109 GeV) . (110)

A sufficiently largeκ implies an upper bound on the lightest neutrino mass:

mi ≤ O(eV). (111)

For further details and references see Ref. [62].

7 Outlook for theory

One of the most important questions to resolve in neutrino physics is whether the origin of neutrino
masses is a new physics scale and if so what this scale is. One can envisage various possibilities for
such new physics, and the simplest is to assume that its associated energy scale is above the electroweak
scale. It is well known, since the pioneering work of Weinberg [63], that the appropriate language to
describe the low-energy effects of such new physics, no matter what it is, is that ofeffective field theory.
The effects ofanybeyond-the-standard-model dynamics with a characteristic energy scale,Λ ≫ v, can
be described at low-energies, i.e.,E < Λ, by the SM Lagrangian plus a tower of operators with mass
dimension,d > 4, constructed out of the SM fields and satisfying all the gaugesymmetries. Even though
the number of such operators is infinite, they can be classified according to their dimension,d, since an
operator of dimensiond must be suppressed by the scaleΛd−4, and therefore higher dimensionality
means stronger suppression in the high-energy scale:

L = LSM +
∑

i

αi

Λ
Od=5

i +
∑

i

βi
Λ2

Od=6
i + ... (112)

Different fundamental theories correspond to different values for thelow-energy couplingsαi, βi, ..., but
the structure of the effective interactions is the same.

It turns out that the first operator in the list is the famous Weinberg operator of Eq. (10):

Od=5 = L̄c
LΦ̃

T Φ̃LL , (113)

whereΦ̃, L are the SM Higgs and lepton doublets, respectively. This operator is the only one withd = 5
in the SM, and, as we have seen, brings in three essential new features to the minimal SM:
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– neutrino masses,

– lepton mixing,

– lepton number violation.

Upon spontaneous symmetry breaking, such an operator induces a neutrino mass matrix of the form

mν = α
v2

Λ
, (114)

whereα is generically a matrix in flavour space. Neutrino masses aretherefore expected to be naturally
small if Λ ≫ v.

If we assume that the neutrino masses we have measured are theresult of this leading operator, one
could ask the question: What type of new physics would inducesuch an interaction ? In the same way
that one can conjecture the presence of a massive gauge bosonfrom the Fermi four-fermion interaction,
one can classify the extra degrees of freedom that can induceat tree-level Weinberg’s interaction. It turns
out that there are the three well-known possibilities as depicted in Fig. 47:

– type I see-saw: SM+ heavy singlet fermions [6],

– type II see-saw: SM + heavy triplet scalar [64],

– type III see-saw: SM + heavy triple fermions [65],

or combinations. The masses of the extra states define the scale Λ.

It is also possible that Weinberg’s interaction is generated by new physics at higher orders, such
as in the famous Zee model [66] and related ones [67]. In this case, the couplingα in Eq. (112) will be
suppressed by loop factors1/(16π2).

Fig. 47: Magnifying-glass view of Weinberg operator in see-saws Type I (top left), Type II (top right), Type III
(bottom left) and Zee–Babu model (bottom right)

Unfortunately the measurement of neutrino masses alone will not tell us which of these possibili-
ties is the one chosen by Nature. In particular, the measurement of Weinberg’s interaction leaves behind
an unresolvedα↔ Λ degeneracythat makes it impossible to know what the scale of the new physics is,
even if we were to know the absolute value of neutrino masses.

Generically, however, the new physics will give other signals beyond Weinberg’s operator. The
next in importance are thed = 6 operators of Eq. (112) [68]. Recently thed = 6 operators induced
at tree level in see-saw models of Types I to III have been worked out [69]. They give rise to a rich
phenomenology that could discriminate between the models.In particular, they could induce beyond-the-
standard-model signals inZ andW decays, deviations in theρ parameter or theW mass, and mediate
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rare lepton decays, as well as violations of universality and unitarity of the neutrino mass matrix. It
would therefore be extremely important to search for these effects. Whether they are large enough to be
observed or not depends strongly on how high the scaleΛ is, since all these effects are suppressed by
two powers ofΛ.

As mentioned before, neutrino masses alone do not tell us what Λ is, but there are several theoret-
ical prejudices of what this scale should be. The most popular one is to relateΛ to a grand-unification
scale, given the intriguing fact that the seesaw-type ratiov2

MGUT
∼ 0.01 − −0.1 eV, in the right ballpark

of a neutrino mass scale. Recently, however, it has been pointed out [70] that within see-saw models, and
without supersymmetry, this choice would destabilize the electroweak scale, since the Higgs mass would
receive quadratic loop corrections inΛ. A naturalness argument would then imply thatΛ < 107 GeV, at
least if there is no supersymmetry.

Another possibility is to considerΛ to be related to the electroweak scale, i.e., not far from it.After
all, the electroweak scale is the only scale we are sure exits. The question is then if such a choice would
be testable via the measurement of thed = 6 operators. The answer to this question is no in the simplest
type I see-saw model, because in order to get neutrino massesin the right ballpark whenΛ ∼ TeV, it
is necessary to have extremely small Yukawa couplings, which suppress also thed = 6 operators to an
unobservable level. Several recent works have discussed the possibility to have larger effects of thed = 6
operators [72, 71, 69]. One possibility is that realized in Zee-type models whered = 5 operators are
forbidden at tree level and are therefore suppressed by loopfactors, whiled = 6 operators are allowed
at tree level and therefore unsuppressed. A more radical possibility is the existence of two independent
scales in Eq. (112), one that suppressesd = 6 operators,Λ6, and another one,Λ5 ≫ Λ6, that suppresses
thed = 5 one. This possibility is not unnatural, because thed = 5 andd = 6 operators can be classified
according to a a global symmetry: total lepton number. If we therefore assume that the scale at which
lepton number is broken,ΛLN , is much higher than the scale at which lepton flavour violation,ΛLFV , is
relevant, we can ensure that thed = 5 operator, that breaks lepton number, is suppressed by the former
scale,Λ5 ∼ ΛLN , while the lepton-flavour effects induced by operators ofd = 6 would be suppressed
only by a lower scaleΛ6 ∼ ΛLFV << ΛLN . The effective field theory describing such a possibility
would look therefore like

L = LSM +
∑

i

αi

ΛLN
Od=5

i +
∑

i

βi
Λ2

LFV
Od=6

i + ..., (115)

where the operators that break lepton number and those that preserve this symmetry are generically
suppressed by different scales. Such a possibility has recently been considered in the context of the
popular Minimal Flavour Violation hypothesis [72]. The underlying rationale for such an assumption is
not completely ad hoc, since in this context one could hope toexplain two apparently contradictory facts

– common origin of lepton and quark family mixing at a scaleΛLFV,

– large gap between neutrino masses and remaining fermions since neutrino masses would be sup-
pressed byΛLN .

In fact this separation of scales is built-in in several of the models mentioned before. The simplest
example being the type II see-saw model, where the scalar-triplet mass,M∆, is directly connected with
theΛLFV , while the scale of lepton number violation isM2

∆/µ, whereµ is a dimensionful coupling in
the scalar potential of the triplet. In fact, it is the separation of scales that makes the phenomenology of
this model much richer at low energies than that of type I see-saw models in their simplest version.

If this possibility is realized, there would be many interesting consequences:

– lepton flavour violation could be measurable beyond neutrino oscillations,

– the scale of lepton flavour violation,ΛLFV , could be reached at the LHC.
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In recent years a lot of activity has been devoted to studyingpossible signals of neutrino masses at the
the LHC. Lepton number violation could give rise to spectacular signals at LHC, like same-charge lepton
pairs [73]. This signal has been studied in detail recently in various see-saw models. In one-scale models
of type I, neutrino masses restrict these processes to beinghighly suppressed beyond detectable levels
[74]. However, the separation of scales mentioned before, allows light enough triplets in the type II
see-saw to be pair-produced at LHC:

pp→ H++H−− → l+l+l−l−, (116)

leading to the powerful signal of same-charge lepton pairs.Not only can the invariant mass be recon-
structed from the two leptons pairs, but the flavour structure of the branching ratios to different leptons
is in one-to-one correspondence with the flavour structure of the neutrino mass matrix. Therefore the
putative measurement of these processes would provide direct information on the neutrino mass matrix
[75].

Solving the flavour problem of the Standard Model is surely a quixotic enterprise and we shall
need to explore as many avenues as we can. In recent years it has become increasingly clear that in
addition to quark flavour factories, we can obtain very valuable information on different aspects of this
puzzle also from LHC and lepton flavour factories.

8 Conclusions

The results of many beautiful experiments in the last decadehave demonstrated beyond doubt that neutri-
nos are massive and mix. The standard3ν scenario can explain in terms of four fundamental parameters
all available data, except that of the unconfirmed signal of LSND. The lepton flavour sector of the Stan-
dard Model is expected to be at least as complex as the quark one, even though we know it only partially.

The structure of the neutrino spectrum and mixing is quite different from the one that has been
observed for the quarks: there are large leptonic mixing angles and the neutrino masses are much smaller
than those of the remaining leptons. These peculiar features of the lepton sector strongly suggest that
leptons and quarks constitute two complementary approaches to understanding the origin of flavour in
the Standard Model. In fact, the smallness of neutrino masses can be naturally understood if there is new
physics beyond the electroweak scale.

Many fundamental questions remain to be answered in future neutrino experiments, and these can
have very important implications for our understanding of the Standard Model and of what lies beyond:
Are neutrinos Majorana particles? Are neutrino masses the result of a new physics scale? Is CP violated
in the lepton sector? Could neutrinos be the seed of the matter–antimatter asymmetry in the Universe?

A rich experimental programme lies ahead where fundamentalphysics discoveries are very likely
(almost warrantied). We can only hope that neutrinos will keep up with their old tradition and provide a
window to what lies beyond the Standard Model.
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Flavour physics and CP violation

Y. Nir
Weizmann Institute of Science, Rehovot, Israel

Abstract
This is a written version of a series of lectures aimed at graduate students
in particle theory/string theory/particle experiment familiar with the basics of
the Standard Model. We explain the many reasons for the interest in flavour
physics. We describe flavour physics and the related CP violation within the
Standard Model, and explain how the B-factories proved thatthe Kobayashi-
Maskawa mechanism dominates the CP violation that is observed in meson
decays. We explain the implications of flavour physics for new physics. We
emphasize the “new physics flavour puzzle”. As an explicit example, we ex-
plain how the recent measurements ofD0−D0

mixing constrain the supersym-
metric flavour structure. We explain how the ATLAS and CMS experiments
can solve the new physics flavour puzzle and perhaps shed light on the stan-
dard model flavour puzzle. Finally, we describe various interpretations of the
neutrino flavour data and their impact on flavour models.

1 What is flavour?

The term ‘flavours’ is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned thesame quantum charges. Within the Standard
Model, when thinking of its unbrokenSU(3)C × U(1)EM gauge group, there are four different types of
particles, each coming in three flavours:

– Up-type quarks in the(3)+2/3 representation:u, c, t.

– Down-type quarks in the(3)−1/3 representation:d, s, b.

– Charged leptons in the(1)−1 representation:e, µ, τ .

– Neutrinos in the(1)0 representation:ν1, ν2, ν3.

The term ‘flavour physics’ refers to interactions that distinguish between flavours.By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavours and do not constitute part of flavour
physics. Within the Standard Model, flavour physics refers to the weak and Yukawa interactions.

The term ‘flavour parameters’ refers to parameters that carry flavour indices. Within theStan-
dard Model, these are the nine masses of the charged fermionsand the four ‘mixing parameters’ (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark–
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for theW± interactions for lepton–antilepton pairs.

The term ‘flavour universal’ refers to interactions with couplings (or to flavour parameters) that
are proportional to the unit matrix in flavour space. Thus, the strong and electromagnetic interactions are
flavour universal1. An alternative term for ‘flavour universal’ is ‘flavour blind ’.

The term ‘flavour diagonal’ refers to interactions with couplings (or to flavour parameters) that
are diagonal, but not necessarily universal, in the flavour space. Within the Standard Model, the Yukawa
interactions of the Higgs particle are flavour diagonal in the mass basis.

1In the interaction basis, the weak interactions are also flavour universal, and one can identify the source of all flavour
physics in the Yukawa interactions among the gauge-interaction eigenstates.
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The term ‘flavour changing’ refers to processes where the initial and final flavour-numbers (that
is, the number of particles of a certain flavour minus the number of antiparticles of the same flavour) are
different. In ‘flavour-changing charged current’ processes, both up-type and down-type flavours, and/or
both charged lepton and neutrino flavours are involved. Examples are (i) muon decay viaµ→ eν̄iνj, and
(ii) K− → µ−ν̄j (which corresponds, at the quark level, tosū → µ−ν̄j). Within the Standard Model,
these processes are mediated by theW bosons and occur at tree level. In ‘flavour-changing neutral
current ’ (FCNC) processes, either up-type or down-type flavours butnot both, and/or either charged
lepton or neutrino flavours but not both, are involved. Examples are (i) muon decay viaµ → eγ and (ii)
KL → µ+µ− (which corresponds, at the quark level, tosd̄→ µ+µ−). Within the Standard Model, these
processes do not occur at tree level, and are often highly suppressed.

Another useful term is ‘flavour violation ’. We shall explain it later in these lectures.

2 Why is flavour physics interesting?
– Flavour physics can discover new physics or probe it beforeit is directly observed in experiments.

Here are some examples from the past:

– The smallness ofΓ(KL→µ+µ−)
Γ(K+→µ+ν) led to the prediction of a fourth (the charm) quark.

– The size of∆mK led to a successful prediction of the charm mass.

– The size of∆mB led to a successful prediction of the top mass.

– The measurement ofεK led to the prediction of the third generation.

– CP violation is closely related to flavour physics. Within the Standard Model, there is a single CP-
violating parameter, the Kobayashi–Maskawa phaseδKM [1]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavour-changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of dark matter imply that there exists
new physics at, or below, the TeV scale. If such new physics had a generic flavour structure, it
would contribute to flavour-changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes thenew physics flavour
puzzle.

– Most of the charged fermion flavour parameters are small andhierarchical. The Standard Model
does not provide any explanation of these features. This is the Standard Model flavour puzzle.
The puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

3 Flavour in the Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneoussymmetry breaking; (ii) The representations
of fermions and scalars. The Standard Model (SM) is defined asfollows:
(i) The gauge symmetry is

GSM = SU(3)C × SU(2)L × U(1)Y . (1)

It is spontaneously broken by the VEV of a single Higgs scalar, φ(1, 2)1/2 (〈φ0〉 = v/
√
2):

GSM → SU(3)C × U(1)EM. (2)

(ii) There are three fermion generations, each consisting of five representations ofGSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1. (3)

2

Y. NIR

280



3.1 The interactions basis

The Standard Model Lagrangian,LSM, is the most general renormalizable Lagrangian that is consistent
with the gauge symmetry (1), the particle content (3) and thepattern of spontaneous symmetry breaking
(2). It can be divided into three parts:

LSM = Lkinetic + LHiggs+ LYukawa. (4)

For the kinetic terms, to maintain gauge invariance, one hasto replace the derivative with a covari-
ant derivative:

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY. (5)

HereGµa are the eight gluon fields,W µ
b the three weak interaction bosons, andBµ the single hypercharge

boson. TheLa’s areSU(3)C generators (the3 × 3 Gell-Mann matrices12λa for triplets,0 for singlets),
theTb’s areSU(2)L generators (the2× 2 Pauli matrices12τb for doublets,0 for singlets), and theY ’s are
theU(1)Y charges. For example, for the quark doubletsQL, we have

Lkinetic(QL) = iQLiγµ

(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ

)
δijQLj, (6)

while for the lepton doubletsLIL, we have

Lkinetic(LL) = iLLiγµ

(
∂µ +

i

2
gW µ

b τb −
i

2
g′Bµ

)
δijLLj . (7)

The unit matrix in flavour space,δij, signifies that these parts of the interaction Lagrangian are flavour
universal. In addition, they conserve CP.

The Higgs potential, which describes the scalar self-interactions, is given by

LHiggs = µ2φ†φ− λ(φ†φ)2. (8)

For the Standard Model scalar sector, where there is a singledoublet, this part of the Lagrangian is also
CP conserving.

The quark Yukawa interactions are given by

−LqY = Y d
ijQLiφDRj + Y u

ijQLiφ̃URj + h.c., (9)

(whereφ̃ = iτ2φ
†) while the lepton Yukawa interactions are given by

−LℓY = Y e
ijLLiφERj + h.c. (10)

This part of the Lagrangian is, in general, flavour dependent(that is,Y f 6∝ 1) and CP violating.

3.2 Global symmetries

In the absence of the Yukawa matricesY d, Y u andY e, the SM has a largeU(3)5 global symmetry:

Gglobal(Y
u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (11)

where

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E ,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ× U(1)E . (12)
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Out of the fiveU(1) charges, three can be identified with baryon number (B), lepton number (L), and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remainingU(1) groups can
be identified with the PQ symmetry whereby the Higgs andDR, ER fields have opposite charges, and
with a global rotation ofER only.

The point that is important for our purposes is thatLkinetic+LHiggs respect the non-Abelian flavour
symmetryS(3)3q × SU(3)2ℓ , under which

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (13)

where theVi are unitary matrices. The Yukawa interactions (9) and (10) break the global symmetry,

Gglobal(Y
u,d,e 6= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (14)

(Of course, the gaugedU(1)Y also remains a good symmetry.) Thus, the transformations ofEq. (13) are
not a symmetry ofLSM. Instead, they correspond to a change of the interaction basis. These observations
also offer an alternative way of defining flavour physics: it refers to interactions that break theSU(3)5

symmetry (13). Thus, the term ‘flavour violation ’ is often used to describe processes or parameters that
break the symmetry.

One can think of the quark Yukawa couplings as spurions that break the globalSU(3)3q symmetry
(but are neutral underU(1)B),

Y u ∼ (3, 3̄, 1)SU(3)3q
, Y d ∼ (3, 1, 3̄)SU(3)3q

, (15)

and of the lepton Yukawa couplings as spurions that break theglobalSU(3)2ℓ symmetry (but are neutral
underU(1)e × U(1)µ × U(1)τ ),

Y e ∼ (3, 3̄)SU(3)2ℓ
. (16)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavour suppression factors (see Section 5), and the idea of minimal flavour violation (see Section 7).

3.3 Counting parameters

How many independent parameters are there inLqY? The two Yukawa matrices,Y u andY d, are3 × 3
and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern ofGglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three3× 3 unitary matrices minus the phase
related toU(1)B). For example, we can use the unitary transformationsQL → VQQL, UR → VUUR,
andDR → VDDR to lead to the following interaction basis:

Y d = λd, Y u = V †λu, (17)

whereλd,u are diagonal,

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), (18)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavour parameters: 9 real ones and a singlephase. In the mass basis, we shall identify
the nine real parameters as six quark masses and three mixingangles, while the single phase isδKM .

How many independent parameters are there inLℓY? The Yukawa matrixY e is 3×3 and complex.
Consequently, there are 9 real and 9 imaginary parameters inthis matrix. There is, however, freedom
to remove 6 real and 9 imaginary parameters (the number of parameters in two3 × 3 unitary matrices
minus the phases related toU(1)3). For example, we can use the unitary transformationsLL → VLLL
andER → VEER to lead to the following interaction basis:

Y e = λe = diag(ye, yµ, yτ ). (19)

4
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We conclude that there are three real lepton flavour parameters. In the mass basis, we shall identify these
parameters as the three charged lepton masses. We must, however, modify the model when we take into
account the evidence for neutrino masses.

3.4 The mass basis

Upon the replacementRe(φ0) → v+H0√
2

, the Yukawa interactions (9) give rise to the mass matrices

Mq =
v√
2
Y q. (20)

The mass basis corresponds, by definition, to diagonal mass matrices. We can always find unitary matri-
cesVqL andVqR such that

VqLMqV
†
qR =Mdiag

q ≡ v√
2
λq. (21)

The four matricesVdL, VdR, VuL, andVuR are then the ones required to transform to the mass basis. For
example, if we start from the special basis (17), we haveVdL = VdR = VuR = 1 andVuL = V . The
combinationVuLV

†
dL is independent of the interaction basis from which we start this procedure.

We denote the left-handed quark mass eigenstates asUL andDL. The charged-current interactions
for quarks [that is the interactions of the chargedSU(2)L gauge bosonsW±

µ = 1√
2
(W 1

µ ∓ iW 2
µ)], which

in the interaction basis are described by (6), have a complicated form in the mass basis:

−Lq
W± =

g√
2
ULiγ

µVijDLjW
+
µ + h.c. , (22)

whereV is the 3 × 3 unitary matrix (V V † = V †V = 1) that appeared in Eq. (17). For a general
interaction basis,

V = VuLV
†
dL. (23)

V is the Cabibbo–Kobayashi–Maskawa (CKM)mixing matrixfor quarks [1, 2]. As a result of the fact
thatV is not diagonal, theW± gauge bosons couple to quark mass eigenstates of different generations.
Within the Standard Model, this is the only source offlavour-changingquark interactions.

Exercise 1:Prove that, in the absence of neutrino masses, there is no mixing in the lepton sector.

Exercise 2:Prove that there is no mixing in theZ couplings. (In the jargon of physics, there are
no flavour-changing neutral currents at tree level.)

The detailed structure of the CKM matrix, its parametrization, and the constraints on its elements
are described in Appendix A.

4 Testing CKM

Measurements of rates, mixing, and CP asymmetries inB decays in the two B factories, BaBar and
Belle, and in the two Tevatron detectors, CDF and D0, signified a new era in our understanding of CP
violation. The progress is both qualitative and quantitative. Various basic questions concerning CP and
flavour violation have, for the first time, received answers based on experimental information. These
questions include, for example,

– Is the Kobayashi–Maskawa mechanism at work (namely, isδKM 6= 0)?

– Does the KM phase dominate the observed CP violation?

As a first step, one may assume the SM and test the overall consistency of the various measurements.
However, the richness of data from the B factories allows us to go a step further and answer these
questions model independently, namely allowing new physics to contribute to the relevant processes. We
here explain the way in which this analysis proceeds.
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4.1 SψKS

The CP asymmetry inB → ψKS decays plays a major role in testing the KM mechanism. Before
we explain the test itself, we should understand why the theoretical interpretation of the asymmetry is
exceptionally clean, and what are the theoretical parameters on which it depends, within and beyond the
Standard Model.

The CP asymmetry in neutral meson decays into final CP eigenstatesfCP is defined as follows:

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (24)

A detailed evaluation of this asymmetry is given in AppendixB. It leads to the following form:

AfCP
(t) = SfCP

sin(∆mt)−CfCP
cos(∆mt),

SfCP
≡ 2Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1− |λfCP
|2

1 + |λfCP
|2 , (25)

where
λfCP

= e−iφB (AfCP
/AfCP

) . (26)

HereφB refers to the phase ofM12 [see Eq. (B.23)]. Within the Standard Model, the corresponding
phase factor is given by

e−iφB = (V ∗
tbVtd)/(VtbV

∗
td) . (27)

The decay amplitudesAf andAf are defined in Eq. (B.1).

d or s

b q

q′

q

V
∗
qb

Vqq′

B
0

or

Bs
f

(a) tf

d or s

b q′

q

q

V
∗
q

u
b Vq

u
q′

q
u

B
0

or

Bs
f

(b) pf
qu

Fig. 1: Feynman diagrams for (a) tree and (b) penguin amplitudes contributing toB0 → f or Bs → f via a
b̄→ q̄qq̄′ quark-level process

TheB0 → J/ψK0 decay [3,4] proceeds via the quark transitionb̄→ c̄cs̄. There are contributions
from both tree (t) and penguin (pqu, wherequ = u, c, t is the quark in the loop) diagrams (see Fig. 1)
which carry different weak phases:

Af = (V ∗
cbVcs) tf +

∑

qu=u,c,t

(
V ∗
qubVqus

)
pquf . (28)

(The distinction between tree and penguin contributions isa heuristic one, the separation by the operator
that enters is more precise. For a detailed discussion of themore complete operator product approach,
which also includes higher order QCD corrections, see, for example, Ref. [5].) Using CKM unitarity,
these decay amplitudes can always be written in terms of justtwo CKM combinations:

AψK = (V ∗
cbVcs)TψK + (V ∗

ubVus)P
u
ψK , (29)

whereTψK = tψK + pcψK − ptψK andP uψK = puψK − ptψK . A subtlety arises in this decay that is

related to the fact thatB0 → J/ψK0 andB
0 → J/ψK0. A common final state, e.g.,J/ψKS , can
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be reached viaK0–K0 mixing. Consequently, the phase factor corresponding to neutral K mixing,
e−iφK = (V ∗

cdVcs)/(VcdV
∗
cs), plays a role:

AψKS

AψKS

= −
(VcbV

∗
cs)TψK + (VubV

∗
us)P

u
ψK(

V ∗
cbVcs

)
TψK +

(
V ∗
ubVus

)
P uψK

× V ∗
cdVcs
VcdV

∗
cs

. (30)

The crucial point is that, forB → J/ψKS and other̄b → c̄cs̄ processes, we can neglect theP u

contribution toAψK , in the SM, to an approximation that is better than one per cent:

|P uψK/TψK | × |Vub/Vcb| × |Vus/Vcs| ∼ (loop factor)× 0.1× 0.23 . 0.005. (31)

Thus, to an accuracy of better than one per cent,

λψKS
=

(
V ∗
tbVtd
VtbV

∗
td

)(
VcbV

∗
cd

V ∗
cbVcd

)
= −e−2iβ , (32)

whereβ is defined in Eq. (A.9), and consequently

SψKS
= sin 2β, CψKS

= 0 . (33)

(Below the per cent level, several effects modify this equation [6–9].)

Exercise 3: Show that, if theB → ππ decays were dominated by tree diagrams, thenSππ =
sin 2α.

Exercise 4:Estimate the accuracy of the predictionsSφKS
= sin 2β andCφKS

= 0.

When we consider extensions of the SM, we still do not expect any significant new contribu-
tion to the tree level decay,b → cc̄s, beyond the SMW -mediated diagram. Thus the expression
ĀψKS

/AψKS
= (VcbV

∗
cd)/(V

∗
cbVcd) remains valid, though the approximation of neglecting sub-dominant

phases can be somewhat less accurate than Eq. (31). On the other hand,M12, theB0–B
0

mixing ampli-
tude, can in principle get large and even dominant contributions from new physics. We can parametrize
the modification to the SM in terms of two parameters,r2d signifying the change in magnitude, and2θd
signifying the change in phase:

M12 = r2d e
2iθd MSM

12 (ρ, η). (34)

This leads to the following generalization of Eq. (33):

SψKS
= sin(2β + 2θd), CψKS

= 0 . (35)

The experimental measurements give the following ranges [10]:

SψKS
= 0.671 ± 0.024, CψKS

= 0.005 ± 0.019 . (36)

4.2 Self-consistency of the CKM assumption

The three-generation Standard Model has room for CP violation, through the KM phase in the quark
mixing matrix. Yet, one would like to make sure that CP is indeed violated by the SM interactions,
namely thatsin δKM 6= 0. If we establish that this is the case, we would further like to know whether the
SM contributions to CP violating observables are dominant.More quantitatively, we would like to put
an upper bound on the ratio between the new physics and the SM contributions.

As a first step, one can assume that flavour-changing processes are fully described by the SM, and
check the consistency of the various measurements with thisassumption. There are four relevant mixing
parameters, which can be taken to be the Wolfenstein parametersλ,A, ρ, andη defined in Eq. (A.4). The
values ofλ andA are known rather accurately [11] from, respectively,K → πℓν andb→ cℓν decays:

λ = 0.2257 ± 0.0010, A = 0.814 ± 0.022. (37)
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Moriond 09

CKM
f i t t e r

Fig. 2: Allowed region in theρ–η plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub/Vcb|), mass differences in theB0 (∆md) andBs (∆ms) neutral meson systems, and CP violation
in K → ππ (εK),B → ψK (sin 2β),B → ππ, ρπ, ρρ (α), andB → DK (γ). Taken from Ref. [12].

Then, one can express all the relevant observables as a function of the two remaining parameters,ρ and
η, and check whether there is a range in theρ–η plane that is consistent with all measurements. The list
of observables includes the following:

– The rates of inclusive and exclusive charmless semileptonic B decays depend on|Vub|2 ∝ ρ2+η2.

– The CP asymmetry inB → ψKS , SψKS
= sin 2β = 2η(1−ρ)

(1−ρ)2+η2 .

– The rates of variousB → DK decays depend on the phaseγ, whereeiγ = ρ+iη
ρ2+η2

.

– The rates of variousB → ππ, ρπ, ρρ decays depend on the phaseα = π − β − γ.

– The ratio between the mass splittings in the neutralB andBs systems is sensitive to|Vtd/Vts|2 =
λ2[(1− ρ)2 + η2].

– The CP violation inK → ππ decays,ǫK , depends in a complicated way onρ andη.

The resulting constraints are shown in Fig. 2.

The consistency of the various constraints is impressive. In particular, the following ranges forρ
andη can account for all the measurements [11]:

ρ = 0.135+0.031
−0.016, η = 0.349 ± 0.017. (38)

One can then make the following statement [13]:
Very likely, CP violation in flavour-changing processes is dominated by the Kobayashi–Maskawa
phase.

In the next two subsections, we explain how we can remove the phrase ‘very likely’ from this
statement, and how we can quantify the KM dominance.
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4.3 Is the Kobayashi–Maskawa mechanism at work?

In proving that the KM mechanism is at work, we assume that charged-current tree-level processes are
dominated by theW -mediated SM diagrams (see, for example, Ref. [14]). This isa very plausible
assumption. I am not aware of any viable well-motivated model where this assumption is not valid. Thus
we can use all tree-level processes and fit them toρ andη, as we did before. The list of such processes
includes the following:

1. Charmless semileptonicB-decays,b→ uℓν, measureRu [see Eq. (A.8)].

2. B → DK decays, which go through the quark transitionsb → cūs andb → uc̄s, measure the
angleγ [see Eq. (A.9)].

3. B → ρρ decays (and, similarly,B → ππ andB → ρπ decays) go through the quark transition
b → uūd. With an isospin analysis, one can determine the relative phase between the tree decay
amplitude and the mixing amplitude. By incorporating the measurement ofSψKS

, one can sub-
tract the phase from the mixing amplitude, finally providinga measurement of the angleγ [see
Eq. (A.9)].

In addition, we can use loop processes, but then we must allowfor new physics contributions, in
addition to the(ρ, η)-dependent SM contributions. Of course, if each such measurement adds a separate
mode-dependent parameter, then we do not gain anything by using this information. However, there are
a number of observables where the only relevant loop processisB0–B0 mixing. The list includesSψKS

,
∆mB, and the CP asymmetry in semileptonicB decays:

SψKS
= sin(2β + 2θd),

∆mB = r2d(∆mB)
SM,

ASL = −Re
(

Γ12

M12

)SM sin 2θd
r2d

+ Im
(

Γ12

M12

)SM cos 2θd
r2d

. (39)

As explained above, such processes involve two new parameters [see Eq. (34)]. Since there are three
relevant observables, we can further tighten the constraints in the(ρ, η) plane. Similarly, one can use
measurements related toBs–Bs mixing. One gains three new observables at the cost of two newparam-
eters (see, for example, Ref. [15]).

The results of such a fit, projected on theρ–η plane, can be seen in Fig. 3. It gives [12]

η = 0.44+0.05
−0.23 (3σ). (40)

[A similar analysis in Ref. [16] obtains the3σ range(0.31–0.46).] It is clear thatη 6= 0 is well estab-
lished:
The Kobayashi–Maskawa mechanism of CP violation is at work.

Another way to establish that CP is violated by the CKM matrixis to find, within the same proce-
dure, the allowed range forsin 2β [16]:

sin 2βtree = 0.76± 0.04. (41)

(Reference [12] finds0.82+0.02
−0.13.) Thus,β 6= 0 is well established.

The consistency of the experimental results (36) with the SMpredictions (33,41) means that the
KM mechanism of CP violation dominates the observed CP violation. In the next subsection, we make
this statement more quantitative.

4.4 How much can new physics contribute toB0–B0 mixing?

All that we need to do in order to establish whether the SM dominates the observed CP violation, and
to put an upper bound on the new physics contribution toB0–B0 mixing, is to project the results of
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Fig. 3: The allowed region in theρ–η plane, assuming that tree diagrams are dominated by the Standard Model [12]

the fit performed in the previous subsection on ther2d–2θd plane. If we find thatθd ≪ β, then the SM
dominance in the observed CP violation will be established.The constraints are shown in Fig. 4(a).
Indeed,θd ≪ β.

An alternative way to present the data is to use thehd, σd parametrization,

r2de
2iθd = 1 + hde

2iσd . (42)

While therd, θd parameters give the relation between the full mixing amplitude and the SM one, and
are convenient to apply to the measurements, thehd, σd parameters give the relation between the new
physics and SM contributions, and are more convenient in testing theoretical models:

hde
iσd =

MNP
12

MSM
12

. (43)

The constraints in thehd–σd plane are shown in Fig. 4(b). We can make the following two statements:

1. A new physics contribution to theB0–B
0

mixing amplitude that carries a phase that is significantly
different from the KM phase is constrained to lie below the20–30% level.

2. A new physics contribution to theB0–B
0

mixing amplitude which is aligned with the KM phase
is constrained to be at most comparable to the CKM contribution.

One can reformulate these statements as follows:

1. The KM mechanism dominates CP violation inB0–B
0

mixing.

2. The CKM mechanism is a major player inB0–B
0

mixing.
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Fig. 4: Constraints in the (a)r2d–2θd plane, and (b)hd–σd plane, assuming that new physics contributions to
tree-level processes are negligible [12]

5 The new physics flavour puzzle

It is clear that the Standard Model is not a complete theory ofNature:

1. It does not include gravity, and therefore it cannot be valid at energy scales abovemPlanck ∼
1019 GeV.

2. It does not allow for neutrino masses, and therefore it cannot be valid at energy scales above
mseesaw∼ 1015 GeV.

3. The fine-tuning problem of the Higgs mass and the puzzle of dark matter suggest that the scale
where the SM is replaced with a more fundamental theory is actually much lower,ΛNP . 1 TeV.

Given that the SM is only an effective low-energy theory, non-renormalizable terms must be added to
LSM of Eq. (4). These are terms of dimension higher than four in the fields which, therefore, have
couplings that are inversely proportional to the scale of new physicsΛNP. For example, the lowest-
dimension non-renormalizable terms are dimension five:

−Ldim−5
Yukawa=

Zνij
ΛNP

LILiL
I
Ljφφ+ h.c. (44)

These are the seesaw terms, leading to neutrino masses. We shall return to the topic of neutrino masses
in Section 8.

Exercise 5:How does the global symmetry breaking pattern (14) change when (44) is taken into
account?

Exercise 6:What is the number of physical lepton flavour parameters in this case? Identify these
parameters in the mass basis.

As concerns quark flavour physics, consider, for example, the following dimension-six, four-
fermion, flavour-changing operators:

L∆F=2 =
zsd
Λ2

NP
(dLγµsL)

2 +
zcu
Λ2

NP
(cLγµuL)

2 +
zbd
Λ2

NP
(dLγµbL)

2 +
zbs
Λ2

NP
(sLγµbL)

2. (45)

Each of these terms contributes to the mass splitting between the corresponding two neutral mesons.
For example, the termL∆B=2 ∝ (dLγµbL)

2 contributes to∆mB, the mass difference between the two

11

FLAVOUR PHYSICS AND CP VIOLATION

289



neutralB-mesons. We useMB
12 =

1
2mB

〈B0|L∆F=2|B0〉 and

〈B0|(dLaγµbLa)(dLbγµbLb)|B0〉 = −1

3
m2
Bf

2
BBB. (46)

Analogous expressions hold for the other neutral mesons2. This leads to∆mB/mB = 2|MB
12|/mB ∼

(|zbd|/3)(fB/ΛNP)
2. Experiments give, for CP conserving observables (the experimental evidence for

∆mD is at the3σ level):

∆mK/mK ∼ 7.0× 10−15,

∆mD/mD ∼ 8.7× 10−15,

∆mB/mB ∼ 6.3× 10−14,

∆mBs/mBs ∼ 2.1× 10−12, (47)

and for CP violating ones

ǫK ∼ 2.3× 10−3,

AΓ/yCP ∼< 0.2,

SψKS
= 0.67± 0.02,

Sψφ ∼< 1. (48)

These measurements give then the following constraints:

ΛNP ∼>





√
zsd 1× 103 TeV ∆mK√
zcu 1× 103 TeV ∆mD√
zbd 4× 102 TeV ∆mB√
zbs 7× 101 TeV ∆mBs

(49)

and, for maximal phases,

ΛNP ∼>





√
zsd 2× 104 TeV ǫK√
zcu 3× 103 TeV AΓ√
zbd 8× 102 TeV SψK√
zbs 7× 101 TeV Sψφ

(50)

If the new physics has a generic flavour structure, that iszij = O(1), then its scale must be above
103–104 TeV (or, if the leading contributions involve electroweak loops, above102–103 TeV).3

If indeedΛNP ≫ TeV, it means that we have misinterpreted the hints from the fine-tuning problem
and the dark matter puzzle.There is, however, another way to look at these constraints:

zsd ∼< 8× 10−7 (ΛNP/TeV)2,

zcu ∼< 5× 10−7 (ΛNP/TeV)2,

zbd ∼< 5× 10−6 (ΛNP/TeV)2,

zbs ∼< 2× 10−4 (ΛNP/TeV)2, (51)

zIsd ∼< 6× 10−9 (ΛNP/TeV)2,

2The PDG [11] quotes the following values, extracted from leptonic charged meson decays:fK ≈ 0.16 GeV, fD ≈
0.23 GeV,fB ≈ 0.18 GeV. We further usefBs ≈ 0.20 GeV.

3The bounds from the corresponding four-fermi terms with LR structure, instead of the LL structure of Eq. (45), are even
stronger.
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zIcu ∼< 1× 10−7 (ΛNP/TeV)2,

zIbd ∼< 1× 10−6 (ΛNP/TeV)2,

zIbs ∼< 2× 10−4 (ΛNP/TeV)2. (52)

It could be that the scale of new physics is of order TeV, but its flavour structure is far from generic.

One can use that language of effective operators also for theSM, integrating out all particles
significantly heavier than the neutral mesons (that is, the top, the Higgs, and the weak gauge bosons).
Thus the scale isΛSM ∼ mW . Since the leading contributions to neutral meson mixings come from
box diagrams, thezij coefficients are suppressed byα2

2. To identify the relevant flavour suppression
factor, one can employ the spurion formalism. For example, the flavour transition that is relevant to
B0–B0 mixing involvesdLbL which transforms as(8, 1, 1)SU(3)3q

. The leading contribution must then

be proportional to(Y uY u†)13 ∝ y2t VtbV
∗
td. Indeed, an explicit calculation (using VIA for the matrix

element and neglecting QCD corrections) gives4

2MB
12

mB
≈ −α

2
2

12

f2B
m2
W

S0(xt)(VtbV
∗
td)

2, (53)

wherexi = m2
i /m

2
W and

S0(x) =
x

(1− x)2

[
1− 11x

4
+
x2

4
− 3x2 lnx

2(1 − x)

]
. (54)

Similar spurion analyses, or explicit calculations, allowus to extract the weak and flavour suppression
factors that apply in the SM:

Im(zSM
sd ) ∼ α2

2y
2
t |VtdVts|2 ∼ 1× 10−10,

zSM
sd ∼ α2

2y
2
c |VcdVcs|2 ∼ 5× 10−9,

zSM
bd ∼ α2

2y
2
t |VtdVtb|2 ∼ 7× 10−8,

zSM
bs ∼ α2

2y
2
t |VtsVtb|2 ∼ 2× 10−6. (55)

(We did not includezSM
cu in the list because it requires a more detailed consideration. The naively leading

short distance contribution is∝ α2
2(y

4
s/y

2
c )|VcsVus|2 ∼ 5×10−13. However, higher dimension terms can

replace ay2s factor with(Λ/mD)
2 [18]. Moreover, long distance contributions are expected to dominate.

In particular, peculiar phase space effects [19, 20] have been identified which are expected to enhance
∆mD to within an order of magnitude of its measured value.)

It is clear then that contributions from new physics atΛNP ∼ 1 TeV should be suppressed by
factors that are comparable to or smaller than the SM ones. Why does that happen? This is the new
physics flavour puzzle.

The fact that the flavour structure of new physics at the TeV scale must be non-generic means that
flavour measurements are a good probe of the new physics. Perhaps the best-studied example is that of
supersymmetry. Here, the spectrum of the superpartners andthe structure of their couplings to the SM
fermions will allow us to probe the mechanism of dynamical supersymmetry breaking.

6 Lessons for supersymmetry fromD0–D
0

mixing

Interesting experimental results concerningD0–D
0

mixing have recently been achieved by the BELLE
and BaBar experiments. For the first time, there is evidence for width splitting [21,22] and mass splitting

4A detailed derivation can be found in Appendix B of Ref. [17].
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(of order one per cent) between the two neutralD-mesons. Allowing for indirect CP violation, the world
averages of the mixing parameters are [10]

x = (1.00 ± 0.25) × 10−2,

y = (0.77 ± 0.18) × 10−2. (56)

It is important to note, however, that there is no evidence for CP violation in this mixing [10]:

1− |q/p| = +0.06 ± 0.14,

φD = −0.04 ± 0.09. (57)

We use this recent experimental information to draw important lessons on supersymmetry. This demon-
strates how flavour physics—at the GeV scale—provides a significant probe of supersymmetry—at the
TeV scale.

6.1 Neutral meson mixing with supersymmetry

We consider the contributions from the box diagrams involving the squark doublets of the first two
generations,̃QL1,2, to theD0–D

0
andK0–K

0
mixing amplitudes. The contributions that are relevant to

the neutralD system are proportional toKu
2iK

u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino

couplings to a left-handed up quark and their supersymmetric squark partners. (In the language of the
mass insertion approximation, we calculate here the contribution that is∝ [(δuLL)12]

2.) The contributions
that are relevant to the neutralK system are proportional toKd∗

2iK
d
1iK

d∗
2jK

d
1j , whereKd is the mixing

matrix of the gluino couplings to a left-handed down quark and their supersymmetric squark partners
(∝ [(δdLL)12]

2 in the mass insertion approximation). We work in the mass basis for both quarks and
squarks. A detailed derivation [23] is given in Appendix C. It gives

MD
12 =

α2
smDf

2
DBDηQCD

108m2
ũ

[11f̃6(xu) + 4xuf6(xu)]
(∆m2

ũ)
2

m4
ũ

(Ku
21K

u∗
11 )

2, (58)

MK
12 =

α2
smKf

2
KBKηQCD

108m2
d̃

[11f̃6(xd) + 4xdf6(xd)]
(∆m̃2

d̃
)2

m̃4
d

(Kd∗
21K

d
11)

2. (59)

Heremũ,d̃ is the average mass of the corresponding two squark generations,∆m2
ũ,d̃

is the mass-squared

difference, andxu,d = m2
g̃/m

2
ũ,d̃

.

One can immediately identify three generic ways in which supersymmetric contributions to neutral
meson mixing can be suppressed:

1. Heaviness:mq̃ ≫ 1 TeV.

2. Degeneracy:∆m2
q̃ ≪ m2

q̃.

3. Alignment:Kd,u
21 ≪ 1.

When heaviness is the only suppression mechanism, as in split supersymmetry [24], the squarks are very
heavy and supersymmetry no longer solves the fine tuning problem5. If we want to maintain super-
symmetry as a solution to the fine tuning problem, either degeneracy, or alignment, or a combination of
both is needed. This means that the flavour structure of supersymmetry is not generic, as argued in the
previous section.

The2× 2 mass-squared matrices for the relevant squarks have the following form:

M̃2
UL

= m̃2
QL

+

(
1

2
− 2

3
s2W

)
m2
Z cos 2β +MuM

†
u,

5When the first two squark generations are mildly heavy and thethird generation is light, as in effective supersymmetry [25],
the fine tuning problem is still solved, but additional suppression mechanisms are needed.
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M̃2
DL

= m̃2
QL

−
(
1

2
− 1

3
s2W

)
m2
Z cos 2β +MdM

†
d . (60)

We note the following features of the various terms:

– m̃2
QL

is a2× 2 Hermitian matrix of soft supersymmetry breaking terms. It does not breakSU(2)L

and consequently it is common tõM2
UL

andM̃2
DL

. On the other hand, it breaks in general the
SU(2)Q flavour symmetry.

– The terms proportional tom2
Z are the D terms. They break supersymmetry (since they involve

DT3 6= 0 andDY 6= 0) andSU(2)L but conserveSU(2)Q.

– The terms proportional toM2
q come from theFUR

andFDR
terms. They break the gaugeSU(2)L

and the globalSU(2)Q but, sinceFUR
= FDR

= 0, conserve supersymmetry.

Given that we are interested in squark masses close to the TeVscale (and the experimental lower bounds
are of order300 GeV), the scale of the eigenvalues ofm̃2

QL
is much higher thanm2

Z which, in turn, is

much higher thanm2
c , the largest eigenvalue inMqM

†
q (in the two-generation framework). We can draw

the following conclusions:

1. m2
ũ = m2

d̃
≡ m2

q̃ up to effects of orderm2
Z , namely to an accuracy ofO(10−2).

2. ∆m2
ũ = ∆m2

d̃
≡ ∆m2

q̃ up to effects of orderm2
c , namely to an accuracy ofO(10−5).

3. SinceKu ≃ VuLṼ
†
L andKd ≃ VdLṼ

†
L [the matricesVqL are defined in Eq. (21), whilẽVL diag-

onalizesm̃2
QL

], the mixing matricesKu andKd are different from each other, but the following
relation to the CKM matrix holds to an accuracy ofO(10−5):

KuKd† = V. (61)

6.2 Non-degenerate squarks at the LHC?

Equations (58) and (59) can be translated into our generic language:

ΛNP = mq̃, (62)

zcu = z12 sin
2 θu,

zsd = z12 sin
2 θd,

z12 =
11f̃6(x) + 4xf6(x)

18
α2
s

(
∆m̃2

q̃

m2
q̃

)2

, (63)

with Eq. (61) giving
sin θu − sin θd ≈ sin θc = 0.23. (64)

We now ask the following question: Is it possible that the first two-generation squarks,̃QL1,2, are
accessible to the LHC (mq̃ . 1 TeV), and are not degenerate (∆m2

q̃/m
2
q̃ = O(1))?

To answer this question, we use Eqs. (51) and (52). ForΛNP . 1 TeV, we havezcu . 5 × 10−7

and, for a phase that is6≪ 0.1, zsd . 6 × 10−8. On the other hand, for non-degenerate squarks, and,
for example,11f̃6(1) + 4f6(1) = 1/6, we havez12 = 8 × 10−5. Then we need, simultaneously,
sin θu . 0.08 andsin θd . 0.03, but this is inconsistent with Eq. (64).

There are three ways out of this situation:

1. The first two generation squarks are quasi-degenerate. The minimal level of degeneracy is(m̃2 −
m̃1)/(m̃2 + m̃1) . 0.1. It could be the result of RGE [26]. However, for maximal phases, the
bound is even stronger, of order 0.04 [27], which is difficultto achieve with just RGE effects.
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2. The first two generation squarks are heavy. Puttingsin θu = 0.23 andsin θd ≈ 0, as in models of
alignment [28,29], Eq. (50) leads to

mq̃ & 3 TeV . (65)

3. The ratiox = m̃2
g/m̃

2
q is in a fine-tuned region of parameter space where there are accidental

cancellations in11f̃6(x) + 4xf6(x). For example, forx = 2.33, this combination is∼ 0.003 and
the bound (65) is relaxed by a factor of 7.

Barring accidental cancellations, themodel-independentconclusion is that, if the first two generations
of squark doublets are within the reach of the LHC, they must be quasi-degenerate [30, 31]. Analogous
conclusions can be drawn for many TeV-scale new physics scenarios: a strong level of degeneracy is
required (for definitions and detailed analysis, see Ref. [27]).

Exercise 7:DoesKd
31 ∼ |Vub| suffice to satisfy the∆mB constraint with neither degeneracy nor

heaviness? (Use the two-generation approximation and ignore the second generation.)

Is there a natural way to make the squarks degenerate? Examining Eqs. (60) we learn that degen-
eracy requires̃m2

QL
≃ m̃2

q̃1. We have mentioned already that flavour universality is a generic feature of
gauge interactions. Thus the requirement of degeneracy is perhaps a hint that supersymmetry breaking
is gauge mediatedto the MSSM fields.

7 Flavour at the LHC

The LHC will study the physics of electroweak symmetry breaking. There are high hopes that it will
discover not only the Higgs, but also shed light on the fine-tuning problem that is related to the Higgs
mass. Here, we focus on the issue of how, through the study of new physics, the LHC can shed light on
the new physics flavour puzzle.

7.1 Minimal flavour violation (MFV)

If supersymmetry breaking is gauge mediated, the squark mass matrices of Eq. (60), and those for the
SU(2)-singlet squarks, have the following form at the scaleof mediationmM :

M̃2
UL

(mM ) =
(
m2
Q̃L

+DUL

)
1+MuM

†
u,

M̃2
DL

(mM ) =
(
m2
Q̃L

+DDL

)
1+MdM

†
d ,

M̃2
UR

(mM ) =
(
m2
ŨR

+DUR

)
1+M †

uMu,

M̃2
DR

(mM ) =
(
m2
D̃R

+DDR

)
1+M †

dMd, (66)

whereDqA = (T3)qA − (QEM)qAs
2
Wm

2
Z cos 2β are theD-term contributions. Here, the only source of

theSU(3)3q breaking are the SM Yukawa matrices.

This statement holds also when the renormalization group evolution is applied to find the form of
these matrices at the weak scale. Taking the scale of the softbreaking termsmq̃A to be somewhat higher
than the electroweak breaking scalemZ allows us to neglect theDqA andMq terms in (66). Then we
obtain

M̃2
QL

(mZ) ∼ m2
Q̃L

(
r31+ cuYuY

†
u + cdYdY

†
d

)
,

M̃2
UR

(mZ) ∼ m2
ŨR

(
r31+ cuRY

†
uYu

)
,

M̃2
DR

(mZ) ∼ m2
D̃R

(
r31+ cdRY

†
d Yd

)
. (67)
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Herer3 represent the universal RGE contribution that is proportional to the gluino mass (r3 = O(6) ×
(M3(mM )/mq̃(mM ))) and thec-coefficients depend logarithmically onmM/mZ and can be ofO(1)
whenmM is not far below the GUT scale.

Models of gauge mediated supersymmetry breaking (GMSB) provide a concrete example of a
large class of models that obey a simple principle calledminimal flavour violation(MFV) [32]. This
principle guarantees that low-energy flavour-changing processes deviate only very little from the SM
predictions. The basic idea can be described as follows. Thegauge interactions of the SM are universal
in flavour space. The only breaking of this flavour universality comes from the three Yukawa matrices,
YU , YD, andYE. If this remains true in the presence of the new physics, namely YU , YD, andYE are the
only flavour non-universal parameters, then the model belongs to the MFV class.

Let us now formulate this principle in a more formal way, using the language of spurions that
we presented in Section 3.2. The Standard Model with vanishing Yukawa couplings has a large global
symmetry of Eqs. (11) and (12). In this section we concentrate only on the quarks. The non-Abelian part
of the flavour symmetry for the quarks isSU(3)3q of Eq. (12) with the three generations of quark fields
transforming as follows:

QL(3, 1, 1), UR(1, 3, 1), DR(1, 1, 3). (68)

The Yukawa interactions,
LY = QLYDDRH +QLYUURHc, (69)

(Hc = iτ2H
∗) break this symmetry. The Yukawa couplings can thus be thought of as spurions with the

following transformation properties underSU(3)3q [see Eq. (15)]:

YU ∼ (3, 3̄, 1), YD ∼ (3, 1, 3̄). (70)

When we say ‘spurions’, we mean that we pretend that the Yukawa matrices are fields which transform
under the flavour symmetry, and then require that all the Lagrangian terms, constructed from the SM
fields,YD andYU , must be (formally) invariant under the flavour groupSU(3)3q . Of course, in reality,
LY breaksSU(3)3q precisely becauseYD,U arenot fields and do not transform under the symmetry.

The idea of minimal flavour violation is relevant to extensions of the SM, and can be applied in
two ways:

1. If we consider the SM as a low-energy effective theory, then all higher-dimension operators, con-
structed from SM fields andY spurions, are formally invariant underGglobal.

2. If we consider a full high-energy theory that extends the SM, then all operators, constructed from
SM and the new fields, and fromY spurions, are formally invariant underGglobal.

Exercise 8: Use the spurion formalism to argue that, in MFV models, theKL → π0νν̄ decay
amplitude is proportional toy2t VtdV

∗
ts.

Examples of MFV models include models of supersymmetry withgauge- or anomaly-mediation
of its breaking. If the LHC discovers new particles that couple to the SM fermions, then it will be able
to test solutions to the new physics flavour puzzle such as MFV[33]. Much of its power to test such
frameworks is based on identifying top and bottom quarks.

To understand this statement, we note that the spurionsYU andYD can always be written in terms
of the two diagonal Yukawa matricesλu andλd and the CKM matrixV , see Eqs. (17) and (18). Thus,
the only source of quark flavour-changing transitions in MFVmodels is the CKM matrix. Next, note that
to an accuracy that is better thanO(0.05), we can write the CKM matrix as follows:

V =




1 0.23 0
−0.23 1 0

0 0 1


 . (71)
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Exercise 9:The approximation (71) should be intuitively obvious to top-physicists, but definitely
counter-intuitive to bottom-physicists. (Some of them have dedicated a large part of their careers to
experimental or theoretical efforts to determineVcb andVub.) What does the approximation imply for the
bottom quark? When we take into account that it is only good toO(0.05), what would the implications
be?

We learn that the third generation of quarks is decoupled, toa good approximation, from the first
two. This, in turn, means that any new particle that couples to the SM quarks (think, for example, of
heavy quarks in vector-like representations ofGSM), decays into either a third-generation quark, or into
a non-third-generation quark, but not to both. For example,in Ref. [33], MFV models with additional
charge−1/3, SU(2)L-singlet quarks,B′, were considered. A concrete test of MFV was proposed, based
on the fact that the largest mixing effect involving the third generation is of order|Vcb|2 ∼ 0.002: Is the
following prediction, concerning events ofB′ pair production, fulfilled?

Γ(B′B′ → Xq1,2q3)

Γ(B′B′ → Xq1,2q1,2) + Γ(B′B′ → Xq3q3)
. 10−3. (72)

If not, then MFV is excluded.

7.2 Supersymmetric flavour at the LHC

One can think of analogous tests in the supersymmetric framework [34–39]. Here, there is also a generic
prediction that, in each of the three sectors (QL, UR,DR), squarks of the first two generations are quasi-
degenerate, and do not decay into third-generation quarks.Squarks of the third generation can be sepa-
rated in mass (though, for smalltan β, the degeneracy in thẽDR sector is threefold), and decay only to
third-generation quarks.

It is not necessary, however, that the mediation of supersymmetry breaking be MFV. Examples
of natural and viable solutions to the supersymmetric flavour problem that are not MFV include the
following:

1. The leading contribution to the soft supersymmetry breaking terms is gauge mediated, and there-
fore MFV, but there are subleading contributions that are gravity mediated and provide new sources
of flavour and CP violation [34, 39]. The gravity mediated contributions could either have some
structure (dictated, for example, by a Froggatt–Nielsen symmetry [34] or by localization in extra
dimensions [40]) or be anarchical [41].

2. The first two sfermion generations are heavy, and their mixing with the third generation is sup-
pressed (for a recent analysis, see Ref. [42]). These features can come, for example, from confor-
mal dynamics [43].

Such frameworks have different predictions concerning themass splitting between sfermion gen-
erations and the flavour decomposition of the sfermion mass eigenstates. Note that measurements of
flavour-changing neutral current processes are only sensitive to the products of the form

δij =
∆m̃2

ij

m̃2
KijK

∗
jj , (73)

where∆m̃2
ij is the mass-squared splitting between the sfermion generations i andj, m̃2 is their average

mass-squared, andK is the mixing matrix of gaugino couplings to these sfermions. On the other hand,
the LHC experiments—ATLAS and CMS—can, at least in principle, measure the mass splitting and the
mixing separately [37].

The present situation is depicted schematically in Fig. 5(a). Flavour factories have provided only
upper bounds on deviations of FCNC processes, such asµ → eγ orD0–D

0
mixing, from the Standard
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Model predictions. In the supersymmetric framework, such bounds translate into an upper bound on aδij
parameter of Eq. (73), corresponding to the blue region in the figure. The supersymmetric flavour puzzle
can be stated as the question of why the region in the upper right corner—where the flavour parameters
are of order one—is excluded. MFV often puts us in the lower left corner of the plot, far from the
experimental constraints (this is particularly true forδ12 parameters).

The optimal future situation is depicted schematically in Fig. 5(b). Imagine that a flavour factory
does provide evidence for new physics, such as observation of Γ(µ → eγ) 6= 0 or CP violation inD0–

D
0

mixing. This will constrain the correspondingδ parameter, which is shown as the blue region in the
figure. If ATLAS/CMS measure the corresponding sfermion mass splitting and/or mixing, we shall get
a small allowed region in this flavour plane.

(a)

EXCLUDED

MFV

0
0

1

1
Kij

mj - mi
mj + mi

(b)

LHCb

ATLAS/CMS

0
0

1

1
Kij

mj - mi
mj + mi

Fig. 5: Schematic description of the constraints in the plane of sfermion mass-squared splitting,∆m̃2
ij/m̃

2, and
mixing,KijK

∗
jj : (a) Upper bounds from not observing any deviation from the SM predictions in present experi-

ments; (b) Hypothetical future situation, where deviations have been observed in flavour factories (such as LHCb,
a super-B factory, aµ → eγ measurement, etc.) and the mass splitting and flavour decomposition have been
measured by ATLAS/CMS.

If we have at our disposal three such consistent measurements (rate of FCNC process, spectrum
and splitting), then we shall understand the mechanism by which supersymmetry has its flavour violation
suppressed. This will provide strong hints about the mechanism of supersymmetry breaking mediation.

If the sfermions are quasi-degenerate, then the mixing is determined by the small corrections to
the unit mass-squared matrix. As mentioned above, the structure of such corrections may be dictated by
the same symmetry or dynamics that gives the structure of theYukawa couplings. If that is the case, then
the measurement of the flavour decomposition might shed light on the Standard Model flavour puzzle.

We conclude that measurements at the LHC related to new particles that couple to the SM fermions
are likely to teach us much more about flavour physics.

8 Neutrino anarchy versus quark hierarchy

A detailed presentation of the physics and the formalism of neutrino flavour transitions is given in Ap-
pendix D for both vacuum oscillations (D.1) and the matter transitions (D.2). It follows Ref. [44].
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Exercise 10: For atmosphericνµ’s with E ∼ 1 GeV, the flux coming from above hasPµµ(L ∼
10 km) ≈ 1, while the flux from below hasPµµ(L ∼ 104 km) ≈ 0.5. Assuming that for the flux coming
from below the oscillations are averaged out, estimate∆m2 andsin2 2θ.

Exercise 11: For solar νe’s, the transition between matter (βMSW > 1) and vacuum (βMSW <
cos 2θ) flavour transitions occurs aroundE ∼ 2 MeV. The transition probability is measured to be
roughlyPee ∼ 0.30 for βMSW> 1. Estimate∆m2 andθ and predictPee for βMSW≪ 1.

The derived ranges for the three mixing angles and two mass-squared differences at1σ are [45]

∆m2
21 = (7.9 ± 0.3) × 10−5 eV2, |∆m2

32| = (2.6 ± 0.2)× 10−3 eV2,

sin2 θ12 = 0.31 ± 0.02, sin2 θ23 = 0.47± 0.07, sin2 θ13 = 0+0.008
−0.0 . (74)

The3σ range for the matrix elements ofU are the following [45]:

|U | =



0.79 → 0.86 0.50 → 0.61 0.00 → 0.20
0.25 → 0.53 0.47 → 0.73 0.56 → 0.79
0.21 → 0.51 0.42 → 0.69 0.61 → 0.83


 . (75)

8.1 New physics

The simplest and most straightforward lesson of the evidence for neutrino masses is also the most strik-
ing one: there is new physics beyond the Standard Model. Thisis the first experimental result that is
inconsistent with the SM.

Most likely, the new physics is related to the existence ofGSM-singlet fermions at some high
energy scale that induce, at low energies, the effective terms of Eq. (44) through the seesaw mechanism.
The existence of heavy singlet fermions is predicted by manyextensions of the SM, especially by GUTs
[beyondSU(5)] and left–right-symmetric theories. The seesaw mechanismcould also be driven by an
SU(2)L-triplet fermion.

There are other possibilities. In particular, neutrino masses can be generated without introducing
any new fermions beyond those of the SM. Instead, the existence of a scalar∆L(1, 3)+1, that is, an
SU(2)L-triplet, is required. The smallness of the neutrino massesis related here to the smallness of the
vacuum expectation value〈∆0

L〉 (required also by the success of theρ = 1 relation) and does not have a
generic natural explanation.

In left–right-symmetric models, however, where the breaking ofSU(2)R × U(1)B-L → U(1)Y is
induced by the VEV of anSU(2)R-triplet, ∆R, there must exist also anSU(2)L-triplet scalar. Further-
more, the Higgs potential leads to an order of magnitude relation between the various VEVs,〈∆0

L〉〈∆0
R〉 ∼

v2, and the smallness of〈∆0
L〉 is correlated with the high scale ofSU(2)R breaking. This situation can

be thought of as a seesaw of VEVs. In this model there are, however, also SM-singlet fermions. The
light neutrino masses arise from both the seesaw mechanism (‘type I’) and the triplet VEV (‘type II’).

Neutrino masses could also be of the Dirac type. Here, again,singlet fermions are introduced, but
lepton number is imposed by hand. This possibility is disfavoured by theorists since it is likely that global
symmetries are violated by gravitational effects. Furthermore, the lightness of the neutrinos (compared
to charged fermions) is unexplained.

Another possibility is that neutrino masses are generated by mixing with singlet fermions but the
mass scale of these fermions is not high. Here again the lightness of neutrino masses remains a puzzle.
The best known example of such a scenario is the framework of supersymmetry withoutR parity.

Let us emphasize that the seesaw mechanism or, more generally, the extension of the SM with
non-renormalizable terms, is the simplest explanation of neutrino masses. Models in which neutrino
masses are generated by new physics at low energy imply a muchmore dramatic departure from the SM.
Furthermore, the existence of seesaw masses is an unavoidable prediction of various extensions of the
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SM. In contrast, many (but not all) of the low-energy mechanisms are introduced for the specific purpose
of generating neutrino masses.

8.2 The scale of new physics

Equation (44) gives a light neutrino mass matrix:

(Mν)ij = Zνij
v2

ΛNP
. (76)

It is straightforward to use the measured neutrino masses ofEq. (74) in combination with Eq. (76) to
estimate the scale of new physics that is relevant to their generation. In particular, if there is no quasi-
degeneracy in the neutrino masses, the heaviest of the active neutrino masses can be estimated:

mh = m3 ∼
√

∆m2
32 ≈ 0.05 eV. (77)

(In the case of inverted hierarchy, the implied scale ismh = m2 ∼
√

∆m2
32 ≈ 0.05 eV.) It follows that

the scale in the non-renormalizable terms (44) is given by

ΛNP ∼ v2/mh ≈ 1015 GeV. (78)

We should clarify two points regarding Eq. (78):

1. There could be some level of degeneracy between the neutrino masses. In such a case, Eq. (77) is
modified into a lower bound onm3 and, consequently, Eq. (78) becomes an upper bound onΛNP.

2. It could be that theZij of Eq. (44) are much smaller than 1. In such a case, again, Eq. (78) becomes
an upper bound on the scale of new physics.

On the other hand, in models of approximate flavour symmetries, there are relations between the
structures of the charged lepton and neutrino mass matricesthat give, quite generically,Z33 & m2

τ/v
2 ∼

10−4. We conclude that the likely range forΛNP is given by

1011 GeV. ΛNP . 1015 GeV . (79)

The estimates (78) and (79) are very exciting. First, the upper bound on the scale of new physics
is well below the Planck scale. This means that there is new physics in Nature which is intermediate
between the two known scales, the Planck scale,mPl ∼ 1019 GeV, and the electroweak breaking scale,
v ∼ 102 GeV.

Second, the scaleΛNP ∼ 1015 GeV is intriguingly close to the scale of gauge coupling unification.

Third, the range (79) for the scale of lepton number breakingis optimal for leptogenesis [46]
(for a recent review, see Ref. [47]). If (i) leptogenesis is generated by the decays of the lightest singlet
neutrinoN1, and (ii) the masses of the singlet neutrinos are hierarchical, M1/M2,3... ≪ 1 , and (iii)
the temperature when leptogenesis occurs is high enough,TLG > 1012 GeV, so that flavour effects are
unimportant, then there is an upper bound on the CP asymmetryin N1 decays [48]:

|ǫN1| ≤
3

16π

M1(m3 −m2)

v2
. (80)

Given thatY obs
B ∼ 9×10−11, and thatYB ∼ 10−3ηǫN1 , whereη . 1 is a washout factor, we must require

|ǫN1 | & 10−7. Moreover, we havem3−m2 ≤
√

∆m2
32 ∼ 0.05 eV and therefore obtainM1 & 109 GeV.

Violating any of the three conditions will relax this bound,but typically not by more than about an order
of magnitude.
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8.3 The flavour puzzle

In the absence of neutrino masses, there are 13 flavour parameters in the SM:

yt ∼ 1, yc ∼ 10−2, yu ∼ 10−5,

yb ∼ 10−2, ys ∼ 10−3, yd ∼ 10−4,

yτ ∼ 10−2, yµ ∼ 10−3, ye ∼ 10−6,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, sin δKM ∼ 1. (81)

These flavour parameters are hierarchical (their magnitudes span six orders of magnitude), and all but
two or three (the top Yukawa, the CP violating phase, and perhaps the Cabibbo angle) are small. The
unexplained smallness and hierarchy pose the SMflavour puzzle. Its solution may direct us to physics
beyond the Standard Model.

Several mechanisms have been proposed in response to this puzzle. For example, approximate
horizontal symmetries, broken by a small parameter, can lead to selection rules that explain the hierarchy
of the Yukawa couplings.

In the extension of the SM with three active neutrinos that have Majorana masses, there are nine
new flavour parameters in addition to those of Eq. (81). Theseare three neutrino masses, three lepton
mixing angles, and three phases in the mixing matrix. Of the nine new parameters, four have been
measured: two mass-squared differences and two mixing angles [see Eq. (74)]. This adds significantly
to the input data on flavour physics and provides an opportunity to test and refine flavour models.

If neutrino masses arise from effective terms of the form of Eq. (44), then the overall scale of
neutrino masses is related to the scaleΛNP and, in most cases, does not tell us anything about flavour
physics. More significant information for flavour models canbe written in terms of three dimensionless
parameters whose values can be read from Eq. (74), that issin θ12, sin θ23 and

∆m2
21/|∆m2

32| = 0.030 ± 0.003. (82)

In addition, the upper bound onsin θ13 often plays a significant role in flavour model building.

There are several features in the numerical estimates (74) and (82) that have drawn much attention
and have driven numerous investigations:

(i) Large mixing and strong hierarchy:The mixing angle that is relevant to the2–3 sector is
large, sin θ23 ∼ 0.7. On the other hand, if there is no quasi-degeneracy in the neutrino masses, the
corresponding mass ratio is small,m2/m3 ∼ 0.17. It is difficult to explain in a natural way a situation
where there is anO(1) mixing but the corresponding masses are hierarchical.

(ii) Two large and one small mixing angles:The mixing angles relevant to the2–3 sector (sin θ23 ∼
0.7) and1–2 sector (sin θ12 ∼ 0.55) are large, yet the1–3 mixing angle is small (sin θ13 . 0.20). Such
a situation is, again, difficult—though not impossible—to explain from approximate symmetries. An
example of a symmetry that does predict such a pattern is thatof Le–Lµ–Lτ . This symmetry predicts,
however,θ12 ≃ π/4, which is experimentally excluded.

(iii) Maximal mixing:The value ofθ23 is intriguingly close to maximal mixing (sin2 2θ23 = 1). It
is interesting to understand whether a symmetry could explain this special value.

(iv) Tribimaximal mixing:The mixing matrix (75) has a structure that is consistent with the fol-
lowing unitary matrix [49]:

U =




√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2


 . (83)

It is interesting to understand whether a symmetry could explain this special structure.
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All four features enumerated above are difficult to explain in a large class of flavour models that
do very well in explaining the flavour features of the quark sector. In particular, models with Abelian
horizontal symmetries (Froggatt–Nielsen type [50]) predict that, in general,|Vub| ∼ |VusVcb|, |Vij | &
mi/mj (i < j) andV ∼ 1 [29, 51]. All of these are successful predictions. At the same time, however,
these models predict [52] that for the neutrinos, in general, |Uij |2 ∼ mi/mj and|Ue3| ∼ |Ue2Uµ3|, in
contradiction to, respectively, points (i) and (ii) above (and there is no way to makeθ23 parametrically
close toπ/4). On the other hand, there exist very specific models where these features are related to a
symmetry.

It is possible, however, that the above interpretation of the results is wrong. Indeed, the data can
be interpreted in a very different way:

(v) No small parameters:The two measured mixing angles are larger than any of the quark mixing
angles. Indeed, they are both of order one. The measured massratio,m2/m3 & 0.16 is larger than any
of the quark and charged lepton mass ratios, and could be interpreted as anO(1) parameter (namely,
it is accidentally small, without any parametric suppression). If this is the correct way of reading the
data, the measured neutrino parameters may actually reflectthe absence of any hierarchical structure
in the neutrino mass matrices [53]. The possibility that there is no structure—neither hierarchy, nor
degeneracy—in the neutrino sector has been called ‘neutrino mass anarchy’. An important test of this
idea will be provided by the measurement of|Ue3|. If indeed the entries inMν have random values of the
same order, all three mixing angles are expected to be of order one. If experiments measure|Ue3| ∼ 0.1,
that is, close to the present bound, it can be argued that its smallness is accidental. The stronger the upper
bound on this angle becomes, the more difficult it will be to maintain this view.

Neutrino mass anarchy can be accommodated within models of Abelian flavour symmetries, if
the three lepton doublets carry the same charge. Indeed, consider a supersymmetric model with a
U(1)H symmetry that is broken by a single small spurionǫH of charge−1. Let us assume that the
three fermion generations contained in the10-representation ofSU(5) carry charges(2, 1, 0), while the
three5̄-representations carry charges(0, 0, 0). (The Higgs fields carry noH charges.) Such a model
predictsǫ2H hierarchy in the up sector,ǫH hierarchy in the down and charged lepton sectors, and anarchy
in the neutrino sector.

Exercise 12: The selection rule for this model is that a term in the superpotential that car-
ries H chargen ≥ 0 is suppressed byǫnH . Find the parametric suppression of the various entries in
Mu,Md,Mℓ, andMν . Find the parametric suppression of the mixing angles.

It would be nice if the features of quark mass hierarchy and neutrino mass anarchy can be traced
back to some fundamental principle or to a stringy origin (see, for example, Ref. [54]).

9 Conclusions
(i) Measurements of CP violatingB-meson decays have established that the Kobayashi–Maskawa

mechanism is the dominant source of the observed CP violation.

(ii) Measurements of flavour-changingB-meson decays have established that the Cabibbo–Kobayashi–
Maskawa mechanism is a major player in flavour violation.

(iii) The consistency of all these measurements with the CKMpredictions sharpens the new physics
flavour puzzle: If there is new physics at, or below, the TeV scale, then its flavour structure must
be highly non-generic.

(iv) Measurements ofD0–D
0

mixing imply that alignment by itself cannot solve the supersymmetric
flavour problem. The first two squark generations must be quasi-degenerate.

(v) Measurements of neutrino flavour parameters have not only not clarified the Standard Model
flavour puzzle, but actually deepened it. Whether they implyan anarchical structure, or a tribi-
maximal mixing, it seems that the neutrino flavour structureis very different from that of quarks.
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(vi) If the LHC experiments, ATLAS and CMS, discover new particles that couple to the Standard
Model fermions, then, in principle, they will be able to measure new flavour parameters. Conse-
quently, the new physics flavour puzzle is likely to be understood.

(vii) If the flavour structure of such new particles is affected by the same physics that sets the flavour
structure of the Yukawa couplings, then the LHC experiments(and future flavour factories) may
be able to shed light also on the Standard Model flavour puzzle.

The huge progress in flavour physics in recent years has provided answers to many questions. At the
same time, new questions arise. We look forward to the LHC erafor more answers and more questions.

Acknowledgements

The research of Y. Nir is supported by the Israel Science Foundation; the United States–Israel Binational
Science Foundation (BSF), Jerusalem, Israel; the German–Israeli Foundation for Scientific Research and
Development (GIF); and the Minerva Foundation.

Appendices

A The CKM matrix

The CKM matrixV is a3× 3 unitary matrix. Its form, however, is not unique:

(i) There is freedom in definingV in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e.,(u1, u2, u3) →
(u, c, t) and(d1, d2, d3) → (d, s, b). The elements ofV are written as follows:

V =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (A.1)

(ii) There is further freedom in the phase structure ofV . This means that the number of physical
parameters inV is smaller than the number of parameters in a general unitary3× 3 matrix which is nine
(three real angles and six phases). Let us definePq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of usingVqL andVqR for the rotation (21) to the mass basis we useṼqL andṼqR, defined
by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis sinceMdiag

q remains
unchanged by such transformations. However,V does change:

V → PuV P
∗
d . (A.2)

This freedom is fixed by demanding thatV has the minimal number of phases. In the three-generation
caseV has a single phase. (There are five phase differences betweenthe elements ofPu andPd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi–Maskawa
phaseδKM which is the single source of CP violation in the quark sectorof the Standard Model [1].

The fact thatV is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [55]

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (A.3)

wherecij ≡ cos θij andsij ≡ sin θij. The θij ’s are the three real mixing parameters whileδ is the
Kobayashi–Maskawa phase. It is known experimentally thats13 ≪ s23 ≪ s12 ≪ 1. It is convenient to
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VtdVtb*

VcdVcb*

α=ϕ2 β=ϕ1

γ=ϕ3

VudVub*

Fig. A.1: Graphical representation of the unitarity constraintVudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 as a triangle in the

complex plane

choose an approximate expression where this hierarchy is manifest. This is the Wolfenstein parametriza-
tion, where the four mixing parameters are(λ,A, ρ, η) with λ = |Vus| = 0.23 playing the role of an
expansion parameter andη representing the CP violating phase [56,57]:

V =




1− 1
2λ

2 − 1
8λ

4 λ Aλ3(ρ− iη)
−λ+ 1

2A
2λ5[1− 2(ρ+ iη)] 1− 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ

2)(ρ+ iη)] −Aλ2 + 1
2Aλ

4[1− 2(ρ+ iη)] 1− 1
2A

2λ4


 . (A.4)

A very useful concept is that of theunitarity triangles. The unitarity of the CKM matrix leads to
various relations among the matrix elements, e.g.,

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (A.5)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (A.6)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (A.7)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are ‘the unitarity triangles’, though the
term ‘unitarity triangle’ is usually reserved for the relation (A.7) only. The unitarity triangle related to
Eq. (A.7) is depicted in Fig. A.1.

The rescaled unitarity triangle is derived from (A.7) by (a)choosing a phase convention such that
(VcdV

∗
cb) is real, and (b) dividing the lengths of all sides by|VcdV ∗

cb|. Step (a) aligns one side of the triangle
with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters(ρ, η). The area of the rescaled unitarity
triangle is|η|/2.

