


2 

Leif Mejlbro

Calculus of Residua 
Complex Functions Theory a-2

Download free eBooks at bookboon.com



3 

Calculus of Residua – Complex Functions Theory a-2
© 2014 Leif Mejlbro & bookboon.com
ISBN 978-87-7681-691-9

Download free eBooks at bookboon.com

http://bookboon.com


Calculus of Residua

4 

Contents

Contents
 Introduction  7

1  Power Series  9
1.1  Accumulations points and limes superior 9
1.2  Power series 11
1.3  Expansion of an analytic function in a power series 22
 Some basic power series 24
1.4  Linear differential equations 29
 Existence and Uniqueness Theorems  29
 Practical procedures for solving a linear differential equations of analytical  
	 coefficients		 31
1.5  Zeros of analytical functions 40
1.6  Simple Fourier series 44
1.7  The maximum principle 48

2  Harmonic Functions  55
2.1  Harmonic functions 55
2.2  The maximum principle for harmonic functions 59
2.3  The biharmonic equation 61
2.4  Poisson’s Integral Formula 64

Download free eBooks at bookboon.com



Calculus of Residua

5 

Contents

2.5		 Electrostatic	fields	 67
2.6		 Static	temperature	fields	 69

3  Laurent Series and Residua  71
3.1  Laurent series 71
3.2  Fourier series II 79
3.3  Solution of a linear dierential equation by means of Laurent series 80
3.4  Isolated boundary points 84
3.4.1  Case I, where an = 0 for all negative n 84
3.4.2  Case II, where an	≠	0	for	a	nite	number	of	negative	n 85
3.4.3  Case III, where an	≠	0	for	innitely	many	negative	n 87
3.5  Innity ∞ as an isolated boundary point 89
3.5.1  Case I*, where an = 0 for all positive n 91
3.5.2  Case II*, where an	≠	0	for	nitely	many	positive n 91
3.5.3  Case III*, where an	≠	0	for	innitely	many	positive n 92
3.6  Residua  93
3.7		 Simple	rules	of	computation	of	the	residuum	at	a	(finite)	pole	 94
3.8  The residuum at ∞ 102
3.9  Summary of the Calculus of Residua 106

4  Applications of the Calculus of Residua  111
4.1  Trigonometric integrals  111
4.2  Improper integrals  113

Download free eBooks at bookboon.com



Calculus of Residua

6 

Contents

4.3  Cauchy’s principal value 124
4.4  The Mellin transform  128
4.5  Residuum formulæ for sums of series 133

 Index  139

Download free eBooks at bookboon.com



Calculus of Residua

7 

Introduction

Introduction

We have in Ventus: Complex Functions Theory a-1 characterized the analytic functions by their
complex differentiability and by Cauchy-Riemann’s equation. We obtained a lot of important results
by arguing on line integrals in C. In this way we proved the Cauchy’s Integral Theorem and Cauchy’s
Integral Formula.

In this book we shall follow an alternative approach by proving that locally every analytic function
is described by its Taylor series. Historically this was the original definition of an analytic function,
introduced by Lagrange as early as in 1797. The advantage of this approach is that it is easy to
calculate on series. The disadvantage is that this approach is not global.

By combining the two aspects of analytic functions it is possible in the following to use Cauchy-
Riemann’s equations, when they are most convenient, and series when these give a better description,
so we can benefit from that we have two equivalent, though different theories of the analytic functions.

Complex Functions Theory is here described in an a series and a c series. The c series gives a lot of
supplementary and more elaborated examples to the theory given in the a series, although there are
also some simpler examples in the a series. When reading a book in the a series the reader is therefore
recommended also to read the corresponding book in the c series. The present a series is divided into
four successive books, which will briefly be described below.

a-1 The book Elementary Analytic Functions is defining the battlefield. It introduces the analytic
functions using the Cauchy-Riemann equations. Furthermore, the powerful results of the Cauchy
Integral Theorem and the Cauchy Integral Formula are proved, and the most elementary analytic
functions are defined and discussed as our building stones. The important applications of Cauchy’s
two results mentioned above are postponed to a-2.

a-2 The book Power Series is dealing with the correspondence between an analytic function and
its complex power series. We make a digression into the theory of Harmonic Functions, before
we continue with the Laurent series and the Residue Calculus. A handful of simple rules for
computing the residues is given before we turn to the powerful applications of the residue calculus
in computing certain types of trigonometric integrals, improper integrals and the sum of some not
so simple series. We include a residuum formula for the computation of the Mellin transform of
some simple functions, and finally we show that the sum of some series can also be found easily
by using Complex Functions Theory.

a-3 The book Stability, Riemann surfaces, and Conformal maps is planned to be written soon. It
will start with the connection between analytic functions and Geometry. We prove some classical
criteria for stability in Cybernetics. Then we discuss the inverse of an analytic function and the
consequence of extending this to the so-called multi-valued functions. Finally, we give a short
review of the conformal maps and their importance for solving a Dirichlet problem.

a-4 The book Laplace Transform will be the next one in this series. It will focus on this transform and
the related z-transform, which in some sense may be considered as a discrete Laplace transform.
Both transforms are of paramount importance in some engineering sciences. This book will be
supported by examples in Ventus: Complex Functions Theory c-11.

3

Download free eBooks at bookboon.com



Calculus of Residua

8 

Introduction

a-5 and a-6 Future plans. The plan is then to continue with a book on Polynomials. Contrary to the
common thought, the theory of polynomials is far from trivial. It is important, because polynomials
are always used as the first approximations. Also, the topic Linear Difference Equations is of
interest and far from trivial. However, the latter two books are postponed for a while.

The author is well aware of that the topics above only cover the most elementary parts of Complex
Functions Theory. The aim with this series has been hopefully to give the reader some knowledge of
the mathematical technique used in the most common technical applications.

Leif Mejlbro
17th August 2010
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1 Power Series

1.1 Accumulations points and limes superior

We shall later on need limes superior so we shall recall the definition from Real Calculus.

Let (cn) be any real sequence. An accumulation point c ∈ R of (cn) is a real number, such that for
every ε > 0 there exists an element cn from the sequence, such that |cn − c| < ε, or formally,

∀ ε > 0∃n ∈ N : |cn − c| < ε.

We extend for convenience this definition to also include the following cases, where we consider +∞
(or −∞) as a (generalized) accumulation point of the sequence (cn), if for every constant C > 0 there
is an n ∈ N, such that cn > C (or cn < −C), i.e. formally,

∀C > 0∃n ∈ N : cn > C for + ∞,

∀C > 0∃n ∈ N : cn < −C for −∞.

5
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Example 1.1.1 The sequence

1, −1, 1, −1, 2, −2,
1
2
, −1

2
, 3, −3,

1
3
, −1

3
, . . . , n, −n,

1
n

, − 1
n

, . . . ,

has clearly the accumulation points −∞, 0, +∞. It is not hard to prove that when we include ±∞
as possible accumulation points, then every real sequence has at least one accumulation point. In the
present example we have got three accumulation points. ♦

If (cn) → c for n → +∞, then the limit c is the only accumulation point. When c �= ±∞, we say that
(cn) converges towards c. When c = +∞ or −∞, we say that (cn) diverges towards c. Notice that a
divergent sequence does not necessarily diverge towards +∞ or −∞. Two simple counterexamples are
cn = (−1)n (a bounded, though not convergent sequence with the two accumulation points ±1) and
cn = (−1)nn (an unbounded sequence, where +∞ and −∞ are the two (generalized) accumulation
points).

We mention without proof the converse result.

Theorem 1.1.1 Let (cn) be a real sequence, where (cn) has only one accumulation point c.

1) If c ∈ R, then (cn) converges towards c for n → +∞, i.e. limn→+∞ cn = c.

2) If c = +∞ (or = −∞), then (cn) diverges towards c, i.e. limn→+∞ cn = c.

Example 1.1.2 Usually a real sequence has many accumulation points. A very extreme example is
the following. It is well-known that all rational numbers in the interval [0, 1], say, are countable, so
they can in principle be written as a sequence (qn), qn ∈ Q ∩ [0, 1]. The countable set Q ∪ [0, 1] is
dense everywhere in [0, 1], hence every point in [0, 1] is an accumulation point! ♦

Based on the discussion above we finally introduce

Definition 1.1.1 Let (cn) be a real sequence. Then we define its limes superior, lim supn→+∞ cn, as
the largest accumulation point c of (cn).
If c ∈ R is finite, then for every ε > 0 there are only finitely many n ∈ N, for which cn > c + ε, and
infinitely many n ∈ N, for which c − ε < cn < c + ε.
If c = +∞, then for every C > 0 there are infinitely many n, for which cn > C.
If instead c = −∞, then for every C < 0 only finitely many cn > C.

Similarly, we can define limes inferior lim infn→+∞ cn, as the smallest accumulation point c of the
real sequence (cn), so

lim inf
n→+∞

cn = − lim sup
n→+∞

{−cn} .

However, we shall not need lim infn→+∞ cn in the following.

It should be emphasized that the introduction of limes superior relies heavily on the usual ordering
of R. For complex sequences, limes superior does not make sense at all. We shall only need lim sup
to define the radius of convergence of the complex series in the following, and this only requires the
lim sup of a real sequence.

6
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1.2 Power series

We shall typically deal with power series of the type

(1)
+∞
∑

n=0

an (z − z0)
n

, z ∈ C,

where we in general define a0 (z − z0)
0 in Complex Functions Theory as a0. The coefficients an are

complex numbers, and the expansion point z0 ∈ C is fixed for all terms of (1).

From the symbol (1) we define the corresponding sequential sequence of functions sn = sn(z), given
by

(2) sn = sn(z) =
n

∑

j=0

aj (z − z0)
j
, z ∈ C,

i.e. the n-th element sn(z) is the sum of the first n + 1terms of (1).

Definition 1.2.1 Consider the series (1) with its corresponding sequential sequence (2), and let Ω �= ∅
be an open set. We say that the series (1) converges towards the limit function f(z) for z ∈ Ω, if

lim
n→+∞

sn(z) = lim
n→+∞

n
∑

j=0

aj (z − z0)
j = f(z) for all z ∈ Ω.

The convergence of the series (1) is therefore derived from the corresponding sequential sequence
(2). It must here be emphasized that the sequential sequence sn(z) =

∑n
j=1 aj (z − z0)

j must not be
confused with the sequence (an (z − z0)

n)n∈N0
, which is obtained from (1) by just deleting the sum

sign. Such a misunderstanding may cause some disastrous conclusions.

We mention the well-known result that if a real series of continuous functions
∑+∞

n=0 fn(x) has a
convergent majoring series

∑+∞
n=0 cn < +∞, i.e. all cn ≥ 0 are constants, and |fn(x)| ≤ cn for all

relevant x, then
∑+∞

n=0 fn(x) is absolutely and uniformly convergent, and its sum function is continuous.

We immediately extend this result to complex series of continuous functions, because we have

|�fn(z)|

|�fn(z)|







≤ |fn(z)| ≤ cn and
+∞
∑

n=0

cn < +∞,

and we can use the argument above on the real series
∑+∞

n=0 �fn(z) and
∑+∞

n=0 �fn(z).

We shall now more generally turn to the complexpower series. Given (1), i.e.
∑+∞

n=0 an (z − z0)
n, and

consider the real sequence of the absolute value of the coefficients (|an|). We introduce the number λ
by

(3) (0 ≤) λ := lim sup
n→+∞

n
√

|an| (≤ +∞).

Then we have the following theorem

7
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Theorem 1.2.1 The power series
∑+∞

n=0 an (z − z0)
n is absolutely convergent for every z ∈ C, for

which λ |z − z0| < 1, and divergent for every z ∈ C, for which λ |z − z0| > 1.

Proof.

1) If λ |z − z0| < 1, then

lim sup
n→+∞

n

√

|an (z − z0)
n| < 1.

It follows from the definition of limes superior that we can find a constant k ∈ [0, 1[ and an N ∈ N,
such that

n

√

|an (z − z0)
n| ≤ k, thus |an (z − z0)

n| ≤ kn for all n ≥ N.

Since k ∈ [0, 1[, the sum
∑+∞

n=N kn is convergent, hence
∑+∞

n=0 an (z − zn)n is absolutely convergent
for every such z ∈ C, satisfying λ |z − z0| < 1.

2) If instead λ |z − z0| > 1, then

lim sup
n→+∞

n

√

|an (z − z0)
n| > 1,

so |an (z − z0)
n| > 1 for infinitely many n ∈ N, and the necessary condition, |an (z − z0)

n| → 0,
n → +∞, for the convergence of (1) is not fulfilled. �

It follows from Theorem 1.2.1 that if 0 < λ < +∞, then the power series
∑+∞

n=0 an (z − z0)
n is

absolutely convergent in the open disc B

(

z0 ,
1
λ

)

, and it is divergent in the (open) complementary

set C \ B

[

z0 ,
1
λ

]

of the closed disc B

[

z0 ,
1
λ

]

. It will be shown below in Example 1.2.1 that by the

primitive test of Theorem 1.2.1 alone nothing can be said about the convergence/divergence of the

power series on the circle |z − z0| =
1
λ

, which separates the open domain of convergence from the
open domain of divergence.

For completeness, if λ = 0, then λ |z − z0| = 0 < 1 for all z ∈ C, so the power series is convergent in
all of C, and if λ = +∞, then λ |z − z0| < 1 is only satisfies at the point z0, which is not an open set.

The investigation above leads us to define the radius of convergence of the power series as the number

(4) � :=
1
λ

=
1

lim supn→+∞
n
√

|an|
, 0 ≤ � ≤ +∞.

If � > 0, we call the open disc B (z0, �) = {z ∈ C | |z − z0| < �} the disc of convergence. For conve-
nience we say that B (z0,+∞) = C is “a disc of radius +∞”.

8
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Example 1.2.1 On the circle of convergence |z − z0| = � we do not get further information from
Theorem 1.2.1. We mention with only sketches of proofs the following four (not exhausting) possi-
bilities of convergence/divergence, where we for comparison in all four cases have chosen z0 = 0 and
� = 1.

1) The series
∑+∞

n=1

1
n2

zn is absolutely convergent for |z| = 1.

2) The series
∑+∞

n=1 zn is divergent for |z| = 1.

3) The series
∑+∞

n=1

1
n

zn is divergent for z = 1, and it is conditionally convergent (i.e. the convergence

depends on the order of the terms) for |z| = 1 and z �= 1.

4) For every a ∈ R we let [a] ∈ Z denote the integer part of a, i.e. the largest integer n ∈ Z, for which
n ≤ a. The power series

+∞
∑

n=1

1
n

(−1)[
√

n]zn

is conditionally convergent everywhere on the circle of convergence |z| = 1.

The former two examples are easily proved. In the latter two one has to apply Dirichlet’s criterion,
known from real calculus. This is straightforward in 3), but difficult in 4). ♦

9
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If eventually all an �= 0 (e.g. for n ≥ N), then it is sometimes easier to apply the following result
instead of Theorem 1.2.1.

Theorem 1.2.2 Given a power series
∑+∞

n=0 an (z − z0)
n, where an �= 0 for all n ≥ N . If the quotient

sequence

(5)
(∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

)

n≥N

is convergent, then it has the radius of convergence

(6) � = lim
n→+∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

.

Remark 1.2.1 Notice that (5) may be defined without being convergent, and yet the series may have
� > 0 (which then must be found e.g. by using Theorem 1.2.1 instead). One such example is

+∞
∑

n=0

{2 + (−1)n}n
zn, for � =

1
3
,

where
∣

∣

∣

∣

a2n−1

a2n

∣

∣

∣

∣

=
1

32n
→ 0 and

∣

∣

∣

∣

a2n

a2n+1

∣

∣

∣

∣

= 32n → +∞

for n → +∞. ♦

Proof. We consider the real series
∑+∞

n=0 |an| · |z − z0|n. Let z �= z0, and write

bn = |an| · |z − z0| and λ′ =
1
�′

= lim
n→+∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

,

where we shall prove that �′ = �, or, equivalently, λ′ = λ. We get
∣

∣

∣

∣

bn+1

bn

∣

∣

∣

∣

=
|an+1| · |z − z0|n+1

|an| · |z − z0|n
=

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

· |z − z0| → λ′ |z − z0| for n → +∞.

If λ′ |z − z0| < 1, then choose k, such thatλ′ |z − z0| < k < 1. Due to the convergence there is an
N ∈ N, such that

bn+1

bn
≤ k for all n ≥ n ≥ N,

from which we conclude that

0 < bN+p ≤ k · bN+p−1 ≤ · · · ≤ kp · bN for all p ∈ N,

and since 0 ≤ k < 1, the series

+∞
∑

n=0

bn =
+∞
∑

n=0

|an| · |z − z0|n

10
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is convergent in this case.

If instead λ′ |z − z0| > 1, then choose k, such that

λ′ |z − z0| > k > 1.

There is an N ∈ N, such that

bn+1

bn
≥ k for all n ≥ N,

hence

bN+p ≥ k · bN+p−1 ≥ · · · ≥ kp · bN → ∞ for p → +∞,

and the series
∑+∞

n=0 bn is clearly divergent in this case.

The uniquely determined number λ′ satisfies the same condition as λ in Theorem 1.2.1, hence λ′ = λ,
and thus �′ = �. �

Example 1.2.2 Important! The simplest example of a power series, which is not a polynomial, is
the geometric series

+∞
∑

n=0

zn.

In this case, all an = 1, so λ = lim supn→+∞
n
√

|an| = 1, and � =
1
λ

= 1 and z0 = 0. Thus, the

geometric series is absolutely convergent, if |z| < 1 and divergent for |z| ≥ 1, because then |z|n ≥ 1
for all n ∈ N and the necessary condition of convergence is not fulfilled in this case.

The geometric series is important, because it in some sense is the prototype of all power series of
finite radius of convergence. We shall therefore find its sum function in the open disc |z| < 1.

More precisely, we claim that the sum function is

f(z) =
1

1 − z
for |z| < 1.

In fact, by the usual algorithm of division we obtain

f(z) =
1

1 − z
= 1 + z + z2 + · · · + zn +

zn+1

1 − z
for |z| < 1.

The corresponding sequential sequence is given by

sn(z) = 1 + z + z2 + · · · + zn,

and we see that

(7) |f(z) − sn(z)| =
∣

∣f(z) −
{

1 + z + z2 + · · · + zn
}∣

∣ =
∣

∣

∣

∣

zn+1

1 − z

∣

∣

∣

∣

≤ |z|n+1

1 − |z| .

11
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Now,
|z|n+1

1 − |z| → 0 for n → +∞, when |z| < 1 is kept fixed. It therefore follows from (7) that

(8)
1

1 − z
=

+∞
∑

n=0

zn, pointwise for |z| < 1.

Let K ⊂ B(0, 1) be any compact set of the open unit disc. There is an r ∈ [0, 1[, such that also
K ⊆ B[0, r]. Then we conclude from (7) for all z ∈ K that

|f(z) − sn(z)| =
∣

∣f(z) −
{

1 + z + z2 + · · · + zn
}∣

∣ ≤ rn+1

1 − r
→ 0 for n → +∞,

so the convergence is uniform over every compact subset K of B(0, 1). Then f ′(z) can be found by
Theorem 3.4.2 in Ventus: Complex Functions Theory a-1 by termwise differentiation, i.e.

1
1 − z

=
+∞
∑

n=0

zn,
1

(1 − z)2
=

+∞
∑

n=1

n zn−1 =
+∞
∑

n=0

(n + 1)zn,

2
(1 − z)3

=
+∞
∑

n=2

n(n − 1)zn−2 =
+∞
∑

n=0

(n + 2)(n + 1)zn,

etc. for |z| < 1, so the coefficients of
k!

(1 − z)k+1
are polynomials of degree k in n. This implies that

if a series is given by polynomial coefficients

pk(n) = aknk + · · · + a1n + a0, for all n ∈ N0,

then the sum function of
∑+∞

n=0 pk(n)zn in B(0, 1) is a linear combination of

1
1 − z

,
1

(1 − z)2
,

2
(1 − z)3

, . . . ,
k!

(1−z)k+1
. ♦

Theorem 1.2.3 Let f(z) =
∑+∞

n=0 anzn and g(z) =
∑+∞

n=0 bnzn be two power series with the same
expansion point z0 = 0, and assume that they are both absolutely convergent for |z| < r. Then the
power series of their sum is given by

(9) (f + g)(z) = f(z) + g(z) =
+∞
∑

n=0

(an + bn) zn at least for |z| < r.

In some cases, (9) may be convergent in an even larger disc.

The easy proof is left to the reader. That the sum may be convergent in a larger disc can be seen
from the following example, where we choose

f(z) =
+∞
∑

n=0

zn and g(z) = −
+∞
∑

n=0

zn both convergent only for |z| < 1.

12
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Clearly,

(f + g)(z) = f(z) + g(z) =
+∞
∑

n=0

0 · zn = 0 for all z ∈ C.

Note that we have only proved that f + g ≡ 0 in the disc |z| < 1, but the strong property of being
analytic implies that 0 is the unique analytic continuation to the largest possible set C. This shows
that if we only argue on series and the situation is not as clear cut as the above, then we could get
into some situations, where Cauchy-Riemann’s equations would be better to apply.

The following theorem is difficult to apply in practice, and the unexperienced reader should avoid to
use it. We shall, however, later on need a part of the proof, and it is furthermore quite naturally
to show a theorem on multiplication, once we have obtained Theorem 1.2.3. Therefore, the reader
should check the proof and is at the same time warned against using Theorem 1.2.4 in practice. Such
applications are only for very skilled persons.

13
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Theorem 1.2.4 Let f(z) =
∑+∞

n=0 anzn and g(z) =
∑+∞

n=0 bnzn be as in Theorem 1.2.3, i.e. z0 = 0,
and they are both absolutely convergent for z < r. Then their product f · g has also a power series,
and this is given by Cauchy multiplication,

(10) (f · g)(z) = f(z) · g(z) =
+∞
∑

n=0

cnzn,

where the coefficients cn are given by the discrete convolution of the sequences (an) and (bn), which
is defined by

(11) cn :=
n

∑

k=0

akbn−k, for n ∈ N0.

Proof. It is given that

lim sup
n→+∞

n
√

|an| =
1
�1

≤ 1
r

and lim sup
n→+∞

n
√

|bn| =
1
�2

≤ 1
r
,

so �1, �2 ≥ r. Choose any 0 < s < r. There exists a constant C = Cs only depending on s, such that

|an| ≤
C

sn
and |bn| ≤

C

sn
.

We shall first estimate (11),

|cn| ≤
n

∑

k=0

|ak| |bn−k| ≤
n

∑

k=0

C

sk
· C

sn−k
=

C2

sn

n
∑

k=0

1 =
(n + 1)C2

sn
,

so

n
√

|cn| ≤
1
s

n
√

n + 1 · n
√

C2,

where limn→+∞
n
√

n + 1 · n
√

C2 = 1, so we conclude that

lim sup
n→+∞

n
√

|cn| ≤
1
s
.

This holds for all s < r, so we also have

lim sup
n→+∞

n
√

|cn| ≤
1
r
,

and the series of the right hand side of (10) is indeed absolutely convergent for |z| < r, hence

(12)
+∞
∑

n=0

n
∑

k=0

|ak| · |bn−k| · |z|n

is convergent for |z| < r.
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We note formally, if we collect the terms according to their power that

f(z) · g(z) =
+∞
∑

j=1

ajz
j ·

+∞
∑

m=0

bmzm =
+∞
∑

j=0

+∞
∑

m=0

ajbmzj+m

=
+∞
∑

n=0

{

n
∑

k=0

akbn−k

}

zn =
+∞
∑

n=0

cnzn,

and (12) shows that this formal series is absolutely convergent for |z| < r.

We shall now prove that the cn given by (11) in reality gives the right series expansion of the product,
and not just formally.

We put

fN (z) = a0 + a1z + · · · + aNzN and gN (z) = b0 + b1z + · · · + bNzN .

Let |z| < r. Then clearly,

f(z) = lim
N→+∞

fN (z) and g(z) = lim
N→+∞

gN (z).

We have

(13) |(fg)N (z) − fN (z)gN (z)| ≤
+∞
∑

n=N+1

n
∑

k=0

|ak| · |bn−k| · |z|n,

because all terms of degree ≤ N have disappeared on the left hand side, and no term from (fg)N (z)
enters the right hand side.

Due to (12), for fixed z, |z| < r, and every ε > 0 there is an N0 ∈ N, such that the right hand side of
(13) is smaller than ε for every N > N0. This shows that

f(z)g(z) = lim
N→+∞

fN (z)gN (z) = lim
N→+∞

(f · g)N (z) = (f · g)(z). �

The following important theorem contains a lot of information, much more than one would guess at
a first glance.