Depicting the rescaled unitarity triangle in the(ρ, η) plane, the lengths of the two complex sides
are

Ru ≡
∣∣∣∣
VudVub
VcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣
VtdVtb
VcdVcb

∣∣∣∣ =
√

(1− ρ)2 + η2. (A.8)

The three angles of the unitarity triangle are defined as follows [58,59]:

α ≡ arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (A.9)

They are physical quantities and can be independently measured by CP asymmetries inB decays. It is
also useful to define the two small angles of the unitarity triangles (A.5), (A.6):

βs ≡ arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
, βK ≡ arg

[
− VcsV

∗
cd

VusV ∗
ud

]
. (A.10)
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The λ andA parameters are very well determined at present, see Eq. (37). The main effort in
CKM measurements is thus aimed at improving our knowledge ofρ andη:

ρ = 0.14+0.03
−0.02, η = 0.35 ± 0.02. (A.11)

The present status of our knowledge is best seen in a plot of the various constraints and the final allowed
region in theρ–η plane. This is shown in Fig. 2.

B CP violation in neutral B decays to final CP eigenstates

We define decay amplitudes ofB (which could be charged or neutral) and its CP conjugateB to a
multiparticle final statef and its CP conjugatef as

Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , Af = 〈f |H|B〉 , (B.1)

whereH is the Hamiltonian governing weak interactions. The actionof CP on these states introduces
phasesξB andξf according to

CP |B〉 = e+iξB |B〉 , CP |f〉 = e+iξf |f〉 ,
CP |B〉 = e−iξB |B〉 , CP |f〉 = e−iξf |f〉 , (B.2)

so that(CP )2 = 1. The phasesξB andξf are arbitrary and unphysical because of the flavour symmetry
of the strong interaction. If CP is conserved by the dynamics, [CP ,H] = 0, thenAf andAf have the
same magnitude and an arbitrary unphysical relative phase

Af = ei(ξf−ξB)Af . (B.3)

A state that is initially a superposition ofB0 andB0, say

|ψ(0)〉 = a(0)|B0〉+ b(0)|B0〉 , (B.4)

will evolve in time acquiring components that describe all possible decay final states{f1, f2, . . .}, that
is,

|ψ(t)〉 = a(t)|B0〉+ b(t)|B0〉+ c1(t)|f1〉+ c2(t)|f2〉+ · · · . (B.5)

If we are interested in computing only the values ofa(t) andb(t) (and not the values of allci(t)), and
if the timest in which we are interested are much larger than the typical strong interaction scale, then
we can use a much simplified formalism [60]. The simplified time evolution is determined by a2 × 2
effective HamiltonianH that is not Hermitian, since otherwise the mesons would onlyoscillate and not
decay. Any complex matrix, such asH, can be written in terms of Hermitian matricesM andΓ as

H =M − i

2
Γ . (B.6)

M andΓ are associated with(B0, B0) ↔ (B0, B0) transitions via off-shell (dispersive) and on-shell
(absorptive) intermediate states, respectively. Diagonal elements ofM andΓ are associated with the
flavour-conserving transitionsB0 → B0 andB0 → B0 while off-diagonal elements are associated with
flavour-changing transitionsB0 ↔ B0.

The eigenvectors ofH have well-defined masses and decay widths. We introduce complex param-
eterspL,H andqL,H to specify the components of the strong interaction eigenstates,B0 andB0, in the
light (BL) and heavy (BH) mass eigenstates:

|BL,H〉 = pL,H |B0〉 ± qL,H |B0〉 (B.7)
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with the normalization|pL,H |2 + |qL,H |2 = 1. If either CP or CPT is a symmetry ofH (independently
of whether T is conserved or violated) thenM11 = M22 andΓ11 = Γ22, and solving the eigenvalue
problem forH yieldspL = pH ≡ p andqL = qH ≡ q with

(
q

p

)2

=
M∗

12 − (i/2)Γ∗
12

M12 − (i/2)Γ12
. (B.8)

From now on we assume that CPT is conserved. If either CP or T isa symmetry ofH (independently of
whether CPT is conserved or violated), thenM12 andΓ12 are relatively real, leading to

(
q

p

)2

= e2iξB ⇒
∣∣∣∣
q

p

∣∣∣∣ = 1 , (B.9)

whereξB is the arbitrary unphysical phase introduced in Eq. (B.2).

The real and imaginary parts of the eigenvalues ofH corresponding to|BL,H〉 represent their
masses and decay-widths, respectively. The mass difference ∆mB and the width difference∆ΓB are
defined as follows:

∆mB ≡MH −ML, ∆ΓB ≡ ΓH − ΓL . (B.10)

Note that here∆mB is positive by definition, while the sign of∆ΓB is to be experimentally determined.
The average mass and width are given by

mB ≡ MH +ML

2
, ΓB ≡ ΓH + ΓL

2
. (B.11)

It is useful to define dimensionless ratiosx andy:

x ≡ ∆mB

ΓB
, y ≡ ∆ΓB

2ΓB
. (B.12)

Solving the eigenvalue equation gives

(∆mB)
2 − 1

4
(∆ΓB)

2 = (4|M12|2 − |Γ12|2), ∆mB∆ΓB = 4Re(M12Γ
∗
12). (B.13)

All CP-violating observables inB andB decays to final statesf andf can be expressed in terms of
phase-convention-independent combinations ofAf , Af , Af , andAf , together with, for neutral-meson

decays only,q/p. CP violation in charged-meson decays depends only on the combination |Af/Af |,
while CP violation in neutral-meson decays is complicated by B0 ↔ B0 oscillations and depends,
additionally, on|q/p| and onλf ≡ (q/p)(Af/Af ).

For neutralD, B, andBs mesons,∆Γ/Γ ≪ 1 and so both mass eigenstates must be considered
in their evolution. We denote the state of an initially pure|B0〉 or |B0〉 after an elapsed proper timet as
|B0

phys(t)〉 or |B0
phys(t)〉, respectively. Using the effective Hamiltonian approximation, we obtain

|B0
phys(t)〉 = g+(t) |B0〉 − q

p
g−(t)|B0〉,

|B0
phys(t)〉 = g+(t) |B0〉 − p

q
g−(t)|B0〉 , (B.14)

where

g±(t) ≡
1

2

(
e−imH t− 1

2
ΓH t ± e−imLt− 1

2
ΓLt
)
. (B.15)

One obtains the following time-dependent decay rates:

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|Af |2 + |(q/p)Af |2

)
cosh(yΓt) +

(
|Af |2 − |(q/p)Af |2

)
cos(xΓt)
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+ 2Re((q/p)A∗
fAf ) sinh(yΓt)− 2Im((q/p)A∗

fAf ) sin(xΓt) , (B.16)

dΓ[B0
phys(t) → f ]/dt

e−ΓtNf
=

(
|(p/q)Af |2 + |Af |2

)
cosh(yΓt)−

(
|(p/q)Af |2 − |Af |2

)
cos(xΓt)

+ 2Re((p/q)AfA∗
f ) sinh(yΓt)− 2Im((p/q)AfA

∗
f ) sin(xΓt) , (B.17)

whereNf is a common normalization factor. Decay rates to the CP-conjugate final statef are obtained
analogously, withNf = Nf and the substitutionsAf → Af andAf → Af in Eqs. (B.16) and (B.17).

Terms proportional to|Af |2 or |Af |2 are associated with decays that occur without any netB ↔ B
oscillation, while terms proportional to|(q/p)Af |2 or |(p/q)Af |2 are associated with decays following
a net oscillation. Thesinh(yΓt) andsin(xΓt) terms of Eqs. (B.16) and (B.17) are associated with the
interference between these two cases. Note that, in multi-body decays, amplitudes are functions of phase-
space variables. Interference may be present in some regions but not in others, and is strongly influenced
by resonant substructure.

One possible manifestation of CP-violating effects in meson decays [61] is in the interference
between a decay without mixing,B0 → f , and a decay with mixing,B0 → B0 → f (such an effect
occurs only in decays to final states that are common toB0 andB0, including all CP eigenstates). It is
defined by

Im(λf) 6= 0 , (B.18)

with

λf ≡ q

p

Af
Af

. (B.19)

This form of CP violation can be observed, for example, usingthe asymmetry of neutral meson decays
into final CP eigenstatesfCP

AfCP
(t) ≡

dΓ/dt[B0
phys(t) → fCP ]− dΓ/dt[B0

phys(t) → fCP ]

dΓ/dt[B0
phys(t) → fCP ] + dΓ/dt[B0

phys(t) → fCP ]
. (B.20)

For ∆Γ = 0 and |q/p| = 1 (which is a good approximation forB mesons),AfCP
has a particularly

simple form [62–64]:

Af (t) = Sf sin(∆mt)− Cf cos(∆mt),

Sf ≡ 2Im(λf )

1 + |λf |2
, Cf ≡ 1− |λf |2

1 + |λf |2
. (B.21)

Consider theB → f decay amplitudeAf , and the CP conjugate processB → f with decay
amplitudeAf . There are two types of phases that may appear in these decay amplitudes. Complex
parameters in any Lagrangian term that contributes to the amplitude will appear in complex conjugate
form in the CP-conjugate amplitude. Thus their phases appear in Af andAf with opposite signs. In the
Standard Model, these phases occur only in the couplings of theW± bosons and hence are often called
‘weak phases’. The weak phase of any single term is convention dependent. However, the difference
between the weak phases in two different terms inAf is convention independent. A second type of phase
can appear in scattering or decay amplitudes even when the Lagrangian is real. Their origin is the possible
contribution from intermediate on-shell states in the decay process. Since these phases are generated by
CP-invariant interactions, they are the same inAf andAf . Usually the dominant rescattering is due to
strong interactions and hence the designation ‘strong phases’ for the phase shifts so induced. Again, only
the relative strong phases between different terms in the amplitude are physically meaningful.

The ‘weak’ and ‘strong’ phases discussed here appear in addition to the ‘spurious’ CP transforma-
tion phases of Eq. (B.3). Those spurious phases are due to an arbitrary choice of phase convention, and

28

Y. NIR

306



do not originate from any dynamics or induce any CP violation. For simplicity, we set them to zero from
here on.

It is useful to write each contributionai toAf in three parts: its magnitude|ai|, its weak phaseφi,
and its strong phaseδi. If, for example, there are two such contributions,Af = a1 + a2, we have

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2),
Af = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2). (B.22)

Similarly, for neutral meson decays, it is useful to write

M12 = |M12|eiφM , Γ12 = |Γ12|eiφΓ . (B.23)

Each of the phases appearing in Eqs. (B.22) and (B.23) is convention dependent, but combinations such
asδ1 − δ2, φ1 − φ2, φM − φΓ andφM + φ1 − φ1 (whereφ1 is a weak phase contributing toAf ) are
physical.

In the approximations that only a single weak phase contributes to decay,Af = |af |ei(δf+φf ), and
that |Γ12/M12| = 0, we obtain|λf | = 1 and the CP asymmetries in decays to a final CP eigenstatef
[Eq. (B.20)] with eigenvalueηf = ±1 are given by

AfCP
(t) = Im(λf ) sin(∆mt) with Im(λf ) = ηf sin(φM + 2φf ). (B.24)

Note that the phase so measured is purely a weak phase, and no hadronic parameters are involved in the
extraction of its value fromIm(λf ).

C Supersymmetric contributions to neutral meson mixing

We consider the squark–gluino box diagram contribution toD0–D
0

mixing amplitude that is proportional
toKu

2iK
u∗
1i K

u
2jK

u∗
1j , whereKu is the mixing matrix of the gluino couplings to left-handed up quarks and

their up squark partners. (In the language of the mass insertion approximation, we calculate here the
contribution that is∝ [(δuLL)12]

2.) We work in the mass basis for both quarks and squarks.

The contribution is given by

MD
12 = −i4π

2

27
α2
smDf

2
DBDηQCD

∑

i,j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j )(11Ĩ4ij + 4m̃2

gI4ij) , (C.1)

where

Ĩ4ij ≡
∫

d4p

(2π)4
p2

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j)

=
i

(4π)2

[
m̃2
g

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)

+
m̃4
i

(m̃2
i − m̃2

j)(m̃
2
i − m̃2

g)
2
ln
m̃2
i

m̃2
g

+
m̃4
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln
m̃2
j

m̃2
g

]
, (C.2)

I4ij ≡
∫

d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
i )(p

2 − m̃2
j)

=
i

(4π)2

[
1

(m̃2
i − m̃2

g)(m̃
2
j − m̃2

g)
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+
m̃2
i

(m̃2
i − m̃2

j)(m̃
2
i − m̃2

g)
2
ln
m̃2
i

m̃2
g

+
m̃2
j

(m̃2
j − m̃2

i )(m̃
2
j − m̃2

g)
2
ln
m̃2
j

m̃2
g

]
. (C.3)

We now follow the discussion in Refs. [23,26]. To see the consequences of the super-GIM mech-
anism, let us expand the expression for the box integral around some valuẽm2

q for the squark masses-
squared:

I4(m̃
2
g, m̃

2
i , m̃

2
j) = I4(m̃

2
g, m̃

2
q + δm̃2

i , m̃
2
q + δm̃2

j )

= I4(m̃
2
g, m̃

2
q , m̃

2
q) + (δm̃2

i + δm̃2
j )I5(m̃

2
g, m̃

2
q , m̃

2
q , m̃

2
q)

+
1

2

[
(δm̃2

i )
2 + (δm̃2

j )
2 + 2(δm̃2

i )(δm̃
2
j )
]
I6(m̃

2
g, m̃

2
q , m̃

2
q , m̃

2
q, m̃

2
q) + · · ·(C.4)

where

In(m̃
2
g, m̃

2
q , . . . , m̃

2
q) ≡

∫
d4p

(2π)4
1

(p2 − m̃2
g)

2(p2 − m̃2
q)
n−2

, (C.5)

and similarly forĨ4ij . Note thatIn ∝ (m̃2
q)
n−2 and Ĩn ∝ (m̃2

q)
n−3. Thus, usingx ≡ m̃2

g/m̃
2
q , it is

customary to define

In ≡ i

(4π)2(m̃2
q)
n−2

fn(x), Ĩn ≡ i

(4π)2(m̃2
q)
n−3

f̃n(x). (C.6)

The unitarity of the mixing matrix implies that

∑

i

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) =

∑

j

(Ku
2iK

u∗
1i K

u
2jK

u∗
1j ) = 0. (C.7)

We learn that the terms that are proportionalf4, f̃4, f5, andf̃5 vanish in their contribution toM12. When
δm̃2

i ≪ m̃2
q for all i, the leading contributions toM12 come fromf6 and f̃6. We learn that for quasi-

degenerate squarks, the leading contribution is quadraticin the small mass-squared difference. The
functionsf6(x) andf̃6(x) are given by

f6(x) =
6(1 + 3x) ln x+ x3 − 9x2 − 9x+ 17

6(1 − x)5
,

f̃6(x) =
6x(1 + x) lnx− x3 − 9x2 + 9x+ 1

3(1− x)5
. (C.8)

For example, withx = 1, f6(1) = −1/20 and f̃6 = +1/30; with x = 2.33, f6(2.33) = −0.015 and
f̃6 = +0.013.

To further simplify things, let us consider a two-generation case. Then

MD
12 ∝ 2(Ku

21K
u∗
11 )

2(δm̃2
1)

2 + 2(Ku
22K

u∗
12 )

2(δm̃2
2)

2 + (Ku
21K

u∗
11K

u
22K

u∗
12 )(δm̃

2
1 + δm̃2

2)
2

= (Ku
21K

u∗
11 )

2(m̃2
2 − m̃2

1)
2. (C.9)

We thus rewrite Eq. (C.1) for the case of quasi-degenerate squarks:

MD
12 =

α2
smDf

2
DBDηQCD

108m̃2
q

[11f̃6(x) + 4xf6(x)]
(∆m̃2

21)
2

m̃4
q

(Ku
21K

u∗
11 )

2. (C.10)

For example, forx = 1, 11f̃6(x) + 4xf6(x) = +0.17. Forx = 2.33, 11f̃6(x) + 4xf6(x) = +0.003.
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D Neutrino flavour transitions

D.1 Neutrinos in vacuum

Neutrino oscillations in vacuum [65] arise since neutrinosare massive and mix. In other words, the
neutrino state that is produced by electroweak interactions is not a mass eigenstate. The weak eigenstates
να (α = e, µ, τ denotes the charged lepton mass eigenstates and their neutrino doublet-partners) are
linear combinations of the mass eigenstatesνi (i = 1, 2, 3):

|να〉 = U∗
αi|νi〉. (D.1)

After travelling a distanceL (or, equivalently for relativistic neutrinos, timet), a neutrino originally
produced with a flavourα evolves as follows:

|να(t)〉 = U∗
αi|νi(t)〉. (D.2)

It can be detected in the charged-current interactionνα(t)N
′ → ℓβN with a probability

Pαβ = |〈νβ |να(t)〉|2 =

∣∣∣∣∣∣

3∑

i=1

3∑

j=1

U∗
αiUβj〈νj(0)|νi(t)〉

∣∣∣∣∣∣

2

. (D.3)

We follow the analysis of Ref. [44]. We use the standard approximation that|ν〉 is a plane wave,|νi(t)〉 =
e−iEit|νi(0)〉. In all cases of interest to us, the neutrinos are relativistic:

Ei =
√
p2i +m2

i ≃ pi +
m2
i

2Ei
, (D.4)

whereEi andmi are, respectively, the energy and the mass of the neutrino mass eigenstate. Furthermore,
we can assume thatpi ≃ pj ≡ p ≃ E. Then, we obtain the following transition probability:

Pαβ = δαβ − 4

2∑

i=1

3∑

j=i+1

Re
(
UαiU

∗
βiU

∗
αjUβj

)
sin2 xij, (D.5)

wherexij ≡ ∆m2
ijL/(4E), ∆m2

ij = m2
i −m2

j , andL = t is the distance between the source (that is,
the production point ofνα) and the detector (that is, the detection point ofνβ). In deriving Eq. (D.5) we
used the orthogonality relation〈νj(0)|νi(0)〉 = δij . It is convenient to use the following units:

xij = 1.27
∆m2

ij

eV2

L/E

m/MeV
. (D.6)

The transition probability [Eq. (D.5)] has an oscillatory behaviour, with oscillation lengths

Losc
0,ij =

4πE

∆m2
ij

(D.7)

and amplitude that is proportional to elements of the mixingmatrix. Thus, in order to have oscillations,
neutrinos must have different masses (∆m2

ij 6= 0) and they must mix (UαiUβi 6= 0).

An experiment is characterized by the typical neutrino energy E and by the source-detector dis-
tanceL. In order to be sensitive to a given value of∆m2

ij, the experiment has to be set up with
E/L ≈ ∆m2

ij (L ∼ Losc
0,ij). The typical values ofL/E for different types of neutrino sources and

experiments are summarized in Table D.1.

If (E/L) ≫ ∆m2
ij (L ≪ Losc

0,ij), the oscillation does not have time to give an appreciable effect
becausesin2 xij ≪ 1. The case of(E/L) ≪ ∆m2

ij (L ≫ Losc
0,ij) requires more careful consideration.
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Table D.1: Characteristic values ofL andE for various neutrino sources and experiments.

Experiment L (m) E (MeV) ∆m2 (eV2)

Solar 1010 1 10−10

Atmospheric 104–107 102–105 10−1–10−4

Reactor 102–103 1 10−2–10−3

KamLAND 105 1 10−5

Accelerator 102 103–104 & 10−1

Long-baseline accelerator105–106 104 10−2–10−3

One must take into account that, in general, neutrino beams are not monochromatic. Thus, rather than
measuringPαβ , the experiments are sensitive to the average probability

〈Pαβ〉 = δαβ − 4
2∑

i=1

3∑

j=i+1

Re
(
UαiU

∗
βiU

∗
αjUβj

)
〈sin2 xij〉. (D.8)

ForL ≫ Losc
0,ij, the oscillation phase goes through many cycles before the detection and is averaged to

〈sin2 xij〉 = 1/2.

For a two-neutrino case,

Pαβ = δαβ − (2δαβ − 1) sin2 2θ sin2 x. (D.9)

For averaged oscillations we get, for example,

Pee = 1− 1

2
sin2 2θ. (D.10)

For a recent careful derivation of the oscillation formulae, see Ref. [66].

D.2 Neutrinos in matter

When neutrinos propagate in dense matter, the interactionswith the medium affect their properties.
These effects are either coherent or incoherent. For purelyincoherentν–p scattering, the characteristic
cross-section is very small,

σ ∼ G2
F s

π
∼ 10−43 cm2

(
E

1 MeV

)2

. (D.11)

The smallness of this cross-section is demonstrated by the fact that if a beam of1010 neutrinos with
E ∼ 1 MeV was aimed at Earth, only one would be deflected by the Earth’s matter. It may seem then
that for neutrinos matter is irrelevant. However, one must take into account that Eq. (D.11) does not
contain the contribution from forward elastic coherent interactions. In coherent interactions, the medium
remains unchanged and it is possible to have interference ofscattered and unscattered neutrino waves
which enhances the effect. Coherence further allows one to decouple the evolution equation of neutrinos
from the equations of the medium. In this approximation, theeffect of the medium is described by an
effective potential which depends on the density and composition of the matter [67].

Consider, for example, the effective potential forνe induced by its charged-current interactions
with electrons in matter:

VC = 〈νe|
∫
d3xH

(e)
C |νe〉 =

√
2GFNe. (D.12)
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Forνe the sign ofV is reversed. The potential can also be expressed in terms of the matter densityρ:

VC = 7.6
Ne

Np +Nn

ρ

1014 g/cm3 eV . (D.13)

Two examples that are relevant to observations are the following:

– At the Earth’s coreρ ∼ 10 g/cm3 andV ∼ 10−13 eV.

– At the solar coreρ ∼ 100 g/cm3 andV ∼ 10−12 eV.

Consider a state that is an admixture of two neutrino species, |νe〉 and|νa〉 or, equivalently,|ν1〉
and|ν2〉. With some approximations, the time evolution can be written in the following matrix form [67]:

−i ∂
∂x

(
νe
νa

)
= − 1

2E
M2
w

(
νe
νa

)
, (D.14)

where we have defined an effective mass matrix in matter,

M2
w =

1

2

(
m2

1 +m2
2 + 4EVe −∆m2 cos 2θ ∆m2 sin 2θ
∆m2 sin 2θ m2

1 +m2
2 + 4EVa +∆m2 cos 2θ

)
, (D.15)

with ∆m2 = m2
2 −m2

1.

We define the instantaneous mass eigenstates in matter,νmi , as the eigenstates ofMw for a fixed
value ofx. They are related to the interaction eigenstates by a unitary transformation,

(
νe
νa

)
= U(θm)

(
νm1
νm2

)
=

(
cos θm sin θm
− sin θm cos θm

)(
νm1
νm2

)
. (D.16)

The eigenvalues ofMw, that is, the effective masses in matter, are given by [67,68]

µ21,2 =
m2

1 +m2
2

2
+ E(Ve + Va)∓

1

2

√
(∆m2 cos 2θ −A)2 + (∆m2 sin 2θ)2, (D.17)

while the mixing angle in matter is given by

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ −A
, (D.18)

where
A ≡ 2E(Ve − Va). (D.19)

The instantaneous mass eigenstatesνmi are, in general, not energy eigenstates: they mix in the
evolution. The importance of this effect is controlled by the relative size of4Eθ̇m(t) with respect
to µ22(t) − µ21(t). When the latter is much larger than the first,νmi behave approximately as energy
eigenstates and do not mix during the evolution. This is the adiabatic transition approximation. The
adiabaticity condition reads

µ22(t)− µ21(t) ≫ 2EA∆m2 sin 2θ
∣∣∣Ȧ/A

∣∣∣ . (D.20)

The transition probability for the adiabatic case is given by

Pee(t) =

∣∣∣∣∣
∑

i

Uei(θ)U
∗
ei(θp) exp

(
− i

2E

∫ t

t0

µ2i (t
′)dt′

)∣∣∣∣∣

2

, (D.21)
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whereθp is the mixing angle at the production point. For the case of two-neutrino mixing, Eq. (D.21)
takes the form

Pee(t) = cos2 θp cos
2 θ + sin2 θp sin

2 θ +
1

2
sin 2θp sin 2θ cos

(
δ(t)

2E

)
, (D.22)

where

δ(t) =

∫ t

tp

[µ22(t
′)− µ21(t

′)]dt′. (D.23)

Forµ22(t)− µ21(t) ≫ E, the last term in Eq. (D.22) is averaged out and the survival probability takes the
form

Pee =
1

2
[1 + cos 2θp cos 2θ]. (D.24)

The relative importance of the MSW matter term [A of Eq. (D.19)] and the kinematic vacuum
oscillation term in the Hamiltonian [the off-diagonal termin Eq. (D.15)] can be parametrized by the
quantityβMSW, which represents the ratio of matter to vacuum effects (see, for example, Ref. [69]).
From Eq. (D.15) we see that the appropriate ratio is

βMSW =
2
√
2GFneEν
∆m2

. (D.25)

The quantityβMSW is the ratio between the oscillation length in matter and theoscillation length in
vacuum. In convenient units,βMSW can be written as

βMSW = 0.19

(
Eν

1 MeV

)(
µeρ

100 g cm−3

)(
8× 10−5 eV2

∆m2

)
. (D.26)

Hereµe is the electron mean molecular weight (µe ≈ 0.5(1 + X), whereX is the mass fraction of
hydrogen) andρ is the total density. IfβMSW . cos 2θ, the survival probability corresponds to vacuum
averaged oscillations [see Eq. (D.9)],

Pee =

(
1− 1

2
sin2 2θ

)
(βMSW < cos 2θ, vacuum). (D.27)

If βMSW > 1, the survival probability corresponds to matter-dominated oscillations [see Eq. (D.24)],

Pee = sin2 θ (βMSW > 1, MSW). (D.28)

The survival probability is approximately constant in either of the two limiting regimes,βMSW < cos 2θ
andβMSW > 1. There is a strong energy dependence only in the transition region between the limiting
regimes.

For the Sun,Ne(R) = Ne(0) exp(−R/r0), with r0 ≡ R⊙/10.54 = 6.6 × 107 m = 3.3 ×
1014 eV−1. Then, the adiabaticity condition for the Sun reads

(∆m2/eV2) sin2 2θ

(E/MeV) cos 2θ
≫ 3× 10−9. (D.29)
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Particle cosmology

A. Riotto
CERN, Geneva, Switzerland

Abstract
In these lectures the present status of the so-called standard cosmological model,
based on the hot Big Bang theory and the inflationary paradigm is reviewed.
Special emphasis is given to the origin of the cosmological perturbations we
see today under the form of the cosmic microwave background anisotropies
and the large scale structure and to the dark matter and dark energy puzzles.

1 Introduction
The evolution of the universe is determined to a large extent by the same microphysics laws of physics
that govern high-energy physics phenomena. Hence, any progress in particle physics has a large impact
on the cosmological model(s) and, conversely, any new step taken towards the understanding of the
past, present and future of our universe might provide a hint of high-energy physics beyond the one we
currently know. This is the reason why these lectures are entitled Particle Cosmology. If the reader
takes only one lesson home from them it is that particle physics and cosmology are nowadays intimately
connected.

There are fundamental questions we are on the edge of answering: what is the origin of our
universe? Why is the universe so homogeneous and isotropic on large scales? What are the origins of
dark matter and dark energy? What is the fate of our universe? While these lectures will certainly not
be able to give definite answers to them, we shall try to provide the students with some tools they might
find useful in order to solve these overwhelming mysteries themselves.

These lectures will contain a short review of the standard Big Bang model; a rather long discus-
sion of the inflation paradigm with particular emphasis on the possibility that the cosmological seeds
originated from a period of primordial acceleration; the physics of the Cosmic Microwave Background
(CMB) anisotropies, and a discussion of the dark matter and dark energy puzzles.

Since these lectures were delivered at a school, we shall not provide an exhaustive list of references
to original material, but refer to several basic cosmology books and reviews where students can find the
references to the original material [1–8].

2 Basics of the Big Bang model
We know two basic facts about our local universe (the universe we may observe). First, it is homogeneous
and isotropic on sufficiently large cosmological scales [2]. Once this experimental evidence is accepted,
one can promote it to a principle, dubbed “the cosmological principle”. Secondly, it expands. The next
question would then be: how can we describe such a universe?

The standard cosmology is based upon the maximally spatially symmetric Friedmann–Robertson–
Walker (FRW) line element

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]
; (1)

where a(t) is the cosmic-scale factor, Rcurv ≡ a(t)|k|−1/2 is the curvature radius, and k = −1, 0, 1 is
the curvature signature. All three models are without boundary: the positively curved model is finite and
curves back on itself; the negatively curved and flat models are infinite in extent. The Robertson–Walker
metric embodies the observed isotropy and homogeneity of the universe. It is interesting to note that
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this form of the line element was originally introduced for the sake of mathematical simplicity; we now
know that it is well justified at early times or today on large scales (� 10 Mpc), at least within our visible
patch.

The coordinates, r, θ, and φ, are referred to as co-moving coordinates: A particle at rest in these
coordinates remains at rest, i.e., constant r, θ, and φ. A freely moving particle eventually comes to rest
in these coordinates, as its momentum is redshifted by the expansion, p ∝ a−1. Motion with respect to
the co-moving coordinates (or cosmic rest frame) is referred to as peculiar velocity; unless supported by
the inhomogeneous distribution of matter, peculiar velocities decay away as a−1. Thus the measurement
of peculiar velocities, which is not easy as it requires independent measures of both the distance and
velocity of an object, can be used to probe the distribution of mass in the universe.

Physical separations between freely moving particles scale as a(t); or said another way the physi-
cal separation between two points is simply a(t) times the coordinate separation. The momenta of freely
propagating particles decrease, or redshift, as a(t)−1, and thus the wavelength of a photon stretches as
a(t), which is the origin of the cosmological redshift. The redshift suffered by a photon emitted from a
distant galaxy 1 + z = a0/a(t); that is, a galaxy whose light is redshifted by 1 + z, emitted that light
when the universe was a factor of (1 + z)−1 smaller. When the light from the most distant quasar yet
seen (z = 4.9) was emitted, the universe was a factor of almost six smaller; when CMB photons last
scattered, the universe was about 1100 times smaller.

2.1 Friedmann equations
The evolution of the scale factor a(t) is governed by Einstein equations

Rµν −
1

2
Rgµν ≡ Gµν = 8πG , Tµν (2)

where Rµν (µ, ν = 0, · · · 3) is the Riemann tensor and R is the Ricci scalar constructed via the metric
(1) [2], and Tµν is the energy-momentum tensor. G = m−2

Pl is the Newton constant. Under the hypothesis
of homogeneity and isotropy, we can always write the energy-momentum tensor under the form Tµν =
diag (ρ, P, P, P ) where ρ is the energy density of the system and P its pressure. They are functions of
time.

The evolution of the cosmic-scale factor is governed by the Friedmann equation

H2 ≡
(
ȧ

a

)2

=
8πGρ

3
− k

a2
, (3)

where ρ is the total energy density of the universe, matter, radiation, vacuum energy, and so on.

Differentiating wrt to time both members of Eq. (3) and using the the mass conservation equation

ρ̇+ 3H(ρ+ P ) = 0 , (4)

we find the equation for the acceleration of the scale factor

ä

a
= −4πG

3
(ρ+ 3P ). (5)

Combining Eqs. (3) and (5) we find
Ḣ = −4πG (ρ+ P ) . (6)

The evolution of the energy density of the universe is governed by

d(ρa3) = −Pd
(
a3
)

; (7)

which is the first law of thermodynamics for a fluid in the expanding universe. (In the case that the stress
energy of the universe is comprised of several, non-interacting components, this relation applies to each

2

A. RIOTTO

316



separately; e.g., to the matter and radiation separately today.) For P = ρ/3, ultra-relativistic matter,
ρ ∝ a−4 and a ∼ t

1
2 ; for P = 0, very nonrelativistic matter, ρ ∝ a−3 and a ∼ t

2
3 ; and for P = −ρ,

vacuum energy, ρ = const. If the rhs of the Friedmann equation is dominated by a fluid with equation of
state P = wρ, it follows that ρ ∝ a−3(1+w) and a ∝ t2/3(1+w).

We can use the Friedmann equation to relate the curvature of the universe to the energy density
and expansion rate:

Ω− 1 =
k

a2H2
; Ω =

ρ

ρcrit
; (8)

and the critical density today ρcrit = 3H2/8πG = 1.88h2 g cm−3 ' 1.05 × 104 eV cm−3. There is
a one-to-one correspondence between Ω and the spatial curvature of the universe: positively curved,
Ω0 > 1; negatively curved, Ω0 < 1; and flat (Ω0 = 1). Further, the fate of the universe is determined by
the curvature: model universes with k ≤ 0 expand forever, while those with k > 0 necessarily recollapse.
The curvature radius of the universe is related to the Hubble radius and Ω by

Rcurv =
H−1

|Ω− 1|1/2 . (9)

In physical terms, the curvature radius sets the scale for the size of spatial separations where the effects
of curved space become pronounced. And in the case of the positively curved model it is just the radius
of the 3-sphere.

The energy content of the universe consists of matter and radiation (today, photons and neutrinos).
Since the photon temperature is accurately known, T0 = 2.73 ± 0.01 K, the fraction of critical density
contributed by radiation is also accurately known: ΩRh

2 = 4.2 × 10−5, where h = 0.72 ± 0.07 is
the present Hubble rate in units of 100 km s−1 Mpc−1 [9]. The remaining content of the universe
is another matter. Rapid progress has been made recently toward the measurement of cosmological
parameters [10]. Over the past years the basic features of our universe have been determined. The
universe is spatially flat; accelerating; comprised of one third dark matter and two thirds a new form of
dark energy. The measurements of the cosmic microwave background anisotropies at different angular
scales performed by the WMAP Collaboration [9] have recently significantly increased the case for
accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark
energy dominance), especially when combined with data on high-redshift supernovae (SN1) and large-
scale structure (LSS) [10]. The CMB+LSS+SN1 data give [9]

Ω0 = 1.00+0.07
−0.03 ,

meaning that the present universe is spatially flat (or at least very close to being flat). Restricting to
Ω0 = 1, the dark matter density is given by [9]

ΩDMh
2 = 0.11+0.0034

−0.059 ,

and a baryon density

ΩB = 0.045± 0.0015,

while the Big Bang nucleosynthesis estimate is ΩBh
2 = 0.019 ± 0.002. Substantial dark (unclustered)

energy is inferred:

ΩDE ≈ 0.72± 0.015 .

What is most relevant for us is that this universe was apparently born from a burst of rapid expansion,
inflation, during which quantum noise was stretched to astrophysical size seeding cosmic structure. This
is exactly the phenomenon we want to address in part of these lectures.
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2.2 The early, radiation-dominated universe
In any case, at present, matter outweighs radiation by a wide margin. However, since the energy density
in matter decreases as a−3, and that in radiation as a−4 (the extra factor due to the redshifting of the
energy of relativistic particles), at early times the universe was radiation dominated—indeed the calcu-
lations of primordial nucleosynthesis provide excellent evidence for this. Denoting the epoch of matter
and radiation equality by subscript ‘EQ,’ and using T0 = 2.73 K, it follows that

aEQ = 4.18× 10−5 (Ω0h
2)−1 ; TEQ = 5.62(Ω0h

2) eV ; (10)

tEQ = 4.17× 1010(Ω0h
2)−2s . (11)

At early times the expansion rate and age of the universe were determined by the temperature of the
universe and the number of relativistic degrees of freedom:

ρrad = g∗(T )
π2T 4

30
; H ' 1.67g

1/2
∗ T 2/mPl; (12)

⇒ a ∝ t1/2; t ' 2.42× 10−6g
−1/2
∗ (T/GeV)−2 s ; (13)

where g∗(T ) counts the number of ultra-relativistic degrees of freedom (≈ the sum of the internal degrees
of freedom of particle species much less massive than the temperature) and mPl ≡ G−1/2 = 1.22 ×
1019 GeV is the Planck mass. For example, at the epoch of nucleosynthesis, g∗ = 10.75 assuming three,
light (� MeV) neutrino species; taking into account all the species in the Standard Model, g∗ = 106.75
at temperatures much greater than 300 GeV.

A quantity of importance related to g∗ is the entropy density in relativistic particles,

s =
ρ+ p

T
=

2π2

45
g∗T 3,

and the entropy per co-moving volume,

S ∝ a3s ∝ g∗a3T 3.

By a wide margin most of the entropy in the universe exists in the radiation bath. The entropy density is
proportional to the number density of relativistic particles. At present, the relativistic particle species are
the photons and neutrinos, and the entropy density is a factor of 7.04 times the photon-number density:
nγ = 413 cm−3 and s = 2905 cm−3.

In thermal equilibrium—which provides a good description of most of the history of the universe—
the entropy per co-moving volume S remains constant. This fact is very useful. First, it implies that the
temperature and scale factor are related by

T ∝ g−1/3
∗ a−1, (14)

which for g∗ = const leads to the familiar T ∝ a−1.

Second, it provides a way of quantifying the net baryon number (or any other particle number) per
co-moving volume:

NB ≡ R3nB =
nB
s
' (4− 7)× 10−11. (15)

The baryon number of the universe tells us two things: (1) the entropy per particle in the universe is
extremely high, about 1010 or so compared to about 10−2 in the Sun and a few in the core of a newly
formed neutron star. (2) The asymmetry between matter and antimatter is very small, about 10−10, since
at early times quarks and antiquarks were roughly as abundant as photons. One of the great successes of
particle cosmology is baryogenesis, the idea that B, C, and CP violating interactions occurring out-of-
equilibrium early on allow the universe to develop a net baryon number of this magnitude. Finally, the
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constancy of the entropy per co-moving volume allows us to characterize the size of co-moving volume
corresponding to our present Hubble volume in a very physical way: by the entropy it contains,

SU =
4π

3
H−3

0 s ' 1090. (16)

The standard cosmology is tested back to times as early as about 0.01 s; it is only natural to ask how
far back one can sensibly extrapolate. Since the fundamental particles of Nature are point-like quarks and
leptons whose interactions are perturbatively weak at energies much greater than 1 GeV, one can imagine
extrapolating as far back as the epoch where general relativity becomes suspect, i.e., where quantum
gravitational effects are likely to be important: the Planck epoch, t ∼ 10−43s and T ∼ 1019 GeV. Of
course, at present, our firm understanding of the elementary particles and their interactions only extends
to energies of the order of 100 GeV, which corresponds to a time of the order of 10−11s or so. We can
be relatively certain that at a temperature of 100–200 MeV (t ∼ 10−5s) there was a transition (likely a
second-order phase transition) from quark/gluon plasma to very hot hadronic matter, and that some kind
of phase transition associated with the symmetry breakdown of the electroweak theory took place at a
temperature of the order of 300 GeV (t ∼ 10−11s).

2.3 The concept of particle horizon
In spite of the fact that the universe was vanishingly small at early times, the rapid expansion precluded
causal contact from being established throughout. Photons travel on null paths characterized by dr =
dt/a(t); the physical distance that a photon could have travelled since the bang until time t, the distance
to the particle horizon, is

RH(t) = a(t)

∫ t

0

dt′

a(t′)

=
t

(1− n)
= n

H−1

(1− n)
∼ H−1 for a(t) ∝ tn, n < 1. (17)

Using the conformal time dτ = dt/a, the particle horizon becomes

RH(t) = a(τ)

∫ τ

τ0

dτ, (18)

where τ0 indicates the conformal time corresponding to t = 0. Note, in the standard cosmology the
distance to the horizon is finite, and up to numerical factors, equal to the age of the universe or the
Hubble radius, H−1. For this reason, we shall use horizon and Hubble radius interchangeably1.

Note also that a physical length scale λ is within the horizon if λ < RH ∼ H−1. Since we can
identify the length scale λ with its wavenumber k, λ = 2πa/k, we shall have the following rule

k

aH
� 1 =⇒ SCALE λ OUTSIDE THE HORIZON

k

aH
� 1 =⇒ SCALE λ WITHIN THE HORIZON

1As we shall see, in inflationary models the horizon and Hubble radius are not roughly equal as the horizon distance grows
exponentially relative to the Hubble radius; in fact, at the end of inflation they differ by eN , whereN is the number of e-folds of
inflation. However, we shall slip and use “horizon” and “Hubble radius” interchangeably, though we shall always mean Hubble
radius.
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3 The shortcomings of the standard Big Bang theory
By now the shortcomings of standard cosmology are well appreciated: the horizon or large-scale smooth-
ness problem; the small-scale inhomogeneity problem (origin of density perturbations); and the flatness
or oldness problem. we shall briefly review only the horizon problem here here.

3.1 The horizon problem
According to standard cosmology, photons decoupled from the rest of the components (electrons and
baryons) at a temperature of the order of 0.3 eV. This corresponds to the so-called surface of ‘last scat-
tering’ at a redshift of about 1100 and an age of about 180000 (Ω0h

2)−1/2yr. From the epoch of last
scattering onwards, photons free-stream and reach us basically untouched. Detecting primordial pho-
tons is therefore equivalent to take a picture of the universe when the latter was about 300 000 years
old. The spectrum of the cosmic background radiation (CBR) is consistent with that of a black body at
temperature 2.73 K over more than three decades in wavelength.

The most accurate measurement of the temperature and spectrum is that by the WMAP5 instru-
ment on the COBE satellite which determined its temperature to be 2.726 ± 0.01 K [9]. The length
corresponding to our present Hubble radius (which is approximately the radius of our observable uni-
verse) at the time of last scatteringwas

λH(tLS) = RH(t0)

(
aLS

a0

)
= RH(t0)

(
T0

TLS

)
.

On the other hand, during the matter-dominated period, the Hubble length decreased with a different law

H2 ∝ ρM ∝ a−3 ∝ T 3.

At last-scattering

H−1
LS = RH(t0)

(
TLS
T0

)−3/2

� RH(t0).

The length corresponding to our present Hubble radius was much larger that the horizon at that time.
This can be by shown comparing the volumes corresponding to these two scales

λ3
H(TLS)

H−3
LS

=

(
T0

TLS

)− 3
2

≈ 106. (19)

There were∼ 106 casually disconnected regions within the volume that now corresponds to our horizon!
It is difficult to come up with a process other than an early hot and dense phase in the history of the
universe that would lead to a precise black body for a bath of photons which were causally disconnected
the last time they interacted with the surrounding plasma.

The horizon problem is well represented by Fig. 1 where the solid line indicates the horizon scale
and the dashed line any generic physical length scale λ. Suppose, indeed, that λ indicates the distance
between two photons we detect today. From Eq. (19) we discover that at the time of emission (last-
scattering) the two photons could not talk to each other, the dashed line is above the solid line. There is
another aspect of the horizon problem which is related to the problem of initial conditions for the cos-
mological perturbations. We have every indication that the universe at early times, say t � 300 000 yr,
was very homogeneous; however, today inhomogeneity (or structure) is ubiquitous: stars (δρ/ρ ∼ 1030),
galaxies (δρ/ρ ∼ 105), clusters of galaxies (δρ/ρ ∼ 10—103), superclusters, or “clusters of clusters”
(δρ/ρ ∼ 1), voids (δρ/ρ ∼ −1), great walls, and so on. For some twenty-five years standard cosmology
has provided a general framework for understanding this picture. Once the universe becomes matter
dominated (around 1000 yr after the bang) primeval density inhomogeneities (δρ/ρ ∼ 10−5) are ampli-
fied by gravity and grow into the structure we see today [2]. The existence of density inhomogeneities

6

A. RIOTTO

320



log a

� � � � ���

� � 	�


�  � � �������

� � � � �

��� �  
!#" $ %

Fig. 1: The horizon scale (solid line) and a physical scale λ (dashed line) as function of the scale factor a

Fig. 2: The CMBR anisotropy as function of ` (from Ref. [9])

has another important consequence: fluctuations in the temperature of the CMB radiation of a similar
amplitude. The temperature difference measured between two points separated by a large angle (>∼ 1◦)
arises due to a very simple physical effect: the difference in the gravitational potential between the two
points on the last scatteringsurface, which in turn is related to the density perturbation, determines the
temperature anisotropy on the angular scale subtended by that length scale,

(
δT

T

)

θ

≈
(
δρ

ρ

)

λ

, (20)

where the scale λ ∼ 100h−1 Mpc(θ/deg) subtends an angle θ on the last-scattering surface. This is
known as the Sachs–Wolfe effect [11,12]. We shall come back to this piece of physics. The temperature
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anisotropy is commonly expanded in spherical harmonics

∆T

T
(x0, τ0,n) =

∑

`m

a`,m(x0)Y`m(n), (21)

where x0 and τ0 are our position and the preset time, respectively, n is the direction of observation, `′s
are the different multipoles and2

〈a`ma∗`′m′〉 = δ`,`′δm,m′C`, (22)

where the deltas are due to the fact that the process that created the anisotropy is statistically isotropic.
The C`’s are the so-called CMB power spectrum. For homogeneity and isotropy, the C`’s are neither a
function of x0, nor of m. The two-point correlation function is related to the Cl’s in the following way

〈δT (n)

T

δT (n′)
T

〉
=

∑

``′mm′
〈a`ma∗`′m′〉Y`m(n)Y ∗`′m′(n

′)

=
∑

`

C`
∑

m

Y`m(n)Y ∗`m(n′) =
1

4π

∑

`

(2`+ 1)C`P`(µ = n · n′) (23)

where we have used the addition theorem for the spherical harmonics, and P` is the Legendre polynom
of order `. In expression (23) the expectation value is an ensemble average. It can be regarded as an
average over the possible observer positions, but not in general as an average over the single sky we
observe, because of the cosmic variance3. WMAP5 data are given in Fig. 2.

Let us now consider the last scatteringsurface. In co-moving coordinates the latter is ‘far’ from us
a distance equal to ∫ t0

tLS

dt

a
=

∫ τ0

τLS

dτ = (τ0 − τLS) . (24)

A given co-moving scale λ is therefore projected on the last scatteringsurface sky on an angular scale

θ ' λ

(τ0 − τLS)
, (25)

where we have neglected tiny curvature effects. Consider now that the scale λ is of the order of the co-
moving sound horizon at the time of last-scattering, λ ∼ csτLS, where cs ' 1/

√
3 is the sound velocity

at which photons propagate in the plasma at the last-scattering. This corresponds to an angle

θ ' cs
τLS

(τ0 − τLS)
' cs

τLS

τ0
, (26)

where the last passage has been performed knowing that τ0 � τLS. Since the universe is matter-
dominated from the time of last scatteringonwards, the scale factor has the following behaviour: a ∼
T−1 ∼ t2/3 ∼ τ2. The angle θHOR subtended by the sound horizon on the last-scattering surface then
becomes

θHOR ' cs
(
T0

TLS

)1/2

∼ 1◦, (27)

where we have used TLS ' 0.3 eV and T0 ∼ 10−13 GeV. This corresponds to a multipole `HOR

2An alternative definition is C` = 〈|a`m|2〉 = 1
2`+1

P`
m=−` |a`m|2.

3The usual hypothesis is that we observe a typical realization of the ensemble. This means that we expect the difference
between the observed values |a`m|2 and the ensemble averages C` to be of the order of the mean-square deviation of |a`m|2
from C`. The latter is called cosmic variance and, because we are dealing with a Gaussian distribution, it is equal to 2C` for
each multipole `. For a single `, averaging over the (2`+ 1) values of m reduces the cosmic variance by a factor (2`+ 1), but
it remains a serious limitation for low multipoles.
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Fig. 3: The behaviour of a generic scale λ and the horizon scale H−1 in the standard inflationary model

`HOR =
π

θHOR
' 200 . (28)

From these estimates we conclude that two photons which on the last scatteringsurface were separated
by an angle larger than θHOR, corresponding to multipoles smaller than `HOR ∼ 200, were not in causal
contact. On the other hand, from Fig. 2 it is clear that small anisotropies, of the same order of mag-
nitude δT/T ∼ 10−5 are present at ` � 200. We conclude that one of the striking features of the
CMB fluctuations is that they appear to be non-causal. Photons at the last scatteringsurface which were
causally disconnected have the same small anisotropies! The existence of particle horizons in the stan-
dard cosmology precludes explaining the smoothness as a result of microphysical events: the horizon at
decoupling, the last time one could imagine temperature fluctuations being smoothed by particle inter-
actions, corresponds to an angular scale on the sky of about 1◦, which precludes temperature variations
on larger scales from being erased. To account for the small-scale lumpiness of the universe today, den-
sity perturbations with horizon-crossing amplitudes of 10−5 on scales of 1 Mpc to 104 Mpc or so are
required.

As can be seen in Fig. 1, in the standard cosmology the physical size of a perturbation, which
grows as the scale factor, begins larger than the horizon and, relatively late in the history of the uni-
verse, crosses inside the horizon. This precludes a causal microphysical explanation for the origin of the
required density perturbations.

From the considerations made so far, it appears that solving the horizon problem of the standard
Big Bang theory requires that the universe go through a primordial period during which the physical
scales λ evolve faster than the horizon scale H−1.

If there is period during which physical length scales grow faster than H−1, length scales λ which
are within the horizon today, λ < H−1 (such as the distance between two detected photons) and were
outside the horizon for some period, λ > H−1 (for instance at the time of last scatteringwhen the two
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photons were emitted), had a chance to be within the horizon at some primordial epoch, λ < H−1 again,
see Fig. 3. If this happens, the homogeneity and the isotropy of the CMB can easily be explained: pho-
tons that we receive today and were emitted from the last scattering surface from causally disconnected
regions have the same temperature because they had a chance to ‘talk’ to each other at some primordial
stage of the evolution of the universe.

The second condition can easily be expressed as a condition on the scale factor a. Since a given
scale λ scales like λ ∼ a and H−1 = a/ȧ, we need to impose that there is a period during which

(
λ

H−1

)·
= ä > 0 .

We can therefore introduce the following rigorous definition: an inflationary stage is a period of the
universe during which the latter accelerates

INFLATION ⇐⇒ ä > 0.

Comment: Let us stress that during such an accelerating phase the universe expands adiabatically.
This means that during inflation one can exploit the usual FRW equations (3) and (5). It must be clear
therefore that the non-adiabaticity condition is satisfied not during inflation, but during the phase transi-
tion between the end of inflation and the beginning of the radiation-dominated phase. At this transition
phase a large entropy is generated under the form of relativistic degrees of freedom: the Big Bang has
taken place.

4 The standard inflationary universe
From the previous section we have learned that an accelerating stage during the primordial phases of the
evolution of the universe might be able to solve the horizon problem. From Eq. (5) we learn that

ä > 0⇐⇒ (ρ+ 3P ) < 0 .

An accelerating period is obtainable only if the overall pressure p of the universe is negative: p < −ρ/3.
Neither a radiation-dominated phase nor a matter-dominated phase (for which p = ρ/3 and p = 0,
respectively) satisfy such a condition. Let us postpone for the time being the problem of finding a
‘candidate’ able to provide the condition P < −ρ/3. For sure, inflation is a phase of the history of
the universe occurring before the era of nucleosynthesis (t ≈ 1 s, T ≈ 1 MeV) during which the light
elements abundances were formed. This is because nucleosynthesis is the earliest epoch from which we
have experimental data and they are in agreement with the predictions of the standard Big Bang theory.
However, the thermal history of the universe before the epoch of nucleosynthesis is unknown.

In order to study the properties of the period of inflation, we assume the extreme condition p = −ρ
which considerably simplifies the analysis. A period of the universe during which P = −ρ is called the
de Sitter stage. By inspecting Eqs. (3) and (4), we learn that during the de Sitter phase

ρ = constant ,

HI = constant ,

where we have indicated by HI the value of the Hubble rate during inflation. Correspondingly, solving
Eq. (3) gives

a = ai e
HI(t−ti), (29)
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where ti denotes the time at which inflation starts. Let us now see how such a period of exponential
expansion takes care of the shortcomings of the standard Big Bang Theory4.

4.1 Inflation and the horizon problem
During the inflationary (de Sitter) epoch the horizon scaleH−1 is constant. If inflation lasts long enough,
all the physical scales that have left the horizon during the radiation-dominated or matter-dominated
phase can re-enter the horizon in the past: this is because such scales are exponentially reduced. As we
have seen in the previous section, this explains both the problem of the homogeneity of CMB and the
initial condition problem of small cosmological perturbations. Once the physical length is within the
horizon, microphysics can act, the universe can be made approximately homogeneous and the primeval
inhomogeneities can be created.

Let us see how long inflation must be sustained in order to solve the horizon problem. Let ti and
tf be, respectively, the time of beginning and end of inflation. We can define the corresponding number
of e-foldings N

N = ln [HI(te − ti)] . (30)

A necessary condition to solve the horizon problem is that the largest scale we observe today, the present
horizon H−1

0 , was reduced during inflation to a value λH0(ti) smaller than the value of horizon length
H−1
I during inflation. This gives

λH0(ti) = H−1
0

(
atf
at0

)(
ati
atf

)
= H−1

0

(
T0

Tf

)
e−N <∼ H−1

I ,

where we have neglected for simplicity the short period of matter-domination and we have called Tf the
temperature at the end of inflation (to be indentified with the reheating temperature TRH at the beginning
of the radiation-dominated phase after inflation, see later). We get

N >∼ ln

(
T0

H0

)
− ln

(
Tf
HI

)
≈ 67 + ln

(
Tf
HI

)
.

Apart from the logarithmic dependence, we obtain N >∼ 70.

4.2 A prediction of inflation
Since during inflation the Hubble rate is constant

Ω− 1 =
k

a2H2
∝ 1

a2
.

On the other hand it is easy to show that to reproduce a value of (Ω0 − 1) of order of unity today, the
initial value of (Ω − 1) at the beginning of the radiation-dominated phase must be |Ω− 1| ∼ 10−60.
Since we identify the beginning of the radiation-dominated phase with the beginning of inflation, we
require

|Ω− 1|t=tf ∼ 10−60.

During inflation
|Ω− 1|t=tf
|Ω− 1|t=ti

=

(
ai
af

)2

= e−2N . (31)

Taking |Ω− 1|t=ti of order unity, it is enough to require thatN ≈ 70. However, IF the period of inflation
lasts longer than 70 e-foldings the present-day value of Ω0 will be equal to unity with great precision.
One can say that a generic prediction of inflation is that

4Despite the fact that the growth of the scale factor is exponential and the expansion is superluminal, this is not in contra-
diction with what is dictated by relativity. Indeed, it is the spacetime itself which is progating so fast and not a light signal in
it.
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INFLATION =⇒ Ω0 = 1.

This statement, however, must be taken cum grano salis and properly specified. Inflation does not change
the global geometric properties of the space-time. If the universe is open or closed, it will always remain
flat or closed, independently from inflation. What inflation does is to magnify the radius of curvature
Rcurv defined in Eq. (9) so that locally the universe is flat with a great precision. As we shall see, the
current data on the CMB anisotropies confirm this prediction.

4.3 Inflation and the inflaton
In the previous subsections we have described the various advantages of having a period of accelerating
phase. The latter required P < −ρ/3. Now, we would like to show that this condition can be attained by
means of a simple scalar field. We shall call this field the inflaton φ.

The action of the inflaton field reads

S =

∫
d4x
√−gL =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (32)

where
√−g = a3 for the FRW metric (1). From the Euler–Lagrange equations

∂µ
δ(
√−gL)

δ ∂µφ
− δ(
√−gL)

δφ
= 0 , (33)

we obtain

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0 , (34)

where V ′(φ) = (dV (φ)/dφ). Note, in particular, the appearance of the friction term 3Hφ̇: a scalar field
rolling down its potential suffers a friction due to the expansion of the universe.

We can write the energy momentum tensor of the scalar field

Tµν = ∂µφ∂νφ− gµν L .

The corresponding energy density ρφ and pressure density Pφ are

T00 = ρφ =
φ̇2

2
+ V (φ) +

(∇φ)2

2a2
, (35)

Tii = Pφ =
φ̇2

2
− V (φ)− (∇φ)2

6a2
. (36)

Note that, if the gradient term were dominant, we would obtain Pφ = −ρφ
3 , not enough to drive inflation.

We can now split the inflaton field in

φ(t) = φ0(t) + δφ(x, t) ,

where φ0 is the ‘classical’ (infinite wavelength) field, that is the expectation value of the inflaton field on
the initial isotropic and homogeneous state, while δφ(x, t) represents the quantum fluctuations around
φ0. In this section, we shall be concerned only with the evolution of the classical field φ0. The next
section will be devoted to the crucial issue of the evolution of quantum perturbations during inflation.
This separation is justified by the fact that quantum fluctuations are much smaller than the classical value
and therefore negligible when looking at the classical evolution. Not to be overwhelmed by the notation,
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we shall indicate the classical value of the inflaton field by φ from now on. The energy momentum tensor
becomes

T00 = ρφ =
φ̇2

2
+ V (φ) (37)

Tii = Pφ =
φ̇2

2
− V (φ). (38)

If
V (φ)� φ̇2

we obtain the following condition
Pφ ' −ρφ .

From this simple calculation, we realize that a scalar field whose energy is dominant in the universe and
whose potential energy dominates over the kinetic term gives inflation. Inflation is driven by the vacuum
energy of the inflaton field.

4.4 Slow-roll conditions
Let us now quantify better under which circumstances a scalar field may give rise to a period of inflation.
The equation of motion of the field is

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (39)

If we require that φ̇2 � V (φ), the scalar field is slowly rolling down its potential. This is the reason why
such a period is called slow-roll. We may also expect that since the potential is flat, φ̈ is negligible as
well. We shall assume that this is true and we shall quantify this condition soon. The FRW equation (3)
becomes

H2 ' 8πG

3
V (φ), (40)

where we have assumed that the inflaton field dominates the energy density of the universe. The new
equation of motion becomes

3Hφ̇ = −V ′(φ) (41)

which gives φ̇ as a function of V ′(φ). Using Eq. (41) slow-roll conditions then require

φ̇2 � V (φ) =⇒ (V ′)2

V
� H2

and
φ̈� 3Hφ̇ =⇒ V ′′ � H2.

It is now useful to define the slow-roll parameters ε and η in the following way

ε = − Ḣ

H2
= 4πG

φ̇2

H2
=

1

16πG

(
V ′

V

)2

,

η =
1

8πG

(
V ′′

V

)
=

1

3

V ′′

H2
,

δ = η − ε = − φ̈

Hφ̇
.
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It might be useful to have the same parameters expressed in terms of conformal time

ε = 1− H
′

H2
= 4πG

φ′2

H2

δ = η − ε = 1− φ′′

Hφ′ .

The parameter ε quantifies how much the Hubble rate H changes with time during inflation. Notice that,
since

ä

a
= Ḣ +H2 = (1− ε)H2,

inflation can be attained only if ε < 1:

INFLATION ⇐⇒ ε < 1.

As soon as this condition fails, inflation ends. In general, slow-roll inflation is attained if ε � 1 and
|η| � 1. During inflation the slow-roll parameters ε and η can be considered to be approximately
constant since the potential V (φ) is very flat.

Comment: In the following, we shall work at first-order perturbation in the slow-roll parameters,
that is we shall take only the first power of them. Since, using their definition, it is easy to see that
ε̇, η̇ = O

(
ε2, η2

)
, this amounts to saying that we shall treat the slow-roll parameters as constant in time.

Within these approximations, it is easy to compute the number of e-foldings between the beginning
and the end of inflation. If we indicate by φi and φf the values of the inflaton field at the beginning and
at the end of inflation, respectively, we find that the total number of e-foldings is

N ≡
∫ tf

ti

H dt

' H

∫ φf

φi

dφ

φ̇

' −3H2

∫ φf

φi

dφ

V ′

' −8πG

∫ φf

φi

V

V ′
dφ . (42)

We may also compute the number of e-foldings ∆N which are left to go to the end of inflation

∆N ' 8πG

∫ φ∆N

φf

V

V ′
dφ, (43)

where φ∆N is the value of the inflaton field when there are ∆N e-foldings to the end of inflation.

1. Comment: According to the criterion given in Subsection 2.4, a given scale length λ = a/k
leaves the horizon when k = aHk where Hk is the the value of the Hubble rate at that time. One can
easily compute the rate of change of H2

k as a function of k

dlnH2
k

dln k
=

(
dlnH2

k

dt

)(
dt

dln a

)(
dln a

dln k

)
= 2

Ḣ

H
× 1

H
× 1 = 2

Ḣ

H2
= −2ε. (44)
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2. Comment: Take a given physical scale λ today which crossed the horizon scale during inflation.
This happened when

λ

(
af
a0

)
e−∆Nλ = λ

(
T0

Tf

)
e−∆Nλ = H−1

I

where ∆Nλ indicates the number of e-foldings from the time the scale crossed the horizon during infla-
tion and the end of inflation. This relation gives a way to determine the number of e-foldings to the end
of inflation corresponding to a given scale

∆Nλ ' 65 + ln

(
λ

3000 Mpc

)
+ 2 ln

(
V 1/4

1014 GeV

)
− ln

(
Tf

1010 GeV

)
.

Scales relevant for the CMB anisotropies correspond to ∆N ∼60.

Inflation ended when the potential energy associated with the inflaton field became smaller than
the kinetic energy of the field. By that time, any pre-inflation entropy in the universe had been inflated
away, and the energy of the universe was entirely in the form of coherent oscillations of the inflaton
condensate around the minimum of its potential. The universe may be said to be frozen after the end of
inflation. We know that somehow the low-entropy cold universe dominated by the energy of coherent
motion of the φ field must be transformed into a high-entropy hot universe dominated by radiation. The
process by which the energy of the inflaton field is transferred from the inflaton field to radiation has
been dubbed reheating. In the theory of reheating, the simplest way to envisage this process is if the co-
moving energy density in the zero mode of the inflaton decays into normal particles, which then scatter
and thermalize to form a thermal background. It is usually assumed that the decay width of this process
is the same as the decay width of a free inflaton field.

Of particular interest is a quantity usually known as the reheat temperature, denoted as TRH5. The
reheat temperature is calculated by assuming an instantaneous conversion of the energy density in the
inflaton field into radiation when the decay width of the inflaton energy, Γφ, is equal to H , the expansion
rate of the universe.

The reheat temperature is calculated quite easily. After inflation the inflaton field executes co-
herent oscillations about the minimum of the potential. Averaged over several oscillations, the coherent
oscillation energy density redshifts as matter: ρφ ∝ a−3, where a is the Robertson–Walker scale factor.
If we denote as ρI and aI the total inflaton energy density and the scale factor at the initiation of coherent
oscillations, then the Hubble expansion rate as a function of a is

H2(a) =
8π

3

ρI
mPl

2

(aI
a

)3
. (45)

Equating H(a) and Γφ leads to an expression for aI/a. Now if we assume that all available coherent
energy density is instantaneously converted into radiation at this value of aI/a, we can find the re-
heat temperature by setting the coherent energy density, ρφ = ρI(aI/a)3, equal to the radiation energy
density, ρR = (π2/30)g∗T 4

RH , where g∗ is the effective number of relativistic degrees of freedom at
temperature TRH . The result is

TRH =

(
90

8π3g∗

)1/4√
ΓφmPl = 0.2

(
200

g∗

)1/4√
ΓφmPl . (46)

5 Inflation and the cosmological perturbations
As we have seen in the previous section, the early universe was made very nearly uniform by a primordial
inflationary stage. However, the important caveat in that statement is the word ‘nearly’. Our current un-
derstanding of the origin of structure in the universe is that it originated from small ‘seed’ perturbations,

5So far, we have indicated it by Tf .
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which over time grew to become all of the structure we observe. Once the universe becomes matter dom-
inated (around 1000 yrs after the bang) primeval density inhomogeneities (δρ/ρ ∼ 10−5) are amplified
by gravity and grow into the structure we see today [4]. The fact that a fluid of self-gravitating particles is
unstable to the growth of small inhomogeneities was first pointed out by Jeans and is known as the Jeans
instability. Furthermore, the existence of these inhomogeneities was confirmed by the COBE discov-
ery of CMB anisotropies; the temperature anisotropies detected almost certainly owe their existence to
primeval density inhomogeneities, since, as we have seen, causality precludes microphysical processes
from producing anisotropies on angular scales larger than about 1◦, the angular size of the horizon at
last-scattering.

The growth of small matter inhomogeneities of wavelength smaller than the Hubble scale (λ <∼
H−1) is governed by a Newtonian equation:

δ̈k + 2Hδ̇k + v2
s

k2

a2
δk = 4πGρMδk, (47)

where v2
s = ∂P/∂ρM is the square of the speed of sound and we have expanded the perturbation to the

matter density in plane waves

δρm(x, t)

ρm
=

1

(2π)3

∫
d3k δk(t)e−ik·x. (48)

Competition between the pressure term and the gravity term on the rhs of Eq. (47) determines whether or
not pressure can counteract gravity: perturbations with wavenumber larger than the Jeans wavenumber,
k2
J = 4πGa2ρm/v

2
s , are Jeans stable and just oscillate; perturbations with smaller wavenumber are Jeans

unstable and can grow.

Let us discuss solutions to this equation under different circumstances. First, consider the Jeans
problem, evolution of perturbations in a static fluid, i.e., H = 0. In this case Jeans unstable perturbations
grow exponentially, δk ∝ exp(t/τ) where τ = 1/

√
4GπρM . Next, consider the growth of Jeans unstable

perturbations in a matter-dominated universe, i.e.,H2 = 8πGρM/3 and a ∝ t2/3. Because the expansion
tends to pull particles away from one another, the growth is only power law, δk ∝ t2/3; i.e., at the same
rate as the scale factor. Finally, consider a radiation-dominated universe. In this case, the expansion is
so rapid that matter perturbations grow very slowly, as ln a in a radiation-dominated epoch. Therefore,
perturbations may grow only in a matter-dominated period. Once a perturbation reaches an overdensity
of order unity or larger it separates from the expansion, i.e., it becomes its own self-gravitating system
and ceases to expand any further. In the process of virial relaxation, its size decreases by a factor of
two—density increases by a factor of 8; thereafter, its density contrast grows as a3 since the average
matter density is decreasing as a−3, though smaller scales could become Jeans unstable and collapse
further to form smaller objects of higher density.

In order for structure formation to occur via gravitational instability, there must have been small
pre-existing fluctuations on physical length scales when they crossed the Hubble radius in the radiation-
dominated and matter-dominated eras. In the standard Big Bang model these small perturbations have to
be put in by hand, because it is impossible to produce fluctuations on any length scale while it is larger
than the horizon. Since the goal of cosmology is to understand the universe on the basis of physical laws,
this appeal to initial conditions is unsatisfactory. The challenge is therefore to give an explanation to the
small seed perturbations which allow the gravitational growth of the matter perturbations.

Our best guess for the origin of these perturbations is quantum fluctuations during an inflation-
ary era in the early universe. Although originally introduced as a possible solution to the cosmological
conundrums such as the horizon, flatness and entropy problems, by far the most useful property of infla-
tion is that it generates spectra of both density perturbations and gravitational waves. These perturbations
extend from extremely short scales to scales considerably in excess of the size of the observable universe.

During inflation the scale factor grows quasi-exponentially, while the Hubble radius remains al-
most constant. Consequently the wavelength of a quantum fluctuation— either in the scalar field whose
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potential energy drives inflation or in the graviton field—soon exceeds the Hubble radius. The amplitude
of the fluctuation therefore becomes ‘frozen in’. This is quantum mechanics in action at macroscopic
scales.

According to quantum field theory, empty space is not entirely empty. It is filled with quantum
fluctuations of all types of physical fields. The fluctuations can be regarded as waves of physical fields
with all possible wavelenghts, moving in all possible directions. If the values of these fields, averaged
over some macroscopically large time, vanish then the space filled with these fields seems to us empty
and can be called the vacuum.

In the exponentially expanding universe the vacuum structure is much more complicated. The
wavelenghts of all vacuum fluctuations of the inflaton field φ grow exponentially in the expanding uni-
verse. When the wavelength of any particular fluctuation becomes greater than H−1, this fluctuation
stops propagating, and its amplitude freezes at some non-zero value δφ because of the large friction term
3Hφ̇ the equation of motion of the field φ. The amplitude of this fluctuation then remains almost un-
changed for a very long time, whereas its wavelength grows exponentially. Therefore, the appearance of
such frozen fluctuation is equivalent to the appearance of a classical field δφ that does not vanish after
having averaged over some macroscopic interval of time. Because the vacuum contains fluctuations of all
possible wavelengths, inflation leads to the creation of more and more new perturbations of the classical
field with wavelength larger than the horizon scale.

Once inflation has ended, however, the Hubble radius increases faster than the scale factor, so the
fluctuations eventually re-enter the Hubble radius during the radiation- or matter-dominated eras. The
fluctuations that exit around 60 e-foldings or so before reheating re-enter with physical wavelengths in the
range accessible to cosmological observations. These spectra provide a distinctive signature of inflation.
They can be measured in a variety of different ways including the analysis of microwave background
anisotropies.

Quantum fluctuations of the inflaton field are generated during inflation. Since gravity talks to any
component of the universe, small fluctuations of the inflaton field are intimately related to fluctuations
of the space-time metric, giving rise to perturbations of the curvature R (which will be defined in the
following; the reader may loosely think of it as a gravitational potential). The wavelengths λ of these
perturbations grow exponentially and leave the horizon soon when λ > RH . On superhorizon scales,
curvature fluctuations are frozen in and may be considered as classical. Finally, when the wavelength
of these fluctuations re-enters the horizon, at some radiation- or matter-dominated epoch, the curvature
(gravitational potential) perturbations of the space-time give rise to matter (and temperature) perturba-
tions δρ via the Poisson equation. These fluctuations will then start growing, giving rise to the structures
we observe today.

In summary, these are the key ingredients for understanding the observed structures in the universe
within the inflationary scenario:

– Quantum fluctuations of the inflaton field are excited during inflation and stretched to cosmological
scales. At the same time, being the inflaton fluctuations connected to the metric perturbations
through Einstein’s equations, ripples on the metric are also excited and stretched to cosmological
scales.

– Gravity acts a messenger since it communicates the small seed perturbations to photons and
baryons once a given wavelength becomes smaller than the horizon scale after inflation.

Let us now see how quantum fluctuations are generated during inflation. we shall proceed by
steps. First, we shall consider the simplest problem of studying the quantum fluctuations of a generic
scalar field during inflation: we shall learn how perturbations evolve as a function of time and compute
their spectrum. Then—since a satisfactory description of the generation of quantum fluctuations has to
take both the inflaton and the metric perturbations into account— we shall study the system composed
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by quantum fluctuations of the inflaton field and quantum fluctuations of the metric.

6 Quantum fluctuations of a generic massless scalar field during inflation
Let us first see how the fluctuations of a generic scalar field χ, which is not the inflaton field, behave
during inflation. To warm up we first consider a de Sitter epoch during which the Hubble rate is constant.

6.1 Quantum fluctuations of a generic massless scalar field during a de Sitter stage
We assume this field to be massless. The massive case will be analysed in the next subsection.

Expanding the scalar field χ in Fourier modes

δχ(x, t) =

∫
d3k

(2π)3/2
eik·x δχk(t),

we can write the equation for the fluctuations as

δχ̈k + 3H δχ̇k +
k2

a2
δχk = 0 . (49)

Let us study the qualitative behaviour of the solution to Eq. (49).

– For wavelengths within the horizon, λ � H−1, the corresponding wave-number satisfies the
relation k � aH . In this regime, we can neglect the friction term 3H δχ̇k and Eq. (49) reduces to

δχ̈k +
k2

a2
δχk = 0, (50)

which is basically the equation of motion of an harmonic oscillator. Of course, the frequency
term k2/a2 depends upon time because the scale factor a grows exponentially. On the qualitative
level, however, one expects that when the wavelength of the fluctuation is within the horizon, the
fluctuation oscillates.

– For wavelengths above the horizon, λ� H−1, the corresponding wave-number satisfies the rela-
tion k � aH and the term k2/a2 can be safely neglected. Equation (49) reduces to

δχ̈k + 3H δχ̇k = 0, (51)

which tells us that on superhorizon scales δχk remains constant.

We have therefore the following picture: take a given fluctuation whose initial wavelength λ ∼
a/k is within the horizon. The fluctuations oscillate till the wavelength becomes of the order of the
horizon scale. When the wavelength crosses the horizon, the fluctuation ceases to oscillate and gets
frozen in.

Let us now study the evolution of the fluctuation in a more quantitative way. To do so, we perform
the following redefinition

δχk =
δσk
a

and we work in conformal time dτ = dt/a. For the time being, we solve the problem for a pure de Sitter
expansion and we take the scale factor exponentially growing as a ∼ eHt; the corresponding conformal
factor reads (after choosing properly the integration constants)

a(τ) = − 1

Hτ
(τ < 0).
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In the following we shall also solve the problem in the case of quasi de Sitter expansion. The beginning
of inflation coincides with some initial time τi � 0. We find that Eq. (49) becomes

δσ′′k +

(
k2 − a′′

a

)
δσk = 0. (52)

We obtain an equation which is very ‘close’ to the equation for a Klein–Gordon scalar field in flat space-
time, the only difference being a negative time-dependent mass term −a′′/a = −2/τ2. Equation (52)
can be obtained from an action of the type

δSk =

∫
dτ

[
1

2
δσ′2k −

1

2

(
k2 − a′′

a

)
δσ2

k

]
, (53)

which is the canonical action for a simple harmonic oscillator with canonical commutation relations
δσ∗kδσ

′
k − δσkδσ∗′k = −i.
Let us study the behaviour of this equation on subhorizon and superhorizon scales. Since

k

aH
= −k τ ,

on subhorizon scales k2 � a′′/a Equation (52) reduces to

δσ′′k + k2 δσk = 0 ,

whose solution is a plane wave

δσk =
e−ikτ√

2k
(k � aH) . (54)

We find again that fluctuations with wavelength within the horizon oscillate exactly like in flat space-
time. This does not come as a surprise. In the ultraviolet regime, that is for wavelengths much smaller
than the horizon scale, one expects that approximating the space-time as flat is a good approximation.

On superhorizon scales, k2 � a′′/a Equation (52) reduces to

δσ′′k −
a′′

a
δσk = 0,

which is satisfied by
δσk = B(k) a (k � aH) (55)

where B(k) is a constant of integration. Roughly matching the (absolute values of the) solutions (54)
and (55) at k = aH (−kτ = 1), we can determine the (absolute value of the) constant B(k)

|B(k)| a =
1√
2k

=⇒ |B(k)| = 1

a
√

2k
=

H√
2k3

.

Going back to the original variable δχk, we obtain that the quantum fluctuation of the χ field on super-
horizon scales is constant and approximately equal to

|δχk| '
H√
2k3

(ON SUPERHORIZON SCALES)

In fact we can do much better, since Eq. (52) has an exact solution:

δσk =
e−ikτ√

2k

(
1 +

i

kτ

)
. (56)

This solution reproduces all that we have found by qualitative arguments in the two extreme regimes
k � aH and k � aH . We have performed the matching procedure to show that the latter can be very
useful to determine the behaviour of the solution on superhorizon scales when the exact solution is not
known.
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6.2 The power spectrum
Let us define now the power spectrum, a useful quantity to characterize the properties of the perturba-
tions. For a generic quantity g(x, t), which can expanded in Fourier space as

g(x, t) =

∫
d3k

(2π)3/2
eik·x gk(t),

the power spectrum can be defined as

〈0|g∗k1
gk2 |0〉 ≡ δ(3) (k1 − k2)

2π2

k3
Pg(k), (57)

where |0〉 is the vacuum quantum state of the system. This definition leads to the usual relation

〈0|g2(x, t)|0〉 =

∫
dk

k
Pg(k). (58)

6.3 Quantum fluctuations of a generic scalar field in a quasi de Sitter stage
So far, we have computed the time evolution and the spectrum of the quantum fluctuations of a generic
scalar field χ supposing that the scale factor evolves like in a pure de Sitter expansion, a(τ) = −1/(Hτ).
However, during inflation the Hubble rate is not exactly constant, but changes with time as Ḣ = −εH2

(quasi de Sitter expansion). In this subsection, we shall solve for the perturbations in a quasi de Sitter
expansion. Using the definition of the conformal time, one can show that the scale factor for small values
of ε becomes

a(τ) = − 1

H

1

τ(1− ε) .

The fluctuation mass-squared mass term is

M2(τ) = m2
χa

2 − a′′

a
,

where

a′′

a
= a2

(
ä

a
+H2

)
= a2

(
Ḣ + 2H2

)

= a2 (2− ε)H2 =
(2− ε)

τ2 (1− ε)2

' 1

τ2
(2 + 3ε) . (59)

Armed with these results, we may compute the variance of the perturbations of the generic χ field

〈0| (δχ(x, t))2 |0〉 =

∫
d3k

(2π)3
|δχk|2

=

∫
dk

k

k3

2π2
|δχk|2

=

∫
dk

k
Pδχ(k), (60)

which defines the power spectrum of the fluctuations of the scalar field χ

Pδχ(k) ≡ k3

2π2
|δχk|2 . (61)
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Since we have seen that fluctuations are (nearly) frozen in on superhorizon scales, a way of characterizing
the perturbations is to compute the spectrum on scales larger than the horizon. For a massive scalar field,
we obtain

Pδχ(k) =

(
H

2π

)2( k

aH

)3−2νχ

, (62)

where, taking m2
χ/H

2 = 3ηχ and expanding for small values of ε and η,

νχ '
3

2
+ ε− ηχ. (63)

We may also define the spectral index nδχ of the fluctuations as

nδχ − 1 =
dlnPδφ
dln k

= 3− 2νχ = 2ηχ − 2ε.

The power spectrum of fluctuations of the scalar field χ is therefore nearly flat, that is is nearly indepen-
dent of the wavelength λ = π/k: the amplitude of the fluctuation on superhorizon scales does almost not
depend upon the time at which the fluctuation crosses the horizon and becomes frozen in. The small tilt
of the power spectrum arises from the fact that the scalar field χ is massive and because during inflation
the Hubble rate is not exactly constant, but nearly constant, where ‘nearly’ is quantified by the slow-roll
parameters ε. Adopting the traditional terminology, we may say that the spectrum of perturbations is
blue if nδχ > 1 (more power in the ultraviolet) and red if nδχ < 1 (more power in the infrared). The
power spectrum of the perturbations of a generic scalar field χ generated during a period of slow-roll
inflation may be either blue or red. This depends upon the relative magnitude between ηχ and ε.

Comment: We might have computed the spectral index of the spectrum Pδχ(k) by first solving the
equation for the perturbations of the field χ in a di Sitter stage, with H = constant and therefore ε = 0,
and then taking into account the time evolution of the Hubble rate introducing the subscript in Hk whose
time variation is determined by Eq. (44). Correspondingly, Hk is the value of the Hubble rate when a
given wavelength ∼ k−1 crosses the horizon (from that point on the fluctuation remains frozen in). The
power spectrum in such an approach would read

Pδχ(k) =

(
Hk

2π

)2( k

aH

)3−2νχ

(64)

with 3− 2νχ ' ηχ. Using Eq. (44), one finds

nδχ − 1 =
dlnPδφ
dln k

=
dlnH2

k

dln k
+ 3− 2νχ = 2ηχ − 2ε

which reproduces our previous findings.

Comment: Since on superhorizon scales

δχk '
H√
2k3

(
k

aH

)ηχ−ε
' H√

2k3

[
1 + (ηχ − ε) ln

(
k

aH

)]
,

we discover that

|δχ̇k| ' |H (ηχ − ε) δχk| � |H δχk| , (65)

that is, on superhorizon scales the time variation of the perturbations can be safely neglected.
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7 Quantum fluctuations during inflation
As we have mentioned in the previous section, the linear theory of the cosmological perturbations repre-
sents a cornerstone of modern cosmology and is used to describe the formation and evolution of structures
in the universe as well as the anisotropies of the CMB. The seeds for these inhomogeneities were gener-
ated during inflation and stretched over astronomical scales because of the rapid superluminal expansion
of the universe during the (quasi) de Sitter epoch.

In the previous section we have already seen that pertubations of a generic scalar field χ are
generated during a (quasi) de Sitter expansion. The inflaton field is a scalar field and, as such, we
conclude that inflaton fluctuations will be generated as well. However, the inflaton is special from the
point of view of perturbations. The reason is very simple. By assumption, the inflaton field dominates the
energy density of the universe during inflation. Any perturbation in the inflaton field means a perturbation
of the stress energy momentum tensor

δφ =⇒ δTµν .

A perturbation in the stress energy momentum tensor implies, through Einstein’s equations of motion, a
perturbation of the metric

δTµν =⇒
[
δRµν −

1

2
δ (gµνR)

]
= 8πGδTµν =⇒ δgµν .

On the other hand, a pertubation of the metric induces a back-reaction on the evolution of the inflaton
perturbation through the perturbed Klein–Gordon equation of the inflaton field

δgµν =⇒ δ

(
∂µ∂

µφ+
∂V

∂φ

)
= 0 =⇒ δφ.

This logic chain makes us conclude that the perturbations of the inflaton field and of the metric are tightly
coupled to each other and have to be studied together

δφ⇐⇒ δgµν .

As we shall see shortly, this relation is stronger than one might think because of the issue of gauge
invariance.

Before launching ourselves into the problem of finding the evolution of the quantum perturbations
of the inflaton field when they are coupled to gravity, let us give a heuristic explanation of why we expect
that during inflation such fluctuations are indeed present.

If we take Eq. (34) and split the inflaton field as its classical value φ0 plus the quantum flucutation
δφ, φ(x, t) = φ0(t) + δφ(x, t), the quantum perturbation δφ satisfies the equation of motion

δφ̈+ 3H δφ̇− ∇
2δφ

a2
+ V ′′ δφ = 0. (66)

Differentiating Eq. (39) wrt time and taking H constant (de Sitter expansion) we find

(φ0)··· + 3Hφ̈0 + V ′′ φ̇0 = 0. (67)

Let us consider for simplicity the limit k2/a2 � 1 and let us disregard the gradient term. Under this
condition we see that φ̇0 and δφ solve the same equation. The solutions have therefore to be related to
each other by a constant of proportionality which depends upon time
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δφ = −φ̇0 δt(x). (68)

This tells us that φ(x, t) will have the form

φ(x, t) = φ0 (x, t− δt(x)) .

This equation indicates that the inflaton field does not acquire the same value at a given time t in
all the space. On the contrary, when the inflaton field is rolling down its potential, it acquires different
values from one spatial point x to the next. The inflaton field is not homogeneous and fluctuations are
present. These fluctuations, in turn, will induce fluctuations in the metric.

7.1 The metric fluctuations
The mathematical tool to describe the linear evolution of the cosmological perturbations is obtained by
perturbing at the first order the FRW metric g(0)

µν , see Eq. (1)

gµν = g(0)
µν (t) + gµν(x, t) ; gµν � g(0)

µν . (69)

The metric perturbations can be decomposed according to their spin with respect to a local rotation of
the spatial coordinates on hypersurfaces of constant time. This leads to

– scalar perturbations
– vector perturbations
– tensor perturbations

Tensor perturbations or gravitational waves have spin 2 and are the true degrees of freedom of
the gravitational fields in the sense that they can exist even in the vacuum. Vector perturbations are
spin 1 modes arising from rotational velocity fields and are also called vorticity modes. Finally, scalar
perturbations have spin 0.

Let us do a simple exercise to count how many scalar degrees of freedom are present. Take a space-
time of dimensions D = n + 1, of which n coordinates are spatial coordinates. The symmetric metric
tensor gµν has 1

2(n+ 2)(n+ 1) degrees of freedom. We can perform (n+ 1) coordinate transformations
in order to eliminate (n+1) degrees of freedom, this leaves us with 1

2n(n+1) degrees of freedom. These
1
2n(n+1) degrees of freedom contain scalar, vector and tensor modes. According to Helmholtz’s theorem
we can always decompose a vector ui (i = 1, · · · , n) as ui = ∂iv + vi, where v is a scalar (usually
called potential flow) which is curl-free, v[i,j] = 0, and vi is a real vector (usually called vorticity)
which is divergence-free, ∇ · v = 0. This means that the real vector (vorticity) modes are (n − 1).
Furthermore, a generic traceless tensor Πij can always be decomposed as Πij = ΠS

ij + ΠV
ij + ΠT

ij , where

ΠS
ij =

(
−kikj

k2 + 1
3δij

)
Π, ΠV

ij = (−i/2k) (kiΠj + kjΠi) (kiΠi = 0) and kiΠT
ij = 0. This means that

the true symmetric, traceless and transverse tensor degreees of freedom are 1
2(n− 2)(n+ 1).

The number of scalar degrees of freedom is therefore

1

2
n(n+ 1)− (n− 1)− 1

2
(n− 2)(n+ 1) = 2,

while the degrees of freedom of true vector modes are (n− 1) and the number of degrees of freedom of
true tensor modes (gravitational waves) is 1

2(n− 2)(n+ 1). In four dimensions n = 3, meaning that one
expects 2 scalar degrees of freedom, 2 vector degrees of freedom and 2 tensor degrees of freedom. As we
shall see, to the 2 scalar degrees of freedom from the metric, one has to add another one, the inflaton field
perturbation δφ. However, since Einstein’s equations will tell us that the two scalar degrees of freedom
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from the metric are equal during inflation, we expect a total number of scalar degrees of freedom equal
to 2.

At the linear order, the scalar, vector, and tensor perturbations evolve independently (they decou-
ple) and it is therefore possible to analyse them separately. Vector perturbations are not excited during
inflation because there are no rotational velocity fields during the inflationary stage. we shall analyse the
generation of tensor modes (gravitational waves) in the following. For the time being we want to focus
on the scalar degrees of freedom of the metric.

Considering only the scalar degrees of freedom of the perturbed metric, the most generic perturbed
metric reads

gµν = a2

(
−1 − 2 Φ ∂iB
∂iB (1 − 2ψ) δij + DijE

)
, (70)

while the line-element can be written as

ds2 = a2
(
(−1− 2 Φ)dτ2 + 2 ∂iB dτ dx

i + ((1− 2ψ)δij + DijE) dxi dxj
)
. (71)

Here Dij =
(
∂i∂j − 1

3 δij ∇2
)
.

7.2 The issue of gauge invariance
When studying the cosmological density perturbations, what we are interested in is following the evolu-
tion of a space-time which is neither homogeneous nor isotropic. This is done by following the evolution
of the differences between the actual space-time and a well understood reference space-time. So we shall
consider small perturbations away from the homogeneous, isotropic space-time.

The reference system in our case is the spatially flat Friedmann–Robertson–Walker (FRW) space-
time, with line element ds2 = a2(τ)

{
dτ2 − δijdxidxj

}
. Now, the key issue is that general relativity

is a gauge theory where the gauge transformations are the generic coordinate transformations from one
local reference frame to another.

When we compute the perturbation of a given quantity, this is defined to be the difference between
the value that this quantity assumes on the real physical space-time and the value it assumes on the
unperturbed background. Nonetheless, to perform a comparison between these two values, it is necessary
to compute them at the same space-time point. Since the two values live on two different geometries,
it is necessary to specify a map which allows one to link univocally the same point on the two different
space-times. This correspondence is called a gauge choice and changing the map means performing a
gauge transformation.

Fixing a gauge in general relativity implies choosing a coordinate system. A choice of coordinates
defines a threading of space-time into lines (corresponding to fixed spatial coordinates x) and a slicing
into hypersurfaces (corresponding to fixed time τ ). A choice of coordinates is called a gauge and there
is no unique preferred gauge

GAUGE CHOICE ⇐⇒ SLICING AND THREADING

From a more formal point of view, operating an infinitesimal gauge transformation on the coordinates

x̃µ = xµ + δxµ (72)

implies on a generic quantity Q a transformation on its perturbation

δ̃Q = δQ + £δxQ0 (73)
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where Q0 is the value assumed by the quantity Q on the background and £δx is the Lie-derivative of Q
along the vector δxµ.

Decomposing in the usual manner the vector δxµ

δx0 = ξ0(xµ) ;

δxi = ∂iβ(xµ) + vi(xµ) ; ∂iv
i = 0 , (74)

we can easily deduce the transformation law of a scalar quantity f (like the inflaton scalar field φ and
energy density ρ). Instead of applying the formal definition (73), we find the transformation law in
an alternative (and more pedagogical) way. We first write δf(x) = f(x) − f0(x), where f0(x) is the
background value. Under a gauge transformation we have δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ). Since f is a scalar
we can write f(x̃µ) = f(xµ) (the value of the scalar function in a given physical point is the same in
all the coordinate system). On the other side, on the unperturbed background hypersurface f̃0 = f0. We
have therefore

δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ)

= f(xµ)− f0(x̃µ)

= f
(
x̃µ
)
− f0(x̃µ)

= f(x̃µ)− δxµ ∂f

∂xµ
(x̃)− f0(x̃µ),

(75)

from which we finally deduce, being f0 = f0(x0),

δ̃f = δf − f ′ ξ0

For the spin-zero perturbations of the metric, we can proceed analogously. We use the following trick.
Upon a coordinate transformation xµ → x̃µ = xµ + δxµ, the line element is left invariant, ds2 = d̃s2.

This implies, for instance, that a2(x̃0)
(

1 + Φ̃
)(

dx̃0
)2

= a2(x0) (1 + Φ) (dx0)2. Since a2(x̃0) '
a2(x0) + 2a a′ ξ0 and dx̃0 =

(
1 + ξ0′) dx0 + ∂x0

∂xi
dxi, we obtain 1 + 2Φ = 1 + 2Φ̃ + 2Hξ0 + 2ξ0′. We

now may introduce in detail some gauge-invariant quantities which play a major role in the computation
of the density perturbations. In the following we shall be interested only in the coordinate transformations
on constant time hypersurfaces and therefore gauge invariance will be equivalent to independence of the
slicing.

7.3 The co-moving curvature perturbation
The intrinsic spatial curvature on hypersurfaces on constant conformal time τ and for a flat universe is
given by

(3)R =
4

a2
∇2 ψ.

The quantity ψ is usually referred to as the curvature perturbation. We have seen, however, that the
curvature potential ψ is not gauge invariant, but is defined only on a given slicing. Under a transformation
on constant time hypersurfaces t→ t+ δτ (change of the slicing)
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ψ → ψ + H δτ.
We now consider the co-moving slicing which is defined to be the slicing orthogonal to the worldlines of
co-moving observers. The latter are are free-falling and the expansion defined by them is isotropic. In
practice, what this means is that there is no flux of energy measured by these observers, that is T0i = 0.
During inflation this means that these observers measure δφcom = 0 since T0i goes like ∂iδφ(x, τ)φ′(τ).

Since δφ→ δφ− φ′δτ for a transformation on constant time hypersurfaces, this means that

δφ→ δφcom = δφ− φ′ δτ = 0 =⇒ δτ =
δφ

φ′
,

that is δτ = δφ
φ′ is the time-displacement needed to go from a generic slicing with generic δφ to the

co-moving slicing where δφcom = 0. At the same time the curvature perturbation ψ transforms into

ψ → ψcom = ψ + H δτ = ψ + Hδφ
φ′
.

The quantity

R = ψ + Hδφ
φ′

= ψ +H
δφ

φ̇

is the co-moving curvature perturbation. This quantity is gauge invariant by construction and is related to
the gauge-dependent curvature perturbation ψ on a generic slicing to the inflaton perturbation δφ in that
gauge. By construction, the meaning of R is that it represents the gravitational potential on co-moving
hypersurfaces where δφ = 0 or the inflaton fluctuation hypersurfaces where ψ = 0:

R = ψ|δφ=0 = H
δφ

φ̇

∣∣∣∣
ψ=0

.

The power spectrum of the curvature perturbation may then be easily computed

Rk = H
δφk

φ̇
. (76)

We may now compute the power spectrum of the co-moving curvature perturbation on superhorizon
scales

PR(k) =
1

2mPl
2ε

(
H

2π

)2( k

aH

)nR−1

≡ A2
R

(
k

aH

)nR−1

where we have defined the spectral index nR of the co-moving curvature perturbation as

nR − 1 =
dlnPR
dln k

= 3− 2ν = 2η − 6ε.
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We conclude that inflation is responsible for the generation of adiabatic/curvature perturbations with
an almost scale-independent spectrum. To compute the spectral index of the spectrum PR(k) we have
proceeded as follows: first solve the equation for the perturbation δφk in a de Sitter stage, with H =
constant (ε = η = 0), whose solution is Eq. (56) and then taking into account the time-evolution of
the Hubble rate and of φ introducing the subscript in Hk and φ̇k. The time variation of the latter is
determined by

dln φ̇k
dln k

=

(
dln φ̇k
dt

)(
dt

dln a

)(
dln a

dln k

)
=
φ̈k

φ̇k
× 1

H
× 1 = −δ = ε− η. (77)

Correspondingly, φ̇k is the value of the time derivative of the inflaton field when a given wavelength
∼ k−1 crosses the horizon (from that point on the fluctuations remains frozen in). The curvature pertur-
bation in such an approach would read

Rk '
Hk

φ̇k
δφk '

1

2π

(
H2
k

φ̇k

)
.

Correspondingly

nR − 1 =
dlnPR
dln k

=
dlnH4

k

dln k
− dln φ̇2

k

dln k
= −4ε+ (2η − 2ε) = 2η − 6ε.

During inflation the curvature perturbation is generated on superhorizon scales with a spectrum
which is nearly scale invariant [13], that is, is nearly independent of the wavelength λ = π/k: the
amplitude of the fluctuation on superhorizon scales does not (almost) depend upon the time at which the
fluctuation crosses the horizon and becomes frozen in. The small tilt of the power spectrum arises from
the fact that the inflaton field is massive, giving rise to a non-vanishing η and because during inflation
the Hubble rate is not exactly constant, but nearly constant, where ‘nearly’ is quantified by the slow-roll
parameters ε.

Comment: From what we have found so far, we may conclude that on superhorizon scales the
co-moving curvature perturbation R and the uniform-density gauge curvature ζ satisfy on superhorizon
scales the relation

Ṙk ' 0.

7.4 Gravitational waves
Quantum fluctuations in the gravitational fields are generated in a similar fashion to that of the scalar
perturbations discussed so far. A gravitational wave may be viewed as a ripple of space-time in the FRW
background metric (1) and in general the linear tensor perturbations may be written as

gµν = a2(τ)
[
−dτ2 + (δij + hij) dx

idxj
]
,

where |hij | � 1. The tensor hij has six degrees of freedom, but, as we studied in Subsection 7.1, the
tensor perturbations are traceless, δijhij = 0, and transverse ∂ihij = 0 (i = 1, 2, 3). With these four
constraints, there remain two physical degrees of freedom, or polarizations, which are usually indicated
λ = +,×. More precisely, we can write

hij = h+ e
+
ij + h× e

×
ij ,

where e+ and e× are the polarization tensors which have the following properties
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eij = eji, kieij = 0, , eii = 0,

eij(−k, λ) = e∗ij(k, λ),
∑

λ

e∗ij(k, λ)eij(k, λ) = 4.

Notice also that the tensors hij are gauge-invariant and therefore represent physical degrees of freedom.

If the stress-energy momentum tensor is diagonal, as the one provided by the inflaton potential
Tµν = ∂µφ∂νφ − gµνL, the tensor modes do not have any source in their equation and their action can
be written as

mPl
2

2

∫
d4x
√−g 1

2
∂σhij ∂

σhij ,

that is the action of four independent massless scalar fields. The gauge-invariant tensor amplitude

vk = amPl
1√
2
hk,

satisfies therefore the equation

v′′k +

(
k2 − a′′

a

)
vk = 0,

which is the equation of motion of a massless scalar field in a quasi-de Sitter epoch. We can therefore
make use of the results present in Subsection 6.5 and Eq. (63) to conclude that on superhorizon scales
the tensor modes scale like

|vk| =
(
H

2π

)(
k

aH

) 3
2
−νT

,

where

νT '
3

2
− ε.

Since fluctuations are (nearly) frozen in on superhorizon scales, a way of characterizing the tensor per-
turbations is to compute the spectrum on scales larger than the horizon

PT (k) =
k3

2π2

∑

λ

|hk|2 = 4× 2
k3

2π2
|vk|2 . (78)

This gives the power spectrum on superhorizon scales

PT (k) =
8

mPl
2

(
H

2π

)2( k

aH

)nT
≡ A2

T

(
k

aH

)nT

where we have defined the spectral index nT of the tensor perturbations as

nT =
dlnPT
dln k

= 3− 2νT = −2ε.
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The tensor perturbation is almost scale-invariant. Notice that the amplitude of the tensor modes depends
only on the value of the Hubble rate during inflation. This amounts to saying that it depends only on the
energy scale V 1/4 associated to the inflaton potential. A detection of gravitational waves from inflation
will therefore be a direct measurement of the energy scale associated to inflation.

7.5 The consistency relation
The results obtained so far for the scalar and tensor perturbations allow one to predict a consistency
relation which holds for the models of inflation addressed in these lectures, i.e., the models of inflation
driven by one-single field φ. We define the tensor-to-scalar amplitude ratio to be

r =
1

100A
2
T

4
25A

2
R

=

1
1008

(
H

2πmPl

)2

4
25(2ε)−1

(
H

2πmPl

)2 = ε.

This means that

r = −nT
2

One-single models of inflation predict that during inflation driven by a single scalar field, the ratio be-
tween the amplitude of the tensor modes and that of the curvature perturbations is equal to minus one-half
of the tilt of the spectrum of tensor modes. If this relation turns out to be falsified by the future measure-
ments of the CMB anisotropies, this does not mean that inflation is wrong, but only that inflation has not
been driven by only one field.

7.6 From the inflationary seeds to the matter power spectrum
As the curvature perturbations enter the causal horizon during radiation- or matter-domination, they
create density fluctuations δρk via gravitational attractions of the potential wells. The density contrast
δk = δρk

ρ can be deduced from the Poisson equation

k2Φk

a2
= −4πGδρk = −4πG

δρk
ρ
ρ =

3

2
H2 δρk

ρ

where ρ is the background average energy density. This means that

δk =
2

3

(
k

aH

)2

Φk.

From this expression we can compute the power spectrum of matter density perturbations induced by
inflation when they re-enter the horizon during matter-domination:

Pδρ = 〈|δk|2〉 = A

(
k

aH

)n
=

2π2

k3

(
2

5

)2

A2
R

(
k

aH

)4 ( k

aH

)nR−1

from which we deduce that matter perturbations scale linearly with the wave-number and have a scalar
tilt

n = nR = 1 + 2η − 6ε.
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The primordial spectrum Pδρ is of course reprocessed by gravitational instabilities after the uni-
verse becomes matter-dominated. Indeed, as we have seen in Section 6, perturbations evolve after en-
tering the horizon and the power spectrum will not remain constant. To see how the density contrast
is reprocessed we have first to analyse how it evolves on superhorizon scales before horizon-crossing.
We use the following trick. Consider a flat universe with average energy density ρ. The corresponding
Hubble rate is

H2 =
8πG

3
ρ.

A small positive fluctuation δρ will cause the universe to be closed:

H2 =
8πG

3
(ρ+ δρ)− k

a2
.

Substracting the two equations we find

δρ

ρ
=

3

8πG

k

a2ρ
∼
{
a2 RD
a MD

Notice that Φk ∼ δρa2/k2 ∼ (δρ/ρ)ρa2/k2 = constant for both RD and MD which confirms our
previous findings.

When the matter densities enter the horizon, they do not increase appreciably before matter-
domination because before matter-domination pressure is too large and does not allow the matter in-
homogeneities to grow. On the other hand, the suppression of growth due to radiation is restricted to
scales smaller than the horizon, while large-scale perturbations remain unaffected. This is why the hori-
zon size at equality sets an important scale for structure growth:

kEQ = H−1 (aEQ) ' 0.08hMpc−1.

Therefore, perturbations with k � kEQ are perturbations which have entered the horizon before matter-
domination and have remained nearly constant till equality. This means that they are suppressed with
respect to those perturbations having k � kEQ by a factor (aENT/aEQ)2 = (kEQ/k)2. If we define the
transfer function T (k) by the relationRfinal = T (k)Rinitial we find therefore that roughly speaking

T (k) =

{
1 k � kEQ,

(kEQ/k)2 k � kEQ.

The corresponding power spectrum will be

Pδρ(k) ∼
{ (

k
aH

)
k � kEQ,(

k
aH

)−3
k � kEQ.

Of course, a more careful computation needs to include many other effects such as neutrino free-
streaming, photon diffusion and the diffusion of baryons along with photons. It is encouraging, however,
that this rough estimate turns out to be confirmed by present data on large-scale structures [4].

The next step would be to investigate how the primordial perturbations generated by inflation flow
into the CMB to produce their anisotropies.

8 From inflation to large-angle CMB anisotropy
As we have already mentioned, the high temperature of the early universe maintained a low equilibrium
fraction of neutral atoms, and a correspondingly high number density of free electrons. Coulomb scat-
tering between the ions and electrons kept them in local kinetic equilibrium, and Thomson scattering of
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photons tended to maintain the isotropy of the CMB in the baryon rest frame. As the universe expanded
and cooled, the dominant element hydrogen started to recombine when the temperature fell below ∼
4000 K. This is a factor of 40 lower than might be anticipated from the 13.6 eV ionization potential of
hydrogen, and is due to the large ratio of the number of photons to baryons. Through recombination, the
mean-free path for Thomson scattering grew to the horizon size and CMB photons “decoupled” from
matter. More precisely, the probability density that photons last scattered at some time defines the vis-
ibility function. This is now known to peak 380 kyr after the Big Bang with a width ∼ 120 kyr. Since
then, CMB photons have propagated relatively unimpeded for 13.7 Gyr, covering a co-moving distance
∼ 14.1 Gpc. The distribution of their energies carries the imprint of fluctuations in the radiation temper-
ature, the gravitational potentials, and the peculiar velocity of the radiation where they last scattered, as
the temperature anisotropies that we observe today.

Temperature fluctuations in the CMB arise due to various distinct physical effects: our peculiar
velocity with respect to the cosmic rest frame; fluctuations in the gravitational potential on the last scat-
tering surface; fluctuations intrinsic to the radiation field itself on the last scatteringsurface; the peculiar
velocity of the last scatteringsurface and damping of anisotropies if the universe should be re-ionized
after decoupling. The first effect gives rise to the dipole anisotropy. Finally, there is the contribution
from the evolution of the anisotropies from the last scattering surface till today (which we shall neglect
from now on).

The second effect, known as the Sachs–Wolfe effect is the dominat contribution to the anisotropy
on large-angular scales, θ � θHOR ∼ 1◦. The last three effects provide the dominant contributions to
the anisotropy on small-angular scales, θ � 1◦.

8.1 Sachs–Wolfe plateau
We consider first the temperature fluctuations on large-angular scales that arise due to the Sachs–Wolfe
effect. These anisotropies probe length scales that were superhorizon-sized at photon decoupling and
therefore insensitive to microphysical processes. On the contrary, they provide a probe of the original
spectrum of primeval fluctuations produced during inflation.

To proceed, we consider the CMB anisotropy measured at positions other than our own and at
earlier times. This is called the brightness function Θ(t,x,n) ≡ δT (t,x,n)/T (t). The photons with
momentum p in a given range d3p have intensity I proportional to T 4(t,x,n) and therefore δI/I = 4Θ.
The brightness function depends upon the direction n of the photon momentum or, equivalently, on the
direction of observation e = −n. Because the CMB travels freely from the last-scattering, we can write

δT

T
= Θ (tLS,xLS,n) +

(
δT

T

)

∗
,

where xLS = −xLSn is the point of the origin of the photon coming from the direction e. The co-moving
distance of the last scatteringdistance is xLS = 2/H0. The first term corresponds to the anisotropy
already present at last scattering and the second term is the additional anisotropy acquired during the
travel towards us, equal to minus the fractional pertubation in the redshift of the radiation. Notice that
the separation between each term depends on the slicing, but the sum does not.

Consider the redshift perturbation on co-moving slicing. We imagine the universe populated by co-
moving observers along the line of sight. The relative velocity of adjacent co-moving observers is equal
to their distance times the velocity gradient measured along n of the photon. In the unperturbed universe,
we have u = Hr, leading to the velocity gradient uij = ∂ui/∂rj = uij = H(t)δij with zero vorticity
and shear. Including a peculiar velocity field as perturbation, u = Hr + v and uij = H(t)δij + 1

a
∂vi
∂vj

.
The corresponding Doppler shift is

dλ

λ
=
da

a
+ ninj

∂vi
∂xj

dx.
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The perturbed FRW equation is

δH =
1

3
∇ · v,

while

(δρ)· = −3ρδH − 3Hδρ.

Instead of δρ, let us work with the density contrast δ = δρ/ρ. Remembering that ρ ∼ a−3, we find that
δ̇ = −3δH , which gives

∇ · v = −δ̇k.

From the Euler equation u̇ = −ρ−1∇p−∇Φ, we deduce v̇+Hv = −∇Φ− ρ−1∇p. Therefore,
for a ∼ t2/3 and negligible pressure gradient, since the gravitational potential is constant, we find

v = −t∇Φ

leading to

(
δT

T

)

∗
=

∫ xLS

0

t

a

d2Φ

dx2
dx. (79)

The photon trajectory is adx/dt = n. Using a ∼ t2/3 gives

x(t) =

∫ t0

t

dt′

a
= 3

(
a0

t0
− t

a

)
.

Integrating by parts Eq. (79), we finally find

(
δT

T

)

∗
=

1

3
[Φ(xLS)− Φ(0)] + e · [v(0, t0)− v(xLS, tLS)] .

The potential at our position contributes only to the unobservable monopole and can be dropped. On
scales outside the horizon, v = −t∇Φ ∼ 0. The remaining term is the Sachs–Wolfe effect

δT (e)

T
=

1

3
Φ(xLS) =

1

5
R(xLS).

This relation has been obtained as follows. The co-moving curvature perturbation is given during the
radiation phase byR = ψ+Hδρ/ρ̇ = ψ−1/3δργ/ργ . Einstein equations setψ = Φ and δργ/ργ = −2Φ
on super-horizon scales. ThereforeR = 5/3Φ beyond the horizon.

At large angular scales, the theory of cosmological perturbations predicts a remarkably simple
formula relating the CMB anisotropy to the curvature perturbation generated during inflation.

We have seen previously that the temperature anisotropy is commonly expanded in spherical
harmonics ∆T

T (x0, τ0,n) =
∑

`m a`,m(x0)Y`m(n), where x0 and τ0 are our position and the preset
time, respectively, n is the direction of observation, `′s are the different multipoles, and 〈a`ma∗`′m′〉 =
δ`,`′δm,m′C`, where the deltas are due to the fact that the process that created the anisotropy is statisti-
cally isotropic. The C`’s are the so-called CMB power spectrum. For homogeneity and isotropy, the C`’s
are neither a function of x0, nor of m. The two-point-correlation function is related to the Cl’s according
to Eq. (23).
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For adiabatic perturbations we have seen that on large scales, larger than the horizon on the last
scatteringsurface (corresponding to angles larger than θHOR ∼ 1◦) δT/T = 1

3Φ(xLS). In Fourier trans-
form

δT (k, τ0,n)

T
=

1

3
Φk e

ik·n(τ0−τLS). (80)

Using the decomposition

exp(ik · n(τ0 − τLS)) =
∞∑

`=0

(2`+ 1)i`j`(k(τ0 − τLS))P`(k · n) (81)

where j` is the spherical Bessel function of order ` and substituting, we get
〈δT (x0, τ0,n)

T

δT (x0, τ0,n
′)

T

〉
= (82)

=
1

V

∫
d3x
〈δT (x0, τ0,n)

T

δT (x0, τ0,n
′)

T

〉
=

=
1

(2π)3

∫
d3k
〈δT (k, τ0,n)

T

(
δT (k, τ0,n

′)
T

)∗ 〉
=

=
1

(2π)3

∫
d3k
(〈1

3
|Φ|2

〉 ∞∑

`,`′=0

(2`+ 1)(2`′ + 1)j`(k(τ0 − τLS))

j`′(k(τ0 − τLS))P`(k · n)P`′(k
′ · n′)

)
(83)

Inserting P`(k·n) = 4π
2`+1

∑
m Y

∗
lm(k)Y`m(n) and analogously for P`(k′ ·n′), integrating over the direc-

tions dΩk generates δ``′δmm′
∑

m Y
∗
`m(n)Y`m(n′). Using as well

∑
m Y

∗
`m(n)Y`m(n′) = 2`+1

4π P`(n·n′),
we get

〈δT (x0, τ0,n)

T

δT (x0, τ0,n
′)

T

〉
(84)

= Σ`
2`+ 1

4π
P`(n · n′)

2

π

∫
dk

k

〈1

9
|Φ|2

〉
k3j2

` (k(τ0 − τLS)).

Comparing this expression with that for the C`, we get the expression for the CAD
` , where the suffix

“AD” stands for adiabatic:

CAD
` =

2

π

∫
dk

k

〈1

9
|Φ|2

〉
k3j2

` (k(τ0 − τLS)) (85)

which is valid for 2 ≤ `� (τ0 − τLS)/τLS ∼ 100.

If we generically indicate by 〈|Φk|2〉k3 = A2 (kτ0)n−1, we can perform the integration and get

`(`+ 1)CAD
`

2π
=

[√
π

2
`(`+ 1)

Γ(3−n
2 )Γ(`+ n−)

2 )

Γ
(

4−n
2

)
Γ
(
`+ 5−n

2

)
]
A2

9

(
H0

2

)n−1

. (86)

For n ' 1 and `� 1, we can approximate this expression to

`(`+ 1)CAD
l

2π
=
A2

9
. (87)

This result shows that inflation predicts a very flat spectrum for low `. Furthermore, since inflation
predicts Φk = 3

5Rk, we find that

π `(`+ 1)CAD
l =

A2
R

25
=

1

25

1

2mPl
2 ε

(
H

2π

)2

. (88)

WMAP5 data imply that `(`+1)CAD
l

2π ' 10−10 or
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(
V

ε

)1/4

' 6.7× 1016 GeV

8.2 Acoustic peaks
To be able to calculate the power spectrum of the anisotropies even on angular scales larger than 1◦, we
need to consider the evolution of the photon anistropies. As we already mentioned, before recombination
Thomson scattering was very efficient. As a result it is a good approximation to treat photons and baryons
as a single fluid. This treatment is called the tight-coupling approximation and will allow us to evolve
the perturbations until recombination.

The equation for the photon density perturbations for one Fourier mode of wave-number k is that
of a forced and damped harmonic oscillator

δ̈γ +
Ṙ

(1 +R)
δ̇γ + k2c2

sδγ = F,

F = 4[ψ̈ +
Ṙ

(1 +R)
ψ̇ − 1

3
k2Φ],

δ̇γ = −4

3
kvγ + 4ψ̇. (89)

The photon–baryon fluid can sustain acoustic oscillations. The inertia is provided by the baryons, while
the pressure is provided by the photons. The sound speed is c2

s = 1/3(1 + R), with R = 3ρb/4ργ =
31.5 (Ωbh

2)(T/2.7)−4[(1 + z)/103]−1. As the baryon fraction goes down, the sound speed approaches
c2
s → 1/3. The third equation above is the continuity equation.

As a toy problem, we shall solve Eq. (89) under some simplifying assumptions. If we con-
sider a matter-dominated universe, the driving force becomes a constant, F = −4/3k2Φ, because the
gravitational potential remains constant in time. We neglect anisotropic stresses so that ψ = Φ, and,
furthermore, we neglect the time dependence of R. Equation (89) becomes that of a harmonic oscillator
that can be trivially solved. This is a very simplified picture, but it captures most of the relevant physics
we want to discuss.

To obtain the final solution we need again to specify the initial conditions. we shall restrict our-
selves to adiabatic initial conditions, the most natural outcome of inflation. In our context this means
that initially Φ = ψ = Φ0, δγ = −8/3Φ0, and vγ = 0. We have denoted Φ0 the initial amplitude of the
potential fluctuations. We shall take Φ0 to be a Gaussian random variable with power spectrum PΦ0 .

We have made enough approximations that the evaluation of the sources in the integral solution
has become trivial. The solution for the density and velocity of the photon fluid at recombination is

(
δγ
4

+ Φ

)
|LS =

Φ0

3
(1 + 3R) cos(kcsτLS)− Φ0R,

vγ |τLS = −Φ0(1 + 3R)cs sin(kcsτLS). (90)

Equation (90) is the solution for a single Fourier mode. All quantities have an additional spatial de-
pendence (eik·x), which we have not included in order to make the notation more compact. With that
additional term the solution we have is

δT

T
(n) = eikDLS cos θS

S = Φ0
(1 + 3R)

3
[cos(kcsτLS)− 3R

(1 + 3R)
,
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−i
√

3

1 +R
cos θ sin(kcsτLS)], (91)

where we have neglected the Φ on the left-hand side because it is a constant. We have introduced
cos θ, the cosine of the angle between the direction of observation and the wavevector k; for example,
k · x = kDLS cos θ . The term proportional to cos θ is the Doppler contribution.

Once the temperature perturbation produced by one Fourier mode has been calculated, we need
to expand it into spherical harmonics. The power spectrum of temperature anisotropies is expressed in
terms of the alm coefficients as CT` =

∑
m |a`m|2. The contribution to CT l from each Fourier mode is

weighted by the amplitude of primordial fluctuations in this mode, characterized by the power spectrum
of Φ0 = 3/5R, PΦ0 = Ak−3 as dictated by inflation. In practice, fluctuations on angular scale ` receive
most of their contributions from wavevectors around k∗ = `/DLS, so roughly the amplitude of the power
spectrum at multipole ` is given by the value of the sources in Eq. (90) at k∗.

After summing the contributions from all modes, the power spectrum is roughly given by

`(`+ 1)CT l ≈ A{[ (1 + 3R)

3
cos(k∗csτLS)−R]2 +

(1 + 3R)2

3
c2
s sin2(k∗csτLS)}. (92)

Equation (92) can be used to understand the basic features in the CMB power spectra. The baryon drag
on the photon–baryon fluid reduces its sound speed below 1/3 and makes the monopole contribution
dominant (the one proportional to cos(k∗csτLS). Thus, the CT l spectrum peaks where the monopole
term peaks, k∗csτLS = π, 2π, 3π, · · · , which correspond to `peak = nπDLS/cSτLS.

It is very important to understand the origin of the acoustic peaks. In this model the universe
is filled with standing waves; all modes of wave-number k are in phase, which leads to the oscillatory
terms. The sine and cosine in Eq. (92) originate in the time dependence of the modes. Each mode `
receives contributions preferentially from Fourier modes of a particular wavelength k∗ (but pointing in
all directions), so to obtain peaks in C`, it is crucial that all modes of a given k be in phase. If this is not
the case, the features in the CT` spectra will be blurred and can even disappear. This is what happens
when one considers the spectra produced by topological defects. The phase coherence of all modes of
a given wave-number can be traced to the fact that perturbations were produced very early on and had
wavelengths larger than the horizon during many expansion times.

There are additional physical effects we have neglected. The universe was radiation dominated
early on, and modes of wavelength smaller and bigger than the horizon at matter-radiation equality
behave differently. During the radiation era the perturbations in the photon–baryon fluid are the main
source for the gravitational potentials which decay once a mode enters into the horizon. The gravitational
potential decay acts as a driving force for the oscillator in Eq. (89), so a feedback loop is established. As
a result, the acoustic oscillations for modes that entered the horizon before matter-radiation equality have
a higher amplitude. In the CT` spectrum the separation between modes that experience this feedback and
those that do not occurs at ` ∼ DLS/τLS. Larger ` values receive their contributions from modes that
entered the horizon before matter-radiation equality. Finally, when a mode is inside the horizon during
the radiation era the gravitational potentials decay.

There is a competing effect, Silk damping, that reduces the amplitude of the large-l modes. The
photon–baryon fluid is not a perfect fluid. Photons have a finite mean free path and thus can random-walk
away from the peaks and valleys of the standing waves. Thus perturbations of wavelength comparable
to or smaller than the distance the photons can random-walk get damped. This effect can be modelled
by multiplying Eq. 91 by exp(−k2/k2

s), with k−1
s ∝ τ

1/2
LS (Ωbh

2)−1/2. Silk damping is important for
multipoles of order `Silk ∼ ksDLS. Finally, the last scatteringsurface has a finite width. Perturbations
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with wavelength comparable to this width get smeared out due to cancellations along the line of sight.
This effect introduces an additional damping with a characteristic scale k−1

w ∝ δτLS.

The location of the first peak is by itself a measurement of the geometry of the universe. In fact,
photons propagating on geodesics from the last scattering surface to us feel the spatial geometry, whose
properties we learned are dictated by Ω0. In fact, the location of the first peak is given by `1 ' 220/

√
Ω0.

WMAP5 gives Ω0 = 1.00+0.07
−0.03. This tells us that the spatial (local) geometry of the universe is flat. This

is precisely what inflation predicts.

8.3 The polarization of the CMB anisotropies
The anisotropy field is characterized by a 2× 2 intensity tensor Iij . For convenience, we normalize this
tensor so that it represents the fluctuations in units of the mean intensity (Iij = δI/I0). The intensity
tensor is a function of direction on the sky, n, and two directions perpendicular to n that are used to define
its components (e1,e2). The Stokes parametersQ andU are defined asQ = (I11−I22)/4 andU = I12/2,
while the temperature anisotropy is given by T = (I11 + I22)/4 (the factor of 4 relates fluctuations in the
intensity with those in the temperature, I ∝ T 4). When representing polarization using “rods” in a map,
the magnitude is given by P =

√
Q2 + U2, and the orientation makes an angle α = 1

2 arctan(U/Q)
with e1. In principle the fourth Stokes parameter V that describes circular polarization is needed, but
we ignore it because it cannot be generated through Thomson scattering, so the CMB is not expected
to be circularly polarized. While the temperature is invariant under a right-handed rotation in the plane
perpendicular to direction n, Q and U transform under rotation by an angle ψ as

(Q± iU)′(n) = e∓2iψ(Q± iU)(n), (93)

where e′1 = cosψ e1 + sinψ e2 and e′2 = − sinψ e1 + cosψ e2. The quantities Q± iU are said to be
spin 2.

We already mentioned that the statistical properties of the radiation field are usually described
in terms of the spherical harmonic decomposition of the maps. This basis, basically the Fourier basis,
is very natural because the statistical properties of anisotropies are rotationally invariant. The standard
spherical harmonics are not the appropriate basis for Q ± iU because they are spin-2 variables, but
generalizations (called ±2Ylm) exist. We can expand

(Q± iU)(n) =
∑

`m

a±2,`m ±2Y`m(n). (94)

Here Q and U are defined at each direction n̂ with respect to the spherical coordinate system (eθ, eφ).
To ensure that Q and U are real, the expansion coefficients must satisfy a∗−2,`m = a2,`−m. The equiv-
alent relation for the temperature coefficients is a∗T,`m = aT,`−m. Instead of a±2,`m, it is convenient to
introduce their linear combinations aE,`m = −(a2,`m + a−2,`m)/2 and aB,`m = i(a2,`m − a−2,`m)/2.
We define two quantities in real space, E(n) =

∑
`,m aE,`mY`m(n) and B(n) =

∑
`,m aB,`mY`m(n).

Here E and B completely specify the linear polarization field.

The temperature is a scalar quantity under a rotation of the coordinate system, T ′(n′ = Rn) =
T (n), where R is the rotation matrix. We denote with a prime the quantities in the transformed coor-
dinate system. While Q ± iU are spin 2, E(n) and B(n) are invariant under rotations. Under parity,
however, E and B behave differently, E remains unchanged, while B changes sign.

To characterize the statistics of the CMB perturbations, only four power spectra are needed, those
for T , E, B and the cross correlation between T and E. The cross correlation between B and E or B
and T vanishes if there are no parity-violating interactions because B has the opposite parity to T or
E. The power spectra are defined as the rotationally invariant quantities CT` = 1

2`+1

∑
m〈a∗T,`maT,`m〉,

CE` = 1
2`+1

∑
m〈a∗E,`maE,`m〉, CB` = 1

2`+1

∑
m〈a∗B,`maB,`m〉, and CC` = 1

2`+1

∑
m〈a∗T,`maE,`m〉.

The brackets 〈· · · 〉 denote ensemble averages.
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Fig. 4: Examples of E- and B-mode patterns of polarization
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Fig. 5: Thomson scattering of radiation where quadrupole anisotropy generates linear polarization

Polarization is generated by Thomson scattering between photons and electrons, which means that
polarization cannot be generated after recombination (except for re-ionization, which we shall discuss
later). But Thomson scattering is not enough. The radiation incident on the electrons must also be
anisotropic. In fact, its intensity needs to have a quadrupole moment. This requirement of having both
Thomson scattering and anisotropies is what makes polarization relatively small. After recombination,
anisotropies grow by free streaming, but there is no scattering to generate polarization. Before recom-
bination there were so many scatterings that they erased any anisotropy present in the photon–baryon
fluid.

In the context of anisotropies induced by density perturbations, velocity gradients in the photon–
baryon fluid are responsible for the quadrupole that generates polarization. Let us consider a scattering
occurring at position x0: the scattered photons came from a distance of order the mean free path (λT )
away from this point. If we are considering photons traveling in direction n̂, they roughly come from x =
x0 +λT n̂. The photon–baryon fluid at that point was moving at velocity v(x) ≈ v(x0)+λT n̂i∂iv(x0).
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Due to the Doppler effect the temperature seen by the scatterer at x0 is δT (x0, n̂) = n̂·[v(x)−v(x0)] ≈
λT n̂in̂j∂ivj(x0), which is quadratic in n̂ (i.e., it has a quadrupole). Velocity gradients in the photon–
baryon fluid lead to a quadrupole component of the intensity distribution, which, through Thomson
scattering, is converted into polarization.

The polarization of the scattered radiation field, expressed in terms of the Stokes parameters Q
and U , is given by (Q+ iU) ∝ σT

∫
dΩ′(m · n̂′)2T (n̂′) ∝ λpmimj∂ivj |τLS , where σT is the Thomson

scattering cross-section and we have written the scattering matrix as P (m, n̂′) = −3/4σT (m · n̂′)2, with
m = ê1 + iê2 . In the last step, we integrated over all directions of the incident photons n̂′. As photons
decouple from the baryons, their mean free path grows very rapidly, so a more careful analysis is needed
to obtain the final polarization:

(Q+ iU)(n̂) ≈ εδτLSm
imj∂ivj |τLS , (95)

where δτLS is the width of the last scattering surface and gives a measure of the distance that photons
travel between their last two scatterings, and ε is a numerical constant that depends on the shape of the
visibility function. The appearance of mimj in Eq. (95) ensures that (Q + iU) transforms correctly
under rotations of (ê1, ê2).

If we evaluate Eq. (95) for each Fourier mode and combine them to obtain the total power, we get
the equivalent of Eq. (92),

`(`+ 1)CE` ≈ Aε2(1 + 3R)2(k∗δτLS)2 sin2(k∗csτLS), (96)

where we are assuming n = 1 and that ` is large enough that factors like (` + 2)!/(` − 2)! ≈ `4.
The extra k∗ in Eq. (96) originates in the gradient in Eq. (95). The large-angular scale polarization
is greatly suppressed by the kδτLS factor. Correlations over large angles can only be created by the
long-wavelength perturbations, but these cannot produce a large polarization signal because of the tight
coupling between photons and electrons prior to recombination. Multiple scatterings make the plasma
very homogeneous; only wavelengths that are small enough to produce anisotropies over the mean free
path of the photons will give rise to a significant quadrupole in the temperature distribution, and thus
to polarization. Wavelengths much smaller than the mean free path decay due to photon diffusion (Silk
damping) and so are unable to create a large quadrupole and polarization. As a result polarization peaks
at the scale of the mean free path.

On sub-degree angular scales, temperature, polarization, and the cross-correlation power spectra
show acoustic oscillations. In the polarization and cross-correlation spectra the peaks are much sharper.
The polarization is produced by velocity gradients of the photon—baryon fluid at the last scatteringsur-
face. The temperature receives contributions from density and velocity perturbations, and the oscillations
in each partially cancel one another, making the features in the temperature spectrum less sharp. The
dominant contribution to the temperature comes from the oscillations in the density [Eq. (90)], which
are out of phase with the velocity. This explains the difference in location between the temperature
and polarization peaks. The extra gradient in the polarization signal, Eq. (95), explains why its overall
amplitude peaks at a smaller angular scale.

Now, as photons travel in the metric perturbed by a GW [ds2 = a2(τ) [−dτ2 +(δij+h
T
ij)dx

idxj ]],
they get redshifted or blueshifted depending on their direction of propagation relative to the direction of
propagation of the GW and the polarization of the GW. For example, for a GW travelling along the z
axis, the frequency shift is given by

1

ν

dν

dτ
=

1

2
n̂in̂j ḣ

T (±)
ij =

1

2
(1− cos2 θ)e±i2φ ḣt exp(ik · x), (97)

where (θ, φ) describe the direction of propagation of the photon, the ± correspond to the different polar-
izations of the GW, and ht gives the time-dependent amplitude of the GW. During the matter-dominated
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Fig. 6: E- and B-mode power spectra for a tensor-to-scalar ratio saturating the current bounds, r = 0.3 and for
r = 0.01. Shown are the experimental sensitivities of WMAP, Planck and two different realizations of CMBPol
(EPIC-LC and EPIC-2m)

era, for example, ht = 3j1(kτ)/kτ : time changes in the metric lead to frequency shifts (or equivalently
shifts in the temperature of the black body spectrum). Notice that the angular dependence of this fre-
quency shift is quadrupolar in nature. As a result, the temperature fluctuations induced by this effect
as photons travel between successive scatterings before recombination produce a quadrupole intensity
distribution, which, through Thomson scattering, lead to polarization. Both E and B power spectra are
generated by GW. The current push to improve polarization measurements follows from the fact that
density perturbations, to linear order in perturbation theory, cannot create any B-type polarization. As a
rough rule of thumb, the amplitude of the peak in the B-mode power spectrum for GW is

[`(`+ 1)CBl/2π]1/2 = 0.024(V 1/4/1016GeV)2µK

where

V 1/4 ' 6.7 r1/4 × 1016 GeV (98)

is the energy scale of inflation. A future experiment like CMBPol [14] can probe values of r as small
as 10−2, corresponding to an inflation energy scale of about 2 × ×1016 GeV. Furthermore, using the
consistency relation r = ε valid in one-single field models of inflation, one deduces that

∆φ

mPl
'
( r

10−2

)1/2
, (99)

meaning that a future measurement of the B-mode of CMB polarization will imply an inflaton excursus
of Planckian values. Therefore, A future measurement of the B-mode polarization of the CMB will
allow a determination of the value of the energy scale of inflation. This explains the utility of CMB
polarization measurements as probes of the physics of inflation. A detection of primordial B-mode
polarization would also demonstrate that inflation occurred at a very high energy scale, and that the
inflaton traversed a super-Planckian distance in field space.

9 The dark puzzles
Having explored the physics of the primordial epochs of the evolution of the universe, such as inflation,
and its impact on the present-day observables, we now devote the remaining space to a short discussion
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of the dark puzzles of the present-day universe: the dark energy and the dark matter puzzles.

9.1 A present-day accelerating universe
In 1998 the accelerated expansion of the universe was pointed out by two groups from the observations
of Type Ia Supernova (SN Ia) [15, 16]. Let us see how this came about.

An important concept related to observational tools in an expanding background is associated with
the definition of a distance. A way of defining a distance is through the luminosity of a stellar object.
The distance dL known as the luminosity distance, plays a very important role in astronomy including in
supernovae observations. It proves to be convenient to write the metric as

ds2 = −dt2 + a2(t)
[
dr2 + f2

K(r)(dθ2 + sin2 θdφ2)
]
, (100)

where

fK(r) =





sinr , K = +1 ,
r , K = 0 ,
sinhr , K = −1 .

(101)

In Minkowski space time the absolute luminosity Ls of the source and the energy fluxF at a distance d is
related through F = Ls/(4πd

2). By generalizing this to an expanding universe, the luminosity distance,
dL, is defined as

d2
L ≡

Ls
4πF . (102)

Let us consider an object with absolute luminosity Ls located at a co-moving coordinate distance r from
an observer at r = 0. The energy of light emitted from the object with time interval ∆te is denoted as
∆Ee, whereas the energy which reaches at the sphere with radius r is written as ∆Er. We note that ∆Ee
and ∆Er are proportional to the frequencies of light at r and r = 0, respectively, i.e., ∆Ee ∝ νe and
∆Er ∝ νr. The luminosities Lr and Le are given by

Lr =
∆Ee
∆te

, Le =
∆Ee
∆te

. (103)

The speed of light is given by c = νeλe = νrλr, where λe and λr are the wavelengths at r and r = 0.
Then, we find

λr
λe

=
νe
νr

=
∆tr
∆te

=
∆Ee
∆Er

= 1 + z, (104)

where we have also used νr∆tr = νe∆te. Combining Eq. (103) with Eq. (104), we obtain

Le = Lr(1 + z)2. (105)

The light travelling along the r direction satisfies the geodesic equation ds2 = −dt2 + a2(t)dr2 = 0.
We then obtain

r =

∫ r

0
dr′ =

∫ tr

te

dt

a(t)
(106)

From the metric (100) we find that the area of the sphere at t = tr is given by S = 4π(arfK(r))2. Hence
the observed energy flux is

F =
Lr

4π(arfK(r))2
. (107)

Substituting Eqs. (106) and (107) for Eq. (102), we obtain the luminosity distance in an expanding
universe:

dL = arfK(r)(1 + z). (108)
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In the flat FRW background with fK(r) = r we find

dL =

(
1 + z

H0

)∫ z

0
dz′

H0

H(z′)
. (109)

Then the Hubble rate H(z) can be expressed in terms of dL(z):

H(z) =

{
d

dz

(
dL(z)

1 + z

)}−1

. (110)

If we measure the luminosity distance observationally, we can determine the expansion rate of the uni-
verse.

The energy density ρ on the right-hand side of Einstein equations includes all components present
in the universe, namely, non-relativistic particles, relativistic particles, cosmological constant and so on

ρ =
∑

i

ρ
(0)
i (a/a0)−3(1+wi) =

∑

i

ρ
(0)
i (1 + z)3(1+wi). (111)

Here wi and ρ(0)
i correspond to the equation of state and the present energy density of each component,

respectively. The Hubble parameter takes the convenient form

H2 = H2
0

∑

i

Ω
(0)
i (1 + z)3(1+wi), (112)

where Ω
(0)
i ≡ 8πGρ

(0)
i /(3H2

0 ) = ρ
(0)
i /ρ

(0)
c is the density parameter for an individual component at the

present epoch. Hence the luminosity distance in a flat geometry is given by

dL =
(1 + z)

H0

∫ z

0

dz′√∑
i Ω

(0)
i (1 + z′)3(1+wi)

. (113)

The direct evidence for the current acceleration of the universe is related to the observation of luminosity
distances of high redshift supernovae [15,16]. The apparent magnitude m of the source with an absolute
magnitude M is related to the luminosity distance dL via the relation [17]

m−M = 5 log10

(
dL

Mpc

)
+ 25 . (114)

This comes from taking the logarithm of Eq. (102) by noting that m and M are related to the logarithms
of F and Ls, respectively. The numerical factors arise because of conventional definitions of m and M
in astronomy. Type Ia supernovae (SN Ia) can be observed when white dwarf stars exceed the mass of
the Chandrasekhar limit and explode. The belief is that SN Ia are formed in the same way irrespective of
where they are in the universe, which means that they have a common absolute magnitudeM independent
of the redshift z. Thus they can be treated as an ideal standard candle. We can measure the apparent
magnitude m and the redshift z observationally, which of course depends upon the objects we observe.

In order to get a feeling of the phenomenon let us consider two supernovae 1992P at low-redshift
z = 0.026 with m = 16.08 and 1997ap at high-redshift z = 0.83 with m = 24.32 [15]. As we
have already mentioned, the luminosity distance is approximately given by dL(z) ' z/H0 for z � 1.
Using the apparent magnitude m = 16.08 of 1992P at z = 0.026, we find that the absolute magnitude
is estimated by M = −19.09 from Eq. (114). Here we adopted the value H−1

0 = 2998h−1 Mpc
with h = 0.72. Then the luminosity distance of 1997ap is obtained by substituting m = 24.32 and
M = −19.09 for Eq. (114): H0dL ' 1.16 for z = 0.83. From Eq. (113) the theoretical estimate for the
luminosity distance in a two-component flat universe is H0dL ' 0.95 for Ω

(0)
m ' 1 and H0dL ' 1.23

for Ω
(0)
m ' 0.3, ΩDE ' 0.7
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Fig. 7: The luminosity distance versus redshift for a flat cosmological model. Black points are from the “Gold”
data sets [18]; red points are from recent data from HST

In 2004 Riess et al. [18] reported the measurement of 16 high-redshift SN Ia with redshift z > 1.25
with the Hubble Space Telescope (HST). By including 170 previously known SN Ia data points, they
showed that the universe exhibited a transition from deceleration to acceleration at > 99% confidence
level. A best-fit value of Ω

(0)
m was found to be Ω

(0)
m = 0.29+0.05

−0.03 (the error bar is 1σ). This shows that a
matter-dominated universe without a cosmological constant does not fit the data.

We should emphasize that the accelerated expansion is by cosmological standards really a late-
time phenomenon, starting at a redshift z ∼ 1. From Eq. (112) the deceleration parameter, q ≡ −aä/ȧ2,
is given by

q(z) =
3

2

∑
i Ω

(0)
i (1 + wi)(1 + z)3(1+wi)

∑
i Ω

(0)
i (1 + z)3(1+wi)

− 1.

For the two-component flat cosmology, the universe enters an accelerating phase (q < 0) for z < zc ≡
(2ΩDE/ΩDM)1/3 − 1. When ΩDM = 0.3 and ΩDE = 0.7, we have zc = 0.67. The problem of why
an accelerated expansion should occur now in the long history of the universe is called the “coincidence
problem”.

9.1.1 The origin of the acceleration
Once the idea of the accelerating universe is accepted, the next pressing question is: Why? There are
various explanations available that we may mention briefly. The general trend is to accept that there is a
form of Dark Energy (DE) fluid dominating the energy density of the present day. Its pressure is P = wρ
and w needs to be smaller than −1/3 for this fluid to cause the acceleration. Having learned how to use
scalar fields to accelerate the universe at primordial epochs, the most natural way to explain DE whould
be to introduce a scalar field φ dubbed quintessence, with potential

V(φ) = V0 + V (φ), (115)
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Fig. 8: The dark energy (vacuum energy) and dark matter (mass density) abundances from SN, CMB, and galaxy
clustering observations

Now, if V0 � V (φ) (at least at present epochs), the DE is in practice a Cosmological Constant (CC).
Its value must be extremely small, V 1/4

0 ' (H0mPl)
1/2 ' 10−3 eV. Why it is so small is a mystery

that earned the name “the CC problem”. On the other hand, if V0 � V (φ), then the dynamics of
the quintessence field dominates. However, another problem arises at this stage. Having learned from
inflation that the field must be slow-rolling to cause the acceleration of the universe, we have to assume
that (m2

PlV
′′/V ) is smaller than unity. This implies that φ is of order of the Planck scale and that its

mass squared is such that V ′′ ∼ H2
0 ∼ (10−33 eV)2. The quintessence field has a Compton wavelegth

as large as the entire observed universe.

If the reader does not like all this fine-tuning, there are at least two other explanations for the
acceleration of the universe. The first one goes under the name of modified gravity and is in fact rather
intuitive. If gravity gets weaker at large distances, objects far from us may recede at a velocity larger
than what they would do in the traditional Newtonian gravity case. For this to work, we have to suppose
that the gravitational force has a transient at some critical (and cosmological) scale rc, from the usual
1/r2 to, say 1/r3. How to get this transition is unfortunately beyond the scope of these lectures. Another
alternative goes under the name of the “anthropic principle” and is based on the following point. As
we have seen, in a static universe, overdense regions will increase their density at an exponential rate.
In an expanding universe, however, there is a competition between the expansion and the gravitational
collapse. More rapid expansion, as induced by DE, retards the growth of structure. General relativity
provides the following useful relation in linear perturbation theory between the growth factor g(z) and
the expansion history of the universe

g̈ + 2Hġ = 4πGρm =
3ΩDMH

2
0

2a3
g. (116)
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If the universe is always matter-dominated, then g ∼ a; however, in a DE dominated universe g scales
slower than the scale factor. Now, if the CC is too large, structure does not have time to develop: the
initial condition is δρm/ρm ∼ 10−5 at the last scattering surface (z ∼ 103) and needs to becomes order
unity by now. Now, if we impose that structures might have been able to develop by now even in the
presence of a CC, one obtains a reassuring bound, the CC V

1/4
0 must be smaller than about 10−1 eV. In

other words, the CC may not be far from the value we observe (if it is non-zero) because otherwise we
would not be here to discuss about it. A great deal of observational effort of the next decades will be
devoted to understand the cause of the acceleration of the universe [19]. Four observational techniques
are currently receiving much attention: 1) Baryoniuc Acoustic Oscillations (BAO) are observed on large-
scale surveys of the spatial distribution of matter. They are caused by the same oscillations that left an
imprint in the CMB under the form of acoustic peaks. The BAO technique is sensitive to the DE through
its effect on the angular-diameter distance vs. redshift relation and through its effect on the time evolution
of the expansion rate; 2) Galaxy Cluster (CL) surveys measure the spatial density and distribution of
galaxy clusters. The CL technique is sensitive to DE through its effect in the angular-diameter distance
vs. redshift relation and through its effect on the time evolution of the expansion rate and the growth
rate of perturbations; 3) supernovae as standard candles to determine the luminosity distance vs. redshift
relation; 4) Weak Lensing (WL) surveys measure the distortion of background images due to the bending
of light as it passes by galaxies or clusters of galaxies. The WL technique is sensitive to DE through its
effect on the angular-diameter distance vs. redshift relation and the growth rate of perturbations. All
these techniques will not only shed light on the nature of DE, but will also help us to discriminate the
various possibilities to explain the present-day acceleration. For instance, the modified gravity scenario
predicts a growth function which is different from the one predicted in a CC dominated universe. Future
applications of the techniques briefly summarized above should be able to determine which scenario is
more likely.

9.2 Dark matter
The evidence that 95% of the mass of galaxies and clusters is made of some unknown component of
Dark Matter (DM) comes from (i) rotation curves (out to tens of kpc), (ii) gravitational lensing (out to
200 kpc), and (iii) hot gas in clusters. They lead us to believe that DM makes up about 30% of the entire
energy of the universe. A nice review about DM can be found in Ref. [20].

In the 1970s, Ford and Rubin discovered that rotation curves of galaxies are flat. The velocities
of objects (stars or gas) orbiting the centres of galaxies, rather than decreasing as a function of the
distance from the galactic centres as had been expected, remain constant out to very large radii. Similar
observations of flat rotation curves have now been found for all galaxies studied, including our Milky
Way. The simplest explanation is that galaxies contain far more mass than can be explained by the bright
stellar objects residing in galactic disks. This mass provides the force to speed up the orbits. To explain
the data, galaxies must have enormous dark haloes made of unknown matter. Indeed, more than 95% of
the mass of galaxies consists of dark matter. The baryonic matter which accounts for the gas and disk
cannot alone explain the galactic rotation curve. However, adding a DM halo allows a good fit to data.

The limitations of rotation curves are that one can only look out as far as there is light or neutral
hydrogen (21 cm), namely to distances of tens of kpc. Thus one can see the beginnings of DM haloes,
but cannot trace where most of the DM is. The lensing experiments discussed in the next section go
beyond these limitations.

Einstein’s theory of General Relativity predicts that mass bends, or lenses, light. This effect can
be used to gravitationally ascertain the existence of mass even when it emits no light. Lensing measure-
ments confirm the existence of enormous quantities of DM both in galaxies and in clusters of galaxies.
Observations are made of distant bright objects such as galaxies or quasars. As the result of intervening
matter, the light from these distant objects is bent towards the regions of large mass. Hence there may
be multiple images of the distant objects, or, if these images cannot be individually resolved, the back-
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ground object may appear brighter. Some of these images may be distorted or sheared. The Sloan Digital
Sky Survey used weak lensing (statistical studies of lensed galaxies) to conclude that galaxies, including
the Milky Way, are even larger and more massive than previously thought, and require even more DM
out to great distances. Again, the predominance of DM in galaxies is observed. The key success of
the lensing of DM to date is the evidence that DM is seen out to much larger distances than could be
probed by rotation curves: the DM is seen in galaxies out to 200 kpc from the centres of galaxies, in
agreement with N-body simulations. On even larger Mpc scales, there is evidence for DM in filaments
(the cosmic web). Another piece of gravitational evidence for DM is the hot gas in clusters. The X-ray
data indicates the presence of hot gas. The existence of this gas in the cluster can only be explained by
a large DM component that provides the potential well to hold on to the gas. In summary, the evidence
is overwhelming for the existence of an unknown component of DM that comprises 95% of the mass in
galaxies and clusters.

There is another basic reason why DM is necessary: to form structures as we observe them. Let us
assume that the matter content of the universe is dominated by a pressureless and self-gravitating fluid.
This approximation holds if we are dealing with the evolution of the perturbations in the DM component
or in case we are dealing with structures whose size is much larger than the typical Jeans scale length of
baryons. Let us also define x to be the co-moving coordinate and r = a(t)x the proper coordinate, a(t)
being the cosmic expansion factor. Furthermore, if v = ṙ is the physical velocity, then v = ȧx + u,
where the first term describes the Hubble flow, while the second term, u = a(t)ẋ, gives the peculiar
velocity of a fluid element which moves in an expanding background.

In this case the equations that regulate the Newtonian description of the evolution of density per-
turbations are the continuity equation:

∂δ

∂t
+∇ · [(1 + δ)u] = 0 , (117)

which gives the mass conservation, the Euler equation

∂u

∂t
+ 2H(t)u + (u · ∇)u = −∇φ

a2
, (118)

which gives the relation between the acceleration of the fluid element and the gravitational force, and the
Poisson equation

∇2φ = 4πGρ̄a2δ (119)

which specifies the Newtonian nature of the gravitational force. In the above equations,∇ is the gradient
computed with respect to the co-moving coordinate x, φ(x) describes the fluctuations of the gravitational
potential, and H(t) = ȧ/a is the Hubble parameter at the time t. Its time-dependence is given by
H(t) = E(t)H0, where

E(z) = [(1 + z)3Ωm + (1 + z)2(1− Ωm − ΩDE) + (1 + z)3(1+w)ΩDE ]1/2. (120)

In the case of small perturbations, these equations can be linearized by neglecting all the terms
which are of second order in the fields δ and u. In this case, using the Euler equation to eliminate the
term ∂u/∂t, and using the Poisson equation to eliminate∇2φ, one ends up with

∂2δ

∂t2
+ 2H(t)

∂δ

∂t
− 4πGρ̄δ = 0 . (121)

This equation describes the Jeans instability of a pressureless fluid, with the additional “Hubble drag”
term 2H(t)∂δ/∂t, which describes the counter-action of the expanding background on the perturbation
growth. Its effect is to prevent the exponential growth of the gravitational instability taking place in a
non-expanding background. The solution of the above equation can be cast in the form:

δ(x, t) = δ+(x, ti)D+(t) + δ−(x, ti)D−(t) , (122)
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where D+ and D− describe the growing and decaying modes of the density perturbation, respectively.
In the case of an Einstein–de-Sitter (EdS) universe (Ωm = 1, ΩDE = 0), it is H(t) = 2/(3t), so that
D+(t) = (t/ti)

2/3 and D−(t) = (t/ti)
−1. The fact that D+(t) ∝ a(t) for an EdS universe should not

be surprising. Indeed, the dynamical time-scale for the collapse of a perturbation of uniform density ρ is
tdyn ∝ (Gρ)−1//2, while the expansion time-scale for the EdS model is texp ∝ (Gρ̄)−1//2, where ρ̄ is the
mean cosmic density. Since for a linear (small) perturbation it is ρ ' ρ̄, then tdyn ∼ texp, thus showing
that the cosmic expansion and the perturbation evolution take place at the same pace. This argument
also leads to understanding the behaviour for a Ωm < 1 model. In this case, the expansion time scale
becomes shorter than the above one at the redshift at which the universe recognizes that Ωm < 1. This
happens at 1 + z ' Ω

−1/3
m or at 1 + z ' Ω−1

m in the presence or absence of a cosmological constant
term, respectively. Therefore, after this redshift, cosmic expansion takes place at a quicker pace than
gravitational instability, with the result that the perturbation growth is frozen.

The exact expression for the growing model of perturbations is given by

D+(z) =
5

2
ΩmE(z)

∫ ∞

z

1 + z′

E(z′)3
dz′. (123)

The EdS has the faster evolution, while the slowing down of the perturbation growth is more apparent for
the open low-density model, the presence of a cosmological constant providing an intermediate degree of
evolution. The key point is, however, that a pressureless fluid such as DM is needed for the perturbations
to grow to give rise to collapsed objects. Baryon perturbations, being coupled to photons till the last-
scattering epoch, feel a non-vanishing pressure and therefore they may not grow. After the last-scattering
stage, the baryons fall into the gravitational potential generated by DM and the baryonic perturbations
may promptly catch up with those of DM.

9.2.1 Dark matter candidates
There is a plethora of dark matter candidates. MACHOs, or Massive Compact Halo Objects, are made
of ordinary matter in the form of faint stars or stellar remnants; they could also be primordial black holes
or mirror matter. However, there are not enough of them to completely resolve the question. Of the
non-baryonic candidates, the most popular are the WIMPS (Weakly Interacting Massive Particles) and
the axions, as these particles have been proposed for other reasons in particle physics. Ordinary massive
neutrinos are too light to be cosmologically significant, though sterile neutrinos remain a possibility.
Other candidates include primordial black holes, non-thermal WIMPzillas, and Kaluza–Klein particles
which arise in higher dimensional theories.

About axions, the good news is that cosmologists do not need to “invent” new particles. Two
candidates already exist in particle physics for other reasons: axions and WIMPs. Axions with masses
in the range 10−(3−6) eV arise in the Peccei–Quinn solution to the strong-CP problem in the theory of
strong interactions.

WIMPs are also natural dark matter candidates from particle physics. These particles, if present
in thermal abundances in the early universe, annihilate with one another so that a predictable number of
them remain today. The relic density of these particles comes out to be the right value:

ΩDMh
2 = (3× 10−26cm3/s)/〈σv〉A (124)

where the annihilation cross-section 〈σv〉A of weak interaction strength automatically gives the right
answer. The reason why the final abundance is inversely proportional to the annihilation cross-section
is rather clear: the larger the annihilation cross-section, the more WIMPs annihilate and the fewer of
them are left behind. Furthermore, annihilation is not eternal: owing to the expansion of the universe,
annihilation stops when its rate becomes smaller than the expansion rate of the universe. When this
happens, the abundance is said to freeze-out.
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Fig. 9: The abundance of WIMPs of a given mass m as a function of temperature and for various annihilation
cross-sections

This coincidence is known as ‘the WIMP miracle’ and is the reason why WIMPs are taken so
seriously as DM candidates. The best WIMP candidate is motivated by Supersymmetry (SUSY): the
lightest neutralino in the Minimal Supersymmetric Standard Model. Supersymmetry in particle theory
is designed to keep particle masses at the right value. As a consequence, each particle we know has a
partner: the photino is the partner of the photon, the squark is the quark’s partner, and the selectron is the
partner of the electron. The lightest superysmmetric partner is a good dark matter candidate.

There are several ways to search for dark WIMPs. SUSY particles may be discovered at the LHC
as missing energy in an event. In that case one knows that the particles live long enough to escape the
detector, but it will still be unclear whether they are long-lived enough to be the dark matter. Thus com-
plementary astrophysical experiments are needed. In direct detection experiments, the WIMP scatters off
a nucleus in the detector, and a number of experimental signatures of the interaction can be detected. In
indirect detection experiments, neutrinos that arise as annihilation products of captured WIMPs exit from
the Sun and can be detected on Earth. Another way to detect WIMPs is to look for anomalous cosmic
rays from the Galactic Halo: WIMPs in the Halo can annihilate with one another to give rise to antipro-
tons, positrons, or neutrinos. In addition, neutrinos, gamma rays, and radio waves may be detected as
WIMP annihilation products from the Galactic Centre. For lack of time these issues were not discussed
extensively in the lectures. The interested reader may find more about these issues in Ref. [20].

10 Conclusions
The period when we say that cosmology is entering a golden age has already passed: cosmology is in the
middle of its golden age. Present observational data pose various puzzles whose solutions might either be
around the corner or decades far in the future. It will require some young and creative researcher sitting
in this room to solve them. This is why the cosmological puzzles are dark, but the future is brighter.
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High-energy astroparticle physics

D. Semikoz
APC, Paris, France

Abstract
In these three lectures I discuss the present status of high-energy astroparti-
cle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy
gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy
cosmic rays. After a brief introduction to UHECR I discuss the acceleration of
charged particles to highest energies in the astrophysical objects, their propa-
gation in the intergalactic space, recent observational results by the Auger and
HiRes experiments, anisotropies of UHECR arrival directions, and secondary
gamma rays produced by UHECR. In the second lecture I review recent results
on TeV gamma rays. After a short introduction to detection techniques, I dis-
cuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments
on the point-like and diffuse sources of TeV gamma rays. A special section
is devoted to the detection of extragalactic magnetic fields with TeV gamma-
ray measurements. Finally, in the third lecture I discuss Ultra-High-Energy
(UHE) neutrinos. I review three different UHE neutrino detection techniques
and show the present status of searches for diffuse neutrino flux and point
sources of neutrinos.

1 Ultra-high-energy cosmic rays
1.1 Introduction
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Fig. 1: Left: The cosmic ray spectrum I(E) as function of kinetic energy E, compiled using results from the
LEAP, proton, Akeno, and HiRes experiments [1,2]. The energy region influenced by the Sun is marked in yellow
and an 1/E2.7 power-law is also shown. Right: The same spectrum at high energies E > 1011 eV multiplied by
E3 [3]. Spectrum changes are called the ‘knee’ at 1015 eV and the ‘ankle’ at 1019 eV.

Particles coming from space to the atmosphere of the Earth historically were called cosmic rays.
Most cosmic rays, however, are not ‘rays’ or photons, but charged particles, protons and nuclei. Real
high-energy gamma rays coming from space to the Earth are only a small fraction of total flux, and they
will be discussed in Section 2. The measured spectrum of cosmic rays from 100 GeV to highest energies
E > 1020 eV is presented in Fig. 1 (left). The yellow strip at low energies presents the contribution of
the Sun. The remaining spectrum can be fitted with a single power law 1/E2.7 up to highest energies.
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The main contribution to it above 100 GeV gives galactic sources. After multiplication of the spectrum
on the energy cube, one can see changes of power law in Fig. 1 (right). At E > 1015 eV the spectrum
becomes steeper. This change in the spectrum called the ‘knee’ and associated energy E = 1015 eV
is the maximum energy up to which galactic sources accelerate cosmic rays. The next change of the
spectrum is located atE = 3 ·1018 eV and has two possible interpretations. Either this is the place where
extragalactic sources start to dominate or it is the result of pair- production energy loss by extragalactic
protons (see Section 1.3). At the end of the spectrum there is a cutoff, which was not seen in the old
experiments presented in Fig. 1 (right) due to small statistics, but it was observed recently by the HiRes
[2] and Auger [4] experiments.