Theorem 1.2.5 Let
∑+∞

n=0 an (z − z0)
n be a power series of radius of convergence � > 0. Then the

power series is uniformly convergent on every compact subset K ⊂ B (z0, �). The sum function

(14) f(z) =
+∞
∑

n=0

an (z − z0)
n

, for z ∈ B (z0, �)

is analytic in B (z0, �), and the derivative f ′(z) is obtained by termwise differentiation

(15) f ′(z) =
+∞
∑

n=1

nan (z − z0)
n−1

, for z ∈ B (z0, �) .

The sum function is differentiable of any order p ∈ N with e.g. its derivative of order p given by

(16) f (p)(z) =
+∞
∑

n=p

n(n − 1) · · · (n − p + 1)an (z − z0)
n−p

, for z ∈ B (z0, �) .

15
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Proof. Assume that K ⊂ B (z0, �) is compact, i.e. K is closed and B (z0, �) is open. Hence, there is
an r ∈ [0, �[, such that K ⊆ B [z0, �]. Then

lim sup
n→+∞

n
√

|an| =
1
�

<
1
r
,

and it follows in exactly the same way as in the proof of Theorem 1.2.4 that there is a constant C = Cs

corresponding to s ∈ ] r, � [, such that

|an| ≤
C

sn
for all n ∈ N.

If z ∈ K, then we get the estimate
∣

∣

∣

∣

∣

+∞
∑

n=0

an (z − z0)
n

∣

∣

∣

∣

∣

≤
+∞
∑

n=0

C

sn
· rn = C

+∞
∑

n=0

{r

s

}n

= C · s

s − r
,

because 0 ≤ r/s < 1, so the latter series is convergent, and its sum is independent of the choice of
z ∈ K , proving the uniform convergence.

It follows from Corollary 3.4.3 in Ventus: Complex Functions Theory that (14) represents an analytic
function of derivative (15). Finally, (16) is obtained by p successive termwise differentiations. �

A very simple application of Theorem 1.2.5 with an unexpectedly large effect is to put z = z0 into
(16), in which case we only get a contribution from the term n = p. Thus,

(17) f (p) (z0) = p! ap, i.e. ap =
1
p!

f (p) (z0) .

Then by insertion of (17) into (14) we get

f(z) =
+∞
∑

n=0

1
n!

f (n) (z0) · (z − z0)
n

, for z ∈ B (z0, �) ,

and we have proved

Corollary 1.2.1 Let f(z) be the sum function of a power series
∑+∞

n=0 an (z − z0)
n of radius of con-

vergence � > 0. Then f(z) is given by its Taylor series, expanded from the centre z0, in B (z0, �),
i.e.

(18) f(z) =
+∞
∑

n=0

1
n!

f (n) (z0) · (z − z0)
n

, for z ∈ B (z0, �) .

It follows immediately from Corollary 1.2.1 that we have

Theorem 1.2.6 The Identity Theorem. Assume that the two power series

+∞
∑

n=0

an (z − z0) and
+∞
∑

n=0

An (z − z0)
n

,

expanded from the same point z0 have positive radii of convergence and share the same sum function
f(z) in their common domain. Then the two series are identical, i.e. an = An for all n ∈ N.

16
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Proof. This follows directly from (17), because

an =
1
n!

f (n) (z0) = An. �

Then we turn to the indefinite integrals.

Theorem 1.2.7 Let f(z) be the sum function of a power series
∑+∞

n=0 an (z − z0)
n, expanded from z0

and of radius of convergence � > 0. The indefinite integral F (z) of f(z), for which also F (z0) = 0 ,
is in the disc B (z0, �) given by the termwise integrated series

(19) F (z) =
+∞
∑

n=0

1
n + 1

an (z − z0)
n+1

.

Proof. It follows from the definition (4) that

lim sup
n→+∞

n

√

∣

∣

∣

∣

an

n + 1

∣

∣

∣

∣

= lim sup
n→+∞

{

1
n
√

n + 1
· n
√

|an|
}

= lim sup
n→+∞

n
√

|an| =
1
�
,

so the series of F (z) and f(z) have the same radius of convergence � > 0. They are both expanded
from the same point z0, and it follows from Theorem 1.2.5 that F ′(z) = f(z), and the claim is proved.
�
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Referring to Theorem 3.3.5 of Ventus: Complex Functions Theory a-1 we conclude that every indefinite
integral f(z) in B (z0, �) has the structure F (z) + c for some uniquely determined constant c ∈ C. �

Example 1.2.3 Using Theorem 1.2.7 on the geometric series
∑+∞

n=0 zn for |z| < 1 it follows that the

indefinite integral F (z) of
1

1 − z
in this disc, for which F (0) = 0, is given by

F (z) =
+∞
∑

n=0

1
n + 1

zn+1 =
+∞
∑

n=1

1
n

zn.

On the other hand,

G(z) := Log
(

1
1 − z

)

= −Log(1 − z) for |z| < 1,

is also analytic in this disc, and we have

G′(z) =
1

1 − z
= f(z).

Hence, G(z) is also an indefinite integral of f(z), so G(z) = F (z) + c for some c ∈ C. Finally we see
that F (0) = G(0) = 0, so c = 0, and we have proved another important result,

(20) Log
(

1
1 − z

)

= − Log(1 − z) =
+∞
∑

n=1

1
n

zn, for |z| < 1. ♦

We shall emphasize in this Ventus: Complex Functions Theory series that one must always specify the
domain of convergence of a series, because otherwise one could easily jump to very wrong conclusions.
It is of course legal to try to find a formal solution of a problem, but once a formal series solution
has been found, one should immediately find the domain of validity, outside which the result is not
reliable.

1.3 Expansion of an analytic function in a power series

We proved in Section 1.2 that the sum function f(z) of a power series expansion from z0 and of radius
of convergence � > 0 is analytic in B (z0, �) and that f(z) in B (z0, �) is given by its Taylor series
expanded from the center z0 of the disc. Furthermore, Theorem 3.4.2 of Ventus: Complex Functions
Theory a-1 showed that every analytic function is infinitely often (complex) differentiable.

Remark 1.3.1 The situation is different for real functions in C∞(R), because far from all of them
can be extended to an analytic function by “just writing z ∈ C instead of x ∈ R”, a wrong statement
which is frequently met. It is possible and even not too difficult to construct a real C∞ function which
cannot at any point x0 ∈ R be extended to an analytic function in any complex neighbourhood of
x0 ∈ R. We shall give an example in Remark 1.3.2 where this phenomenon occurs in one point, from
which this general result can be derived by some advanced, though standard mathematical procedure.
♦
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We shall now show a converse result, namely that every analytic function locally is a sum function of
a power series. Once we have proved this result, we have shown that every analytic function can be
treated either by Cauchy-Riemann’s equations, or by local power series.

Theorem 1.3.1 Let f : Ω → C be an analytic function in an open domain Ω, and let z0 ∈ Ω be any
fixed point. The Taylor series of f(z) expanded from z0 is convergent in (at least) the largest open
disc B (z0, �) ⊂ Ω of centre z0. In B (z0, �) the sum function of the Taylor series is f(z), thus

(21) f(z) =
+∞
∑

n=0

1
n!

f (n) (z0) · (z − z0)
n for all z ∈ B (z0, �) .

Proof. It follows from Cauchy’s inequalities, cf. Ventus: Complex Functions Theory a-1, Theo-
rem 3.4.5, that

∣

∣

∣f (n) (z0)
∣

∣

∣ ≤ Mr · n!
rn

for every n ∈ N0 and r ∈ ]0, �[,

where

Mr = max{|f(z)| | |z − z0| = r}.

If Mr = 0, then the Taylor series is the zero series, which of course is convergent.

If Mr > 0, then the radius of convergence of the Taylor series is at least

lim
n→+∞











n!
Mrn!
rn











1
n

= r · lim
n→+∞

1
n
√

Mr

= r.

This holds for every r ∈ ]0, �[, so we conclude that the Taylor series of f(z) has at least � as radius of
convergence.

Choose any r ∈ ]0, �[ and any point z ∈ B (z0, r). Then |z − z0| < r, so if ζ lies on the circle
|ζ − z0| = r, then we have the estimate

∣

∣

∣

∣

∣

+∞
∑

n=0

(z − z0)
n

(ζ − z0)
n+1

∣

∣

∣

∣

∣

≤ 1
r

+∞
∑

n=0

{ |z − z0|
r

}n

=
1

r − |z − z0|
,

from which follows that the series
∑+∞

n=0

(z − z0)
n

(ζ − z0)
n+1 is uniformly convergent in ζ for |ζ − z0| = r.

Using (95) of Theorem 3.4.2 of Ventus: Complex Functions Theory a-1 we get

f (n) (z0) =
n!
2πi

∮

|ζ−z0|=r

f(ζ)
(ζ − z0)

n+1 dζ for n ∈ N0.
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Insert the Taylor series, then interchange summation and integration followed by a reduction and then
finally apply Cauchy’s integral formula to get

+∞
∑

n=0

1
n!

f (n) (z0) · (z − z0)
n =

+∞
∑

n=0

1
2πi

∮

|ζ−z0|=r

f(ζ)
(ζ − z0)

n+1 dζ · (z − z0)
n

=
1

2πi

∮

|ζ−z0|=r

f(ζ)
+∞
∑

n=0

(z − z0)
n

(ζ − z0)
n+1 dζ =

1
2πi

∮

|ζ−z0|=r

f(ζ) · 1
ζ − z0

· 1

1 − z − z0

ζ − z

dζ

=
1

2πi

∮

|ζ−z0|=r

dζ = f(z).

Finally, notice that to every z ∈ B (z0, �) we can choose r < �, such that z ∈ B (z0, r), where the
computation above is valid, and the theorem is proved. �

Some basic power series.

It follows from Theorem 1.3.1 that all known real Taylor series are immediately extended to complex

Taylor series, because the Taylor series only depends on its sequence of coefficients,
{

1
n!

f (n) (z0)
}

,

derived by differentiation. We therefore get the complex Taylor functions of the following well-known
functions. The reader is highly recommended to learn all these by heart, as the appear over and over
again in the following, as well as in applications outside these books.

1) exp z =
∑+∞

n=0

1
n!

zn, z ∈ C,

2) cos z =
∑+∞

n=0

(−1)n

(2n)!
z2n, z ∈ C,

3) sin z =
∑+∞

n=0

(−1)n

(2n + 1)!
z2n+1, z ∈ C,

4) cosh z =
∑+∞

n=0

1
(2n)!

z2n, z ∈ C,

5) sinh z =
∑+∞

n=0

1
(2n + 1)!

z2n+1, z ∈ C,

6) Log(1 + z) =
∑+∞

n=0

(−1)n

n + 1
zn+1, |z| < 1,

7) (1 + z)α :=
∑+∞

n=0

(

α
n

)

zn, |z| < 1, α ∈ C,

8)
1

1 − z
=

∑+∞
n=0 zn, |z| < 1.

Formula 7) is strictly speaking the definition of what later is called the principal value of the (usually)
multiply defined function (1 + z)α. If α = n ∈ N0, then (1 + z)n is of course a polynomial instead, so
it is uniquely defined for z ∈ C, and not multiply defined in this exceptional case.
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The Taylor series 1)–5) are found by means of Theorem 1.3.1, because it is in all these cases easy to
find f (n)(0).

Formula 6) is obtained from (20) by writing −z instead of z and then change sign. We notice that
Log(1 + z) itself is defined in the open domain Ω = C\] −∞,−1], so the largest open disc contained
in Ω of centre 0 is B(0, 1).

10–1

Figure 1: The domain of the Taylor series of Log(1 + z) expanded from z0 = 0 is the open unit disc.

Formula 7) is here considered as a definition of the principal value of (1 + z)α, where we define the
general binomial coefficients by

(

α
n

)

=
α(α − 1) · · · (α − n + 1)

n!
, α ∈ C, n ∈ N0,

with n factors in both the numerator and the denominator. Notice that if α = n ∈ N0, then the series
of (1 + z)n is a polynomial of degree n, and the domain is all of C.

Remark 1.3.2 Again the situation is different in the real case, C∞(R). It is not hard to construct
a real ϕ ∈ C∞(R) and a corresponding point x0 ∈ R, such that the (real) Taylor series of ϕ(x) is
convergent everywhere in R, and such that

ϕ(x) �=
+∞
∑

n=0

ϕ(n) (x0) · (x − x0)
n for every x ∈ R \ {x0} .

One simple example of such a function is

ϕ(x) =















exp
(

− 1
|x|

)

for x ∈ R \ {0},

0 for x = 0.

Clearly, ϕ(x) is C∞ outside x = 0, and for x = 0 we use the definition of a converging sequence of dif-
ference quotients and one of the rules of magnitudes of functions (exponentials dominate polynomials)
to prove that

ϕ(x) − ϕ(0)
x − 0

=
1
x
· exp

(

− 1
|x|

)

→ 0 for x → 0,
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and then by induction also for higher derivatives to get ϕ(n)(0) = 0 for all n ∈ N0. In all cases we get
ϕ(n)(0) = 0. Thus, the Taylor series is the zero series, and it is obvious that ϕ(x) > 0 for x �= 0. ♦

Theorem 1.3.1 shows that if a function f(z) is analytic in the disc B (z0, r), then the function f(z)

is in this set alone given by the sequence
{

1
n!

f (n) (z0)
}

n∈N0

. This sequence is sometimes called the

germ of the analytic function f(z) in B (z0, r) expanded from z0.

Remark 1.3.3 From an application point of view it is strange that an analytic map f(z) is uniquely

determined in a whole disc B (z0, r), if we just know its germ
{

1
n!

f (n) (z0)
}

n∈N0

at the centre z0.

This is again a warning to the reader that the analytic functions may be easy to handle in practice,
but they have there limitations, and they cannot provide us with a universal model of the real world.
In particular, it is annoying that they can never directly describe causality. ♦
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Remark 1.3.4 The real function f(x) =
1

1 + x2
, x ∈ R, is of class C∞(R). However, its Taylor

series,

f(x) =
1

1 + x2
=

+∞
∑

n=0

(

−x2
)n

=
+∞
∑

n=0

(−1)nx2n,

is only convergent for |x| < 1. This looks like an enigma, as long as we only consider x ∈ R.

i

-i

Figure 2: The largest open disc of centre 0 not containing the two singularities ±i.

In the complex plane we see that f(x) is a real rational function, so it is uniquely extended to the
analytic function

f(z) =
1

1 + z2
, for z ∈ C \ {±i} = Ω.

The largest open disc contained in Ω ⊂ C of centre 0 is B(0, 1), so in the complex plane we see why
the radius of convergence is only 1, when z0 = 0. The complex singularities ±i have therefore a
profound influence on the convergence of a real Taylor series. This strange phenomenon has puzzled
many students, who had no knowledge of Complex Functions Theory. ♦

We finally prove

Theorem 1.3.2 Weierstraß’s Double Series Theorem. Let {gn(z)}n∈N0
be a sequence of functions

which are all analytic in the same disc B(0, �). Assume that the series

f(z) =
+∞
∑

n=0

gn(z)

is uniformly convergent in every smaller closed disc B[0, r], r < �. Then we obtain the power series
of f(z) by first expanding all the gn(z) and then collect all terms of the same power of z.
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Proof. It follows already from Corollary 3.4.3 of Ventus: Complex Functions Theory a-1 that f(z)
is analytic in B(0, �) and that

(22) f (p)(0) =
+∞
∑

n=0

g(p)
n (0).

Hence, for z ∈ B(0, �),

f(z) =
+∞
∑

p=0

1
p!

f (p)(0) zp =
+∞
∑

p=0

{

+∞
∑

n=0

1
p!

g(p)
n (0)

}

zp �

Example 1.3.1 Clearly

cos z =
+∞
∑

n=0

(−1)n

(2n)!
z2n, for z ∈ C,

is continuous, so there is a � > 0, such that

|1 − cos z| < 1 for z ∈ B(0, �).

If we put

gn(z) := (1 − cos z)n,

then we can in principle find the power series of gn(z) by Cauchy multiplication. Choosing r < � we
get in B(0, r) that

1
cos z

=
1

1 − (1 − cos z)
=

+∞
∑

n=0

(1 − cos z)n =
+∞
∑

n=0

gn(z),

so using (22) we can in principle find the Taylor coefficients of
1

cos z
, i.e. its germ. We therefore obtain

a power series expansion of
1

cos z
in the disc B(0, r).

We shall not go into details with the sketch above, because the computations are fairly big and

extremely tedious. We shall, however, point out the following unexpected result: Since
1

cos z
is

analytic in the set C \
{ π

2
+ pπ

∣

∣

∣ p ∈ Z
}

, it follows from Theorem 1.3.1 that the Taylor series is

convergent in the disc B
(

0 ,
π

2

)

. This is far from trivial, because

∣

∣

∣
cos

(π

2
i
)

− 1
∣

∣

∣
>

3
2

> 1, for all z ∈ B(0, �).

It follows by the continuity that the chosen � above, which was used to compute the Taylor series,
must satisfy the inequality � <

π

2
, and yet the final domain of the Taylor series constructed on B(0, �)

is the larger set B
(

0 ,
π

2

)

. ♦
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1.4 Linear differential equations

One of the big issues of the theory of power series is the solution method of finding an analytic solution
of a linear differential equation with polynomial coefficients.

Existence and Uniqueness Theorems.

We start with the following theorem of existence and uniqueness of the solution.

Theorem 1.4.1 Let Ω be an open subset of C, and let a0(z), . . . , an(z) and g(z) be analytic functions
in Ω. Let z0 ∈ Ω be a point for which a0 (z0) �= 0.
For any given complex numbers c0, c1, . . . , cn−1, there exists one and only one function f(z), which
is analytic in a neighbourhood ω of z0, such that

(23) a0(z)
dnf

dzn
+ · · · + an−1(z)

df

dz
+ an(z)f(z) = g(z) for all z ∈ ω,

and such that

(24) f (z0) = c0, f ′ (z0) = c,, . . . , f (n−1) (z0) = cn−1.

One may choose ω as the largest open disc B (z0, �) ⊆ Ω, which does not contain any zero of a0(z).

Sketch of proof. The equation is only considered in B (z0, �), where a0(z) �= 0. To ease matters
we norm the differential equation (23), which means that we divide it by a0(z), so that the coefficient
of the highest order term is a0(z) = 1.

First assume that f(z) is indeed a solution in B (z0, �). Let 0 < r < �. By Cauchy’s inequalities (cf.
Theorem 3.4.5 of Ventus: Complex Functions Theory a-1 ) there exists a constant Mr, such that for
all j = 1, . . . , n, and all k ∈ N0,

(25)
∣

∣

∣
a
(k)
j (z0)

∣

∣

∣
≤ Mrk!

rk
and

∣

∣

∣
g(k) (z0)

∣

∣

∣
≤ Mrk!

rk
.

Using that a0(z) = 1 we get by a rearrangement of (23) that

f (n)(z) = g(z) −
n−1
∑

j=1

an−j(z) f (j)(z),

thus by k differentiations,

(26) f (n+k)(z) = g(k)(z) −
n−1
∑

j=1

k
∑

q=0

(

k
q

)

a
(k−q)
n−j (z) f (j+q)(z).

Using that

f (z0) = c0, f ′ (z0) = c1, . . . , f (n−1) (z0) = cn−1,

are given, we find f (p) (z0) for all p ∈ N0.

It follows that if an analytic solution exists, then it must be unique, because its Taylor coefficients
are uniquely determined.
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It is seen by insertion of the formal Taylor series into (23) that if the series is convergent, then it must
be a solution.

The difficult part is to prove the existence. The idea is again to apply Cauchy’s inequalities. We
assume that

(27)
∣

∣

∣f (q) (z0)
∣

∣

∣ ≤ Cq ·
q!
rq

for q = 0, 1, . . . , n + p − 1,

where the Cq are given constants. Then proceed in the following way (the complicated proof is left to
the interested reader). Put (25) and (27) into (26) to find constants Cn+p as small as possible, such
that

(28)
∣

∣

∣f (n+p) (z0)
∣

∣

∣ ≤ Cn+p · (n + p)!
rn+p

.
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The sequence (Cq) is clearly increasing. What is more important, however, is that it is bounded
from above. (The difficult proof is left to the interested reader.) Hence, there exists a function C(r),
depending on r < �, such that

∣

∣

∣f (n) (z0)
∣

∣

∣ ≤ C(r) · n!
rn

for all n.

Then it follows from Cauchy’s inequalities that the Taylor series in convergent in B (z0, r).

This procedure can be performed for every r < �, so we conclude that the Taylor series is convergent
in at least the disc B (z0, �), and the existence follows. �

Remark 1.4.1 It should be mentioned that the Taylor series in some cases (though not in all) can
be extended over (some of) the zeros of the coefficient a0(z), in which case the radius of convergence
of the Taylor series becomes larger than �. ♦

Corollary 1.4.1 Every linear and homogenous differential equation (23) with g(z) ≡ 0 and of analytic
coefficients has in a neighbourhood ω of every point z0 ∈ Ω for which a0 (z0) �= 0, precisely n linearly
independent solutions.

Proof. This follows immediately from the fact that every solution is uniquely determined by the n
constants c0, c1, . . . , cn−1 of (24). �

Practical procedures for solving a linear differential equations of analytical coefficients.

In this subsection we shall in some examples demonstrate three standard procedures os solving a linear
differential equation of analytical coefficients. These are

1) Inspection

2) Calculation of the germ
{

f (n) (z0)
}

n∈N0

3) Method of power series.

Of these, inspection is the most difficult one. However, when it succeeds, it is also the most elegant
method. It requires some skill in manipulation.

The method of calculation of the germ may not always be applicable, but when it succeeds, it is
usually straightforward.

The method of power series is the most commonly used method, because it is easy to understand,
and for the novice it is felt as the procedure. Shortly described, one inserts a formal power series
f(z) =

∑+∞
n=0 bn (z − z0)

n into (23), where the constants bn are the unknowns. Collecting the terms
of the same power of the result we obtain a recursion formula (or a difference equation) in the bn,
which then is solved.

Finally – and this is very important – the constructed series is still formal, so we must always finish
the task by computing the radius of convergence. In fact, the formal series may in some cases be
divergent for every z with the exception of the expansion point z0 itself, because � = 0.
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Referring to Theorem 1.4.1 we see that � = 0 is possible, when a0 (z0) = 0, in which case we cannot
conclude anything about the existence of a convergent power series solution. One may insert a formal
series and obtain a result, but then we must check if it has a positive radius of convergence.

Remark 1.4.2 We mention without proof that the zeros of a0(z) determine all the possible radii
of convergence, so one can by knowing these make a qualified guess of �, which is either one of the
numbers |zj |, where the zj are all the zeros of a0(z), or +∞. Note also, that the number of zeroes
could be infinite, e.g. for a0(z) = sin z, cos z, sinh z or cosh z. ♦

Example 1.4.1 We shall demonstrate the three methods on the simple equation

(29) f ′(z) − f(z) = 0.

First we see that according to Corollary 1.4.1 there is, apart from a constant factor, just one solution.

Then use Remark 1.4.2. Since a0(z) ≡ 1 does not have any zeros in C, we may expect that the radius
of convergence is � = +∞, which by Remark 1.4.2 is the only possibility.

First method, inspection. By checking our arsenal of known common analytic functions we imme-
diately see that

d

dz
ez = ez,

so f(z) = ez satisfies the differential equation (29). We therefore conclude by the beginning of this
example that the complete solution is given by

(30) f(z) = c · ez, c ∈ C.

Variant of the first method. We may instead multiply (29) by a so-called integrating factor. By
this method we shall use the well-known rules of calculations,

(31) f ′(z) · g(z) + f(z) · g′(z) =
d

dz
(f · g) and f ′(z) · g(z) − f(z) · g′(z) = {g(z)}2 d

dz

(

f

g

)

,

in the apparently “unusual direction”. In other words, one shall search for structures in the equation
of sums of products of the type

f ′(z)g(z) + f(z)g′(z) or f ′(z)g(z) − f(z)g′(z),

and then apply (31).

In the present case, the integrating factor is e−z �= 0 for all z ∈ C, hence (29) is equivalent to

(32) 0 = e−zf ′(z) − e−zf(z) = e−z df

dz
+

de−z

dz
· f(z) =

d

dz

{

e−zf(z)
}

.

Then we immediately get by indefinite integration of (32) that

e−zf(z) = c, i.e. f(z) = c · e−z for c ∈ C,
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and we have again found (30).

This variant has the advantage that it is often possible by some small computations to solve the original
equation, and there will usually be no problem of finding the domain of the solution, because series
do not occur in this method. Its disadvantage is that it is not always possible to find an integrating
factor by inspection, and furthermore, when this can be done, it requires some experience and skill.

Second method. Determination of the germ at z0 = 0. the equation is of first order, so it
suffices to assume that f(0) = c ∈ C. It follows by induction from equation (29) that

f (n)(z) = f (n−1)(z) for all n ∈ N,

and then by recursion that

f (n)(0) = f(0) = c for all n ∈ N.

The formal power series is then

f(z) =
+∞
∑

n=0

1
n!

f (n)(0) zn = c

+∞
∑

n=0

1
n!

zn = c · ez, c ∈ C,

where we recognize the power series of the exponential.

This recognition also implies that since ez is defined in all of C, the radius of convergence must be
� = +∞.

This also follows from (6), because if c �= 0, then

� = lim
n→+∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

= lim
n→+∞

∣

∣

∣

∣

c

n!
· (n + 1)!

c

∣

∣

∣

∣

= lim
n→+∞

(n + 1) = +∞.

Notice also that the official definition (4) gives

� =
1

lim supn→+∞
n
√

|an|
=

limn→+∞
n
√

n!
limn→+∞

n
√

|c|
= lim

n→+∞
n
√

n!.

In order to compute n
√

n! we need Stirling’s formula

n! ∼
√

2πn ·
(n

e

)n






meaning that

n!
√

2πn
(n

e

)n → 1 for n → +∞






,

or better, the estimate

√
2πn ·

(n

e

)n

exp
(

1
2n + 1

)

< n! <
√

2πn ·
(n

e

)n

exp
(

1
12n

)

for all n ∈ N,

Then in the present case,

� = lim
n→+∞

n
√

n! = lim
n→+∞

{

2n
√

2πn · n

e

}

= +∞.
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The advantage of this method is that if the initial conditions are given, then it sometimes is easy to

find the germ
{

1
n!

f (n) (z0)
}

directly. The disadvantage is that the recursion formula in other cases

may be extremely complicated and unsolvable in practice.

Third method. The power series method. We assume that a solution of (29) is given by a power
series

f(z) =
+∞
∑

n=0

anzn for |z| < �,

where the task is not finished, before we also have found � and checked that � > 0. First note that by
the change of index n � n+1, followed by a corresponding change of the lower bound n = 1 to n = 0
(always check, if the first terms in the two series are equal)

f ′(z) =
+∞
∑

n=1

nan zn−1 =
+∞
∑

n=0

(n + 1)an+1 zn.
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Then we get by insertion into (29) that

0 = f ′(z) − f(z) =
+∞
∑

n=1

nanzn−1 −
+∞
∑

n=0

anzn

=
+∞
∑

n=0

(n + 1)an+1z
n −

+∞
∑

n=0

anzn =
+∞
∑

n=0

{(n + 1)an+1 − an} zn.

(Check that the lower bounds of the sums are identical, before we add them; if not, add or remove
some terms to get the same lower bounds.) The unique power series expansion of 0 is then written in
two ways,

+∞
∑

n=0

{(n + 1)an+1 − an} zn = 0 =
+∞
∑

n=0

0 · zn.

By the identity theorem the coefficients of the two series are equal, so by identification we get the
following recursion formula

(33) (n + 1)an+1 − an = 0 for all n ∈ N0 (i.e. in the common range of summation).

The easiest way to solve (33) is to multiply it by n! �= 0 and put bn = n!an, because then we first get
by a rearrangement, (n + 1)!an+1 = n!an, and then by a very simple recursion,

bn+1 = bn (= n!an) = bn−1 = · · · = b0 = 0!a0 = c,

from which we get an =
c

n!
as previously.

Another method is the following. Assume that ao = c. Put n = 0 into (33) to get

(0 + 1)a0+1 = a0 = c, i.e. a1 =
c

1
.

for n = 1 we get

(1 + 1)a1+1 = 2a2 = a1 =
c

1
, i.e. a2 =

c

2!
.

For n = 2 we get

(2 + 1)a2+1 = 3a3 = a2 =
c

2!
, i.e. a3 =

c

3!
.

Based on these three results we assume that

(34) an =
c

n!
for some n ∈ N0,

and then we shall prove that (34) also holds for the successor, i.e. when n is replaced by n+1, because
then (34) by induction holds for all n ∈ N0. Clearly, we have just proved that (34) is true for n = 0,
1 and 2, so it holds indeed for some n ∈ N0. However, it follows from the recursion formula (33) that

(n + 1)an+1 = an =
c

n!
, i.e. an+1 =

c

(n + 1)!
,

which is precisely (34) with n replaced by n + 1, and (34) follows by induction for all n ∈ N0.
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The formal power series solution is then given by

f(z) = c

+∞
∑

n=0

1
n!

zn = c · ez, for all z ∈ C,

where we have once again recognized the power series of the exponential. If we do not see this, we
must instead apply one of the methods from the second method above to find � = +∞. ♦

The simple Example 1.4.1 above had only constant coefficients. We shall in general only consider
linear differential equations of polynomial coefficients, in which case it is always possible to find a
linear recursion formula by the method of power series, although this recursion formula still may be
difficult to solve. We shall by the following two examples also demonstrate the impact of the zeros of
a0(z) on the radius of convergence.

Example 1.4.2 Solve the differential equation

(35) (1 − z)f ′(z) = f(z),

using z0 = 0 as point of expansion.

First method. Inspection. We get by a rearrangement of (35),

0 = (1 − z)f ′(z) − 1 · f(z) =
d

dz
{(1 − z)f(z)},

hence by an indefinite integration, (1 − z)f(z) = c, for a constant c ∈ C, and thus

(36) f(z) =
c

1 − z
for z ∈ C \ {1}.

Only the zero solution (for c = 0) can be extended to all of C.

Second method, determination of the germ
1
n!

f (n)(0). The expansion point is z0 = 0, where

a0(0) = 1 �= 0. The only zero of a0(z) = 1 − z is z = 1, so the power series solution is at least
convergent in the open disc B(0, 1). When we differentiate (35) and then rearrange the result, we get

(1 − z)f ′′(z) = 2f ′(z).

A comparison with (35) suggest that the general structure is possibly

(37) (1 − z)f (n)(z) = nf (n−1)(z) for n ∈ N.

This is at least true for n = 1 and for n = 2. When (37) is differentiated, we get

(1 − z)f (n+1)(z) − f (n)(z) = nf (n)(z),

hence

(1 − z)f (n+1)(z) = (n + 1)f (n)(z),

which is (37) with n replaced by n + 1, and (37) follows in general by induction.
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Putting z = 0 into (37) it follows by recursion that

f (n)(0) = nf (n−1)(0) = n(n − 1)f (n−2)(0) = · · · = n!f(0),

and the Taylor series is given by

f(z) =
+∞
∑

n=0

1
n!

f (n)(0)zn = f(0)
+∞
∑

n=0

n!
n!

zn = f(0)
+∞
∑

n=0

zn.

The radius of convergence is of course � = 1, and the sum function of the geometric series
∑+∞

n=0 zn

is
1

1 − z
, cf. also Section 1.3. The complete solution is

f(z) =











c

1 − z
for z ∈ C \ {1} and c �= 0,

0 for z ∈ C and c = 0.

Third method. The method of power series. Assume that the series

f(z) =
+∞
∑

n=0

anzn of radius of convergence � > 0,

is a solution of (35). Then we get for |z| < �,

0 = (1 − z)f ′(z) − f(z) =
+∞
∑

n=1

nanzn−1 −
+∞
∑

n=1

nanzn −
+∞
∑

n=0

anzn

=
+∞
∑

n=0

(n + 1)an+1z
n −

+∞
∑

n=0

(n + 1)anzn =
+∞
∑

n=0

(n + 1) {an+1 − an} zn.

Hence, the zero function can be written in two ways as a convergent power series for |z| < � for some
� > 0,

+∞
∑

n=0

(n + 1) {an+1 − an} zn = 0 =
+∞
∑

n=0

0 · zn.

It follows from the identity theorem that corresponding coefficients are equal, hence we get the following
recursion formula for n ∈ N0,

(n + 1) {an+1 − an} = 0, i.e. an+1 = an, because n + 1 �= 0.

Thus by recursion,

an+1 = an = an−1 = · · · = a0 for all n ∈ N0,

and the series is given by

f(z) = a0

+∞
∑

n=0

zn.
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For a0 = 0 we get the zero series, which is convergent for all z ∈ C. If a0 �= 0, then the radius of
convergence can be found by either (25,

� =
1

lim supn→+∞
n
√

|a0|
= 1,

or by (26),

� = lim
n→+∞

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

= lim
n→+∞

∣

∣

∣

∣

a0

a0

∣

∣

∣

∣

= lim
n→+∞

1 = 1.

Alternatively, the result

f(z) =
c

1 − z
, z ∈ C \ {1} for c ∈ C \ {0} constant,

follows from Example 1.2.2. ♦

We still need to give an example, in which none of the standard procedures above is applicable with
success. This is given by the following.
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Example 1.4.3 Apply the three standard procedures to the inhomogeneous equation

(38) z2f ′(z) − f(z) = −z,

with the expansion point z0 = 0.

The coefficients are polynomial. However, a0 (z0) = a0(0) = 0, so nothing can be concluded from
Theorem 1.4.1.

First method. Inspection. When z �= 0 we multiply (38) by the integrating factor
1
z2

exp
(

1
z

)

�= 0.

Then we get, reading the equation above from the right to the left,

−1
z

exp
(

1
z

)

= exp
(

1
z

)

· f ′(z) − 1
z2

exp
(

1
z

)

· f(z) =
d

dz

{

exp
(

1
z

)

· f(z)
}

.

Clearly, the problem would be solved, if we could find an indefinite integral of − 1
z

exp
(

1
z

)

in a

neighbourhood of the expansion point z0 = 0, but this is not possible with the available methods
known so far in this book.

Second method. Determination of the germ
{

1
n!

f (n)(0)
}

. Putting z = 0 into (38) we get

f(0) = 0. Then by successive differentiations of (38),

z2f ′′(z) + (2z − 1)f(z) = −1, f ′(0) = 1,

z2f (3)(z) + (4z − 1)f ′′(z) + 2f ′(z) = 0, f ′′(0) = 2,

z2f (4)(z) + (6z − 1)f (3)(z) + 6f ′′(z) = 0, f (3)(0) = 12.

It is left to the reader to prove by induction that in general,

z2f (n+1)(z) + (2nz − 1)f (n)(z) + n(n − 1)f (n−1)(z) = 0 for all n ≥ 1.

Hence, for z = 0,

f (n)(0) = n(n − 1)f (n−1)(0), for n ≥ 2.

We divide this equation by n!(n − 1)!, and then we get by a simple recursion,

f (n)(0)
n!(n − 1)!

=
f (n−1)(0)

(n − 1)!(n − 2)!
= · · · =

f (2)(0)
2!1!

=
2
2

= 1,

so the Taylor coefficients are

1
n!

f (n)(0) = (n − 1)! for n ∈ N.

Then the formal Taylor series becomes

+∞
∑

n=0

1
n!

f (n)(0)zn =
+∞
∑

n=1

(n − 1)!zn.
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Its radius of convergence is computed by (6),

� = lim
n→+∞

(n − 1)!
n!

= lim
n→+∞

1
n

= 0,

so the Taylor series is only convergent for z = 0, and this formal solution is useless in the applications.

Third method. The power series method. Assume that (38) has the convergent power series
solution

f(z) =
+∞
∑

n=0

anzn for |z| < �.

It follows by insertion into (38) that

z2f ′(z) − f(z) = z2
+∞
∑

n=1

nanzn−1 −
+∞
∑

n=0

anzn =
+∞
∑

n01

nanzn+1 −
+∞
∑

n=0

anzn

=
+∞
∑

n=2

(n − 1)an−1z
n −

+∞
∑

n=0

anzn = −a0 +
+∞
∑

n=1

{(n − 1)an−1 − an} zn.

This expression is equal to −z, if −a0 = 0 and 0 · a0 − a1 = −1, i.e. a1 = 1, and in general,

an = (n − 1)an−1, for n ≥ 2.

Then we get by recursion (the details are left to the reader),

an = (n.1)!a1 = (n − 1)!,

so the formal series solution is

+∞
∑

n=1

(n − 1)!zn, unfortunately with � = 0.

Thus, this series is divergent, whenever z �= 0, and the method is not applicable. ♦

Example 1.4.3 shows that if a0 (z0) = 0, then Theorem 1.4.1 does not apply, and the problem may not
be solvable by any of the three suggested standard procedures. We shall later on in connection with
Laurent series prove that we may in some cases be able to solve such a linear differential equation,
even if a0 (z0) = 0, while in other cases this is not possible, because the equation in reality should be
solved on a so-called Riemann surface cf. Ventus: Complex Functions Theory a-3.

1.5 Zeros of analytical functions

We have already in Section 1.4 seen that the zeros of an analytic function may have some influence on
the behaviour of the function. We shall in this section see by using some abstract topological results
shown in Ventus: Complex Functions Theory a-1 that the zeros of an analytic function also have other
unexpected consequences, which are stronger than possibly similar results for real C∞(R) functions.
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Theorem 1.5.1 Assume that f : Ω → C is analytic and not the zero function. For every given point
z ∈ Ω there exists an n ∈ N0, such that f (n)(z) �= 0.

We here adopt the convenient notation, f (0)(z) := f(z) (no derivatives of f(z)).

Proof. Given an open domain Ω in C, and an analytic function f : Ω → C. We define a subset
E ⊆ Ω by

(39) E :=
{

z ∈ Ω | f (n)(z) = 0 for all n ∈ N0

}

.

This means that E is the set of points z ∈ Ω, for which both f(z) = 0 and all its derivatives f (n) = 0.

If z0 ∈ E, then clearly the germ of the Taylor series is just the zero sequence. According to Theo-
rem 1.3.1, the Taylor series has its sum function f(z) in the largest open disc B (z0, �) ⊆ Ω, hence
f(z) = 0 for every z ∈ B (z0, �), so by the definition (39) of the set E we have proved that B (z0, �) ⊆ E,
proving that E is an open subset of Ω, cf. Definition 2.1.1 in Ventus: Complex Functions Theory a-1.

On the other hand, the complementary set

Ω \ E =
+∞
⋃

n=0

{

z ∈ Ω | f (n)(z) �= 0
}

=
+∞
⋃

n=0

{

f (n)
}◦−1

(C \ {0})

is also open, because C \ {0} is open and every derivative f (n) is continuous, cf. Definition 2.1.2 in
Ventus: Complex Functions Theory a-1, so each set

{

f (n)
}◦−1

(C \ {0}) is open, and every union of
open sets is again open.

Then the open domain Ω = E ∪ {Ω \ E} is written as a disjoint union of two open sets. Since
every domain by definition is connected, it follows from Corollary 2.1.1 in Ventus: Complex Functions
Theory a-1 that either E = Ω or E = ∅.

If E = Ω, then f is identically zero, which was excluded in the assumptions. Hence E = ∅, so for
every given z ∈ Ω there exists an n ∈ N0, such that f (n)(z) �= 0, and the theorem is proved. �

Assume that f(z) is analytic and not identically zero. Let z0 ∈ Ω be a zero, i.e. f (z0) = 0. It follows
from Theorem 1.5.1 that there is at least one n ∈ N, such that f (n) (z0) �= 0.

Definition 1.5.1 Let z0 ∈ Ω be a zero of the analytic function f : Ω → C, where f �= 0. We say that
the zero z0 has the order, or multiplicity n ∈ N, if n is the smallest integer for which f (n) (z0) �= 0.

In order to motivate this definition we consider the power series expansion of f with the zero z0 of
order n as expansion point. We get in a neighbourhood of z0 that

f(z) =
1
n!

f (n) (z0) · (z − z0)
n +

1
(n + 1)!

f (n+1) (z0) · (z − z0)
n+1 + · · ·

= (z − z0)
n ·

{

1
n!

f (n) (z0) +
1

(n + 1)!
f (n+1) (z0) · (z − z0) + · · ·

}

= (z − z0)
n · g(z),

where g(z) is analytic in the same neighbourhood of z0 as f(z), and where furthermore, g (z0) �= 0.
This means that z = z0 is precisely n times a zero of f , explaining the notation. Furthermore, notice
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that since g(z) is continuous, we can find a (possibly smaller) open neighbourhood ω of z0, such that
g(z) �= 0 for all z ∈ ω. Then clearly also f(z) �= 0 for every z ∈ ω \ {z0}, and we have proved

Theorem 1.5.2 Let f : Ω → C, f �= 0, be analytic. Every zero z0 of f is an isolated point, which
means that there is an open neighbourhood of z0, such that z0 is the only zero in ω.

Theorem 1.5.2 immediately implies the following stronger version of Theorem 1.2.6, The Identity
Theorem.

Theorem 1.5.3 The Identity Theorem. Let f : Ω → C and g : Ω → C be analytic functions in the
same domain Ω. If the set {z ∈ Ω | f(z) = g(z)} has an accumulation point lying in the set Ω, then
f and g are identical.
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Remark 1.5.1 The underlined assumption that the accumulation point lies in the set Ω is very
important. We shall in Example 1.5.1 show that what without this assumption, we cannot conclude
that the two functions are equal. ♦

Proof. First recall that z0 ∈ Ω is an accumulation point of a set A ⊆ Ω, if for every r > 0,

{z ∈ A | 0 < |z − z0| < r} �= ∅.

Notice that the inequality 0 < |z − z0| excludes z0 from this set.

Assume that z0 ∈ Ω is an accumulation point of the set

E := {z ∈ Ω | f(z) = g(z)}.

Choosing r =
1
n

, n ∈ N, and then zn ∈ E, such that f (zn) = g (zn), we define a sequence (zn), for

which zn → z0 for n → +∞. Now, f − g is continuous, and f (zn) − g (zn) = 0 for all n ∈ N. Since
z0 ∈ Ω, it follows from the continuity that also f (z0) − g (z0) = 0, so z0 ∈ E.

It follows from the definition of the sequence (zn) that z0 is not an isolated zero of the analytic
function f − g, so we conclude from Theorem 1.5.2 that f − g is the zero function, and thus g = g by
a rearrangement. �

Example 1.5.1 Consider the zero function 0 and the function sin
1
z

for z ∈ Ω = C\{0}. Clearly, the
two functions are different from each other. On the other hand, both functions are zero on the set

E :=
{

1
nπ

∣

∣

∣

∣

n ∈ Z \ {0}
}

,

which has z0 = 0 /∈ Ω as an accumulation point, because
1

nπ
→ 0 for n → +∞, and also for n → −∞.

♦

Another unexpected consequence is the following theorem.

Theorem 1.5.4 Let ϕ : I → C be a function defined either on a real interval I, or on a differential
curve I in C. If Ω is an open domain in C, which contains I, then there is at most one analytic
function f : Ω → C, such that

f(x) = ϕ(x) for x ∈ I, an interval

f(z) = ϕ(z) for z ∈ I, a piecewise C1 curve in C.

Proof. In both cases all points of I are trivially accumulation points of I, so the theorem follows
immediately from Theorem 1.5.3. �

The reader should be surprised that the values of an analytic function on a one-dimensional curve
uniquely determines f : Ω → C in its domain. This means that if we change the analytic function
f on e.g. a real interval to another analytic function g, then we change without any time delay f
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to g over all of Ω. This implies that analytic functions are not suited directly to describe causality,
because e.g. the impact of a sudden force applied to a system will evolve in time through the system
and not immediately. Fortunately, it is possible to describe indirectly the causality (approximately)
by analytic functions. However, this is not the right place to go further into this discussion.

One should also note that Theorem 1.5.4 states that there is at most one analytic function f : Ω → C,
the restriction of which to an interval is a given function ϕ : I → C. It is not hard to construct a
function in C∞(R) which cannot be extended to any analytic function, not even locally!

1.6 Simple Fourier series

It follows from the definition eiΘ = cosΘ + i sinΘ for Θ ∈ R that eiΘ has the period 2π, so einΘ has

for fixed n ∈ N the period
2π
n

in Θ.

The classical Fourier Series Theory in real calculus states that every piecewise C1([0, 2π]) function
can be represented in the complex form

(40) ϕ(Θ) ∼
+∞
∑

n=−∞
cneinΘ,

where

cn :=
1
2π

∫ 2π

0

ϕ(Θ) e−inΘ dΘ for n ∈ Z.

Remark 1.6.1 The symbol ∼ in (40) indicates that ϕ(Θ) is equal to its Fourier series in the sense
of L2, i.e.

lim
N→+∞

∫ 2π

0

∣

∣

∣

∣

∣

ϕ(Θ) −
N

∑

n=−N

cneinΘ

∣

∣

∣

∣

∣

2

dΘ = 0,

which can also be interpreted as convergence in energy. It can be proved that if
∫ 2π

0
|ϕ|2dΘ < +∞,

or just
∫ 2π

0
|ϕ(Θ)|pdΘ < +∞ for some p > 1, then (40) holds with pointwise equality sign for almost

every Θ ∈ [0, 2π]. (For p = 1 this statement is wrong as proved by Kolmogorov in the early 1920s.)
The proof of the statement above is extremely difficult, and the result is of limited value, because one
usually cannot specify for which Θ (40) holds with equality sign, even if we know that it holds “for
almost every Θ. ♦

Consider an analytic function f : Ω → C, where Ω is an open neighbourhood of 0. Then we can
construct the convergent Taylor series

(41) f(z) =
+∞
∑

n=0

anzn for |z| < .
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Using polar coordinates z = reiΘ for fixed r ∈ ]0, �[, we obtain the Fourier series of a function ϕr,
given by

(42) ϕr(Θ) := f
(

reiΘ
)

=
+∞
∑

n=0

{anrn} einΘ,

so when we compare with (40) we see that we have the Fourier coefficients

cn = anrn for n ∈ N0 and cn = 0 for n ∈ Z−.

In (42) the sum is only over n ∈ N0, while we in (40) use all n ∈ Z in the sum. This suggests that
at least concerning Fourier series, it would be quite natural also to allow power series (41), where
negative exponents occur. Such series are indeed very useful in the applications. However, they
cannot be defined everywhere in a disc B(0, �), because they are at least divergent for z = 0, where
limz→0 z−n = ∞.

We shall later in Chapter 3 study such power series of negative exponents. Such series are called
Laurent series. The motivation for their introduction is here given by the fact that we are missing
some very natural terms in the Fourier series (42), but it will turn up that there is far more in these
Laurent series than one would expect at a first glance. Their main applications are in the so-called
residue calculus, which is a powerful device to compute many definite integrals and infinite sums,
including some which cannot be computed by methods from the real calculus. The Laurent series
with no positive exponent are furthermore used in the theory of the z transform,, which is a discrete
form of the Laplace transform.

Example 1.6.1 Let us play a little with this connection between Complex Functions Theory and
Fourier series. We know that

ez = ex cos y + i ex sin y, z = x + iy ∈ C.

Using polar coordinates,

z = r eiΘ, i.e. x = r · cosΘ and y = r · sinΘ,

we get by insertion,

ez = er(cos Θ+i sin Θ) = er cos Θ{cos(r sinΘ) + i sin(r sinΘ)},

and

ez =
+∞
∑

n=0

1
n!

zn =
+∞
∑

n=0

1
n!

rneinΘ =
+∞
∑

n=0

rn

n!
cos nΘ + i

+∞
∑

n=1

rn

n!
sinnΘ.

By identifying the real and the imaginary parts,

er cos Θ cos(r sinΘ) =
+∞
∑

n=0

rn

n!
cos nΘ, er cos Θ sin(r sinΘ) =

+∞
∑

n=1

rn

n!
sinnΘ.

Notice that the summation starts at n = 1 in the latter sum, because sin 0 ·Θ = 0 for n = 0, no matter
Θ. ♦
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Example 1.6.1 is only a demonstration of what we already can obtain. The following results are more
important, so for this reason they are not relegated to an example.

This time we use that

1
1 − z

=
+∞
∑

n=0

zn =
+∞
∑

n=0

rneinΘ =
+∞
∑

n=0

rn cos nΘ + i
+∞
∑

n=1

rn sinnΘ for r = |z| < 1,

and that also

(43)
1

1 − z
=

1 − x

(1 − x)2 + y2
+ i

y

(1 − x)2 + y2
.

42

Download free eBooks at bookboon.com



Calculus of Residua

47 

Power Series

Using polar coordinates the dominator becomes

(1 − x)2 + y2 = 1 − 2x + x2 + y2 = 1 + r2 − 2r cos Θ,

so

1
1 − z

=
1 − r cos Θ

1 + r2 − 2r cosΘ
+ i

r sinΘ
1 + r2 − 2r cos Θ

=
+∞
∑

n=0

rn cosnΘ + i

+∞
∑

n=1

rn sinnΘ, 0 ≤ r < 1.

When we identify the real and the imaginary parts we obtain the following convergent Fourier series,

(44)



















1 − r cos Θ
1 + r2 − 2r cosΘ

=
∑+∞

n=0 rn cos nΘ,

r sinΘ
1 + r2 − 2r cosΘ

=
∑+∞

n=1 rn sinnΘ,

for 0 ≤ r < 1 and Θ ∈ R.

We shall later also need the Fourier expansion of

1 + z

1 − z
=

2
1 − z

− 1 for |z| < 1.