In this lecture I briefly discuss the theory and observations of Ultra-High Energy Cosmic Rays
(UHECR), the highest-energy particles measured on Earth with energy E > 1018 eV. Such particles,
protons and nuclei, can be accelerated in astrophysical objects, propagate through intergalactic space,
losing energy in the interactions with Cosmic Microwave Background (CMB). UHECR are charged
particles. Therefore they are also deflected in the Galactic and intergalactic magnetic fields on the way
from the source to the Earth. For a more detailed introduction to UHECR I recommend recent lectures
by M. Kachelriess [5].

There are several important scales commonly used in astroparticle physics. Distance is usually
measured in parsecs, 1 pc = 3 · 1018 cm. Corresponding larger units are kiloparsec 1 kpc = 103 pc and
megaparsec 1 Mpc = 106 pc. Energy at highest energies is usually expressed in units of EeV = 1018 eV.

The plan of this lecture is as follows. In Section 1.2 I shall discuss possible acceleration mech-
anisms of cosmic rays and astrophysical objects which potentially can be their sources. In Section 1.3
I present the main energy loss processes for UHECR particles and briefly discuss their deflection in the
magnetic fields. In Section 1.4 I sum up recent observational results from the Pierre Auger Observatory
and other experiments. In Section 1.5 results on anisotropy at highest energy are discussed. In Sec-
tion 1.6 I review expectations on secondary photons and neutrinos from UHECR protons. Results are
summed up in Section 1.7.

1.2 Acceleration
There are several possible acceleration mechanisms that can work in astrophysical objects. These include
first-order Fermi acceleration on the shocks in plasma or acceleration in the potential difference, which
we call one-shot acceleration below. However, in any case, the Larmor radius of a particle does not
exceed the accelerator size, otherwise the particle escapes from the accelerator and cannot gain energy
further. This criterion is called the Hillas condition [6] and sets the limit

E ≤ EH = qBR (1)

for the energy E gained by a particle with charge q in the region of size R with the magnetic field B.

The maximum energy of the accelerated particle can be restricted even more than required by
Eq. (1) if one takes into account energy losses during acceleration. Unavoidable losses come from
particle emission in the external magnetic field, which can be either synchrotron-dominated if the velocity
of the particle is not parallel to the magnetic field, or curvature-dominated in the opposite case.

In Fig. 2 in the plane magnetic field versus acceleration region size, the Hillas condition Eq. (1)
is shown by a thick black line. The left figure is for protons and the right one for iron nuclei. Possible
acceleration in different astrophysical objects is shown with thin solid figures. Notations are the follow-
ing: NS are neutron stars, GRB are gamma-ray bursts, BH are black holes, AD are accretion disks, jets
are jets in active galaxies, K and HS are knots and hot spots in the jets, L are lobes of radio galaxies,
clusters are clusters of galaxies, starbursts are starburst galaxies, voids are voids in large-scale structure.
Additional notations in brackets are subtypes of active galaxies: Sy for Seyfert galaxies, BL for BL Lac
galaxies and RG for radio galaxies. Only objects above the Hillas line have the potential possibility to
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Fig. 2: The Hillas plot with constraints from geometry and radiation losses for 1020 eV protons (left) and iron
(right). The thick line represents the lower boundary of the area allowed by the Hillas criterion, Eq. (1). Shaded
areas are allowed by the radiation-loss constraints as well: light grey corresponds to one-shot acceleration in the
curvature-dominated regime only; grey allows also for one-shot acceleration in the synchrotron-dominated regime;
dark grey allows for both one-shot and diffusive (e.g., shock) acceleration.

accelerate particles to 1020 eV. This is a necessary condition, but not enough for a specific acceleration
mechanism. As seen from Fig. 2, for example, neutron stars cannot accelerate particles to highest en-
ergies under any condition, while shock acceleration would work only for objects presented in the dark
grey corner of this plot.

1.3 Propagation
Owing to expansion of the Universe, particles which come from sources at redshift z lose their energy as

EP → E′P = EP /(1 + z) . (2)

A typical energy loss distance, i.e., distance at which particles lose a significant part of their energy for
this process, is of the order of z ∼ 1 (50% of energy), i.e., R ∼ 3 Gpc = 1028 cm.

As well as during propagation in the intergalactic space, protons lose energy due to two other main
processes of interactions with Cosmic Microwave Background (CMB) photons. Those are electron–
positron pair production and pion production. In both processes massive particles have to be produced
and they have threshold energy. Since the typical energy of CMB photons is very small, εCMB =
6× 10−4 eV, the threshold for those processes is very high. Only at energies above Eth = m2

e/εCMB ∼
1015 eV does the electron–positron pair-production process become important:

P + γCMB → P + e+ + e−. (3)

The typical energy loss distance for this process is

R =
MP

2me

1

σPe+e−nCMB
= 600 Mpc = 2× 1027 cm , (4)

where nCMB = 400/cm3 is the density of CMB photons, σPe+e− ≈ 10−27/cm2 is the proton-pair
production cross-section. The factor MP /2me comes here from the fact that in every interaction a
proton loses only a tiny fraction of its energy proportional to the proton/electron mass ratio.
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Fig. 3: Left: Nucleon interaction length as function of energy from Ref. [7]. Attenuation due to pion production
Eq. (5) presented by the thick solid line, the same for pair production Eq. (3) presented by the thin solid line.
Right: Horizon (maximal distance) from which protons with given or higher energy can arrive. Lines for 10%,
30%, 50%, 70% and 90% of events are shown [8].

At energies above threshold Eth ≈ mπMP /εCMB = 1020 eV, the pion production process domi-
nates energy losses. This process for cosmic rays was first considered by Greizen, Zatsepin, and Kuzmin
in 1966 [9] and is now named the GZK process.

P + γCMB →
{

P + π0 +
∑

i πi
N + π+ +

∑
i πi

(5)

The typical energy loss distance for this process is

R =
MP

mπ

1

σPγnCMB
= 100 Mpc = 3× 1026 cm , (6)

where σPγ ≈ 6 × 10−28/cm2 is the proton pion production cross-section. The factor MP /mπ comes
here from the fact that in every interaction the proton loses only 15–20% of its energy proportional to
the proton/pion mass ratio. Note that at higher energies the dominating process in Eq. (5) is multi-pion
production, in which the proton loses 50% of its energy in every interaction, however, the cross-section
for this process σP

π = 10−28/cm2 is a factor 6 lower than single pion production.

None of the above processes allows a proton with high energy to come from a very large distance.
The distance from which protons can come as a function of energy is presented in Fig. 3 (left) [7].
The interaction length for pion production [Eq. (5)] is shown by the dashed line. Attenuation due to
pion production [Eq. (6)] is presented by the thick solid line, the same for pair production [Eq. (3)] is
presented by the thin solid line. Figure 3 (left) shows the average distance travelled by a single particle.
However, for searches of UHECR sources the important question is the maximum distance or horizon
from which UHECR can come to the detector. In Fig. 3 (right) we present the horizon as a function of
minimal proton energy. The lines 10%, 30%, 50%, 70% and 90% show the fraction of events which
come from a given distance. For example, 90% of events with E > 1020 eV should come from distances
R < 100 Mpc. This distance is sometimes called the GZK distance, because energy losses in this case
are dominated by the GZK process of Eq. (5).

The dominant loss process for nuclei of energy E >∼ 1019 eV is photodisintegration A + γ →
(A − 1) + N in the CMB and the infrared background due to the giant dipole resonance [10]. The
threshold for this reaction follows from the binding energy per nucleon, ∼ 10 MeV. Photo-disintegration
leads to a suppression of the flux of nuclei above an energy that varies between 3× 1019 eV for He and
8× 1019 eV for Fe.
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Fig. 4: Sky map of the UHECR proton deflections for energy E = 40 EeV in two different models of Galactic
magnetic field from Ref. [11]. The colours show deflections from 0 to 10 degrees.

Fig. 5: Fraction of the sky in which the deflection in the extra-Galactic magnetic field is bigger than the given
value. Left: Constraint simulation of K. Dolag et al. [12]. Right: Simulation of Sigl et al. [13].

Since UHECR are charged particles, they not only lose energy in the interactions with background
photons, but also when deflected by Galactic and intergalactic magnetic fields.

The magnetic field of the Milky Way galaxy is conventionally modelled as a sum of the regular
and turbulent components of the field in the disk and halo of the Galaxy. This means that the deflection
in the Galactic field θGal is a superposition of at least four terms:

θGal = θregularDisk + θturbulentDisk + θregularHalo + θturbulentHalo . (7)

The deflection angle of UHECR in a regular magnetic field after propagation of distance D is
given by:

θregular ' ZeB⊥D
EUHECR

' 5◦Z
[
EUHECR

4 · 1019 eV

]−1 [ B⊥
2 · 10−6 G

] [
D

2 kpc

]
, (8)

where where B⊥ is the magnetic field component orthogonal to the line of sight, EUHECR is the particle
energy, and Z is the atomic charge. In the case of deflection by the turbulent field on the distanceD much
larger than the correlation length of the field λB and where the deflection angle is small, the deflection is
given by

θturb ' 1√
2

ZeB⊥
√
DλB

EUHECR
' 1.2◦Z

[
EUHECR

4 · 1019 eV

]−1 [ B⊥
4 · 10−6 G

] [
D

2 kpc

]1/2 [ λB
50 pc

]1/2
(9)

The deflection angles by regular and turbulent components of Galactic Disk and Halo, θDisk
regular

and θDisk
turbulent are given by Eqs. (8), (9). Contributions of the Halo fields θHalo

regular and θHalo
turbulent are less

certain, but the result in deflections is usually assumed to be less than the one for disk fields.
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Deflections of UHECR by the regular field in the disk θregularDisk have been studied in many theo-
retical models. A sky map of the deflections of UHECR with E = 40 EeV in two different models is
presented in Fig. 4. Despite both models being consistent on average with the expectation of Eq. (8),
predictions in any given direction are strongly model-dependent.

Extragalactic magnetic fields are unknown except in the centres of galaxy clusters. Therefore one
has to use theoretical models for the evolution of the magnetic fields. In such models magnetic fields
follow the formation of large-scale structures. Because the structure of extragalactic magnetic fields is
very non-trivial with very large fields near large-scale structures and tiny fields in the voids, one cannot
use Eq. (9) everywhere. Instead one can introduce a fraction of the sky with deflections lower than a
given value. Unfortunately, modern models give a very broad range of predictions. In Fig. 5 we show
calculations by two groups that show very different results. The group of K. Dolag et al. made constraint
simulations of local large-scale structures within 100 Mpc around the Earth [12]. This means that all
big structures such as clusters of galaxies are located in exactly the same places as in the real sky. Also
the density of points in this simulation is adaptive with more points at clusters and fewer on filaments.
The results of this simulation are shown in Fig. 5 (left). According to this simulation, at 100 Mpc from
the Earth only in 2% of the sky are deflections bigger than θEGMF = 1◦. Those places are centres of
galaxy clusters. In contrast the simulation of G. Sigl et al. [13] uses a uniform grid with more points
on filaments and fewer on clusters. Unfortunately this simulation is not constrained and thus cannot be
directly compared to local large-scale structures. In this simulation θEGMF > 50◦ in 60% of the sky.

Let us note here that propagation energy losses are extremely important for the understanding of
experimental results on spectrum and composition discussed in the next section. Deflections in turn are
a key issue in the anisotropy studies in Section 1.5.

1.4 Observations
In this section we shall discuss the present status of UHECR observations.

Fig. 6: Extensive air shower produced by a UHECR particle in the atmosphere

We start with the detection of UHECR in the atmosphere. The typical column density of the
atmosphere is 1000 g/cm2 and in 1g there are N = 1024 protons, while a strong cross-section is σPP ∼
10−25 cm2. Thus UHECR protons or nuclei should interact within the atmosphere many times before
they reach the Earth’s surface. In these interactions it would produce extensive air showers. An example
of such a shower is illustrated in Fig. 6. After first interaction the primary proton or nuclei would produce
a large number of pions. Neutral pions would start an electromagnetic cascade, while charge pions would
produce muons. At the maximum of shower development one expects N = 109−10 particles distributed
in an area with a radius of a few kilometres. At this point the shower mostly consists of 10 MeV
electrons and photons and only 5–10% of its energy is in muons. If the shower is not vertical, the
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column density increases as 1/ cos(θzenith) and reaches 2000 g/cm2 for θzenith = 60◦. At such a depth
all electromagnetic components of the shower disappear and the shower would consist of muons only.
Another way to detect the shower is to look for fluorescent UV light of nitrogen atoms in the atmosphere.
This method is called ‘calorimetric’ and gives a 3-dimensional image of the shower. The main problem
with this method is that detection is possible only on a moonless night, making the duty cycle of such
detectors possible only 10–15% of the time. Finally one can detect direct Cherenkov light of the charged
particles, but since this light is concentrated only within the central kilometre of the shower, one cannot
use this technique at highest energies.

Fig. 7: Pierre Auger Observatory detector with more than 1600 water tanks and 4 fluorescence telescopes (see
Ref. [14] for details)

The Pierre Auger Observatory (Auger) is the largest UHECR detector in the world at the moment
with an area of 3000 km2. Such a big area is required to collect enough statistics with UHECR at highest
energies E > 60 EeV, because the flux of such UHECR is tiny, one particle per 100 km2 per year. Auger
is located on the plateau at an altitude of 1000 metres in the Mendoza province of Argentina. The ground
detector consists of 1600 water tanks distributed 1.5 km from each other as presented in Fig. 7. Also
there are four fluorescence telescopes pointed at the atmosphere above the ground detectors as shown
in Fig. 7. Detection of 10% of showers both by fluorescence detectors (FD) and by ground detectors
guarantees a good quality of events and at the same time allows one to calibrate the ground detectors by
FD.

In Fig. 8 we show a recent energy spectrum which was measured by Auger before 31 March
2009 [4]. The steeply falling flux of UHECR is multiplied byE3 in order to show details of the spectrum.
The total systematic energy error is 22% and is shown in the top right corner of the figure. For energy
bins with E < 3 · 1019 eV statistical errors are not important, while at highest energies E > 60 EeV the
shape of the spectrum is still uncertain and more statistics are needed. On the other hand, the suppression
of the spectrum is statistically significant and is clearly seen in Fig. 8.

This is an important experimental result, since it is independent confirmation of similar observa-
tions made by the HiRes experiment [2]. Thus cutoff in the energy spectrum exists. However, there are
several questions to be answered before one can tell that this really is a GZK cutoff. First, is this cutoff
due to the maximum energy of sources, or to energy losses? In Section 1.2 we have seen that indeed
the maximum energy for many types of sources is close to 1020 eV. The ultimate answer to this question
would be the detection of several sources at different distances with cutoff following expectations of
energy losses.

Second, is the chemical composition of UHECR proton-dominated at those energies? Since in
our Galaxy all elements up to iron are accelerated to energies around the knee E = 1015 eV, the same
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Fig. 8: Energy spectrum of UHECR as a function of energy measured by the Pierre Auger Observatory and model
predictions for iron nuclei (blue) and protons (red) [4]

situation can exist in astrophysical objects which accelerate to highest energies. Experimental answers to
this question can be found in the future even by Auger, but already current data show that the composition
becomes heavy at high energies. Indeed, recent Auger results from Refs. [15,16] are shown in Fig. 9. In
Fig. 9 (left) we present the shape of the shower development in the atmosphere as seen by a fluorescence
telescope. The signal is proportional to the number of electrons and positrons in the shower. Signals
grow due to the development of electromagnetic cascades. The maximum of the signal corresponds to
the maximum development of the cascade in the atmosphere. After that the shower loses its energy
due to dissipation effects. The depth of the atmosphere corresponding to the maximum of the shower
development is called Xmax. For the example presented, this maximum is at Xmax = 753 g/cm2 and the
energy of the event is E = 1.6 · 1019 eV [15]. At the same energy, protons on average interact much
deeper in the atmosphere than heavy nuclei.

On the top panel of Fig. 9 (right) one can see the results of the most common hadronic models
presented with red lines for protons and with blue lines for iron. The example event in Fig. 9 (left) is
definitely proton-like. The averaged Xmax values in each bin are presented in the same figure for both
the Auger and HiRes experiments. Both results are consistent with each other showing a relatively light
composition from 1018 eV to 1019 eV. However, Auger shows heavier composition at highest energies.

The main problem when measuring the composition with Xmax is its strong model dependence,
as seen on the top panel of Fig. 9 (right). There are two complementary ways out. One is to use
a composition-sensitive parameter that weakly depends on the model choice. Such a parameter is
RMS(Xmax) =

√
〈X2

max〉 − 〈Xmax〉2, presented in the lower panel of Fig. 9 (right). One can see
that according to this measurement the composition becomes heavier at high energy. Another impor-
tant way is to test models and find the best one. For this purpose a dedicated experiment LHC forward
(LHCf) was constructed at CERN. The idea of this experiment is to measure the neutral particles emitted
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Fig. 9: Left: Measurement of shower development by signals in the fluorescence detectors as a function of depth
in the atmosphere. The maximum of shower development in this example is Xmax = 753 g/cm2 [15]. Right:
Average Xmax of showers measured by HiRes and Auger and RMS of Xmax measured by Auger in 2009 [16].

Fig. 10: The layout around the Interaction Point 1 (IP1) of the LHC. The structure at the centre indicates the
ATLAS detector surrounding the collision point. The LHCf detectors are installed in the instrumentation slot of
the TANs located ±140 m from IP1. Two independent detectors, LHCf Arm1 and LHCf Arm2 are installed at
either side of IP1 [17].

in the very forward region of LHC collisions at low luminosity. The configuration of this experiment is
presented in Fig. 10. Data required for testing the hadronic models will be collected in the first scientific
runs of the LHC [17]. Thus in the near future we shall have better knowledge of hadronic models and
more understanding of the composition of UHECR at highest energy. At present the Auger results indi-
cate heavy composition; this was not confirmed by independent measurements and the fraction of light
nuclei in the data remains uncertain.

This is a very important question for searches of UHECR sources, which we shall discuss in the
next section.
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Fig. 11: Left: Sky map of arrival directions of UHECR with E > 40 EeV in old experiments. Right: Probability
that this anisotropy is a function of angular distance between events [18].

1.5 Anisotropy
Since for every UHECR event the arrival direction is detected, for tens of years many attempts were made
to find sources of UHECR in the experimental data. Unfortunately none of them has been confirmed so
far. There are two ways to look for the sources. One is to look for the data itself and try to find anisotropy
in autocorrelation factions. The second is to pick up a catalogue of possible sources and look for the
cross-correlations with this catalogue. This second way always requires confirmation by an independent
data set, since completeness of the catalogue is a very complicated issue and it is difficult to estimate the
probability due to the parameter choice a posteriori.

Here we start with autocorrelations. In the left panel of Fig. 11 one can see the sky map with the
arrival direction of events with E > 40 EeV in several old experiments, including SUGAR, AGASA,
HiRes, Yakutsk, Havera Park, Volcano Ranch, and Fly’s Eye. On the right panel of the same figure one
can see the probability that autocorrelations between selected events are by chance within a given angle.
One can see that the probability is minimal at angles 20–25 degrees. After penalization on the choice of
angle, the probability that this happened by chance is P = 0.3% [18]. This clustering of events on rather
moderate scales can be due to the location of the sources in the Large Scale Structure.

The same probability in the first Auger data is presented in Fig. 12 as a function of both energy and
angle. One can see that for exactly the same energy E = 40 EeV and angle θ = 20◦–25◦ the probability
is P ∼ 10−2. However, recent results with larger statistics did not show more significant anisotropy at
such energies [20]. This makes the situation with anisotropy in the data less clear.

Now let us discuss correlations with astrophysical objects. First Auger data have shown strong
correlations with nearby active galaxies called Active Galactic Nuclei (AGN). Namely, 12 out of 14
events with E > 57 EeV were correlated within θ < 3.1◦ from 472 AGNs from the Veron catalogue with
distances R < 75 Mpc. This correlation was considered by the Auger Collaboration as a formal way to
study the deviation of cosmic rays from isotropic distribution. Data from Period I was tested with the
prescription during Period II, where 13 new events were detected, out of which 9 obeyed prescription
parameters. The prescription was fulfilled, i.e., the observed sky was considered anisotropic at the 99%
confidence level [21]. Data used in this publication and shown in Fig. 13 (left) correspond to Periods I
(not shown) and II shown in Fig. 13 (right) before the vertical line. Unfortunately this correlation was
not confirmed in the later data [Period III in Fig. 13 (right)].

It does not mean that all anisotropy signals in Auger have completely disappeared. There is still a
remaining excess of events around the Cen A galaxy on scales of 20 degrees, see Fig. 14. This anisotropy
has to be tested by future data.
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Fig. 12: Probability of autocorrelations as a function of energy and angular distance between events, see Ref. [19]

Fig. 13: Left: Sky map of arrival directions of 27 UHECR with E > 57 EeV measured by the Pierre Auger
Observatory before August 2007 in galactic coordinates (circles) and 472 nearby AGNs (red stars) [21]. Blue
contours show the Auger exposure. Right: Likelihood ratio for events after formulation of the prescription. Period
II is for data on the left panel. Period III is for new data up to March 2009 [20].

1.6 Secondary photons and neutrinos from UHECR
As was discussed in Section 1.3, protons lose their energy in pair production and pair production reac-
tions. Since secondary pions quickly decay, secondary photons and neutrinos are produced. Neutrinos
propagate to the Earth without interactions on the way, but photons cannot. They start to interact with
background photons and produce pairs. Electrons and positrons in turn up-scatter CMB photons or pro-
duce synchrotron radiation:

γ + γbackground → e+ + e−

e± + γbackground → e± + γ (10)

e± +B → e± + γsynch

The sequence of processes in Eq. (10) is called an electromagnetic cascade. At energies above
1015 eV the cascade proceeds on the CMB background (400/cm3), but at lower energies pair production
on CMB is impossible. At such energies the cascade continues on a much less abundant infrared back-
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Fig. 14: Angular distribution of events around the Cen A galaxy in Auger data compared to isotropic ones

Fig. 15: Left: Fluxes of protons and secondary photons as a function of energy. Primary protons with spectrum
1/E2.6 and maximum energy Emax = 1021 eV are shown by the thin red line. Secondary protons fit the UHECR
spectrum from E > 1018 eV (thick red line). Secondary photons from all reactions are shown by the blue dashed
line and from pion production only, Eq. (5) by the magenta line. Right: Fluxes of UHECR and secondary photons
in the case of iron nuclei primaries with spectrum 1/E2.1 and maximum energy Emax = 1021 eV. The remaining
iron nuclei are shown by the green line. Secondary protons by the magenta line. Secondary photons by the blue
line.

ground (1/cm3) and at lower energies on optical background (0.01/cm3). Then it stops at the multi-GeV
energies of gamma rays.

In Fig. 15 we plot primary cosmic-ray and secondary photon fluxes from primary protons (left)
and iron (right) from Ref. [22]. Secondary protons after interaction fit the UHECR spectrum from E >
1018 eV in Fig. 15 (left). Secondary photons cascade down to the GeV region. Only a small fraction of
photons come from the pion production reaction (magenta dotted line). Most of the photons generated
are from the e+e− production reaction with total flux shown by the dash-dotted blue line. The number
of secondary protons is much lower in the case of iron primaries, as shown by the dotted magenta line
in Fig. 15 (right). As a result, the secondary photon flux in the GeV region is much smaller in this case,
on the level of 0.2% of the EGRET measurement. Also very high energy photons are absent in this case
due to low maximum proton energy.

In Fig. 16 we compare the range of the electromagnetic cascade fluxes from UHECR with other
possible astrophysical contributions in the EGRET band. Note that most of the uncertainty of the UHECR
cascade flux comes from an unknown source evolution. The scatter for a given class of sources is thus
much smaller, as seen from Fig. 16 for the case of AGNs.

In Fig. 17 (left) we plot the possible range of GZK gamma-ray fluxes for a given proton flux
which fit the UHECR spectrum. The range of fluxes comes from the variation of possible values of the
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Fig. 16: Contribution of secondary photons from UHECR to the extragalactic gamma-ray background as a function
of energy and other possible sources which contribute to the same background [22]

Fig. 17: Left: Example of GZK photon flux from Ref. [23]. UHECR protons fit the HiRes spectrum. Secondary
neutrinos are shown by a green line. The remaining secondary photons are in the range between the blue lines.
Right: Experimental upper limits on the photon fraction in the UHECR spectrum from Ref. [20].

extragalactic magnetic field and the range of the models for extragalactic radio background. Also on the
same figure the corresponding neutrino flux is shown by a green line. In Fig. 17 (right) we show the
experimental upper limits on the fraction of photons in the UHECR flux. The range of possible GZK
photon fluxes corresponds to protons with a range of power law injection spectra and source evolution
fitting the UHECR spectrum. One can note that the current best upper limits of Auger are still above
the range of expected theoretical values. On the other hand, existing limits already exclude some exotic
models.

1.7 Summary
In the first lecture we briefly discussed many aspects of UHECR physics.

Observed cosmic rays have energies up to 1020 eV. Acceleration in astrophysical objects to such
energies is a very non-trivial task and there are no objects in our Galaxy which can do this job. There are
very few classes of exceptionally powerful objects in the Universe, some of which can be real sources of
UHECR. Accelerated particles lose their energy in interactions with the CMB background and are also
deflected by electromagnetic fields during their propagation from sources to the Earth.
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There are three important experimental challenges in UHECR physics: the spectrum of cosmic
rays, the chemical composition of cosmic rays, and the search for anisotropies in the sky with the ultimate
goal of finding UHECR sources.

The cutoff in the energy spectrum at highest energies E > 6 · 1019 eV has now been established
by two independent experiments, HiRes and Auger.

The most striking result of 2009 was evidence of heavy composition, shown by the Auger experi-
ment at highest energies, Fig. 9. This result still needs independent confirmation. Also the interpretation
of composition measurements is affected by uncertainty in the hadronic models. This question can be
clarified in the near future by the LHCf experiment.

Finally, most challenging is the search for UHECR sources. The last result in this direction was
made by Auger in 2007. They found that the sky is anisotropic at the highest energies, at least at the
99% C.L., by looking at the correlations with nearby AGNs. Unfortunately those correlations were not
confirmed in the new data, and the only anisotropy excess remaining in the Auger data at the highest
energies is an excess around the Cen A galaxy, see Fig. 14.

During energy losses the UHECR protons produce secondary photons and neutrinos. Most of the
secondary photons cascade down to the GeV energies, where this contributes to the diffuse extragalactic
background. An experimental search for the remaining gamma rays at highest energies E > 1018 eV is
challenging and existing upper limits are just above theoretical predictions, see Fig. 17.

Thus there are many unsolved problems in UHECR physics. They require both theoretical and
experimental efforts in the near and more distant future.

2 High-energy gamma rays
2.1 Introduction
In this lecture I shall discuss the theory of TeV gamma rays and recent observations made in this field. I
shall give a brief introduction to the experimental detection techniques and present some selected results
on the subject. For more detailed study I would like to recommend the recent review by F. Aharonian,
J. Buckley, T. Kifune, and G. Sinnis [24].

Relativistic particles can travel with a speed larger than the speed of light in the medium V >
VM = c/n. Here n > 1 is the refractive index of the medium. This index in the air is na = 1.008 and in
water nw = 1.33.

The charged particles polarize the molecules of the medium, which then return rapidly to their
ground state, emitting prompt radiation called Cherenkov radiation. This radiation is emitted under a
constant Cherenkov angle with the particle trajectory, given by

cos δ =
VM
V

=
c

nV
=

1

βn
. (11)

The minimal energy of a charged particle is

γmin =
Emin
M

=
n√

n2 − 1
. (12)

Particles with higher energy will produce a cone of Cherenkov light. This effect is used by
Cherenkov telescopes for air (H.E.S.S., MAGIC, Veritas, CTA) and by ground experiments in water
(Milagro, HAWK). Detection of the shower in air and in water is illustrated in Fig. 18.

We present examples of such experiments in Fig. 19. On the left panel we show a view of the
H.E.S.S. experiment. This experiment made the most significant contribution to the development of
TeV gamma-ray astrophysics in recent years. On the right panel we show the Milagro experiment, a
pioneering experiment in water Cherenkov techniques.
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100 MeV γ -1/50 photons shown 

100 MeV γ: 1/50 photons shown 

Fig. 18: Detection of high-energy gamma rays by Cherenkov telescopes in air (left) and in water (right)

Impossible d'afficher l'image. Votre ordinateur manque peut-être de mémoire pour ouvrir l'image ou l'image est 
endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau le fichier. Si le x rouge est toujours affiché, vous devrez 
peut-être supprimer l'image avant de la réinsérer.

Fig. 19: Examples of gamma-ray experiments: Cherenkov telescope H.E.S.S. (left) and water pool Milagro (right)

2.2 Point sources of TeV gamma rays
TeV gamma-ray astrophysics is developing very quickly. One can see the number of detected sources in
the sky as a function of time in Fig. 20. From 3 sources in 1995 one has 32 sources in 2005 and 80 sources
in 2008. In addition not only does the number of observed sources grow, but also the number of different
populations of sources. This is a very important fact for future experiments with better sensitivity like the
Cherenkov Telescope Array (CTA). They would have a very large potential for detecting many different
classes of sources.

In particular, in Fig. 20 on the bottom panel, red circles show extragalactic sources which contain
BL Lac objects, radio galaxies, and starburst galaxies. Also in the galactic plane there are many different
classes of objects, which include supernova shells, pulsar wind nebulas, pulsars, binary systems and dark
objects. Dark objects mean they were detected in gamma rays, but there is no corresponding source in
other wavebands.

The sensitivity of gamma-ray detectors to point sources as a function of energy is shown in Fig. 21.
The sensitivity of air telescopes is shown for 50 hours of observation for one source. The sensitivity for
ground experiments is shown for 5 years, but they observe all the sky (2πsr). At low energies E <
10 GeV the sensitivity of the GLAST (Fermi) satellite is the best. One year of observations are shown.
At large energiesE > 10 TeV the ground air-shower experiments (Tibet) have the best sensitivity. Future
CTA projects will be orders of magnitude better than present-day experiments from 10 GeV to 10 TeV
energies.

Another important fact is that gamma rays cannot travel freely in the intergalactic space. They in-
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Fig. 20: Sky in the TeV gamma rays with 3 sources in 1995 (top left), 32 sources in 2005 (top right), and 80
sources in 2009 (bottom)

teract with optical/infrared background photons and disappear producing pairs of electrons and positrons.
In Fig. 22 one can see the main backgrounds for gamma-ray propagation. They are shown in units of
photon density per cm3. The largest contribution comes from the CMB background with 400 photons
per cm3. However, owing to the small energy of CMB photons, this background is important only for
E > 1000 TeV. For the experimentally interesting energy range E < 100 TeV the main backgrounds are
infrared and optical. Since those backgrounds are created by galaxies and partly by dust they are strongly
model dependent both as a function of energy and as a function of redshift.

Optical depth can be defined as

τ(E) = R · σγγ(E) · nback(z, ε) , (13)

whereR is the distance travelled by photons, σγγ(E) is the pair-production cross section, and nback(z, ε)
is the density of background photons. Distances on the cosmological scale are often expressed in terms
of redshift. One can express it through the Hubble law R = z · c/H0, where H0 = 70 km/s/Mpc is
the Hubble constant. In Fig. 23 contours of constant optical depth τ(E) are shown on the plane redshift
versus energy for τ(E) = 1, 3, 10 in two different models of IR/O background.

There is one important difference between air Cherenkov telescopes and water Cherenkov detec-
tors. In Fig. 24 we plot world-wide monitoring of the nearby BL Lac object Mkn 421 as a function of
time. One can see that air Cherenkov telescopes can see a signal only on moonless nights, which restricts
their operation to the corresponding intervals of time. On the contrary, water Cherenkov telescopes op-
erate all the time they can see a source, which will allow source activity to be detected all the time.
On the other hand, the problem of water Cherenkov experiments is poor sensitivity, which will prevent
them from detection of relatively low fluxes and very fast variations in time. Thus both techniques are
complementary to each other.
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Fig. 21: Sensitivity of gamma-ray detectors to point sources, from Ref. [24]

Fig. 22: Redshift for gamma rays as a function of energy. Lines show constant optical depth in two models of
IR/O background.

In Fig. 25 one can see a view of the central part of the Milky Way galaxy in three energy bands:
optical, infrared, and TeV gamma rays. At least three astronomical source populations: supernova rem-
nants (SNRs), pulsar wind nebulae (PWNe), and binary systems (BSs) are represented in this figure.
In addition, the H.E.S.S. observations of the central region of our Galaxy revealed a diffuse TeV γ-
ray emission component which is apparently dominated by contributions from giant molecular clouds
(GMCs). These massive complexes of gas and dust most likely serve as effective targets for interactions
of relativistic particles from nearby active or recent accelerators. Thus one may claim that four galac-
tic source populations are already firmly established as effective TeV γ-ray emitters. Meanwhile, many
sources discovered by H.E.S.S. in the galactic plane remain unidentified. Although some of these sources
might have direct or indirect links to SNRs, PWNe, and GMCs, one cannot exclude that a fraction of the
H.E.S.S. unidentified sources are related to other source classes.

The Milagro telescope has made the first measurement of the diffuse TeV gamma-ray flux from the
Galactic Disk. Figure 26 shows the Galaxy (as visible from the Northern Hemisphere) in TeV gamma
rays. In addition to the individual sources discussed above, the image (compiled from Milagro data)
shows the existence of a diffuse TeV gamma-ray flux between galactic longitudes of 30◦ and 90◦.
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Fig. 23: Redshift for gamma rays as a function of energy. Lines show constant optical depth in two models of
IR/O background.

Fig. 24: Observation of Mkn 421 as a function of time

2.3 Extragalactic magnetic fields
Another very important field which will benefit in the near future from TeV gamma rays is Extragalactic
Magnetic Fields.

Indeed, as discussed above, TeV gamma rays emitted by astrophysical sources can be measured by
detectors on Earth. Practically all TeV gamma rays from galactic sources come directly to the detectors.
However, this is not true for extragalactic sources. As one can see from Fig. 23, even for nearby sources
like Mkn 501, gamma rays with E > 10 TeV cannot come freely to the detector. The pair production on
Extragalactic Background Light (EBL) reduces the flux of γ-rays from the source by

F (Eγ0) = F0(E
′
γ0(zE))e−τ(Eγ0 ,zE), (14)

where F (Eγ0) is the detected spectrum, F0(E
′
γ0) is the initial spectrum of the source, and τ(Eγ0 , zE) is

the optical depth Eq. (13). The typical distance which a primary gamma ray travels is

Dγ0 = Dγ(E′γ0 , z) = 40
κ

(1 + z)2

[
E′γ0

20 TeV

]−1
Mpc , (15)

where a numerical factor κ = κ(Eγ0 , z) ∼ 1 accounts for the model uncertainties.
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Fig. 25: Central part of the Milky Way galaxy in infrared, optical, and in TeV gamma rays. The TeV gamma-ray
sky from H.E.S.S. observations with a large number of sources.

Fig. 26: The Milky Way galaxy in TeV gamma rays from galactic longitude 20◦ to 220◦ and galactic latitude from
−10◦ to 10◦. The image is the culmination of a seven-year exposure by the Milagro instrument.

The cascade electrons lose their energy via Inverse Compton (IC) scattering of the CMB photons
within the distance

De =
3m2

ec
3

4σTU ′CMBE
′
e

' 1023(1 + zγγ)−4
[

E′e
10 TeV

]−1
cm (16)

The deflection angle of the e+e− pairs, accumulated over the cooling distance, depends on the correlation
length of the magnetic field, λB . Note also that electrons and positrons travel much shorter distances than
primary photons.
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Fig. 27: Detection of EGMF through observation of secondary emissions around a point source [25]

The e+e− pairs produced in interactions of multi-TeV γ-rays with EBL photons produce sec-
ondary γ-rays via IC scattering of the Cosmic Microwave Background (CMB) photons. Typical energies
of the IC photons reaching the Earth are

Eγ =
4

3
(1 + zγγ)−1ε′CMB

E′2e
m2
e

' 0.32

[
E′γ0

20 TeV

]2
TeV (17)

where ε′CMB = 6× 10−4(1 + zγγ) eV is the typical energy of CMB photons. In the above equation we
have assumed that the energy of a primary γ-ray is E′γ0 ' 2E′e with E′γ0 being the energy of the primary
γ-rays at the redshift of the pair production. Upscattering of the infrared/optical background photons
gives a sub-dominant contribution to the IC scattering spectrum because the energy density of CMB is
much higher than the density of the infrared/optical background.

Deflections of e+e− pairs produced by the γ-rays, which were initially emitted slightly away from
the observer, could lead to ‘redirection’ of the secondary cascade photons toward the observer. This effect
leads to the appearance of two potentially observable effects: extended emission around an initially point
source of γ-rays [25–27] and delayed ‘echo’ of γ-ray flares of extragalactic sources [28, 29].

Fig. 28: Model predictions and estimates for the EGMF strength. Cyan shaded region excluded by present day
measurements. Black ellipses show measurements of the field in the Galaxy and galaxy clusters. Left panel: left
and right hatched regions show theoretically allowed range of values of (λB ,B) for non-helical and helical fields
generated at the epoch of electroweak phase transition during radiation-dominated era. Middle panel: left and
right hatched region show ranges of possible (λB ,B) for non-helical and helical magnetic fields produced during
the QCD phase transition. Right panel: hatched region is the range of possible (λB ,B) for EGMF generated
during recombination epoch. Dark grey shaded region shows the range of (λB ,B) parameter space accessible for
the γ-ray measurements via γ-ray observations [30].

The above processes are illustrated in Fig. 27. Electron deflection δ depends on the magnetic field
in the region of deflection. Note, that, in principle, EGMF depends on the redshift, B′ = B′(z). In the
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simplest case, when the magnetic field strength changes only as a result of expansion of the Universe,
B′(z) ∼ B0(1 + z)2, where B0 is the present epoch EGMF strength. This gives

δ =
De

RL
' 3× 10−6(1 + zγγ)−4

[
B′

10−18 G

] [
E′e

10 TeV

]−2

' 3× 10−6(1 + zγγ)−2
[

B0

10−18 G

] [
E′e

10 TeV

]−2
(18)

Knowing the deflection angle of electrons, one can readily find the angular extension of the sec-
ondary IC emission from the e+e− pairs

Θext '





0.5◦(1 + z)−2
[
τθ
10

]−1
[

Eγ
0.1 TeV

]−1 [ B0

10−14 G

]
, λ′B � De

0.07◦(1 + z)−1/2
[
τθ
10

]−1
[

Eγ
0.1 TeV

]−3/4 [
B0

10−14 G

] [
λB0
1 kpc

]1/2
, λ′B � De

(19)

This is a key point for detection of the field, since extended emission depends on energy in a well-defined
way and can be reconstructed using independent measurements at different energies.

The possible ranges of the (λB ,B) parameter space are shown in Fig. 28 for the cases when mag-
netogenesis proceeds during electroweak or QCD phase transitions or at the moment of recombination.

It is interesting to note that predictions for the strength and correlation length of the primordial
magnetic fields fall in a region of (λB ,B) parameter space which is not accessible for the existing mea-
surement techniques, such as Faraday rotation or Zeeman splitting methods. However, it turns out that
this region of (λB ,B) parameter space is accessible for the measurement techniques which exploit the
potential of the newly opened field of very-high-energy (VHE) γ-ray astronomy [30].

2.4 Summary
Gamma-ray astronomy works, hundreds of sources have been detected in the GeV energy range and
about one hundred in TeV energies.

There are several major questions to be answered in the near future:

– One needs to understand the hadronic component in a variety of astrophysical sources.
– Extragalactic IR/O backgrounds have already been constrained by observations of TeV sources

to factor two uncertainty. The next step is precision determination of those backgrounds using
measurements of many sources at different redshifts.

– For the first time one has a possibility to study primordial magnetic fields through TeV gamma-ray
measurements. We can test models of primordial magnetic fields in the near future.

There are several other important issues which were not discussed in this Lecture due to lack of
time. The corresponding questions are:

– Good measurements of blazar flairs can help to understand gravity near black holes.
– TeV gamma rays give one more constraint/signature on Dark Matter.
– Constraints on exotic physics (LIV, etc.) will be improved.
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3 High-energy neutrinos
3.1 Introduction
In this lecture we discuss theoretical predictions and experimental efforts to detect Ultra-High Energy
neutrinos. In Section 3.2 we discuss possible ways to detect UHE neutrinos and their corresponding
experiments. In Section 3.3 we show theoretical predictions for UHE neutrino fluxes and present the
status of experimental searches for such fluxes. In Section 3.4 we discuss another possibility to detect
Galactic neutrino sources at multi-TeV energies. In Section 3.5 we summarize all the results of this
lecture.

3.2 High-energy neutrino experiments
There are three types of ultra-high energy (UHE) neutrino experiments.

First, neutrinos can be detected by UHECR experiments. There are two possibilities for this. First,
one can use the fact that the atmosphere horizontally has depth 36 times the vertical depth. Relatively
young electromagnetic horizontal showers can be caused by neutrinos only. Hadronic showers at such a
depth consist of muons only. Second, one can look for events penetrating the Earth in the tau-neutrino
channel, i.e., look for upward-going events. This was used by the Auger experiment (see Fig. 7). The
resulting limit on neutrino flux is shown in Fig. 31. Also less significant limits were presented by previous
UHECR experiments including Fly’s Eye, AGASA, and HiRes (the HiRes limit is also shown in Fig. 31).

Fig. 29: IceCube detector. Left: Configuration of the IceCube detector. Eighty strings will be located at a depth
of 1.5 km in the Antarctic ice filling a volume of one cubic kilometre. The present construction stage is also
shown [31]. Right: Simulation of a high-energy neutrino event in the IceCube detector [32].

Second, one can detect neutrinos in the water or in the ice by detecting Cherenkov light created by
corresponding leptons after neutrino interaction in the medium. There are two important backgrounds
for such measurement. First, secondary leptons, mostly muons, should not be confused with secondary
muons from extensive air showers in the atmosphere. In order to reduce the background of atmospheric
muons one has to put the detector at a depth greater than one kilometre from the surface. Second, there
are atmospheric neutrinos created by the same cosmic rays, which would produce isotropy in the space
energy-dependent background. In order to fight this background, one either has to go to high energies
E > 1015−16 eV, where it is small, or look for point sources on top of this background.

Experiments that worked with these techniques in the past were Baikal and ANTARES in water
and AMANDA in ice. All those experiments had a volume 0.1 km3 or less. The new-generation ex-
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periment IceCube with a volume of 1 km3 is in the construction stage at the moment. In Fig. 29 in the
left panel one can see the configuration of this experiment, which consists of 80 strings, filling a cubic
kilometre volume in the Antarctic ice at a depth of 1.5 km from the surface. Strings already implemented
are shaded blue on top of the picture (see Ref. [31] for more details). Also, as shown in the figure the
top of the detector is covered by an array of ice tanks (ice top). In the right panel one can see a Monte
Carlo simulation of a high-energy neutrino event, detected by the IceCube experiment. First results of
this experiment will be discussed in Section 3.4.

Fig. 30: ANtarctic Impulsive Transient Array (ANITA) radio balloon experiment. Array of radio antennas flying
in the ballon, as shown on the left panel. It flies in circles over the Antarctic ice at a height of 37 km (see right
panel) and looks for radio signals which UHE neutrinos create in the ice.

Finally, radio neutrino experiments exploit the Askaryan effect in which strong coherent radio
emission arises from electromagnetic showers in any dielectric medium. High-energy neutrinos trigger
a cascade of electromagnetic particles in the medium, which has net charge and can emit an analogue
of Cherenkov light in the radio energy range. The main point of this effect is that the length of the
radio wave is macroscopic (tens of centimetres) and is bigger than the size of the cascade itself. This
in turn means that all electrons in the cascade emit coherently. The effect was first observed in 2000 at
SLAC. Recently the Askaryan effect has been clearly confirmed and characterized for ice as the medium,
as part of the pre-flight calibration of the ANITA-1 payload. The Askaryan effect can be seen only at
high energies E > 1017−18 eV. Experiments using this effect benefit from the absence of atmospheric
neutrino flux at such high energies, but they also have to look over a huge effective volume in order to
see tiny neutrino fluxes at highest energies.

Experiments that used this effect to search for UHE neutrinos are FORTE [33], RICE [34], and
ANITA [35, 36]. FORTE is a satellite experiment, which, in particular, looked over the Greenland ice.
Unfortunately, the threshold of this experiment was very high, Eν > 1022 eV, so it could test only exotic
top-down models. RICE was an array of radio antennas located in the ice at the South Pole at the same
place as the AMANDA experiment. This experiment presented its final results in 2006. Finally, the
most advanced for the moment of this kind of experiment is the ANtarctic Impulsive Transient Array
(ANITA) radio balloon experiment, see Fig. 30. In the left panel one can see an array of radio antennas
in the balloon. In the right panel one can see a schematic map of flight over the Antarctic at a height of
37 km.

3.3 Search for cosmogenic neutrinos
As discussed in Section 1.3 UHECR protons lose their energy in interactions with CMB photons and
produce pions at energies above threshold E > 6 · 1019 eV. This GZK threshold was found in 1966 [9].
As long ago as 1969 Berezinsky and Zatsepin suggested that one can try to observe secondary neutrinos
from pion decays and called them cosmogenic neutrinos [37]. Recently the ANITA Collaboration pro-
posed to call such neutrinos Berezinsky–Zatsepin neutrinos, or BZ neutrinos [36]. Below we follow this
suggestion.
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Fig. 31: Predictions of cosmogenic neutrino fluxes and theoretical bounds on them [38, 39]

One can calculate the flux of BZ neutrinos theoretically, after fitting the corresponding proton
spectrum to the experimental flux above some energy. The absolute limit for neutrino flux comes from the
fact that gamma rays unavoidably produced from π0 decays and from electrons π± decays cascade down
to GeV energies and the maximum flux of such gamma rays cannot overshoot the EGRET measuremen
shown in Fig. 16. This bound on the BZ neutrino flux is called “gamma-ray bound” in Fig. 31. Note
that there are many additional ways to create photons in the EGRET energy range, including electron–
positron pair production discussed in the previous section, so the real BZ neutrino flux is always lower
than this region.

Fig. 32: Experimental limits on cosmogenic neutrino flux. Best up-to-date ANITA-1 limits based on no surviv-
ing candidates for 18 days of live time shown as ANITA-2008 [36]. Also limits from Auger [40], HiRes [41],
FORTE [33], Anita prototype ANITAlite [35], RICE [34], and AMANDA II [42] are shown.

Also in Fig. 31 we plot two theoretical limits derived under a set of theoretical assumptions. One
is called the Waxman–Bahcall (WB) bound and the other the MPR bound. On the same figure we show
several examples of theoretical neutrino fluxes which violate both WB and MPR bounds, but all of them
are consistent with the experimental gamma-ray bound.
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In Fig. 32 we show present-day experimental bounds confronting theoretical predictions for BZ
neutrinos from Ref. [36]. One can see that the best up-to-date experimental bounds come from the
ANITA experiment. ANITA-1 was able to view a volume of ice of ∼ 1.6 Mkm3 during 17.3 days, how-
ever, volumetric acceptance to a diffuse neutrino flux, accounting for the small solid angle of acceptance
for any given volume element, is several hundred km3 water-equivalent steradians at Eν = 1019 eV. This
allowed them for the first time a tough theoretically interesting region, excluding part of the parameter
space with highest neutrino fluxes.

On the same figure one can see existing limits on diffuse neutrino flux from the Auger [40],
HiRes [41], FORTE [33], Anita prototype ANITAlite [35], RICE [34], and AMANDA II [42] experi-
ments.

Let us note also that in Fig. 32 the composition is assumed to be proton-dominated. If recent
Auger results presented in Fig. 9 are confirmed, theoretical expectations for neutrino flux in Fig. 32 will
be strongly reduced. This will make observations of the diffused flux of UHE neutrinos an even more
complicated issue. However, at lower energies one still can have a hope of seeing point sources with
neutrinos, as will be discussed in the next section.

3.4 Point sources of UHE neutrinos

Fig. 33: Neutrino–nucleon cross-section as a function of the neutrino energy. Charge-current and neutral-current
contributions to the cross-section are shown with thin solid and dashed lines. The total cross-section is presented
by a thick solid line. See Ref. [43] for details.

At highest energies the neutrino flux is too low to detect one single source of neutrinos, but at lower
energies E < 1000 TeV the flux from a single source can be high enough to detect it. Indeed, in Fig. 33
the neutrino–nucleon cross-section is shown as a function of energy. This cross-section is proportional to
E at low energies E < 1 TeV and to E0.4 at high energies E > 106 GeV. Good candidates for neutrino
sources in the Galaxy are objects emitting TeV gamma rays. They can produce neutrinos in the proton–
proton collisions in objects in the case of binary systems and in the interaction with molecular clouds in
the Galaxy. In the 10 TeV energy range

σpν(10 TeV) = 10−34 cm2 . (20)

In the IceCube detector only a small fraction of neutrinos will produce a signal:

τν = σpνnICER ∼ 10−5 , (21)
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where nICE ∼ 1024/cm3 is the density of the ice and R = 1 km is the height of the IceCube detector.

The expected flux of neutrinos produced in the proton–proton collisions in the Galactic sources is

Fν ∼ Fγ = 10−12
1

cm2s
≈ 3 · 105

1

km2yr
. (22)

Thus in the IceCube detector one can expect three events per year for a 10 TeV neutrino flux.

Fig. 34: Left: Simulated detection of Milagro TeV galactic sources by IceCube. Right: Significance of Milagro
hotspots after five years of observation of IceCube.

In Fig. 34 one can see a simulation of Milagro sources from Fig. 26 after five years of working of
the IceCube detector.

Fig. 35: Equatorial sky-map of events (points) and pre-trial significances (p-value) of the all-sky point source
search in the 22-string IceCube detector [44]. The solid curve is the galactic plane. The most significant spot
arrives in a random sky with probability P ∼ 1%.

We now present recent results for point-source searches using data recorded during 2007–08 with
22 strings of IceCube (1/4 of the detector). An all-sky search within the declination range −5◦ to +85◦

found the most significant deviation from the background at 153.4◦ r.a., 11.4◦ dec. Accounting for
all trials in the point-source search, the final p-value for this result is 1.34%, consistent with the null
hypothesis of background-only events at the 2.2σ level. No obvious source candidates are near this
location, and an analysis of the timing of the events did not find any evidence of a burst in time. The
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location can be added to the a priori source candidate list for analysis using future IceCube data, in which
case a similar excess would be identified with much higher significance [44].

3.5 Summary
IceCube is half-complete. If it observes first sources, a new field of astroparticle physics will be started:
neutrino astrophysics. If not, much bigger detectors are needed with a size of at least 10 km3. Secondary
neutrino flux from UHECR protons can be detected by future radio experiments, like ANITA. Neutrinos
from some bright galactic sources can be detected by IceCube. Extragalactic sources can be observed
during bright flair activity. In order to detect continuous flux from sources like Cen A one needs detectors
much larger than 1 km3. Galactic SN can be detected with neutrinos at low and high energies. Cubic-
kilometre water detectors will be constructed if IceCube gives positive results.
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Relativistic heavy-ion physics 

G. Herrera Corral*
CERN,  Geneva, Switzerland 

Abstract  
The study of relativistic heavy-ion collisions is an important part of the LHC 
research programme at CERN. This emerging field of research focuses on 
the study of matter under extreme conditions of temperature, density, and 
pressure. Here we present an introduction to the general aspects of  
relativistic heavy-ion physics. Afterwards we give an overview of the 
accelerator facility at CERN and then a quick look at the ALICE project as a 
dedicated experiment for heavy-ion collisions. 

1 Introduction  
 
The study of relativistic heavy-ion collisions started in the 1970s at  the Bevalac, Lawrence Berkeley 
National Laboratory, where a transport line was built to bring heavy ions from Hilac (Heavy ion linear 
accelerator) to the Bevatron. The Bevatron at LBNL is best known for the antiproton, discovered there 
in the 1955 by O. Chamberlain and E. Segré.  The so-called Bevalac accelerated nuclei at about  
1 A GeV/c. The demonstration that excited nuclear matter could be studied gave birth to research 
programmes at Brookhaven National Laboratory and at the European Organization for Nuclear 
Research (CERN).  The Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory 
in the United States accelerated silicon ions up to 15 A GeV.  In Europe the Super Proton Synchrotron 
(SPS, CERN) produced a 60 A GeV beam of oxygen and then increased the energy to 200 A GeV. 

 Nowadays, research is conducted at the Relativistic Heavy Ion Collider (RHIC). This 
accelerator was completed in 1999 at Brookhaven National Laboratory in the United States. RHIC 
collides nuclear beams at 100 A GeV, i.e., at ten times more energy than at the SPS. At RHIC, four 
experiments are taking and analysing data:  BRAHMS, PHENIX, PHOBOS, and STAR.   

High-energy heavy-ion collisions involve large amounts of energy.  RHIC accelerates gold 
nuclei at 100 GeV/nucleon, which means that each nucleus carries energy  

                                          100 GeV   nucleons 197× 7.19=  TeV. 
 
In the centre of mass, these interacting ions deliver 39.4 TeV.  The Large Hadron Collider at CERN 
will reach  
                                                            1200=s    TeV 

in lead–lead interactions. 
In high-energy collisions of protons and/or electrons, the energy available in the beam goes 

into a point interaction. In heavy-ion interactions, however, an enormous amount of energy is 
deposited in a small region of space and in a very short time. In this region the density of energy is so 
large that it may favour the appearance of new forms of matter. The search for these new forms of 
matter is the central objective of heavy-ion physics.  

The energy density of nuclei with atomic number A  in normal conditions is given by  
 

                                                    ,             where                                                    . 
                                                      
* On sabbatical leave from Physics Department, CINVESTAV, Mexico City, Mexico. 

nuclear

ma

V
nucleonA× ss=ε 3

0 )V π 3/1(
3
4 Arnuclear =

393



                                                                            

A typical value of energy density for nuclear matter is 14.0=ε   GeV/fm 3 . The energy densities 
reached at relativistic heavy-ion collisions are above   1 GeV /fm 3 ,  i. e., 10 times larger than normal 
nuclei densities. 

The future of these studies is now moving to CERN where the ALICE experiment is being 
prepared to study relativistic heavy-ion collisions at the highest energy ever. As mentioned above, the 
LHC will provide beams of lead at energies 30 times greater than at RHIC. The CMS and ATLAS 
experiments at the LHC will also study heavy-ion interactions in addition to their rich programme on 
proton–proton collisions. 

Here we shall give an introduction to the new and exciting field of relativistic heavy-ion 
collisions. We take a quick historical look at Hagedorn’s first predictions. We quickly go through 
Glauber’s model to understand the way phenomena are experimentally evaluated and measured. We 
then explain the concept of energy density.  

In order to introduce the QCD phase space diagram, we shall study the MIT bag model.  This 
model provides an easy way to grasp general ideas before a more formal approach can be taken. With 
these tools we can discuss some of the probes and signatures that will uncover the appearance of a 
quark–gluon plasma. Finally we shall comment on the Large Hadron Collider as well as on the ALICE 
experiment which is dedicated to the study of ion–ion collisions at CERN. 

2 Hagedorn limiting temperature  
 

Rolf Hagedorn was the first to point out the possibility of a transition of ordinary matter into a plasma 
of quarks and gluons. He developed statistical physics methods and applied them to particle 
production in high-energy collisions.  He observed that the measured density of hadron states grows 
exponentially, i.e., 

 

                                                                                                                                                      (1) 
0

dm
m

m
aemd ≈ρ

 
where m represents the mass of the observed hadrons and  a  is a parameter [1].  In 1965 Hagedorn 
showed that this exponential behaviour implies a limiting temperature which he understood as a 
melting point of hadrons. Indeed, the number of states with energy in an interval   between  E  and  

 can be written  [2] as dEE +
 
 
                                                                                                   . 

kTE
E

e
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dpEdmdEEdn ∫ /

0

)( −≈ ρ

 
Introducing here the expression given in Eq. (1),  and using   , one obtains 222 mEp −=
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E
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Henceforth,  
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with . Substituting   zEm = )cos(ϕ=z  
 

                                                                        (2)                          
                                                                                                        
                                  
assuming  , we may approximate Eq. (2)  by 1/ 0 >>mE
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So that the integral can be calculated,   
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and then simplified to 
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Henceforth, the total energy density                           diverges for                              . 
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The conclusion is therefore that no higher temperatures are possible or some new physics must 
become relevant. 
 

Figure 1 shows  the mass  spectrum                                             with  
where   is the spin,J I  the isospin, and 1=λ , when particles are different from antiparticles and 

0=λ  when particles are identical to their antiparticles. Figure 1 is then a comparison of the 
logarithmic smoothed mass spectrum for the hadronic particles known today and previously. One can 
see that the new hadron resonances improve the exponential behaviour predicted by Hagedorn. 
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  Fig. 1: On the left, a picture extracted from Ref. [3];  the solid blue line is the exponential fit to 
the smoothed hadron mass spectrum with present day information  (represented here by the short-
dashed red line). The long dashed green line corresponds to the Hagedorn spectrum obtained in 
1967. On the right a similar picture extracted from the paper of Hagedorn from 1965 (see 
bibliography).   

 

3 The Glauber model   
 
The Glauber model [4], describes the interaction of two nuclei in terms of the interaction of the 
constituent nucleons.  The model assumes the movement of the nucleus in a straight line and pictures 
the collision between the nuclei with a given impact parameter. In that sense it is a classical model of 
the interaction. It is widely used in heavy-ion collisions to describe interaction processes. 

Figure 2 shows the geometry of a collision between nucleus B and nucleus A. The probability 
of finding a baryon in the volume element  BB dzbd

r
 of nucleus  B  is  

r
BBBB dzbdzb

r
),(ρ

             

                

. 
A similar expression for a nucleus A can be written. With this in mind, the probability element 

for having a baryon–baryon interaction when ions A and B collide with an impact parameter 
r

  is b
 
 r r r r r
                                                  
                                                                                                             
probability for finding a baryon  in A                   in B.  Probability  for an inelastic collision.  

 

We define the thickness functions                               for nucleus A and correspondingly  

· 

So we can write 

                                                                                                                 .                                     (3) 
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With this, we can now write the probability for the occurrence of n inelastic interactions when two 
nuclei A and B collide with an impact parameter b

r
: 

  

                                            . [ ] [ ] nAB
in

n
in bTbT

n
AB

bnP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= σσ )(1)(),(

 

The total probability of having an inelastic event in the collision of A and B  is therefore 

 

                                                                                                                .                                        (4) [ AB
in

AB

n

AB

 

 

 

 
 

Fig. 2: Collision of nucleus A with nucleus B at impact parameter b
r

 

 

From  Eq. (4) one can see that the total inelastic cross section   is AB
inσ

 

                                                   [ ]{ }∫ −−= AB
in

AB
inel bTdb σσ )(11 .                                                (5) 

 

One may approximate the thickness function t in Eq. (3) with a Gaussian. For nuclei with small atomic 
number the density function can also be approximated by a Gaussian so that      in Eq. 3 can be 
written  
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The total inelastic cross-section is then  
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The simplest case of a proton–proton collisions with n=1 is fulfilled in this approximation. 

 

4 Energy density       
 

The larger the number of nucleon–nucleon inelastic collisions the larger the energy deposited in the 
volume where those collisions take place.  

Figure 3 shows two colliding ions A´ and B´.    The overlap area in the transverse direction is 
denoted with A.  The volume formed by this area and a thickness length zΔ  is then . The number 
density of particles produced in that volume at 

zAΔ
0=z  and at the time at which a quark–gluon plasma 

may form is given by 
 
                                                                             
                                                                                                                         .                              (6) 
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11
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Since yz sinhτ=   with 22 zt −=τ , and where τ is the proper time.   We evaluate  in   dzdy /

Eq. (6). This relation connects energy density and rapidity density. It was derived by Bjorken [5]. 

Considering that , with E  being the average energy per produced particle, the 
energy density at the moment of the collision is 

ymE T cosh=

                                                                 ym
zA

N
T cosh0 Δ

Δ
=ε .                                                 (7) 

 

In this context,  produced particles means everything appearing at rapidities intermediate between 
those of the original incoming nuclei.  
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Fig. 3: Two colliding ions A´ and B´ 

 

Using Eq. (6) in Eq. (7) we obtain 

                                                                           
00

0
=

=
y

T

dy
dN

A
m
τ

ε , 

 

where 0τ  is unknown. Bjorken estimated cfm /10 =τ ,  however, the determination of the time scale 
at which the QGP is formed requires a knowledge of the dynamics behind. 

5 The quantum chromodynamics  phase diagram 
 

In the MIT bag model [6], hadrons are thought of as closed containers of massless quarks which can 
be described by the Dirac equation. In the space time representation  

                                                            . 0)( =− ϕγ μ
μ mpi

                                                                
With , the equation  becomes                   0=m

                                                                                                ,               

                 i. e. ,                                                                                 

           

In the Dirac representation of the γ  matrices, 

 

.0)( 00 =⋅ ϕγγ − p
rr

0=ϕ γ p
p

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
I

I
0

00γ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0
σ

σ
γ

RELATIVISTIC HEAVY-ION PHYSICS

399



                                                                

the equation above can be written  as 

 

                                                                                                           · 

                                                                                                          

00 =⎟⎟
⎠

⎜⎜
⎝⎜⎜ ⋅
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ϕσ pr

These coupled equations                                      and                                     can be solved analytically. 
The lowest energy solution is 

 
                                                                                                                             ’ 
 
in terms of the spherical Bessel functions     and    .    Confinement can now be imposed by requiring 
the current flux through the spherical bag surface to be zero. This means that the normal component of  
the current                       is equal to zero, i.e.,                        , therefore              . 
 

This confinement condition means that 

                                 [ ] [ ] 0)(ˆˆˆˆ)( 20
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That condition can be fulfilled if  , which means that the energy of the quarks  in the bag 
will be                             For a bag under an  external pressure 

04.20 =Rp
B , the energy of the quarks inside 

becomes 
                                         
 
The bag will be in equilibrium when 
 
 
               ,           i.e. ,                                              . 
 
 
Henceforth, a proton with three quarks (N=3) and radius r = 0.8 fm, will have external pressure   

3.19710444
1

×=B ,  (  MeV fm), i.e. , 197=ch
 
                                                                                MeV. 
                                                                                                          

Let us now see what happens with a gas of quarks (fermions) and gluons (bosons) in thermal 
equilibrium. The total pressure  of an ideal gas of quarks and gluons would be given by  
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where                      is the  gluon degeneracy determined by the  number of gluons and the two possible 
states. For the quarks we shall have                                                     .  The pressure can then be 
written 
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When the pressure equals the bag pressure, i.e.,  BP = ,  the equation would give us the critical 
temperature at which the bag would break: 
 
  
                                                                                               .                                                       (9) 4

2T ⎟
π 

 
Figure 4 shows  as obtained from Eq. (9) with                       MeV. cT
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4/1
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In a similar way one could estimate a critical density and see that deconfinement may happen 

even at temperature T = 0.  The number of quarks in a volume V with momentum p in the interval dp 
is 
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From the relation between pressure and energy  
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A change of state will occur when the pressure equals the bag pressure, i.e., , this corresponds 
to a critical quark number density  
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and taking baryons as groups of three quarks, the critical  baryon number is therefore 
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Fig. 4: QCD phase diagram. For high temperature, as discussed in the text,  there is a critical 
temperature  . Beyond this temperature, the bag would break releasing quarks and gluons. 

Similarly a baryon density beyond  would produce a phase transition. 
cT

cN

 
We now take ordinary nuclear matter composed of u and d quarks only so that  

 and a bag pressure 

=qg

flavorspincolors 223 ××= 2064
1
=B  MeV, the critical baryon number density at 

temperature T = 0, is 
 
                                                         /72.0=cN fm , 3

 
which corresponds to 5 times (see Fig 4)  the normal nuclear density ( 14.0=ε  GeV/fm 3 ,  estimated 
in the introduction to this article. 

6 Quark–gluon plasma  probes and signatures  
 
In order to know if a plasma of quarks and gluons has been created in the collision of ultrarelativistic 
heavy ions, we need observables. There are a number of ideas on what to look at to disentangle the 
short existence of a new state of matter. For lack of space, we shall not review all the probes and 
signatures considered by experiments nowadays, we shall only comment on some of them. The 
interested reader can then expand his knowledge from the bibliography recommended at the end of 
this article.  
 
Bose–Einstein  correlations 
   
Two-particle correlations are among the most promising observables of the heavy-ion reaction to 
reveal the spacetime evolution (Fig. 5). 
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Fig. 5: Two identical particles are produced at different spacetime points 1 and 2, with momentum 

 and . Identical bosons obey Bose–Einstein statistics, so that quantum correlations are 
present and modify the phase space of the produced particles.  

1k 2k

The wave function of the two particles produced at points 1r
r

 and 2r
r

 with momentum   and 

 can be written as 
1k
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The amplitude for the process is then  
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−= .  Henceforth the probability of having two identical bosons, 

say pions, produced at two points in spacetime  1r
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probability of producing bosons independently, is given by 
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We may introduce a probability density )(xρ    for the pions to be produced at different points in 
spacetime. This amplitude would modify as follows: 
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with  

                                                                
In this case the ratio of amplitudes would contain the Fourier transform of the probability density 

)(xρ ,  i.e., 
 
 
                                                                                            . 
 
 
This ratio of amplitudes is the so-called two-particle correlation function.  
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By studying the two-particle correlation function one can measure the geometry of the particle 
production system. 

Along these lines, one can use more sophisticated parametrizations. Figure 6 shows a common 
parametrization for the heavy-ion particle production environment and the results obtained by the 
PHENIX Collaboration  using this particular geometry [7]. 
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Fig. 6: On the left,  a parametrization   in terms of  along the beam direction,   along 

the line of sight,  and    perpendicular to the line of sight. The momenta of the pions are  

and . On the right the experimental results by the PHENIX Collaboration [7] in terms of these 
parameters for pion pairs in the laboratory (top) and the pair centre-of-mass frame (bottom). The 
data is plotted as a function of one variable keeping the other two below 40 MeV/c.  
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On the other hand, if a quark–gluon plasma is produced, it will hadronize, populating the 
central rapidity region. 
 

Considering      , the entropy of the quark–gluon plasma, and       , the entropy of the 
hadronization  phase,   then by the second law of thermodynamics  

S SQGP had

 
 
                                                                                                   QGPQGP Svolume × hadvolume≤ S .had×
 
Since                               then                          . 
 

Measuring the volume of the hadronization region by means of the two-particle correlation 
function one may say something about the production of a new state of matter. This is just an example 
of the ideas that have been considered in the frame of data coming from RHIC experiments. The 
source size extracted by fitting the correlation function to data grows with the event multiplicity and 
decreases with transverse momentum. However, the size and time of emission are anomalously large 
with respect to what has been suggested as signals for quark–gluon plasma formation. A better 
understanding of models and data is necessary. 
 
 
J/Ψ suppression 
The suppression of J/Ψ meson production was proposed in 1986 as a signature of a quark–gluon 
plasma [8]. It should be the manifestation of colour screening that would hinder c and anti-c  quarks 
from binding to form a  J/Ψ   meson.  
 
 

QGPS PVhad S< had V> QG
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Fig. 7: Ratio of ψ/J charmed mesons produced and expected, in several reactions and as a 
function of the energy density obtained in the reaction.  Figure extracted from Ref. [9]. 

The first observation in experiment NA50 [9] at the SPS was explained as the result of 
inelastic interactions of these mesons with dense hadronic matter created in the collision. However, an 
anomalous suppression was observed later on by the NA50 and NA60 experiments. 

The suppression has been a subject of study since then. A number of explanations like 
multiple scattering,  gluon distribution changes, excited-state decays, heavy quark/gluon energy loss 
etc. have been provided. Further and more careful studies are needed.  

Figure 7 shows the production of J/Ψ mesons measured by several experiments in various 
reactions and as a function of the energy density reached in the collision. The measured cross-section 
for J/Ψ  production were divided by the values expected from nuclear absorption. One can see that in 
lead–lead interactions the production is suppressed according to the expected nuclear absorption for 
energy densities below GeV/fm . As higher energy densities are obtained, the suppression starts 
to become important. This may be the result of charmonium melting, i.e., a manifestation of QGP 
appearance. 

2.2 3

 
Jet  quenching 
The phenomenon of jet quenching was proposed in 1982 by J. D. Bjorken  [10] as the result of energy 
loss of quarks propagating through a quark–gluon plasma. In his paper [10] Bjorken says: 
 
High energy quarks and gluons propagating through a quark gluon plasma suffer differential energy 
loss via elastic scattering from quanta in the plasma. An interesting signature may be events in which 
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the hard collision occurs near the edge of the overlap region, with one jet escaping without absorption 
and the other fully absorbed. 
   

First evidence of parton energy loss has been observed at RHIC [11].  Observation of high  
hadron spectra and jet production in central Au–Au collisions and d–Au collisions confirmed the 
prediction of jet quenching.  

Tp

Figure 8 show the azimuthal dependence of jets of particles. One sees clearly the presence of 
two jets in opposite directions in proton–proton and d–Au interactions. In Au–Au central collisions, 
however, one of the jets disappears. To obtain the plot in Fig. 8, one takes the highest transverse 
momentum track, which is between 4 and 6  GeV  and then plots the tracks with transverse momentum 
in the interval  2 GeV  associated with the azimuth trigger

TT pp << φΔ . 
The strong suppression of pion production at  up to 20 GeV has been observed at PHENIX 

[12] while direct photons which do not carry colour charge are not suppressed. The pions are 
generated by a fragmenting quark which does interact with the surrounding via its colour charge.   

Tp

The magnitude of the measured suppression at high and jet-like angular correlations in 
central Au–Au  collisions suggest that the initial energy density of the created medium is significantly 
larger than normal nuclear density.   

Tp

                                

Fig. 8: The azimuthal correlations of charged particles relative to a high  trigger particle [11]. 
The jet outgoing in opposite direction  for central Au–Au collisions (blue stars) is suppressed 
compared to the proton–proton  (black histogram) and d–Au (red dots). 

Tp

7 The Large Hadron Collider  
 

The Large Hadron Collider (LHC) [13] accelerates protons in a 27 km long tunnel located at the 
European Organization for Nuclear Research (CERN) in Geneva, Switzerland.   The LHC will also 
accelerate lead ions to make them collide at the  highest energy ever.  
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The acceleration process starts in Linac 2 for protons and Linac 3 for lead ions. The protons 
accelerated in Linac 2 are injected into a Proton Synchrotron Booster with an energy of 50 MeV. In 
the synchrotron, protons reach an energy of 1.4 GeV.  The Super Proton Synchrotron (SPS) has been 
modified to deliver a high-brightness proton beam required by the LHC. The SPS takes 26 GeV 
protons from the Proton Synchrotron  (PS) and brings them to 450 GeV before extraction. 

The Linac 3 produces 4.2 MeV/u lead ions. Linac 3 was commissioned in 1994 by an 
international collaboration and upgraded in 2007 for the LHC.  The Low Energy Ion Ring (LEIR) is  
used as a storage and cooler unit providing ions to the (PS)  with an energy of 72 MeV/nucleon. Ions 
will be further accelerated by the PS and the SPS before they are injected into the LHC where they 
reach an energy of 2.76 TeV/nucleon.  

The LHC consists of 1232 superconducting dipole magnets with double aperture that operate 
at up to 9 Tesla magnetic field. The accelerator also includes more than 500 quadrupole magnets and 
more than 4000 corrector magnets of many types.   

Ions are obtained from purified lead that is heated to 550 C. The lead vapour is then ionized 
with an electric current that produces various charge states. The Pb  ions are then selected with 
magnetic fields. This process takes place in an Electron Cyclotron Resonance (ECR) source (Fig. 9). 

o

+27

The ECR lead source is equipped with an hexapole permanent magnet. The plasma chamber is 
immersed in a solenoidal magnetic field. Pulsed beam currents produce Pb  ions that are then 
extracted to the Linac. 

+27

 

 

                  
 

Fig. 9: Electron Cyclotron Resonance (ECR) ion source. 
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Fig. 10: Accelerators at CERN. The process of acceleration starts in Linac 2 and Linac 3 for 
protons and ions respectively. 
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After acceleration, the lead  ions go through a carbon foil that strips them to Pb , which are 
accumulated in the Low Energy Ion Ring (LEIR). LEIR is a circular machine which transforms the 
long pulses of Linac 3 into high-density bunches needed by the LHC. LEIR injects bunches of ions to 
the PS.   

+54

At the SPS, ions go once more through a thin aluminium foil which strips them to Pb .   
The thickness of the stripper foil has to be chosen carefully to reduce contamination of lower charge 
states and keep emittance  low. Foils of 0.5 to 1 mm  thickness have been studied. In this way, fully 
stripped lead ions are obtained for the LHC. 

+82

Figure 10  shows the  accelerators at CERN that are in use for the LHC. 
 

The total cross-section of proton–proton interaction at 7 TeV could be inferred from hadronic 
cross-section measurements at lower energy [14]. It would be around 110 mbarn  and correspond  to 
about 60 mbarn of  inelastic-scattering cross-section.  The accelerator, at its design level, will reach a 
luminosity of  s  cm  which means that the interaction rate will be 3410 1− 1−

 
        (1/cm s ) barn  cm /barn collisions/s . 3410=rate 2 31060 −×× 2410−× 2 610600×=

A 25 ns interval between bunches gives a 40 MHz crossing rate. On average 19 inelastic 
events will occur each time bunches cross. Since there will be gaps in the beam structure, an average 
crossing rate of 31.6 MHz will be reached.  Detectors at the LHC must be designed to cope with these 
frequencies.  However, ALICE will run at a modest 300 kHz interaction rate in proton–proton mode 
and 10 kHz in Pb–Pb.  

During autumn 2009,  bunches of protons will be injected into the LHC ring. During the start- 
up phase, first collisions with protons at 3.5 TeV will take place.  An increase of the proton beam  
energy in a second phase is foreseen.  By the end of the run with protons in year 2010, lead-ion 
collisions will be produced. 

The ALICE experiment is ready to take data on all the phases of the accelerator operation.    

8 A Large Ion Collider Experiment 
 
The ALICE experiment  has been designed to observe the transition of ordinary matter into a plasma 
of quarks and gluons  [15]. At the energies achieved by the LHC, the density, the size, and the lifetime 
of the excited quark matter will be high enough to allow a careful investigation of the properties of 
this new state of matter. The temperature will exceed by far the critical value predicted for the 
transition to take place.  

ALICE has been optimized to study global event features.  The number of colliding nucleons 
will provide information on the energy density achieved. The measurement of elliptic flow patterns 
will provide information about thermalization on the partonic level and the equation of state of the 
system in the high-density phase. Particle ratios in the final state are connected to chemical 
equilibration and provide a landmark on the trajectory of the system in the phase diagram. The 
spacetime evolution of the system can be investigated via particle interferometry, complemented by 
the study of resonaces. Moreover, important information about the system properties can be obtained 
by the study of hard probes, which will be produced abundantly at the LHC.  Deconfinement may be 
reflected in the abundancies of J/ψ and Upsilon. The study of jet production on an event-by-event 
basis will allow one to investigate the transport properties of hard-scattered partons in the medium, 
which are expected to be strongly modified if a quark–gluon plasma is formed.  

ALICE is also well suited for studies of proton–proton and photon–photon reactions. Photon–
photon reactions include QED and QCD processes that go from lepton-pair to hadron and jet 
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production. As for proton–proton interactions, diffractive physics would be an exciting area of 
research.  

       The ALICE detector  will have a tracking system over a wide range of transverse momentum 
which goes from 100 MeV/c  to 100 GeV/c as well as  particle identification able to separate pions, 
kaons, protons, muons, electrons, and photons.  

A longitudinal view of the ALICE detector is shown in Fig. 11. A detailed description of the 
ALICE detector can be found in Ref. [16].  

 
 

 
 
 
 
 

 
Fig. 11:  The ALICE experiment consists of 16 detector subsystems. It combines particle 
identification, tracking, calorimetry,  and trigger detectors. 

 

In the forward direction a set of tracking chambers inside a dipole magnet will measure 
muons. An absorber will stop all the products of the interaction except for the muons which travel 
across and reach the tracking chambers that form the  muon arm. 

The central part of the ALICE detector is located inside a solenoid that provides a magnetic 
field of 0.5 T.  The central tracking and particle identification system cover   - 0.9 < η < 0.9. 

Electrons and photons are measured in the central region: photons will be measured in PHOS, 
a high-resolution calorimeter 5 m below the interaction point. The PHOS is built from PBWO  
crystals which have a high light output.  

4

RELATIVISTIC HEAVY-ION PHYSICS

411



The track measurement is performed with a set of six barrels of silicon detectors and a large 
Time Projection Chamber (TPC). The TPC has an effective volume of 88 m 3 . It is the largest TPC 
ever built.  These detectors will make available information on the energy loss allowing particle 
identification too. In addition to this, a Transition Radiation Detector (TRD) and a Time-of-Flight 
system will provide excellent particle separation at intermediate momentum. The Time-of-Flight 
system (TOF) uses Multi-gap Resistive Plate Chambers (MRPCs) with a total of 160 000 readout 
channels. A Ring Imaging Cherenkov detector will extend the particle identification capability to 
higher momentum particles. It covers 15% of the acceptance in the central area and will separate pions 
from kaons with momenta up to 3 GeV/c and kaons from protons with momenta up to 5 GeV/c. 

A Forward Multiplicity Detector (FMD) consisting of silicon strip detectors and a Zero 
Degree Calorimeter (ZDC) will cover the very forward region providing information on the charge 
multiplicity and energy flow. A honeycomb proportional counter for photon multiplicity (PMD) 
measurements is located in the forward direction on one side of the ALICE detector. 

The trigger system is complemented by a high level trigger (HLT) system which makes use of 
a computer farm to select events after read-out. In addition, the HLT system provides a data quality 
monitoring.  

The V0 system is formed by two scintillation counters on each side of the interaction point. 
The system will be used as the main interaction trigger.  In the top of the magnet, A Cosmic Ray 
Detector (ACORDE) will signal the arrival of cosmic muons. We briefly describe these two systems 
as examples of devices now in operation in the  ALICE detector. 

 

8.1 The V0 detector 
 

The V0 system consists of two detectors: V0A and V0C, located in the central part of ALICE. The 
V0A is installed at a distance of 328 cm from the interaction point as shown in Fig. 12, mounted in 
two rigid half-boxes around the beam pipe.  Each detector is an array of 32 cells of plastic scintillator, 
distributed in 4 rings forming a disc with 8 sectors. For the V0C, the cells of rings 3 and 4 are divided 
into two identical pieces that will be read with a single photomultiplier. This is done to achieve 
uniformity of detection and a small time fluctuation. 
 

In  proton–proton  mode the mean number of charged particles within 0.5 units of rapidity is 
about 3. Each ring covers approximately 0.5 units of rapidity. The particles coming from the main 
vertex will interact with other components of the detector generating secondary particles. In general, 
each cell of the V0 detector will, on average, register one hit. For this reason the detector should have 
a very high efficiency. In Pb–Pb collisions the number of particles in a similar pseudo-rapidity range 
could be up to 4000 once secondary particles are included. Comparing the number of hits in the 
detector for proton–proton  versus  Pb–Pb  mode, we can see that the required dynamic range will be  
1–500 minimum-ionizing particles. 

 
The Hamamatsu photomultiplier tubes (PMT) are installed inside the magnet not far from the 

detector.  In order to tolerate the magnetic field, fine mesh tubes have been chosen. The segments of 
the V0A detector were constructed with a megatile technique [17]. This technique consists of 
machining the plastic scintillator  and filling the grooves with TiO  loaded epoxy  in order to separate 
one sector from the other. 

2
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Fig.12:  The V0A before optical isolation (left). The segmentation and the optical fibres are 
visible. On the right side, V0A in its box  placed in the final position around the beam pipe. One 
half of the PMD just in front of the V0A can be seen in this picture.  

 
A detailed description of the V0 system can be found in Ref. [18].  Figure 12 shows the V0A 

detector in its mechanical structure. 
 

8.2 A Cosmic-Ray Detector ACORDE 
 

The cosmic-ray detector consists of an array of 60 scintillator counters located in the upper part of the 
ALICE magnet [19].  The plastic used for the construction of the detector was part of the DELPHI 
detector.  The material was carefully studied and the design of the detector was made according to the 
capabilities of the plastic available. The material was transported to Mexico where the construction 
was done. 

Each module has a sensitive area of  195.09.1 ×  m  and is built with two superimposed 
plastics.  The doublet has an efficiency around  90%  along  the module.  

2

 
The cosmic-ray detector 
 

• Generates a single muon  trigger to calibrate the Time Projection Chamber and other 
components of ALICE. 

 
• Generates a multi-muon  trigger to study cosmic rays with the help of tracking systems 

like the ITS and the TPC. 
       

• Provides a wake-up signal for the Transition Radiation Detector. 
 
 
The geometry is shown in Fig. 13. Modules on the far ends of the inner and outer faces of the magnet 
were moved to the centre of the upper face in order to have a much better efficiency for single muons. 

Figure 13 shows a real cosmic-ray event reconstructed with the Time Projection Chamber and 
projected to ACORDE on the top of the magnet. This event contains 52 muons that fired 38 modules 
of ACORDE. It was recorded during the cosmic data run in October 2008.   
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Fig.13:  ACORDE modules can be seen in the top.  This event was taken during a cosmic data  
run in October 2008. The cosmic-ray detector triggered the TPC to register 52 muons in one 
single event.  

 
 

In  2009 a period of  two months of cosmic studies will be conducted. The cosmic-ray detector 
will play a crucial role in triggering interesting events like the one shown here. The commissioning of 
several systems will be done during this period but interesting physics could be a bonus before  
accelerator activities start later on this year.     
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Trigger and data acquisition

N. Ellis
CERN, Geneva, Switzerland

Abstract
The lectures address some of the issues of triggering and data acquisition in
large high-energy physics experiments. Emphasis is placed on hadron-collider
experiments that present a particularly challenging environment for event se-
lection and data collection. However, the lectures also explain how T/DAQ
systems have evolved over the years to meet new challenges. Some examples
are given from early experience with LHC T/DAQ systems during the 2008
single-beam operations.

1 Introduction
These lectures concentrate on experiments at high-energy particle colliders, especially the general-
purpose experiments at the Large Hadron Collider (LHC) [1]. These experiments represent a very chal-
lenging case that illustrates well the problems that have to be addressed in state-of-the-art high-energy
physics (HEP) trigger and data-acquisition (T/DAQ) systems. This is also the area in which the author
is working (on the trigger for the ATLAS experiment at LHC) and so is the example that he knows best.
However, the lectures start with a more general discussion, building up to some examples from LEP [2]
that had complementary challenges to those of the LHC. The LEP examples are a good reference point
to see how HEP T/DAQ systems have evolved in the last few years.

Students at this school come from various backgrounds — phenomenology, experimental data
analysis in running experiments, and preparing for future experiments (including working on T/DAQ
systems in some cases). These lectures try to strike a balance between making the presentation accessi-
ble to all, and going into some details for those already familiar with T/DAQ systems.

1.1 Definition and scope of trigger and data acquisition
T/DAQ is the online system that selects particle interactions of potential interest for physics analysis
(trigger), and that takes care of collecting the corresponding data from the detectors, putting them into
a suitable format and recording them on permanent storage (DAQ). Special modes of operation need
to be considered, e.g., the need to calibrate different detectors in parallel outside of normal data-taking
periods. T/DAQ is often taken to include associated tasks, e.g., run control, monitoring, clock distribution
and book-keeping, all of which are essential for efficient collection and subsequent offline analysis of the
data.

1.2 Basic trigger requirements
As introduced above, the trigger is responsible for selecting interactions that are of potential interest for
physics analysis. These interactions should be selected with high efficiency, the efficiency should be
precisely known (since it enters in the calculation of cross-sections), and there should not be biases that
affect the physics results. At the same time, a large reduction of rate from unwanted high-rate processes
may be needed to match the capabilities of the DAQ system and the offline computing system. High-rate
processes that need to be rejected may be instrumental backgrounds or high-rate physics processes that
are not relevant for the analyses that one wants to make. The trigger system must also be affordable,
which implies limited computing power. As a consequence, algorithms that need to be executed at high
rate must be fast. Note that it is not always easy to achieve the above requirements (high efficiency for
signal, strong background rejection and fast algorithms) simultaneously.
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Trigger systems typically select events1 according to a ‘trigger menu’, i.e., a list of selection
criteria — an event is selected if one or more of the criteria are met. Different criteria may correspond to
different signatures for the same physics process — redundant selections lead to high selection efficiency
and allow the efficiency of the trigger to be measured from the data. Different criteria may also reflect the
wish to concurrently select events for a wide range of physics studies — HEP ‘experiments’ (especially
those with large general-purpose ‘detectors’ or, more precisely, detector systems) are really experimental
facilities. Note that the menu has to cover the physics channels to be studied, plus additional data
samples required to complete the analysis (e.g., measure backgrounds, and check the detector calibration
and alignment).

1.3 Basic data-acquisition requirements
The DAQ system is responsible for the collection of data from detector digitization systems, storing the
data pending the trigger decision, and recording data from the selected events in a suitable format. In
doing so it must avoid corruption or loss of data, and it must introduce as little dead-time as possible
(‘dead-time’ refers to periods when interesting interactions cannot be selected — see below). The DAQ
system must, of course, also be affordable which, for example, places limitations on the amount of data
that can be read out from the detectors.

2 Design of a trigger and data-acquisition system
In the following a very simple example is used to illustrate some of the main issues for designing a T/DAQ
system. An attempt is made to omit all the detail and concentrate only on the essentials — examples from
real experiments will be discussed later.

Before proceeding to the issue of T/DAQ system design, the concept of dead-time, which will be
an important element in what follows, is introduced. ‘Dead-time’ is generally defined as the fraction or
percentage of total time where valid interactions could not be recorded for various reasons. For example,
there is typically a minimum period between triggers — after each trigger the experiment is dead for a
short time.

Dead-time can arise from a number of sources, with a typical total of up to O(10%). Sources in-
clude readout and trigger dead-time, which are addressed in detail below, operational dead-time (e.g., time
to start/stop data-taking runs), T/DAQ downtime (e.g., following a computer failure), and detector down-
time (e.g., following a high-voltage trip). Given the huge investment in the accelerators and the detectors
for a modern HEP experiment, it is clearly very important to keep dead-time to a minimum.

In the following, the design issues for a T/DAQ system are illustrated using a very simple example.
Consider an experiment that makes a time-of-flight measurement using a scintillation-counter telescope,
read out with time-to-digital converters (TDCs), as shown in Fig. 1. Each plane of the telescope is
viewed by a photomultiplier tube (PMT) and the resulting electronic signal is passed to a ‘discriminator’
circuit that gives a digital pulse with a sharp leading edge when a charged particle passes through the
detector. The leading edge of the pulse appears a fixed time after the particle traverses the counter. (The
PMTs and discriminators are not shown in the figure.)

Two of the telescope planes are mounted close together, while the third is located a considerable
distance downstream giving a measurable flight time that can be used to determine the particle’s velocity.
The trigger is formed by requiring a coincidence (logical AND) of the signals from the first two planes,
avoiding triggers due to random noise in the photomultipliers — it is very unlikely for there to be noise
pulses simultaneously from both PMTs. The time of arrival of the particle at the three telescope planes is
measured, relative to the trigger signal, using three channels of a TDC. The pulses going to the TDC from
each of the three planes have to be delayed so that the trigger signal, used to start the TDC (analogous to
starting a stop-watch), gets there first.

1The term ‘event’ will be discussed in Section 3 — for now, it may be taken to mean the record of an interaction.
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The trigger signal is also sent to the DAQ computer, telling it to initiate the readout. Not shown
in Fig.1 is logic that prevents further triggers until the data from the TDC have been read out into the
computer — the so-called dead-time logic.

2.1 Traditional approach to trigger and data acquisition
The following discussion starts by presenting a ‘traditional’ approach to T/DAQ (as might be imple-
mented using, for example, NIM and CAMAC electronics modules2, plus a DAQ computer). Note that
this approach is still widely used in small test set-ups. The limitations of this model are described and
ways of improving on it are presented. Of course, a big HEP experiment has an enormous number of
sensor channels [up to O(108) at LHC], compared to just three in the example. However, the principles
are the same, as will be shown later.

Limitations of the T/DAQ system shown in Fig. 1 are as follows:

1. The trigger decision has to be made very quickly because the TDCs require a ‘start’ signal that
arrives before the signals that are to be digitized (a TDC module is essentially a multichannel
digital stop-watch). The situation is similar with traditional analog-to-digital converters (ADCs)
that digitize the magnitude of a signal arriving during a ‘gate’ period, e.g., the electric charge in an
analog pulse — the gate has to start before the pulse arrives.

2. The readout of the TDCs by the computer may be quite slow, which implies a significant dead-time
if the trigger rate is high. This limitation becomes much more important in larger systems, where
many channels have to be read out for each event. For example, if 1000 channels have to be read
out with a readout time of 1 µs per channel (as in CAMAC), the readout time per event is 1 ms
which excludes event rates above 1 kHz.

Beam

Scintillation
counters

& Trigger
TDC

B
A delay

delay

Trigger has to get to TDC
before signals A, B, C

Measure ToF

Initiate readout

Start TDC

C delay

Delay may be cable
 

Fig. 1: Example of a simple experiment with its T/DAQ system

The ‘readout model’ of this traditional approach to T/DAQ is illustrated in Fig. 2, which shows the
sequence of actions — arrival of the trigger, arrival of the detector signals (followed by digitization and
storage in a data register in the TDC), and readout into the DAQ computer. Since no new trigger can be
accepted until the readout is complete, the readout dead-time is given by the product of the trigger rate
and the readout time.

2NIM [3] and CAMAC [4] modules are electronic modules that conform to agreed standards — modules for many functions
needed in a T/DAQ system are available commercially.
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Fig. 2: Readout model in the ‘traditional’ approach

2.2 Local buffer
The traditional approach described above can be improved by adding a local ‘buffer’ memory into which
the data are moved rapidly following a trigger, as illustrated in Fig. 3. This fast readout reduces the dead-
time, which is now given by the product of the trigger rate and the local readout time. This approach is
particularly useful in large systems, where the transfer of data can proceed in parallel with many local
buffers (e.g., one local buffer for each crate of electronics) — local readout can remain fast even in a large
system. Also, the data may be moved more quickly into the local buffer within the crate than into the
DAQ computer. Note that the dashed line in the bottom, right-hand part of Fig. 1 indicates this extension
to the traditional approach — the trigger signal is used to initiate the local readout within the crate.

(Digitizer)
Register1. Trigger

2. Signals

3. Read out

“Start TDC”
(“Gate ADC”)

Readout dead-time:
Trigger rate × readout time

 

(Digitizer)
Register1. Trigger

2. Signals

3. Fast read out

“Start TDC”
(“Gate ADC”) 4. Final (slower) read out

Buffer

Readout dead-time:
Trigger rate × local readout time

Trigger
active again

 

Fig. 3: Readout system with local buffer memory

The addition of a local buffer reduces the effective readout time, but the requirement of a fast
trigger still remains. Signals have to be delayed until the trigger decision is available at the digitizers.
This is not easy to achieve, even with very simple trigger logic — typically one relies on using fast (air-
core) cables for trigger signals with the shortest possible routing so that the trigger signals arrive before
the rest of the signals (which follow a longer routing on slower cables). It is not possible to apply complex
selection criteria on this time-scale.
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2.3 Multi-level triggers
It is not always possible to simultaneously meet the physics requirements (high efficiency, high back-
ground rejection) and achieve an extremely short trigger ‘latency’ (time to form the trigger decision and
distribute it to the digitizers). A solution is to introduce the concept of multi-level triggers, where the first
level has a short latency and maintains high efficiency, but only has a modest rejection power. Further
background rejection comes from the higher trigger levels that can be slower. Sometimes the very fast
first stage of the trigger is called the ‘pre-trigger’ — it may be sufficient to signal the presence of minimal
activity in the detectors at this stage.

The use of a pre-trigger is illustrated in Fig. 4. Here the pre-trigger is used to provide the start
signal to the TDCs (and to gate ADCs, etc.), while the main trigger (which can come later and can
therefore be based on more complex calculations) is used to initiate the readout. In cases where the
pre-trigger is not confirmed by the main trigger, a ‘fast clear’ is used to re-activate the digitizers (TDCs,
ADCs, etc.).

(Digitizer)
Register

1. Pre-trigger

2. Signals

4. Read out

“Start TDC”
(“Gate ADC”) 3. Trigger (or fast clear)

Readout dead-time:
Trigger rate × readout time
PLUS trigger dead-time:
Pre-trigger rate × trigger latency

Trigger can now come later
(allows more refined selection — lower rate)  

Fig. 4: Readout system with pre-trigger and fast clear

Using a pre-trigger (but without using a local buffer for now), the dead-time has two components.
Following each pre-trigger there is a dead period until the trigger or fast clear is issued (defined here as
the trigger latency). For the subset of pre-triggers that give rise to a trigger, there is an additional dead
period given by the readout time. Hence, the total dead-time is given by the product of the pre-trigger
rate and the trigger latency, added to the product of the trigger rate and the readout time.

The two ingredients — use of a local buffer and use of a pre-trigger with fast clear — can be com-
bined as shown in Fig. 5, further reducing the dead-time. Here the total dead-time is given by the product
of the pre-trigger rate and the trigger latency, added to the product of the trigger rate and the local readout
time.

2.4 Further improvements
The idea of multi-level triggers can be extended beyond having two levels (pre-trigger and main trigger).
One can have a series of trigger levels that progressively reduce the rate. The efficiency for the desired
physics must be kept high at all levels since rejected events are lost forever. The initial levels can have
modest rejection power, but they must be fast since they see a high input rate. The final levels must have
strong rejection power, but they can be slower because they see a much lower rate (thanks to the rejection
from the earlier levels).
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In a multi-level trigger system, the total dead-time can be written as the sum of two parts: the
trigger dead-time summed over trigger levels, and the readout dead-time. For a system with N levels,
this can be written

(
N∑

i=2

Ri−1 × Li) +RN × TLRO

where Ri is the rate after the ith trigger level, Li is the latency of the ith trigger level, and TLRO is the
local readout time. Note that R1 corresponds to the pre-trigger rate.

In the above, two implicit assumptions have been made: (1) that all trigger levels are completed
before the readout starts, and (2) that the pre-trigger (i.e., the lowest-level trigger) is available by the time
the first signals from the detector arrive at the digitizers. The first assumption results in a long dead period
for some events — those that survive the first (fast) levels of selection. The dead-time can be reduced by
moving the data into intermediate storage after the initial stages of trigger selection, after which further
low-level triggers can be accepted (in parallel with the execution of the later stages of trigger selection on
the first event). The second assumption can also be avoided, e.g., in collider experiments with bunched
beams as discussed below.

In the next section, aspects of particle colliders that affect the design of T/DAQ systems are intro-
duced. Afterwards, the discussion returns to readout models and dead-time, considering the example of
LEP experiments.

(Digitizer)
Register

1. Pre-trigger

2. Signals

4. Fast read out

“Start TDC”
(“Gate ADC”) 5. Final read out

Buffer

Readout dead-time:
Trigger rate × local readout time
PLUS trigger dead-time:
Pre-trigger rate × trigger latency

3. Trigger (or fast clear)  

Fig. 5: Readout system using both pre-trigger and local buffer

3 Collider experiments
In high-energy particle colliders (HERA, LEP, LHC, Tevatron), the particles in the counter-rotating
beams are bunched. Bunches of particles cross at regular intervals and interactions occur only during
the bunch crossings. Here the trigger has the job of selecting the bunch crossings of interest for physics
analysis, i.e., those containing interactions of interest.

In the following notes, the term ‘event’ is used to refer to the record of all the products from a
given bunch crossing (plus any activity from other bunch crossings that gets recorded along with this).
Be aware (and beware!) — the term ‘event’ is not uniquely defined! Some people use the term ‘event’
for the products of a single interaction between incident particles. Note that many people use ‘event’
interchangeably to mean different things.

In e+ e− colliders, the interaction rate is very small compared to the bunch-crossing rate (because
of the low e+ e− cross-section). Generally, selected events contain just one interaction — i.e., the event
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Fig. 6: Readout system using bunch-crossing (BC) clock and fast clear

is generally a single interaction. This was the case at LEP and also at the e–p collider HERA. In contrast,
at LHC with the design luminosity L of 1034 cm−2 s−1 for proton beams, each bunch crossing will
contain on average about 25 interactions as discussed below. This means that an interaction of interest,
e.g., one that produced H → ZZ → e+e−e+e−, will be recorded together with 25 other proton–proton
interactions that occurred in the same bunch crossing. The interactions that make up the ‘underlying
event’ are often called ‘minimum-bias’ interactions because they are the ones that would be selected by
a trigger that selects interactions in an unbiased way. The presence of additional interactions that are
recorded together with the one of interest is sometimes referred to as ‘pile-up’.

A further complication is that particle detectors do not have an infinitely fast response time — this
is analogous to the exposure time of a camera. If the ‘exposure time’ is shorter than the bunch-crossing
period, the event will contain only information from the selected bunch crossing. Otherwise, the event
will contain, in addition, any activity from neighbouring bunches. In e+ e− colliders (e.g., LEP) it is very
unlikely for there to be any activity in nearby bunch crossings, which allows the use of slow detectors
such as the time projection chamber (TPC). This is also true at HERA and in the ALICE experiment [5]
at LHC that will study heavy-ion collisions at much lower luminosities than in the proton–proton case.

The bunch-crossing period for proton–proton collisions at LHC will be only 25 ns (corresponding
to a 40 MHz rate). At the design luminosity the interaction rate will be O(109) Hz and, even with
the short bunch-crossing period, there will be an average of about 25 interactions per bunch crossing.
Some detectors, for example the ATLAS silicon tracker, achieve an exposure time of less than 25 ns, but
many do not. For example, pulses from the ATLAS liquid-argon calorimeter extend over many bunch
crossings.

The instrumentation for the LHC experiments is described in the lecture notes of Jordan Nash
from this School [6]. The Particle Data Group’s Review of Particle Physics [7] includes much useful
information, including summaries of the parameters of various particle colliders.

4 Design of a trigger and data-acquisition system for LEP
Let us now return to the discussion of designing a T/DAQ system, considering the case of experiments
at LEP (ALEPH [8], DELPHI [9], L3 [10], and OPAL [11]), and building on the model developed in
Section 2.

4.1 Using the bunch-crossing signal as a ‘pre-trigger’
If the time between bunch crossings (BCs) is reasonably long, one can use the clock that signals when
bunches of particles cross as the pre-trigger. The first-level trigger can then use the time between bunch
crossings to make a decision, as shown in Fig. 6. For most crossings the trigger will reject the event by
issuing a fast clear — in such cases no dead-time is introduced. Following an ‘accept’ signal, dead-time
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Fig. 7: LEP readout model (ALEPH)

will be introduced until the data have been read out (or until the event has been rejected by a higher-level
trigger). This is the basis of the model that was used at LEP, where the bunch-crossing interval of 22 µs
(11 µs in eight-bunch mode) allowed comparatively complicated trigger processing (latency of a few
microseconds). Note that there is no first-level trigger dead-time because the decision is made during the
interval between bunch crossings where no interactions occur. As discussed below, the trigger rates were
reasonably low (very much less than the BC rate), giving acceptable dead-time due to the second-level
trigger latency and the readout.

In the following, the readout model used at LEP is illustrated by concentrating on the example of
ALEPH [8]3. Figure 7 shows the readout model, using the same kind of block diagram as presented in
Section 2. The BC clock is used to start the TDCs and generate the gate for the ADCs, and a first-level
(LVL1) trigger decision arrives in less than 5 µs so that the fast clear can be completed prior to the next
bunch crossing. For events retained by LVL1, a more sophisticated second-level (LVL2) trigger decision
is made after a total of about 50 µs. Events retained by LVL2 are read out to local buffer memory (within
the readout controllers or ‘ROCs’), and then passed to a global buffer. There is a final level of selection
(LVL3) before recording the data on permanent storage for offline analysis.

For readout systems of the type shown in Fig. 7, the total dead-time is given by the sum of two
components — the trigger dead-time and the readout dead-time.

The trigger dead-time is evaluated by counting the number of BCs that are lost following each
LVL1 trigger, then calculating the product of the LVL1 trigger rate, the number of lost BCs and the BC
period. Note that the effective LVL2 latency, given by the number of lost BCs and the BC period, is less
than (or equal to) the true LVL2 latency.

The readout dead-time is given by the product of the LVL2 trigger rate and the time taken to
perform local readout into the ROCs. Strictly speaking, one should also express this dead-time in terms
of the number of BCs lost after the LVL2 trigger, but since the readout time is much longer than the BC
period the difference is unimportant. Note that, as long as the buffers in the ROCs and the global buffers
do not fill up, no additional dead-time is introduced by the final readout and the LVL3 trigger.

Let us now look quantitatively at the example of the DELPHI experiment for which the T/DAQ
3The author was not involved in any of the LEP experiments. In these lectures the example of ALEPH is used to illustrate

how triggers and data acquisition were implemented at LEP; some numbers from DELPHI are also presented. The T/DAQ
systems in all of the LEP experiments were conceptually similar.
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Table 1: Typical T/DAQ parameters for the DELPHI experiment at LEP-II

Quantity Value
LVL1 rate ~ 500–1000 Hz (instrumental background)
LVL2 rate 6–8 Hz
LVL3 rate 4–6 Hz
LVL2 latency 38 µs (1 lost BC⇒ 22 µs effective)
Local readout time ~ 2.5 ms
Readout dead-time ~ 7 Hz × 2.5 · 10-3 s = 1.8%
Trigger dead-time ~ 750 Hz × 22 · 10-6 s = 1.7%
Total dead-time ~ 3–4%

system was similar to that described above for ALEPH. Typical numbers for LEP-II4 are shown in
Table 1 [9].

4.2 Data acquisition at LEP
Let us now continue our examination of the example of the ALEPH T/DAQ system. Following a LVL2
trigger, events were read out locally and in parallel within the many readout crates — once the data
had been transferred within each crate to the ROC, further LVL1 and LVL2 triggers could be accepted.
Subsequently, the data from the readout crates were collected by the main readout computer, ‘building’
a complete event. As shown in Fig. 8, event building was performed in two stages: an event contained a
number of sub-events, each of which was composed of several ROC data blocks. Once a complete event
was in the main readout computer, the LVL3 trigger made a final selection before the data were recorded.

The DAQ system used a hierarchy of computers — the local ROCs in each crate; event builders
(EBs) for sub-events; the main EB; the main readout computer. The ROCs performed some data pro-
cessing (e.g., applying calibration algorithms to convert ADC values to energies) in addition to reading
out the data from ADCs, TDCs, etc. (Zero suppression was already performed at the level of the digi-
tizers where appropriate.) The first layer of EBs combined data read out from the ROCs of individual
sub-detectors into sub-events; then the main EB combined the sub-events for the different sub-detectors.
Finally, the main readout computer received full events from the main EB, performed the LVL3 trigger
selection, and recorded selected events for subsequent analysis.

As indicated in Fig. 9, event building was bus based — each ROC collected data over a bus from
the digitizing electronics; each sub-detector EB collected data from several ROCs over a bus; the main
EB collected data from the sub-detector EBs over a bus. As a consequence, the main EB and the main
readout computer saw the full data rate prior to the final LVL3 selection. At LEP this was fine — with
an event rate after LVL2 of a few hertz and an event size of 100 kbytes, the data rate was a few hundred
kilobytes per second, much less than the available bandwidth (e.g., 40 Mbytes/s maximum on VME
bus [12]).

4.3 Triggers at LEP
The triggers at LEP aimed to select any e+ e− annihilation event with a visible final state, including
events with little visible energy, plus some fraction of two-photon events, plus Bhabha scattering events.
Furthermore, they aimed to select most events by multiple, independent signatures so as to maximize the
trigger efficiency and to allow the measurement of the efficiency from the data. The probability for an
event to pass trigger A or trigger B is ~ 1−δAδB, where δA and δB are the individual trigger inefficiencies,
which is very close to unity for small δ. Starting from a sample of events selected with trigger A, the

4LEP-II refers to the period when LEP operated at high energy, after the upgrade of the RF system.
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Fig. 8: ALEPH data-acquisition architecture

 

 

Fig. 9: Event building in ALEPH
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efficiency of trigger B can be estimated as the fraction of events passing trigger B in addition. Note that
in the actual calculations small corrections were applied for correlations between the trigger efficiencies.

5 Towards the LHC
In some experiments it is not practical to make a trigger in the time between bunch crossings because of
the short BC period — the BC interval is 396 ns at Tevatron-II5, 96 ns at HERA and 25 ns at LHC. In such
cases the concept of ‘pipelined’ readout has to be introduced (also pipelined LVL1 trigger processing).
Furthermore, in experiments at high-luminosity hadron colliders the data rates after the LVL1 trigger
selection are very high, and new ideas have to be introduced for the high-level triggers (HLTs) and
DAQ — in particular, event building has to be based on data networks and switches rather than data
buses.

5.1 Pipelined readout
In pipelined readout systems (see Fig. 10), the information from each BC, for each detector element, is
retained during the latency of the LVL1 trigger (several µs). The information may be retained in several
forms — analog levels (held on capacitors); digital values (e.g., ADC results); binary values (i.e., hit or
no hit). This is done using a logical ‘pipeline’, which may be implemented using a first-in, first-out
(FIFO) memory circuit. Data reaching the end of the pipeline are either discarded or, in the case of a
trigger accept decision, moved to a secondary buffer memory (small fraction of BCs).

Signal

BC clock

Logical
pipeline
(FIFO)

Conversion

Buffer

Trigger
acceptTrigger

reject

 

Fig. 10: Example of pipelined readout

Pipelined readout systems will be used in the LHC experiments (they have already been used
in experiments at HERA [13, 14] and the Tevatron [15, 16], but the demands at LHC are even greater
because of the short BC period). A typical LHC pipelined readout system is illustrated in Fig. 11, where
the digitizer and pipeline are driven by the 40 MHz BC clock. A LVL1 trigger decision is made for
each bunch crossing (i.e., every 25 ns), although the LVL1 latency is several microseconds — the LVL1
trigger must concurrently process many events (this is achieved by using pipelined trigger processing as
discussed below).

The data for events that are selected by the LVL1 trigger are transferred into a ‘derandomizer’ — a
memory that can accept the high instantaneous input rate (i.e., one word per 25 ns) while being read out

5Tevatron-II refers to the Tevatron collider after the luminosity upgrade.
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Fig. 11: Pipelined readout with derandomizer at the LHC

at the much lower average data rate (determined by the LVL1 trigger rate rather than the BC rate). In
principle no dead-time needs to be introduced in such a system. However, in practice, data are retained
for a few BCs around the one that gave rise to the trigger, and a dead period of a few BCs is introduced
to ensure that the same data do not have to be accessed for more than one trigger. Dead-time must also
be introduced to prevent the derandomizers from overflowing, e.g., where, due to a statistical fluctuation,
many LVL1 triggers arrive in quick succession. The dead-time from the first of these sources can be
estimated as follows (numbers from ATLAS): taking a LVL1 trigger rate of 75 kHz and 4 dead BCs
following each LVL1 trigger gives 75 kHz× 4× 25 ns = 0.75%. The dead-time from the second source
depends on the size of the derandomizer and the speed with which it can be emptied — in ATLAS the
requirements are < 1% dead-time for a LVL1 rate of 75 kHz (< 6% for 100 kHz).

Some of the elements of the readout chain in the LHC experiments have to be mounted on the
detectors (and hence are totally inaccessible during running of the machine and are in an environment
with high radiation levels). This is shown for the case of CMS in Fig. 12.
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Fig. 12: Location of readout components in CMS

There are a variety of options for the placement of digitization in the readout chain, and the opti-
mum choice depends on the characteristics of the detector in question. Digitization may be performed on
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the detector at 40 MHz rate, prior to a digital pipeline (e.g., CMS calorimeter). Alternatively, it may be
done on the detector after multiplexing signals from several analog pipelines (e.g., ATLAS EM calorime-
ter) — here the digitization rate can be lower, given by the LVL1 trigger rate multiplied by the number of
signals to be digitized per trigger. Another alternative (e.g., CMS tracker) is to multiplex analog signals
from the pipelines over analog links, and then to perform the digitization off-detector.

5.2 Pipelined LVL1 trigger
As discussed above, the LVL1 trigger has to deliver a new decision every BC, although the trigger latency
is much longer than the BC period; the LVL1 trigger must concurrently process many events. This
can be achieved by ‘pipelining’ the processing in custom trigger processors built using modern digital
electronics. The key ingredients in this approach are to break the processing down into a series of steps,
each of which can be performed within a single BC period, and to perform many operations in parallel
by having separate processing logic for each calculation. Note that in such a system the latency of the
LVL1 trigger is fixed — it is determined by the number of steps in the calculation, plus the time taken
to move signals and data to, from and between the components of the trigger system (e.g., propagation
delays on cables).

Pipelined trigger processing is illustrated in Fig. 13 — as will be seen later, this example corre-
sponds to a (very small) part of the ATLAS LVL1 calorimeter trigger processor. The drawing on the left
of Fig. 13 depicts the EM calorimeter as a grid of ‘towers’ in η–φ space (η is pseudorapidity, φ is azimuth
angle). The logic shown on the right determines if the energy deposited in a horizontal or vertical pair of
towers in the region [A, B, C] exceeds a threshold. In each 25 ns period, data from one layer of ‘latches’
(memory registers) are processed through the next step in the processing ‘pipe’, and the results are cap-
tured in the next layer of latches. Note that, in the real system, such logic has to be performed in parallel
for ~ 3500 positions of the reference tower; the tower ‘A’ could be at any position in the calorimeter. In
practice, modern electronics is capable of doing more than a simple add or compare operation in 25 ns,
so there is more logic between the latches than in this illustration.
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Fig. 13: Illustration of pipelined processing

The amount of data to be handled varies with depth in the processing pipeline, as indicated in
Fig. 14. Initially the amount of data expands compared to the raw digitization level since each datum
typically participates in several operations — the input data need to be ‘fanned out’ to several processing
elements. Subsequently the amount of data decreases as one moves further down the processing tree.
The final trigger decision can be represented by a single bit of information for each BC — yes or no
(binary 1 or 0). Note that, in addition to the trigger decision, the LVL1 processors produce a lot of data
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for use in monitoring the system and to guide the higher levels of selection.

Although they have not been discussed in these lectures because of time limitations, some fixed-
target experiments have very challenging T/DAQ requirements. Some examples can be found in Refs. [17,
18].

Many input data

1-bit output
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Energies in calorimeter towers
(e.g. ~7000 trigger towers in ATLAS)

Pattern of hits in muon detectors
(e.g. O(106) channels in ATLAS)
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Fig. 14: LVL1 data flow

6 High-level triggers and data acquisition at the LHC
In the LHC experiments, data are transferred after a LVL1 trigger accept decision to large buffer memo-
ries — in normal operation the subsequent stages should not introduce further dead-time. At this point in
the readout chain, the data rates are still massive. An event size of ~ 1 Mbyte (after zero suppression or
data compression) at ~ 100 kHz event rate gives a total bandwidth of ~ 100 Gbytes/s (i.e., ~ 800 Gbits/s).
This is far beyond the capacity of the bus-based event building of LEP. Such high data rates will be dealt
with by using network-based event building and by only moving a subset of the data.

Network-based event building is illustrated in Fig. 15 for the example of CMS. Data are stored
in the readout systems until they have been transferred to the filter systems [associated with high-level
trigger (HLT) processing], or until the event is rejected. Note that no node in the system sees the full
data rate — each readout system covers only a part of the detector and each filter system deals with only
a fraction of the events.

Fig. 15: CMS event builder

The LVL2 trigger decision can be made without accessing or processing all of the data. Substantial
rejection can be made with respect to LVL1 without accessing the inner-tracking detectors — calorimeter
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triggers can be refined using the full-precision, full-granularity calorimeter information; muon triggers
can be refined using the high-precision readout from the muon detectors. It is therefore only necessary
to access the inner-tracking data for the subset of events that pass this initial selection. ATLAS and CMS
both use this sequential selection strategy. Nevertheless, the massive data rates pose problems even for
network-based event building, and different solutions have been adopted in ATLAS and CMS to address
this.

In CMS the event building is factorized into a number of ‘slices’, each of which sees only a fraction
of the total rate (see Fig. 16). This still requires a large total network bandwidth (which has implications
for the cost), but it avoids the need for a very big central network switch. An additional advantage of
this approach is that the size of the system can be scaled, starting with a few slices and adding more later
(e.g., as additional funding becomes available).

Eight slices:
Each slice sees
only 1/8th of 
the events

Eight slices:
Each slice sees
only 1/8th of 
the events

 

Fig. 16: The CMS slicing concept

In ATLAS the amount of data to be moved is reduced by using the region-of-interest (RoI) mecha-
nism (see Fig. 17). Here, the LVL1 trigger indicates the geographical location in the detector of candidate
objects. LVL2 then only needs to access data from the RoIs, a small fraction of the total, even for the
calorimeter and muon detectors that participated in the LVL1 selection. This requires relatively compli-
cated mechanisms to serve the data selectively to the LVL2 trigger processors.

In the example shown in Fig. 17, two muons are identified by LVL1. It can be seen that only a
small fraction of the detector has to be accessed to validate the muons. In a first step only the data from
the muon detectors are accessed and processed, and many events will be rejected where the more detailed
analysis does not confirm the comparatively crude LVL1 selection (e.g., sharper pT cut). For those events
that remain, the inner-tracker data will be accessed within the RoIs, allowing further rejection (e.g., of
muons from decays in flight of charged pions and kaons). In a last step, calorimeter information may
be accessed within the RoIs to select isolated muons (e.g., to reduce the high rate of events with muons
from bottom and charm decays, while retaining those from W and Z decays).

Concerning hardware implementation, the computer industry is putting on the market technolo-
gies that can be used to build much of the HLT/DAQ systems at the LHC. Computer network products
now offer high performance at affordable cost. Personal computers (PCs) provide exceptional value for
money in processing power, with high-speed network interfaces as standard items. Nevertheless, custom
hardware is needed in the parts of the system that see the full LVL1 trigger output rate (~ 100 kHz). This
concerns the readout systems that receive the detector data following a positive LVL1 trigger decision,
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Fig. 17: The ATLAS region-of-interest concept — example of a dimuon event (see text)

and (in ATLAS) the interface to the LVL1 trigger that receives the RoI pointers. Of course, this is in
addition to the specialized front-end electronics associated with the detectors that was discussed earlier
(digitization, pipelines, derandomizers, etc.).

7 Physics requirements — two examples
In the following, the physics requirements on the T/DAQ systems at LEP and at the LHC are exam-
ined. These are complementary cases — at LEP precision physics was the main emphasis, at the LHC
discovery physics will be the main issue. Precision physics at LEP needed accurate determination of
the absolute cross-section (e.g., in the determination of the number of light-neutrino species). Discovery
physics at the LHC will require sensitivity to a huge range of predicted processes with diverse signatures
(with very low signal rates expected in some cases), aiming to be as sensitive as possible to new physics
that has not been predicted (by using inclusive signatures). This has to be achieved in the presence of an
enormous rate of Standard Model physics backgrounds (the rate of proton–proton collisions at the LHC
will be O(109) Hz — σ ~ 100 mb, L ~ 1034 cm−2 s−1).

7.1 Physics requirements at LEP
Triggers at LEP aimed to identify all events coming from e+ e− annihilations with visible final states. At
LEP-I, operating with

√
s ∼ mZ, this included Z→ hadrons, Z→ e+e−, Z→ µ+µ−, and Z→ τ+τ−; at

LEP-II, operating above the WW threshold, this included WW, ZZ and single-boson events. Sensitivity
was required even in cases where there was little visible energy, e.g., in the Standard Model for e+e−→
Zγ , with Z→ νν, and in new-particle searches such as e+e−→ χ̃+χ̃− for the case of small χ̃±− χ̃0 mass
difference that gives only low-energy visible particles (χ̃0 is the lightest supersymmetric particle). In
addition, the triggers had to retain some fraction of two-photon collision events (used for QCD studies),
and identify Bhabha scatters (needed for precise luminosity determination).

The triggers could retain events with any significant activity in the detector. Even when running at
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the Z peak, the rate of Z decays was onlyO(1) Hz — physics rate was not an issue. The challenge was in
maximizing the efficiency (and acceptance) of the trigger, and making sure that the small inefficiencies
were very well understood. The determination of absolute cross-section depends on knowing the inte-
grated luminosity and the experimental efficiency to select the process in question (i.e., the efficiency to
trigger on the specific physics process). Precise determination of the integrated luminosity required ex-
cellent understanding of the trigger efficiency for Bhabha-scattering events (luminosity determined from
the rate of Bhabha scatters within a given angular range). A major achievement at LEP was to reach ‘per
mil’ precision.

The trigger rates (events per second) and the DAQ rates (bytes per second) at LEP were modest as
discussed in Section 4.

7.2 Physics requirements at the LHC
Triggers in the general-purpose proton–proton experiments at the LHC (ATLAS [19, 20] and CMS [21,
22]) will have to retain as high as possible a fraction of the events of interest for the diverse physics pro-
grammes of these experiments. Higgs searches in and beyond the Standard Model will include looking
for H→ ZZ→ leptons and also H→ bb. Supersymmetry (SUSY) searches will be performed with and
without the assumption of R-parity conservation. One will search for other new physics using inclusive
triggers that one hopes will be sensitive to unpredicted processes. In parallel with the searches for new
physics, the LHC experiments aim to do precision physics, such as measuring the W mass and some
B-physics studies, especially in the early phases of LHC running when the luminosity is expected to be
comparatively low.

In contrast to the experiments at LEP, the LHC trigger systems have a hard job to reduce the
physics event rate to a manageable level for data recording and offline analysis. As discussed above, the
design luminosity L ~ 1034 cm−2 s−1, together with σ ~ 100 mb, implies an O(109) Hz interaction rate.
Even the rate of events containing leptonic decays of W and Z bosons is O(100) Hz. Furthermore, the
size of the events is very large,O(1) Mbyte, reflecting the huge number of detector channels and the high
particle multiplicity in each event. Recording and subsequently processing offline O(100) Hz event rate
per experiment with an O(1) Mbyte event size is considered feasible, but it implies major computing
resources [23]. Hence, only a tiny fraction of proton–proton collisions can be selected — taking the
order-of-magnitude numbers given above, the maximum fraction of interactions that can be selected is
O(10−7). Note that the general-purpose LHC experiments have to balance the needs of maximizing
physics coverage and reaching acceptable (i.e., affordable) recording rates.

The LHCb experiment [24], which is dedicated to studying B-physics, faces similar challenges
to ATLAS and CMS. It will operate at a comparatively low luminosity (L ~ 1032 cm−2 s−1), giving an
overall proton–proton interaction rate of ~ 20 MHz — chosen to maximize the rate of single-interaction
bunch crossings. The event size will be comparatively small (~ 100 kbytes) as a result of having fewer
detector channels and of the lower occupancy of the detector (due to the lower luminosity with less pile-
up). However, there will be a very high rate of beauty production in LHCb — taking σ ~ 500 µb, the
production rate will be ~ 100 kHz — and the trigger must search for specific B-decay modes that are of
interest for physics analysis, with the aim of recording an event rate of only ~ 200 Hz.

The heavy-ion experiment ALICE [5] is also very demanding, particularly from the DAQ point
of view. The total interaction rate will be much smaller than in the proton–proton experiments —
L ~ 1027 cm−2 s−1 is predicted to give a rate ~ 8000 Hz for Pb–Pb collisions. However, the event size
will be huge due to the high final-state multiplicity in Pb–Pb interactions at LHC energy. Up to O(104)
charged particles will be produced in the central region, giving an event size of up to ~ 40 Mbytes when
the full detector is read out. The ALICE trigger will select ‘minimum-bias’ and ‘central’ events (rates
scaled down to a total of about 40 Hz), and events with dileptons (~ 1 kHz with only part of the detector
read out). Even compared to the other LHC experiments, the volume of data to be stored and subse-
quently processed offline will be massive, with a data rate to storage of ~ 1 Gbytes/s (considered to be

TRIGGER AND DATA ACQUISITION

433



about the maximum affordable rate).

8 Signatures of different types of particle
The generic signatures for different types of particle are illustrated in Fig. 18. Moving away from the
interaction point (shown as a star on the left-hand side of Fig. 18), one finds the inner tracking detector
(IDET), the electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL) and the muon de-
tectors (MuDET). Charged particles (electrons, muons and charged hadrons) leave tracks in the IDET.
Electrons and photons shower in the ECAL, giving localized clusters of energy without activity in the
HCAL. Hadrons produce larger showers that may start in the ECAL but extend into the HCAL. Muons
traverse the calorimeters with minimal energy loss and are detected in the MuDET.

The momenta of charged particles are measured from the radii of curvature of their tracks in the
IDET which is embedded in a magnetic field. A further measurement of the momenta of muons may
be made in the MuDET using a second magnet system. The energies of electrons, photons and hadrons
are measured in the calorimeters. Although neutrinos leave the detector system without interaction, one
can infer their presence from the momentum imbalance in the event (sometimes referred to as ‘missing
energy’). Hadronic jets contain a mixture of particles, including neutral pions that decay almost imme-
diately into photon pairs that are then detected in the ECAL. The jets appear as broad clusters of energy
in the calorimeters where the individual particles will sometimes not be resolved.
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Fig. 18: Signatures of different types of particle in a generic detector

9 Selection criteria and trigger implementations at LEP
The details of the selection criteria and trigger implementations at LEP varied from experiment to ex-
periment [8–11]. Discussion of the example of ALEPH is continued with the aim of giving a reasonably
in-depth view of one system. For triggering purposes, the detector was divided into segments with a
total of 60 regions in θ, φ (θ is polar angle and φ is azimuth with respect to the beam axis). Within these
segments, the following trigger objects were identified:

1. muon — requiring a track penetrating the hadron calorimeter and seen in the inner tracker;
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2. charged electromagnetic (EM) energy — requiring an EM calorimeter cluster and a track in the
inner tracker;

3. neutral EM energy — requiring an EM calorimeter cluster (with higher thresholds than in (2) to
limit the rate to acceptable levels).

In addition to the above local triggers, there were total-energy triggers (applying thresholds on
energies summed over large regions — the barrel or a full endcap), a back-to-back tracks trigger, and
triggers for Bhabha scattering (luminosity monitor).

The LVL1 triggers were implemented using a combination of analog and digital electronics. The
calorimeter triggers were implemented using analog electronics to sum signals before applying thresh-
olds on the sums. The LVL1 tracking trigger looked for patterns of hits in the inner-tracking chamber
(ITC) consistent with a track with pT > 1 GeV 6 — at LVL2 the Time Projection Chamber (TPC)
was used instead. The final decision was made by combining digital information from calorimeter and
tracking triggers, making local combinations within segments of the detector, and then making a global
combination (logical OR of conditions).

10 Selection criteria at LHC
Features that distinguish new physics from the bulk of the cross-section for Standard Model processes
at hadron colliders are generally the presence of high-pT particles (or jets). For example, these may
be the products of the decays of new heavy particles. In contrast, most of the particles produced in
minimum-bias interactions are soft (pT ~ 1 GeV or less). More specific signatures are the presence of
high-pT leptons (e, µ, τ), photons and/or neutrinos. For example, these may be the products (directly
or indirectly) of new heavy particles. Charged leptons, photons and neutrinos give a particularly clean
signature (c.f. low-pT hadrons in minimum-bias events), especially if they are ‘isolated’ (i.e., not in-
side jets). The presence of heavy particles such as W and Z bosons can be another signature for new
physics — e.g., they may be produced in Higgs decays. Leptonic W and Z decays give a very clean
signature that can be used in the trigger. Of course it is interesting to study W and Z boson production
perse, and such events can be very useful for detector studies (e.g., calibration of the EM calorimeters).

In view of the above, LVL1 triggers at hadron colliders search for the following signatures (see
Fig. 18).

– High-pT muons — these can be identified as charged particles that penetrate beyond the calorime-
ters; a pT cut is needed to control the rate of muons from π± → µ±ν and K± → µ±ν decays in
flight, as well as those from semi-muonic beauty and charm decays.

– High-pT photons — these can be identified as narrow clusters in the EM calorimeter; cuts are made
on transverse energy (ET > threshold), and isolation and associated hadronic transverse energy
(ET < threshold), to reduce the rate due to misidentified high-pT jets.

– High-pT electrons — identified in a similar way to photons, although some experiments require a
matching track as early as LVL1.

– High-pT taus — identified as narrow clusters in the calorimeters (EM and hadronic energy com-
bined).

– High-pT jets — identified as wider clusters in the calorimeters (EM and hadronic energy com-
bined); note that one needs to cut at very high pT to get acceptable rates given that jets are the
dominant high-pT process.

– Large missing ET or scalar ET.

Some experiments also search for tracks from displaced secondary vertices at an early stage in the
trigger selection.

6Here, pT is transverse momentum (measured with respect to the beam axis); similarly, ET is transverse energy.
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The trigger selection criteria are typically expressed as a list of conditions that should be satis-
fied — if any of the conditions is met, a trigger is generated (subject to dead-time requirements, etc.).
In these notes, the list of conditions is referred to as the ‘trigger menu’, although the name varies from
experiment to experiment. An illustrative example of a LVL1 trigger menu for high-luminosity running
at LHC includes the following (rates [19] are given for the case of ATLAS at L ~ 1034 cm−2 s−1):

– one or more muons with pT > 20 GeV (rate ~ 11 kHz);
– two or more muons each with pT > 6 GeV (rate ~ 1 kHz);
– one or more e/γ with ET > 30 GeV (rate ~ 22 kHz);
– two or more e/γ each with ET > 20 GeV (rate ~ 5 kHz);
– one or more jets with ET > 290 GeV (rate ~ 200 Hz);
– one or more jets with ET > 100 GeV and missing-ET > 100 GeV (rate ~ 500 Hz);
– three or more jets with ET > 130 GeV (rate ~ 200 Hz);
– four or more jets with ET > 90 GeV (rate ~ 200 Hz).

The above list represents an extract from a LVL1 trigger menu, indicating some of the most impor-
tant trigger requirements — the full menu would include many items in addition (typically more than 100
items in total). The additional items are expected to include the following:

– τ (or isolated single-hadron) candidates;
– combinations of objects of different types (e.g., muon and e/γ);
– pre-scaled7 triggers with lower thresholds;
– triggers needed for technical studies and to aid understanding of the data from the main triggers

(e.g., trigger on bunch crossings at random to collect an unbiased data sample).

As for the LVL1 trigger, the HLT has a trigger menu that describes which events should be se-
lected. This is illustrated in Table 2 for the example of CMS, assuming a luminosity for early running
of L ~ 1033 cm−2 s−1. The total rate of ~ 100 Hz contains a large fraction of events that are useful for
physics analysis. Lower thresholds would be desirable, but the physics coverage has to be balanced
against considerations of the offline computing cost. Note that there are large uncertainties on the rate
calculations.

Table 2: Estimated high-level trigger rates for L ~2× 1033 cm−2 s−1 (CMS numbers from Ref. [21])

Trigger configuration Rate
One or more electrons with pT > 29 GeV, or two or more electrons with pT > 17 GeV ~ 34 Hz
One or more photons with pT > 80 GeV, or two or more photons with pT > 40, 25 GeV ~ 9 Hz
One or more muons with pT > 19 GeV, or two or more muons with pT > 7 GeV ~ 29 Hz
One or more taus with pT > 86 GeV, or two or more taus with pT > 59 GeV ~ 4 Hz
One or more jets with pT > 180 GeV and missing-ET> 123 GeV ~ 5 Hz
One or more jets with pT > 657 GeV, or three or more jets with pT > 247 GeV, or four or
more jets with pT > 113 GeV

~ 9 Hz

Others (electron and jet, b-jets, etc.) ~ 7 Hz

7Some triggers may be ‘pre-scaled’ — this means that only every N th event satisfying the relevant criteria is recorded, where
N is a parameter called the pre-scale factor; this is useful for collecting samples of high-rate triggers without swamping the
T/DAQ system.
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A major challenge lies in the HLT/DAQ software. The event-selection algorithms for the HLT can
be subdivided, at least logically, into LVL2 and LVL3 trigger stages. These might be performed by two
separate processor systems (e.g., ATLAS), or in two distinct processing steps within the same processor
system (e.g., CMS). The algorithms have to be supported by a software framework that manages the flow
of data, supervising an event from when it arrives at the HLT/DAQ system until it is either rejected, or
accepted and recorded on permanent storage. This includes software for efficient transfer of data to the
algorithms. In addition to the above, there is a large amount of associated online software (run control,
databases, book-keeping, etc.).

11 LVL1 trigger design for the LHC
A number of design goals must be kept in mind for the LVL1 triggers at the LHC. It is essential to
achieve a very large reduction in the physics rate, otherwise the HLT/DAQ system will be swamped and
the dead-time will become unacceptable. In practice, the interaction rate,O(109) Hz, must be reduced to
less than 100 kHz in ATLAS and CMS. Complex algorithms are needed to reject the background while
keeping the signal events.

Another important constraint is to achieve a short latency — information from all detector ele-
ments (O(107–108) channels!) has to be held on the detector pending the LVL1 decision. The pipeline
memories that do this are typically implemented in ASICs (application-specific integrated circuits), and
memory size contributes to the cost. Typical LVL1 latency values are a few microseconds (e.g., less than
2.5 µs in ATLAS and less than 3.2 µs in CMS).

A third requirement is to have flexibility to react to changing conditions (e.g., a wide range of
luminosities) and — it is hoped — to new physics! The algorithms must be programmable, at least at the
level of parameters (thresholds, etc.).

11.1 Case study — ATLAS e/γ trigger
The ATLAS e/γ trigger algorithm can be used to illustrate the techniques used in LVL1 trigger systems
at LHC. It is based on 4 × 4 ‘overlapping, sliding windows’ of trigger towers as illustrated in Fig. 19.
Each trigger tower has a lateral extent of 0.1 × 0.1 in η, φ space, where η is pseudorapidity and φ is
azimuth. There are about 3500 such towers in each of the EM and hadronic calorimeters. Note that each
tower participates in calculations for 16 windows. The algorithm requires a local maximum in the EM
calorimeter to define the η–φ position of the cluster and to avoid double counting of extended clusters
(so-called ‘declustering’). It can also require that the cluster be isolated, i.e., little energy surrounding
the cluster in the EM calorimeter or the hadronic calorimeter.

The implementation of the ATLAS LVL1 calorimeter trigger [25] is sketched in Fig. 20. Analog
electronics on the detector sums signals from individual calorimeter cells to form trigger-tower signals.
After transmission to the ‘pre-processor’ (PPr), which is located in an underground room close to the
detector and shielded against radiation, the tower signals are received and digitized; then the digital data
are processed to obtain estimates of ET per trigger tower for each BC. At this point in the processing
chain (i.e., at the output of the PPr), there is an ‘η–φ matrix’ of the ET per tower in each of the EM and
hadronic calorimeters that gets updated every 25 ns.

The tower data from the PPr are transmitted to the cluster processor (CP). Note that the CP is
implemented with very dense electronics so that there are only four crates in total. This minimizes the
number of towers that need to be transmitted (‘fanned out’) to more than one crate. Fan out is required
for towers that contribute to windows for which the algorithmic processing is implemented in more
than one crate. Also, within each CP crate, trigger-tower data need to be fanned out between electronic
modules, and then between processing elements within each module. Considerations of connectivity and
data-movement drive the design.

In parallel with the CP, a jet/energy processor (JEP) searches for jet candidates and calculates
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Fig. 19: ATLAS e/γ trigger algorithm

 

Fig. 20: Overview of the ATLAS LVL1 calorimeter trigger

N. ELLIS

438



missing-ET and scalar-ET sums. This is not described further here.

A very important consideration in designing the LVL1 trigger is the need to identify uniquely the
BC that produced the interaction of interest. This is not trivial, especially given that the calorimeter
signals extend over many BCs. In order to assign observed energy deposits to a given BC, information
has to be combined from a sequence of measurements. Figure 21 illustrates how this is done within the
PPr (the logic is repeated ~ 7000 times so that this is done in parallel for all towers). The raw data for
a given tower move along a pipeline that is clocked by the 40 MHz BC signal. The multipliers together
with the adder tree implement a finite-impulse-response filter whose output is passed to a peak finder (a
peak indicates that the energy was deposited in the BC currently being examined) and to a look-up table
that converts the peak amplitude to an ET value. Special care is taken to avoid BC misidentification for
very large pulses that may get distorted in the analog electronics, since such signals could correspond to
the most interesting events. The functionality shown in Fig. 21 is implemented in ASICs (four channels
per ASIC).

 

Fig. 21: Bunch-crossing identification

The transmission of the data (i.e., the ET matrices) from the PPr to the CP is performed using a
total of 5000 digital links each operating at 400 Mbits/s (each link carries data from two towers using a
technique called BC multiplexing [25]). Where fan out is required, the corresponding links are duplicated
with the data being sent to two different CP crates. Within each CP crate, data are shared between
neighbouring modules over a very high density crate back-plane (~ 800 pins per slot in a 9U crate; data
rate of 160 Mbits/s per signal pin using point-to-point connections). On each of the modules, data are
passed to eight large field-programmable gate arrays (FPGAs) that perform the algorithmic processing,
fanning out signals to more than one FPGA where required.

As an exercise, it is suggested that students make an order-of-magnitude estimate of the total
bandwidth between the PPr and the CP, considering what this corresponds to in terms of an equivalent

TRIGGER AND DATA ACQUISITION

439



number of simultaneous telephone calls8.

The e/γ (together with the τ/h) algorithms are implemented using FPGAs. This has only become
feasible thanks to recent advances in FPGA technology since very large and very fast devices are needed.
Each FPGA handles an area of 4× 2 windows, requiring data from 7× 5 towers in each of the EM and
hadronic calorimeters. The algorithm is described in a programming language (e.g., VHDL) that can
be converted into the FPGA configuration file. This gives flexibility to adapt algorithms in the light
of experience — the FPGAs can be reconfigured in situ. Note that parameters of the algorithms can be
changed easily and quickly, e.g., as the luminosity falls during the course of a coast of the beams in
the LHC machine, since they are held in registers inside the FPGAs that can be modified at run time
(i.e., there is no need to change the ‘program’ in the FPGA).

12 High-level trigger algorithms
There was not time in the lectures for a detailed discussion of the algorithms that are used in the HLT.
However, it is useful to consider the case of the electron selection that follows after the first-level trigger.
The LVL1 e/γ trigger is already very selective, so it is necessary to use complex algorithms and full-
granularity, full-precision detector data in the HLT.

A calorimeter selection is made applying a sharper ET cut (better resolution than at LVL1) and
shower-shape variables that distinguish between the electromagnetic showers of an electron or photon
on one hand, and activity from jets on the other hand. The shower-shape variables use both lateral
and depth profile information. Then, for electrons, a requirement is made of an associated track in the
inner detector, matching the calorimeter cluster in space, and with consistent momentum and energy
measurements from the inner detector and calorimeter respectively.

Much work is going on to develop the algorithms and tune their many parameters to optimize their
signal efficiency and background rejection. So far this has been done with simulated data, but further
optimization will be required once samples of electrons are available from offline reconstruction of real
data. It is worth noting that the efficiency value depends on the signal definition as shown in Fig. 22, an
example of a study taken from Ref. [26]. Here the trigger efficiency is shown, as a function of electron
transverse energy, relative to three different offline selections. With a loose offline selection, the trigger
is comparatively inefficient, whereas it performs much better relative to the tighter offline cuts. This is
related to the optimization of the trigger both for signal efficiency (where loose cuts are preferable) and
for background rejection (where tighter cuts are required).

Fig. 22: Trigger efficiency versus electron ET for three different offline selections of the reference sample

8One may assume an order-of-magnitude data rate for voice calls of 10 kbits/s — for example, the GSM mobile-phone
standard uses a 9600 bit/s digital link to transmit the encoded voice signal.
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13 Commissioning of the T/DAQ systems at LHC
Much more detail on the general commissioning of the LHC experiments can be found in the lectures
of Andreas Hoecker at this School [27]. Here an attempt is made to describe how commissioning of the
T/DAQ systems started in September 2008.

On 10 September 2008 the first beams passed around the LHC in both the clockwise and anti-
clockwise directions, but with only one beam at a time (so there was no possibility of observing proton–
proton collisions). The energy of the protons was 450 GeV which is the injection energy prior to accel-
eration; acceleration to higher energies was not attempted.

As a first step, the beams were brought around the machine and stopped on collimators such as
those upstream of the ATLAS experiment. Given the huge number of protons per bunch, as well as the
sizeable beam energy, extremely large numbers of secondary particles were produced, including muons
that traversed the experiment depositing energy in all of the detector systems.

Next, the collimators were removed and the beams were allowed to circulate around the machine
for a few turns and, after some tuning, for a few tens of turns. Subsequently, the beams were captured by
the radio-frequency system of the LHC and circulated for periods of tens of minutes.

The first day of LHC operations was very exciting for all the people working on the experiments.
There was a very large amount of media interest, with television broadcasts from various control rooms
around the CERN site. It was a particularly challenging time for those working on the T/DAQ systems
who were anxious to see if the first beam-related events would be identified and recorded successfully.
Much to the relief of the author, the online event display of ATLAS soon showed a spectacular beam-
splash event produced when the beam particles hit the collimator upstream of the experiment. The first
ATLAS event is shown in Fig. 23; similar events were seen by the other experiments.

Fig. 23: The first beam-splash event in ATLAS

Analysis of the beam-spash events provided much useful information for commissioning the de-
tectors and also the trigger. For example, the relative timing of different detector elements could be mea-
sured allowing the adjustment of programmable delays to the correct settings. The very large amount
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of activity in the events had the advantage that signals were seen in an unusually large fraction of the
detector channels.

An example of a very early study done with beam-splash events in shown in Fig. 24 which plots
ET versus η and φ for the ATLAS LVL1 calorimeter trigger readout. The ET values are colour coded;
η is along the x-axis and φ is along the y-axis. The eight-fold φ structure of the ATLAS magnets can
be seen, as well as the effects of the tunnel floor and heavy mechanical support structures that reduced
the flux of particles reaching the calorimeters in the bottom part of the detector (φ ≈ 270 degrees). The
difference in absolute scale between the left-hand and right-hand sides of the plot is attributed to the fact
that timing of the left-hand side was actually one bunch-crossing away from ideal when the data were
collected; the timing calibration was subsequently adjusted as a result of these observations.

Fig. 24: LVL1 calorimeter trigger energy grid for a beam-splash event

At least in ATLAS, the first beam-spash events were recorded using triggers that had already
been tested, with a free-runing 40 MHz clock, for cosmic-ray events. This approach was appropriate
because of the importance of recording the first beam-related activity in the detector before the local
beam instrumentation had been calibrated. However, it was crucial to move on as rapidly as possible to
establish a precise and stable time reference.

Once beam-related activity had been seen in all of the LHC experiments, stopping the beam on the
corresponding collimators, all of the collimators were removed and the beam was allowed to circulate.
The first circulating beams passed around the LHC for only a short period of time, corresponding to a
few turns initially, rising to a few tens of turns. For the 27 km LHC circumference, the orbit period is
about 89 µs.

Upstream of the LHC detectors (and upstream of the collimators) are passive beam pick-ups that
provide electrical signals induced by the passage of the proton beams. The photograph in the left-hand
side of Fig. 25 shows the beam pick-up for one of the beams in an LHC experiment. Three of the four
cables that carry the signals can be seen. The analog signals from electrodes above, below, to the left
and to the right of the beam are combined (analog sum). The resulting signal is fed to an oscilloscope
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directly and also via a discriminator (an electronic device that provides a logical output signal when the
analog input signal exceeds a preset threshold, see Section 2).

On the right-hand side of Fig. 25 can be seen a plot, from CMS, of the relative timing of different
signals. The upper three traces are ‘orbit’ signals provided by the LHC machine, whereas the bottom
trace is the discriminated beam pick-up signal. As can be seen, the pick-up signal is present for only four
turns and then disappears. The reason for this is that after a few turns the protons de-bunched and the
analog signal from the pick-ups became too small to fire the discriminator. Similar instrumentation and
timing calibration studies were used in all of the LHC experiments.

Fig. 25: Photograph of beam pick-up instrumentation (left) and display of timing signals recorded on a digital
oscilloscope (right). The upper three traces are ‘orbit’ signals from the LHC machine, whereas the bottom one is
the (inverted) discriminated signal from the beam pick-up.

A key feature of the beam pick-ups is that they provide a stable time reference with respect to
which other signals can be aligned. The time of arrival of the beam pick-up signal, relative to the moment
when the beam passes through the centre of the LHC detector, depends only on the proton time of flight
from the beam pick-up position to the centre of the detector, propagation delays of the signal along the
electrical cables, and the response time of the electronic circuits (which is very short).

Thanks to thorough preparations, the beam pick-up signals and their timing relative to the trigger
could be measured as soon as beam was injected. Programmable delays could then be adjusted to align
in time inputs to the trigger from the beam pick-ups and from other sources. For example, in ATLAS,
the beam pick-up inputs were delayed so that they would have the same timing as other inputs that had
already been adjusted using cosmic-rays.

Once the timing of the beam pick-up inputs to the trigger had been adjusted so as to initiate
the detector readout for the appropriate bunch crossing (BC), i.e., to read out a time-frame that would
contain the detector signals produced by beam-related activity, they could be used to provide the trigger
for subsequent running.

It is worth noting that the steps described above to set up the timing of the trigger were completed
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within just a few hours on the morning of 10 September 2008. From then onwards the beam pick-ups
represented a stable time reference with respect to which other elements in the trigger and in the detector
readout systems could be adjusted.

As already indicated, all of the beam operations in September 2008 were with just a single beam
in the LHC. Operations were performed with beams circulating in both the clockwise and anti-clockwise
directions. Beam activity in the detectors was produced by beam splash (beam stopped on collima-
tors upstream of the detectors producing a massive number of secondary particles) or by beam-halo
particles (produced when protons lost from the beam upstream of the detectors produced one or more
high-momentum muons that traversed the detectors). In both cases one has to take into account the time
of flight of the particles that reach one end of the detector before the other end. In contrast, beam–beam
interactions have symmetric timing for the two ends of the detector.

The work on timing calibration performed over the days following the LHC start up can be il-
lustrated by the case of ATLAS. Already on 10 September both sets of beam pick-ups had been com-
missioned (with beams circulating in the clockwise and anti-clockwise directions) giving a fixed time
reference with respect to which the rest of the trigger, and indeed the rest of the experiment, could be
aligned.

The situation on 10 September is summarized in the left-hand plot of Fig. 26. The beam pick-up
signal, labelled ‘BPTX’ in the figure, is the reference. The relative time of arrival of other inputs to the
trigger is shown in units of BC number (i.e. one unit corresponds to 25 ns which is the nominal bunch-
crossing interval at LHC). Although there is a peak at the nominal timing (bunch-number zero) in the
distributions based on different trigger inputs — the Minimum-Bias Trigger Scintillators (MBTS), the
Thin-Gap Chamber (TGC) forward muon detectors, and the Tau5, J5 and EM3 items from the calorimeter
trigger — the distribution is broad.

Prompt analysis and interpretation of the data allowed the timing to be understood and calibration
corrections to be applied. Issues addressed included programming delay circuits to correct for time of
flight of the particles according to the direction of the circulating beam and tuning the relative timing of
triggers from different parts of the detector or from different detector channels.

The situation two days later on 12 September is summarized in the right-hand plot of Fig. 26. It
is important to note that the scale is logarithmic — the vast majority of the triggers are aligned correctly
in the nominal bunch crossing. Although shown in the plot, the input from the Resistive Plate Chambers
(RPC) barrel muon detectors, which see very little beam-halo activity in single-beam operation, had not
been timed-in.

Fig. 26: Progress on timing-in ATLAS between 10 and 12 September 2008

As can be seen from the above, very significant progress was made on setting up the timing of the
experiments within the first few days of single-beam operations at LHC. The experimental teams were
eagerly awaiting further beam time and the first collisions that would have allowed them to continue the
work. However, unfortunately, on 19 September there was a serious accident with the LHC machine that
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required a prolonged shutdown for repairs and improvements. Nevertheless, when the LHC restarts one
will be able to build on the work that was already done (complemented by many further studies that were
done using cosmic rays during the machine shutdown).

A huge amount of work has been done using the beam-related data that were recorded in Septem-
ber 2008, as discussed in much more detail in the lectures of Andreas Hoecker at this School [27]. A very
important feature of these data is that activity is seen in the same event in several detector subsystems
which allows one to check the relative timing and spatial alignment. Indeed the fact that the same event
is seen in the different subdetectors is reassuring — some previous experiments had teething problems
where the readout of some of the subdetectors became desynchronized! A nice example of a beam-halo
event recorded in CMS is shown in Fig. 27. Activity can be seen in the Cathode-Strip Chamber (CSC)
muon detectors at both ends of the experiment and also in the hadronic calorimeter.

Fig. 27: A beam-halo event in CMS

The detectors and triggers that were used in September 2008 were sensitive to cosmic-ray muons
as well as to beam-halo particles when a requirement of a signal from the beam pick-ups was not made.
The presence of beam-halo and cosmic-ray signals in the data is illustrated in Fig. 28 which shows the
angular distribution of muons reconstructed in CMS. The shape of the cosmic-ray distribution, which
has a broad peak centred around 0.3–0.4 radians, is known from data collected without beam. The peak
at low angles matches well with the distribution for simulated beam-halo particles.

Fig. 28: Angular distribution of muons in CMS recorded with and without circulating beam. Also shown is the
distribution for simulated beam-halo events.
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Before concluding, the author would like to show another example of a study with single-beam
data. Using a timing set-up in the end-cap muon trigger that would be appropriate for colliding-beam
operations, in which the muons emerge from the centre of the apparatus, the distribution shown in the
right-hand part of Fig. 29 was obtained. The two peaks separated by four bunch crossings, i.e., 4× 25 ns,
correspond to triggers seen in the two ends of the detector system. This is consistent within the resolution
with the time of flight of the beam-halo particles that may trigger the experiment on the upstream or
downstream sides of the detector. As indicated in the left-hand part of the figure, this is reminiscent of
the very simple example that was introduced early on in the lectures, see Fig. 1.

Fig. 29: Time of flight of beam-halo muons in ATLAS (one BC is 25 ns)

14 Concluding remarks
It is hoped that these lectures have succeeded in giving some insight into the challenges of building
T/DAQ systems for HEP experiments. These include challenges connected with the physics (inventing
algorithms that are fast, efficient for the physics of interest, and that give a large reduction in rate), and
challenges in electronics and computing. It is also hoped that the lectures have demonstrated how the
subject has evolved to meet the increasing demands, e.g., of LHC compared to LEP, by using new ideas
based on new technologies.
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Commissioning and early physics analysis with the ATLAS and CMS
experiments

A. Hoecker
CERN, Geneva, Switzerland

Abstract
These lecture notes for graduate students and young postdocs introduce the
commissioning and early physics programme of the high-transverse-momentum
experiments ATLAS and CMS, operating at the Large Hadron Collider (LHC)
at CERN.

Preface — This writeup of lectures given in March 2009 at the 5th Latin American School of High-Energy Physics, Recinto
Quirama, Colombia, provides an overview of the various commissioning phases pursued by the ATLAS and CMS experiments
to thoroughly prepare the detectors and data acquisition systems for physics. As an ATLAS member, the access to the relevant
information from my own experiment was so invitingly easy that the document features an intolerable emphasis on ATLAS. I can
only sincerely apologize to my CMS colleagues, and state that changing all figures shown into the corresponding ones from CMS
would not alter the message the lectures seek to convey. In spite of their very different design, ATLAS and CMS have similar
physics potential. Wherever significant performance differences exist, they are pointed out throughout these notes. Most of the
analyses discussed here are taken from the vast ATLAS and CMS detector, performance, and physics reports [1–4]. No explicit
reference is given when using results from these papers. While finalising these notes, the LHC restarted the commissioning
programme in November 2009, after a year of repair and consolidation, achieving for the first time proton–proton collisions
at 900 GeV centre-of-mass injection energy, and — for short periods — even the new world record energy of 2.36 TeV. Results
from the analyses of collision data, which were not available at the time of the lectures, are not included in these notes.

1 Motivation for a huge machine
The Large Hadron Collider (LHC) at the European Laboratory for Particle Physics Research (CERN) is
the most powerful proton accelerator ever built. It collides two beams of protons accelerated to 7 TeV
each and bent by dipole magnets with 8.3 T magnetic field strength within the 26.7 km circular collider,
immersed in a ca. 100 m deep tunnel between Lake Geneva and the French Jura mountains. If the proton
were an elementary particle, that is, if it were point-like, the 14 TeV centre-of-mass energy released by
the collision could be fully transformed into mass. Dependent on quantum numbers and conservation
laws (symmetries), for example one heavy particle of 14 TeV or a particle–antiparticle pair of 7 TeV each
(masses of particles and antiparticles are identical) could be produced. Since the heaviest known particle
is the top quark with mass of 173 GeV, any heavier particle found would be a discovery. These new
heavy particles might decay to other new particles, still heavier than the top quark, and henceforth a
full cascade of new particles could be discovered. The proton is, however, not an elementary particle,
but is made out of a cloud of quarks and gluons (partons). The collision of two protons can thus be
regarded as collisions between partons with momentum fractions that follow a density distribution with
long tails towards one. Unlike for instance at e+e− colliders, increasing the number of recorded collisions
increases the probability for the occurrence of very hard parton scattering involving large fractions of the
proton–proton centre-of-mass energy. A high-luminosity 14 TeV proton–proton collider therefore allows
the experiments to deeply explore the TeV scale.

What does TeV scale signify? Let us recall the relevant atomic, nuclear, and particle physics
scales. The only known massless elementary particles are photons and gluons (bosons), which propagate
the electromagnetic and strong forces, respectively. The lightest fermions are the neutrinos with masses
probably lower than a few eV. This is below the atomic binding energy, which reaches tens of eV.
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Fig. 1: Tests of the Standard Model.

The next orders of magnitudes are represented by
the electron mass (1 MeV), nuclear binding energy (up to
10 MeV), pion and muon masses (100 MeV), the heaviest
known lepton as well as proton, neutron, and vector-meson
masses (1 GeV), the cc and bb resonances and heavy-quark
mesons (10 GeV), and finally the electroweak unification
scale, represented by the masses of the Z and W weak-
interaction bosons, the top quark, and (presumably) the Higgs
boson (100 GeV) and the Higgs vacuum expectation value
(246 GeV). No particles beyond that scale are known to date.

However, as we shall see later, the requirement of a
stable Higgs sector suggests the existence of new phenom-
ena at the TeV scale, which is precisely the area of sensitiv-
ity of the LHC. Little is known beyond that scale. Will new
symmetries arise, the breaking of which generates new parti-
cles? The seesaw mechanism accommodating massive neutri-
nos predicts heavy right-handed Majorana neutrinos of mass
up to 1014 GeV. Unification of the electroweak and strong
interactions may occur at 1016 GeV. Finally, gravitation be-
comes strong at the particle level at the Planck scale of order
1018 GeV, requiring a quantum field theory that includes gravi-
tation. The minimal Standard Model (assuming massless neu-
trinos) of unified electroweak and strong interactions includes
19 free parameters, among which are 3 coupling constants, 1
spin-1 and 1 spin-0 boson mass, 9 fermion masses, 3 weak
quark mixing angles, 1 CP-violating weak phase, and 1 CP-
violating strong phase, which is either tiny or zero. Including
a massive neutrino sector increases the number of free param-
eters by at least 9, depending on the nature of the neutrinos.