It follows immediately from (44) that

1 + z

1 − z
= 2

1 − r cos Θ
1 + r2 − 2r cosΘ

− 1 + i
2r cos Θ

1 + r2 − 2r cos Θ

=
1 − r2

1 + r2 − 2r cosΘ
+ i

2r sinΘ
1 + r2 − 2r cos Θ

(45)

= 1 + 2
+∞
∑

n=1

rn cos nΘ + 2i
+∞
∑

n=1

rn sinnΘ for 0 ≤ r < 1 and Θ ∈ R.

We shall finally prove a special case of Parseval’s equation. This result will be applied later.

Theorem 1.6.1 Parseval’s equation. Let

f(z) =
+∞
∑

n=0

anzn and g(z) =
+∞
∑

n=0

bzn

be two analytic functions defined in B(0, �). Then for every r ∈ [0, �[,

(46)
1
2π

∫ 2π

0

f
(

reiΘ
)

g (reiΘ) dΘ =
+∞
∑

n=0

an bn r2n.

Proof. Since both series are absolutely convergent for r = |z| < �, we may apply termwise multipli-
cation, from which we get

(47) f
(

reiΘ
)

g (reiΘ) =
+∞
∑

m=0

+∞
∑

n=0

anbmrn+mei(n−m)Θ,
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which for fixed r is absolutely and uniformly convergent, because
∑

m

∑

n

∣

∣anbm

∣

∣ rn+m is a converging
majoring series. Hence, we may integrate (47) termwise. Then notice that

∫ 2π

0

ei(n−m)Θ dΘ = 0, if n �= m,

so the only relevant terms of (47) by this integration, are the terms given by n = m, and we get
trivially,

1
2π

∫ 2π

0

f
(

reiΘ
)

g (reiΘ) dΘ =
1
2π

+∞
∑

n=0

anbnr2n

∫ 2π

0

1 dΘ =
+∞
∑

n=0

anbnr2n. �

Corollary 1.6.1 Let f(z) =
∑+∞

n=0 anzn for |z| < �. Then

(48)
1
2π

∫ 2π

0

∣

∣f
(

reiΘ
)∣

∣

2
dΘ =

+∞
∑

n=0

|an|2 r2n.

Proof. Just put g = f and bn = an into (46). �

1.7 The maximum principle

Another strange property of a non-constant analytic function f : Ω → C is that the continuous
function |f(z)| can never have a local maximum at an interior point z0 ∈ Ω. We have more precisely

Theorem 1.7.1 The maximum principle Let f : Ω → C be analytic in an open domain Ω. If |f(z)|
has a local maximum at a point z0 ∈ Ω, then f(z) is constant in Ω.

Proof. Assume that |f(z)| has a local maximum at an interior point z0 ∈ Ω. Then we have a
convergent series expansion

(49) f(z) =
+∞
∑

n=0

an (z − z0)
n for |z − z0| < �.

Choose r ∈ ]0, �[ and put z = z0 + reiΘ. It follows from Parseval’s eguation (48) that

1
2π

∫ 2π

0

∣

∣f
(

z0 + reiΘ
)∣

∣

2
dΘ =

+∞
∑

n=0

|an|2 r2n.

By assumption, |f (z0)| is a local maximum, so due to the continuity we can choose r ∈ ]0, �[, such
that |f(z)| ≤ |f (z0)| in the closed disc B [z0, r], and we get the estimate

+∞
∑

n=0

|an|2 r2n =
1
2π

∫ 2π

0

∣

∣f
(

z0 + reiΘ
)∣

∣

2
dΘ ≤ 1

2π

∫ 2π

0

|f (z0)|2 dΘ = |f (z0)|2 = |a0|2 ,
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hence,

+∞
∑

n=0

|an|2 r2n ≤ |ao|2 .

Since we have chosen r > 0, this is only possible, when all an = 0 for n ∈ N, and we get by insertion
into (49) that f(z) ≡ a0 in Ω. �

There is of course a corresponding minimum principle. This is, however, slightly more complicated,
because every zero of f(z) for natural reasons is a minimum point of the function |f(z)|. The simplest
way to formulate it is

Theorem 1.7.2 The minimum principle. Assume that the analytic function f : Ω → C is not
constant in the open domain Ω. If |f(z)| has a local minimum at an interior point z0 ∈ Ω, then
f (z0) = 0, i.e. z0 must necessarily be a zero of f(z).

Proof. Assume that f (z0) �= 0. Then there is an open subdomain ω ⊆ Ω, such that f(z) �= 0 for all

z ∈ ω, where also z0 ∈ ω. The function g(z) =
1

f(z)
must then be analytic in ω, so when |f(z)| > 0

has a local minimum at z0 ∈ ω, then |g(z)| has a local maximum at the same point z0 ∈ ω. By the
maximum principle this is not possible, so we conclude that f (z0) = 0. �

Theorem 1.7.3 Let f : Ω → C be analytic in a bounded open domain, and assume that f : Ω → C
is continuous on the closure Ω of Ω. Then |f(z)| has its maximum lying on the boundary.

Proof. It follows from the assumptions that Ω is compact. The function |f | : Ω → C is continuous,
so it has a maximum on Ω. (Main theorem for continuous real functions.) By the maximum principle,
the maximum cannot be attained at an interior point, unless the function is constant, so the maximum
is attained at a boundary point, no matter if |f | is constant or not. �

The conclusion of Theorem 1.7.3 is not true for unbounded closed domains. A simple counterexample
is

f(z) = ez for z ∈ Ω := {z ∈ C | �z > 0}.

Clearly, |f(z)| = ez is unbounded in Ω, so no maximum exists. On the boundary, however, i.e. on the
imaginary axis, we have |f(iy)| =

∣

∣eiy
∣

∣ = 1, which is bounded.

The following is a partial inverse.

Theorem 1.7.4 Phragmèn-Lindelöf’s theorem. Assume that the function f(z) is analytic in the half
plane �z > 0, and assume that f(z) is bounded and continuous on the boundary (the imaginary axis),
i.e. |f(iy)| ≤ M for some constant M > 0 and all real y ∈ R.
Furthermore, assume that there exist real constants a < 1 and K > 0, such that

(50) |f(z)| < K · exp (ra) , for all z = r eiΘ for which �z ≥ 0.

Then |f(z)| ≤ M everywhere in the half plane �z ≥ 0.
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Proof. Choose any b ∈ ]a, 1[ and any ε > 0. When we consider the function g(z) = f(z) exp
(

−ε zb
)

,
we get the estimate

|g(z)| = |f(z)| exp
(

−ε rb cos(bΘ)
)

≤ |f(z)| exp
(

−ε rb cos
(

bπ

2

))

≤ K · exp
(

ra − ε cos
(

bπ

2

)

· rb

)

.(51)

Let z0 be any point in the half plane and choose R, such that |z0| < R, and such that |g(z)| ≤ M on
the semicircle |z| = R, �z ≥ 0.

R=1theta_0

r_0

z_0

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 3: Phragmèn-Lindelöf’s theorem.
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This is possible, due to the choices of the constants ε and b, and due to the estimate (51).

The closed half disc is compact, so it follows from Theorem 1.7.3 that |g (z0)| ≤ M , hence

|f (z0)| = |g (z0)| ·
∣

∣exp
(

ε zb
0

)∣

∣ ≤ M · exp (ε · r0 cos (bΘ0)) .

This holds for every ε > 0, hence also by the limit process ε → 0+, by which we get |f (z0)| ≤ M .
Since z0 was chosen arbitrarily in the half plane, the theorem is proved. �

Notice that (50) is not fulfilled for any a < 1 for the function f(z) = ez, so the theorem cannot be
extended to a = 1.

There exists, however, another version of Phragmèn-Lindelöf’s theorem, in which we allow a ≥ 1,
though the conclusion of course becomes weaker.

Theorem 1.7.5 Weak Phragmèn-Lindelöf’s theorem. Let f(z) be analytic in a vertical strip
x1 ≤ �z ≤ x2 (which means more precisely that f(z) is analytic in some open domain containing this
strip). We assume that |f(z)| ≤ 1 on the boundary of this strip.
If there exist constants a > 0 and K > 0, such that

(52) |f(z)| ≤ K · exp (|z|a) , when x1 ≤ �z ≤ x2,

then |f(z)| ≤ 1 everywhere in the vertical strip.

Proof. Let λ > a. Since x = �z is bounded in the strip, there exists an y0, such that

(53) |f(z)| ≤ exp
(

|y|λ
)

, when |y| ≥ y0 and x ∈ [x1, x2] .

Choose p ∈ N, such that m = 2 + 4p > λ.

x_2x_1

-y_0

y_0

–2

–1

0

1

2

0.5 1 1.5 2 2.5 3

Figure 4: Proof of variant of Phragmèn-Lindelöf’s theorem.

If z = r eiΘ in the strip is large in the sense that |�z| = |y| ≥ y0, then

zm = rm (cos mΘ + i sinmΘ),
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where mΘ lies close to π. More precisely, there is a q ∈ Z, such that |mΘ − (π + 2qπ)| is sufficiently
small.

Choose any ε > 0 and consider the function

(54) gε(z) = f(z) exp (ε zm) .

If z lies in the strip x1 ≤ �z ≤ x2, then we get the estimate

|gε(z)| ≤ exp
(

|y|λ
)

exp (ε rm cosmΘ) .

This shows that the function gε(z) is bounded for large y0 = y0(ε), and |gε(z)| ≤ 1, when |y| = y0 in
the strip. The latter follows from the choice of m, by which we get cos mΘ ≤ −α < 0.

Since |gε(z)| ≤ exp (ε xm
2 ) on the edges of the rectangle, we conclude that |gε(z)| ≤ exp (ε xm

2 ) for all
z inside the rectangle. Finally, since we already have proved that |gε(z)| ≤ 1, when z in the strip
satisfies |�z| ≥ y0, we conclude that

|gε(z)| ≤ exp (ε xm
2 ) for all ε > 0 and x1 ≤ �z ≤ x2.

Hence, it follows from (54) for every fixed z in the strip that

|f(z)| ≤ exp (ε xm
2 ) · exp (ε|z|m) for all ε > 0.

By taking the limit ε → 0+ for every fixed z in the strip it follows that |f(z)| ≤ 1. �

The following result is often useful in the most unexpected situations.

Theorem 1.7.6 Schwarz’s lemma. Let f : B(a,R) → C be analytic, where f(a) = 0 and |f(z)| ≤ M
for every z ∈ B(a,R). Then

(55) |f(z)| ≤ M

R
|z − a| for all z ∈ B(a,R).

If we have equality in (55) at some point z ∈ B(a,R), z �= a, then f(z) has the structure

(56) f(z) = eiΘ · M

R
· (z − a), for all z ∈ B(a,R).

Proof. It follows from the assumption f(a) = 0 that

f(z) =
+∞
∑

n=1

an(z − a)n = (z − a)
+∞
∑

n=0

an+1(z − a)n for z ∈ B(a,R).

If we put g(z) =
∑+∞

n=0 an+1(z − a)n, then

g(z) =











f(z)
z − a

for z ∈ B(a,R), z �= a,

a1 for z = a,

and g : B(a,R) → C is analytic.
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Let r ∈ ]0, R[ and |z − a| = r. Then we get the estimate

|g(z)| ≤ M

r
,

hence by the maximum principle,

|g(z)| ≤ M

r
for all z ∈ B(a, r).

Since r < R can be chosen arbitrarily close to R, we conclude by taking the limit r → R− that

|g(z)| ≤ M

R
for all z ∈ B(a,R),

hence

|f(z)| ≤ M

R
· |z − a|.

Then assume that we have equality at a point z0 ∈ B(a,R), z0 �= a. Then |g(z)| has its maximum at
the point z0 in the interior of B(a,R), so g(z) is constant by the maximum principle, hence

g(z) = eiΘ · M

R
, and thus f(z) = eiΘ · M

R
· (z − a). �

B(0,1)

0

g

f

Omega

a
x

Figure 5: Proof of Corollary 1.7.1.

One nice application of Schwarz’s lemma is the following

Corollary 1.7.1 Let Ω be an open domain with a ∈ Ω. If there exists an analytic map f , which maps
Ω bijectively onto B(0, 1), such that f(a) = 0, then every bijective analytic map g : Ω → B(0, 1), for
which g(a) = 0, is given by

(57) g(z) = eiΘf(z) for some Θ ∈ [0, 2π[.

Thus, these maps are uniquely determined apart from a rotation of the disc B(0, 1).
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Proof. Clearly, every map of the form (57) satisfies the given conditions.

Let g : Ω → B(0, 1) be any bijective analytic function for which g(a) = 0.

The composite map g◦f−1 : B(0, 1) → B(0, 1) is bijective, and g◦f−1(0) = g(a) = 0. Using Schwarz’s
lemma it follows from

∣

∣g ◦ f−1(z)
∣

∣ ≤ |z|.

Now, the inverse of g ◦ f−1, i.e. f ◦ g−1, fulfils precisely the same properties, so we also have
∣

∣f ◦ g−1(w)
∣

∣ ≤ |w|.

Then, by putting w = g ◦ f−1(z),

|z| =
∣

∣f ◦ g−1(w)
∣

∣ ≤ |w| =
∣

∣g ◦ f−1(z)
∣

∣ ≤ |z|,

so we must have equality. Then by Schwarz’s lemma,

eiΘ ·
(

f ◦ g−1
)

(w) = w.

Finally, putting w = g(ζ), we get g(ζ) = eiΘf(ζ), and the corollary is proved. �
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2 Harmonic Functions

2.1 Harmonic functions

The harmonic functions are solutions of the Laplace equation,

(58) ∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0,

which has many applications in the plane i the applied sciences. We shall see that the harmonic
functions are also closely connected with the analytic functions, so many results on harmonic functions
can easily be derived from the theory of analytic functions.

Let f : Ω → C be an analytic function in the open domain Ω. Then we have proved in Ventus:
Complex Functions Theory a-1 that f is of class C∞(Ω). If we split f into its real and imaginary
parts, f = u + i v, then we get by Cauchy-Riemann’s equations

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
,

f ′′(z) =
∂2u

∂x2
+ i

∂2v

∂x2
=

∂2v

∂y∂x
− i

∂2u

∂y∂x
= · · · ,

etc., from which we conclude that �f = u(x, y) and �f = v(x, y) are both of class C∞ in the real
variables (x, y) ∈ Ω. In particular, we may interchange the order of differentiation. Since f(z) is
analytic we can apply Cauchy-Riemann’s equations,

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

hence by differentiation,

∂2u

∂x2
=

∂2v

∂x∂y
and

∂2u

∂y2
= − ∂v

∂y∂x
= − ∂2v

∂x∂y
,

so by adding these two expressions we get the Laplace equation (58).

Similarly, we prove that ∆v = 0.

We introduce formally,

Definition 2.1.1 Let Ω ⊆ R2 be an open domain. A real function u ∈ C2(Ω) is called harmonic in
Ω, if ∆u = 0 in Ω.

It follows from the above that

Theorem 2.1.1 If f(z) = u + iv is analytic in an open domain Ω ⊆ C, then its real and imaginary
parts are both harmonic functions in Ω ⊆ R2. Here the planar domain Ω is considered both as a subset
of C and of R2, depending on the context.

The harmonic functions are of course important in every two dimensional potential theory. We list
some elementary harmonic functions in Table 1, page 66.
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Definition 2.1.2 Assume that u and v are harmonic in the open domain Ω. If the pair (u, v) satisfies
Cauchy-Riemann’s equations, then we say that v (the second coordinate) is the harmonic conjugated
of u (the first coordinate), or that the pair (u, v) is an harmonic conjugated pair.

We notice that if (u, v) is a harmonic conjugated pair, then (−v, u) is also a harmonic conjugated pair,
while (v, u) is only harmonic conjugated, when both u and v are constant functions. Thus, harmonic
conjugation is not a symmetric relation.

It follows immediately from Cauchy-Riemann’s equations that

Theorem 2.1.2 If (u, v) is an harmonic conjugated pair in Ω, then f = u+ iv is an analytic function
in Ω.

Assume that u(x, y) is harmonic in an open and simply connected domain Ω, i.e.

∂2u

∂x2
= −∂2u

∂y2
for (x, y) ∈ Ω.

It follows that the differential form

−∂u

∂y
dx +

∂u

∂x
dy

is closed, so it is exact, Ω being simply connected.

Consider a fixed z0 ∈ Ω. It follows from the above that the function

(59) v(x, y) :=
∫ z

z0

{

−∂u

∂y
dx +

∂u

∂x
dy

}

, z = x + iy ∈ Ω,

is uniquely defined in Ω.

Since u is of class C2(Ω), it follows that
∂u

∂x
and

∂u

∂y
are of class C1(Ω), so we conclude that v ∈ C2(Ω).

In particular,

(60) dv =
∂v

∂x
dx +

∂v

∂y
dy = −∂u

∂y
dx +

∂u

∂x
dx,

hence Cauchy-Riemann’s equations follow by identification. Since u, v ∈ C2(Ω), we conclude that
f(z) = u + iv is analytic, and we have proved

Theorem 2.1.3 If u(x, y) is harmonic in a simply connected open domain Ω, then there exists an
analytic function f : Ω → C, such that u(x, y) = �f(z) in Ω. In particular, u is of class C∞(Ω), and
(u, v) is a harmonic conjugated pair, when the function v(x, y) is given by (59).

Example 2.1.1 If Ω is an open domain, which is not simply connected, and u(x, y) is harmonic
in Ω, then there does not necessarily exist an analytic function f defined in all of Ω, such that
�f(z) = u(x, y). A very important counterexample is

u(x, y) =
1
2

ln
(

x2 + y2
)

= ln |z| = ln r,
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which is harmonic in the (not simply connected) domain C\{0}. By considering the analytic function
Log z in the sliced and connected domain C \ {R− ∪ {0}} we see that

� Log z =
1
2

ln
(

x2 + y2
)

for z ∈ C \ {R− ∪ {0}} ,

where Log z cannot be extended analytically to all of C \ {0}. ♦

Assume that u, v1 and v2 are harmonic functions in the same domain Ω, and that both (u, v1) and
(u, v2) are harmonic conjugated pairs. Then f1(z) := u + iv1 and f2(z) := u + iv2 are both analytic
in Ω, so

f(z) = f1(z) − f2(z) = i {v1 − v2}
is analytic in Ω. Then by Cauchy-Riemann’s equations,

∂

∂x
{v1 − v2} =

∂

∂y
{v1 − v2} = 0,

hence v1 = v2 + C for some constant C ∈ R, and we have proved

Corollary 2.1.1 If u(x, y) is harmonic in a simply connected open domain Ω, and z0 ∈ Ω is a fixed
point, then all harmonic conjugated functions of u are given by

(61) v(x, y) :=
∫ z

z0

{

−∂u

∂y
dx +

∂u

∂x
dy

}

+ C, C ∈ R arbitrary.

If v(x, y) is harmonic in a simply connected domain Ω, it follows similarly that all harmonic functions
u, for which (u, v) is a harmonic conjugated pair, are given by

(62) u(x, y) :=
∫ z

z0

{

∂v

∂y
dx − ∂v

∂x
dy

}

+ C, C ∈ R arbitrary,

(notice the change of sign compared with (61)), and f(z) = u + iv is analytic in Ω.

Example 2.1.2 We shall show that the function u(x, y) = x3 − 3xy2 is harmonic, and find all its
harmonic conjugated functions. Clearly, u ∈ C∞ (

R2
)

, and

∂u

∂x
= 3x2 − 3y2,

∂2u

∂x2
= 6x and

∂u

∂y
= −6xy,

∂2u

∂y2
= −6x,

thus

∆u =
∂2u

∂x2
+

∂2u

∂y2
= 6x − 6x = 0,

and u(x, y) is harmonic.

Then insert the expressions of
∂u

∂x
and

∂u

∂y
above into (61). Choosing z0 = 0 we get

v(x, y) =
∫ z

z0

{

−(6xy) dx +
(

3x2 − 3y2
)

dy
}

+ C =
∫ (x,y)

(0,0)

{(

6xy dx + 3x2 dy
)

− 3y2 dy
}

+ C

=
∫ (x,y)

(0,0)

d
(

3x2y − y3
)

+ C = 3x2y − y3 + C, C ∈ R arbitrary.
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Here we have applied that the differential form 6xy dx +
(

3x2 − 3y2
)

dy is exact, so it can be written
in the form dv. We have in particular applied the rule of the differential of products,

d(ϕψ) = ψ dϕ + ϕdψ

in the reverse direction, i.e. from the right to the left.

Alternatively we may integrate along a simple curve composed of axiparallel segments. ♦

Remark 2.1.1 The beginner often makes the error that
∫

6xy dx and
∫ {

3x2 − 3y2
}

dy are computed
separately, where the other variable erroneously is considered as a constant. By an addition we get
the wrong result 6x2y − y3, which can easily be checked by Cauchy-Riemann’s equations, which are
not fulfilled in this case. ♦

It is in some cases possible from a given harmonic function u in a simply connected domain Ω directly
to find the corresponding analytic function f(z), such that

u(x, y) = �f(z).

First, it follows from Theorem 2.1.3 that f(z) exists. Then by Cauchy-Riemann’s equations,

(63) f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂u

∂x
− i

∂u

∂y

(

=
∂u

∂x
+

1
i

∂u

∂y

)

.
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Since the function u(x, y) is given, (63) shows that f ′(z) can be computed directly as an analytic
function, so the right hand side of (63) must be expressed as a function in z (= x + iy) alone. Finally,
we get f(z) by an indefinite integration, where the arbitrary constant is determined, such that �f(z) =
u(x, y) in Ω.

Example 2.1.3 We shall reconsider the function u(x, y) = x3 − 3xy2 from Example 2.1.2. We can
now prove that u(x, y) is harmonic without inserting into the Laplace equation ∆u = 0. In fact, if u
were harmonic, then there would exist an analytic function f(z), such that

f ′(z) =
∂u

∂x
− i

∂u

∂y
= 3x2 − 3y2 − i{−6xy} = 3z2.

Since f ′(z) = 3z2 has the indefinite integral z3 + C, it is straightforward to check that

�z3 = x3 − 3xy2 = u(x, y),

so u is an harmonic function.

In the present case one cannot claim that Example 2.1.3 is easier than Example 2.1.2. However, it is
indeed very easy to provide examples, where

∂2u

∂x2
and

∂2u

∂y2

become very cumbersome to compute, while

∂u

∂x
and

∂u

∂y

occurring in f ′(z) given by (63) are easy to find, so it becomes a simple task to find f ′(z) as a function
of z alone. ♦

2.2 The maximum principle for harmonic functions.

Given an harmonic function u(x, y) in an open domain Ω, and assume that u has a local maximum (or
a local minimum) at an inner point z0 ∼ (x0, y0) ∈ Ω. There exists an r > 0, such that B (z0, r) ⊆ Ω.
Since B (z0, r) is simply connected, we can find an analytic function f(z), such that �f(z) = u(x, y)
locally in B (z0, r).

Since
∣

∣

∣
ef(z)

∣

∣

∣ = e�f(z) = e(x, y) > 0,

we conclude that
∣

∣ef(z)
∣

∣ has a maximum (a minimum) at z0. The function ef(z) is analytic, hence ef(z)

is a constant by the maximum (the minimum) principle, and u(x, y) is constant in B (z0, r). Since u
is continuous, it is constant in every simply connected subdomain ω ⊆ Ω, hence also in Ω itself, and
it follows by contraposition that we have proved

Theorem 2.2.1 The maximum (minimum) principle for harmonic functions. Let u(x, y) be harmonic
and not a constant in the open domain Ω. Then u(x, y) has neither a maximum nor a minimum in
Ω.
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Let K ⊆ Ω be a compact set, and let u(x, y) be harmonic in Ω. Since u(x, y) only has real values,
it follows by the Main Theorem for the Continuous Functions that u(x, y) has a maximum and a
minimum in K. It follows from the above that these values are always obtained on the boundary of
K, no matter if u(x, y) is a constant or not in Ω. It therefore immediately follows that we have

Corollary 2.2.1 Assume that Ω is an open and bounded domain. Let u(x, y) be continuous on the
closure Ω and harmonic in Ω itself. Then u(x, y) has its maximum and minimum on the boundary
∂Ω = Ω \ Ω of Ω.

Proof. Just notice that Ω is compact and apply the previous argument. �

In Ventus: Complex Functions Theory a-1 we proved the Mean Value Theorem for Analytic Functions,
i.e.

(64) f (z0) =
1
2π

∫ 2π

0

f
(

z0 + r eiΘ
)

dΘ,

assuming that f(z) is analytic in a neighbourhood of the closed disc B [z0, r] of radius r > 0.

Clearly, we obtain a similar Mean Value Theorem for Harmonic Functions by simply taking the real
part of (64). We shall more precisely state this as a theorem,

Theorem 2.2.2 Mean Value Theorem for Harmonic Functions. Let u(x, y) be harmonic in an open
domain Ω containing the closed disc B [z0, r] of radius r > 0. Then the value u (z0) = u (x0, y0) at the
centre of the disc is equal to the mean value of u(x, y) over the circle of centre (x0, y0) and radius r,
i.e.

(65) u (z0) =
1
2π

∫ 2π

0

u
(

z0 + r eiΘ
)

dΘ.

Finally we prove that if Ω is an open bounded domain, and h(x, y) is a continuous function on the
boundary ∂Ω of Ω, where ∂Ω is composed of continuous and piecewise differentiable curves, then the
boundary value problem

(66)















∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0, for (x, y) ∈ Ω,

u(x, y) = h(x, y), for (x, y) ∈ ∂Ω,

has at most one solution.

Theorem 2.2.3 Assume that Ω is an open and bounded domain. Let u and v be continuous functions
on the closure Ω and harmonic in Ω itself. If u = v on the boundary ∂Ω, then u = v in all of Ω.

Proof. Put ϕ = u−v. Then ϕ is harmonic in Ω and varphi = 0 on ∂Ω. It follows from Corollary 2.2.1
that since ϕ has its maximum and minimum (both = 0) on the boundary, we must have ϕ = u−v = 0
in all of Ω, hence u = v in Ω. �
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Example 2.2.1 We shall here show that we cannot exclude the assumption that Ω is bounded in
Theorem 2.2.3.

It follows from the obvious fact

∆(xy) =
∂2

∂x2
(xy) +

∂2

∂y2
(xy) = 0

that u(x, y) = xy =
1
2
�z2 is harmonic in R2. Let Ω =

{

(x, y) ∈ R2 | y > 0
}

denote the upper half

plane. Then the boundary ∂Ω is the X-axis, and we have obviously u(x, 0) = 0 on the X-axis.

Clearly, u(x, y) has neither a maximum nor a minimum in Ω, because its range is R.

Since v(x, y) = 0 is another harmonic function, for which v(x, 0) = 0, this example illustrates that if
Ω is not bounded, then the solution of the boundary value problem (66) is not unique.

We shall later in Section 2.4 explicitly solve (66) in the special case, when Ω is an open disc. ♦

2.3 The biharmonic equation

In problems from the two-dimensional elasticity theory one has to deal with the biharmonic equation

(67) ∆∆Φ =
∂Φ

∂x4
+ 2

∂4Φ
∂x2∂y2

+
∂4Φ
∂y4

= 0.

We shall in the following solve it in simply connected domains.

Remark 2.3.1 The conventional name “biharmonic equation” is misleading, because there are bi-
harmonic functions which are not harmonic, while all harmonic functions trivially are biharmonic. A
better name would therefore be “semiharmonic equation”. It has, however, become customary to call
it the biharmonic equation, so we shall stick to this notation. ♦

Theorem 2.3.1 Let Ω be an open simply connected domain. Every solution of the biharmonic equa-
tion ∆∆Φ = 0 can be written in the form

(68) Φ = �{z f(z) + g(z)} ,

where f and g are analytic functions in Ω.

Proof. As mentioned above, every harmonic function is also biharmonic. Since �g(z) is harmonic,
we shall only prove that �{z f(z)} is biharmonic to conclude that every function Φ of the form (68)
is biharmonic.

Put f = u + iv. Then

�{z f(z)} = �{(x − iy)(u + iv)} = xu + yv.
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When (68) is inserted into (67), we get

∆∆Φ = ∆
{

∂2

∂x2
(xu + yv) +

∂2

∂y2
(xu + yv)

}

= ∆
{

∂

∂x

(

u + x
∂u

∂x

)

+ y
∂2v

∂x2
+ x

∂2u

∂y2
+

∂

∂y

(

v + y
∂v

∂y

)}

= ∆
{

2
∂u

∂x
+ x

∂2u

∂x2
+ y

∂2v

∂x2
+ x

∂2u

∂y2
+ 2

∂v

∂y
+ y

∂2v

∂y2

}

= 2∆
{

∂u

∂x

}

+ 2∆
{

∂v

∂y

}

+ ∆{x∆u + y∆v}

= 2
∂

∂x
{∆u} + 2

∂

∂y
{∆v} + ∆(x · 0 + y · 0) = 0,

and the claim is proved.

Then assume that Φ is biharmonic in Ω, i.e. ∆∆Φ = 0. We shall prove that Φ can be written in the
form (68) for some analytic functions f and g.
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It follows readily from ∆∆Φ = ∆(∆Φ) = 0 that ∆Φ is harmonic. Thus there exists an analytic
function h in the simply connected domain Ω, such that ∆Φ = �h. Using once more that Ω is simply

connected we can define the indefinite integral f of the analytic function
1
4

h in Ω, thus f ′ =
1
4

h.
Then by a similar computation as above,

∆ {� (z f(z))} = �h = ∆Φ,

so

∆ {Φ −� (z f(z))} = 0,

and we have proved that Φ − z f(z) is harmonic in Ω. Thus there exists an analytic function g on Ω,
such that

Φ −�{z f(z)} = �g(z),

and (68) is obtained by a rearrangement. �
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2.4 Poisson’s Integral Formula

Assuming that Ω is an open bounded domain and h(x, y) is a continuous function on the boundary
∂Ω, we proved in Theorem 2.2.3 that the boundary value problem















∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0, for (x, y) ∈ Ω,

u(x, y) = h(x, y), for (x, y) ∈ ∂Ω,

has at most one solution.

We shall in the following prove that in the special case of Ω = B(0, R) there exists a solution, and we
shall derive a solution formula. For practical reasons we shall in the following sometimes write u(z)
instead of u(x, y), where as usual z = x + iy.

Theorem 2.4.1 Poisson’s integral formula (1820). Let Ω be an open domain, containing the closed
disc B[0, R] of centre (0, 0) and radius R > 0, and let f(z) be analytic in Ω. Then we have for any
point z0 = x0 + iy0 = reiΘ ∈ B(0, R), thus 0 < r < R,

(69) u (z0) =
1
2π

∫ 2π

0

R2 − r2

R2 + r2 − 2Rr cos(Θ − t)
u
(

Reit
)

dt,

and analogously,

v (z0) =
1
2π

∫ 2π

0

R2 − r2

R2 + r2 − 2Rr cos(Θ − t)
v
(

Reit
)

dt.

If u is harmonic in Ω, then every harmonic conjugated function v(x, y) of u(x, y) is given by the
formula

(70) v (z0) =
1
2π

∫ 2π

0

2Rr sin(Θ − t)
R2 + r2 − 2Rr cos(Θ − t)

u
(

Reit
)

dt + v(0).

Finally,

(71) f (z0) =
1
2π

∫ 2π

0

z + z0

z − z0
u(z) dt + i v(0), where z = Reit.

Proof. First, by Cauchy’s integral formula,

(72) f (z0) =
1

2πi

∮

|z|=R

f(z)
z − z0

dz.

If z0 �= 0, then z1 := R2/z0 is a point outside |z| = R, so f(z)/{z − z1} is analytic in an open set
containing the closed disc B[0, R]. Hence by Cauchy’s integral theorem,

(73) 0 =
1

2πi

∮

|z|=R

f(z)
z − z1

dz, where z1z0 = R2.

Notice that Arg z0 = Arg z1 = Θ0.
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Let z = z(t) = Reit, t ∈ [0, 2π], be a parametric description of the circle |z| = R. Then dz = iReit dt =
iz dt. Writing f(z) = u + iv we get by insertion into (72),

(74) f (z0) =
1

2πi

∫ 2π

0

u + iv

z − z0
iz dt =

1
2π

∫ 2π

0

z

z − z0
(u + iv) dt.

Apply the same substitution in (73) and conjugate the result. Using furthermore that

z z = R2 and z1 =
R2

z0
=

z z

z0
,

we get

0 =
1
2π

∫ 2π

0

z

z − z z

z0

(u − iv) dt =
1
2π

∫ 2π

0

z0

z0 − z
(u − iv) dt,

thus when we multiply by −1,

(75) 0 =
1
2π

∫ 2π

0

z0

z − z0
(u − iv) dt, z = Reit.

Formula (75) was proved, assuming that z0 �= 0, and it is trivial for z0 = 0. Hence we get by adding
(74) and (75),

f (z0) =
1
2π

∫ 2π

0

{

z

z − z0
(u + iv) +

z0

z − z0
(u − iv)

}

dt

(76)

=
1
2π

∫ 2π

0

z + z0

z − z0
u(z) dt +

i

2π

∫ 2π

0

v(z) dt.

Now, z = Reit and z0 = reiΘ, so be get by (45) in Section 1.6 that

z + z0

z − z0
=

1 +
r

R
ei(Θ−t)

1 − r

R
ei(Θ−t)

=
1 −

{ r

R

}2

1 +
{ r

R

}2

− 2
r

R
cos(Θ − t)

+ i
2

r

R
sin(θ − t)

1 +
{ r

R

}2

− 2
r

R
cos(Θ − t)

(77)

=
R2 − r2

R2 + r2 − 2Rr cos(Θ − t)
+ i

2Rr sin(Θ − t)
R2 + r2 − 2Rr cos(Θ − t)

.

Finally, it follows from the Mean Value theorem for Harmonic Functions that

1
2π

∫ 2π

0

v(z) dt =
1
2π

∫ 2π

0

v
(

Reit
)

dt = v(0),

and (71) follows from (76). If (77) is put into (76), we get (69) and (70) by splitting into the real and
the imaginary parts. �
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Example 2.4.1 Let Ω = B(0, 1), and let h(z) be a continuous function on the unit circle |z| = 1. We
shall solve the boundary value problem,

(78)







∆u = 0, for (x, y) ∈ Ω,

u(x, y) = h(x, y) for x2 + y2 = 1.

First define a continuous function ϕ(t) on [0, 2π] by

ϕ(t) = h
(

eit
)

, t ∈ [0, 2π], ϕ(0) = ϕ(2π).

Then by the classical Theory of Fourier Series, ϕ(t) has a Fourier series expansion,

ϕ(t) ∼ 1
2

a0 +
+∞
∑

n=1

{an cosnt + bn sinnt} ,

where

an =
1
π

∫ 2π

0

ϕ(t) cos ntdt and bn =
1
π

∫ 2π

0

ϕ(t) sin ntdt.

The solution of (78) is given by (69),

u
(

reiΘ
)

=
1
2π

∫ 2π

0

1 − r2

1 + r2 − 2r cos(Θ − t)
ϕ(t) dt, r ∈ [0, 1[.

We have in Section 1.6 proved (45), i.e.

(79)
1 − r2

1 + r2 − 2r cos(Θ − t)
= 1 + 2

+∞
∑

n=1

rn cos(n{Θ − t}).

When 0 ≤ r < 1 is fixed, then the series in (79) is uniformly convergent, so we can interchange
summation and integration in the computation below, when (79) is inserted into the expression of
u
(

reiΘ
)

,

u
(

reiΘ
)

=
1
2π

∫ 2π

0

ϕ(t) dt +
+∞
∑

n=1

rn · 1
π

∫ 2π

0

ϕ(t) cos(nΘ − nt) dt.

Here,

1
2π

∫ 2π

0

ϕ(t) dt =
1
2

a0,

and

1
π

∫ 2π

0

ϕ(t) cos(nΘ−nt) dt =
1
π

∫ 2π

0

ϕ(t) cos ntdt·cosnΘ+
1
π

∫ 2π

0

ϕ(t) sin ntdt·sinnΘ = an cos nΘ+bn sinnΘ,

hence

(80) u
(

reiΘ
)

=
1
2

a0 +
+∞
∑

n=1

rn {an cos nΘ + bn sinnΘ} ,

and we have proved that the unique solution of the boundary value problem (78) is obtained from the
Fourier series expansion of ϕ(t) by multiplying the n-th term of the series by rn, r ∈ [0, 1]. ♦
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2.5 Electrostatic fields

A planar electrostatic field is a vector field in the complex plane, which at each point of its domain
is given by the vector �E ∼ Ex + iEy, corresponding to the force, which the field would exercise on a
unit charge at the point.

nt

S

z

Figure 6: The tangent field and the normal field of a closed curve C in the plane.

The flux through a closed curve C of the field is defined by

N :=
∮

C

�E · �nds = 4πe,

(cf. Figure 6), where e is the sum of all charges inside C, and �n is the outward normal vector field of
the curve C, and s is the natural parameter of C defined by the curve length. At each point z,

(81) div �E =
∂Ex

∂x
+

∂Ey

∂y
= lim

C→z

N

S
= 4π�,

where the curve C in some sense shrinks to z (choose e.g. Cr as the circle of centre z and radius r,
and let r → 0+), and where S is the area of the bounded domain inside C, and finally, � is the density
of the charge at the point z.

The circulation of �E along C is equal to the work

W :=
∮

C

�E · �tds,

where �t denotes the unit tangent field of C. When the work is 0 along every simple closed curve C,
we get by Stokes’s theorem in two dimensions that

�rot �E =
∂Ey

∂x
− ∂Ex

∂y
= 0.

This shows that the differential form Ex dx + Ey dy is closed, thus exact in (at least) every simply
connected domain. Hence, there exists a potential v, such that

Ex dx + Ey dy = −dv,
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(the minus sign is due to convention), so

�E = −∂v

∂x
− i

∂v

∂y
= − �grad v.

If an open and simply connected domain Ω does not contain any charge, then it follows from (81) that

div �E =
∂Ex

∂x
+

∂Ey

∂y
= 0,

so the differential form −Ey dx + Ex dy = du is also exact. Then it is easy to prove the the level
curves of the function u(x, y) are the field lines, where the tangents define the direction of the field.

Under the given assumptions above we have constructed u and v, such that

∂u

∂x
= −Ey,

∂u

∂y
= Ex,

∂v

∂x
= −Ex,

∂v

∂y
= −Ey.

It follows that u and v satisfy Cauchy-Riemann’s equations, so they are harmonic functions in Ω, and
the function

f(z) = u(x, y) + i v(x, y)

is analytic in Ω.
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The function f(z) is called the complex potential of the field, and the electrostatic field �E can be
represented by

�E = −∂v

∂x
− i

∂u

∂x
= −i f ′(z).

The field lines and the potential curves are level curves of harmonic functions. This shows that we also
for (two-dimensional) electrostatic fields are interested in the solution of the boundary value problem
(66).

2.6 Static temperature fields

Let u(x, y, t) be a planar temperature field in a domain Ω. If Ω does not contain any source of heat,
then it can be proved that u(x, y, t) satisfies the heat equation

(82)
∂u

∂t
= a2

{

∂2u

∂x2
+

∂2u

∂y2

}

,

where t denotes the time, and a2 is a positive constant. We shall not here solve (82) in general. We
only note that if the temperature field does not depend on time (corresponding to an equilibrium state
of the temperature), then u(x, y, t) = u(x, y), and (82) reduces to the well-known Laplace equation
∆u = 0, and u(x, y) is an harmonic function.
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f(z) u = �f(z) v = �f(z)

i f(z) −v = −�f(z) u = �f(z)

z x y

z2 x2 − y2 2xy

z3 x3 − 3xy2 3x2y − y3

1
z

x

x2 + y2
− y

x2 + y2

ez ex cos y ex sin y

sin z sinx · cosh y cosx · sinh y

cos z cos x · cosh y − sinx · sinh y

sinh z sinhx · cos y coshx · sin y

cosh z coshx · cos y sinhx · sin y

tan z
sin 2x

cos 2x + cosh 2y
sinh 2y

cos 2x + cosh 2y

Log z ln |z| = ln r =
1
2

ln
(

x2 + y2
)















































































Arg z = Θ for Θ ∈ ] − π, π[,

Arccot
x

y
for y > 0,

Arctan
y

x
for x > 0,

Arctan
y

x
− π for x < 0 and y < 0,

Arccot
x

y
− π for x < 0 and y < 0.

Table 1: Some elementary analytic and harmonic functions.
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3 Laurent Series and Residua

3.1 Laurent series

We previously proved in Section 1.6 that if we have given the convergent power series

(83) f(z) =
+∞
∑

n=0

an zn, for |z| < R,

then we obtain a Fourier series by putting z = r eiΘ, where 0 ≤ r < R and Θ ∈ R. In fact,

(84) ϕ(Θ) = f
(

r eiΘ
)

=
+∞
∑

n=0

an rn einΘ =
+∞
∑

n=0

cn einΘ.

This is a special case of a Fourier series, because we usually sum from −∞ to +∞ in the Theory of
Fourier series. In other words, we are missing all terms of the form c−n e−inΘ, n ∈ N, in (84). From

c−n e−inΘ = cn rn ·
(

r eiΘ
)−n

= a−n z−n

follows that we miss all terms of the form an z−n in (83). Thus, the general Fourier series force us to
consider the more general functions of the form

(85) f(z) =
+∞
∑

n=−∞
an zn,

where we still have to discuss where this series is converging, and is representing an analytic function.
Before we start on this project we sketch a useful application in the technical sciences of series of the
form (85).

Let u(t), t ≥ 0, be a continuous function in time t, and assume that it is measured at the equidistant
times t = nT , n ∈ N. In this way we define a sequence (an) by

an = u(nT ), n ∈ N0.

Such sequences are used in theoretical considerations in e.g. Cybernetics. One uses the so-called
z-transform, which is defined by

(86) zT (u)(z) :=
+∞
∑

n=0

an · 1
zn

=
+∞
∑

n=0

u(nT ) · 1
zn

,

in a domain, where (86) is convergent. In this case all exponents are non-positive.

The z-transform may be considered as a discrete form of the Laplace transform. We shall in more
details return to them in Ventus: Complex Functions Theory a-4. For the time being we have only
used (86) as a motivation and excuse for also to consider series with negative exponents.

We shall return to mathematics.

First consider a function f(w), which is analytic in w for |w| < r, so f(w) has a convergent power
series expansion

(87) f(w) =
+∞
∑

n=0

bn wn, |w| < r.
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u(t)

0

1

2

3

4

1 2 3 4 5 6 7

Figure 7: A continuous function in time, which is measured at the equidistant times nT = n, n ∈ N0,
where we have normalized, such that T = 1.

Let z0 ∈ C be fixed, and put w = g(z) =
1

z − z0
, thus |w| =

1
|z − z0|

< r for |z − z0| >
1
r
, and g(z)

is analytic in this domain. Hence, the composite function (f ◦ g)(z) is analytic for |z − z0| >
1
r
, and

when w =
1

z − z0
is put into (87), we get the convergent series expansion

(88) h(z) = (f ◦ g)(z) =
+∞
∑

n=0

bn · (z − z0)
−n for |z − z0| >

1
r
,

where the series is uniformly convergent in each closed subset A ⊆ Ω = C \ B

[

z0,
1
r

]

. Note that it is

not necessary here to assume that A is compact, because g◦−1(A) is compact.

Since w = 0 corresponds to z = ∞, it is natural to say that h(z) is analytic at ∞, and we put
h(∞) = b0.

If r = +∞, then the series (88) is convergent for all z �= z0. If r = 0, then the series is divergent for
all z �= ∞, i.e. it is only convergent at ∞ with the value b0.

It follows from the above that a series (88) with only non-positive exponents usually is convergent in

the complement of a closed circle, C� \B

[

z0,
1
r

]

, where C� = C ∪ {∞} denotes the extended complex

plane. If r = +∞, then the domain of convergence is C� \ {z0}, and if r = 0, then the series is only
convergent at ∞.

Definition 3.1.1 A Laurent series expanded from z0 ∈ C is a series of the form

(89)
+∞
∑

n=−∞
an (z − z0)

n :=
+∞
∑

n=0

an (z − z0)
n +

+∞
∑

n=1

a−n (z − z0)
−n

.

Its domain of convergence is the intersection of the two domains of convergence of the two series on
the right hand side of (89).
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If the “Taylor series”
∑+∞

n=0 an (z − z0)
n is convergent for |z − z0| < R, and the series of terms with

negative exponents
∑+∞

n=1 a−n (z − z0)
−n is convergent for |z − z0| > r, and if furthermore r < R,

then the domain of convergence for the series (89) is given by the annulus r < |z − z0| < R.

R

r
z_0

Figure 8: The domain of convergence of a Laurent series is an annulus.

Note that if r = 0, then the domain is B (z0, R) \ {z0}, where only the centre z0 has been removed
from the disc (a deleted neighbourhood of z0), and if R = +∞, then the domain is the complement
of a closed disc, C \B [z0, r]. If r = 0 and R = +∞, then the domain is of course the deleted complex
plane C \ {z0}.

If r ≥ R, then the Laurent series is divergent, and (89) does not represent a(n analytic) function.

We shall prove a theorem which is analogous to Theorem 1.3.1.
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Theorem 3.1.1 Laurent’s theorem. Assume that f(z) is analytic in the open annulus

Ω = {z ∈ C | r1 < |z − z0| < r2} , where 0 ≤ r1 < r2.

Then f is uniquely determined in Ω by its Laurent series

(90) f(z) =
+∞
∑

n=−∞
an (z − z0)

n
,

where

(91) an =
1

2πi

∮

C

f(z)
(z − z0)

n+1 dz, n ∈ Z.

Here, C is any simple and closed curve in Ω which separates the two boundaries |z − z0| = r1 and
|z − z0| = r2.
The series (90) is uniformly convergent in every compact subset of Ω.

Proof. Let C(r) denote the circle |z − z0| = r. If r1 < R1 < R2 < r2 and n ∈ Z, then it follows
from Cauchy’s integral theorem for multiply connected domains that

∮

C(R1)

f(z)
(z − z0)

n+1 dz =
∮

C(R2)

f(z)
(z − z0)

n+1 dz,

so it suffices only to consider C = C(r) in (91).

For every n ∈ Z the constant an is uniquely determined by

an =
1

2πi

∮

C(r)

f(z)
(z − z0)

n+1 dz, where r1 < r < r2.

We shall prove that the corresponding series
∑+∞

n=−∞ an (z − z0)
n is convergent for every z ∈ Ω, and

that its sum function is f(z).

Fix z ∈ Ω, and choose R1 and R2, such that

r1 < R1 < |z − z0| < R2 < r2.

Then by Cauchy’s integral formula,

(92) f(z) =
1

2πi

∮

C(R2)

f(ζ)
ζ − z

dζ − 1
2πi

∮

C(R1)

f(ζ)
ζ − z

dζ.

If ζ ∈ C (R2), then |ζ − z0| = R2. From |z − z0| < R2 follows that

(93)
1

ζ − z
=

1
ζ − z0

· 1

1 − z − z0

ζ − z0

=
1

ζ − z0

+∞
∑

n=0

{

z − z0

ζ − z0

}n

,
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z

R_2

R_1
z_0

Figure 9: The paths of integration in the proof of Laurent’s theorem.

where the series is uniformly convergent for ζ ∈ C (R2). Hence, (93) can be put into the former
integral on the right hand side of (92), and we are allowed to interchange summation and integration,
thus

(94) f2(z) =
1

2πi

∮

C(R2)

f(ζ)
ζ − z

dζ =
+∞
∑

n=0

(z − z0)
n · 1

2πi

∮

C(R2)

f(ζ)
(ζ − z0)

n+1 dζ =
+∞
∑

n=0

an (z − z0)
n

.

The latter integral of (92) is treated similarly. If ζ ∈ C (R1), then |ζ − z0| < |z − z0|, hence

(95) − 1
ζ − z

=
1

z − z0
· 1

1 − ζ − z0

z − z0

=
1

z − z0

+∞
∑

n=0

{

ζ − z0

z − z0

}n

,

which is uniformly convergent for ζ ∈ C (R1). Then

f1(z) = − 1
2πi

∮

C(R1)

f(ζ)
ζ − z

dζ =
+∞
∑

n=0

1
(z − z0)

n+1 · 1
2πi

∮

C(R1)

(ζ − z0)
n

f(ζ) dζ

(96)

=
−∞
∑

n=−1

(z − z0)
n · 1

2πi

∮

C(R1)

f(ζ)
(ζ − z0)

n+1 dζ =
−∞
∑

n=−1

an (z − z0)
n

.

We get (90), when (94) and (96) are put into (92).

The series (94) and (96) are both uniformly convergent on every compact subset of Ω, so we have
proved the theorem. �

It is in particular easy to find the Laurent series of rational functions. We shall in the following give
some examples which show the technique.
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Example 3.1.1 The function f(z) =
1

z − 2
is analytic in C\{2}. Seen from z0 = 0 the function f(z)

is analytic in the open disc Ω1 = B(0, 2), and in the complement Ω2 = C \ B[0, 2] of its closure. We
shall find the Laurent series of f(z) in Ω1 and in Ω2. In both cases we apply the geometric series in
an essential way.

Omega_2

Omega_1

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3

Figure 10: The two domains Ω1 and Ω2, in which we have a Laurent series expansion of f(z) =
1

z − 2
from z0 = 0.

First consider z ∈ Ω1 = B(0, 2). Then |z| < | − 2| = 2, so
∣

∣

∣

z

2

∣

∣

∣
< 1, and we get

(97)
1

z − 2
= −1

2
· 1

1 − z

2

= −1
2

+∞
∑

n=0

{z

2

}n

= −
+∞
∑

n=0

1
2n+1

zn,

and f(z) is in Ω1 described by its Taylor series expanded from z0 = 0.