The dynamical predictions of the Standard Model have
been verified to extreme precision in the past thirty-five years
at a large number of very different experiments. Let us recall
a few eminent examples. The cross section of lepton pair pro-
duction has been measured to order 1 TeV and found in agree-
ment with the Z resonance being the highest particle decaying
into two leptons, and Drell–Yan production being the dom-
inant process beyond the Z (cf. topmost plot in Fig. 1 [5]).
Electroweak unification has been tested by globally fitting
the Standard Model prediction to precision measurements ob-
tained at the high-energy e+e− colliders LEP (CERN) and
SLC (SLAC), and at the pp collider Tevatron (FNAL). The
second plot from the top in Fig. 1 shows the relation between
measured and predicted W-boson mass versus the top-quark
mass [6]. The universality of weak interactions has been veri-
fied at the 0.3% level by comparing the tau branching fractions
to electron and muon plus neutrinos and to the tau-lepton life-
time (cf. bottom left plot in Fig. 1 [7]). The asymptotic free-
dom property of QCD has been verified at the 1% level by
measuring the evolution (‘running’) of the strong coupling at
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various energy scales, the most precise of which being the ones at the τ and the Z mass scales (third plot
in Fig. 1 [8]). The Standard Model predicts that all CP-violating phenomena involving weak charged
currents originate from a single phase in the quark mixing matrix. This has been verified by relating
different measurements of CP violation in the B-meson and kaon sectors to each other, all showing com-
patibility (fourth plot in Fig. 1 [9]). The CP-violating electric dipole moment of the electron has been
found to be smaller than 10−27 ecm as predicted by the Standard Model. The anomalous magnetic mo-
ment of the muon has been measured to the parts-per-million level, verifying the predicted contributions
from electromagnetic, weak, and hadronic loop corrections. A small deviation from the expectation is
currently not at a sufficiently significant level to draw conclusions (cf. bottom right plot in Fig. 1 [10]).
Many more examples all confirm the Standard Model. So, what’s the problem?

As explained in much detail by John Ellis [11] and others at this school, the Standard Model —
though describing so gloriously the experimental data — is, at best, incomplete. Firstly, the Higgs bo-
son, the last elusive Standard Model ingredient, has not yet been discovered. Even if it were discovered,
it would be the only elementary scalar particle in the Standard Model, which — for many physicists
— is conceptually unsatisfactory. A popular question is the origin of the large mass hierarchy between
fermions of different generations, amounting to more than 4 orders of magnitude between top and up
quarks. Many astrophysical observations have established the presence of cold dark matter in the galax-
ies and galactic halos. Moreover, spurious repulsive ‘dark energy’ appears to accelerate the expansion of
the universe. In particle physics, we can use the standard quantum field theory renormalisation groups
to predict the energy-scale dependence of the electroweak and strong coupling constants. Evolving the
three couplings to 1016 GeV, they almost converge towards a single unified coupling — almost, but not
quite. While unification might be considered an aesthetic requirement, stability of the Higgs sector is not.
Indeed, the virtual loop corrections, in particular from top-pair vacuum polarisation, diverge quadrati-
cally with their high-energy cut-off. Also, perturbativity of the Higgs quartic coupling and stability of
the Higgs potential require the Higgs mass to lie within a small allowed window, if the Standard Model
is to survive up to the (reduced) Planck scale MP ' 2 ·1018 GeV. Moreover, how would the unification of
the Standard Model and gravitation be established at that scale? A subtle, but no less intriguing problem
is the apparent smallness of the strong-CP parameter, tightly bound from measurements of the neutron
electric dipole moment, although no mechanism such as a symmetry in the Standard Model suggests
such a small or even vanishing value. While the Standard Model features CP violation in the charged
weak current, theoretical calculations show that the amount of CP violation is insufficient by many orders
of magnitude to be at the origin of the matter–antimatter asymmetry currently observed in the visible part
of the universe.1

The instability of the mass of the scalar Higgs boson against radiative corrections is denoted by the
term ‘gauge hierarchy problem’, which also sets the scale at which new physics can be expected. It is —
beyond the Higgs discovery and the strong Standard Model research programme — a primary motivation
for the construction of the LHC. Indeed, if a Higgs boson with mass <1 TeV is discovered, the Standard
Model is complete. However, when computing radiative corrections to the Higgs propagator, modifying
the bare Higgs mass, such as tt vacuum polarisation diagrams, or boson self-energies including the Higgs
self-coupling, the corresponding loop integrals diverge. To solve them, a cut-off parameter Λcut-off is
introduced to which the integrals are quadratically proportional. The cut-off parameter sets the scale
where new particles and physical laws must come in, regularising the diverging integral.2 However,
above the electroweak scale we know of only two scales exhibiting new physics: grand unification of the

1We could thus ask ourselves what the role of the weak phase is in the evolution of the universe. Does it carry a hidden
purpose? Or is weak CP violation a meaningless ‘accident of Nature’: because there are three generations and because all quark
flavours have mass there is quark mixing with four parameters of which three are three Euler angles and one is a CP-violating
phase. The phase is not constrained by a symmetry and thus of order one (68◦ [9]). Perhaps without major implications for
Nature.

2In a renormalisable quantum field theory, divergences in single loop integrals frequently occur, but they are always can-
celled to all perturbative orders by other diagrams contributing to the full matrix element of the scattering process under study.
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electroweak and strong forces (≈1016 GeV) and the Planck scale. A cut-off at such large energies would
require an enormous amount of fine-tuning to keep the physical Higgs mass small and stable. What could
be a ‘natural’ value for the scale Λcut-off? The following three diagrams give the largest contributions
to the Higgs radiative corrections and hence to the physical Higgs mass: tt loop: −(3/8π2)λ 2

t Λ2
cut-off ≈

(2TeV)2; gauge-boson loop: (9/64π2)g2Λ2
cut-off ≈ (0.7TeV)2; and Higgs loop: −(1/16π2)λ 2Λ2

cut-off ≈
(0.5TeV)2, where we have used Λcut-off = 10 TeV everywhere, and where λt , g, λ are respectively CKM,
weak, and quartic Higgs couplings. The total mass-squared of the Higgs is the sum of these contributions
and the tree-level term. What would be the cut-off (= new physics) scales if only small (∼10%) fine-
tuning were allowed? We would find Λtop < 2 TeV, Λgauge < 5 TeV, and ΛHiggs < 10 TeV. To naturally
cancel these divergences, new physics at the TeV scale should couple to the Higgs and should be related
to the particles in the loop (top, gauge, Higgs) by some symmetry.

The gauge hierarchy problem denotes this fine-tuning of parameters, and the strong dependence
of physics at the weak scale on the physics at (presumably) much higher scale: if the Higgs radiative
corrections are cut off at the scale of gravity, why is the scale of electroweak symmetry breaking so
different from the scale of gravity? Why is mW �MP? Equivalently, why is gravity so weak? Possible
solutions to the hierarchy problem include: (i) new physics appears not much above the electroweak
scale and regularises the quadratic divergences, (ii) new physics modifies the running of the couplings,
approaching grand unification to the electroweak scale, (iii) gravity is not as weak as we think, it is only
diluted in our four-dimensional world but it is as strong as electroweak interactions in, e.g., five or more
dimensions with Planck scale M(5D)

P O(TeV ), or (iv) the theory is fine-tuned and the explanation for the
parameter values is statistical rather than dynamic (anthropic principle).

From the above discussion we retain that the Standard Model is in crisis. Most Standard Model
extensions, developed with the goal to solve the hierarchy problem and/or to provide a dark matter
candidate, introduce new particles at the TeV scale. To find these, we need a new, huge collider providing
hard particle collisions with centre-of-mass energy well above 1 TeV.

2 The Large Hadron Collider
In principle, one could accelerate protons circulating in a magnetic ring almost illimitably to higher and
higher energy by continuously passing them through a radio-frequency field. The energy loss through
synchrotron radiation of a proton in the Large Hadron Collider (LHC) amounts to a few keV per turn
(compared to a few GeV per turn for electrons in the e+e− collider LEP2), which is about one hundred
times smaller than the acceleration the proton receives per turn. In practice however, the proton energy
in the collider ring is limited by the superconducting dipole magnets that guide the circular beams:
Eproton ' 0.3 ·B · r. Because the radius of the LHC is fixed (r = 4.3 km), one must use as strong fields as
possible (8.3 T, compared to approximately 4 T at the HERA and Tevatron colliders), and fill all free LHC
sections with dipole magnets (≈2/3).3 Because the effective centre-of-mass energy of the hard parton
collision depends on the parton energy density distributions in the proton, with long tails towards a large
energy fraction, accumulating larger statistics due to a high instantaneous luminosity effectively increases
the available kinematic reach of the proton–proton collider. High luminosity (beyond 1033 cm−2s−1), and
good machine and data-taking efficiency (of the order of 107 seconds good-quality data taking per year),
are also required to search for rare events, such as processes involving the Higgs boson, especially if the
Higgs is light (Higgs production is an electroweak process with large momentum transfer, which has a
cross section roughly a billion times smaller than inelastic QCD (so-called ‘minimum bias’) processes),
and also for studies of the nature of new physics phenomena if discovered. To achieve high luminosity
(L), strong currents are necessary, requiring dense proton bunches containing up to N = 110 billion
protons each (for comparison: 1 cm3 of hydrogen contains ≈1019 protons), and as many LHC bunches

3More precisely, the total number of dipole magnets in the LHC is 1232, each of which has a magnetic length of 14.3 m,
giving a total length of 17 618 m. The effective ‘bending radius’ amounts thus to: 17618/(2π) = 2804 m, and hence Eproton '
0.3 ·B · r ≈ 7 TeV.
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(k) as possible filled with protons (maximum of k = 2808 bunches out of a total of 3564 bunches). The
bunches are spaced by 25ns from each other, corresponding to a distance of 7.5 m. High luminosity
also requires that the protons be transversely squeezed by magnetic lenses to a small spot to increase
the probability that two protons collide. The typical transverse beam size, determined by the square-root
of the product of an amplitude function characterising the beam optics (varying throughout the ring),
and the constant phase space volume (emittance), amounts to σ?

x = σ?
y = 16 µm at 7 TeV beam energy

(for smaller beam energies, the beam emittance increases with ε ∝ 1/γp, as does the beam spot size as
∝
√

ε).4 The luminosity value is obtained from the formula

L =
kN2 f

4πσ?
x σ?

y
, (1)

where f = 11.25kHz is the revolution frequency determined by the LHC circumference and the speed
of light of the protons. We thus obtain L = 3.5·1030 cm−2s−1 per bunch, reaching 1034 cm−2s−1 when
all bunches are filled.

The LHC acceleration chain involves several steps (see Fig. 2 for a schematic view). The injec-
tor complex consists of the LINAC-2, preaccelerating the protons to 50 MeV, followed by the Proton
Synchrotron Booster (PSB) consisting of four superimposed rings accelerating the protons to 1.4 GeV.
Two large circular rings further accelerate the protons to 26 GeV (Proton Synchrotron – PS) and 450 GeV
(Super Proton Synchrotron – SPS), which is the LHC injection energy. The beams are transferred from
the SPS to the LHC via two newly built 3 km transfer lines. The PSB–PS–SPS complex required sig-
nificant upgrades to be able to provide beams with the appropriate intensity, size, and bunch distance.
The injection chain is particularly delicate because any increase of beam emittance during injection will
be ‘remembered’ by the protons in the LHC and lead to a reduction of the available peak luminosity
and/or beam lifetime (thus increasing beam-related backgrounds and reducing the integrated luminosity
the LHC can deliver during a proton fill). We note that in each acceleration step, the energy increase lies
between a factor of 10 and 20, which are reasonable ranges for the dipole magnets. The injector also has
the task of creating the proton bunches and (fixed) bunch pattern for the LHC. The chain is as follows: 6
booster bunches are injected into the PS; each of these is split into 12 smaller bunches giving a total of
72 bunches at extraction; between 2 and 4 batches of 72 bunches are injected into the SPS giving from
144 up to 288 bunches; finally, a sequence of 12 extractions of (up to) 288 SPS bunches is injected into
the LHC, giving a maximum of 2808 bunches (39 groups of 72 bunches). The filling scheme (difference
between the 3564 possible and 2808 actually filled bunches) foresees a number of short gaps for, e.g.,
kicker magnet rise times in the injection chain, and one long gap of 119 empty bunches (3 µs) for the
rise time of the LHC beam dump kicker magnet. Once injected into the LHC, the protons are accelerated
from 450 GeV to 7 TeV in a 20-minute acceleration process, during which the protons receive an average
energy gain of 0.5 MeV per turn when passing the electrical radio-frequency (RF) fields created in 8
superconducting cavities per beam with a peak accelerating voltage of 16 MV.

The LHC consists of eight 2.45-km-long arcs with bending dipole magnets (see Fig. 3 for a
schematic drawing of a dipole section),5 and eight 545-m-long straight sections. Four particle detec-
tors have been constructed and are housed in huge underground caverns located at four of the straight
sections. They record the objects left by collision debris by interacting with them. The detectors are: AT-
LAS (A Toroidal LHC ApparatuS), CMS (the Compact Muon Solenoid), ALICE (A Large Ion Collider

4The free ‘volume’ occupied by each proton in the interaction point is of the order of 10−4 µm3, which is huge compared to
the size of an atom, so that strong-interaction collisions between protons are still rare. The probability of two protons colliding
can be estimated to be approximately 4 ·10−21, so that with 1.1 ·1010 protons per bunch one finds ≈ 50 interactions per bunch
crossing, of which, however, only one-half are inelastic.

5The LHC magnet systems consists of a total of 1232 superconducting dipoles (cooled with 120 tons of superfluid helium
down to 1.9 K), in which currents of 12 kA create the required 8.33 T magnetic field; 392 focusing quadrupoles; and 3700
multipole corrector magnets.
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Fig. 2: Schematic view of the main elements of the LHC accelerator complex (see text) and the location of the
four largest LHC experiments ALICE, ATLAS, CMS and LHCb.

Experiment), and LHCb (study of physics in B-meson decays at the LHC).6 The remaining four straight
sections are used by the RF cavities, the beam dump, and by two beam-cleaning systems using chains
of collimators to absorb off-beam protons that would provoke magnet quenches and create so-called
beam-halo backgrounds in the experiments. Although the energy of a single 7 TeV proton corresponds to
only that of a flying mosquito (1 µJ), the total stored energy of 2808 bunches each filled with 1011 7 TeV
protons amounts to 360 MJ.7 It is a huge challenge to control this energy and avoid damage to accelerator
and experiments.

3 The high-pT general-purpose detectors ATLAS and CMS
The broad range of physics opportunities and the demanding experimental environment at high-luminosity
14 TeV proton–proton collisions impose unprecedented performance requirements and technological
constraints upon the LHC particle detectors. ATLAS and CMS are general-purpose detectors, capable of
adequately covering the entire physics programme reachable with high-luminosity 14 TeV proton–proton
collisions: from charm and beauty physics at lowest transverse momenta (∼3 GeV), to new physics
searches up to the highest reachable scales (∼4 TeV). The cross sections of the dominant QCD processes
and those representing the primary physics channels for research differ by many orders of magnitude. For
example, while at 14 TeV centre-of-mass energy, the total inelastic pp cross section amounts to approx-
imately 70 mb (giving a 1 GHz event rate at L =1034 cm−2s−1),8 hard quark and gluon scattering into
pairs of jets (or more) occurs roughly a thousand times less frequently; inclusive b-hadron production
has a cross section of approximately 0.5 mb; inclusive W → `ν and Z→ `` boson production and decay
have cross sections times branching fractions of approximately 20 nb and 2 nb,9 respectively (compared
to roughly a factor of 8 smaller at the Tevatron); top and antitop production has a cross section of al-
most 1 nb (rate of 10 Hz), two orders of magnitude higher than at the Tevatron; inclusive Higgs-boson
production, dominated by gluon-gluon-to-Higgs fusion via a triangular top-quark loop, has a Higgs-

6In addition, there are two smaller experiments: TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissocia-
tion at the LHC) and LHCf (Large Hadron Collider forward) for very low-pT physics.

7The stored energy is sufficient to heat up and melt 12 tonnes of copper. It is equivalent to an Airbus A380 flying at 700 km/h
speed, to 90 kg of TNT, 8 litres of gasoline, or 15 kg of chocolate.

8Recall that 1 mb−1 = 1027 cm−2.
9Because of the proton quark structure, producing more ud than ud quarks in scattering reactions, roughly a quarter more

W+ than W− are produced at the LHC [12] (while equal amounts of both charges are produced at the CP symmetric Tevatron
collider).
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Fig. 3: Section view of a superconducting LHC dipole magnetic. The two beam pipes are wrapped into two
oppositely poled superconducting coils.

mass dependent cross section between 45 pb (mH = 120 GeV) and 20 pb (180 GeV); and the production
via gluon–gluon scattering of 1 TeV supersymmetric squarks and gluinos has a cross section of a few
pb. These vast disparities, rendering physics analysis at the LHC like searching for needles in a giant
haystack, drive the detector design.

Let us list some of the most outstanding LHC conditions and derive from these the corresponding
design challenges.

– The 40 MHz bunch crossing rate10 requires a fast trigger decision, precise timing and ‘pipeline’
electronics, locally storing readout data until the Level-1 (hardware) trigger response signal has
been derived. For a pipeline memory depth of 100 bunch crossings, the Level-1 trigger latency
must not exceed 2.5 µs.

– The interaction rate of up to 1 GHz at maximum peak luminosity of 1034 cm−2s−1 (LEP and Teva-
tron: Lmax = 1032 cm−2s−1 and 3.5·1032 cm−2s−1, respectively), corresponding to approximately
25 inelastic interactions piling up in a single collision event, requires efficient pattern recogni-
tion to reduce the event rate from 1 GHz to 75 kHz (Level-1 output, high-level trigger input) to
approximately 200 Hz (HLT output rate, events written to disk).

– The approximate data size of 1.5 MB per event together with the 200 Hz accepted trigger rate pro-
vides an average raw data throughput of 300 MB per second. Storage, worldwide distribution,
prompt reconstruction and reprocessing of these data require adequate storage media, and power-
ful network and computing resources. The paradigm of distributed computing chosen by the LHC

10For comparison, the bunch crossing rates at LEP and the Tevatron are 45 kHz and 2.5 MHz, respectively, while the B factory
PEP-II, an e+e− collider, has achieved 240 MHz, and the CLIC design foresees 2 GHz.
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experiments requires the availability of several (order 10) large-scale computing centres (Tier-1s,
demarcating ‘computing clouds’), with resources similar to those at CERN, and located represen-
tatively for the collaborations’ geographical extensions. These clouds embrace smaller computing
centres for user analysis and simulation production.

– The irradiation rate after 10 years of successful LHC operation is expected to reach 5 · 1014 neu-
tron equivalents per cm2 (300 kGy), requiring radiation-hard inner tracker (pixel detector with
large signal-to-noise ratio and small silicon volume close to the interaction point) and forward
calorimeter technology.

– The high charged multiplicity of up to 1000 tracks per event (4 ·1010 tracks per second) requires the
use of high-granular pixel/silicon or fine-grained straw tracker technologies. Three-dimensional
pixel technology, replacing traditional silicon strip detectors close to the beam pipe, is mandatory
to provide sufficient pattern recognition capability.

– Large background rates from beam-gas interactions, beam-halo muons, thermal neutrons and pho-
tons (‘cavern background’, bathing the detector during event pileup and afterwards due to activa-
tion of materials in the detector, its support structure, and the cavern), require precise muon timing,
redundant pattern recognition, and radiation hardness.

Similarly, the detector design reflects the challenges posed by the physics programme.

– The search for rare Bs(d)→ µµ decays, which have Standard Model branching fractions of 3.3 ·
10−9 and 1.1 · 10−12, respectively, and the measurement of time-dependent CP violation and the
unitarity triangle angle βs using (among others) flavour-tagged Bs→ J/ψφ decays, require good
trigger efficiency and purity for muon tracks with transverse momenta as low as 3 GeV. To achieve
sufficient purity, the HLT tracking algorithm must reconstruct charges as well as the B vertex and
mass.

– Measuring the W mass to a precision better than the current world average [13] of (80.399±
0.023)GeV, requires excellent alignment of the tracking detectors, good track reconstruction effi-
ciency, calorimeter uniformity, and missing transverse energy resolution.

– A precision measurement of the top mass needs — apart from a better theoretical understanding of
the nature of the measured top mass — excellent jet energy calibration, resolution and uniformity,
as well as excellent b-tagging purity and efficiency.

– A sensitive search for the Higgs boson in the most promising final states 2e(µ)2ν , 4e(µ), 2e2µ ,
γγ , ττ (via weak boson fusion accompanied by forward jets) requires very pure and efficient par-
ticle identification, excellent electromagnetic and hadronic calorimeter resolution and uniformity,
efficient high-luminosity tracking, and efficient reconstruction of forward jets.

– Searching for the multifaceted signatures from supersymmetry requires excellent jet and missing
transverse energy resolution, low calorimeter noise, excellent τ identification and reconstruction,
as well as maximum detector acceptance.

– The search for heavy resonances of masses beyond 1 TeV, as they are predicted in models with
excited weak bosons or extra spatial dimensions, requires good tracking (including charge recon-
struction) and calorimeter resolution, and a large dynamic range (small calorimeter saturation) up
to the highest reachable energies.

3.1 Detector design
The high-pT detectors, ATLAS and CMS, are designed as a result of careful optimisation processes
to respond as well as possible to these unprecedented and sometimes conflicting requirements, while
respecting budget limitations (approximately 550 million Swiss francs per detector). Both detectors have
fast, multi-level trigger systems allowing one to select complex signatures, fast data acquisition based
on broadband network switches, excellent inner tracking devices allowing efficient high-pT tracking
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Fig. 4: Schematic drawings of the ATLAS detector (upper) and a slice of the CMS detector (lower), showing the
trajectories of charged and neutral particles interacting with the various detector layers.

and secondary (b) vertex reconstruction in a high-luminosity environment; fine-grained, high-resolution
electromagnetic calorimeters for excellent electron and photon reconstruction, complemented by full
coverage hadronic calorimetry for accurate jet and missing transverse energy measurements, and an
efficient identification of semileptonic τ lepton decays; as well as high-precision muon systems with
standalone tracking capability [1, 2, 14, 15]. Schematic drawings of the ATLAS and CMS detectors are
shown in Fig. 4.

The most striking difference between ATLAS and CMS, strongly determining the entire detector
design, is the magnet structures. CMS has a single, albeit huge solenoid (inner diameter 5.9 m, thick-
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ness 60 cm, axial length 12.9 m), fully immersing the inner tracking systems and electromagnetic and
hadronic calorimeters in a 3.8 T axial magnetic field11 (18.2 kA current), and providing muon momen-
tum measurement via the ∼2 T field in the flux return yoke made out of 10 000 tonnes of steel. ATLAS
has three different magnet systems: a thin solenoid (inner diameter 2.46 m, thickness 5 cm, axial length
5.8 m, axial magnetic field 2 T at the centre of the tracking volume, 7.7 kA current) around the inner
tracking system, and 8 barrel and 2×8 endcap air-core toroid magnets (magnetic fields between 0.5 T
and 4 T, strongly varying with the radial distance from the toroids, 20.5 kA currents), arranged radially
around the hadron calorimeters such that the Lorentz force bends charged tracks along their z coordinates.
The toroid magnets do not affect the central solenoid field. All magnet systems are superconducting.

The inner tracking systems are made out of semiconducting silicon pixel and silicon strip de-
tectors for the inner and outer layers (disks in the endcaps), respectively, comprising approximately 80
million channels. Pixel systems close to the collision impact point are mandatory to cope with the large
track density. The innermost barrel pixel layer, of a total of 3 layers, is as close as 5.0 cm (ATLAS) and
4.4 cm (CMS) to the beam line. The design Rφ position resolution of the pixel system is 10 µm. In CMS
silicon strip technology is used to cover the entire inner detector between pixel and electromagnetic
calorimeter (radius of the outermost layer: 107–110 cm), providing a total of 14 measurement points.
The ATLAS silicon strip detector, being shorter in radius, provides 8 measurement points. A transition
radiation tracker made of 350 000 Kapton straw tubes of 4 mm diameter, providing on average 35 mea-
surement points for pseudorapidity12 lower than 1.8 (resolution of 130 µm per straw), and between 18
and 35 Rφ measurement points (no η measurement) between 1.8 ≤ |η | ≤ 2.5, is inserted between the
silicon strip tracker and solenoid. Transition radiation with 8 keV photons on average, emitted when
charged ultrarelativistic particles traverse the boundary of two different dielectric media (foil and air),
increases the signal size so that dual readout with low and high thresholds allows the identification of
β = 1 particles (electrons).

Owing mainly to the stronger solenoid magnetic field, CMS has better momentum resolution with
σ(pT ) ' 1.5% compared to 3.8% (ATLAS) for 100 GeV tracks at η = 0. At low momentum, multiple
scattering that occurs due to the significant material in the tracking systems of both detectors (varying
between 0.3X0 at η ' 0 and 1.4X0 at η ' 1.5) reduces this difference.

The electromagnetic calorimeters consist of a lead and liquid-argon sampling technique, radially
shaped as an accordion to minimise inhomogeneities and cracks, chosen by ATLAS, versus high-granular
lead tungstate (PbWO4) scintillating crystals in CMS (61,200 crystals in the barrel and 7,324 in each end-
cap). Both calorimeters have a geometry pointing towards the collision point, which simplifies the energy
reconstruction of the incident particles. The lead absorber in the ATLAS calorimeter reduces the avail-
able light yield for energy measurement, thus limiting the stochastic resolution to σ(E) ' 10–12/

√
E

with a constant term of 0.2–0.35%, compared to σ(E)' 3–5.5/
√

E and a constant term of 0.5% for the
CMS crystals. The influence of the constant term, originating from non-uniformities in the calorimeter
response due to inhomogeneities and non-linearities, is small for ATLAS, while it becomes a limiting
factor at energies beyond 40 GeV for CMS (hence, for example, affecting the measurement of H→ γγ).
While CMS has only a single electromagnetic layer, the ATLAS calorimeter is longitudinally segmented
in four layers (including the presampler, which corrects the measured energy for early electromagnetic
showers in solenoid and cryostat), permitting one to measure the shower development and so distinguish
electromagnetic from hadronic showers. It also allows one to reconstruct the direction of the incoming

11The solenoid is designed to deliver a 4 T field. Longevity considerations have however led to the decision to decrease the
current from 19.5 kA to 18.2 kA, reducing the field to 3.8 T.

12The pseudorapidity is defined by

η ≡− ln
(

tan
θ
2

)
=

1
2

ln
( |p|+ pL

|p|− pL

)
, (2)

where θ is the polar angle between the particle momentum p and the beam axis (z), and pL is the longitudinal component of
p. In hadron collider physics, the pseudorapidity is preferred over the use of the polar angle because particle production is
constant as a function of the pseudorapidity.
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particle. The cell granularity for the ATLAS main sampling layer is ∆η×∆φ = 0.0252 rad, improved in η
by fine strips with ∆η = 0.003 (barrel number) in front of the main sampling layer to help identifying π0.
CMS has a crystal granularity of ∆η×∆φ = 0.0172 rad in the barrel, and 0.018×0.003 to 0.088×0.015
in the endcaps. Saturation of the energy reconstruction occurs for energy depositions beyond 3 TeV (AT-
LAS) and 1.7 TeV (CMS). Biases due to saturation are corrected but lead to a decrease in the energy
resolution.

The hadronic calorimeters use similar sampling techniques, based on iron (ATLAS) and brass
absorbers (CMS) and scintillating tiles read out via wavelength shifting optical fibres guiding the light to
photomultiplier tubes. The main difference in performance originates from the strong constraint imposed
by the maximum achievable size of the CMS solenoid, resulting in a barrel hadronic calorimeter with
insufficient absorption (radiation length of 7.2λ at η = 0 for all calorimeter layers including the crystals,
compared to 9.7λ for ATLAS) before the coil. A tail catcher had to be added around the CMS coil
to complete the hadronic shower reconstruction and provide better protection against punch-through to
the muon system, faking muons. The reduced sampling fraction of CMS versus ATLAS leads to an
approximately twice worse jet resolution of 100%/

√
E for CMS, and a worse constant term of up to

8% in the barrel. It similarly affects the missing transverse energy resolution. Energy flow algorithms,
attempting to replace charged hadrons in the shower by the corresponding measurement in the inner
tracker, improve the energy resolution for hadrons and jets, in particular at low energies.

Hermeticity of the detectors for an excellent missing transverse energy measurement, but also to
tag forward jets occurring, for example, in weak boson fusion processes, requires calorimeter coverage
up to the very forward direction. The forward calorimeters of ATLAS and CMS extend the energy
measurement to pseudorapidities of 5 (polar angle of 0.77 degrees). They are located in different parts
of the detector. The ATLAS forward calorimeter, made of copper and tungsten absorbers with gaps
filled with liquid argon, is fully integrated into the cryostat that houses the end-cap calorimeters, which
reduces the neutron fluence in the muon system and, with careful design, has minimal impact on the
neutron fluence in the inner tracker. The CMS forward calorimeter, made out of steel and quartz fibres
and operating with Cherenkov light, is situated 11 m from the interaction point, thereby minimising the
amount of radiation and charge density during operation.

Driven by the design of the magnets, the muon systems strongly differ between ATLAS and CMS.
While CMS measures muons within the instrumented flux return, requiring the extrapolation of the track
into the inner tracker, ATLAS has standalone muon tracking inside the large area spanned by the air-core
toroids. Both experiments use drift tubes and cathode strip chambers (forward direction) for the precision
muon measurements, and fast resistive plate chambers (thin gap chambers in the ATLAS endcaps) for fast
muon Level-1 trigger signals. The pseudorapidity coverage amounts to |η |< 2.7 (2.4) for ATLAS (CMS)
for muon measurements, lowering by 0.3 units for triggering. The combined momentum resolution for a
100 GeV (1 TeV) track at η = 0, reconstructed in the inner tracker and muon systems, is σ(pT )' 2.6%
(10.4%) (ATLAS) and σ(pT ) ' 1.2% (4.5%) (CMS). The resolution significantly deteriorates in CMS
for forward muons due to the reduced bending power of the solenoid (6 T.m at |η | = 2.5 compared to
16 T.m at η = 0).

Apart from these main detector systems, both ATLAS and CMS have dedicated luminosity detec-
tors in their forward regions.

In summary, we may recall that ATLAS has put emphasis on excellent jet and missing transverse
energy resolution, particle identification, and standalone muon measurement, while CMS has prioritised
excellent electron, photon and tracking (muon) resolution. Both detectors have good hermeticity (very
few ‘cracks’).

References [1, 2] present the essential performance parameters of the ATLAS and CMS experi-
ments, sub-divided into track reconstruction, muon, electron and photon identification and reconstruc-
tion, jet and hadronic tau reconstruction, b-flavour tagging and the trigger selection (see below). Many
of the results given are supported by existing test beam and cosmic ray measurements (also discussed in
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these lecture notes), in particular for the single-particle response of the detector elements to electrons,
photons, pions and muons at various benchmark energies. Others rely on the simulation of the detector
response and the underlying physics processes. They are affected by numerous uncertainties also due to
hard-to-quantify soft-QCD and machine background effects.

3.2 Trigger and data acquisition
In former times, when particle physics experiments used bubble and cloud chamber techniques, data
acquisition (DAQ) was made by means of stereo photographs. There was effectively no trigger. Instead,
each bubble expansion was photographed based on the constant (and known) accelerator cycle. The
high-level trigger was human, realised by scanning teams operating worldwide with varying trigger ef-
ficiencies (rumours claim that physicists had the worst scanning efficiency). The slow operation rate of
this setup allowed one to measure only the most common processes. Later, electronic signals were used
to trigger the camera to photograph an event (a single trigger level). The dead time occurred while the
film advanced after a trigger.

The trigger [16] is a function of the fast detector response to a collision event providing a binary
accept or reject signal. Its task is to look at (almost) all bunch crossings and select the most interesting
ones. Data acquisition (DAQ) collects all detector information and stores it for offline analysis. Require-
ments for a DAQ system are the provision of online services, such as a state machine (‘Run Control’),
governing the run sequences, and data quality monitoring. It must keep records of the detector configu-
ration and run conditions, avoid corruption or loss of data (and hence verify the data sanity), be robust
against imperfections in the detector and associated electronics and readout systems, and minimise dead
time.13 Because the trigger latency even for the fastest level is longer than the 25ns bunch crossing pe-
riod, the electronics signals need to be saved locally in so-called pipelines until the trigger signal arrives.

A problem for any trigger at the LHC is that one cannot (and does not want to) save all events.
‘Old’ (known) physics occurs more often than ‘new’ physics, i.e., the new physics is buried under huge
amounts of old physics. We have seen that the interesting physics occurs at rates of 10 Hz (for top antitop
production) and below at highest peak luminosity. The remit is thus to keep all of those events, while
rejecting most of the others. One exception to this is low-mass flavour physics, which — although being
‘old’ — has still important potential for discoveries. We hence must aim at fitting the best possible
physics cocktail into the available bandwidth. Efficient selection and background rejection requires one
to include the response of the entire detector in the trigger decision. This can only be achieved by splitting
the trigger decision into several levels with increasing complexity. The first level has short latency and
high efficiency and must only aim at the rejection of the ‘obviously’ uninteresting events (once rejected,
events are rejected forever!). Later levels, which can be slower thanks to the rejection in the previous
level, perform fine-grained selection and rejection.

The trigger systems of ATLAS and CMS are separated into a first-level ultra-fast hardware trig-
ger, based on information from the calorimeters and dedicated muon systems only. The detector data
are transferred to large buffer memories after a Level-1 accept. The data rates to DAQ and the next
level triggers are massive: with approximately 1 MB event size at 100 kHz event rate one has a rate of
100 GB/s (i.e., 800 Gbit/s). The subsequent high-level trigger (HLT) uses partial event data readout or
powerful network switches to feed reconstruction and software selection algorithms running on farms

13Dead time is the fraction of time where valid interactions could not be recorded for various reasons. Typical system-
imminent dead time is of the order of up to 10%. It originates from the readout and trigger system, from operational dead time
(e.g., the time to start and stop a run or to configure the detector systems), trigger or DAQ down-time (e.g., following computer
failure), or detector down-time (e.g., following a high-voltage trip). For a multi-level trigger, the total dead time is the sum
of the dead times of all levels. The trigger dead time for a given level is computed from the product of the trigger rate of the
previous level and the latency for this level. The readout dead time is given by the product of the final (highest-level) trigger rate
and the local readout time. Note that trigger dead-time logic is required to prevent triggering another event before the detector
has been fully read out. Given the investment in the accelerators and the detectors for a modern HEP experiment, it is clearly
important to keep dead time to a minimum.
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with several thousand central processing units. In ATLAS the HLT is separated into two independent
steps. A fast Level-2 trigger using only detector information from so-called ‘regions of interest’, which
are sections along azimuthal and pseudorapidity cuts around triggered Level-1 objects, and including
only the detector systems required by the Level-2 algorithm. The Level-2 decision must come within
a few milliseconds and reduce the outgoing Level-1 rate from 75 kHz to 2 kHz, which is the input rate
to the event builder requiring to read out the full detector. A subsequent Level-3 trigger (‘Event Filter’)
then further reduces the event rate to approximately 200 Hz, which is written to disk. These events are
promptly reconstructed at CERN and, in parallel, distributed to 10 worldwide computing centres. In
CMS, the large HLT input rate is tamed by factorising the event building into a number of slices each of
which sees only a fraction of the rate. This requires a large and expensive total network bandwidth, but
avoids the need for a very large single network switch.

An important requirement for the event building is a proper timing-in of the various detectors. In-
deed, within the 40 MHz bunch crossing rate, particles can only travel 7.5 m through the detectors, which
are significantly larger than that (ATLAS has a height of 2×11 m and a length of 2×23 m). In addition,
the collection of the detector signals, notably in the large muon drift tubes, can take up to 40 bunch cross-
ings (1 µs). To properly collect the signals belonging to the same bunch crossing (i.e., ‘event’) and to
keep the exposure time per event as small as possible, trigger-decision and detector response collection
delays must be aligned to a few nanoseconds. Timing-in is one of the first commissioning tasks for all
detector systems.

4 Detector commissioning — Overview
All detector systems, as well as the performance and physics groups developed detailed commissioning
strategies for initial running with colliding beams. Even before beams collide in the LHC, as more and
more systems are being installed, extensive stand-alone and combined studies with comic ray events
and detector calibrations are performed. These studies as well as dress rehearsals using simulated data
exercise the full data acquisition chains, including the online and offline data quality assessment tools,
and the streaming of the events into several physics and calibration streams based on the trigger decision.

The cosmic ray data provide important information to align the detectors relative to each other (but
not relative to the beam axes). They set an initial reference geometry for most of the barrel muon detector,
and will be used to correct the alignment based on precise survey data and optical sensors. Muons from
beam halo data taken during single-beam LHC commissioning runs will be used as an initial validation
of the end-cap muon detector alignment. For example, in ATLAS the magnetic field strengths of the
toroids, determining the muon energy scale, are known to better than 0.5% versus φ from survey data of
the measured coil positions. Later the precision can be improved to 0.1–0.2%, using a system of Hall
probes. The field of the solenoid immersing the inner detector has been mapped to a precision of a few
Gauss, which approaches the design goal.

Charge injection or pulsed calibrations of the electronic boards and pedestal runs provide initial
settings for channel thresholds, ramp and delay values, pedestals, etc. for the various systems, and are
used to map noisy and to some extent dead channels. Hadronic calorimeters also perform calibration
with laser-light and radioactive caesium sources. These tasks together with test beam measurements
contribute to achieving a sufficient quality of the first collision data.

As an example, the ATLAS operational status as of autumn 2009 is given in Table 1. The ex-
periment’s start-up and ultimate design goals in terms of the tracking and calorimeter performance are
summarised in Table 2.

With the start-up of the LHC,14 and after timing-in the detector systems with the colliding LHC
bunches and the trigger signal, minimum bias triggers from scintillator counters will provide Level-1

14All event numbers given in this overview section refer to 14 TeV LHC centre-of-mass energy. The impact from lower
centre-of-mass energies (10 TeV and 7 TeV) is briefly discussed in Section 11.
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Table 1: Number of channels and operational status as of autumn 2009 of the ATLAS subdetectors.

ATLAS subdetector Number of channels Operational fraction (%)

Pixel Tracker 80 million 97.9

Silicon Strip Tracker 6.3 million 99.3

Transition Radiation Tracker 350 000 98.2

Liquid-Argon Electromagnetic Calorimeter 170 000 98.8

Tile Hadronic (Extended) Barrel Calorimeter 9800 99.2

Hadronic Endcap Liquid-Argon Calorimeter 5600 99.9

Forward Liquid-Argon Calorimeter 3500 100

Muon Drift Tubes 350 000 99.7

Muon Cathode Strip Chambers 31 000 98.4

Barrel Muon Trigger 370 000 98.5

Endcap Muon Trigger 320 000 99.4

Level-1 Calorimeter trigger 7160 99.8

accepts for initial physics studies at a luminosity less than or equal to 1031 cm−2s−1. These events can be
used to provide first occupancy tests of the inner tracking systems, and to refine the dead channel maps.
Copious isolated tracks from minimum bias events will allow the experiments to refine the inner detector
alignment using the distributions of residuals between measured hits and fitted tracks, and the comparison
of E/p for pions of opposite charge. Alignment monitoring information will also be derived from K0

S
and Λ invariant mass and azimuthal decay vertex distributions. The K0

S invariant mass together with
the known, ideally uniform decay-angle distribution can be used for a data-driven determination of the
tracking efficiency. In ATLAS, high and low threshold transition radiation hits from isolated pion tracks
will be compared to the expectation from simulation. Minimum bias events will help both experiments
to monitor the uniformity of the calorimeter response, which can be done azimuthally and by comparing
positive and negative pseudo-rapidity regions. In this initial phase it will also be possible to some extent
to validate the calorimeter simulation by comparing shower shapes for isolated hadronic tracks and low
energetic jets. The statistics corresponding to a few days of low-luminosity data taking without toroid
fields will allow the collection of enough straight muon tracks to calibrate the ATLAS muon optical
alignment system to better than 100 µm. It will be improved to up to 30 µm at higher luminosity, which
is required to take full advantage of the spatial resolution of 40 µm per muon chamber, providing a 10%
measurement of 1 TeV muon tracks.

While the trigger system is being commissioned, simple inclusive Level-1 calorimeter and muon
triggers will be included first, followed by more complex Level-1 triggers, involving, for example, iso-
lation and missing transverse energy. At the same time, the HLT systems will begin to operate, initially
in pass-through mode, allowing the experiments to test the algorithms, and later using the full power of
the HLT, while continuing to run pre-scaled triggers in pass-through mode. Combinations of pre-scaled
multi-threshold triggers will be used to determine efficiency curves for the three trigger levels (so-called
‘bootstrapping method’). The data collected with the complete low-luminosity trigger menu will contain
copious quantities of low-energy leptons from heavy quark decays and also from direct J/ψ and ϒ pro-
duction. Approximately 5000 W → µν and 500 Z→ µµ decays should be reconstructed per 1 pb−1 of
integrated luminosity (the expected rates are somewhat lower for electrons). The low-luminosity trigger
menu will also provide abundant samples of high-pT jets, prompt photons mainly from γ-jet events, and
semileptonic τ decays.
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Table 2: Expected calibration and alignment accuracies at the LHC start-up and the ultimate design goals for the
ATLAS experiment. Examples for physics channels or measurements driving the requirements are given in the last
column.

Start-up of LHC Ultimate goal Physics goals

EM energy uniformity 1–2% 0.7% H→ γγ
Electron energy scale ∼2% 0.02% W mass

Hadronic energy uniformity 2–3% < 1% Missing ET

Jet energy scale < 10% 1% Top-quark mass

Inner detector alignment 50–100 µm <10 µm b tagging

Muon spectrometer alignment <200barrel µm 30 µm Z′→ µµ
Muon momentum scale ∼1% 0.02% W mass

All these events will be crucial for the initial validation of the detector performance. More specif-
ically, the inner detector material can be mapped with photon-to-e+e− conversions to order 1% with the
statistics available after a few months of data taking. This procedure can be validated by studying the
momentum dependence of the reconstructed invariant masses of low-mass resonances. Inclusive elec-
trons can be used to test bremsstrahlung recovery in the inner detector. The inner detector alignment is
expected to converge to the relative design accuracy of approximately 10 µm soon after the full detector
commissioning has started (the alignment with cosmic ray events will be insufficient in the endcaps),
allowing the constant term in the tracking resolution to be below 20% of the full resolution. Local in-
ner detector misalignment can be studied with the use of resonances with known masses and lifetimes
decaying to lepton pairs, and with high-pT muons in combined track fits with the muon spectrometer.

Preliminary electromagnetic inter-calibration can be obtained at low luminosity using the az-
imuthal and ±η symmetry of inclusive isolated electrons from various sources. It is, however, not clear
whether this procedure improves the intrinsic electromagnetic calorimeter inter-calibration determined
in test beams at the higher energy scales of interest for most of the physics analyses (it will be useful for
CMS where only 9 out of 36 supermodules of the electromagnetic calorimeter could be calibrated in the
H4 test beam, see Section 5). The ultimate high-energy electromagnetic inter-calibration will use Z→ ee
events, requiring about 100 pb−1 recorded integrated luminosity to significantly improve the expected
initial uniformity of 1–2% to a statistical precision of ∼0.7% (ATLAS) with high granularity, provided
the inner detector material is well enough understood. These events will also serve to calibrate the global
electromagnetic energy scale.

Hadronic track and jet inter-calibration will employ E/p measurements (assuming an aligned inner
tracker) and ET balancing in di-jet, γ-jet and also Z-jet events, versus φ . The latter two channels also
determine the global jet energy scale with an expected precision better than 5% after a few months of
data taking. Di-jet events will also be used to validate the forward ET scale and resolution. The expected
number of ∼500 fully reconstructed tt events for 100 pb−1 with one W decaying hadronically and the
other one leptonically (electron or muon) allows a first calibration of narrow jets with invariant mass fits
to W → qq′ decays. It will also be important to study the stability of the electromagnetic and hadronic
cluster reconstruction with respect to varying calorimeter noise (significant event pileup is expected to
occur only above peak luminosities of O(1033 cm−2s−1) for the nominal LHC bunch pattern scheme).

The performance of heavy-flavour jet tagging crucially relies on locally aligned silicon detectors.
Flavour tagging will be calibrated using tt events, but initially also using orthogonal information from
tagging algorithms based on track fits and soft-muon reconstruction in di-jet events.

One of the most difficult detector observable to measure accurately is missing transverse energy
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Fig. 5: Sketch for a commissioning and early physics roadmap at the LHC.

( 6ET ). Because it is sensitive to many new physics signatures, the tails of its distribution, dominated
by resolution and instrumental effects, must be precisely calibrated with data before they can be used
for discrimination and reconstruction purposes. The computation of 6ET requires the cleaning of the
event from beam halo muons, beam gas collisions, cavern background, and cosmic rays. Moreover,
the calorimeter cells must be calibrated (for both electromagnetic and hadronic showers), and deficient
calorimeter cells (including noise) must be mapped and corrected. Initial data-driven 6ET studies will use
minimum bias events, analysing the 6ET resolution as a function of the ET sum and comparing it with the
expectation from simulated data, the transverse W mass in W → e(µ)ν events, Z→ ee(µµ) events, and,
with rising statistics, mass-constrained tt and Z → ττ events decaying to charged leptons and hadrons
(approximately 7000 of the latter events with pT (µ) > 15 GeV are expected in 100 pb−1, allowing one
to calibrate the absolute 6ET scale to about 5%).

For muon tracks, the correlation of muon spectrometer and inner detector provides powerful re-
construction cross-checks for both systems. The muon reconstruction efficiency for stand-alone (muon
spectrometer or inner detector only) and combined tracks can be determined with Z → µµ events by
reconstructing one muon and probing the reconstruction of the other one (‘tag-and-probe method’). The
muon fake rate, expected to be negligible at low luminosity, will become significant above 1033 cm−2s−1,
due to the neutron and photon background in the cavern. The fake rate concentrates, however, at very
low pT , and remains small enough so that the impact on most physics analyses should be negligible. The
overall muon energy scale will be calibrated with Z→ µµ events, where a statistical precision of 0.8%
and reasonable geometrical granularity can be reached with 100 pb−1 integrated luminosity. With more
data available, local misalignment problems in towers of chamber triplets could also be resolved with
Z-mass constraints. A sketch for the commissioning and early physics roadmap at the LHC is displayed
in Fig. 5.

Initial physics measurements will primarily focus on Standard Model processes with high cross-
sections. Among these are the multiplicity and pseudo-rapidity distribution of minimum bias events
and cross sections of events with jets. Low-pT physics mainly dedicated to the study of Bs decays will
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Fig. 6: H8 beam line of the ATLAS combined test beam 2004. Protons from the SPS, accelerated to 450 GeV
energy, hit a target producing hadrons, electrons and muons with energies in the range of 1 to 350 GeV, which
are selected upstream by a mass spectrometer. The composition of the incoming monochromatic particle beam is
measured with Cherenkov counters (upper picture). The beam is focused and passes trigger scintillators before
entering a complete ATLAS barrel slice (lower picture) with realistic geometry composed of Pixel and silicon
strip detector (SCT) layers, immersed in a 1.4 T magnetic dipole field parallel to the beam, a transition radiation
tracker (TRT) module outside the magnetic field, liquid-argon electromagnetic and tile hadronic calorimeter layers,
interleaved with a scintillator to measure the energy lost in the liquid argon cryostat, and a series of muon drift
tube and resistive plate chambers before and after a beam dump block.

begin by measuring J/ψ to ϒ cross section ratios, which involves the validation of vertexing tools, and
cross sections and lifetimes of B, Bs and Λb mesons using decays to J/ψ . Statistically competitive
lifetime measurements for these mesons can be expected with ∼100 pb−1 integrated luminosity. The
cross section of tt production using semileptonic decays can be measured to a precision better than 20%
with 100 pb−1 integrated luminosity, without requiring b tagging. Moreover, a significant single-top
signal is expected to be seen in this data sample. Analyses aiming at searches for new phenomena will
initially concentrate on the understanding of the detector performance and Standard Model processes,
using calibration channels and studying phase space areas where new physics contamination is expected
to be small.

The subsequent sections describe in some detail several of the commissioning and early physics
studies mentioned above.

5 Commissioning with test beams
Both ATLAS and CMS have performed series of measurements with test beams of known energies and
particle types. Electrons, photons, muons, pions, protons with energies between 1 and 350 GeV and
varying magnetic field configurations were collected to test the tracking efficiency, alignment and parti-
cle identification, (inter-)calibrate the electromagnetic and hadronic calorimeters, test the muon trigger
efficiency, tune Monte Carlo simulation, etc.

Figure 6 shows a sketch of the ‘H8’ beam line used for the ATLAS 2004 combined test beam.
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Fig. 7: Digitised bipolar ionisation pulse shape of a 15 GeV cosmic-ray signal measured in the middle layer of the
ATLAS electromagnetic calorimeter. The signal is shaped and sampled with 40 MHz frequency, corresponding
to a sample period of 25 ns, and a total sampling window of 800 ns (during normal data-taking only 5 samples
(125 ns) are read out). The study of the pulses measured with 32-sample readout allows one to determine the drift
time in the liquid argon gaps related to the undershoot of the pulse, and the electrode position related to the rise at
the end of the pulse. The curve shows the expectation agreeing to better than 2% with the measurement.

A full barrel slice, from the innermost tracking detectors and magnetic field to the outermost muon
spectrometer, was exposed to the particle beams. The experimental setup was kept as close as technically
possible to the ATLAS geometry. The distance between subdetectors, the pointing geometry, and the
magnetic field orientation were preserved where permitted. The most important goals of this test beam
campaign were: (i) test the detector performance with final or close to final electronics equipment, data
acquisition and trigger infrastructure and reconstruction software, (ii) validate the description of the data
by Monte Carlo simulations down to energies of 1 GeV to prepare the simulation of the ATLAS data, and
(iii) perform combined studies in a setup very close to that of ATLAS (e.g., combined electromagnetic
and hadronic calorimetry, and combined tracking and calorimetry).

5.1 Energy reconstruction in the ATLAS liquid-argon electromagnetic calorimeter
The ionisation signal generated in the ATLAS electromagnetic calorimeter is collected from the readout
electrodes and brought via cables to the front-end electronics where it is amplified, shaped and sampled
at a 40 MHz frequency. The samples (usually five) are stored in an analog pipeline until the arrival of a
trigger accept decision. The samples belonging to the accepted event are then digitised and transmitted
by the calorimeter backend electronics to readout driver modules, where the signal amplitude is recon-
structed and converted to MeV. Figure 7 shows a fully digitised pulse shape with 32 samples from a
cosmic-ray event with an unusually large energy deposit. The full cell-energy reconstruction from the
digitised pulse samples is encoded in the following conversion formula

Ecell = FµA→MeV ·FDAC→µA ·
(

Mphys

Mcalib

)−1

·R
(

Nsamples

∑
i=1

ai (si− p)

)
, (3)

where the subscripts specify the conversion type. The sum over the digitised samples on the right-hand
side is computed from the measured ADC counts, corrected for an overall pedestal (p), obtained in regu-
lar calibration runs — together with noise and autocorrelation terms — from random triggers in physics
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Fig. 8: Fractional electromagnetic energy resolution versus the incident energy obtained from electron test beams.
Left: result for the ATLAS liquid-argon calorimeter obtained, behind 1.6X0 material thickness, from the H8 com-
bined test beam in 2004. Right: result for the CMS crystal calorimeter obtained without upstream material for 9
out of 36 tested supermodules at the H4 test beam in 2006. The energy was measured in an array of 3×3 crystals
with electrons impacting the central crystal.

events, and multiplied by the sample-specific ‘optimal filtering coefficients’ ai, obtained from so-called
‘delay’ runs where calibration signals are injected to measure the pulse shape. The sum is taken as
an argument to the ADC-to-DAC ramp function R, obtained from dedicated electronics calibration runs,
where known charges are injected and the corresponding ADC output is measured and fit to a linear func-
tion. Differences between the calibration and physics pulse shapes are corrected via the M ratio. The
DAC values are then converted to µA, which is related to the calibration injection resistance and com-
puted taking into account cable and other attenuation effects. Finally, the µA signal is converted to MeV
by applying the corresponding current-to-energy conversion factor, and by correcting the energy lost in
the absorber material (sampling fraction). Once the cell energies are reconstructed, cells are summed
to form a cluster over all three longitudinal compartments and the presampler of the electromagnetic
calorimeter.

This procedure provides the electromagnetic energy scale. Physics events such as Z → ee will
be used to achieve absolute energy calibration. For hadrons and jets, one needs to account for hadronic
shower corrections, that is, one must pass from the electromagnetic to the hadronic energy scale.

5.2 Electromagnetic energy resolution
The resolution of an electromagnetic calorimeter is driven by the amount of active material in which the
electromagnetic shower develops, and by the shower containment. Containment requires a calorimeter
thickness of many radiation lengths X/X0 > 20, where the radiation length X0 is a material characteristic
related to the energy loss of high-energy particles interacting electromagnetically with the material.15

Test beams with known particle content and energy allow the experiments to measure resolution, linearity
and uniformity of the calorimeter energy response. The resolution results obtained by ATLAS and CMS
for electron beams with different energies are shown in Fig. 8 (the measurements were obtained under
different experimental conditions, see figure caption). Calorimeter resolution is conveniently expressed
as a function of the incident electron/photon energy, E, by the expression

15The radiation length is both the mean distance over which a high-energy electron loses all but 1/e of its energy by
bremsstrahlung, and 7/9 of the mean free path for pair production by a high-energy photon.
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σ(E)
E

=
S√

E (GeV)
⊕C⊕ N

E (GeV)
, (4)

where the first term on the right-hand side determines the stochastic resolution resulting from statistical
fluctuations in the number of shower particles16 and in the shower containment, the second constant term
is due to non-uniformities in the calorimeter response introduced by inhomogeneities and non-linearities,
and the third noise term quantifies electronics noise and in-time physics pile-up. The ‘⊕’ indicates that
the different resolution terms are added in quadrature. Some numbers obtained for these terms from fits
to electron test beam data are quoted on the plots in Fig. 8. Taking into account the full detectors and
materials, one expects for ATLAS (CMS) the following benchmark resolution parameters: S = 10–12%
(3–5.5%), C = 0.2–0.35% (0.5%), N = 250 MeV (200–600 MeV), where the better (worse) numbers refer
to the barrel (endcaps).17 With the 9 out of 36 super-modules calibrated in the 2006 test beam, CMS also
found excellent energy-response uniformity of 0.27%.

5.3 Hadronic energy resolution

Fig. 9: Simulated hadron shower consisting of
electromagnetic and non-electromagnetic, invisi-
ble and escaped energy.

During the ATLAS H8 combined test beam campaign,
pion beams with 6 discrete energies ranging from 10 GeV
to 350 GeV were used to study the hadronic energy re-
construction in the calorimeters. Hadron showers origi-
nate from interactions of hadrons with nuclei. The den-
sity of hadron calorimeters is therefore appropriately ex-
pressed in terms of the nuclear interaction length λ ,
which quantifies the mean free path of hadrons in ma-
terial between strong collisions. For example, silicon
has λ = 45.5 cm, iron 16.8 cm, lead 17.1 cm, and water
83.6 cm, to be compared to X0 = 0.56 cm for lead and
1.76 cm for iron. Hence λ � X0 and one can separate
electromagnetic showers, which are short-ranged, from
far-ranged hadronic showers, which also clarifies why
calorimeters are called and arranged as they are: elec-
tromagnetic calorimeters fully absorb electromagnetic showers, but only parts of the showers initiated
by hadrons; the following calorimeter layers (usually sampling calorimeters) entirely absorb the hadronic
showers.

Hadronic showers (Fig. 9) consist of approximately 50% electromagnetic energy (e.g., π0→ γγ),
25% non-electromagnetic energy (such as dE/dx from π±, µ±, K±), another 25% invisible energy (nu-
clear fission and excitation, neutrons), and 2% escaped energy (e.g. neutrinos). Invisible and escaped

16The number of particles produced in the shower is proportional to the energy of the incident particle: Npart ∝ E. The error
in the energy measurement is due to statistical fluctuations in Npart, i.e., σ(E) ∝

√
Npart. One thus finds for the stochastic con-

tribution to the energy resolution σ(E)/E ∝ 1/
√

E. Because in sampling calorimeters the absorber material does not contribute
to the energy measurement, the electromagnetic energy resolution is worse than for crystal calorimeters, provided that the crys-
tals have sufficiently large X/X0 so that the full shower can be contained. This is the case for the PbWO4 scintillating crystals
used by CMS, which have very high density so that the total calorimeter has 28X0 (for comparison, the ATLAS calorimeter has
22X0). The sampling fractions in the ATLAS electromagnetic calorimeter are fsampl = 0.17 (0.20) for |η | ≤ 0.8 (|η | > 0.8).
The measured energy must thus be corrected for the dead material Etrue = f−1

samplEmeas, so that the stochastic resolution becomes

σ(E)/E ∝
√

dsampl/ fsampl/
√

E ≈ 3/
√

E, where dsampl is the thickness of the sampling layers (finer sampling provides better
resolution). Hence the approximately three times worse intrinsic electromagnetic energy resolution in ATLAS compared to
CMS.

17 With these parameters, a back-of-the-envelope calculation for H→ γγ gives for the di-photon mass resolution as a function
of the photon energy: σ(Mγγ )|Eγ ∝ MHσ(Eγ )/(

√
2Eγ ) ≈ 1.2GeV (0.7GeV), for ATLAS (CMS) and where MH = 120 GeV

has been assumed. To obtain a realistic estimate of the resolution one must also include the error on the opening angle (photon
directions), as well as γ → e+e− conversions (20–60% of all photons from H → γγ decays, strongly increasing for large |η |).
Both effects reduce the effective resolution difference between the experiments.
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Fig. 11: Fractional energy resolution for pions at 0.35 pseudorapidity (equivalent calorimeter depth 7.9λ ), versus
the incident energy from test beam data in the ATLAS hadronic calorimeter (full circles), and compared to Monte
Carlo simulation (open squares).

energy causes worse resolution for hadronic showers than for electromagnetic ones. When uncorrected
it also causes an underestimate in the measured energy with respect to the true hadron energy. Fig-
ure 10 shows the reconstructed energy in the ATLAS barrel calorimeter slice for 100 GeV pions from
test beams. The raw measured energy at the electromagnetic scale undershoots by 28% with the largest
contributions to the bias coming from invisible and escaped energy, and from dead material. While the
various corrections recover the overall energy scale, they cannot improve the resolution (unless event-
by-event corrections as a function of the longitudinal and transverse shower shapes are applied).

The final energy resolution obtained from pion test beam data for the ATLAS calorimeter is
shown in Fig. 11, and compared to the expectation from Monte Carlo simulation (Geant-4). One
finds benchmark values for single hadrons of 53%, 3%, and 0.5 GeV, for the stochastic, constant and
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10 ms of cosmic rays in ATLAS (MC) 

ATLAS Cavern 

Fig. 12: Schematic drawings of the ATLAS underground cavern with supply shafts (left — two lateral elevator
shafts are not drawn), and simulated cosmic rays through ATLAS within 10 ms exposure time (right).

noise terms, respectively (cf. Eq. 4). For comparison, for central jets Monte Carlo simulation pre-
dicts 60%, 3%, and 0.5 GeV for the resolution parameters, and a missing transverse energy resolution
of σ(Emiss

T )/∑ET ≈ 55%. These values are somewhat worse in CMS due to the reasons mentioned in
Section 3.

6 Commissioning with cosmic rays

Fig. 13: Reconstructed cosmic tracks (6.6
million) in the ATLAS resistive plate cham-
bers, extrapolated to the surface. The ellipses
indicate the supply and elevator shafts.

ATLAS and CMS have performed extensive campaigns of
cosmic ray data-taking, initially with the individual systems,
later including more and more detector systems with the
completion of the installation in the pits. The goals of these
studies are — along with exercising the detector operation,
and the full data taking, reconstruction and analysis chain
— tracking alignment (with and without magnetic field), de-
riving dead channel maps, measuring the muon trigger and
tracking efficiencies, analysing calorimeter pulse shapes, im-
proving the detector timing, tuning Monte Carlo simulation,
etc.

Cosmic rays stem from cosmic nuclei (90% protons,
i.e., hydrogen nuclei) that interact strongly with the Earth’s
atmosphere, creating hadrons — mainly pions and kaons
with relative intensity 1:0.054 [17], which decay to min-
imum ionising relativistic muons that reach sea level on
Earth,18 or which undergo nuclear interactions with nuclei
in air. The muon flux at the surface is approximately 130 Hz
per m2 for Eµ > 1 GeV, and the average muon energy is about 4 GeV. The ATLAS detector, being sep-
arated from the surface by 100 m of earth and stone, receives a muon flux of approximately 4 kHz in
the fiducial volume of the muon spectrometer, and 15 Hz in the TRT barrel (numbers from Monte Carlo
simulation). The supply and elevator shafts (see left-hand plot of Fig. 12) provide reduced shielding,
which translates into an increased occupancy of the detector elements underneath the shafts or close by

18Cosmic rays have been, and are still, sources of major discoveries in particle physics. For example, in 1932, Anderson (Cal
Tech, USA) discovered the antielectron (positron) in cosmic rays. Later in 1946, Rochester and Butler (Manchester, England)
observed two tracks ‘out of nothing’ in cosmic rays, which were pions from the decay of a neutral (‘strange’) kaon, thereby
initiating particle physics. Today, very high energy cosmic rays are extensively studied.
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Fig. 14: A cosmic ray muon measured by ATLAS. Seen are hits in the muon spectrometer and the inner tracking
systems, as well as energy deposits in the hadronic tile calorimeter. All magnets were switched off in this run.

(Fig. 13). The right-hand plot of Fig. 12 shows a simulated 10 ms snapshot of the ATLAS detector bom-
barded by cosmic rays. High-energy cosmic rays sometimes also produce so-called ‘air showers’ (and
extensive air showers), where an avalanche of secondary scattering particles is created. Such air showers
have been observed by the experiments, giving rise to events with large numbers of muons (order 10 to
100), jets, and large deposited energy (events with 6 jets, all exceeding 20 GeV transverse energy, have
been seen).

Figures 14–17 show event displays of cosmic rays in ATLAS and CMS, measured with the full
detectors. ATLAS accumulated 580 million combined cosmic ray events between September 13 and
October 29, 2008, and in June/July and October/November 2009. CMS recorded 370 million combined
events between October 13 and November 11, 2008 during the CRAFT exercise (many more cosmic ray
data have been recorded by CMS during other campaigns). All events have been promptly reconstructed
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Fig. 15: Top: a cosmic ray muon measured by CMS, strongly bent in the transverse plane by the 3.8 T solenoid
field. Bottom: three-dimensional view of a cosmic ray muon in ATLAS.
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No solenoid field With 2 T solenoid field 

Fig. 16: Transverse views of cosmic ray tracks measured in the ATLAS pixel (the three innermost hits depicted
by the dots) and silicon strip detectors (four double hits at about half radius in the event displays). The left (right)
drawing shows a straight track measured with the solenoid field off (on). The right plot shows also transition
radiation tracker hits.

Fig. 17: Cosmic ray shower tracks seen in the ATLAS transition radiation tracker.

at the CERN Tier-0 centre, reprocessed after software and conditions upgrades at the Tier-1 worldwide
computing centres, and distributed for analysis on the LHC Computing Grid.

6.1 Cosmic ray spectra in the inner tracker
Tracks bent in a magnetic field are characterised by five parameters. The parameters are defined with
respect to a reference point, the perigee, which is the point of closest approach to the beam axis (along z).
The impact parameters d0 and z0 are the signed distances to the z-axis and the z-coordinate of the perigee,
respectively. Accordingly, the angles φ0 and θ0 are defined in the transverse plane and with respect to the
z-axis at the perigee, respectively. The fifth parameter, q/p, is the charge of the cosmic muon divided by
its momentum, defining curvature and orientation of the track helix.

Figure 18 shows the angular and impact parameter distributions of cosmic muon tracks measured
in the ATLAS inner tracker. The asymmetries reflect the top-down nature of cosmic tracks, and the shaft
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Fig. 18: Track parameter distributions of cosmic muon tracks measured in the ATLAS inner tracker. Shown are
the polar and azimuthal angles (upper plots) and transverse and longitudinal impact parameters (lower plots). The
asymmetries reflect the top-down nature of cosmic tracks, and the shaft architecture of the ATLAS cavern.

architecture of the ATLAS cavern (Fig. 13). For the θ0 and z0 distributions, the tracks are required to
have hits in the silicon detectors, because these parameters are not measured by the transition radiation
tracker (barrel).

6.2 Inner tracker alignment
The high-precision tracking detectors of ATLAS and CMS, and the huge muons systems (especially in
ATLAS) challenge the accuracy with which the positions of the active detector elements must be known.
And although the detectors have been built and installed with the greatest care, it does not meet the
requirements imposed by the detector performance and by physics. Therefore the detectors have to be
empirically aligned. Alignment signifies measuring the real detector positions and orientations from
data, and correcting the reconstruction software accordingly. (It does not mean moving detector parts!).
Several methods of varying complexity to solve alignment problems exist, and it is convenient to separate
the alignment procedure into alignment levels, such as system, layer, and module, requiring increasing
statistics due to an increasing number of degrees of freedom.
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Fig. 19: Solenoid fieldmaps for ATLAS (left) and CMS (right). The colour scales are indicated on the vertical axes.
Because the CMS solenoid is much longer (axial length of 12.9 m compared to 5.3 m in ATLAS), the inner tracking
detectors, with total active lengths of 5.6 m (ATLAS) and 5.4 m (CMS), see a more homogeneous field in CMS
than in ATLAS, where the inhomogeneities in the endcaps can reach up to 50% (which are however accurately
mapped with magnetic field surveys and properly included in the reconstruction).

Alignment of the inner tracking systems
The inner tracking systems of ATLAS and CMS (cf. Section 3) provide excellent position resolution,
with (ATLAS-barrel numbers) 10 µm (rφ ), 115 µm (z) for the Pixel device (total of 1744 modules),
17 µm (rφ ), 580 µm (z) for the silicon strip detector (4088 modules), and 130 µm (rφ ) per straw for the
transition radiation tracker (2688 modules). A reasonable challenge is to align all parts of the detectors so
that the track degradation due to misalignment not exceed 20% of the intrinsic resolution. The sources of
information used for alignment are fourfold: (i) assembly knowledge: construction precision and survey
data, for the initial alignment precision, and for corrections and uncertainties; (ii) online monitoring and
alignment: lasers and optical cameras, before and during a run; (iii) offline track-based alignment: using
physics and track residual information; (iv) offline monitoring: using physics observables, tracks and
particle identification parameters.

Before coming to the alignment based on track residuals, let us briefly recall how a track momen-
tum is measured. Charged particles are deflected in the homogeneous19 axial field (i.e., the field is ori-
ented parallel to the z coordinate along the beam line) of the solenoid magnet. Since the Lorentz force is
perpendicular to the magnetic (B) field and to the particle’s flight vector, the particle trajectory projected
onto the plane perpendicular to the B field describes a circle with radius r [m] = pT [GeV]/(0.3 ·B [T]).
Thus, for transverse momenta between 10 GeV and 1000 GeV, one finds radii between 17 m (9 m) and
1700 m (895 m), for ATLAS (CMS), which are to be compared with the radius of ∼1 m of the ATLAS
and CMS inner tracking systems. Tracks with transverse momenta smaller than 0.3 GeV (ATLAS) or
0.6 GeV (CMS) become so-called ‘loopers’, which travel a full circle in the inner tracker and do not
reach the barrel electromagnetic calorimeter. The r and pT values of a track are derived from the mea-
surement of the track’s sagitta (s) by r ≈ L/(8s) (if s� L), where L is half the length of the transverse
distance vector between the two extreme measurement points of the arc in the tracking system, and the
sagitta determines the maximum distance between the intersection of the transverse distance vector with
the radius vector, and the arc (the sagitta measures the deviation of the arc from a straight line, L, cf.
Fig. 26). The smaller the sagitta s the larger the radius and therefore the momentum of the track and,
for constant precision on s, the larger the relative error on the sagitta determination and hence on pT :
pT ∝ s−1 and σ(pT )/pT ∝ pT .

19Not quite, as seen below.
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Fig. 21: Hit residuals (upper plots) for the ATLAS pixel and silicon strip detectors before alignment (open squares),
after alignment with cosmic ray tracks (full circles), and for ideal conditions from Monte Carlo simulation (open
circles). The lower plots give the impact parameter resolution for the same three data samples. The resolution is
obtained with the track-splitting technique (see text).
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Fig. 20: Sketch of a track model
through an ATLAS silicon strip tracker
module, and a measured close-by hit
defining the hit residual.

Track fitting in the LHC environment is very challenging.
It must deal with ambiguities, hit overlaps, multiple scattering,
bremsstrahlung, multiple vertices, etc. Track fitters take Gaussian
noise (e.g., Kalman filter) and non-Gaussian noise (e.g., Gaussian
sum filter) into account. Owing to the large number of tracks per
event and because tracks are used for selection in the high-level
trigger, the fits must be very fast.

Figure 19 shows the superconducting solenoid field maps
for ATLAS and CMS. Inhomogeneities in the magnetic field
strengths occur towards the end of the solenoids, which are
strongly influenced by the magnetic structure of the nearby de-
tector elements. The ∼2 T flux return yoke in CMS is used for
muon momentum measurement. (The ATLAS return yoke, inte-
grated into the tile hadronic calorimeter and its support structure,
also produces a ∼2 T.m azimuthal track deviation, which is, how-
ever, not measured precisely in the muon spectrometer and hence
not used for momentum measurement.)

The alignment algorithm minimises the track residuals by fitting detector positions (layers and
modules) to measured tracks (Fig. 20). The fit minimises a global estimator, which could be written
by χ2 = ∑i∈hits(m(~α)− hi)

2/σ2
i , where the function m corresponds to the model prediction (track)

at module of hit i, ~α is the vector of track parameters, and hi and σi are the measured hits and their
errors. The full global χ2 function must, however, also account for correlations so that it becomes: χ2 =

∑tracks(rTV−1r), where the residuals r are functions of the track parameters, the alignment parameters
and the hit measurements along a track. The χ2 function is simultaneously minimised with respect to the
track and the alignment parameters.

The smallest movable object in the alignment procedure is a module, which has 6 degrees of
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Fig. 22: Different types of misalignment according to transverse distortions in R, φ , and deformations along the
beam axis (z). The pink types leave the χ2 estimator approximately invariant (‘weak modes’).

freedom: 3 translation coordinates and 3 rotation angles. Taking into account the total number of modules
of ca. 8500 (ATLAS number), one obtains 51 000 degrees of freedom that need to be determined by the
fit. Depending on the alignment level (whole barrel/endcap, layers/disks, modules) different techniques
can be used, where for either of these the correlations between fit parameters are important ingredients
to help the fit converge rapidly. Neglecting correlations may not lead to a wrong fit result, after full
convergence, but it is less efficient.

Figure 21 shows residual distributions for the ATLAS pixel and silicon strip detectors, as well
as impact parameter and Q/pT distributions, before and after alignment with cosmic ray tracks. The
widths of these distributions are convolutions of the intrinsic hit and tracking resolution (seen under ideal
conditions), and misalignment effects. The impact parameter and transverse momentum resolutions are
obtained by splitting a cosmic ray muon track traversing the full detector into two tracks that are re-fit
independently and compared.20 A total of 4.9 (2.7) million tracks with solenoid field on (off) have been
used by ATLAS (similar numbers of tracks are used by CMS for alignment), of which 1.2 million (230
thousand) have silicon strip (pixel) track components so that they can be used to align these detectors.
Alignment results close to ideal have been obtained.

Weak modes
Unfortunately, the minimisation of hit residuals does not guarantee that indeed the true positions of the
detector elements have been determined. This is because the residuals, and hence the χ2 estimator, are
insensitive against some types of misalignment, which may nevertheless impact the physics performance.
Examples for such ‘weak modes’ are elliptical skews, i.e., distortions of the type δφ = λ + β/R or
δ z ≈ R. Figure 22 summarises the various types of misalignment. The pink-coloured types represent
weak modes in the global residual-based χ2 estimator. Weak modes contribute to the lowest part of
the eigenspectrum. Their deformations bias physics measurements and lead to systematic effects. The
understanding of these effects is thus of utmost importance. Weak modes can be constrained by adding

20The resolution is the RMS of the difference divided by
√

2.
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Fig. 23: Transverse impact parameter resolution (left) and relative momentum resolution (right) versus the trans-
verse momentum for the ATLAS inner tracker. The full (open) triangles give the results for all inner tracker
detectors combined (only silicon pixel and strip detectors), and the asterisk is the expectation from Monte Carlo
simulation with ideal alignment conditions.

more information to the fit, such as: (i) cosmic ray and beam halo tracks (off-beam axis) in addition to
beam collision data; (ii) vertex and beam-spot constraints; (iii) resonance masses (Z, J/ψ , ϒ , KS, . . . );
(iv) E/p measurements for electrons; and (v) survey data and mechanical constraints.

6.3 Inner tracker resolution
The tracking resolution for cosmic ray muons in the inner tracker is studied by comparing track param-
eters at the perigees using the track-splitting technique. Because both tracks emerging from the splitting
have errors, the quoted resolution is the RMS of the residual distribution of a track parameter divided
by
√

2. Well reconstructed tracks are selected for these studies. ATLAS requires a minimum number
of hits in Pixel, silicon strip detector and transition radiation tracker of 2, 6 and 25, respectively, and
|d0| < 40 mm and pT > 1 GeV, and good timing properties. The left-hand plot of Fig. 23 shows the
transverse impact parameter resolution versus the transverse momentum for the ATLAS inner tracker. In
the low pT region, the resolution is dominated by multiple scattering. At higher momenta, the resolution
becomes independent of the momentum as is expected for almost straight tracks. Including the transition
radiation tracker information improves the resolution due to the extended lever arm. The difference be-
tween data and the Monte Carlo prediction is a measure of the remaining misalignment. The right-hand
plot of shows the relative momentum resolution versus pT . At intermediate momentum, reduced multi-
ple scattering counterbalances the pT -dependent rise of the error due to a decreasing relative accuracy of
the sagitta measurement. This latter effect dominates at higher momentum. Again, the difference with
respect to the Monte Carlo expectation stems from residual misalignment.

6.4 Muon spectrometer alignment
The huge active volumes of the ATLAS and CMS muon spectrometers require a detailed understanding
of the inhomogeneous magnetic fields (especially for ATLAS and the CMS endcaps) and the chamber
positions to achieve design performance. To derive quantitative requirements, let us briefly recall how
the muon precision measurements are obtained. Both experiments use drift tubes, which are standalone
coaxial cylindrical drift chambers functioning similarly to proportional tubes, in the barrel (ATLAS also
in the outer endcaps for |η |< 2.0), and cathode strip chambers in the forward direction.

The drift tubes in ATLAS (denoted ‘monitored drift tubes’ — MDT) are made of thin aluminium
tubes with 3 cm diameter (4 cm in CMS, 4 mm for the ATLAS transition radiation tracker), filled with a
93% argon and 7% CO2 gas mixture at 3 bar pressure (Fig. 24). A 50 µm gold-plated tungsten wire in
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Fig. 25: Drawing of ATLAS barrel monitored drift tube stations. There are three of these spanning a full radial
distance of ∼5 m. Shown by the curved lines are simulated muon tracks with 4 GeV (red) and 20 GeV (blue), bent
in the z direction by the toroidal magnetic fields. The curvature is hardly visible for the latter track (see straight
dashed line for comparison). The MDT system is designed to measure 1 TeV tracks with 10% relative accuracy,
requiring a position alignment of better than 40 µm.

the centre of each tube serves as anode with an applied potential of 3080 V. A charged track traversing
the tube ionises the gas and the ionised electrons drift in the electrical field to the wire, while the ions
drift to the cathode (cylinder). From the measured hit time of the induced electrical pulse, and the known
drift velocity (‘space-drift time (r-t) relation’), it is possible to determine a drift circle around the anode
wire, tangential to which the track has passed.