Then let z ∈ Ω2. In this case, |z| > | − 2| = 2, so
∣

∣

∣

∣

2
z

∣

∣

∣

∣

< 1, and

(98)
1

z − 2
=

1
z
· 1

1 − 2
z

=
1
z

+∞
∑

n=0

{

2
z

}n

=
+∞
∑

n=1

2n−1 · 1
zn

,

corresponding to that f(z) is given by a Laurent series in Ω2. Since the Laurent series expansion is
unique according to the theorem above in each of the domains, the problem is solved, and we have
the descriptions given by (97) and (98), i.e.

f(z) =















−∑+∞
n=0

1
2n+1

· zn, for |z| < 2,

∑+∞
n=1 2n−1 · 1

zn
, for |z| > 2.

The Laurent series expansion from z0 = 0 does not make sense on the circle |z| = 2. ♦
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Example 3.1.2 The function f(z) =
1

(z − 1)(z − 2)
is defined and analytic in C\{1, 2}. If we choose

z0 = 0, then the Laurent domains are the disc Ω1 = B(0, 1), the annulus Ω2 = {z ∈ C | 1 < |z| < 2},
and the complement Ω3 = C \ B[0, 2] of a closed disc.

Omega_2

Omega_1

Omega_3

z_0

–2

–1

1

2

–2 –1 1 2

Figure 11: The three Laurent domains for f(z) =
1

(z − 1)(z − 2)
and z0 = 0.

First decompose

f(z) =
1

(z − 1)(z − 2)
=

1
z − 2

− 1
z − 1

.

Notice that we have already found the Laurent series of
1

z − 2
in Example 3.1.1.

If z ∈ Ω1 = B(0, 1), then |z| < 1, so

f(z) =
1

z − 2
− 1

z − 1
= −1

2
· 1

1 − z

2

+
1

1 − z
=

+∞
∑

n=0

{

1 − 1
2n+1

}

zn.

If z ∈ Ω2, i.e. 1 < |z| < 2, then

f(z) =
1

z − 2
− 1

z − 1
= −1

2
· 1

1 − z

2

− 1
z
· 1

1 − 1
z

= −
+∞
∑

n=0

1
2n+1

zn −
+∞
∑

n=1

1
zn

.

If z ∈ Ω3, then |z| > 2, and we get

f(z) =
1

z − 2
− 1

z − 1
=

1
z
· 1

1 − 2
z

− 1
z
· 1

1 − 1
z

=
+∞
∑

n=1

{

2n−1 − 1
}

· 1
zn

=
+∞
∑

n=2

{

2n−1 − 1
}

· 1
zn

. ♦
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Example 3.1.3 The function f(z) =
1

(1 − z)2
is analytic in C \ {1}. The denominator (1 − z)2 has

the root z = 1 of multiplicity 2, so the direct determination of the laurent expansions from z0 = 0
in Ω1 = B(0, 1) and Ω2 = C \ B[0, 1] becomes more difficult than in the previous two examples. The

trick is instead first to find the Laurent series of g(z) =
1

1 − z
, where the denominator only has a

simple root, and then find the Laurent series of f(z) by termwise differentiation.

We find in Ω1 = B(0, 1),

g(z) =
1

1 − z
=

+∞
∑

n=0

zn, |z| < 1,

and in Ω2 = C \ B[0, 1],

g(z) =
1

1 − z
= −1

z
· 1

1 − 1
z

= −
+∞
∑

n=1

1
zn

= −
+∞
∑

n=1

z−n, |z| > 1.
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Clearly, f(z) =
1

(1 − z)2
= g′(z), so we get by termwise differentiation,

f(z) =
+∞
∑

n=1

n zn−1 =
+∞
∑

n=0

(n + 1)zn for z ∈ Ω1,

and

f(z) =
+∞
∑

n=1

n · z−n−1 =
+∞
∑

n=2

(n − 1)z−n for z ∈ Ω2.

This method can of course be generalized to hn(z) =
1

(1 − z)n+1
, in which case we apply that h(z) =

1
n!

g(n)(z). ♦

3.2 Fourier series II

Assume that f(z) is analytic in an open annulus r1 < |z − z0| < r2, and let f(z) in this annulus be
represented by its Laurent series

f(z) =
+∞
∑

n=−∞
an (z − z0)

n
, r1 < |z − z0| < r2.

Let r1 < r < r2 and Θ ∈ R, and put z = z0 + r eiΘ. Then

(99) f
(

z0 + r eiΘ
)

=
+∞
∑

n=−∞
an rn einΘ,

where the series in (99) is uniformly convergent in Θ for fixed r.

We see that for given z0 and r the series expansion (99) is the Fourier series of the function

ϕ(Θ) := f
(

z0 + r eiΘ
)

.

This is in agreement with Laurent’s theorem, because

an =
1

2πi

∫ 2π

0

f
(

z0 + r eiΘ
)

rn+1 ei(n+1)Θ
· i r eiΘ dΘ,

from which

an rn =
1
2π

∫ 2π

0

f
(

z0 + r eiΘ
)

e−inΘ dΘ =
1
2π

∫ 2π

0

ϕ(Θ)e−inΘ dΘ,

which is the usual formula for the n-th Fourier coefficient of ϕ(Θ).

We proved in Section 1.6 Parseval’s formula in a special case, necessary for the proof of the maximum
principle. We can now easily prove the general Parseval’s formula.
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Theorem 3.2.1 Parseval’s formula. Let

f(z) =
+∞
∑

n=−∞
an zn and g(z) =

+∞
∑

n=−∞
bn zn

be analytic in the annulus r1 < |z| < r2. Then for every r ∈ ]r1, r2[,

(100)
1
2π

∫ 2π

0

f
(

r eiΘ
)

g (r eiΘ) dΘ =
+∞
∑

n=−∞
an bn r2n.

Proof. The only difference from the proof in Section 1.6 is that we here sum from −∞ to +∞
instead of from 0 to +∞. �

3.3 Solution of a linear differential equation by means of Laurent series

We gave in Section 1.4 a solution procedure for a linear differential equation of order n with analytic
coefficients in an open domain Ω,

(101) a0(z)
dnf

dzn
+ a1(z)

dn−1f

dzn−1
+ · · · + an−1(z) f ′(z) + an(z) f(z) = g(z), z ∈ Ω,

where the coefficient a0(z) of the highest order term is not identically zero. If a0 (z0) �= 0 for z0 ∈ Ω,
then we can apply Theorem 1.4.1. However, if z0 ∈ Ω is a singular point for the differential equation
(101), i.e. a0 (z0) = 0, then we do not have a result, which guarantees that there exists an analytic
solution in a (deleted) neighbourhood of z0.

One may assume that (101) in the singular case has a Laurent series solution of the form

(102) f(z) =
+∞
∑

n=−∞
an (z − z0)

n
,

where the Laurent series expansion of f (p)(z) is formally found by termwise differentiation, and where
z0 clearly does not belong to the domain of convergence of f(z), which is still to be found. In particular,

(103) f ′(z) =
+∞
∑

n=−∞
nan (z − z0)

n−1

in the possible domain of convergence. Since z0 is excluded from this domain, we do not have an
exceptional case in (103) for n = 0 as we did in Section 1.4, where we only dealt with power series.
Therefore, we shall no longer be careful with the domain of summation, which always may be put
equal to Z. Hence, if we are looking for a Laurent series solution, there is no need to specify the
bounds of summation, and we just write

∑

instead of
∑+∞

−∞.

We use the same method as in Section 1.4 to set up a recursion formula for the coefficients an in
(102). The new aspect here is that this recursion formula must be used to find both the coefficients an

for n > 0, and the coefficients a−n for n > 0. Since the recursion formula for a−n of negative indices is
used in the “opposite direction” of the customary one, it is highly recommended for the novice of this
theory (it is, however, not mandatory) to put bn = a−n for n > 0 and then find a (usual) recursion
formula for the bn.
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A small and useful, though often neglected detail here is to start by finding the values of n ∈ Z,
for which at least one term in the recursion formula becomes zero. Such an observation will give us
some information of which coefficients are zero, and which coefficients are arbitrary. Then the formal
Laurent series is expressed by these arbitrary coefficients.

Finally, when we have found all the formal Laurent series (102) which satisfy the equation (101), we
must find its domain of convergence!!! This point is of paramount importance and must never be
forgotten, because otherwise the computations do not make sense.

This point can best be illustrated by the fact that it is not hard to construct a linear differential
equation of second order (101) for which the formal Laurent series solution (102) contains three
arbitrary constants, which is contradicting the theory, unless the arbitrary constants are sorted out
by a discussion of the domains of convergence, which always will force at least one of the arbitrary
constants to be zero in any given subdomain.

To be more precise, when we find Laurent series solutions expanded from a singular point z0 of a linear
differential equation of order n, then there are at most n linear independent Laurent series solutions,
which are convergent in the same domain, while there may be more formal Laurent series solutions.

Example 3.3.1 We shall give one example, showing the method. We tried previously in Exam-
ple 1.4.3 to solve the linear differential equation

(104) z2f ′(z) − f(z) = −z.

We shall here try to solve it by means of Laurent series.

We first solve the corresponding homogeneous equation

(105) z2f ′(z) − f(z) = 0.

First note that it easily follows from the rearrangement
f ′(z)
f(z)

=
1
z2

for f(z) �= 0 and a check that the

solutions are

(106) f(z) = c · exp
(

−1
z

)

, z �= 0 and c ∈ C arbitrary.

We shall now prove (106) by using formal Laurent series instead. So assume that f(z) =
∑

a : n zn

is given by a formal Laurent series. Then by insertion into a reversed (105)

0 = z2f ′(z) − f(z) = z2
∑

nanzn−1 −
∑

anzn =
∑

nanzn+1 −
∑

anzn

(107)

=
∑

nanzn+1 −
∑

an+1z
n+1 =

∑

(nan − an+1) zn+1,

so we get the recursion formula

(108) an+1 = nan for n ∈ Z.

An obvious “zero” of (108) is n = 0, for which value

a1 = 0 · a0 = 0,
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no matter how a0 is chosen. Hence, a0 is for the time being an arbitrary constant, while a1 = 0.

We shall exclude n = 0 in the following. This case was discussed above. The investigation is then
split into the two cases, n > 0 and n < 0.

When n > 0 and a1 = 0, it follows by recursion of (108), or by a division by n!, from which

1
n!

an+1 =
1

(n − 1)!
an = · · · =

1
1!

a1 = 0,

that an = 0 for all n ∈ N.

Then assume that n < 0 and put m = −n > 0 and bm = a−n. Then (108) becomes

an+1 = a−m+1 = a−(m−1) = bm−1 = nan = −ma−m = −mbm,

so we get the recursion formula

(109) bm−1 = −mbm for m ∈ N.

Notice that m = 1 corresponds to −b1 = b0 = a0, where a0 is arbitrary.
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If (109) is multiplied by (−1)m−1(m − 1)! �= 0 and we read from the right to the left, then we get by
recursion

(−1)mm!bm = (−1)m−1(m − 1)!bm−1 = · · · = (−1)00!b0 = a0,

hence

a−m = bm =
(−1)m

m!
a0, m ∈ N,

which of course also holds for m = 0.

Thus we have derived the formal Laurent series solution of (105), which is given by

0 +
+∞
∑

m=0

a−mz−m =
+∞
∑

n=0

(−1)n

n!
a0 ·

1
zn

= a0

+∞
∑

n=0

1
n!

·
{

−1
z

}n

= a0 exp
(

−1
z

)

,

where we have recognized the coefficients of the series expansion of the exponential function. The

latter is of course convergent for all z ∈ C, for which −1
z
∈ C, thus for z ∈ C \ {0}, and the domain of

convergence is C\{0}. There is no need to use any other procedure of finding the radii of convergence
(r = 0 and R = +∞).

We have seen that equation (105) could be solved by guessing a Laurent series solution. However, if
we try the same method on the inhomogeneous equation (104), then it follows by a modification of
the computation of (107) that

−z = z2f ′(z) − f(z) =
∑

(nan − an+1) zn+1.

Here, n = 0 corresponds to zn+1 = z, so we get the recursion formula






n · an = an+1, for n �= 0,

−a1 = −1, for n = 0.

The only change from (108) is that now a1 = 1. This change, however becomes disastrous, because
then it follows from the first recursion formula above that

an+1 = nan = n(n − 1)an−1 = · · · = n! a1 = n! for n ∈ N,

and trivially a1 = 1 = 0!. Hence by a translation of the index, an = (n − 1)! for n ∈ N. Since there
is no change in the recursion formula for n < 0, we again get the previous solution, so in this case all
formal Laurent series solutions are given by

+∞
∑

n=1

(n − 1)! zn + a0

+∞
∑

n=0

1
n!

(−1)nz−n.

The latter series is of course convergent for z �= 0 with the sum function a0 exp
(

−1
z

)

, but the former

series has 0 as radius of convergence, so it is only convergent for z = 0 (where the latter series is not
convergent, unless a0 = 0).

We conclude that there does not exist any convergent Laurent series solution of (104), when expanded
from z0 = 0. However, if we move the expansion point z0 away from 0, then it follows from Theo-
rem 1.4.1 that there will always exist even power series solutions in the open disc B(z0, |z0|), z0 �= 0.
♦
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3.4 Isolated boundary points

We have seen that we may have Laurent series which are convergent in an annulus “far away” from
the expansion point z0. It should, however, not be of any surprise that the most important case is
when the domain of convergence is a deleted disc D(z0, R) = B(z0, R) \ {z0}, in which case the centre
z0 is an isolated boundary point of the domain of convergence. In fact, it will lead us to the important
Calculus of Residua.

Let f : Ω → C be analytic in an open domain Ω, and let z0 ∈ C be an isolated boundary point of Ω.
This means that z0 /∈ Ω and that we can find R > 0, such that the deleted disc

D(z0, R) := B(z0, R) \ {z0} ⊆ Ω.

In this case we can apply Laurent’s theorem to get

(110) f(z) =
+∞
∑

n=−∞
an (z − z0)

n
, for z ∈ D(z0, R) ,

where

(111) an =
1

2πi

∮

C(z0,r)

f(z)
(z − z0)

n+1 dz, for all r ∈ ]0, R[,

where C (z0, r) denotes the circle |z − z0| = r of centre z0 and radius r, traversed in the positive sense
of the plane.

We shall consider three cases.

3.4.1 Case I, where an = 0 for all negative n.

In this case f(z) is given by an ordinary power series

(112) f(z) =
+∞
∑

n=0

an (z − z0)
n

, z ∈ D(z0, r) .

The power series is clearly convergent and analytic in the full disc B(z0, r), so we extend f(z) by (112)
to all of B(z0, r), i.e. we add f(z0) := a0 to the definition.

In this case we call z0 a removable singularity.

We have

Theorem 3.4.1 If the analytic function f is bounded in a deleted disc D(z0, �) = B(z0, �) \ {z0},
then z0 is a removable singularity.

Proof. Assume that |f(z)| ≤ M for all z ∈ D(z0, �). Then by an application of (111) for any
r ∈ ]0, �[ and every n ∈ Z,

|an| =

∣

∣

∣

∣

∣

1
2πi

∮

C(z0,r)

f(z)
(z − z0)

n+1 dz

∣

∣

∣

∣

∣

≤ 1
2π

· M

rn+1
· 2πr =

M

rn
.
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It follows from this estimate for n < 0 by letting r → 0+ that an = 0 for all n < 0. �

Example 3.4.1 The function f(z) =
sin z

z
for z ∈ C \ {0} has a removable singularity at z = 0. In

fact,

sin z

z
=

1
z

+∞
∑

n=0

(−1)n

(2n + 1)!
z2n+1 =

+∞
∑

n=0

(.1)n

(2n + 1)!
z2n = 1 − z2

3!
+

z4

5!
− · · · , for z �= 0,

and the series is convergent for all z ∈ C, so we can put f(0) := 1. ♦

3.4.2 Case II, where an �= 0 for a finite number of negative n.

In this case there is a q ∈ N, such that a−q �= 0 and an = 0 for all n < −q. Then in D(z0, �),

f(z) =
+∞
∑

n=−q

an (z − z0)
n =

a−q

(z − z0)
q + · · · + a−1

z − z0
+ a0 + a1 (z − z0) + · · · .

The analytic function

g(z) := (z − z0)
q
f(z)

has clearly a removable singularity at z0, so it can be extended to the whole disc B(z0, �) by adding
the value g (z0) := a−q to its definition.

In this case we say that f(z) has a pole of order q at z0, and we put f (z0) = ∞ (the complex infinity).

We have

Theorem 3.4.2 If f(z) → ∞ for z → z0 in D(z0, �), then f(z) has a pole at z0 of some (finite)
order q ∈ N.

Proof. This proof is not so easy as the proof of Theorem 3.4.1, because we shall show that the
singularity has a finite order q ∈ N.

From the assumption f(z) → ∞ for z → z0 follows that there exists a deleted disc D(z0, �) =

B(z0, �) \ {z0}, such that f(z) �= 0, and such that the reciprocal h(z) =
1

f(z)
is bounded in D(z0, �).

Since h(z) → 0 for z → z0, the point z0 is a removable singularity of h(z), and h(z) can be extended
to an analytic function in the full disc B(z0, �) by adding the value h (z0) = 0.

Since h(z) is not identically zero in B(z0, �), we may apply Theorem 1.5.2 to conclude that the zero
z0 is isolated. Thus by Theorem 1.5.1 the zero z0 has a finite order q ∈ N, so

(113) h(z) = (z − z0)
q {b0 + b1 (z − z0) + · · · }

in a possibly smaller open disc B(z0, �1), �1 ∈ ]0, �[. Note that b0 =
1
q!

h(q) (z0) �= 0, hence it follows

from the continuity that �1 can be chosen, such that the latter factor {b0 + b1 (z − z0) + · · · } in (113)
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is analytic and �= 0 in B(z0, �1). Then its reciprocal {b0 + b1 (z − z0) + · · · }−1 is also analytic in
B(z0, �1), so it even has a Taylor series expansion

{b0 + b1 (z − z0) + · · · }−1 =
+∞
∑

n=0

an (z − z0)
n for z ∈ B(z0, �1) ,

where a0 �= 0. Thus we conclude from (113) that

f(z) =
1

h(z)
=

1
(z − z0)

q

+∞
∑

n=0

an (z − z0)
n =

+∞
∑

n=−q

an+q (z − z0)
n

, z ∈ D(z0, �1) = B(z0, �1)\{z0} ,

and we conclude that z0 is indeed a pole of order q of f(z). �

Example 3.4.2 The rational function
z − 2

(z2 + 1) (z − 1)3
has a pole of order 3 at x = 1, and simple

poles (i.e. poles of order 1) at z = i and z = −i. ♦
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3.4.3 Case III, where an �= 0 for infinitely many negative n.

In this case we call z0 an essential singularity for f(z).

We mention without proof (because the full proof is very difficult) the following theorem.

Theorem 3.4.3 Picard’s theorem (1879). If z0 is an (isolated) essential singularity for f(z), then
the image f(D(z0, �)) is either all of C, or C \ {w0} with just one exception point w0, where D(z0, �)
is any deleted disc contained in the domain of f .

Picard’s theorem shows that the behaviour of an analytic function f in a deleted neighbourhood of
an essential singularity is very wild.

To give some understanding of Picard’s theorem we shall below prove the following weaker result.

Theorem 3.4.4 Casorati-Weierstraß’s theorem. Let z0 be an (isolated) essential singularity of an
analytic function f . Given any deleted disc D(z0, �) = B(z0, �) \ {z0} ⊆ Ω, contained in the domain
Ω of f , the image f(D(z0, �)) is a dense set in C.

Proof. Contrariwise. Assume that we can find � > 0, such that D(z0, �) ⊆ Ω, and such that the
image f(D(z0, �)) is not dense everywhere in C. Then we can find w0 ∈ C and δ > 0, such that

f(D(z0, �)) ∩ B [w0, δ] = ∅,

thus |f(z) − w0| > 0 for every z ∈ D(z0, �). In particular, g(z) =
1

f(z) − w0
is bounded and analytic

in D(z0, �), and z0 is a removable singularity of g(z).

f(D(z_0;rho]
B[w_0,delta]

w_0

f

rho

z_0

D(z_0;rho)

w-planez-plane

Figure 12: Proof of Casorati-Weierstraß’s theorem.

There are two possibilities: If limz→z0 g(z) = x �= 0, then it follows from the rules of computation
that

f(z) − w0 → 1
c
, thus f(z) → w0 +

1
c

for z → z0,
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and z0 is a removable singularity of f(z).

If instead limz→z0 g(z) = 0, then f(z) − w0 = ∞, hence f(z) → ∞ for z → z0, and z0 is according to
Theorem 3.4.2 a pole for f(z).

In neither of the two possible cases above z0 is an essential singularity. By contraposition of the proof
we get by negating the first sentence in this proof that for every D(z0, �) ⊆ Ω the image f(D(z0, �))
is dense everywhere in C, and the theorem is proved. �

We mention two ways to show that an isolated singularity z0 ∈ Ω for an analytic function f : Ω → C
is an essential singularity.

1) If the Laurent series expansion f(z) =
∑

an (z − z0)
n expanded from z0 is convergent in a deleted

disc D(z0, �) = B(z0, �) \ {z0}, and infinitely many of the coefficients an for n < 0 are not zero,
then z0 is an essential singularity for f(z).
Notice that we do not require that all an �= 0 for n < 0, just infinitely many of the a−1, a−2, . . . .

2) If we can find a sequence (zn) ⊂ Ω, such that zn → z0, while the limit of (f(zn)) does not exist
for n → +∞, or “alternatively” (it is actually a variant of the same) if we can find two sequences
(z′n) → z0 and (z′′n) → z0 in Ω for n → +∞, such that

lim
n→+∞

f (z′n) �= lim
n→+∞

f (z′′n) ,

then z0 is an essential singularity for f .
We here allow the complex infinity ∞ to be a possible limit.

Example 3.4.3 The function f(z) = exp
(

1
z2

)

, z ∈ C \ {0}, has an essential singularity at z0 = 0.

In fact, the Laurent expansion of f is

exp
(

1
z2

)

=
+∞
∑

n=0

1
n!

{

1
z2

}n

=
+∞
∑

n=0

1
n!

· 1
z2n

for z ∈ C \ {0},

where

an = 0 for n > 0, a−2n+1 = 0 for n > 0 and a−2n =
1
n!

for n > 0.

We see that an �= 0 for infinitely many negative n (all even negative numbers), and an = 0 also for
infinitely many negative n (all odd negative numbers).

An alternative proof is to choose z′
n =

1
n

and z′′n =
i

n
. Then clearly z′n → 0 and z′′n → 0 for n → +∞,

while

f (z′n) = exp
(

n2
)

→ +∞ and f(z′′n) = exp
(

−n2
)

→ 0 for n → +∞.

Finally, we mention that we cannot conclude that 0 is an essential singularity, if we instead of z ′′
n have

chosen

z̃n =
1√

n2 + iπ
→ 0 for n → +∞,
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where the square root is any one of the two possible definitions. In this case we get

f(z̃n) = exp
(

n2 + iπ
)

= − exp
(

n2
)

→ −∞ for n → +∞.

Then

f(z′n) = exp
(

n2
)

→ +∞ and f(z̃n) = − exp
(

n2
)

→ −∞ for n → +∞.

This is, however, not sufficient to conclude that z0 = 0 is an essential singularity (what it is!), because
the two real infinities, −∞ and +∞, in the complex plane both are identified as ∞, so we have not
by this unfortunate choice excluded the possibility of a pole at 0. Therefore, we need the sequence
(z′′n), where the limit of (f(z′′n)) is finite.

It was proved in Ventus: Analytic Functions Theory a-1 that exp(C) = C \ {0}. Hence,

f(D(0, �)) ⊆ C \ {0}

for every deleted disc D(0, �). However, according to Picard’s theorem the image has at most one
exception point, so we conclude that

f(D(0, �)) = C \ {0} for every � > 0. ♦

3.5 Infinity ∞ as an isolated boundary point

We shall in the following sections also need to consider the case, where ∞ is an isolated boundary
point. This case is just as easy as the finite case in Section 3.4. There is, however, a psychological
obstacle here, because what may be obvious in the finite case if often difficult in the infinite case, and
vice versa. We shall later benefit from the results in this section, and the gain is indeed much bigger
than the effort we must use here to understand, what is going on “around ∞”.

Let f : Ω → C be analytic in an open domain Ω, which has ∞ as an isolated boundary point. This
means more precisely that there exists an α > 0, such that C \B[0, α] ⊂ Ω, so every z ∈ C, for which
|z| > α, belongs to Ω.

r

alpha

C(r)

B[0,alpha]

Omega

0

Figure 13: A deleted neighbourhood of ∞ is given by C \ B[0, α].
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Let r > α, and let C(r) denote the circle {z ∈ C | |z| = r}. Then by Laurent’s theorem,

(114) f(z) =
+∞
∑

n=−∞
an zn for |z| > α,

where

an =
1

2πi

∮

C(r)

f(z)
zn+1

dz, for r > α.

If we define an analytic function g by

g(w) := f

(

1
w

)

for
1
w

∈ Ω,

then we can use the discussion of Section 3.4. In fact, the domain
{

w

∣

∣

∣

∣

1
w

∈ Ω
}

of g(w) contains the

deleted disc

D

(

0,
1
α

)

:= B

(

0,
1
α

)

\ {0}.
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It follows from (114) that g(w) in D

(

0,
1
α

)

is given by the convergent Laurent series

g(w) =
+∞
∑

n=−∞
an

{

1
w

}n

=
+∞
∑

n=−∞
a−n wn, for |w| <

1
α

,

and z = ∞ corresponds to w = 0.

We consider as in Section 3.4 three different cases:

3.5.1 Case I�, where an = 0 for all positive n.

In this case we get for |z| > α,

f(z) =
0

∑

n=−∞
an zn =

+∞
∑

n=0

a−n

{

1
z

}n

=
+∞
∑

n=0

a−n wn, where w =
1
z
.

When we extend f(z) to Ω ∪ {∞} by adding the value f(∞) = a0, it follows that f is continuous in

Ω ∪ {∞}, because z = ∞ corresponds to w = 0, where g(w) = f

(

1
w

)

is analytic.

In this case it is natural to say that the extended function is analytic in the set Ω ∪ {∞}, and we say
that ∞ is a removable singularity of f(z).

When we consider the z-transform, we get precisely series of this type.

Example 3.5.1 It will be proved in Ventus: Complex Functions Theory a-4 that the function
f(z) :=

z

z − 1
is the z-transform of the constant function ϕ(t) ≡ 1. It is of course analytic for

z ∈ C \ {1}.
We get for |z| > 1 the Laurent series expansion,

f(z) =
z

z − 1
=

1

1 − 1
z

=
+∞
∑

n=0

1
zn

=
+∞
∑

n=0

z−n.

The extension is given by f(∞) = 1, corresponding to

lim
z→∞

z

z − 1
= 1. ♦

3.5.2 Case II�, where an �= 0 for finitely many positive n.

If an = 0 for all n > q (> 0) and aq �= 0, then we get in C \ B[0, α] that

f(z) = aq zq + · · · + a1 z + a0 +
a−1

z
+ · · · ,

and it follows that f(z) → ∞ for z → ∞. More precisely, z−q f(z) → aq for z → ∞.

In this case we say that the analytic function f(z) has a pole of order q at ∞, and we put f(∞) = ∞.
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Example 3.5.2 Every polynomial of degree n

Pn(z) = an zn + · · · + a1 z + a0, z ∈ C,

where an �= 0, has a pole of order n at ∞, and we put Pn(∞) = ∞. ♦

3.5.3 Case III�, where an �= 0 for infinitely many positive n.

In this case we say that f has an essential singularity at ∞.

We clearly have an analogous result as in Section 3.4:

Theorem 3.5.1 Picard’s theorem. Let f : Ω → C be analytic with an essential singularity at ∞. For
every C \ B[0, α] ⊆ Ω the image f(C \ B[0, α]) is either C or C \ {w} with precisely one exceptional
point w ∈ C.

Example 3.5.3 Important. Every “nice” transcendent function like e.g.

exp z, sin z, cos z, sinh z, cosh z,

have all an essential singularity at ∞.

It follows in particular from Picard’s theorem that none of them has a well-defined limit for z → ∞
in C. They may, however, have well-defined limits on certain (one-dimensional) curves extending to
∞. For instance, exp z → 0 for z = x → −∞ along R−.

On the other hand, Log: Ω → C, where Ω = C \ {R− ∪ {0}} does not have an essential singularity
at ∞. The reason is that the domain Ω does not contain the complement of a disc, i.e. C \ B[0, α] of
centre 0, so the image “Log(C \ B[0, α])” is not defined. ♦

Example 3.5.4 The function f(z) =
1

sin z
is defined on the ∞-connected domain

Ω = C \ {pπ | p ∈ Z}.
The denominator sin z has simple zeros for z = pπ, p ∈ Z, because

lim
z→pπ

d

dz
sin z = lim

z→pπ
cos z = (−1)p �= 0.

Hence, f(z) has simple poles at the same points.

If we put z′n =
π

2
+ 2nπ → ∞ for n → +∞, we get

f(z′n) = 1.

If instead z′′n = −π

2
+ 2nπ → ∞ for n → +∞, then

f(z′′n) = −1.

Intuitively we would then say that ∞ is an essential singularity. This is not true, because Ω does not
contain any complement of a disc of centre, hence ∞ is not an isolated boundary point. ♦
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We may repair Example 3.5.4 by introducing the following definition.

Definition 3.5.1 Let f : Ω → C be an analytic function in an open domain, and let

z0 ∈ C� := C ∪ {∞}.
If there is a sequence (zn) of either poles or essential singularities for f , such that zn → z0 for
n → +∞, then we say that z0 is a non-isolated essential singularity.

Example 3.5.5 It follows readily from Definition 3.5.1 that

tan z, cot z, tanh z, coth z,

all have a non-isolated essential singularity at z0 = ∞, and that the function

1

sin
1
z

has a non-isolated essential singularity at z0 = 0. ♦

From time to time we shall meet problems containing non-isolated essential singularities. This is the
reason why we have given them a name in Definition 3.5.1, so we can identify them. Then in practical
computations the rule of thumb is always to avoid this type of singularity, and instead find another
method than just considering such a nasty singularity. We shall in the following only consider isolated
singularities, i.e. removable singularities, poles or essential singularities.

3.6 Residua

Using the previous sections on isolated singularities we shall now introduce the important concept
of a residuum of an analytic function at such points. The powerful applications of this theory is
for practical reasons postponed to Chapter 4. In the remainder of this chapter we shall define the
residuum and derive some easy rules of computations of it.

Let f : Ω → C be analytic in an open domain Ω, and let z0 ∈ C be an isolated boundary point of Ω,
i.e. a singularity of f . Let C be any simple closed curve in Ω surrounding z0 and no other singularity
of f . Then it follows from Cauchy’s integral theorem that the value of the integral

∮

C
f(z) dz is the

same for all such closed curves around z0. This shows that the following definition makes sense.

Definition 3.6.1 The residuum of the complex differential form f(z) dz at z0 is defined as

(115) res (f(z) dz; z0) :=
1

2πi

∮

C

f(z) dz,

where C is any simple closed curve in Ω surrounding z0 and no other boundary point of Ω.

In general, the correct notation res (f(z) dz; z0) is too clumsy, so we shall usually incorrectly write
res (f ; z0) instead, when there is no risk of misunderstanding. One may in the literature also find other
notations, like e.g. Res[f ; z0] and resf (z0). It should, however, be emphasized that the residuum is
a number, which is connected with the differential form f(z) dz and not the analytic function f(z)
itself. We shall later explain this point in more details.
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z_0

C

Figure 14: A simple closed curve C in Ω surrounding just one isolated singularity z0 of f(z).

Remark 3.6.1 “Residuum”, or in some texts “residue”, is a Latin word meaning “remaining”, i.e.
what is left after a part is taken away, namely the often complicated process of integrating the
differential form f(z) dz along the simple closed curve C around z0. We shall in the present text use
the Latin plural “residua”, but one may of course also use the English plural “residues”. ♦
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The first result is very simple.

Theorem 3.6.1 Let f(z) have the convergent Laurent series expansion

(116) f(z) =
+∞
∑

n=−∞
an (z − z0)

n
, for 0 < |z − z0| < �,

in a deleted disc D(z0, �) = B(z0, �) \ {z0}. Then

(117) res (f ; z0) = a−1.

Proof. The Laurent series (116) is uniformly convergent on the circle C (z0, r) : |z − z0| = r for all
fixed r ∈ ]0, �[. Thus, it can be integrated termwise,

res (f ; z0) =
1

2πi

∮

C(z0,r)

f(z) dz =
+∞
∑

n=−∞
an · 1

2πi

∮

C(z0,r)

(z − z0)
n dz = a−1,

where we have used the result

∮

C(z0,r)

(z − z0)
n dz =

∮

C(0,r)

zn dz =







0 for n ∈ Z \ {−1},

2πi for n = −1,

proved in Ventus: Complex Functions Theory a-1. �

Theorem 3.6.1 above is in particular applied when we shall find the residuum at an essential singularity.
It may of course be used in general, but it is often easier to apply other methods, when the singularity
is a pole.

Example 3.6.1 We shall find

res
(

1
z2(z − 1)

; 0
)

.

The Laurent series expansion from z0 = 0 is in the deleted disc 0 < |z| < 1 given by

1
z2(z − 1)

= − 1
z2

· 1
1 − z

= − 1
z2

+∞
∑

n=0

zn = − 1
z2

− 1
z
− · · · .zn − · · · ,

thus a−1 = −1, and we get

res
(

1
z2(z − 1)

; 0
)

= −1.

As a consequence – cf. (115) – we see that also
∮

|z|= 1
2

1
z2(z − 1)

dz = 2πi res
(

1
z2(z − 1)

; 0
)

= −2πi.

Clearly, the traditional computation of the line integral in the left hand side of this equation becomes
very difficult, so we have indeed derived an easier method of computation in this case. ♦
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Example 3.6.2 It is obvious that the Laurent series expansion of
1

z2 (z2 − 1)
in a deleted disc of

centre 0 only contains terms of even exponents, so a−1 = 0, and

res
(

1
z2(z2 − 1)

; 0
)

= 0,

in which case it is not even necessary to find the explicit Laurent series expansion. We just use a
trivial inspection. ♦

An important observation is that if z0 is a removable singularity, then trivially a−1 = 0, so

res(f ; z0) = 0, if z0 is a removable singularity.

This implies that if we occasionally include removable singularities in the Calculus of Residua, this
does not matter much because such removable singularities will not contribute to the final result. This
is convenient because it in general in many cases suffices to notice that z0 is a pole of at most some
order q.

C_2 C_1

z_2

z_1

C

Figure 15: Cauchy’s residue theorem.

Let C be a simple closed curve in the domain Ω of f , such that f is analytic inside C, with the
exception of a finite number of isolated boundary points z1, . . . , zk of Ω, cf. Figure 15, where k = 2.

“Inside” means here the bounded set surrounded by C, and the direction of C is in the positive sense
of the complex plane, which also means that the the bounded component lies to the left of C seen in
the direction of C.

It follows from Cauchy’s integral theorem that
∮

C

f(z) dz =
∮

C1

f(z) dz + · · · +
∮

Ck

f(z) dz,

where each simple closed curve Cj (typically a small circle of centre zj) only surrounds one singularity
zj , j = 1, . . . , k. Using that

∮

Cj

f(z) dz = 2πi · res (f(z); zj) ,

92

Download free eBooks at bookboon.com



Calculus of Residua

97 

Laurent Series and Residua

we immediately get the following main theorem:

Theorem 3.6.2 Cauchy’s residuum theorem. Assume that f(z) is analytic in an open domain Ω,
and let C be a simple closed curve in Ω oriented in the positive sense of the complex plane and with
only a finite number of isolated boundary points z1, . . . , zk of Ω inside C (i.e. to the left of the curve),
and analytic at all other points inside C. Then

(118)
1

2πi

∮

C

f(z) dz = res (f ; z1) + · · · + res (f ; zk) =
k

∑

j=1

res (f ; zj) .

The importance of this main theorem will be made clear in Chapter 4. Before this chapter we shall
in the next section derive some simple rules of computation of the residuum of a function f at a pole.

3.7 Simple rules of computation of the residuum at a (finite) pole

It will in the following be convenient to consider a removable singularity as a pole of order 0. We shall
in this section only consider residua of finite poles of order q ∈ N0.

If z0 is an essential singularity of f , we either apply Theorem 3.6.1, or a technique which we shall
develop in Section 3.8.

Theorem 3.7.1 Assume that f(z) has the pole z0 of order ≤ q for some q ∈ N. Then

(119) res (f ; z0) =
1

(q − 1)!
lim

z→z0

dq−1

dzq−1
{(z − z0)

q
f(z)} .

Proof. We have assumed that the order of the pole is at most q, hence a−n = 0 for all n > q, and
we have the Laurent series expansion,

f(z) =
a−q

(z − z0)
q + · · · + a−1

z − z0
+ a0 + a1 (z − z0) + · · · , for 0 < |z − z0| < �.

Notice that we do not assume that a−q �= 0.

Multiply this equation by (z − z0)
q to get

(z − z0)
q
f(z) = a−q + · · · + a−2 (z − z0)

q−2 + a−1 (z − z0)
q−1 + (z − z0)

q {a0 + · · · } .

By q − 1 successive differentiations the polynomial of degree q − 2 disappears, so

dq−1

dzq−1
{(z − z0)

q
f(z)} = (q − 1)! a−1 + (z − z0) {· · · },

where the dots are a shorthand for some analytic function. Then divide by (q− 1)! and take the limit
z → z0 to get

1
(q − 1)!

lim
z→z0

dq−1

dzq−1
{(z − z0)

q
f(z)} = a−1 + 0 = a−1 = res (f ; z0) ,

and the theorem is proved. �
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Remark 3.7.1 The proof can of course be generalized to find all coefficients a−j , j = 1, . . . , 1 (and
of course also of the not so interesting coefficients an, n ∈ N0). By a modification of the proof above
the reader easily verify that

(120) a−j =
1

(q − j)!
lim

z→z0

dq−j

dzq−j
{(z − z0)

q
f(z)} , j = 1, . . . , q.

When f(z) is a rational function of multiple poles, this is just decomposition in a new way, because
a−j is precisely the coefficient of (z − z0)

−1 in the decomposition. The details are left to the reader.
♦

An important special case of Theorem 3.7.1 is the following:

Theorem 3.7.2 Assume that z0 is either a simple pole or a removable singularity of f(z). Then

(121) res (f ; z0) = lim
z→z0

(z − z0) f(z).

Proof. Put q = 1 into (119). �
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Example 3.7.1 Theorem 3.7.1 has the convenient property that one shall not find the exact order
of the pole. Let us e.g. consider the function

f(z) =
sin2 z

z5
for z ∈ C \ {0}.

Since
sin z

z
has a removable singularity at z0 = 0, and

f(z) =
sin2 z

z5
=

{

sin z

z

}2

· 1
z3

,

we conclude that f(z) has a pole of exact order 3 at z0 = 0. However, if we put q = 3 into (119), we
get

res
(

sin2 z

z5
; 0

)

=
1
2!

lim
z→0

d2

dz2

{

sin2 z

z2

}

,

which clearly will give us some difficulties, if we continue this computation.

We shall not do this, for if we instead use that z0 = 0 is at most of order q = 5 (> 3), then we get
from (119),

res
(

sin2 z

z5
; 0

)

=
1
4!

lim
z→0

d4

dz4

{

sin2 z
}

=
1
24

lim
z→0

d3

dz3
{sin 2z} =

1
24

lim
z→0

23 {− cos 2z} = −1
3
.

In other words, by choosing a higher order than the exact one for the pole we ease the computations,
at least in this particular case. ♦

Example 3.7.2 We shall find the value of the line integral along the circle |z| = 2,
∮

|z|=2|

ez

z(z − 1)2
dz.

The mixture of an exponential and a rational function in the integrand will make the usual method
of inserting a parametric description of the integration curve very complicated, if successful at all.
Instead we notice that we have inside |z| = 2 two isolated singularities, namely the simple pole z = 0
and the double pole z = 1, i.e. of order 2. Then by Cauchy’s residuum theorem,

∮

|z|=2

ez

z(z − 1)2
dz = 2πi {res(f ; 0) + res(f ; 1)}.

Since z = 0 is a simple pole, it follows from Theorem 3.7.2 that

res(f ; 0) = lim
z→0

z f(z) = lim
z→0

ez

(z − 1)2
= 1.

Since z = 1 is a pole of order q = 2, it follows from Theorem 3.7.1 that

res(f ; 1) =
1

(2 − 1)!
lim
z→1

d2−1

dz2−1

{

(z − 1)2f(z)
}

= lim
z→1

d

dz

{

ez

z

}

= lim
z→1

ez

z2
(z − 1) = 0.

Finally, we get by insertion
∮

|z|=2

ez

z(z − 1)2
dz = 2πi {1 + 0} = 2πi. ♦
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Theorem 3.7.3 Assume that both A(z) and B(z) are analytic in a neighbourhood of z0, and assume
that z0 is a zero of order 1 for B(z), i.e. B(z0) = 0 and B′ (z0) �= 0. Then

(122) res
(

A(z)
B(z)

; z0

)

=
A(z0)
B′ (z0)

.

Proof. Since
A(z)
B(z)

has a pole of at most order 1 at z0, it follows from Theorem 3.7.2 that

res
(

A(z)
B(z)

; z0

)

= lim
z→z0

(z − z0) ·
A(z)
B(z)

= lim
z→z0

A(z) · 1
B(z) − B (z0)

z − z0

= A(z0) ·
1

limz→z0

B(z) − B(z0)
z − z0

=
A(z0)
B′ (z0)

. �

Example 3.7.3 We shall find the value of
∮

|z|=2

z ez

z2 − 1
dz.

Put A(z) = z ez and B(z) = z2 − 1. Then A(z) and B(z) are analytic in C, and B(z) has its simple
zeros at z = ±1. Let z0 be any of the zeros ±1. By Theorem 3.7.3,

res(f ; z0) =
A(z0)
B′ (z0)

=
z0 exp(z0)

2z0
=

1
2

exp(z0) ,

hence
∮

|z|=2

z ez

z2 − 1
dz = 2πi {res(f ; 1) + res(f ;−1)} = 2πi · e1 + e−1

2
= 2πi · cosh 1. ♦

Example 3.7.4 Theorem 3.7.3 is in particular applied when we shall find the residua at several simple
poles. We have e.g.

∮

|z|=2

z

z4 − 1
dz = 2πi {res(f ; 1) + res(f ;−1) + res(f ; i) + res(f ;−i)},

where all poles , 1, -1, i and −i, are simple. Let z0 be any one of these. Then z4
0 = 1.

Choose A(z) = z and B(z) = z4 − 1, i.e. B′(z) = 4z3, so it follows from Theorem 3.7.3 that

res(f ; z0) =
A(z0)
B′ (z0)

=
z0

4z3
0

=
1
4
· z2

0

z4
0

=
1
4

z2
0 ,

hence by insertion,
∮

|z|=2

z

z4 − 1
dz =

2πi

4
{

12 + (−1)2 + i2 + (−i)2
}

= 0. ♦
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In the following theorem we assume that B(z) has a zero of second order at z0. It is given here for
completeness, but it should also be mentioned that Theorem 3.7.1 usually give smaller computations,
and furthermore, it is very easy to make errors in the computations of Theorem 3.7.4 below, so the
reader is warned against applying it uncritically.

Theorem 3.7.4 Assume that A(z) and B(z) are analytic in a neighbourhood of z0. Furthermore,
assume that B(z) has a zero of exactly second order at z0. Then

(123) res
(

A(z)
B(z)

; z0

)

=
6A′ (z0)B′′ (z0) − 2A(z0)B(3) (z0)

3 {B′′ (z0)}2 .

Proof. It follows from the assumptions that

A(z) = a0 + a1 (z − z0) + · · · , B(z) = b2 (z − z0)
2 + b3 (z − z0)

3 + · · · for |z − z0| < �,

where b2 �= 0, and B(z) �= 0 for 0 < |z − z0| < �. We shall find the Laurent series expansion of f(z)
in the deleted disc 0 < |z − z0| < �. This is given by

f(z) =
c−2

(z − z0)
2 +

c−1

z − z0
+ · · · =

A(z)
B(z)

=
1

(z − z0)
2 · a0 + a1 (z − z0) + · · ·

b2 + b3 (z − z0) + · · · .

Since res (f ; z0) = c−1, we shall only find c−1 of the equation B(z)f(z) = A(z), i.e.

{c−2 + c−1 (z − z0) + · · · } · {b2 + b3 (z − z0) + · · · } = a0 + a1 (z − z0) + · · · .

By multiplication,

c−2b2 + (c−2b3 + c−1b2) (z − z0) + · · · = a0 + a1 (z − z0) + · · · .

It follows from the Identity theorem that c−2 =
a0

b2
, and

(124) res (f ; z0) = c−1 =
1
b2

{a1 − c−2b3} =
1
b2

{

a1 −
a0b3

b2

}

=
a1b2 − a0b3

b2
2

.

Using the notation of the theorem we get

A(z0) = a0, A′(z0) = a1, B′′(z0) = 2!b2 = 2b2, B(3)(z0) = 3!b3 = 6b3.

We finally get by insertion into (124),

res (f ; z0) =
A′(z0) · 1

2 B′′(z0) − A(z0) · 1
6 B(3)(z0)

1
4 {B′′(z0)}2 =

6A′(z0)B′′(z0) − 2A(z0)B(3)(z0)
3 {B′′(z0)}2 . �
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3.8 The residuum at ∞
Assume that the analytic function f(z) for |z| > R is given by its convergent Laurent series expansion

(125) f(z) =
+∞
∑

n=−∞
an zn for |z| > R.

Definition 3.8.1 Assume that f(z) is analytic for |z| > R. Then we define the residuum of the
differential form f(z) dz by

(126) res(f(z) dz;∞) := − 1
2πi

∮

C

f(z) dz,

where −C is any simple closed curve in z > R surrounding ∞.

We notice the minus sign on the right hand side of (126), and that −C denotes the curve C with
reversed direction, i.e. opposite the orientation of the complex plane. That −C is surrounding ∞
means that ∞ lies to the left of this curve −C, seen in this reversed direction of C.

We have earlier proved that the value of (126) is independent of the curve C, as long as it fulfils the
conditions of Definition 3.8.1.
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Choose in particular C = C(0, r), i.e. |z| = r, where r > R. Since we have uniform convergence of the
Laurent series expansion (125) on C(0, r), we can interchange summation and integration, and we get

res(f(z) dz;∞) = − 1
2πi

∮

C(0,r)

f(z) dz = −
+∞
∑

n=−∞

1
2πi

∮

C(0,r)

]an zn dz = −a−1,

so we have proved

Theorem 3.8.1 If f(z) =
∑+∞

n=−∞ an zn is the convergent Laurent series expansion for |z| > R, then
the residuum of f(z) dz at infinity is given by

(127) res(f(z) dz;∞) = −a−1.

It is easy to extend Cauchy’s residuum theorem to also include ∞.

Theorem 3.8.2 Cauchy’s residuum theorem for unbounded domains. Assume that f(z) is analytic
in an open domain Ω, which contains the set C \B[0, R] for some R ≥ 0. Let C be any simply closed
curve in Ω, such that outside C, i.e. to the right of C seen in its positive direction – which can also
be described as the unbounded domain of C having C as its boundary – there are only a finite number
of (necessarily isolated) boundary points z1, . . . , zk of Ω. Then

(128) − 1
2πi

∮

C

f(z) dz = res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞).

- C

C(0,r)

0

Figure 16: Cauchy’s residue theorem for unbounded domains.

Proof. Choose r > 0, such that |zj | < r for all j = 1, . . . , k, so all the finite singularities z1, . . . , zk lie
between C and C(0, r). We get by adding and subtracting the line integral along C(0, r) and applying
Cauchy’s residuum theorem for finite singularities and Definition 3.8.1, cf. Figure 16,

− 1
2πi

∮

C

f(z) dz = − 1
2πi

∮

C

f(z) dz +
1

2πi

∮

C(0,r)

f(z) dz − 1
2πi

∮

C(0,r)

f(z) dz

= res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞). �
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Theorem 3.8.3 Assume that f : Ω → C is analytic, where Ω = C \ {z1, . . . , zk}. Then the sum of all
residua, including the residuum at ∞, is equal to zero,

(129) res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞) = 0.

Proof. Let C be any closed curve in Ω. Then by the two versions of Cauchy’s residuum theorem,

0 = − 1
2πi

∮

C

f(z) dz +
1

2πi

∮

C

f(z) dz = res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞). �

Theorem 3.8.4 If f(z) has a zero at ∞, then

(130) res(f dz;∞) = − lim
z→∞

z f(z).

In particular, res(f dz;∞) = 0, if ∞ is a zero of order ≥ 2 for f .

Proof. By the assumption,

f(z) =
a−1

z
+

a−2

z2
+ · · · for |z| > R.

Then by Theorem 3.8.1,

res(f dz;∞) = −a−1 = − lim
z→∞

z f(z). �

The residuum at ∞ is in particular applied for line integrals along simple closed curves C, for which
the residuum theorem of Section 3.6 is either difficult to apply, or where its assumptions are not
fulfilled at all. We shall in the following give some examples of these phenomena. Notice that we often
can choose between various methods of computation. The art is then to choose the easiest one.