Charged particle 

Drift     
  circle 

Anode 
wire (HV+) 

Cathode (HV–) 

Noble 
Gas 

Ionised 
electrons 
drifting to wire 

Ions  
drift to 
cathode 

rdrift 

Fig. 24: Principle of a drift tube used for pre-
cision measurement in the ATLAS and CMS
muon systems, and also in the ATLAS transi-
tion radiation tracker.

The measurement of several adjacent layers of tubes
provides the redundant information required for a full track
fit. The measured drift time in a tube reaches up to 800 ns
corresponding to a drift velocity of approximately 18 km/s.
The average position resolution is 80 µm per tube (250 µm
in CMS), but varies strongly along the drift radius: tracks
very far from the anode wire are measured with better pre-
cision than close tracks, due to the smaller dispersion in the
drift time of the incoming electrons.

The ATLAS drift tubes are arranged in large-sized
MDT chambers with six tube layers oriented along φ to al-
low for a precise measurement of the z coordinate, the direc-
tion of which the charged particles are bent in the toroidal
magnetic fields. Three almost equally spaced stations of
MDT chambers (inner, middle and outer) are installed in
the barrel with about 2.5 m radial distance from each other
(Fig. 25). A 1 TeV track has a sagitta of about s= 500 µm at η = 0 (cf. sketch in Fig. 26). A measurement
of that sagitta with 10% accuracy requires the error induced by misalignment to be significantly smaller
than 50 µm. With σ(s)≈

√
3/2 ·σ(z), one finds σmisallign(z)� 40 µm, which represents a tremendous

alignment challenge given the size of the system.

Figure 27 shows an example of a misaligned MDT chamber in ATLAS (from simulation). In the
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Fig. 27: Example of a misaligned drift tube chamber in the ATLAS barrel muon spectrometer (simulation). In the
left-hand picture, without alignment corrections, it is not possible to draw a straight line track through the drift
circles. After alignment (right-hand picture) the chambers have been slightly tilted so that a good track fit can be
obtained.

left drawing, where no alignment corrections have been applied, the track is not tangential to all drift
circles. The χ2 of the track fit is bad. In the right drawing the chambers have been aligned leading to a
good track fit.

Optical muon chamber alignment in ATLAS
ATLAS implements a twofold alignment strategy for the muon system: fits to measured tracks from
cosmic rays and collision events, in particular using straight tracks without the toroid fields, provide
the absolute MDT chamber positions.21 Relative chamber movements due to temperature-dependent
‘breathing’ and when switching on the toroid magnets, are monitored by means of an optical alignment
system, designed to detect slow chamber displacements, occurring at a timescale of hours or more.
The system is based on optical and temperature sensors, and on alignment bars, which are up to 9.6 m
long instrumented aluminium tubes used as precision reference rulers. The information from the optical
system together with the track-based alignment is used in the offline track reconstruction to correct for
the MDT chamber misalignment. Similar to ATLAS, CMS is instrumented with a precise and complex
opto-mechanical alignment system that provides a common reference frame between tracker and muon
detection systems by means of a net of laser beams. We discuss in the following the ATLAS system.

sagitta 
~500 µm	  at	  1	  TeV 

2L ~ 5m 

z 

r 

MDT outer layer 

middle layer 

inner layer 

muon track 

Fig. 26: Sketch for the muon sagitta measurement
in ATLAS. For a 1 TeV track the sagitta measures
about 500 µm.

To first order, only the relative alignment of
triplets of chambers traversed by the same muon
track is important for a precise sagitta measurement.
The barrel optical alignment system thus uses 3-point
straightness monitors, which are installed on the in-
ner, middle and outer chambers to form projective lines
pointing to the interaction region.22 The straightness
monitor creates a highly redundant image of a coded
mask (for example a chess-like pattern) through a lens
onto a charged-coupled device (CCD) acting as screen.
The mask is lit by infrared LEDs passed through a dif-
fuser to minimise effects of imperfections in the light
source. The relative position in transverse direction to
the projective lines is measured along the line mask, the

21Full alignment not only requires a proper positioning of the chambers and tubes in the chambers, but one must also correct
for the wire sag in the drift tubes, which has been measured from survey data for a fraction of the tubes, and must be derived from
track fits for the remaining ones. The wire-sag induced error in the position measurement amounts to 20–30 µm, depending on
the size of the MDT chamber.

22In the endcaps, projective lines cannot be installed because the cryostats of the endcap toroid magnets block the way to the
interaction region. The optical alignment system thus relies on high-precision reference rulers and alignment bars forming an
alignment grid.
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Fig. 28: Track ‘sagitta’ for straight cosmic ray muon tracks (toroid fields off) in the ATLAS endcaps before
(dark shaded) and after (light shaded/yellow) applying the optical alignment. The sagitta is calculated from the
distance in the precision coordinate of the middle chamber segment from the line joining the inner and outer endcap
segments. After alignment, the resolution (width) is dominated by multiple scattering effects.

optical centre of the lens, and the CCD camera. It is also possible to measure the (relative) rotation of the
mask or the sensor, and the relative rotation around any axis of the mask with respect to the CCD camera.
Finally, by computing the actual image size and comparing it with the known mask size (magnification),
the position of the lens along the longitudinal axis can be obtained. A total of 6000 (7000) optical lines
have been installed in the ATLAS barrel (endcap). Not all of these are projective. In the barrel, praxial
lines align adjacent chambers in each layer. In the endcaps there are bars, polar and proximity lines.

The absolute resolution of the optical alignment system is of the order of 300–500 µm, which is
insufficient for precision measurements. Hence the necessity to rely on track measurements for absolute
chamber positions. The relative optical alignment accuracy has been evaluated with simulated muon
shifts of the H8 test beam arrangement and found to correct misalignment within 14 µm error (RMS)
on the sagitta, which is well within the specified requirement [18]. Figure 28 shows the distribution of
sagitta values for straight cosmic muon tracks (the toroid magnets were turned off so the expected sagitta
is zero) in the ATLAS endcaps before and after applying the optical alignment. The sagitta is computed
from the distance in the precision coordinate of the middle chamber segment from the line joining the
inner and outer chamber segments. The resolution found is compatible with the expectation. The tails in
the sagitta distribution after alignment originate from multiple scattering.

Digression. Multiple scattering denotes the deflection by (or convolution of) successive small-angle scatters of a charged par-
ticle traversing a medium. The multiple scattering cross section, dominated by Coulomb scattering from nuclei, is proportional
to
√

pathlength/X0 · p−1, i.e., it is enhanced for soft particles and dense matter. The angular distribution is approximately Gaus-
sian at small angles (owing to the central limit theorem), but also large-angle Rutherford scattering occurs with a differential
cross section ∝ sin4(θ/2). Multiple scattering is analogous to diffusion. Figure 29 shows the effect of light diffusion on a wet
windscreen. The more matter in terms of radiation lengths a particle traverses in the tracking volume, the more the detector
‘sees’ the particle as we see other cars at night in rainy weather with a broken wiper. Multiple scattering complicates the track
fitting and limits the resolution of the momentum measurement.

Figure 30 (left) gives the contributions to the standalone muon momentum resolution versus the
incident momentum of the ATLAS barrel muon spectrometer. Multiple scattering (black line) determines
the resolution for momenta below∼200 GeV. At very low momentum (below 20 GeV) the fluctuations in
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Fig. 29: Multiple scattering (diffusion) of light passing through a wetter and wetter windscreen (left to right).

the energy loss of the muon traversing the calorimeters becomes the dominant effect (cyan coloured line
— the blue line indicates the resolution with respect to the entrance at the muon spectrometer). However,
below 100 GeV the momentum measurement is in any case dominated by the inner tracking system. For
high-momentum muons the contribution from the intrinsic drift tube resolution and r-t calibration is of
similar magnitude as the expected systematic error in the mechanical alignment, hence the challenge
for the alignment system. The right-hand plot in Fig. 30 shows the fractional standalone momentum
resolution measured by comparing top and bottom muon spectrometer tracks in cosmic ray data (track
splitting method). The measured resolution is compatible with the expected one from Monte Carlo
simulation at transverse momenta below 100 GeV, and is degraded at higher momenta. The degradation
is caused by imperfect alignment of the muon chambers and by limited timing accuracy because cosmic
muons are not synchronous with the artificial LHC clock used in drift time measurements (no fixed time
reference).

6.5 Muon charge asymmetry in cosmic rays
The charge ratio of positive to negative muons in cosmic rays, with momenta in the range 10–300 GeV,
has been measured to be 1.27 at sea level [19], and is expected to increase somewhat with the muon
momentum due to a growing influence from kaon decays (the charge ratio of pion decays is expected to
be approximately 1.25, while it is 2 for kaons [20]).

In 2006, during the ‘Magnet Test and Cosmic Challenge (MTCC)’, CMS performed a measure-
ment of the muon charge asymmetry on the surface, using a 30◦ slice of the detector including the muon
drift tubes in presence of a 4 T solenoid field [21]. Owing to the high muon rate at the surface, 337 000
high quality tracks with hits in at least 3 (of 4) barrel stations and transverse momentum larger than 3 GeV
could be selected. The most important systematic effect on the charge measurement stems from the
charge-dependent alignment uncertainty, in particular for high muon momenta. The resolution-induced
charge misidentification probability is estimated from Monte Carlo simulation and also contributes sig-
nificantly to the systematic error above 100 GeV (no inner tracking used). The total systematic error
varies between 2% below 10 GeV, ∼8% at 100 GeV, and up to and beyond 20% above 100 GeV. It ex-
ceeds the statistical errors at all muon momenta. To compare the raw charge ratio measurement with
other measurements, the result is expressed in terms of the muon momentum before entering CMS using
Monte Carlo simulation. The resulting momentum correction is about +7 GeV and almost independent
of the muon momentum. Figure 31 (right plot) shows the charge-ratio measurements versus the cor-
rected muon momentum, together with results from other sources (see references in Ref. [21]). Within
their uncertainties, the CMS results can be regarded as independent of the muon momentum, giving the
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Fig. 30: Left: expected contributions to the standalone muon momentum resolution of the ATLAS barrel muon
spectrometer (Monte Carlo simulation). See text for a discussion of the various terms. Right: fractional standalone
momentum resolution measured by comparing split top and bottom muon spectrometer tracks in cosmic ray data.
The degradation of the measured resolution with respect to the expected one is mainly due to imperfect alignment,
but also due to r-t relation inaccuracies due to the missing LHC clock reference.

average Rµ+/µ− = 1.282± 0.004± 0.007, where the first error is statistical and the second systematic.
The left plot in Fig. 31 gives a compilation of previous muon charge-ratio data between 0.1 and 7 TeV
taken from a MINOS publication [20]. Superimposed is the model expectation.

6.6 Combining muon and inner tracker reconstruction
The comparison of cosmic muon track measurements in the muon system and in the inner tracker allows
one to study the momentum scale and the energy loss in the calorimeters, and to tune the Monte Carlo
simulation. Figure 32 shows a comparison between standalone track fits to cosmic ray muons in the
ATLAS spectrometer and the inner tracker. Shown are the polar and azimuthal angle correlation, the
azimuthal angle and impact parameter differences, and the momentum scale difference. A satisfactory
agreement is observed between the detectors, and between data (dots) and the Monte Carlo prediction
(histograms), showing that the relative alignment and the momentum scales are understood within the
available statistics (a single run was used for these plots).

The difference in the momentum scale of 3 GeV on average corresponds to the energy loss of the
muons between spectrometer and inner tracker, mainly when traversing the calorimeters.23 It is well
described by the simulation.

6.7 Cosmic ray muons in the inner tracker
One of the first measurements performed with cosmic ray muons is the verification of the hit reconstruc-
tion efficiency in the silicon trackers, which is expected to be very high (> 99%). The method is as

23One can attempt a back-of-the envelope calculation of the expected energy loss to understand the magnitude of the effect.
The barrel ATLAS hadronic calorimeter uses iron absorber and plastic scintillator tiles. Inserting the corresponding densities
and dE/dx expectations for cosmic ray muons one finds: 〈∆E(Had cal)〉' 200cm ·(0.4 ·dE/dx|Fe ·11.8g/cm3+0.6 ·dE/dx|C ·
2g/cm3)≈ 2.1 GeV. Similarly one finds for the electromagnetic liquid-argon accordion calorimeter: 〈∆E(EM cal)〉 ' 100cm ·
(0.4 ·dE/dx|Pb ·16.9g/cm3)≈ 1.0 GeV, and for the contribution from the thin solenoid magnet: 〈∆E(solenoid)〉 ' 5cm · (0.4 ·
dE/dx|Cu ·8.9g/cm3)≈ 0.1 GeV. The sum of all contributions gives roughly 3.2 GeV expected energy loss.
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follows.

1. Selection of good quality tracks by requiring a large number of silicon hits, satisfying goodness-
of-fit and a small incident angle.

2. To measure the efficiency of the i-th layer, the hits from this layer (if there are any) are excluded,
and the track is refitted without the i-th layer.

3. The hit efficiency is computed by searching for hits in the i-th layer within a narrow road around
the refitted track.

The hit reconstruction efficiencies obtained with this method for the ATLAS barrel silicon strip
tracker are shown in Fig. 33. Here the tracks were required to have at least 10 hits in the silicon tracker,
30 hits in the transition radiation tracker, and an average χ2 per degree of freedom smaller than 2.
Furthermore their intersection with the modules had to be within 40 degrees of normal incidence, and
there had to be a hit of some kind on the track before and after the module being studied. Finally a guard
region around the edge of the active silicon was excluded. The silicon efficiency was then found to be
99.75% on average. Very similar results have been found for the ATLAS pixel detector using the same
measurement technique, and also for the CMS silicon pixel and strip detectors.

The hit reconstruction efficiency per straw for the ATLAS transition radiation tracker depends on
the distance of the track to the anode wire (maximum distance 2 mm). There is a plateau region below
1 mm where the efficiency reaches 97.2%, decreasing to ∼90% (80%) at 1.5 mm (1.8 mm) and steeply
dropping beyond that distance.

6.8 Measurement of the Lorentz angle
The solenoid field applies a Lorentz force on moving charges that deflects the track-induced ionisation
electrons and holes, travelling through the depleted substrate of the silicon junction along the high-
voltage potential (Hall effect). The deflection angle is denoted Lorentz angle. The value of the Lorentz
angle depends on the mobility of the charge carriers as well as the external magnetic field. For silicon
immersed in a magnetic field B the Lorentz angle αL is given by tanαL = µHB = γµdB, where µH is the
Hall mobility, γ represents the Hall factor which is of order unity, and µd is the drift mobility, which is a
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Fig. 32: Comparison between standalone track fits to cosmic ray muons in the ATLAS muon spectrometer and
the inner tracker. Shown are the polar and azimuthal angle correlation (upper plots), azimuthal angle and impact
parameter differences (middle and lower left plot), and momentum scale difference (lower right plot, sensitive to
the energy loss of the muons when traversing the calorimeters). The dots are data and the histograms correspond
to the Monte Carlo prediction.
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Fig. 33: Hit efficiencies for the ATLAS barrel silicon strip tracker as measured with cosmic muon tracks (see text
for details of track requirements and procedure).

function of the ratio of drift velocity to the electric field induced by the bias voltage. The drift velocity
for both electrons and holes saturates at high electric field. This leads to a drop in the mobility thus
decreasing the Lorentz angle.24

Bz ⊗ 

Charged particle 

αL 
Sensor angle 
w.r.t. track 

Lorentz force 

– 

 + 

Fig. 34: Sketch illustrating the deflection of moving ioni-
sation charges in the solenoid field, leading to a bias in the
position measurement. Tilting the modules by the amount
of the Lorentz angle αL would correct for the bias.

Figure 34 sketches the Lorentz deflection
effect. Owing to the opposite charge of electrons
and holes, both carriers are deflected into the same
transverse direction along the Lorentz force. The
deflection generates a bias in the position mea-
surement (cluster barycentre) of the track incident
in the silicon strip or pixel. The bias could be re-
duced by tilting the modules in the direction of the
Lorentz angle, and indeed the modules in the AT-
LAS and CMS silicon detectors are tilted (shin-
gled). The values for the tilts chosen are, however,
due to technical reasons to allow overlaps between
adjacent modules.25 Instead of a mechanical solu-
tion, the position bias due to the Lorentz deflec-
tion is corrected by software. The correction must
be recalibrated at regular intervals because the size of the depletion region in the semiconductor reduces
with rising irradiation and constant bias voltage, thus reducing the position bias.

The Lorentz angle is determined empirically by minimising the measured cluster width of hits on
tracks. Figure 35 shows the cluster width versus the cosmic muon track incident angle with respect to
the module normal for the ATLAS barrel silicon strip tracker. Measurements with and without magnetic
field are shown. The value of the Lorentz angle, extracted at the minimum cluster size, is found to be
αL = (3.93±0.03±0.10)◦, where the first error is statistical and the second systematic (for comparison,
the Lorentz angle for the ATLAS pixel device is 12.3◦).

24The electron and hole mobility and hence the Lorentz angle also depend on the temperature: increasing temperature reduces
the mobility and thus the Lorentz angle.

25In ATLAS the chosen tilts with respect to the pointing axis are 11 degrees (−20 degrees) for the silicon strip tracker (pixel
tracker), whereas the Lorentz angle for non-irradiated modules is 4 degrees (13 degrees).
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Fig. 35: Measurement of the mean cluster size versus the incidence angle with respect to the module normal in the
ATLAS barrel silicon strip tracker, using cosmic ray muon tracks. Measurements with and without magnetic field
are shown (the Lorentz angle vanishes without external field). The value of the Lorentz angle is extracted from the
position of the minimum cluster size.

6.9 Particle identification with transition radiation

Foil  
(polarised) 

Electron  
with boost γ 

Air (unpolarised) 

+ 
+ 

+ 

Electrical dipole 

Photons 
E ~ 8 keV 

Fig. 36: Transition radiation is produced when
charged ultrarelativistic particles traverse the
boundary of two different dielectric media (e.g.,
polymer fibres/foil and air). The radiation is intense
enough to be measured for γ > 1000 and more than
100 boundaries.

Hits from ultrarelativistic particles, generating transi-
tion radiation photons in the keV range that contribute
to the gas ionisation in the ATLAS transition radia-
tion tracker (TRT), are identified via dedicated high-
threshold readout. It turns on at a gamma factor above
'1000 (with p = βγm ' γm, the threshold momenta
for γ = 1000 are 0.5 GeV, 105 GeV and 139 GeV for
electrons, muons and pions, respectively), and thus es-
sentially only for electrons in the typical energy range,
so that it can be used for electron identification.

The principle of the creation of transition ra-
diation via an electric dipole is sketched in Fig. 36.
Figure 37 shows the high-threshold hit probability ob-
tained for the ATLAS barrel TRT from 2004 combined
test beam data (cf. Section 5) for different particle
species (left plot), and for cosmic ray muons (right
plot). The turn-on curves are found to be in good agree-
ment.

6.10 Calorimeter performance with cosmic ray
muons
Cosmic ray muons have also been exploited by the calorimeter groups of ATLAS and CMS to study
pulse shapes, and occupancy distributions, detect bad channels, understand the muon energy loss in the
calorimeters and tails in energy distributions, and for energy inter-calibration purposes.

The total energy sum of all cells along a muon track in the ATLAS hadronic calorimeter is shown
in the left-hand plot of Fig. 38. The peak of the minimum-ionising particles (i.e. a particle whose mean
energy loss rate through matter is close to the minimum), is well distinguished from the correspond-
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Fig. 37: Left: average probability of a high-threshold hit in the ATLAS barrel transition radiation tracker (TRT) as
a function of the Lorentz γ factor for electrons (open squares), muons (full triangles) and pions (open circles) in the
energy range 2–350 GeV, as measured in the 2004 combined test beam. Right: transition radiation turn-on versus
γ in the ATLAS barrel TRT for cosmic muon tracks. The data points are shown for both muon charges (positive:
red dots, negative: blue dots) and are compared with test beam results (black line). The blue line gives a fit to the
results obtained with the cosmic data.

ing noise distribution obtained from randomly triggered events. The energy of the cosmic ray muons
deposited in the active parts of the hadronic calorimeters of ATLAS and CMS exceeds the one in the
electromagnetic calorimeters by approximately a factor of 10. The ionisation energy loss of the muons
when traversing the electromagnetic calorimeters is measured by comparing the momenta between the
muon system and the inner tracker (cf. Fig. 32). It can be correlated on an event-by-event basis to
the measured calorimeter energy deposits. This has been done by CMS in the right-hand plot of Fig. 38,
where the average electromagnetic calorimeter deposits are drawn versus the muon momentum. Overlaid
is the expected energy loss, which is found to be in good agreement with the measurement. The results
indicate the correctness of the tracker momentum scale and of the calorimeter energy scale calibrated
with electrons at test beams.

The energy deposition can also be directly compared to Monte Carlo simulation, as done by AT-
LAS in the upper plot of Fig. 39 (see Ref. [22]), showing the energy reconstructed in the first and second
layers for data and Monte Carlo cosmic ray events. Good agreement is observed up to the tails both for
the shape and the absolute scale. This result can be used to measure the uniformity in the energy response
of the calorimeter versus the pseudorapidity by integrating over the response in the azimuth angle (the
statistics is insufficient to make a full η×φ uniformity map). The estimation of the muon energy is done
with a fit of the cluster energy distribution using a Landau function, which accounts for fluctuations of the
energy deposition in the ionisation process, and a Gaussian describing essentially electronic noise (and
also cluster non-containment). The response uniformity is computed from the RMS of the normalised
difference between the data and Monte Carlo most probable values (MPV) of the Landau distribution
in each η bin. The resulting distribution for the second (and main) liquid-argon calorimeter layer in
ATLAS is shown in the lower plot of Fig. 39. The observed dispersion is in agreement with statistical
fluctuations, i.e., no significant non-uniformity is seen at the per cent level. Similar results have been
obtained by CMS where an intercalibration with cosmic muons (aligned to the crystal axis and with a
reference energy of 250 MeV (MPV)) achieved an intercalibration of better than 1.5% in the barrel and
better than 2.2% in the forward region. All 36 CMS crystal supermodules could thus be intercalibrated
with cosmic muons, which was an important achievement because only 9 supermodules (25%) had been
calibrated with electron test beam data prior to the calorimeter installation.

The reconstruction of jets and missing transverse energy requires the electromagnetic and hadronic
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Fig. 38: Left: total energy sum of all cells along a muon track in the ATLAS hadronic calorimeter (blue) and
the corresponding noise distribution obtained from randomly triggered events (red). The minimum ionising muon
signal is well separated. Right: average energy deposits in the CMS electromagnetic calorimeter versus the muon
momentum measured in the tracking devices. Overlaid is the expected energy loss for the lead-tungsten calorime-
ter. Indicated by the dotted lines are the contributions to the energy loss from collisions (red) and bremsstrahlung
(blue).
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Fig. 39: Top: reconstructed cosmic muon energy in a 2×1 cluster in the first layer (dark shaded/green histogram
for Monte Carlo and triangles for data) and in a 1×3 cluster in the second layer (light shaded/yellow histogram and
dots for data) of the ATLAS electromagnetic calorimeter. Bottom: electromagnetic calorimeter energy response
dispersion between data and Monte Carlo simulation versus the pseudorapidity, as measured with cosmic muons
for the second (main) layer of the ATLAS electromagnetic calorimeter. The dark shaded (green) band indicates the
±1% region for reference, and the light shaded (yellow) band indicates the expected statistical accuracy (1σ error
band) of the measurement.
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Fig. 40: Left: distribution of the jet energy for data (dots) and Monte Carlo simulation (dotted histogram). Only
events with at least one jet that exceeds 20 GeV transverse energy are included. The Level-1 trigger inefficiency
and cosmic air showers are not simulated. Right: electromagnetic fraction of jets for data (dots) and Monte Carlo
(dotted), where the fraction is defined by the ratio of energy deposited in the electromagnetic calorimeter divided
by the total deposited energy. The distributions are normalised to unity. Only jets with ET > 20 GeV are included.
Shown by the solid histogram is the expected distribution for QCD di-jet events as they originate from proton–
proton collisions.

calorimeter responses to be combined. It can be studied with highly energetic cosmic muons releasing a
Level-1 calorimeter trigger-accept signal. Jets from muon showers with energies exceeding the TeV scale
are found in the data. Figure 40 (left) shows the distribution of the jet energy for calorimeter triggered
events for data and Monte Carlo simulation. Because the simulated data do not include the Level-1 trigger
inefficiency, the Monte Carlo distribution is normalised to data in the 100–300 GeV range. Only events
that have a jet with ET > 20 GeV are included in the figure. Good agreement between data and simulation
is observed. A small excess at large transverse energy in data may be due to air-showers, not included in
the simulation. The right-hand plot in Fig. 40 shows the electromagnetic (EM) fraction of jets for data
and Monte Carlo, where the fraction is defined by the ratio of energy deposited in the electromagnetic
calorimeter divided by the total deposited energy. The distributions are normalised to unity. As before,
only jets with ET > 20 GeV are included. Also shown for comparison is the distribution expected for
QCD di-jet events as they originate from proton–proton collisions. The most likely value for the EM
fraction is 0 or 1 for fake jets from cosmics, because the high energy deposition from photons originating
from highly energetic muons will localise either in the electromagnetic or the hadronic calorimeter.
QCD jets have a broad distribution of the EM fraction with a maximum at around 0.8. Electromagnetic
fractions less than 0 or larger than 1 are due to small negative energy contributions from noise. One
concludes from the plot that good separation between QCD jets and fake jets from cosmic rays can be
obtained by vetoing jets with EM fractions close to 0 and 1.

7 Commissioning with single proton beam data
A lucky period between September 10 and 13, 2008, with — for the first time — single beams of 450 GeV
LHC injection energy circulating in both directions of the LHC, gave the experiments the opportunity to
commission the detector and the data taking chain with proton-beam background in synchronisation with
the LHC clock. A single ‘pilot’ bunch containing approximately 3 billion protons — radio-frequency
captured and not, with closed and open collimators, stably circulating or lost — travelled through the
injection chain, transfer lines and finally the LHC. The single-beam exercise at injection energy was
briefly repeated in 2009, at the restart of the LHC after an accident that caused a one-year delay in the
commissioning and physics schedule.

42

A. HOECKER

490



Fig. 42: Main LHC information displays sent from the CERN Control Room (CCC, ‘Triple-C’) to the experiments
and the interested world. The left picture displays basic quantities such as the currents (in number of protons per
bunch) passing through the two transfer lines serving to inject the LHC beam lines. Apart from displaying some-
times cryptic information displays and plots, it features useful operator comments on the bottom of the display:
“Beam Round Both Rings of LHC !!” (one notices the capital letters and the abundant use of exclamation marks,
which appropriately reflect the mood of the day). The right panel is a sketch of the two LHC beams. The colour
codes are important: Beam Blue (1) must always be blue, and Beam Red (2) must always be red (source: Steve
Myers, LHC coordinator). The detectors are located at four out of eight straight sections: Point 1 (ATLAS), Point
2 (ALICE), Point 5 (CMS) and Point 8 (LHCb). The remaining four straight sections serve beam acceleration,
beam cleaning and dump purposes (see Section 2).

Fig. 41: The Google search page
at ‘Jour J’ — the LHC start-up, 10
September 2009.

Figure 42 shows two of the most important information
panels provided to the experiments (and the general public) by
the LHC operators. One notices the particular location of Point 1
(ATLAS cavern) on the right panel: both beams need to make a
full turn before reaching ATLAS. It was hence the last experiment
to see beam, and it is affected by any problem along the beam line.
A few photographs taken on 10 September in the LHC, ATLAS,
CMS, and LHCb control rooms are shown in Fig. 43.

7.1 Beam-on-collimator events
Somewhat unexpectedly and all of the sudden, events where the entire detector was lit appeared on the
event displays. A few typical events are collected in Fig. 44. The reaction in the ATLAS control room
upon the arrival of the first event is witnessed by the photo in Fig. 47. What happened?

The events seen belong to so-called ‘beam splash’ type events, which originate from pilot-beam-
on-collimator dumps. Collimators are placed at a distance of about 140 m on both sides of the experi-
ments. If they are closed, the beam dumps on them, producing an avalanche of scattered particles that
reach the detector. For such an event occurring every 42 seconds during a short period ATLAS typically
recorded 300 000 silicon strip tracker hits (on lowered voltage for safety reason, reducing the hit effi-
ciency; the pixel detector was switched off) and 350 000 transition radiation tracker hits, approximately
all passing high-threshold discrimination. The sum of all calorimeter cells in these events exceeds 3000
TeV. Moreover 350 000 drift tube hits were recorded in the muon spectrometer and 320 000 (65 000)
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Fig. 43: Snapshots taken on 10 September in the LHC (upper left), ATLAS (upper right), CMS (lower left), and
LHCb (lower right) control rooms, exhibiting untypical occupancy.

muon trigger hits in the barrel (endcaps). Apart from being spectacular, beam splash events are useful
in many ways for the experiments. Their main purpose is to serve timing-in the various detector parts
and systems including the trigger with respect to each other. It is also interesting to correlate position
and energy response in splash events, and to use them to identify dead channels. In the November 2009
beam splash period, after the LHC restart, it was also possible to exercise, for the first time in realis-
tic conditions, the ATLAS standalone beam abort system using the diamond Beam Condition Monitor
(BCM) detectors. By lowering the abort thresholds, a deliberate BCM beam abort was triggered by a
beam splash event reaching ATLAS. No fake abort was observed. Beam splash events have also been ob-
served in the forward detectors of the experiments, designed to measure the relative luminosity. In total,
ATLAS recorded about 70 beam splash events (of a total of approximately 100 delivered) in September
2008, and another 106 events (all triggered) in November 2009. CMS received and recorded an order of
magnitude more beam splash events.

An example for a timing study is given in Fig. 45. Shown in the left plot is the mean hit time
(expected minus measured) versus the endcap disk, where a larger absolute number corresponds to a
larger absolute pseudorapidity. The measurement corresponding to a single beam-splash event is shown.
The event arrives from the A-side (+z side) so that the hit time behaves as expected for a collision event
for the far side (C-side), but wrongly for the A-side with respect to the expected collision timing used
in the event reconstruction (the event comes from behind and the hit time is thus anticipated). A similar
behaviour is observed for all other detector systems.

Beam splash events from both sides can be used to adjust the timing for both far sides. The
right plot in Fig. 45 shows the mean time residual along the z coordinate of all ATLAS muon drift tube
chambers using the synchronous front of splash particles and the very large particle flux. A linear relation
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Fig. 44: Event displays of beam–on–collimator ‘splash’ events recorded by ATLAS (upper plots and centre left),
CMS (centre right, lower left and middle), and LHCb (lower right).

is found with a slope determined by the speed of light. A timing study with beam splash events in the
CMS hadronic calorimeter is shown in Fig. 46. Drawn are the differences between reconstructed and
expected cell times for beam splash events before (left panel) and after timing adjustment (right) using
previously measured beam splash events. The large deviations from zero in the left panel are due to
collision time settings. CMS also correlated the energy deposits in the hadronic and electromagnetic
calorimeters for beam splash events, reproducing nicely the expected linear dependence and a relative
coefficient of EHCAL ' 6.5 ·EECAL.

7.2 Beam background events

Fig. 47: A ‘beam splash’ event being
seen in the ATLAS control room.

After the beam splash events, the collimators were all opened al-
lowing the beam to circulate in the LHC and to pass by the ex-
periments. Beam passages without interactions are measured pri-
marily in the beam pickup detectors based on electrostatic current
induction. These detectors are installed ±175 m away from the in-
teraction points of the experiments (many more such beam pick-
ups are installed along the LHC for beam monitoring purposes).
They provide input signals to the Level-1 triggers, indicating filled
LHC bunches, and also a time reference for the detector systems. In
case of beam collisions, the coincidence of signals in the two beam-
pickup detectors can be used to identify colliding bunches and, more
importantly, their timing difference (measured by an oscilloscope) can be used as input to the beam
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Fig. 45: Left: timing properties of a single beam-splash event originating from the A-side in the ATLAS silicon
strip tracker (see text). Right: time residual versus the z coordinate along the ATLAS muon drift tube chambers
for a beam splash event. The slope is determined by the speed of light.
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Fig. 46: Difference between reconstructed and expected cell time versus the pseudorapidity for beam splash events
in the various layers and geometrical regions of the CMS hadronic calorimeter. Left is uncorrected assuming
collision timing, and right is after correction with the use of previously observed events.

‘cogging’, that is a relative radio-frequency phase adjustment of the bunches to ensure collisions in the
interaction point (z = 0) without longitudinal shift. In the Level-1 trigger the beam pickup signals are put
in coincidence with the other triggers to reduce background from cosmic rays. This requires, however, a
proper timing-in of the various trigger signals.

Circulating single-beam bunches can also provide beam-related background particles that are mea-
sured by the experiments. At low beam intensities, there are two main sources of beam backgrounds
referred to as ‘beam–gas interactions’, which are interactions of beam particles with residual gas in the
beam pipe or with the beam pipe wall. Via the decay of pions such a process also produces muons,
which travel with the proton beam in what is called the ‘beam halo’ (usually referred to as ‘beam-halo
background’, which is what seems to be the primary single-beam background seen so far in the detec-
tors). Such beam related backgrounds originating from fixed-target collisions are strongly boosted in the
forward direction. Figure 48 shows the distributions of the track polar angle with respect to the beam
axis for single-beam data, simulated beam-halo background, and cosmic ray events taken with no beam
present in the LHC. Whereas the beam background peaks at small angles, cosmic ray tracks peak at larger
values, which are, however, much below the ∼1.5 rad that would be expected, because a forward trigger
has been used to select these events. The orange shaded histogram shows the distribution of single-beam
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Fig. 48: Distributions of the track polar angle with respect to the beam axis obtained by CMS for single-beam data
(orange shaded), beam-halo background simulation (blue line), and cosmic ray data with no beam (black line).

events accepted by the same trigger. One clearly distinguishes the beam-related background from the
cosmic muon contamination.

Event displays of beam background events with halo muons taken by ATLAS and CMS are shown
in Fig. 49. In ATLAS the toroidal magnetic fields in the muon spectrometer bend the muon tracks
longitudinally in the z coordinate.

7.3 Radio-frequency bunch capture
After injection into the LHC, the protons in a bunch start to spread longitudinally and transversely due to
their mutual repulsion. Within milliseconds the bunch thus ‘debunches’.26 Debunching can be directly
observed by the experiments via a decaying beam pickup signal during circulating beam. An example
for this is displayed in the upper plot of Fig. 50 showing the beam pickup signal amplitude in volts
versus the time in nanoseconds as measured by ATLAS. The spikes represent the induced signal when
a bunch passes nearby an ATLAS beam pickup detector. The time difference between adjacent spikes
amounts to 89 µs, which corresponds to an LHC revolution period. The signal weakens while the bunch
disintegrates. The lower panel of Fig. 50, sketches the radio-frequency field bucket structure of the LHC.
A bunch filled with protons is captured within a bucket of 2.5 ns length (precisely: 2.495 ns, i.e., a radio
frequency of 400.79 MHz).27 Only every tenth bucket is filled providing the design bunch period of
25 ns.

Figure 51 shows a series of attempts in September 2008 to capture a bunch in the LHC within
a radio-frequency bucket. The horizontal lines represent a measured beam pickup signal after 10 LHC
turns. The leftmost plot shows the decaying bunch in absence of a radio-frequency (RF) field. The signal
induction from the debunched beam becomes unmeasurable after 250 turns. The centre-left plot shows
a first capture attempt, at a wrong injection phase, so that the bunch is split into two by the RF field,
leading to a fast decay. For the centre-right plot the injection phase has been improved, but is still shifted
with respect to the RF phase, leading to a moving proton package and a fast decay. Finally, the rightmost

26Debunching can also be useful. For example, controlled debunching and rebunching can be used to split and multiply
bunches in the injection chain of an accelerator. This is, however, a delicate technique which is not used for bunch splitting in
the LHC injector (PS).

27The radio-frequency electrical field together with the relativistic contraction provide a stronger longitudinal constraint on
the bunch size than the bucket length. At 450 GeV beam energy, the longitudinal RMS of the bunch is expected to be around
8 cm, (the measured values were found to be significantly lower than that) decreasing to approximately 6 cm at 7 TeV design
energy.
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Fig. 49: Beam-related background events with halo muons taken by ATLAS and CMS (lower right) in November
2009.

plot shows an accurate injection phase and a properly captured bunch. No decay of the signal due to
limited lifetime can be noticed.

Since the experiments record events triggered by the beam pickup signals and, by running syn-
chronously with the LHC clock, also store the bunch crossing number that led to the trigger accept, it
is possible to measure the beam debunching and its capture in an RF bucket. Such a measurement has
been performed by CMS and the result is shown in Fig. 52. Before the RF capture the bunch crossing
number of the triggered events is spread over many bunches. After successful RF capture all triggered
events have the same bunch crossing number 831 as seen by the spike in the distribution at that point.

8 Early physics at the LHC — Overview
The major part of the LHC proton–proton physics programme can be grouped under the following grand
themes.

1. Mass — search for the Higgs Boson.
2. Electroweak unification — precision measurements (W and top masses) and tests of the Standard

Model.
3. Hierarchy in the TeV domain — search for supersymmetry, extra dimensions, new symmetries

in the TeV domain, and other exotic phenomena.
4. Flavour — B meson mixing, rare decays and CP violation as tests of the Standard Model.

This programme is also reflected in the ATLAS and CMS physics organisation, separated into so-called
‘physics objects groups’ (CMS) or ‘combined performance groups’ (ATLAS), and ‘physics analysis
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Fig. 50: Top: decaying circulating beam signal in an ATLAS beam pickup detector due to beam debunching.
Bottom: bucket and bunch structure in the LHC.

Fig. 51: Attempts and successful (rightmost plot) radio-frequency capture of a bunch in the LHC. Each horizontal
line represents 10 LHC turns. See text for a discussion of the plots.
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Fig. 52: LHC bunch decay and radio-frequency capture as measured by CMS.
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groups’. The former groups provide the reconstruction of the objects that combine various detector sys-
tems and that are common input for physics analysis. They are subdivided into ‘e/gamma’, ‘jets/missing
transverse energy’, ‘hadronic tau’, ‘muons’ and ‘flavour tagging’ groups. The physics groups are or-
ganised in ‘Standard Model’ containing QCD, electroweak and diffraction physics, ‘B physics’, ‘Top’,
‘Higgs’, ‘SUSY’, ‘Exotics’, ‘Heavy ions’, ‘Luminosity’, and ‘Monte Carlo generators’ subgroups.

Since protons are made out of quark and gluon constituents (‘partons’), collisions of protons are
complex scattering processes involving elastic, diffractive (single and double), inelastic non-diffractive
and central diffractive interactions (pomeron–pomeron scattering). The large majority of the proton–
proton events are due to interactions at large distances. The inclusive sum of single and double diffrac-
tive, and non-diffractive processes are called ‘minimum bias’ events, in allusion to lowest transverse
momentum events that can be selected by a trigger, and in contrast to ‘zero-bias events’, which can only
be obtained if all events or a random sample of events are selected. The total minimum bias cross section
at 14 TeV centre-of-mass energy at the LHC is approximately 70 mb. It dominates by orders of mag-
nitude the primary physics channels of interest. Minimum bias events are characterised by tracks with
small transverse momenta of 〈pT 〉= 0.5 GeV on average.

proton beams 

“Minimum bias events” 

x1p x2p 

√(sx1x2)  

proton beams 

proton  proton  

[ “Hard scattering partons” ] 

The constituents of the protons participating in the interaction carry only a fraction of the pro-
ton’s momentum. The fraction is governed by parton distribution functions that cannot be predicted
from first principles and are taken from experiment. The complexity of describing proton–proton inter-
actions includes, besides the hard scattering as described by parton-level perturbative QCD, the parton
distribution functions of the proton, the underlying event (describing the possibility of multiple parton
interactions in the same proton–proton collision), initial- and final-state radiation, the definition of jets,
and the minimum bias event properties.

Figure 53 (taken from Ref. [23]) illustrates the structure of a proton–proton collision event as it
occurs in the LHC. Hard subprocesses between partons need to be convolved with parton densities, the
decays of the hard subprocesses, initial- and final-state radiation, and multiple parton interactions (and
their initial- and final-state radiation), as well as beam remnants and other outgoing partons (not shown)
to arrive at a realistic description. All parton-level processes are connected through colour confinement,
leading to a primary hadronisation, with many primary hadrons being unstable and further decaying.

To reconstruct such an event in ATLAS or CMS it first needs to be triggered, i.e., the event must
pass several trigger levels with increasing rejection power. Once accepted, the event is written to disk and
promptly reconstructed on large offline computer farms comprising several thousand central processing
units. The reconstruction program reconstructs tracks of charged particles in the inner tracker and the
muon systems, electromagnetic clusters in the electromagnetic calorimeter, hadronic clusters and jets in
the combined electromagnetic and hadronic calorimeters, missing transverse energy in the calorimeters,
and identifies particles and objects: muons, electrons, photons, taus, jets, and heavy quark flavour. All
these steps in the reconstruction chain involve tremendous challenges regarding efficiency, purity, accu-
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Fig. 53: Schematic Feynman graphs for proton–proton collisions corresponding to: (i) incoming proton beams:
parton distributions; (ii) hard subprocess: described by matrix elements; (iii) resonance decays: correlated with
hard subprocess; (iv) initial-state radiation: spacelike parton showers; (v) final-state radiation: timelike parton
showers; (vi) multiple parton–parton interactions; (vii) multiple parton–parton interactions with its initial- and
final-state radiation. Pictures and legend taken from Ref. [23].

racy and resolution (calibration). The extensive commissioning work performed by the experiments will
surely pay off when analysing the first collision data and comparing them with Monte Carlo simulations.

With increasing statistics data-driven analysis and calibration methods will take over and the ex-
periments will achieve the performance they have been designed for.

After the reconstruction of the primary physics objects, the events are selected according to topo-
logical criteria that characterise the physics channel of interest. Inclusive analyses count events with
leptons, photons, jets or missing transverse energy. For example, a QCD analysis may select events with
high-energetic (or many) jets. A combined QCD and electroweak analysis may select events with leptons
or photons in the final state. A search for supersymmetry with R-parity conservation will select events
with large missing transverse energy, and may also require leptons to reduce the contamination from
Standard Model QCD events. Exclusive analyses kinematically combine reconstructed objects. For ex-
ample, an analysis using W → µν decays will identify a muon and compute the transverse W mass using
the muon momentum and the transverse missing energy vector. To select top–antitop events, where, for
example, one top decays to beν and the other to bqq, one must identify the electron and two b-jets, and
compute the top mass from the invariant mass of one of the b jets and two hard light-quark jets, which
originate from a W decay. To identify Higgs decays into two photons one must identify two photons
in the event and compute their invariant mass, which needs to accumulate at the same value within the
experimental errors to create a significant Higgs signal over backgrounds from random two-photon or
misidentified photon-jet combinations. Similarly, to search for Higgs decays into two electrons and two
muons, once must identify the corresponding leptons and compute their invariant mass. Intermediate on-
shell resonances with known mass can be used as additional kinematic constraints. Finally, to search for
new high-mass resonances such as Kaluza–Klein graviton states decaying into lepton pairs, as predicted
in models with extra spatial dimensions, one must identify the leptons and compute their mass to obtain
a signal over the dominant Drell–Yang di-lepton background. For many of these analyses it is beneficial
to combine all the available object-level and event-level information using multivariate statistical pattern
recognition techniques.
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Fig. 54: Event display of a simulated Z → ee event in ATLAS. The final-state electrons have tracks in the inner
tracker and large energy depositions in the electromagnetic calorimeter. Their invariant mass is consistent with
that of a Z boson.

9 Physics commissioning
With emphasis at the beginning of the collision data taking, but also throughout the whole lifetime of
the experiments, physics commissioning such as the calibration and alignment of detector systems and
physics objects, as well as the data-driven (‘in-situ’) measurement of efficiencies, purities, calibration
biases and resolutions, will represent a large part of the experimental work. We discuss in the follow-
ing the in-situ calibration of the electromagnetic calorimeter, the determination of material in the inner
tracking detector, and jet and missing transverse energy calibration and reconstruction.

9.1 In-situ electromagnetic calorimeter calibration
Among the primary measurements driving the performance requirements for the ATLAS and CMS elec-
tromagnetic calorimeters is the search for H → γγ . Since this channel is important at low Higgs mass
where the intrinsic width of the Higgs is negligible,28 the measured width of the di-photon invariant
mass, and hence the sensitivity for discovery, will be determined by the energy resolution of the electro-
magnetic calorimeter. We have already mentioned the importance of the constant term in the calorimeter
energy resolution for Higgs searches in Footnote 17. We can extend this by a back-of-the-envelope ex-
ercise. Let us consider a data sample for an integrated luminosity of 20fb−1 containing 690 H→ γγ and
∼170 000 background events with di-photon invariant mass 110 < mγγ < 150 GeV. With the nominal
(design) ATLAS electromagnetic calorimeter resolution, assuming a constant term of 0.7%, a fit to the
di-photon mass would yield a signal significance of 2.9σ . Worse constant terms of 1.0% or even 2.0%
would reduce this significance to 2.4σ and 1.8σ , respectively.29

It is hence mandatory to keep the constant term, originating from non-uniformities in the calorime-
ter response due to inhomogeneities and non-linearities, as small as possible by intercalibrating the
calorimeter with physics events. Calorimeter intercalibration (which is not absolute scale calibration)
can be performed with any physics events that provide a predicted or smooth energy deposition.

The most favourable channel for in-situ intercalibration is Z → ee. The Z mass being precisely

28A Higgs of mass 120 GeV has an intrinsic width of 4 MeV, while at 200 GeV the Higgs has a width of 1.4 GeV due mainly
to the opening of the di-weak-boson channels.

29Note that this test assumes the simplest possible H→ γγ analysis approach. A more sophisticated fit using more discrimi-
nating variables and detector-specific ‘categories’ boosts the fit performance significantly.
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Fig. 55: Statistical yield of the Z → ee electromagnetic calorimeter intercalibration in ATLAS. Shown is the
expected accuracy achieved for the constant term versus the number of events used in the intercalibration fit. The
corresponding integrated luminosity is given on the upper abscissa.

measured at LEP to (91.1875±0.0021)GeV, the average reconstructed di-electron mass in the detector
after calibration must reproduce it (per event, the detector resolution and the natural width of 2.5 GeV
will lead to a natural smearing). With sufficient statistics, the mass-constrained intercalibration can be
done per geometrical detector units, which are suitably chosen regions in pseudorapidity and azimuth,
typically ∆η×∆φ = 0.2×0.4. (Z→ ee decays also allow one to calibrate the absolute energy scale, which
is required to be known at the per mil level or less for most analyses, and should be at the 0.02% level
for the high-precision W mass measurement.) For a given intercalibration region i, it is assumed that
long-range non-uniformities, encoded in a parameter αi, have modified the measured electron energy as
E reco

i = E true
i · (1+αi). Neglecting correlations between the electrons and postulating that the opening

angle between the two electrons is correctly measured on average, the effect on the di-electron invariant
mass is Mreco

i j =Mtrue
i j (1+(αi+α j)/2). The αi can be extracted from a maximum-likelihood fit to Z→ ee

candidates, which must also incorporate a background component from events other than Z→ ee.

Figure 54 shows the event display of a simulated Z → ee event in ATLAS. The electrons leave
large energy deposits in the electromagnetic calorimeter and their invariant mass is consistent with that
of a Z boson. Approximately 10 000 of these events (and approximately 10 times more W → eν) will
be recorded in 10pb−1 integrated luminosity (reconstruction efficiency not subtracted). Figure 55 de-
picts the expected statistical yield of the Z→ ee electromagnetic calorimeter intercalibration in ATLAS.
Shown is the expected accuracy achieved for the constant term versus the number of events used in the
intercalibration fit. Indicated by the dashed horizontal lines are the design value of 0.7% for the constant
term and the level of the local non-uniformity from cell-by-cell variations, estimated to be 0.4%. Design
calibration performance is expected to be reached with 20pb−1 integrated luminosity.

9.2 Inner detector material mapping
The high-precision and redundant inner tracking systems of ATLAS and CMS come at the price of a
significant amount of material the particles must traverse. Figure 57 shows the material in the inner
tracking system of ATLAS (left) and CMS (right) in terms of radiation lengths. It is remarkable that only
a small part of it stems from active detector material, whereas the main contributions are due to services.
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Fig. 57: Material in the inner tracking system of ATLAS (left) and CMS (right) in terms of numbers of radi-
ation lengths X/X0. Solenoid and calorimeter cryostat add roughly 2X0 before the electromagnetic calorimeter
presampler in ATLAS.

The amount of radiation lengths in these services needed to be systematically reevaluated throughout
the planning and construction phases of both detectors. While the technical proposals in 1994 estimated
about (in units of X0) 0.2 (0.6) at η = 0 (η = 1.7 corresponding to about 20◦ polar angle) for both
ATLAS and CMS, it became 0.2 (1.5 for ATLAS and 0.85 for CMS) at the time of the TDRs in 1997, to
finally converge to 0.3 (1.3 for ATLAS and 1.5 for CMS) at the time of the construction in 2006. Note
that in ATLAS objects need to traverse approximately an additional 2X0 before reaching the presampler
(available for |η |< 1.8), and roughly another X0 before the electromagnetic calorimeter.

Fig. 56: Feynman diagram for the conversion of
a photon to an electron–positron pair in presence
of a nucleus.

A good understanding and simulation of the inner
detector material is crucial for precision measurements
such as the W mass, where the accurate calibration at
the Z mass needs to be transferred to the W mass us-
ing Monte Carlo simulation. Many other physics analyses
benefit from a precise material mapping. The best method
to perform a radiography of the inner tracking detector is
to use photon-to-electron–positron-pair conversion, which
occurs only in the vicinity of a nucleus that recoils against
the e+e− system and thus ensures momentum conservation
(cf. Fig. 56). The conversion needs to happen not too far
from the interaction point so that sufficient tracking layers
remain to reconstruct the electron and positron tracks and
their common vertex position, which indicates matter. A
photon-conversion-based radiography of the ATLAS inner
tracking detector, obtained from Monte Carlo simulation, which implements a detailed modelling of the
active and passive components, is shown in Fig. 58. The photons originate from π0 and η decays, and
Monte Carlo truth information has been used for the conversion vertices (the measured conversion map
will look quite different).

9.3 Efficiency determination with the tag-and-probe method
Decays of Z bosons to leptons can also be exploited to measure trigger selection and offline reconstruc-
tion efficiencies from data. The primary method used for this is denoted ‘tag-and-probe method’, the
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Fig. 58: Mapping of photon to electron–positron conversions as a function of z and radius, integrated over the
azimuth angle, for the ATLAS inner tracking detector. The mapping has been made from 500 000 simulated
minimum bias events (∼40 minutes of data taking at 200 Hz output rate), using ∼90 000 conversion electrons
of transverse momentum larger than 0.5 GeV, originating from photons from π0 and η decays. Monte Carlo
truth information is used for the conversion vertices. The plot shown does not represent the latest version of the
ATLAS detector description. In particular the beam condition monitor stations located at z = ±1840 mm are not
yet included.

principle of which is straightforward (see sketch in Fig. 59). Let us consider the example of determining
the reconstruction efficiency of muons in the muon system using Z→ µµ candidate events.30

Probe muon 

Tag muon 

Z 

Fig. 59: Sketch illustrating the
tag-and-probe method.

The candidate event has been triggered by the ‘tag muon’, which
is a ‘golden’ muon candidate with an isolated track from combined in-
ner tracker and muon system reconstruction, and transverse momen-
tum larger than 20 GeV. The probe muon is another muon candidate,
which is independent of the tag-muon selection. To find the candi-
date we require a track reconstructed in the inner tracker and an invari-
ant mass of tag and probe muons consistent with that of a Z boson.
We now count how often the probe muon has been reconstructed in
the muon spectrometer. With sufficient statistics the efficiency of the
probe muon reconstruction can be evaluated in bins of pT , η and φ .
Usually, the result has to be corrected for combinatorial background
under the Z peak. The most powerful approach combines background
and efficiency determination in all regions within a single unbinned
maximum-likelihood fit. The tag-and-probe method is very flexible,
and many versions of the same idea exist. Figure 60 shows an event
display of a simulated Z→ µµ event in ATLAS. The minimum ionis-
ing muon tracks traverse the calorimeters and leave measured hits in the muon spectrometer. Approxi-
mately 10 000 of these events (and approximately 10 times more W → µν) will be recorded in 10pb−1

integrated luminosity (reconstruction efficiency not subtracted).

30The expression ‘candidate’ refers to the fact that for real data we do not know whether a reconstructed Z→ µµ candidate
is indeed the process we believe it to be, or whether it is background from random combinations of muons (‘combinatorial
background’) or objects faking muons. Only a statistical analysis allows us to separate signal from irreducible background.
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Fig. 60: Event display of a simulated Z→ µµ event in ATLAS. The final-state muons are measured in the muons
spectrometer.

9.4 Jet calibration

Fig. 61: Illustration of the various
jet reconstruction levels from par-
tons over hadrons to the calorime-
ter.

A precise knowledge of the absolute jet energy scale (JES) is needed
by many physics analyses. Typically a calibration of better than 1% is
required for the measurement of the top-quark mass, but also for super-
symmetry signatures. Jets are complex phenomenological objects, and
their reconstruction involves a large number of corrections and calibra-
tions. Only a brief overview is given here.

The jet energy reconstruction and calibration can be divided in
four steps:

1. Calorimeter tower or cluster reconstruction.
2. Jet forming (cone, kt , anti-kt or other ‘jet algorithms’).
3. Jet calibration from calorimeter to the particle scale.
4. Jet calibration from particle to the parton scale.

The discussion here concentrates on jet calibration, assuming jets have
been formed by an algorithm with suitable experimental and theoretical
properties for the physics measurement under study.

Several and conceptually quite different calibration approaches
are considered by the experiments. Monte Carlo based jet calibrations,
transforming the electromagnetic energy scale to the hadronic scale,
can be distinguished according to the level of detail with which the jet
constituents are treated and separately corrected. The ‘global jet cali-
bration’ uses as input clusters that have been properly calibrated at the
electromagnetic scale, and which are matched in energy to the Monte
Carlo truth particle jet for bins of ET and η . This calibration returns the jet energy at the hadronic scale
(cf. sketch in Fig. 61). On the contrary, the ‘local hadron calibration’ calibrates clusters independently of
the jet algorithm by making an assumption on their electromagnetic or non-electromagnetic nature. Jets
are then formed out of calibrated clusters, and the jet energy is given at the hadronic scale. Finally, in-
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EM fraction for jets / hadrons 
increases with energy γ mostly from π0 

Fig. 62: Left: fractional energy carried by different particle types as a function of the jet energy (ATLAS simula-
tion). Right: jet energy linearity as a function of jet energy (ATLAS simulation). Shown are jets reconstructed at
the electromagnetic (EM) scale (open triangles), and using global jet calibration algorithms (open circles and full
triangles). The jets have a large cone radius of 0.7.

situ calibration methods are used to match the hadron to the parton levels of the jet using known physics
processes.

A large amount of contributions to the jet signal at the various jet levels must be considered in
the calibration process. The parton level is governed by the physics process of interest. At the hadron
level (particle jet), one must take into account the jet reconstruction algorithm efficiency, added tracks
from in-time event pileup from minimum bias scattering interactions, added tracks from the underlying
event, and lost soft tracks due to the magnetic field. At the calorimeter jet level one must account for
longitudinal energy leakage, detector signal inefficiencies (e.g., dead channels, dead HV boards) back-
ground from pileup events, electronic noise, the definition of the calorimeter signal (cluster algorithm,
noise suppression, etc.), dead material losses (front material, geometrical cracks in the active material,
transition regions, etc.), the detector response characteristics (e/h 6= 1), and the jet reconstruction algo-
rithm efficiency. The left panel of Fig. 62 shows the fractional energy that is carried by different particle
types in a jet as a function of the jet energy. The largest contributors are charged pions, followed by
photons originating mostly from π0 decays, so that the total pion component amounts to roughly 70%
of the jet energy, with no significant jet energy dependence. The right plot shows the jet energy linearity
and the electromagnetic fraction versus the jet energy. The electromagnetic fraction for jets or hadrons
increases with the jet energy, asymptotically reaching 80% for very hard jets. After calibration, the en-
ergy response is accurate above 300 GeV, whereas softer jets are more difficult to calibrate due to the
stronger impact of calorimeter noise fluctuations and other effects.

The ultimate goal of the jet reconstruction is to match the calibrated hadronic scale to the initial
parton momentum with the use of physics events, i.e., to perform in-situ calibration. Several approaches
exist.

– Directly verify the hadronic energy scale with isolated prompt hadrons from minimum bias
events, or hadrons from τ decays, by comparing the reconstructed hadron energy with the mo-
mentum of the hadron track measured in the inner tracker. Another possibility is to use track
balancing in φ (energy and momentum conservation of proton–proton collisions requires the event
to be transversely balanced, but not longitudinally) to intercalibrate the hadronic scale with respect
to different hadron energies.

– Use transversely balanced γ-jet or Z(→ ``)-jet events. This method assumes that electromag-
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Fig. 64: Integrated luminosity required to reach 0.5% precision on the jet energy scale with the multi-jet calibration
method for various pT ranges in the region 0.7 < η < 0.8, and with different sets of selection cuts (ATLAS sim-
ulation): all Pythia di-jet events (circles), requiring ∆φ > 3 rad between the two leading jets (triangles), requiring
in addition fewer than four reconstructed jets in an event (squares), and requiring exactly two reconstructed jets
(stars).

netic objects have been properly calibrated beforehand. The jet energy calibration is performed
with respect to the average transverse momentum of photon (or Z) and jet. Owing to the large
cross section of 180 nb for γ-jet processes31 this method can be applied with initial data. The sta-
tistical yield corresponding to an integrated luminosity of 10pb−1 would allow a jet calibration of
better than 1% statistical precision for pT < 200 GeV. However, the determination of systematic
uncertainties is tricky, and requires careful studies. For example, initial- and final-state radia-
tion, underlying events and in-time event pileup, but also out-of-jet particles have the potential
to contribute to the γ-jet imbalance, and these effects must be disentangled from miscalibration.
Monte Carlo studies by ATLAS have shown that systematic imbalances of non-calibration origin
contribute at the 10% level for 20 GeV jets, whereas the effect is below 1% for jets above 100 GeV.

– Use QCD di-jet and multi-jet events for ∆η×∆φ intercalibration. Di-jet events cannot constrain
the absolute jet energy scale, but allow one to intercalibrate the calorimeter response. In case of
more than two jets in the event, the leading jet dominates the energy resolution of the event, so
that one may assume that the error in the vector sum of the ‘soft’ jets is negligible with respect
to the hard jet, and hence ‘calibrate’ ET versus η and φ (cf. sketch in Fig. 63). This method
benefits from huge statistics (the di-jet cross section exceeds by a factor 100 to 5000 the γ-jet cross
section), but sizable systematic effects arise from soft jets, in particular for the multi-jet approach,
requiring detailed studies. Figure 64 shows the integrated luminosity required to reach a precision
in the jet energy scale of 0.5% with the multi-jet calibration method for various pT ranges in the
region 0.7 < η < 0.8 and for different sets of selection cuts (see figure caption). Requiring the
jets to be back-to-back (i.e., applying a tight ∆φ cut) reduces systematic effects from initial- and
final-state radiation and the underlying event. The figure has been obtained by ATLAS with the
use of simulated events.

– Absolute jet energy scale calibration is possible by means of W decays into a pair of jets, for
clean W from top decays. However, this calibration applies to soft jets only (jet energies below

31The leading parton level processes contributing to the γ-jet cross section are t-channel quark–quark scattering via fermion
exchange into g+ γ , and quark–gluon scattering via fermion exchange into q+ γ , gluon–gluon scattering via a box diagram
into g+ γ , and the s-channel quark–gluon-to-quark annihilation into q+ γ .
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200 GeV). In addition, the W boson does not carry colour charge, which makes it differ from QCD
jets.

Fig. 63: Illustration of multi-jet energy
calibration.

The LHC will explore energies that have never been reached
before. Above 500 GeV, neither measurements nor test beam re-
sults are available for jet calibration. Multi-jet balancing should
allow a few per cent jet energy scale accuracy in that range with
1fb−1 integrated luminosity.

9.5 Missing transverse energy reconstruction
A precise reconstruction of missing transverse energy (MET) in
terms of energy scale, linearity, and resolution is essential for the ATLAS and CMS physics programme.
Large MET is predicted in many new physics scenarios, notably in supersymmetric extensions of the
Standard Model respecting R-parity, where a stable weakly interacting neutral particle is produced that
— just as neutrinos — escapes the detector without measurable interaction with the active material. Fig-
ure 65 shows a simulated SUSY candidate event in CMS that exhibits significant MET of 360 GeV. MET
is also an ingredient of precision Standard Model measurements, such as semileptonic top reconstruction
and the W mass, and also of the search for H → ττ decays, the cross section of which may or may not
be enhanced by beyond Standard Model contributions. The MET measurement is particularly sensitive
to systematic effects in the detector response and the reconstruction. Understanding MET in early data
is therefore one of the primary physics commissioning challenges.

Missing transverse 
energy vector

Jet (p  = 330 GeV)
T

Jet 
(p  = 140 GeV)

TJet 
(p  = 60 GeV)T

 (E      = 360 GeV)T
miss

Fig. 65: Display of a simulated SUSY event in
CMS. The arrow indicates the missing transverse
energy vector.

The conceptually simplest way to reconstruct
MET is to compute the transverse vector sum of all the
electromagnetic and hadronic calorimeter cells and to
correct for unaccounted contributions. In the case of
ATLAS, one has

6ET =
√
6E2

x+ 6E2
y , (5)

6Ex,y = 6ECalo
x,y + 6ECryo

x,y + 6EMuon
x,y , (6)

where the symbol 6E denotes missing energy. The
calorimeter term

6ECalo
x,y = − ∑

EM & Had cells
Ex,y , (7)

is calibrated at the hadronic energy scale. The electro-
magnetic scale would underestimate MET by roughly 30% because the largest contributions to it stem
from hadrons and jets.

The ‘cryostat’ term in Eq. (6) corrects for energy loss (leakage) in the cryostats between the elec-
tromagnetic and hadronic calorimeters and becomes important for jets with large transverse momentum
(representing a 5% contribution per jet with pT > 500 GeV). It is given by

6ECryo
x,y = −∑

Jets
wCryo ·EJet-at-cryo

x,y , (8)

where wCryo is a calibration weight determined empirically from Monte Carlo simulation, and EJet-at-cryo
x,y

is the average of the jet energies deposited in the third layer of the electromagnetic calorimeter and in the
first layer of the hadronic calorimeter.
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Fig. 67: Schematic graphs of processes generating true MET. The left graph corresponds to a pp→ tt(+X) Stan-
dard Model event (only the top part of the event is shown), where one top-quark decays fully hadronically and the
other semileptonically. The neutrino generates MET. The right graph depicts a typical decay cascade as obtained
in R-parity conserving supersymmetry. An initial gluino decays into a left-handed squark and a quark (giving a
jet), the squark decays into a heavy neutralino and a quark (giving another jet), the heavy neutralino further decays
into a slepton and a lepton, and the slepton finally decays into the lightest neutralino, which escapes detection,
and a second lepton of opposite charge with respect to the previous lepton. Note that the initial supersymmetric
particles are created in pairs, but only one decay cascade is shown here.

Finally, the muon term sums over measured muon momenta within the muon spectrometer accep-
tance (|η |< 2.7)

6EMuon
x,y = − ∑

Muons
Ex,y . (9)

The MET reconstruction can be refined by associating reconstructed electrons, photons, muons,
hadronically decaying τ leptons, b-jets and light jets to calorimeter cells, and replacing for these cells
the global calibration by one that takes into account the nature of the identified objects.

Run II V. Shary @ CALOR04 

Fig. 66: Missing transverse energy distribution
measured by the D0 experiment at the Tevatron
pp collider. Shown are the various correction
stages leading to the removal of fake MET tails
that could be misinterpreted as new physics.

It is apparent from the above equations that all de-
tector systems contribute to the MET measurement, which
makes it vulnerable to hardware, reconstruction, and cal-
ibration problems. One distinguishes between ‘true’ and
‘fake’ MET. For example, weakly interacting neutral par-
ticles generate true MET (cf. Fig. 67). Even without sys-
tematic effects, MET is created by the detector response
resolution, giving rise to fake MET. Fake MET can also
be introduced by detector problems or misreconstruction,
such as dead and noisy channels, particles falling out of
the detector acceptance (e.g., muons for |η | > 2.7), unac-
counted pile-up contributions to resolution effects, back-
grounds from beams or cosmic rays, ‘punch-through’ of
hadron showers into the muon system faking a muon sig-
nal, and many more effects.

The suppression and — if not possible — proper
simulation of fake MET is crucial to increase the sensi-
tivity to the true MET. This requires the best possible jet energy resolution and absolute scale, and a
thorough classification through data quality bookkeeping and the simulation of varying detector prob-
lems. Figure 66 shows an extreme case of MET distortions due to detector noise and bad channel effects,
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Fig. 68: ATLAS event displays of simulated rare di-jet events creating large amounts of fake MET (represented
by the round arrow). The upper two displays show hadron punch-through from the calorimeter into the muon
spectrometer. The lower display shows large MET found in an event populating the jet energy resolution tails.
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Fig. 69: Left: expected MET resolution for ATLAS versus the transverse energy sum for minimum bias events and
various jet samples. Right: accuracy of the MET azimuth angle versus MET for tt, Z→ ττ and W → eν events,
obtained from Monte Carlo simulation in ATLAS.

provided for illustration purposes by the D0 experiment. The effects lead to large tails that — if not
properly corrected or simulated — could be misinterpreted as a new physics signal. Figure 67 depicts
schematically two processes that generate true MET. The left one is a Standard Model tt event where
one of the tops decays semileptonically, and the right one is a supersymmetric event with its typical de-
cay cascades ending with two invisible lightest stable supersymmetric particles (only one of two decay
cascades is shown). Figure 68 shows event displays from simulated events in ATLAS that were selected
for featuring pathologically large fake MET due to hadron punch-through (upper two displays) and jet
mismeasurement (lower display). Both types of fake MET usually point towards a jet, which allows such
backgrounds to be reduced by eliminating events where the MET vector lies on a jet axis.

Fake MET tails can be studied with early data using minimum bias events. Ample statistics will
be available thanks to the large minimum bias cross section,32 allowing the experiments to select clean
data samples. Because the expected true MET is negligible (∼0.06 GeV) the measured MET will be
dominated by fake effects from single hadron and jet energy resolution (82%), and acceptance (18%).
ATLAS expects an MET average value of 4.3 GeV. The left panel in Fig. 69 shows the expected MET
resolution for ATLAS versus the measured transverse energy sum for minimum bias events and various
jet samples providing increasing transverse energies. The resolution is dominated by the stochastic term
in the jet energy resolution, giving a square-root dependence on the transverse energy sum with the
expected coefficient of approximately 50% (see Section 5).

True MET in early data can be measured in leptonic W decays, which have good statistics, but also
in Z → ττ events. In case of one τ decaying semileptonically (hadron(s) plus neutrino) and the other
leptonically (electron or muon plus two neutrinos), one can reconstruct the τ mass by assuming that the
τ decay products were emitted collinear with the τ flight direction in the lab frame. This is a useful
conjecture since the τ exhibits a strong boost. With this one finds

m2
ττ ≈ 2 ·

(
Eh +Eν(h)

)(
E`+Eν(`)

)
(1− cosθh`) , (10)

where the neutrino energies are approximated by MET. Simulated Z→ ττ decays in ATLAS showed that
this method allows the Z mass to be reconstructed with an average resolution of 12 GeV. The right panel
of Fig. 69 gives the expected accuracy of the MET azimuth angle versus the true MET for tt, Z → ττ

32At 14 TeV centre-of-mass energy, a minimum bias event rate of 70 kHz is expected to be produced at 1030 cm−2s−1 peak
luminosity, and owing to the logarithmic

√
s dependence similar orders of magnitude are expected at lower centre-of-mass

energy. For example, at 900 GeV the minimum bias cross section is reduced by a factor of only 1.8 with respect to 14 TeV.
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and W → eν events simulated by ATLAS. With larger true MET the signal-to-calorimeter-noise ratio
increases and hence the quality of the MET reconstruction. Moreover, the more hadronic activity in the
detector, the worse the MET reconstruction.

10 Early physics with ATLAS and CMS
Early physics measurements will be performed while the detectors are still being commissioned. Some of
the commissioning tasks will thus have to take priority to allow systematic uncertainties to be evaluated.
An example is the determination of the absolute tracking efficiency, which is an important ingredient of
first QCD measurements such as the average number of produced tracks per pseudorapidity region, and
which depends on basic detector properties such as the hit efficiency, the alignment of the inner tracking
systems, and low-transverse-momentum track finding. Likewise, any physics measurement requires the
determination of at least the relative trigger efficiency, and in case of cross section measurements also
the absolute trigger efficiency as well as the integrated luminosity. The latter quantity requires either an
absolute luminosity detector or, more importantly at the beginning of data taking, an LHC beam scan
(‘Van der Meer scan’33 [24]).

The following paragraphs present a very brief and incomplete overview of initial measurements
that will be performed at ATLAS and CMS after the collection of approximately 100pb−1 integrated
luminosity. Most of the prospective studies shown here are taken from ATLAS [3]. The CMS studies,
documented in Ref. [4], are very similar. All results shown are based on Monte Carlo simulation at
14 TeV centre-of-mass energy. This is, however, not the energy at which the LHC will start. Because of
problems with the magnet quench protection, the startup centre-of-mass energy in 2010 will be 7 TeV,
after a pilot run at LHC injection energy of 0.9 TeV in 2009. The decision whether or not to raise the
energy to 10 TeV in the course of the year 2010 will depend on the running experience. The design energy
of 14 TeV can only be reached after a shutdown of approximately one year, which may be scheduled in
2011 or 2012, when vulnerable parts of the quench protection system are exchanged.

10.1 Minimum bias studies
Minimum bias events will dominate the first triggered data samples of all LHC experiments. The total
minimum bias cross section receives contributions from inelastic non-diffractive and diffractive colli-
sions,34 where whether or not single diffractive events are included is subject to the experiment’s def-
inition. Experimentally, it is not possible to distinguish these classes of events on an event-by-event
basis. Minimum bias triggers have usually large (medium, small) efficiencies for non-diffractive (double
diffractive, single diffractive) events. If coincident hits in both forward regions of the detector are re-
quired, the efficiency of single diffractive events becomes small. In-time coincidence is a useful require-
ment to eliminate beam related backgrounds (beam gas and beam halo events, cf. Section 7.2). These
backgrounds are, however, also eliminated when requiring the reconstructed tracks in the event to form
a primary vertex. The minimum bias analysis will most likely be the first paper published by ALICE,
ATLAS and CMS. Apart from the physics measurement, it will represent a first proof that the detectors
(mainly the inner tracking systems) work and the data including the trigger and tracking efficiencies are
understood.

Multiparticle production is successfully described by phenomenological models with pomeron

33The beam scan is used to measure the beam sizes and positions in a collider, which, together with the known currents, can
be used to compute the absolute luminosity. The beams are scanned across each other at the collision point and, using beam
position measurements, the amount of motion is correlated with detectors monitoring the relative luminosity of the collisions
at each scan point. This method has been successfully applied at the heavy-ion collider RHIC [25].

34Diffraction denotes the excitation of the proton(s) participating in the inelastic scattering. One distinguishes single, double
and central diffraction. While single and double diffractive events produce activity in only one and both forward regions of
the detector, respectively, central diffractive events, (which are described by double pomeron exchange, and have small cross
sections), give activity at small pseudorapidities.
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Fig. 70: Top left: central charged particle density for non-single diffractive inelastic events in pp collisions as a
function of energy, extrapolated to large centre-of-mass energies. Shown are available measurements and Monte
Carlo generator predictions. Top right: correlation between average track transverse momentum and the charged
particle multiplicity for η < 1 as measured by CDF [26], and compared with various Pythia generator tunings.
‘No MPI’ means that multiple parton interactions have been switched off in the generator. Bottom plots: particle
density in non-diffractive minimum bias events versus the pseudorapidity (left) and pT (right) in ATLAS with
special low-momentum track reconstruction enabled. Systematic errors on track reconstruction are not included in
the right plot.

exchange, which dominates at high energies. These models relate the energy dependence of the total
cross section to that of the multiplicity production using a small number of parameters, and are the basis
for several Monte Carlo event generators describing soft hadron collisions. Minimum bias multiplicity
measurements between 200 GeV and 2 TeV centre-of-mass energies at the CERN ISR, CERN SppS,
Fermilab’s Tevatron, and BNL’s RHIC colliders have been used to tune these generators for predictions
of multiplicities at LHC energies.

The top left panel in Fig. 70 shows a comparison of model predictions for the central charged par-
ticle density in non-single-diffractive pp events for a wide range of centre-of-mass energies compared
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Fig. 71: Left: distribution of the transverse momentum of the hardest central jet in simulated di-jet events for
10pb−1 integrated luminosity (CMS study). The shaded band indicates the systematic uncertainties. The cross and
diamond curves indicate the distortions in the high-pT spectrum expected from contact interactions at the scales
Λ+ = 3 TeV and 5 TeV, respectively. Right: fractional difference from the QCD expectation of the di-jet invariant
mass (CMS). Also shown are the contributions to the difference from heavy excited quarks decaying into jet pairs.

with measurements that have been corrected for detector acceptance. Large extrapolation uncertainties
exist that must be overcome by LHC measurements. Improved generator tunings at LHC energies will
directly feed into Monte Carlo predictions of many primary physics channels. A good minimum bias
multiplicity description is also important because event pileup from minimum bias interactions is back-
ground to hard scattering processes at high luminosity. The top right panel in Fig. 70 is taken from
CDF [26]. It shows the measured dependence of the average track transverse momentum on the charged
particle multiplicity per event for |η |< 1, compared with various Pythia generator tunings. Without mul-
tiple parton interactions the average predicted pT multiplicities above 6 is grossly overestimated. The
bottom plots in Fig. 70 show the particle density versus pseudorapidity (left) and transverse momentum
(right) in ATLAS for simulated minimum bias events. Special low-pT tracking reconstruction has been
enabled for these plots, which allows one to lower the track measurement down to pT = 150 MeV (stan-
dard cut is 500 MeV), at the price of larger systematic uncertainties (not included in the error bars). The
statistics shown corresponds to 1 minute of data taking with 1031 cm−2s−1 at 14 TeV.

10.2 Di-jet studies
Jet production has a roughly 1000 times lower cross section than non-diffractive minimum bias scat-
tering, but is still an abundant process for early physics measurements and performance studies. Apart
from its importance for QCD studies and Monte Carlo generator tuning at yet unexplored centre-of-
mass energies, jet production can be used to probe the Standard Model. Inclusive di-jet production
(pp→ 2 jets+X) is the dominant LHC hard scattering process. It is straightforward to observe and has
a rich potential of new physics signatures. Restricting the leading jet (the jet with the largest pT ) to
the central detector region |η |< 1 reduces the background from QCD t-channel processes, thus enhanc-
ing the sensitivity to new physics contributions to the s-channel at small pseudorapidities. The main
variables used for new physics searches are the transverse momentum of the leading jet and the di-jet in-
variant mass. Prospective studies from CMS show that the highest di-jet masses reached with integrated
luminosities of 100pb−1, 1 fb−1, and 10fb−1 are respectively 5, 6 and 7 TeV. The current limits from
measurements by the Tevatron experiments will be almost immediately extended by ATLAS and CMS.

The left panel in Fig. 71 shows the distribution of the leading central-rapidity jet pT in simulated
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di-jet events as expected by CMS for an integrated luminosity of 10pb−1. The shaded band indicates
the estimated systematic uncertainties. Also shown are the distortions in the spectrum expected from
contact interactions35 at the characteristic scales Λ+ = 3 TeV and 5 TeV, respectively. A quantitative
sensitivity study shows that contact interactions up to Λ = 3 TeV can be discovered with the first 10pb−1.
However, the analysis requires excellent understanding of the jet resolution in the tails and the jet energy
scale. Systematic errors dominate over the statistical ones and over uncertainties from the parton density
functions.

The right plot in Fig. 71 shows a Monte Carlo study by CMS of a search for strongly produced
heavy excited quarks decaying into a quark pair. The most sensitive observable here is the di-jet in-
variant mass. Shown in the plot is the fractional difference between measurement (here: simulation)
and Standard Model expectation for 100pb−1 integrated luminosity. Shown by the resonances are the
contributions from excited quarks to that difference, which can be clearly separated below 3 TeV. Other
variables can also be looked at. For example, the ratio of di-jet abundances between different regions of
pseudorapidity versus the di-jet invariant mass benefits from reduced systematic uncertainties compared
with absolute cross section measurements. Also angular distributions exhibit sensitivity to new physics.

10.3 Quarkonia production

Fig. 72: Examples of Feynman di-
agrams for the singlet and octet
production of a J/ψ resonance
(see text).

Quarkonia (qq resonances such as J/ψ , ψ ′, ϒ , ϒ ′, etc.) are abun-
dantly produced at the LHC (see the Feynman graphs in Fig. 72) and
excellent sources for early physics commissioning, but also for early
physics measurements, e.g., prompt versus non-prompt production dis-
tinguished via different lifetimes, ratios of cross sections, polarisation,
etc. Examples of Feynman diagrams for the singlet and octet produc-
tion of a J/ψ resonance are drawn in Fig. 72. The upper diagram
describes the leading colour-singlet process, which has a small cross
section. The middle diagram, which dominates at low pT , can be pro-
duced through both singlet and octet cc states with various quantum
numbers. At high pT , the gluon fragmentation subprocess shown in
the lower plot becomes increasingly important.

Quarkonia in ATLAS and CMS are mainly studied through their
decays into muon and also electron pairs. Since they are narrow reso-
nances they can be used as commissioning tools for the alignment and
calibration of the trigger, tracking, and muon systems. Efficiency stud-
ies can employ the ‘tag-and-probe method’ (see Section 9.3). Owing
to the low mass of the resonances, trigger considerations are crucial
to estimate the available cross section for analysis. Using a di-muon
trigger with 4 GeV thresholds for each muon, the overall rate of events
from all quarkonium states is likely to remain below the rate of 1 Hz at
a luminosity of 1031 cm−2s−1. (The trigger rates may be dominated by
background processes.)

The left-hand plot in Fig. 73 shows the cumulative differential cross section of the invariant di-
muon invariant mass for J/ψ and ϒ (1S) signal events and various combinatorial backgrounds from an
ATLAS Monte Carlo study. The plot includes trigger requirements of at least one muon with 6 GeV and

35New physics models with fermion substructure (‘compositness’) at high scale lead to excitations of these fermions which
modify scattering cross sections. The interaction can be parametrised by an effective four-fermion contact term

Leff =
4π2

Λ2 ∑
i,k=L,R

α ik (qiγ
µ q′i
)(

f̄kγµ f ′k
)
, (11)

where Λ is the mass scale of the new interaction. Experimental limits exclude excited fermions up to a few TeV.
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Fig. 73: Left: cumulative differential cross section versus the invariant mass of muon pairs from various quarkonia
signal and combinatorial background sources (ATLAS study). A primary vertex and pseudo-proper time require-
ment of 0.2 ps has been applied. The dotted line shows the cumulative distribution without these cuts. The quarko-
nia simulation used for the plot does not include higher radial excitations. Right: invariant mass of di-muons from
J/ψ decays versus the J/ψ pseudorapidity for simulated ATLAS data where a severe misalignment of the inner
tracking system has been introduced. Shown are results before and after alignment.

another one with 4 GeV transverse momentum, and that these muons must originate from a common
primary vertex. In addition a lifetime requirement has been applied. (The dotted line shows the cumu-
lative distributions without these latter two requirements). Backgrounds from Drell–Yan processes and
leptonic heavy-quark decays are of similar size.

The right panel of Fig. 73 shows a simulated commissioning result from ATLAS. Events of the
type pp→ J/ψ(→ µµ)+X with (somewhat unrealistically) severe misalignment in the inner tracker
have been simulated and run through the alignment procedure based on hits-on-track residual minimi-
sation. As discussed in Section 6.2, this method suffers from so-called weak modes, which denote
misalignments that leave the global χ2 function, used to minimise the hit residuals, invariant. As seen
in the plot, the reconstructed invariant di-muon mass versus the pseudorapidity of the di-muon system
exhibits a strong non-uniformity before the alignment, but remaining effects caused by weak modes after
the alignment.

10.4 W and Z boson production
Inclusive production of W and Z bosons (pp→W (Z) + X) has large cross sections so that interest-
ing data-driven cross section measurements can be performed with early data (10–50pb−1). The weak
bosons are also important ingredients for commissioning studies: Z bosons are most important for var-
ious in-situ calibrations (cf. Section 9), and Z+ jets and W+ jets are sensitive probes of higher order
QCD calculations. Inclusive weak boson production is also precisely predicted by theory so that a cross
section measurement in particular of the more abundant W production can be used to infer the absolute
integrated luminosity recorded.

Figure 74 shows the distribution of the W transverse mass for W → eν (left) and W → µν (right)
decays together with their dominant backgrounds for simulated data corresponding to 50pb−1 integrated
luminosity (ATLAS study). The transverse mass is defined by

mT =
√

E`
T 6ET (1− cos∆φ) , (12)

where ∆φ is the angle between the transverse lepton and missing energy vectors, and E`
T is the transverse

energy of the lepton. The transverse W mass is also used as an ingredient for the precision measurement
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Fig. 74: W -boson transverse mass distribution for W → eν (left) and W → µν (right) and backgrounds after full
selection except for the MT cut, for simulated data corresponding to an integrated luminosity of 50pb−1.

of the W mass, which, however, requires much larger data samples for a competitive measurement,
because of the required mass calibration with respect to the accurately known Z boson, which has a ten
times smaller leptonic cross section.

Fig. 75: Z-boson transverse momentum dis-
tribution, measured by the D0 experiment at
the Tevatron, compared with Monte Carlo
generator models.

Figure 75 shows the Z-boson transverse momentum
distribution as measured by D0 at the Tevatron for a centre-
of-mass energy of 1.96 TeV. It is compared with Monte Carlo
generator models including next-to-leading order QCD cal-
culations. Good control of the transverse momentum of
weak bosons is important for many physics studies. Specif-
ically in multivariate Higgs searches, the Higgs transverse
momentum can be used as a discriminating variable since
Higgs production is expected to have a harder spectrum than
QCD backgrounds.

10.5 Top-quark production
The roughly 100 times larger tt production cross section
of ∼830 pb at the LHC (at 14 TeV centre-of-mass energy)
compared with ∼7.5 pb at the Tevatron, makes it possible
to observe top quarks in early data. Also the electroweak
single-top production cross section of ∼300 pb is similarly
enlarged. Apart from having important physics potential, top quarks represent excellent objects for
data-driven commissioning and calibration analyses, notably b-tagging and jet energy scale fits. The
leading processes contributing to tt production are gluon–gluon scattering (s and t-channels) and quark–
antiquark annihilation (s-channel). Single-top production is dominated by W–gluon fusion (t-channel),
W exchange between b quarks (t-channel), associated production of top and W , and quark–antiquark
annihilation (s-channel, smaller cross section).

Data corresponding to an integrated luminosity of 100pb−1 should allow the experiments to mea-
sure the tt production cross section, with events where both W bosons decay leptonically, to an accuracy
of 3% statistical and 5% systematic error (dominated by the uncertainty in the integrated luminosity
value). The measurement provides an important probe of the validity of the Standard Model at unex-
plored centre-of-mass energy. Figure 76 shows on the right panel the reconstructed hadronic top mass
from a combination of three jets as found in a simulated signal and background sample corresponding to
100pb−1 integrated luminosity after full event selection. The left panel shows the corresponding di-jet
mass formed by light-flavour jets, representing the W signal and combinatorial background. This plot
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Fig. 77: Left: schematic graph of a pp→ tt(+X) process where one top decays fully hadronically and the other
semileptonically. The neutrino generates missing transverse energy. Right: schematic graph of a supersymmetric
stop–antistop production. The W± propagators in top–antitop production are replaced by charginos that decay into
three bodies of which one (the neutralino) is a stable weak interacting neutral particle.

can be used to determine and adjust the jet energy scale. A kinematic fit to the true W mass can be used
to improve the accuracy of the three-jet top-mass reconstruction.

Single-top production is of particular interest due to its sensitivity to charged new physics fields,
such as a charged Higgs replacing the W in the weak propagator as occurs in two-Higgs-doublet models.
Single-top production has been observed by the Tevatron in 2009 with the use of advanced multivariate
analysis techniques [27]. The measured cross section of (2.3+0.6

−0.5) pb (CDF), (3.94±0.88) pb (D0), is in
agreement with the Standard Model expectation.

Figure 77 shows on the left diagram a schematic drawing of a Standard Model top–antitop event,
where one top decays fully hadronically and the other semileptonically. The right diagram shows the
production and decay of a light supersymmetric (R-parity conserving) stop–antistop pair, which follows
a similar decay cascade with, however, an additional weak interacting neutral particle in the final state

69

COMMISSIONING AND EARLY PHYSICS ANALYSIS WITH THE ATLAS AND CMS EXPERIMENTS

517



Higgs mass   (GeV)
100 120 140 160 180 200 220 240

5

10

15

20

25

30

35

40

45

50

gg (LO)

gg

WBF

WH
ZH

Htt

100 120 140 160 180 200 220 240

5

10

15

20

25

30

35

40

45

50
C

ro
ss

 s
ec

tio
n 

  (
pb

)

Higgs mass   (GeV)
100 120 140 160 180 200 220 240

B
ra

nc
hi

ng
 fr

ac
tio

n

-410

-310

-210

-110

1
bb

-τ+τ

-+

ss

cc

gg

γγ γ0Z

-W+W

0Z0Z

100 120 140 160 180 200 220 240

-410

-310

-210

-110

1
pp −> H + X
NLO cross section

H
D

EC
AY

 2
.0

Fig. 79: Expected inclusive Standard Model Higgs boson production cross section for the various production
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that escapes the detector. As a consequence, the four particle jets and the isolated lepton are softer than
in the tt case, the two light jets originating from the heavy neutralino decay form the invariant mass
of a neutralino, instead of that of a W , and significantly more missing transverse energy is produced
in the supersymmetric event. The experimental separation of the tt and t̃ t̃ processes is difficult and
requires more statistics than available in early data taking. The analysis requires b-flavour tagging to be
commissioned and proceeds by plotting the minimum three-particles invariant mass that can be formed of
a b-jet and the two light-flavoured jets. Subtracting from it the expected tt Standard Model contribution
a t̃ t̃ contamination would show up by a peak below the top (and below the stop mass, due to the escaped
neutralino). A study performed by ATLAS shows that with 1.8fb−1 and a stop mass of 137 GeV, for
which the t̃ t̃bχbχ → (bχ0`ν)(bχ0qq) cross section amounts to 412 pb (depending also on other model
parameters), exceeding by a factor 1.6 the corresponding tt → bWbW → (b`ν)(bqq) cross section, a
clear signal can be derived.

10.6 Standard Model Higgs boson search
The observation of a Standard Model Higgs boson is inverse femtobarn rather than picobarn physics,
and hence not of primary importance for early physics. However, new physics may enhance Higgs-like
signals and the experiments must be prepared for surprises. It is also important to begin early with the
understanding and improvement of electron muon, tau and photon selection efficiencies and purities,
and the study of b-jet and forward-jets tagging, and a thorough categorisation of the relevant Higgs
backgrounds to tune the multivariate analyses that will be used to extract a signal.

Fig. 78: A simulated H → ZZ? → 4e
event with mH = 150 GeV in CMS.

Figure 79 shows the dependence of the inclusive Standard
Model Higgs boson production cross section and branching frac-
tions on the Higgs mass. The dominant production mode is the
fusion of two gluons into a scalar Higgs via triangular top loop.
Next-to-leading order (NLO) corrections give a sizable K-factor
(the factor with which the leading order result needs to be multi-
plied to include higher orders) in this process. The second most
important process is weak boson fusion that is accompanied by
two forward jets. Since it is a weak process, next-to-leading order
corrections are less important. Following are the associated Higgs
production with a W or a Z boson, or with a tt pair. The strong
rise in the branching fractions to the heavy weak boson pairs is
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due to the kinematic opening of these channels, which are favoured because the Higgs couples to the
masses of the particles (if the Higgs boson were heavy enough to be able to decay into a top–antitop pair
(not shown in the plot), it would reach a branching fraction of up to 20% at around mH ∼ 500 GeV).
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Fig. 80: Reconstruction of the four-lepton invariant mass for simulated H → ZZ(?) → 4` (` = e,µ) signal and
background events corresponding to an integrated luminosity of 30fb−1 (ATLAS study). From upper left to lower
right are shown analyses for the true Higgs masses 130, 150, 180, 300, 400, and 600 GeV, respectively.

Figure 80 illustrates the results of a simulated search for H→ ZZ(?)→ 4` in ATLAS with 30fb−1

for different true Higgs masses. Because the Higgs partial width into two vector bosons increases with
m3

H , but only linearly for a Higgs decaying into two fermions,36 the total Higgs width grows fast beyond
the H →WW and H → ZZ openings. For example, while the Standard Model Higgs width is only
3.6 MeV at mH = 120 GeV and 76 MeV at 160 GeV, it grows to 1.4 GeV at 200 GeV and 8.5 GeV at
300 GeV. In the region favoured by the electroweak fit (see below) the Higgs intrinsic width is much
smaller than the experimental resolution and hence negligible.

Electroweak precision observables, measured by experiments at the LEP (CERN), SLC (SLAC)
and Tevatron (FNAL) accelerators, can be used in a global Standard Model fit to derive a constraint on
the Higgs mass. The resulting ∆χ2 curves versus the Higgs boson mass, without and with results from
direct Higgs boson searches at LEP and the Tevatron included in the fit, are given in Fig. 81. The result
including all the available information yields the allowed range 114<mH < 157 GeV at 95% confidence
level. Although this represents an important indication, experimentalists cannot afford to disregard the
high-mass region. The analyses must cover all Higgs masses that are not yet excluded by direct searches.

36The leading order width of the Higgs boson decay into a fermion–antifermion pair is given by

Γ(LO)(H→ f f̄ ) =
GF NC

4
√

2π
mHm2

f β 3
f , (13)

where GF = 1.16637 ·10−5 GeV −2 is the Fermi constant, β f =
√

1−4m2
f /m2

H is the fermion velocity in the Higgs rest system,

and NC = 3(1) is the number of colours for quarks (leptons). Large next-to-leading order corrections can occur in the case of
quarks. The leading order width of the decay into two on-shell weakly interacting vector bosons reads

Γ(H→VV ) =
GF m3

H

16
√

2π
·δV ·A(x) , (14)

where δV = 2(1) for V =W (Z), and A(x) =
√

1−4x · (1−4x+12x2) with x = m2
V /m2

H . For masses much larger than 2mZ the
width Γ(H →WW ) is twice as large as Γ(H → ZZ). Very roughly one finds Γ(H →WW +ZZ) ≈ 0.5TeV · (mH/1TeV)3, so
that for a Higgs mass of 1 TeV the Higgs width becomes of the same order of magnitude.
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Fig. 81: Curves of ∆χ2 obtained from the global fit to electroweak precision data. The right plot includes in
addition the results from the direct Higgs boson searches at LEP and Tevatron. The plots are taken from Ref. [6].

From Fig. 81 it becomes clear that very different experimental search strategies need to be pursued
depending on the Higgs mass hypothesis. The golden discovery modes are H → γγ for masses below
∼150 GeV (grand maximum), which is a very rare channel (branching fraction of about 0.2%) with a
clean signature, H →WW (?)→ `ν`ν for high masses, which is an abundant but not a clean mode, and
H → ZZ(?) → 2`2`′ which has a sizable branching fraction above mH ' 130 GeV, and which is clean
at relatively low mass. We have no space here to discuss all these measurements. Early searches will
concentrate on the high-cross-section modes leading to a successive exclusion (or discovery) of smaller
and smaller Higgs masses. ATLAS and CMS have performed studies to evaluate the discovery reach
of the various Higgs search analyses as a function of the Higgs mass. Figure 82 shows an ATLAS
study for the Higgs boson discovery (left panel) and exclusion potential (right panel) for given integrated
luminosity versus the Higgs mass. At 1fb−1 a Higgs of mass between 150 GeV and 170 GeV could be
observed with five standard deviations significance, and Higgs masses above ∼127 GeV can be excluded
to at least 95% confidencel level.
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are less accurate (but are expected to be pessimistic).
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10.7 Search for phenomena beyond the Standard Model

Fig. 83: High energy saturation
effect (upper plot) and its cor-
rection (lower) in the CMS elec-
tromagnetic calorimeter for 4 TeV
Randall–Sundrum gravitons decay-
ing to e+e−.

The primary motivation for the LHC construction is — beyond the
discovery of the Higgs boson — the search for signatures from un-
known physics at the high-energy frontier, which it is hoped will
provide answers to at least part of the current unknowns and prob-
lems outlined in Section 1. There is a wealth of models introducing
new physics, which is also driven by the relatively few constraints
that the high-energy sector must comply with. At any order of mag-
nitude beyond the TeV scale may lurk new symmetries, the breaking
of which creates partners of the known Standard Model fields, but
which also may lead to a profusion of new particles at ever higher
mass scales. Alternatively, in case we live in an apparently severely
fine-tuned world, no new physics exists at least in the quark sector
up to the reduced Planck scale, leaving a desert of 16 orders of mag-
nitude all described by the Standard Model interactions. This latter
picture must probably be regarded as disfavoured, not only by the
fine-tuning argument, but since it also contradicts our experience: up
to now, each ascent of an order of magnitude in energy has afforded
new phenomena in particle physics.

Di-lepton resonances at high mass
Popular early searches for new physics involve di-lepton invariant
mass spectra, which may exhibit peaks originating from generic Z′

resonances present in many beyond the Standard Model scenarios,
such as grand unified theories, little Higgs models, Technicolour, and
models featuring extra spatial dimensions. The widths of the new res-
onances may be narrow (such as for Randall–Sundrum gravitons), or
broad enough so that they may be resolved in the detector (for exam-
ple heavy resonances in grand unified theories and little Higgs mod-
els, as well as in models with small extra dimensions where the gauge
fields are allowed to propagate into the extra-dimensional bulk). The
most rigorous direct limits on the existence of heavy neutral parti-
cles decaying into di-leptons come from direct searches at the Tevatron, excluding mass scales until
approximately 1 TeV (model dependent).

q

q

l

l

hA

hB

X

X

*

Fig. 84: Feynman graph of a Drell–Yan process (quark–antiquark annihilation to a virtual photon or Z boson)
producing a final-state lepton pair.

Contrary to searches with missing transverse energy, which usually do not exhibit clear-cut kine-
matic signatures, the observation of a di-electron mass peak over (mostly) irreducible Drell–Yan back-
ground (Fig. 84) does not require the design calorimeter performance (this is somewhat different for
heavy di-muon resonances, where the alignment of the muon system must be well understood to reach
good resolution and charge measurement). In case of the search for very high-mass resonances (not
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early physics), electromagnetic calorimeter saturation must be corrected (Fig. 83 for CMS). It is also not
required to predict the background shapes with Monte Carlo simulation. It can be determined from data
by means of a parametrised maximum-likelihood fit with parameters determined simultaneously with the
signal abundance by the fit.
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Fig. 85: Left: distribution of the di-electron mass for fully simulated ATLAS data (dots) in presence of a 1 TeV Z′χ
(solid line) and Drell–Yan background (dashed line). The statistics used correspond to 21fb−1. Right: Required
luminosity versus the Z′ mass for a 5σ observation according to various Z′ models (ATLAS study).

The left panel in Fig. 85 shows a Z′χ → ee peak in ATLAS for a simulated Z′ with mass 1 TeV,
over Drell–Yan background. The right panel gives the luminosity that is required for a 5σ observation
according to various Z′ models, as a function of the Z′ mass. With 100pb−1 of data, and 14 TeV centre-
of-mass energy, Z′ (and also W ′) resonances until a mass of roughly 1 TeV could be discovered. The
ultimate goal for ATLAS and CMS reaches about 7 TeV (SLHC prospective).
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Fig. 86: The p-value quantifying the
statistical significance of an observa-
tion must be corrected for the statis-
tical trials factor.

The search for di-lepton resonances in a mass range that is large
compared with the experimental resolution, and without using prior
knowledge about which mass the resonance should have, introduces
a statistical ‘look-elsewhere effect’. The probability of finding a 6
when playing a dice is 1/6. The probability of finding at least one
6 when playing 2 dice is 2/6 · (1− 5/6). In case of a small single-
occurrence probability p and at least one occurrence required, the
binomial probability for an occurrence with n trials can be approxi-
mated by n · p. What counts in the case of the di-lepton invariant mass
is the size of the search range in terms of the mass resolution (assum-
ing a negligible intrinsic width of the resonance that is searched for).
The number of trials is thus roughly the number of times the reso-
nance ‘fits’ in the given mass range. Assuming the ‘discovery’ of a

mass peak with a single p-value37 of 3.0σ (5.0σ ) somewhere in the allowed mass range, and assuming
13 independent trials fit into the mass range, the p-value must be corrected by the corresponding trials
factor. In this case, we find a corrected p-value of 2.1σ (4.5σ ). Because of the non-linearity in the rela-

37Terminology: the significance level of a statistical hypothesis test is the fixed probability of wrongly rejecting the null
hypothesis, if it is true. It is the probability for a Type-I error to occur. The p-value is compared with the significance level and,
if it is smaller, the result is significant. It is hence the significance of a single trial.
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tion between probability and number of standard deviations, the effect of the correction appears larger at
smaller significance of the observation.

The above exercise is a very rough approximation. In practice the evaluation of the trials factor is
complex, and the conceptually simplest way to take it into account is via toy Monte Carlo simulation. A
natural way to proceed is to perform an unbinned maximum-likelihood fit by describing the background
by a simple parametrised function, with parameters determined by the fit, and the signal by a Gaussian
or crystal-ball shaped function with predetermined width (obtained from Monte Carlo simulation, but
taking into account the mass dependence of the calorimeter or tracking resolution) of which only the
mean mass parameter is free to vary in the fit. Also determined by the fit are the signal and background
abundances. The fit will converge towards ‘some’ signal yield at ‘some’ mass value. To obtain a relative
likelihood estimator, the fit is repeated by fixing the signal yield to zero, and the difference between
the log-likelihood estimators of the two fits is computed (the fit with free signal yield and mean mass
always has a larger log-likelihood value, so that the difference is positive). The p-value of the observed
log-likelihood difference is obtained by repeating the same exercise many times with a background-only
Monte Carlo model faithfully describing the data. This Monte Carlo model is obtained by using the
results from the background parametrisation obtained by the fit to data. The p-value is given by the ratio
of the number of cases in which the log-likelihood difference in the Monte Carlo is found to be larger
than the one in the data, divided by the total number of trials.

Supersymmetry
In spite of the many creative and interesting new physics models that have appeared in recent years,
supersymmetry remains the most popular Standard Model extension. It features an elegant solution of
the hierarchy problem by cancelling the diverging weak boson radiative corrections to all orders (where,
however, a logarithmic divergence remains due to supersymmetry breaking), a dark matter candidate,
natural elementary scalar particles, the democratisation of the fermionic and bosonic degrees of freedom,
and grand unification of the electroweak and strong forces. The minimal supersymmetric Standard Model
introduces a conserved supersymmetry-parity, denoted R-parity, which is even for all Standard Model
particles (including a Higgs doublet), and odd for all supersymmetric partners of these.38 A consequence
of R-parity conservation is that the lightest supersymmetric particle (LSP) is stable. Since we have not
observed any strongly or electromagnetically interacting particles in the universe that are not included
in the Standard Model, and because we need a cold dark matter candidate, it is assumed that the LSP is
weakly interacting only (as are neutrinos). The primary LSP candidate is the lightest neutralino, a linear
combination of gauginos. In much of the supersymmetry parameter space the neutralino is a mixture of
photino and zino, but could also be a gravitino. R-parity conservation also implies that supersymmetric
particles can only be produced in pairs. Hence, to produce supersymmetry in a hadronic interaction
the centre-of-mass energy of the colliding partons must be twice the characteristic supersymmetric mass
scale.

A typical decay cascade of a supersymmetric squark or gluino is depicted in the right-hand plot of
Fig. 77. From the diagram one notices that supersymmetric events produce many high-pT jets, sometimes
leptons, and always missing transverse energy due to the escaping LSP (unless it escapes along the beam
pipe). Since squarks and gluinos are produced by strong interactions with O(picobarn) cross sections
if their masses are well below a TeV, and because supersymmetric events have a clear experimental
signature, supersymmetry could be detected quite early. An integrated luminosity of 100pb−1 is expected
to be sufficient for a discovery of relatively low-mass supersymmetry, provided that the Standard Model
backgrounds can be well controlled.

Figure 87 shows distributions of missing transverse energy in ATLAS for simulated supersymme-
try signal and Standard Model background events, and for analyses with (right panel) and without (left

38R-parity, defined by R = (−1)2S+3B+L, was originally introduced to avoid the proton decay p→ e+π0, which is possible
in supersymmetry.
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Fig. 87: Simulated distributions of missing transverse energy in ATLAS for analyses without (left) and with (right)
requiring a reconstructed lepton (electron or muon) in the detector. Shown are the contributions from Standard
Model processes and for R-parity-conserving supersymmetry using a minimal supergravity model (open circles)
with the parameters m0 = 100 GeV and m1/2 = 300 GeV. The number of events corresponds to 10fb−1 integrated
luminosity.

panel) requiring a reconstructed electron or muon. A clear signal excess is perceptible in both analyses,
but the main Standard Model backgrounds differ significantly between the two. Whereas without lepton
requirement, tt, and W and Z plus jets backgrounds are of similar size in the large-6ET tails, and back-
ground from jets (QCD) is also present, the background in the one-lepton analysis is entirely dominated
by tt, with some small contributions from W and jets, but no QCD jets background. This makes the
one-lepton analysis particular interesting for the initial running period, when the understanding of the
inclusive QCD background is still immature.

Fig. 88: Simulated supersymmetric event
in ATLAS with six particle jets and two
muons with opposite charge in the final
state, and with large missing transverse
energy.

Other discriminating variables used in supersymmetry
searches are the ‘effective mass’, which is the scalar sum of
the transverse momenta of all jets and leptons (other variations
of this variable also include 6ET , or do not include the lepton
momentum), and the transverse mass [see Eq. (12)] which is
particularly useful to reduce background from events with a W .
Figure 88 shows an event display of a typical supersymmetric
event with jets, muons and large 6ET in ATLAS.

Figure 89 shows the expected discovery potential for the
minimal supergravity model as a function of the GUT mass pa-
rameters m0 and m1/2 (ATLAS study). The zero-lepton analy-
sis has the best discovery reach. However, taking into account
the experimental difficulties of this mode, the one-lepton mode
may become competitive. Squarks and gluinos with masses up
to 0.75, 1.35, 1.8 TeV can be discovered with integrated lumi-
nosities of 0.1, 1 and 1fb−1, respectively, using the four-jet, zero-lepton analysis.

We should note that supersymmetry could also break R-parity. The signature could be taus orig-
inating from χ0

1 → τ̃τ decays. Moreover, signals due to other phenomena could be seen like supersym-
metry so that a (challenging) neutralino spin analysis needs to be performed to reveal their fermionic
nature. Experimentalists should proceed with the search for supersymmetry as model-independently as
possible, and watch out for anomalies, e.g., the occurrence of photons, taus, or strange tops
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Fig. 90: Left: Schwarzschild radius in 4 and 4+d dimensions. Right: Simulation of a black hole decay in ATLAS.

Strong gravity
Finally, if we are allowed to enter trans-Planck scales, that is, gravity in compact extra spatial dimensions
is strong enough to reduce the Planck scale to energies reached by the LHC, hard-scattering proton–
proton collisions may produce microscopic black holes. An object becomes a black hole if it is smaller
than the Schwarzschild radius r = 2GM/c2. In 4+ d spatial dimensions the Schwarzschild radius39

becomes r = 2G(4+d)MD/c2, where G(4+d) is a gravitational constant in the full-dimensional space. The
four-dimensional constant G is thus only a reflection of the real gravitational constant G4+d), reduced

39The Schwarzschild radius is the radius below which the gravitational attraction between the particles of a body is so strong
that the body undergoes gravitational collapse. For a typical star such as the Sun, the Schwarzschild radius is about 3 km.
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(‘diluted’) by the extra dimensions (see Fig. 90, Left). The Planck scale is no longer fundamental. If
MD ≈M(4+d)

Planck ≈ 1 TeV, a black hole can be produced by the LHC if the momentum transfer of the hard
scattering reaction exceeds MD. The cross section of the black hole production is σBH ≈ πr2. With
MD ∼ 2–3 TeV one finds σBH ∼O(pb) allowing a fast discovery for MBH < 4 TeV, and d = 2–6.

The black hole undergoes a fast (τBH ∼ 10−27 s) thermal decay via Hawking radiation of temper-
ature TH ∼ MD · (MD/MBH)

1/(d+1) (a microscopic black hole is not black at all!). The life cycle of a
10 TeV black hole could be sketched as follows: (i) ∆t = 0, MBH(∆t) = 10 TeV: creation — the micro
black hole is created in a proton–proton collision: it is asymmetric, may vibrate and rotate, and may
be electrically charged; (ii) ∆t = 0 – 1 · 10−27 s, MBH(∆t)10 – 8 TeV: ‘baldness phase’ — emission of
gravitational and electromagnetic waves, and charged particles, the black hole is solely characterised by
mass and angular momentum; (iii) ∆t = 1 – 3 ·10−27 s, MBH(∆t) = 8 – 6 TeV: slowing down — the black
hole radiates by reducing its angular momentum, its form becomes spherical ; (iv) ∆t = 3 – 20 ·10−27 s,
MBH(∆t) = 6 – 2 TeV: Schwarzschild phase — after losing its angular momentum, the micro black hole
evaporates its mass via Hawking radiation; (v) ∆t = 20 – 22 ·10−27 s, MBH(∆t) = 2 – 0 TeV: Planck phase
— the black hole shrinks down to the Planck mass (MD) and fully decays into all particles with probabil-
ities according to their degrees of freedom (Fig. 90, Right). The spectacular decay signature cannot be
missed by the experiments.

11 Conclusions and outlook

Outlook to the Future 

Commissioning such tremendously complex apparatus as the
LHC high-pT experiments ATLAS and CMS is a continuous
challenge. It starts far earlier than with the installation of the
experiments in their underground caverns. To some extent it al-
ready begins with the design phase, when prototypes are drawn,
simulated, and eventually built for the purpose of testing and op-
timisation. Commissioning continues in dedicated test beams
where parts or even complete slices of the detectors, modelling
as accurately as possible the final geometry, are assembled.
While installing the detectors at their final locations, commis-
sioning campaigns with cosmic ray events are undertaken. Hundreds of millions of cosmic rays have
been recorded by both experiments in roughly three years of data taking with more and more com-
plete detectors. Finally, with the start of the LHC commissioning, single beams with 900 GeV injection
energy are sent through both LHC beam pipes, circulating or as beam-on-collimator ‘splash’ dumps,
radio-frequency captured or not. Later two beams are injected, again at injection energy, radio-frequency
captured, and brought to collision. These collisions produce for the first time so-called minimum bias
events, producing roughly 20 tracks in the inner tracking systems, some photons from π0 and η decays,
and electrons from photon conversion, as well as rare jet events and muons from pion and kaon decays.
The beams will not be squeezed at this initial stage so that owing to the large beam spot, the small
number of bunches in the machine, and the low bunch intensity, the peak luminosity will not exceed
1027 cm−2s−1. However, once the LHC energy is ramped up, the relativistic contraction of the beam will
lead to an increase in the luminosity, and the experiments will see an increase in jet rates, as well as
electrons and muons mainly from heavy quark decays and quarkonia. Moreover, beam squeezing (i.e.,
the reduction of the beam envelope by the magnet optics) and a crossing angle between the colliding
beams will further allow an increase in the luminosity of the LHC at higher energy.

With the data taken during these commissioning phases, the experiments have gained experience
and obtained a good initial understanding of the detector response, and improved the quality of the
data by calibrating and aligning the detector subsystems, which will pay off when analysing the first
collision data for physics and detector performance. With the arrival of physics data it is very important
to continue improving the detector understanding, and the faithfulness of its description by the detector
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Fig. 91: The LHC programme in a nutshell [28] (see text for discussion).

response simulation. It is the key to a longterm success of the experiments, and to physics results with
the smallest possible bias and systematic errors. It is also important that the experiments optimise the
fraction of useful data taken, by steadily improving the data-taking efficiency of all detector systems, and
aiming at the best achievable data quality.

Figure 91 gives an exploratory view of the expected LHC performance versus year of (design)
operation at 14 TeV centre-of-mass energy [28], and the corresponding sensitivity for discovery of various
phenomena by the ATLAS and CMS experiments. After accumulating 1fb−1 integrated luminosity,
minimal supersymmetry with up to 1 TeV characteristic mass scale could be discovered. The Standard
Model Higgs boson is expected to be observed at any mass with 30fb−1. With the ultimate integrated
luminosity of possibly 500fb−1 around the year 2018, the discovery reach for many new physics models
can be pushed deep into the TeV scale, and properties of earlier discoveries may be studied. Among these
are the coupling strengths of the Higgs boson in various production and decay channels. If the Higgs
is observed to decay into either γγ or ZZ(?), one will know that it cannot have spin 1. Observations of
angular distributions and correlations in ZZ(?) decays will enable the spin and CP properties of the Higgs
to be determined. It should also be possible to constrain masses of supersymmetric particles, possibly
even the spin of a heavy neutralino. A spin analysis of heavy resonances decaying to di-leptons could
be performed in case of a discovery. After four years at the highest peak luminosity with approximately
100fb−1 of data recorded each year, the increase in sensitivity becomes asymptotic (recall the 1/

√
L

scaling of statistical errors), which is the opportunity to undertake an upgrade of machine and detectors
to the Super-LHC (SLHC). The SLHC programme proposes to increase the LHC peak luminosity to
1.5·1035 cm−2s−1, i.e., 10 times the nominal LHC peak luminosity [29]. At nominal bunch pattern, it
will compel the experiments to cope with 250 pile-up minimum bias interactions occurring in time with
the hard-scattering event. This requires many changes to the detectors: (i) reduce background rates by
changing the beam pipe and improving the shielding, (ii) improve the radiation and occupancy tolerance
of the detectors and electronics, in many cases by replacing entire subsystems, and (iii) increase the
bandwidth of front-end and readout electronics to minimise pile-up and handle a 10 times increase in the
event rate. A successful SLHC upgrade would allow the experiments to extend their discovery reach for
supersymmetry and Z′ bosons to 4 TeV and 7 TeV, respectively.

The current situation, however, is that, owing to limitations in the quench protection system, the
LHC will begin in 2010 with 7 TeV centre-of-mass energy, which later in the year may or may not be
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increased to a maximum of 10 TeV. ATLAS and CMS have performed indicative studies to evaluate
the impact of the reduced energy on their physics programme. It is expected that up to half an inverse
femtobarn of data will be delivered in 2010. (If the run is continued through 2011 a total of one inverse
femtobarn of data could be delivered.) Between 14 TeV and 10 TeV the number of selected Z → ee
events will decrease from roughly 5000 per 10pb−1 integrated luminosity to 3600 (linear relationship).
The number of produced tt events will drop by roughly a factor of 2, so that the sample size will attain
that of the Tevatron after approximately 100pb−1 at 10 TeV. The exclusion of a Higgs boson requires
about twice more integrated luminosity at 10 TeV than at 14 TeV. A 5σ discovery of a Higgs with mass
of 160 GeV (which is unlikely) would require roughly 1fb−1 of recorded physics data. To challenge the
Tevatron Higgs searches, a sample of about 200pb−1 at 10 TeV is needed. The sensitivity of the search
for a heavy Z′ is reduced by a factor of roughly 3 at 10 TeV. A 5σ observation of a 1 TeV (Tevatron limit)
weighing Z′ would require roughly 100pb−1 of 10 TeV collision data. To achieve an equivalent discovery
reach for supersymmetry, a factor of 2 more integrated luminosity is required at 10 TeV centre-of-mass
energy. Nevertheless, the current Tevatron limits can be improved with as little as 20 pb−1 of 10 TeV
data. What would be the impact of a 7 TeV centre-of-mass energy compared to 10 TeV? The number of
Z→ ee will drop by a another factor of 1.4. The tt rate will further drop by approximately a factor of 2.
The required luminosity for equal search sensitivity for a Z′ will increase by a factor of 3, similarly for
supersymmetry searches, and a factor of 2–3 for Higgs searches.
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Abstract
We briefly review the basics of ultrahigh-energy cosmic-rayacceleration. The
Hillas criterion is introduced as a geometrical criterion that must be fulfilled
by potential acceleration sites, and energy losses are taken into account in or-
der to obtain a more realistic scenario. The different available acceleration
mechanisms are presented, with special emphasis on Fermi shock acceleration
and its prediction of a power-law cosmic-ray energy spectrum. We conclude
that first-order Fermi acceleration, though not entirely satisfactory, is the most
promising mechanism for explaining the ultra-high-energycosmic-ray flux.

A copy of the slides presented during the oral report at the school can be found at the URL below
http://cern.ch/PhysicSchool/LatAmSchool/2009/Presentations/pDG1.pdf

1 Introduction

In 1912, Victor Hess, using a balloon flight, measured the intensity of the ionizing radiation as a function
of altitude. This date represents the begining of the history of cosmic rays. Since then, we have learned
about many of their features, such as their large energy span(1–1020 eV), their composition (they are
made up of protons, nuclei, electrons and other charged particles), and the behaviour, as a function of
energy, of their flux.

However, the source and origin of the highest-energy cosmicrays still elude us [1, 2]. There
are two general approaches: in top-down scenarios [3], cosmic rays are produced as secondaries of the
decay of heavy particles, while in bottom-up scenarios, theenergetic cosmic-ray protons and nuclei are
accelerated within regions of intense magnetic fields. During recent years, experiments like AGASA
[4, 5] and HiRes [6] have been trying to answer these questions. A newly-built experiment, the Pierre
Auger Observatory, has performed observations [7] that hint at active galactic nuclei—galaxies with a
supermassive central black hole—as sources of the highest-energy cosmic rays. A plot of the differential
cosmic-ray energy spectrum, produced with data from several experiments, is shown in Figure 1.
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Fig. 1: Cosmic-ray differential energy spectrum, reconstructed from air showers observed by various experiments.
The grey box is the region where direct observations of cosmic rays have been made. The spectrum has been
multiplied byE2.7 to enhance the kinks due to changes in the spectral index: thefirst one near1015−1016 eV (the
knee), the second one at1017 eV (thesecond knee) and the last one around1019 eV (theankle). Figure extracted
from Ref. [8]

The purpose of this review is to give a brief description of the general constraints on acceleration
sites, as well as of the first- and second-order Fermi acceleration mechanism. For a more in-depth review
of the theory and observation of cosmic rays, the reader can consult, for example, Refs. [9,10].

2 General constraints on acceleration sites

In order to be considered as a possible source of ultra-high-energy cosmic rays (UHECRs), an astrophys-
ical object has to fulfil several conditions [11]:

– geometry: the accelerated particle should be maintained within the object during the acceleration
process;

– power: the source should be able to provide the necessary energy for the accelerated particles;

– radiation losses: within the accelerating field the energy gained by a particle should be no less
than its radiation energy loss;

– interaction losses: the energy lost by a particle due to its interaction with other particles should
not be greater than its energy gain;

– emissivity: the density and power of sources must be enough to account for the observed UHECR
flux;

– coexisting radiation: the accompanying photon and neutrino flux, and the low-energy cosmic-ray
flux, should not be greater than the observed fluxes (this constraint must be satisfied by the flux
from a single source and by the diffuse flux).
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above the bottom (green) line are able to accelerate iron up to 1020 eV. Figure reproduced from Ref. [12]

2.1 The Hillas criterion

If a particle escapes from the region where it was being accelerated, it will be unable to gain more energy.
This situation imposes a limit on its maximum energy that canbe expressed as follows:

εmax = qBR , (1)

whereq is the electric charge of the accelerated particle,B is the magnetic field, andR is the size of the
accelerator. Equation (1) is obtained by demanding that theLarmor radius of the particle,RL = ε/ (qB),
not exceed the size of the acceleration region. This is a general geometrical criterion known as theHillas
criterion, and is useful in selecting potential acceleration sites.

Figure 2 is an example of a Hillas plot which, for a given maximum energyεmax of the accelerated
particle, shows the relation between the source’s magneticfield strengthB and its sizeR. Sources above
the top line are able to accelerate protons up to1021 eV, while sources above the bottom line are able to
accelerate iron up to1020 eV.

A more realistic description of particle acceleration takes into account the energy lost during the
process. The maximum energy that a particle can obtain in an accelerator if energy losses are accounted
for is given by the solution ofdε(+)/dt = dε(−)/dt, i.e., the situation where energy lost and gained is
equal. The maximum energy of the particle is hence given by the minimum between the value obtained
from this equality and the one obtained from the Hillas criterion. Hillas plots for proton and iron taking
into account energy losses are shown in Figure 3.

UHECRs are believed to have both a galactic (for energies below the knee) [13] and an extra-
galactic (above the knee) component [14]. Some potential galactic sources include type II supernovae,
pulsars and shock acceleration in supernova remnants, while extragalactic ones include active galaxies
and gamma-ray bursts.

3 General forms of acceleration

3.1 Inductive acceleration mechanism

This mechanism is also calledone-shot accelerationand occurs when a particle is accelerated in a con-
tinuous way by an ordered field [see Figure 4(a)]. Radiation losses from accelerated charged particles
moving at relativistic velocities are composed of two terms[11], attributed to synchrotron and curvature
radiation.
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3.1.1 One-shot acceleration with synchrotron-dominated losses

In this regime the maximum energy is given by

εs =

√
3

2

m2

q3/2
B−1/2 , (2)

whereB is the strength of the magnetic field, andm, q are the mass and charge of the particle, respec-
tively. This notation will be valid for the sections below.

3.1.2 One-shot acceleration with curvature-dominated losses

In the special case when−→v //
−→
E//

−→
B , curvature losses dominate. This might be the situation in the

vicinity of neutron stars and black holes. The corresponding maximum energy is

εc =
3

2

1/4 m

q1/4
B1/4R1/2 . (3)

3.2 Diffusive acceleration

In this mechanism the particle is accelerated in bursts, as aresult of its interaction with regions of
high magnetic field intensity, as shown in Figure 4(b). The maximum energy, considering synchrotron-
dominated losses, is [11]

εd ≃ 3

2

m4

q4
B−2R−1 . (4)

Diffusive acceleration, and in particular Fermi acceleration (see next Section) is the preferred accelera-
tion mechanism in bottom-up scenarios of cosmic-ray production.
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Fig. 3: (a) Hillas plot for 1020 eV protons, including energy losses. The thick line is the lower boundary due to
the Hillas criterion. The light grey region is allowed by one-shot acceleration with curvature-dominated losses,
the grey region is allowed by one-shot acceleration with synchrotron-dominated losses, and the dark grey region
is allowed by both one-shot and diffusive acceleration.(b) Same plot for1020 eV iron nuclei. Figures reproduced
from Ref. [11]
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(a) (b)

Fig. 4: (a) One-shot acceleration.(b) Diffusive shock acceleration

(a) (b)

Fig. 5: (a) Second-order Fermi acceleration.(b) First-order Fermi acceleration.

4 Fermi acceleration

4.1 Second-order Fermi acceleration

This first version of the Fermi acceleration mechanism (later dubbedsecond-order acceleration) was
proposed by Enrico Fermi in 1949 [15] and explains the acceleration of relativistic particles by means
of their collision with interstellar clouds. These clouds move randomly and act as ’magnetic mirrors’, so
that the particles are reflected off them, as shown in Figure 5(a).

After some calculations [12,16] it can be shown that the average energy gain per collision is
〈
∆E

E

〉
=

8

3

(v
c

)2
, (5)

wherev and c are the speed of the cloud and of the particle, respectively.The average energy gain
is proportional to(v/c)2: the process is known as “second-order” acceleration owingto the value of
the exponent. If we calculate the average time between collisions, an energy rate can be derived from
Equation (5):

dE

dt
=

4

3

(
v2

cL

)
E = αE, (6)

whereL is the mean free path between clouds, along the field lines. Itis possible to find the energy
spectrumN (E) by solving a diffusion-loss equation in the steady state andconsidering this energy rate,
plus the assumption thatτesc is the characteristic time for a particle to remain in the accelerating region.
In so doing, one finds that

N (E) dE = const.× E1+ 1
ατesc dE . (7)

Even though second-order acceleration succeeds in generating a power-law spectrum, it is not a com-
pletely satisfactory mechanism. First, on account of the observed low cloud density, the energy gain
is very slow. Second, the mechanism fails to explain the observed value of 2.7 for the exponent in the
power-law spectrum: the value of the exponent is determinedby the uncertain value of the combination
ατesc.
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4.2 First-order Fermi acceleration

Before we discuss first-order Fermi acceleration it is convenient to formulate the Fermi mechanism in a
more general and simple way, valid for both the second- and first-order versions. For that purpose, we
define the average energy of the particle after one collisionasE = βE0, with E0 the energy before the
collision, andP as the probability that the particle remains, after one collision, inside the acceleration
region. Aftern collisions, we haveN = N0P

n particles with energiesE = E0β
n. Hence the energy

spectrum results in

N(E)dE = const.× E−1+ lnP
lnβ dE . (8)

It is clear that in this approach, which exhibits the expected power law, the parametersP andβ can be
translated into the ones that were found for the Fermi second-order mechanism, and are also going to be
applied to the first-order one.

The goal of the first-order acceleration mechanism is to obtain an energy gain that is linear in
(v/c), a condition that would make the acceleration process more effective, especially at relatively high
values ofv. This set-up will occur when the relativistic particles collide with strong shock waves (e.g.,
like those produced in supernova explosions, active galactic nuclei, etc.), which can reach supersonic
velocities (103 times the velocity of an interstellar cloud).

Owing to the turbulence behind the shock and the irregularities in front of it, the particle velocity
distribution is isotropic in the frames of reference where the interstellar gas is at rest on either side of the
shock. Consequently, there is a complete symmetry when a high-energy particle crosses the shock from
downstream to upstream or from upstream to downstream; thisis illustrated in Figure 5(b).

In both types of crossing, the particle gains energy. It is possible to show [16] that in a round trip
the average energy gain is given by 〈

∆E

E

〉
=

4

3

(v
c

)
. (9)

Another quantity that must be considered is the particle escape probabilityPesc (equivalent to1 − P )
from the shock. Using kinetic theory, one obtains

Pesc=
4

3

(v
c

)
. (10)

Replacing these two parameters in Equation (8), we get

N (E) dE = const.× E−2 dE . (11)

In spite of not having obtained the observed exponent of 2.7 yet, the first-order mechanism is very
promising, being the most effective and probable one, sinceshock waves are expected to be present in
different astrophysical enviroments. In addition, in contrast to the second-order mechanism, here we find
a fixed numerical value for the exponent.

5 Summary

We have presented a brief review of the mechanisms that couldaccelerate particles up to high energies
(1020 eV) at galactic and extragalactic astrophysical sites. These mechanisms must fulfil a series of
general requirementes, which include geometrical and energetical constraints. Among these, the Hillas
criterion, a geometrical constraint on the size of the acceleration region, is most useful in selecting
potential sources of cosmic rays. We have also presented twogeneral forms of acceleration: one-shot
acceleration, which requires ordered magnetic fields, and diffusive acceleration, in which particles gain
energy by bouncing off random magnetic clouds. The latter type of acceleration includes Fermi shock
acceleration, which correctly predicts a power-law cosmic-ray energy spectrum, albeit with a different
exponent than the one that has been measured. Of the two versions of the Fermi mechanism, the first-
order seems to be the most promising one to explain the ultra-high-energy cosmic-ray flux, even though
it does not manage to predict the observed spectral index.
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Abstract
Higgs mass divergences require Standard Model extensions such as additional
physics or fields. The divergences would be less unnatural for large Higgs
masses. However, the electroweak precision tests (EWPT) indicate that the
Standard Model Higgs is light (mh < 186 GeV). Nevertheless it is possible to
increase the Higgs mass consistent with the EWPT. Here we review how this
could be achieved introducing an extra Higgs doublet that has no couplings to
leptons and quarks nor a vacuum expectation value. New scalar inert particles
are obtained which are good dark matter candidates.

A copy of the slides presented during the oral report at the school can be found at the URL below
http://cern.ch/PhysicSchool/LatAmSchool/2009/Presentations/pDG2.pdf

1 Introduction

Experimental data indicates that the mass of the Standard Model (SM) Higgs boson is light, for instance
the electroweak precision tests (EWPT) indicate thatmh < 186 GeV [1]. If we allow the Higgs to
be heavy (∼ 500 GeV) the introduction of new physics beyond the Standard Model (SM) becomes
necessary in order to fit the EWPT experimental data. In this document we review the Inert Doublet
Model (IDM) [2] as an example for required new physics. In this model an inert doublet scalar is
introduced without vacuum expectation value (vev), nor couplings with the matter.

In Section 2 we summarize some of the consequences allowing aheavy Higgs in the SM (natural-
ness, perturbativity and agreement with the EWPT); in Section 3 we introduce the potential of the IDM
and summarize the constraints on the parameters of the modelmostly given by experimental data of the
EWPT. In section 4 we summarize the possible collider signals for this model, and finally in Section 5
some consequences considering the lightest inert Higgs as apossible dark matter candidate are shown.

2 A heavy Higgs

If we allow for larger Higgs masses in the SM it is natural to wonder how much heavier this mass should
be in order to preserve the physics where the SM remains unchanged. The authors of the IDM asked for a
natural theory up to energies of 1.5 TeV. With this bound the maximum scale at which perturbation theory
is useful must satisfyΛp > 1.5 TeV, whereΛp is defined as the scale where the one-loop correction to
the SM Higgs coupling reaches 30% of the tree-level value. This give us an upper limit on the Higgs
mass. The values forΛp and the Landau pole scaleΛL (where the self-coupling blows up) are shown in
Table 1 for different heavy Higgs masses. These values are calculated considering the renormalization
group flow of the heavy Higgs self-coupling (See Appendix A ofRef. [2] for details).

∗Work performed as a student project under the supervision ofD. Restrepo.
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Table 1: Heavy Higgs perturbativity scaleΛP and Landau poleΛL. Taken from Ref. [2]

mh [GeV] ΛP [TeV] ΛL [TeV]
400 2.4 80
500 1.8 16
600 1.6 7.5

Fig. 1: The Higgs mass value as a function of the parametersS andT . The black region is for a mass between
400 GeV and 600 GeV

The EWPT favours a small Higgs massmh. This is only valid in the absence of new physics in
the SM. We shall focus our discussion on theS andT parameters given in terms ofmh and the Z boson
massmZ by

T ≈ − 3

8π cos2 θW
ln

mh

mZ
(1)

S ≈ 1

6π
ln

mh

mZ
. (2)

Experimental constraints on these parameters impose an upper bound formh (mh < 186GeV) [1].
Thus new physics allowing for a heavy Higgs will add a∆S and a∆T to these parameters. For the IDM
the∆S contributions can be neglected. The new physics contribution toT (in our case the IDM) must
contribute with a positive∆T for the range of Higgs masses given in Table 1. Such contribution must be

∆T ≈ 0.25 ± 0.1 , (3)

in order to get the Higgs massmh = 400—600 GeV inside the 68% CL ellipse (Fig. 1).
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3 The inert doublet model

We now present the IDM and summarize the constraints on its parameters.

The general model is invariant underH2 → −H2 and is given by

V = µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4|H†
1H2|2 +

λ5

2
[(H†

1H2)
2 + h.c.]. (4)

The parity behaviour ofH2 implies that it does not couple to matter.

The physical fields are shown explicitly in the following parametrization:

H1 =

(
φ+

v + (h+ iχ)/
√
2

)
, H2 =

(
H+

(S + iA)/
√
2

)
. (5)

In the IDM onlyH1 couples to matter and acquires a vev, whereasH2 does not. This gives the Standard
Model Goldstone particlesφ+ andχ plus three inert scalars, one chargedH+, and two neutral particles
S,A. Expanding this potential around the minimumH1 = (0, v), H2 = (0, 0) we get the mass
spectrum:

m2
I = µ2

2 + λIv
2, I = {H,S,A} (6)

λH = λ3

λS = λ3 + λ4 + λ5

λA = λ3 + λ4 − λ5 (7)

To get a potentialV bounded from below we obtain the following constraints on the IDM parameters:

λ1,2 > 0 λ3, λL ≡ λ3 + λ4 − |λ5| > −2(λ1λ2)
1/2. (8)

The couplingλ2 only affects the self-interactions between the inert particles and it is assumed to be
small:

λ2 . 1 . (9)

The parameter space can be explored in terms of the four massesmh, mH , mA, mS, the Z mass
(or v), and the quartic couplingsλ2 andλ3. In the SM the EWPT implies a relation betweenmh and
mZ . In this model, there is also a relation among the masses. It follows from the expression for∆T , that
in this

∆T ≈ 1

24π2αv2
(mH −mA)(mH −mS). (10)

Requiring that∆T ≈ 0.25 ± 0.1 the condition found is

(mH −mA)(mH −mS) = M2, M = 120+20
−30 GeV . (11)

HeremH should be either bigger or smaller than bothmS andmA to get a positive contribution toT .
Furthermore, if the lightest inert particle is to be a dark matter candidate, it must be neutral, soH must
be heavier thanmS andmA. It can also be found that∆S . 0.04 for a wide parameter range. So this
contribution may be neglected in the EWPT. The∆T range is controlled by the constraints on theλ’s,
perturbativity and naturalness conditions. The resultingrange is shown in Fig. 2. In this figure it is
apparent that∆T is of the order needed to raise the Higgs mass on a wide region in the parameter space.
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Fig. 2: Maximum and minimum values for∆T allowed by the constraints vs.mL. The grey band shows the∆T

needed to raise the Higgs mass.

4 Signals

The inert particlesS andA could be produced in pairs. The energy necessary for the production is low
enough for these particles to be produced at LEP2 as could happen if, for example,mL ≈ 70 GeV and
∆m is small. Taking∆m ≪ mL and

√
s = 200 GeV, the cross-section for the production of these pairs

is:

σ(e+e− → SA) =

(
g

2cw

)4 (1

2
− 2s2w + 4s−w4

)
1

48πs

(1− 4m2/s)3/2

(1−m2
Z/s)

2
≈ 0.2 pb. (12)

TakingA as the heavier state, this decays intoS plusZ∗.

These pair productions could be obtained at the LHC in the from

pp → W ∗ → HA or HS

pp → Z∗(γ∗) → SA or H+H− , (13)

followed by

H → AW or SW (14)

A → SZ∗. (15)

These new fields could also be detected by measuring the widthof the SM Higgs, which is now increased
because of the existence of new channels:

h → SS,AA,H+H−. (16)

5 Dark matter candidate

The IDM provides a suitable candidate for dark matter (DM). The lightest inert particle (LIP) is stable
given that the parity symmetryH2 → −H2 is respected. In the following we shall discuss some of the
constraints available from data on DM imposed on the parameters of the IDM in order to reproduce the
DM density and to detect it directly.

5.1 Relic abundance

It is useful to distinguish two cases with respect to the massof the LIP in order to take into account the
dominant annihilation rates for it.
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1. mL ≥ mW . This case is interesting since it includes almost the wholeof the range allowed by the
naturalness constraints. The dominant annihilation mode in this regime is into gauge bosons. It
is convenient to consider separately the annihilation intotransverse and longitudinal modes, in the
former the cross-section can be approximated for bigmL as

(σLL→⊥⊥)vrel ≈ 130pb

(
100 GeV

mL

)2

, (17)

while for mL ∼ mW it serves as an order-of-magnitude estimate. With this, we can say that for
mL ∼ mW the cross-section is(σLL→⊥⊥)vrel ≈ 400pb. The longitudinal contribution can be
calculated in terms of annihilation into massless Goldstone bosons [2] and a lower bound for the
total cross-section of 10 pb is obtained. Using these valuesas input for the calculation of DM
abundancesΩDMh2 ≤ 0.02 in the whole range ofmL, decreasing to 0.002 formL ∼ mW . This
density is much lower than the observed one (ΩDMh2 ≈ 0.1). So we can conclude that in this case
the LIP can only provide a subdominant component to the DM.

2. mL < mW . Taking into account the naturalness and EWPT constraints,we can restrict ourselves
to the intervalmL = (60–80) GeV. In spite of the fact that some additional cancellationsin Eq. (6)
are needed to enter in this regime, they are not so restrictive. Below the vector boson production
threshold the dominant process is the coannihilationSA → Z∗ → f̄f , the cross-section is

σvrel = bv2rel (18)

b =

(
g

2cw

)4 ∑
fermions(g

2
V + g2A)

96πm2
L[1−m2

Z/(4m
2
L)]

2
, (19)

where we supposed that∆m ≪ mL. In the range of interestb ≈ (250-60) pb for mL = (60-
80) GeV. Supposing that∆m < T the thermally averaged cross-section is〈σvrel〉 = 6bT/mL.
If we take a temperatureTf = mL/25 and∆m much smaller than it, we get an averaged cross-
section〈σvrel〉 ∼ (60-15) pb formL = (60-80) GeV; using this value, the relic abundance turns
out to beΩDMh2 ≈ (0.5-2.5)×10−2 which is below the observed value. The remaining possibility
to obtain the correct density of dark matter is to take∆m > Tf , with this the density of the heavier
particle is thermally suppressed and the coannihilation rate decreases, given the lower number of
partners available. Naively we can expect in this case that the abundance is increased by a factor
∼ (1/2) exp (∆m/Tf ) with respect to the unsplit case; in this way we can increase the density
to fit the observations and find that∆m ≈ 8 GeV. More elaborate calculations [2] confirm these
estimations and can be used to find the exact behaviour of∆m.

6 Conclusions

We have illustrated one specific extension of the Standard Model where it is possible to have a heavy
Higgs, still compatible with the electroweak precision tests. The extension with an inert Higgs doublet
may also have a proper dark matter candidate.
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Abstract
Many new physics processes, and indeed many Standard Model interactions
involve two-body decays. Although the kinematics are relatively simple, mis-
takes can easily be made when applying cuts to data in order to separate the sig-
nal from backgrounds. We present a short, but relevant list of possible sources
of errors, and discuss the consequences of these.

A copy of the slides presented during the oral report at the school can be found at the URL below
http://cern.ch/PhysicSchool/LatAmSchool/2009/Presentations/pDG3.pdf

1 Introduction
There are many interesting two-body decay processes, including those by which the existence of the
Higgs boson could be confirmed or denied, or where an indication of new physics processes (beyond
the Standard Model) are expected to appear. There are, however, several problems associated with the
analysis of this type of process, which are rarely documented. These mostly stem from the fact that once
cuts start to be made on kinematic variables (for example transverse momentum or pseudo-rapidity of
the decay particles), one may be over-constraining the kinematics, thus biasing the experimental data.

The kinematics of two-body decay processes are covered in Section 2, followed by two examples
of possible actual processes — BS → µ+µ− and H → ZZ∗ → 4 leptons — both of which will be
well within the reach of the LHC, which is due to start taking data in November 2009. The former is the
experimentally simpler of the two analyses, since the final state simply consists of two muons, and the
mass of the BS is well known from data. The Higgs analysis is complicated by the fact that not only is
the mass of the Higgs unknown, but also that the two Z bosons themselves subsequently decay, leaving
four particles in the final state.

Finally, a summary of some of the general problems and common mistakes associated with two-
body decay analyses is made in Section 6, together with examples of common cuts which can adversely
affect the experimental results.
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2 General kinematics
The general kinematics of two-body decay processes of the type A → B + C are best described in the
centre-of-mass frame, where the decaying particle (A) is at rest. Conservation of 4-momentum implies
that B and C are emitted back-to-back, with their 3-momenta being equal and opposite. Furthermore,
Lorentz invariance implies no preferred direction for the final 3-momenta, which is reflected in the ab-
sence of angular dependence in the kinematics. The initial 4-momentum can then be written in the form

pA = (mA,
−→
0 ).

The quantity pA is of course conserved, being equal to the sum of the final momenta pB and pC , where

pB = (EB,
−→pB) pC = (EC ,

−→pC) (1)

with −→pB = −−→pC = −→p . It can then easily be shown that the energies and absolute values of the final
3-momenta of B and C can be expressed in terms of only the invariant masses of the particles.

EB =
m2
A +m2

B −m2
C

2mA

EC =
m2
A −m2

B +m2
C

2mA
(2)

and

|−→p | =
√
E2
B −m2

B =
m2
A − (m2

B +m2
C)

2mA
. (3)

3 Phase space
The phase space for two-body decays is severely constrained, which makes these types of decay concep-
tually easy to treat. Here, we analyse the basic kinematics in the general case. The differential decay rate
of an unstable particle to a given final state in the centre-of-mass frame is [1]

dΓ =
1

2mA

(
Πf

d3pf
(2π)3

1

2Ef

)
|MfA|2 (2π)4δ(4)(pA −

∑
pf ), (4)

where the matrix element MfA is the Feynman amplitude related to the quantum probability of the
process, 2mA is the incoming flux, Ef is the energy of the final-state particle (e.g., EB , EC), pA is the
4-momentum of the decaying particle, pf is the 4-momentum of the final-state particle (pB , pC), and the
δ function accounts for 4-momentum conservation.

For the special case of a two-particle final state, the integration over the phase space takes the
simpler form

∫ (
Πf

d3pf
(2π)3

1

2Ef

)
(2π)4δ(4)(pA −

∑
pf ) =

∫
dΩCM

4π

1

8π

( 2|−→p |
ECM

)
, (5)

where |−→p | is the magnitude of the 3-momentum of either final particle. Finally, in the special case where
particles B and C have the same mass, it can easily be shown that

Γ =
1

2mA

1

8π

2|−→p |
ECM

|MfA|2 . (6)

This expression shows that the phase space is severely constrained in the case of two-body decays. As
will be shown below, this has to be taken into account at the time of performing background cuts to
possible measurements.
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The |MfA|2 factor in all these expressions has to be supplemented by the actual physical process
taking place, and can be computed using the relevant Feynman rules, as will be shown in the following
two important examples.

4 BS → µ+µ−

b-quarks are bound by strong dynamics into colour-neutral hadrons, and the non-perturbative nature of
these states makes the extraction of precision information about physics at high energies problematic. To
explore possible new physics effects it is necessary to untangle them from non-perturbative QCD effects.

This is, as yet, an unsolved problem, and no unique solution exists. Instead, there are a variety of
theoretical approaches and techniques, generally adapted to specific problems. While approaches based
directly on QCD are clearly to be preferred, model-dependent methods are often the only option available
and thus also play an important role. Effective field theories, such as the heavy-quark expansion or chiral
perturbation theory are commonly used too.

These theories are based on the idea that in a given process only certain degrees of freedom may
be relevant to understand the physics involved. This is often the case when kinematical considerations
restrict the momenta of external particles, effectively constraining the momenta of virtual particles as
well.

One can argue that in these cases it makes sense to remove from the theory all intermediate states
of high virtuality. Their absence might be compensated for by introducing new (effective) interactions
between the remaining degrees of freedom. Using this approach one can recover, for example, the Fermi
theory of weak interactions at low energies; starting from the Standard Model Lagrangian and integrating
out the massive gauge vectors.

What makes an effective field theory powerful is that the deviation from the limiting behaviour
may be organized in a systematic expansion in a small parameter, usually related to the scale up to
which the theory makes sense. An effective field theory is then predictive, precisely because it is under
perturbative control.

Many quantities of experimental and phenomenological importance cannot be analysed by these
methods, however, even if these are systematic and well understood. For the description of exclusive
hadronic weak decays, most exclusive semi-leptonic decays, strong decays, fragmentation, and many
other interesting aspects of B-physics, only a few model-dependent approaches are available.

4.1 Theoretical framework
The decays B0

s,d → l+l− are dominated by the Z0 penguin (also called vertical or annihilation penguin)
and box diagrams involving top quark exchanges, as shown in Fig. 1.

Fig. 1: Decay processes contributing to B0
s,d → l+l− in the Standard Model

The effective Hamiltonian for B0
s,d → l+l− decays is given by
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Heff = −4Gf√
2
V ∗
tbVtq [C10Q10 + CSQS + CPQP ] , (7)

where q indicates a strange quark for the B0
s or a down quark in the case of the B0

d .

QS =
e2

16π2
(q̄LαbRα)(l̄l)

QP =
e2

16π2
(q̄LαbRα)(l̄γ5l)

CS and CP are the Wilson coefficients for the Standard Model Higgs penguin, and the would-be neutral
Goldstone boson penguin, respectively. However, these contributions to the amplitude are suppressed by
a factor ofm2

b/M
2
W relative to the main contribution and can be ignored (although it should be noted that

CS and CP can become non-negligible for some extensions of the Standard Model). Thus, the Standard
Model decay amplitude is given by the Wilson coefficient

C10 = −Y (xt)/ sin2 θW = −4.2 , (8)

where

Y (xt) = ηγ · Y0(xt)

Y0(xt) =
x

8

[xt − 4

xt − 1
+

3xt
(xt − 1)2

log xt

]

xt =
m2
t

M2
W

. (9)

Here ηY summarizes the next-to-leading-order correction with ηY = 1.012. Evaluating the hadronic
matrix element, the resulting branching ratio for Bq=s,d is

B(Bq → l+l−) =
G2
Fα

2m2
Bq
τBqf

2
Bq

64π3
| V ∗

tbVtq |2
√

1− 4m2
l

mBq

×
[(

1− 4m2
l

mBq

)
| mBq

mb +mq
CS |2 + | 2ml

mBq

C10 −
mBq

mb +mq
CP |2

]
, (10)

where τBq signifies the Bq lifetime, and fBq is the Bq decay constant normalized according to fπ =
132 MeV. The Standard Model predictions are BR(B0

d → µ+µ−) = 1.02± 0.09× 10−10, BR(B0
s →

µ+µ−) = 3.37 ± 0.31 × 10−9 [2]. The 95% confidence level experimental limits by CDF are B0
d →

µ+µ− < 3.0× 10−8 and B0
s → µ+µ− < 1.0× 10−7 [3].

4.2 Background
There are three main backgrounds to Bs production at the LHC [4]. Misidentified B-mesons provide the
largest contribution, followed by combinatorics from di-muon events. The Bc → J/Ψ(µµ)µνµ process
(which passes the invariant mass cut because the Bc is slightly heavier than the Bs ) is also significant.
Provided the mass resolution of the detector is good enough, decays from other B-mesons can be safely
ignored as background [4].

5 H → ZZ∗ → 4 leptons
The search for the Higgs boson will be one of the primary tasks of the LHC and it has been established
by many studies [5] that a Standard Model Higgs boson can be discovered with high significance at the
LHC, over the full range of mass interest, from the lower limit of 114 GeV up to about 1 TeV.
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The predominant Higgs production mechanism at the LHC will be gluon–gluon fusion, accounting
for approximately 80% of all events (dependent on the Higgs mass). The second largest contribution
comes from the fusion of vector bosons radiated from the initial-state quarks [5]. Production cross-
sections as a function of Higgs mass are shown in Fig. 2 [6].

The H → γγ channel looks to be a promising channel for Higgs masses less than 140 GeV, while
for heavier Higgses the most promising searches involve decays to pairs of vector bosons (W+W−, ZZ).
The only direct fermion decays with significant branching ratios are to bb̄ and to two tau leptons. These
are particularly important channels for a measurement of the Higgs boson coupling to fermions.

For MH > 125 GeV, the four-lepton decay from H → ZZ∗ provides a very clean signature over
a wide mass range (up to 600 GeV) thanks to a combination of a narrow reconstructed mass peak and
relatively low backgrounds. This is particularly true when MH > 180 GeV, where the cross-section for
two on-shell Z bosons opens up.

Furthermore, the H → ZZ∗ → 4l channel is also interesting because it allows for measurements
of the spin of the Higgs to be made, through observations of the angle between pairs of leptons.

The branching ratios for these main decays as a function of Higgs mass are shown in Fig. 3 [6].

Fig. 2: Higgs production cross-section as a function of
MH

Fig. 3: Higgs decay branching ratios for various channels
as functions of MH

5.1 Signal signature
Although theZ bosons from the Higgs can decay to e+e−, µ+µ−, τ+τ−, qq̄ or νe/µ/τ ν̄e/µ/τ , the prefered
final state generally includes electrons and/or muons, since these provide a much cleaner signature. A
Feynman representation of the H → ZZ → 4l process is shown in Fig. 4. In principle, each flavour
contributes to the loop, but as the Higgs couplings to fermions are proportional to the fermion masses,
the top quark is responsible for the dominant contribution.

5.2 Theoretical framework
To compute the decay rate for the process it is necessary to use the corresponding Feynman rules, deduced
from the Standard Model Lagrangian. Here, this corresponds to the right-hand side (H → ZZ) vertex
in Fig. 4. The complex amplitude is given by

iM = 2i
m2
Z

v
gµνεµ(k1)εν(k2) , (11)
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Fig. 4: A Feynman representation of Standard Model Higgs production via gluon fusion, and subsequent decay to
two Z bosons

which implies

|M|2 = 4
m4
Z

v2
εµ(k1)ε

∗
ν(k1)ε

µ(k2)ε
ν∗(k2) , (12)

where εµ(k1) is the polarization vector of the outgoing particle with 4-momentum k1, and v is the vacuum
expectation value of the Higgs field.

When one is not interested in measuring the polarization of the outgoing Z’s, it is useful to exploit
the relationship (valid for massive gauge vectors)

∑

pol

ε∗α(k)εβ(k) = −gαβ +
kαkβ
m2

where m is the mass of the vector boson. After some algebra we obtain

∑

pol

|M|2 = 4
m4
Z

v2

[
2 +

(k1 · k2)2
m4
Z

]
. (13)

Using the general considerations of Section 2 and working in the centre-of-mass frame one can
show that

∑

pol

|M|2 = 4
m4
Z

v2

[
3− m2

H

m2
Z

+
m4
H

4m4
Z

]
. (14)

Finally, taking into account that the Higgs is decaying into two identical particles, and setting
v2 = m2

H/2λ
2), we arrive at

Γ =
λ

2π

m4
Z

m2
H

√
m2
H − 4m2

Z

[
3− m2

H

m2
Z

+
m4
H

4m4
Z

]
. (15)

From this, it can be seen thatmH ≥ 2mZ ∼ 180 GeV for the decay to occur. In these calculations,
it was assumed that both Z bosons were on-shell—a justified simplification considering that the off-shell
contribution for the process is heavily suppressed by the propagators for the virtual particles. Indeed, if
we return to Fig. 3 we see a sharp increase in the H → ZZ branching ratio at around 180 GeV.
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5.3 Background
The dominant background for the H → ZZ → 4l process comes from the irreducible ZZ → 4l
continuum over the full mass range. For smaller Higgs masses, where one of the Z bosons is off-shell,
the leptons have a lower pT [7]. In this region, backgrounds from Zbb̄→ 4l and tt̄→ W+W−bb̄→ 4l
are also significant, but reducible.

Both these backgrounds contain bb̄ pairs which can decay to leptons, thus faking the signal. How-
ever, leptons from the signal should be isolated, whereas those from b-daughters are often accompanied
by hadronic jets. Placing isolation requirements on the electrons and muons should help to reduce the
number of b-daughters which are reconstructed as coming from the Z decay.

A veto on events with a significant amount of missing transverse energy can help to reduce the
contribution from leptonic W decays (from top quark decays) since these are always accompanied by a
neutrino.

6 Analysis cuts and potential pitfalls
To claim a discovery of rare decays like Bs → µ+µ− and H → ZZ, a statistically significant peak in
the mass distribution above the expected background must be identified. The reduction of background
contributions over the full range of the mass interest is therefore crucial. Where the initial mass is
known, the kinematic parameters of the decay are fully constrained and analysis cuts should not be based
on the kinematic variables since this can further constrain the mass peak without necessarily improving
the signal-to-background ratio. Instead, one should aim to base initial selection cuts on non-kinematic
variables. For Bs → µ+µ− such cuts may be based upon

i) Bs impact parameter b or impact parameter significance (see Fig. 5).
ii) Angle between Bs momentum and the direction of primary vertex (PV) to secondary vertex (SV).

iii) To reduce combinatorial background, muons should come from the same SV, so that the mismatch
x between the expected decay length of the Bs and the SV should be small (e.g., cut on secondary
vertex χ2).

iv) The angular distribution of the muons in the rest frame of the Bs should be isotropic. If Θ is the
angle between the PV and SV direction and one-muon momentum this implies that the cos(Θ)
distribution is flat.

All cuts (direct or indirect) on the muon momentum and energy should be avoided as these will bias the
mass distribution. A cut on momentum will remove background that falls outside of the mass peak, but
not within. The ratio between the tails and the amplitude of the mass distribution would therefore appear
to be improved, but any background that happens to be kinematically similar to the signal is not removed.

Cuts on the opening angle of the muons in the rest frame of the Bs will affect the signal in the
same way. This will remove background that is not decaying with an opening angle of 180 degrees, but
one must bear in mind that all two-body decays will behave in the same manner. Again, we observe that
backgrounds kinematically similar to the signal (e.g., Bs to K+K−) are not removed, thus artificially
enhancing the peak in the invariant mass distribution. The same reasoning can be applied to H → ZZ
analysis cuts.

7 Conclusions
We have worked out the general form of two-body decays, and applied it to the study of two important
processes expected to be observed at the LHC. Owing to energy–momentum conservation, the kinemat-
ical magnitudes of the final states are fully fixed, depending exclusively on the mass of the particles and
the energy of the initial particle.
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Fig. 5: Kinematics in the rest frame: where impact parameter b = distance of Bs momentum to primary vertex
(PV), α = angle between Bs momentum and the direction of PV to secondary vertex (SV), d = decay length of Bs,
Θ = angle between the PV and SV direction and one muon momentum, and x = mismatch between SV and d (Bs

decay length)

One of the most important characteristics of these processes is their angular dependence when
observed in the centre-of-mass frame. In this scenario—when the emission of decay particles occurs
back-to-back—severe constraints are imposed on the potential for cleanly separating the signal from
background. In particular, one should note that any cut that depends on either the energies or the 3-
momenta of the final-state particles has the potential to bias results. Furthermore, even when secondary
decays take place, the detected decay products must be isotropically distributed in the centre-of-mass
frame.

Not taking into account these simple considerations when imposing cuts may mean that the wrong
conclusions can be drawn, due to possible enhancement of background noise in the relevant region of
observation.
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