Example 3.8.1 We computed in Example 3.7.4 the integral
∮

|z|=2

z

z4 − 1
dz

by applying Theorem 3.7.3. It is, however, much easier to apply Theorem 3.8.4,

∮

|z|=2

z

z4 − 1
dz = −

{

−
∮

|z|=2

z

z4 − 1
dz

}

= −2πi · res
(

z

z4 − 1
dz;∞

)

= 2πi · lim
z→∞

z2

z4 − 1
= 0,

because all (finite) singularities of the integrand lie inside the circle |z| = 2, and because the integrand
has a zero of order 2 at ∞. ♦
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Theorem 3.8.5 If f(z) is analytic for |z| > R, then

(131) res(f(z) dz;∞) = −res
(

1
z2

f

(

1
z

)

dz; 0
)

.

Proof. The Laurent series expansion is

f(z) =
+∞
∑

n=−∞
an zn for |z| > R.

so

res
(

1
z2

f

(

1
z

)

dz; 0
)

= res

(

+∞
∑

n=−∞
an z−2−n; 0

)

= a−1 = −res(f dz;∞). �

Remark 3.8.1 Notice that

−res
(

1
z2

f

(

1
z

)

dz; 0
)

= res
(

f

(

1
z

)

d
(

1
z

)

; z0 = 0
)

,

so (131) can be rewritten as

(132) res(f(z) dz;∞) = res
(

f

(

1
z

)

d
(

1
z

)

; z0 = 0
)

,

which indicates why the residuum is linked to the differential form and not to the function f(z) itself.
In fact, in this way the residuum becomes invariant under transformations of z. ♦

Example 3.8.2 Important! The analytic function f(z) =
1
z
, z �= 0, is trivially extended to ∞ by

putting f(∞) = 0. The Laurent series expansion of f is trivial,

f(z) =
+∞
∑

n=−∞
an zn =

1
z

= a−1 ·
1
z
,

thus a−1 = 1, and res(f dz;∞) = −1 �= 0 according to Theorem 3.8.1. This simple example shows that
analyticity at ∞ does not imply that res(f dz;∞) is zero! This is in contrast to the residuum at a finite
removable singularity, in which the residuum is indeed zero. Many years ago the author experienced
that even trained professors in Mathematics can make errors here. Therefore this warning. ♦
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Example 3.8.3 To show the power of this theory we shall show that we are now able to compute
even a nasty integral as

∮

|z|=1

1
sin 1

z

dz.

The standard procedure of computing a line integral, using a parametric description is clearly doomed

to failure. The integrand has its singularities at the zeros of sin
1
z
, i.e. for z =

1
nπ

for n ∈ Z \ {0} (all

simple poles lying inside |z| = 1), supplied with the non-isolated singularity at z = 0, so we cannot
use the version of Cauchy’s residuum theorem given in Section 3.6.

We then choose to apply the residuum at ∞. This is done in the following way,
∮

|z|=1

1
sin 1

z

dz = −
{

−
∮

|z|=1

1
sin 1

z

dz

}

= −2πi · res
(

1
sin 1

z

dz;∞
)

= −2πi · res
(

1
sin z

d
(

1
z

)

; 0
)

= 2πi · res
(

1
z2 sin z

dz; 0
)

= 2πi · a−1,
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where a−1 is the coefficient of
1
z

in the Laurent series expansion of
1

z2 sin z
from z0 = 0. Now,

z2 sin z clearly has a zero of order 3 at 0, so
1

z2 sin z
has a pole of order 3 at 0. Using that z2 sinx �= 0

for 0 < |z| < π we therefore have

1
z2 sin z

=
a−3

z3
+

a−2

z2
+

a−1

z
+ · · · for 0 < |z| < π,

where the task is to find a−1. If this equation is multiplied by

z2 sin z = z2

{

z − 1
6

z3 + · · ·
}

= z3

{

1 − 1
6

z2 + · · ·
}

,

then we get

1 =
1
z3

{

a−3 + a−2z + a−1z
2 + · · ·

}

· z3

{

1 − z2

6
+ · · ·

}

=
{

a−3 + a−2z + a−1z
2 + · · ·

}

·
{

1 − 1
6

z2 + · · ·
}

= a−3 + a−2z +
{

a−1 −
1
6

a−3

}

z2 + · · · ,

where the dots everywhere indicate terms of higher order. When we identify the coefficients, we get

a−3 = 1, a−2 = 0 and a−1 =
1
6

a−3 =
1
6
.

Hence by insertion,
∮

|z|=1

1
sin z

dz = 2πi · res
(

1
z2 sin z

dz; 0
)

= 2πi · a−1 =
πi

3
. ♦

Example 3.8.4 Since f(z) = sin
1
z

is analytic in C \ {0}, it follows from Theorem 3.8.3 that

res
(

sin
1
z
;∞

)

= −res
(

sin
1
z
; 0

)

= −1,

because the Laurent series expansion of f(z) from z : 0 = 0 is given by

f(z) = sin
1
z

=
1
z
− 1

3!
1
z3

+ · · · , for z ∈ C \ {0},

from which a−1 = 1.

Alternatively we apply Theorem 3.8.5, because

1
z2

f

(

1
z

)

=
1
z2

sin z =
1
z2

{

z − z3

3!
+ · · ·

}

,

thus

res
(

sin
1
z
;∞

)

= −res
(

1
z2

f

(

1
z

)

; 0
)

= −1. ♦
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Remark 3.8.2 It must be emphasized that ∞ is not an isolated singularity of functions like
1

sin z
,

1
cos z

,
1

sinh z
,

1
cosh z

, tanx, cot z, tanh z, coth z, etc.. This means that the residuum at ∞ is never
defined for these function. ♦

3.9 Summary of the Calculus of Residua

It is very important to be able to compute the residuum in Chapter 4, so we collect the basic properties
in this section.

1) The residuum of the complex differential form f(z) dz at z0 is defined as

res (f(z) dz; z0) :=
1

2πi

∮

C

f(z) dz,

where C is any simple closed curve in Ω surrounding z0 and no other boundary point of Ω, cf.
Definition 3.6.1.

2) Let f(z) have the convergent Laurent series expansion

f(z) =
+∞
∑

n=−∞
an (z − z0)

n
, for 0 < |z − z0| < �,

in a deleted disc D(z0, �) = B(z0, �) \ {z0}. Then

res (f ; z0) = a−1.

Cf. Theorem 3.6.1.

3) If z0 is a removable singularity, then

res(f ; z0) = 0.

4) Cauchy’s residuum theorem. Assume that f(z) is analytic in an open domain Ω, and let C be a
simple closed curve in Ω oriented in the positive sense of the complex plane and with only a finite
number of isolated boundary points z1, . . . , zk of Ω inside C (i.e. to the left of the curve), and
analytic at all other points inside C. Then

1
2πi

∮

C

f(z) dz = res (f ; z1) + · · · + res (f ; zk) =
k

∑

j=1

res (f ; zj) ,

cf. page 93.

5) Assume that f(z) has the pole z0 of order ≤ q for some q ∈ N. Then

res (f ; z0) =
1

(q − 1)!
lim

z→z0

dq−1

dzq−1
{(z − z0)

q
f(z)} ,

cf. Theorem 3.7.1.
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6) Assume that z0 is either a simple pole or a removable singularity of f(z). Then

res (f ; z0) = lim
z→z0

(z − z0) f(z),

cf. Theorem 3.7.2

7) Assume that both A(z) and B(z) are analytic in a neighbourhood of z0, and assume that z0 is a
zero of order 1 for B(z), i.e. B(z0) = 0 and B′ (z0) �= 0. Then

res
(

A(z)
B(z)

; z0

)

=
A(z0)
B′ (z0)

,

cf. Theorem 3.7.3

8) (Use this result with care.) Assume that A(z) and B(z) are analytic in a neighbourhood of z0.
Furthermore, assume that B(z) has a zero of exactly second order at z0. Then

res
(

A(z)
B(z)

; z0

)

=
6A′ (z0)B′′ (z0) − 2A(z0)B(3) (z0)

3 {B′′ (z0)}2 .

cf. Theorem 3.7.4.

9) Assume that f(z) is analytic for |z| > R. Then we define the residuum of the differential form
f(z) dz by

res(f(z) dz;∞) := − 1
2πi

∮

C

f(z) dz,

where −C is any simple closed curve in z > R surrounding ∞, cf. Definition 3.8.1

10) If f(z) =
∑+∞

n=−∞ an zn is the convergent Laurent series expansion for |z| > R, then the residuum
of f(z) dz at infinity is given by

res(f(z) dz;∞) = −a−1,

c.f. Theorem 3.8.1.

11) Assume that f(z) is analytic in an open domain Ω, which contains the set C \ B[0, R] for some
R ≥ 0. Let C be any simply closed curve in Ω, such that to the right of C seen in its positive
direction there are only a finite number of (necessarily isolated) boundary points z1, . . . , zk of Ω.
Then

− 1
2πi

∮

C

f(z) dz = res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞),

cf. Theorem 3.8.2.

12) Assume that f : Ω → C is analytic, where Ω = C \ {z1, . . . , zk}. Then the sum of all residua,
including the residuum at ∞, is equal to zero,

res(f dz; z1) + · · · + res(f dz; zk) + res(f dz;∞) = 0,

cf. Theorem 3.8.3.
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13) If f(z) has a zero at ∞, then

res(f dz;∞) = − lim
z→∞

z f(z).

In particular, res(f dz;∞) = 0, if ∞ is a zero of order ≥ 2 for f , cf. Theorem 3.8.4.

14) If f(z) is analytic for |z| > R, then

res(f(z) dz;∞) = −res
(

1
z2

f

(

1
z

)

dz; 0
)

,

cf. Theorem 3.8.5.
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4 Applications of the Calculus of Residua

4.1 Trigonometric integrals

We shall start this chapter by demonstrating that some trigonometric integrals are easier to compute
by using the Calculus of Residua than the traditional method from Real Calculus. We first prove the
following theorem:

Theorem 4.1.1 Let R(ξ, η) denote a function in two real variables defined in a subset of R2. If

f(z) = R

(

z2 − 1
2iz

,
z2 + 1

2z

)

is analytic in a domain Ω ⊂ C, containing the circle |z| = 1, then

(133)
∫ 2π

0

R(sinΘ, cos Θ) dΘ =
∮

|z|=1

R

(

z2 − 1
2iz

,
z2 + 1

2z

)

dz

iz
.

Proof. When we apply the parametric description z = eiΘ, Θ ∈ [0, 2π], of |z| = 1, we get
dz = i eiΘ dΘ = i z dΘ. Then

z2 − 1
2iz

=
1
2i

{

eiΘ − e−iΘ
}

= sinΘ and
z2 + 1

2z
=

1
2

{

eiΘ + e−iΘ
}

= cos Θ,

and the result follows immediately by insertion into the right hand side of (133). �

Obviously, (133) should be applied from the left to the right, because then we can apply the Calculus
of Residua. That this method is really powerful is demonstrated by the following example.

Example 4.1.1 We shall compute
∫ 2π

0
e2 cos Θ dΘ. The tradition substitution t = 2 cos Θ with a

discussion of its intervals in which it is monotone does not look promising. Instead note that R(ξ, η) =
e2η, in which even ξ is missing, and where the function

R

(

z2 − 1
2iz

,
z2 + 1

2z

)

= exp
(

2 · z2 + 1
2z

)

= exp
(

z +
1
z

)

, z �= 0,

is analytic in C \ {0}. Hence, by Theorem 4.1.1,
∫ 2π

0

e2 cos Θ dΘ =
∮

|z|=1

exp
(

z +
1
z

)

dz

iz
=

2πi

i
res

(

1
z

exp
(

z +
1
z

)

; 0
)

.

The unpleasant fact is of course that the only two singularities, 0 and ∞, are both essential. This
means that the only possible method is to find a−1 in the Laurent series expansion. We have

1
z

exp
(

z +
1
z

)

=
1
z

exp z · exp
1
z

=
1
z

+∞
∑

m=0

1
m!

zm ·
+∞
∑

n=0

1
n!

1
zn

, z ∈ C \ {0},

so a−1 is by Cauchy multiplication equal to the sum of the coefficients, which correspond to m = n

i.e. by a summation, a−1 =
∑+∞

n=0

1
(n!)2

. Hence,

∫ 2π

0

e2 cos Θ dΘ = 2π
+∞
∑

n=0

1
(n!)2

.
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This series is clearly rapidly convergent. It should here be mentioned that it can be proved that

+∞
∑

n=0

1
(n!)2

= J0(2i),

where J0(z) denotes the (complex) Bessel function of order 0. ♦

The value of Theorem 4.1.1 lies in the fact that it can be applied when the integrand is not a rational
function in cosΘ and sinΘ. In many textbooks this theorem is however only formulated for such
rational functions. In some sense this is an overkill, because the traditional method known from Real
Calculus is often easier to apply. We shall demonstrate this in Example 4.1.2 below.

Example 4.1.2 We shall compute the integral
∫ 2π

0

dΘ
2 + cos Θ

. First we get by Theorem 4.1.1,

∫ 2π

0

dΘ
2 + cos Θ

=
∮

|z|=1

1

2 +
z2 + 1

2z

dz

iz
=

∮

|z|=1

−2i
z2 + 4z + 1

dz

= (−2i) · 2πi · res
(

1
z2 + 4z + 1

;−2 +
√

3
)

= 4π lim
z→−2+

√
3

1
z + 2 +

√
3

=
2π√

3
,

where we have used that z2 + 4z + 1 has the two simple roots −2 ±
√

3, of which only −2 +
√

3 lies
inside |z| = 1, and then used Theorem 3.7.2.

Alternatively, we get by the traditional substitution t =
Θ
2

and u = tan t, that

∫ 2π

0

dΘ
2 + cos Θ

=
∫ 2π

0

dΘ

3 cos2
(

Θ
2

)

+ sin2

(

Θ
2

) = 2 · 2
∫ π

2

0

dt

3 cos2 t + sin2 t

=
4
3

∫ +∞

0

du

1 + 1
3 u2

=
4
√

3
3

· π

2
=

2π√
3
. ♦
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4.2 Improper integrals

Up to this point we have only considered bounded line integrals. We shall here prove that the real axis
R in some cases – depending on the integrand – may be considered as a simple curve which is closed
by adding ∞, where we identify +∞ and −∞ in the complex plane. Hence under some additional
assumptions we shall expand Cauchy’s residuum theorem to half planes.

Theorem 4.2.1 Let f : Ω → C be analytic in an open domain Ω, which contains the closed upper
half plane �z ≥ 0, except for a finite number of points z1, . . . , zn, all of which lying in the open upper
half plane �zj > 0, j = 1, . . . , n. Thus,

Ω ∪ {z1, . . . , zn} ⊃ {z ∈ C | �z ≥ 0}.

Assume that there exist constants R > 0, c > 0 and a > 1, such that

(134) |f(z)| ≤ c

|z| for |z| ≥ R and �z ≥ 0.

Then the improper integral
∫ +∞
−∞ f(x) dx along the real axis is well-defined, and its value is given by

the following residuum formula,

(135)
∫ +∞

−∞
f(x) dx = 2πi

∑

�zj>0

res(f ; zj) = 2πi

n
∑

j=1

res(f ; zj) .

Proof. First note that R + i · 0 ⊂ Ω and that f is analytic in Ω, so the restriction of f to R must be
continuous. From a > 1 and (134) follows that f(x) in the real has an integrable majoring function,
e.g.

g(x) =











c

|x|a for |x| ≥ R,

|f(x)| for |x| < R,

and we conclude that the improper integral
∫ +∞
−∞ f(x) dx exists, and its value is given by

∫ +∞

−∞
f(x) dx = lim

r1, r2→+∞

∫ r2

−r1

f(x) dx = lim
r→+∞

∫ r

−r

f(x) dx.

We then exploit that f(z) is analytic in the upper half plane with the exception of only a finite number
of singularities.

It follows from (134) that all singularities in the upper half plane must lie in the disc B(0, R).

Let r > R, and let C ′
r denote the circular arc of the parametric description z = r eiΘ, Θ ∈ [0, π], in

the upper half plane. Let furthermore Cr be the simple closed curve which is obtained by joining C ′
r

and the interval [−r, r] on the real axis. Then by Cauchy’s residuum theorem,

(136)
∫ r

−r

f(x) dx +
∫

C′
r

f(z) dz =
∮

Cr

f(z) dz = 2πi
∑

�zj>0

res(f ; zj) .
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z_j

C_r’

r- r R- R

x

y

0

Figure 17: The path of integration in the proof of Theorem 4.2.1.

The right hand side of (136) is constant for all r > R. The first integral on the left hand side of (136)
converges towards

∫ +∞
−∞ f(x) dx for r → +∞. Therefore, we shall only prove that

lim
r→+∞

∫

C′
r

f(z) dz = 0.

Using that |z| = r ≥ R for z ∈ C ′
r of length � (C ′

r) = πr, we get from (134) the estimate
∣

∣

∣

∣

∣

∫

C′
r

f(z) dz

∣

∣

∣

∣

∣

≤ c

ra
� (C ′

r) = c π · r1−a → 0 for r → +∞,

because a > 1 by assumption. �

Example 4.2.1 We choose arbitrarily

f(z) =
1

z2 + 1
exp

(

1
z − i

)

, z ∈ C \ {−i, i},

where it is more or less obvious that
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx =
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

·
{

cos
(

1
x2 + 1

)

+ i sin
(

1
x2 + 1

)}

dx

cannot be computed by only using traditional methods from Real Calculus.

Since
1

z − i
→ 0 for z → ∞, and thus exp

(

1
z − i

)

→ e0 = 1 for z → ∞, it is obvious that there exists

an R > 1, such that

|f(z)| ≤ 2
|z|2 for |z| ≥ R,

and it follows from Theorem 4.2.1 that
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi·res
(

1
z2 + 1

exp
(

1
z − i

)

; i
)

= 2πi res
(

1
w2 + 2iw

exp
(

1
w

)

; 0
)

,
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where we have applied the linear transform w = z − i.

Obviously, w0 = 0 is an essential singularity of
1

w2 + 2iw
exp

(

1
w

)

, so we shall use Cauchy multipli-

cation in the Laurent series expansion from w0 = 0 to find a−1 by collecting all coefficients of
1
w

. We

get for 0 < |w| < 2,

1
w

· 1
2i + w

· exp
1
w

=
1
2i

· 1
w

· 1

1 +
1
2i

· exp
1
w

=
1
2i

· 1
w

+∞
∑

m=0

{

−w

2i

}m +∞
∑

n=0

1
n!

1
wn

.

Due to the factor
1
w

, the coefficient a−1 is given by
1
2i

times the constant term of the product of the
two series, i.e. for m = n. This gives

a−1 =
1
2i

+∞
∑

n=0

1
n!

{

i

2

}n

=
1
2i

exp
(

i

2

)

=
1
2i

{

cos
1
2

+ i sin
1
2

}

.
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Thus,
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

) {

cos
(

1
x2 + 1

)

+ i sin
(

1
x2 + 1

)}

dx

=
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi a−1 = π

{

cos
1
2

+ i sin
1
2

}

.

Finally we get by splitting into the real and imaginary parts,
∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

cos
(

1
x2 + 1

)

dx = π · cos
1
2
,

∫ +∞

−∞

1
x2 + 1

exp
(

x

x2 + 1

)

sin
(

1
x2 + 1

)

dx = π · sin 1
2
.

This example is of course only meant to demonstrate the power of the method, because it is most
unlikely that one inn practical applications ever will need to find the exact value of these integrals.

An alternative method of computation is the following:

We adopt from the above the already derived formula
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi · res
(

1
w2 + 2iw

exp
(

1
w

)

; 0
)

.

The function

g(w) =
1

w2 + 2iw
exp

(

1
w

)

=
1

w(w + 2i)
exp

(

1
w

)

is analytic in C \ {0,−2i} with only two singularities, so it follows from Theorem 3.8.3 that
∫ +∞

−∞

1
x2

exp
(

x + i

x2 + 1

)

dx = 2πi · res(g(w); 0) = 2πi{−res(g(w);−2i) − res(g(w);∞)}.

Now w = −2i is a simple pole, so we apply Theorem 3.7.2,

−res(g(w);−2i) = − lim
z→2i

1
w

exp
(

1
w

)

=
1
2i

exp
(

i

2

)

.

Furthermore, limw→∞ exp
(

1
w

)

= exp 0 = 1, so w = ∞ is a zero of order 2 for

g(w) =
1

w2
· 1

1 +
2i
w

· exp
(

1
w

)

,

and we get from Theorem 3.8.4 that

−res(g(w);∞) = 0.

Summing up we get
∫ +∞

−∞

1
x2 + 1

exp
(

x + i

x2 + 1

)

dx = 2πi{−res(g(w);−2i) − res(g(w);∞)}

= π · exp
(

i

2

)

= π

{

cos
1
2

+ i sin
1
2

}

,

and the results follow by taking the real and imaginary parts of this result. ♦
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Example 4.2.1 showed that Theorem 4.2.1 can be successfully applied even in very complicated cases.
However, the most important case is of course when f(z) is a rational function, because the present
method from Calculus of Residua is easier to apply than the ordinary decomposition method. We
therefore explicitly formulate

Corollary 4.2.1 Let f(z) =
P (z)
Q(z)

be a quotient of two polynomials, where the denominator Q(x) �= 0

for all x ∈ R.
If the degree of the denominator Q(z) is at least 2 larger than the degree of the numerator P (z), i.e. if
f(z) has a zero of at least order 2 at ∞, then the improper integral

∫ +∞
−∞ f(x) dx exists, and its value

is given by (135), i.e.
∫ +∞

−∞
f(x) dx = 2πi

∑

�zj>0

res(f ; zj) .

Proof. Since degree Q(x)− degree P (z) ≥ 2, we can choose a = 2 and then constants c, R > 0 to
fulfil the assumptions of Theorem 134, and the corollary follows. �

Example 4.2.2 We shall find the value of the improper integral
∫ +∞

−∞

dx

x4 + 1
.

The integrand
1

x4 + 1
is a rational function, where the denominator x4 + 1 ≥ 1 > 0 has degree 4, and

the numerator is a constant. Hence, the assumptions of Corollary 4.2.1 are fulfilled.

The zeros of the denominator are exp
(

i p π

4

)

, p = 1, 3, 5, 7, and they are all simple. Hence, the

integrand has the same points as simple poles, of which only

exp
(

iπ

4

)

=
1√
2

(1 + i) and exp
(

3iπ
4

)

=
1√
2

(−1 + i)

lie in the upper half plane.

Then apply Theorem 3.7.3 with

A(z) = 1, B(z) = z4 + 1 and B′(z) = 4z3,

and use that z4
0 = −1 for all poles, to get

res(f ; z0) =
A(z0)
B′ (z0)

=
1

4z3
0

=
z0

4z4
0

= −1
4

z0.

Finally, by Corollary 4.2.1,
∫ +∞

−∞

dx

1 + x4
= 2πi

{

res
(

1
1 + z4

;
1 + i√

2

)

+ res
(

1
1 + z4

;
−1 + i√

2

)}

= 2πi

{

−1
4

}{

1 + i√
2

+
−1 + i√

2

}

= −2πi

4
· 2i√

2
=

π√
2
.
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Alternatively we sketch the following clever real decomposition, where where we first notice that

x4 + 1 = x4 + 2x2 + 1 − 2x2 =
(

x2 + 1
)2 −

(√
2x

)2

=
(

x2 +
√

2x + 1
) (

x2 −
√

2x + 1
)

.

There exist four uniquely determined constants A, B, C, D ∈ R, such that

1
x4 + 1

=
1

(

x2 +
√

2x + 1
) (

x2 −
√

2x + 1
) =

Ax + B

x2 +
√

2x + 1
+

Cx + D

x2 −
√

2x + 1
.

We get by some very tedious computations,

A =
1

2
√

2
, B =

1
2
, C = − 1

2
√

2
and D =

1
2
,

from which an indefinite integral of
1

x4 + 1
can be found, and then the value of the improper integral

by taking the limits. The details are left to the reader.

A simpler alternative method is applying complex decomposition, where

1
z4 + 1

=
res(f ; z1)
z − z1

+
res(f ; z2)
z − z2

+
res(f ; z3)
z − z3

+
res(f ; z4)
z − z4

,

and res(f ; zj) = −1
4

zj from the above. Then pair the results to get the real decomposition, which
then is integrated in the usual way. ♦

Obviously, Example 4.2.2 shows that residuum formulæ may be easier to apply than a straightforward
real decomposition followed by an integration. Furthermore, Example 4.2.1 showed that we also can
compute improper integrals, which could not be found by traditional real methods. However, the
reader must be warned. If not all assumptions of a residuum formula are fulfilled, then it usually give
a very wrong result, even if the residuum formula itself makes sense. We shall illustrate this by the
following obvious example, but it is easy to give more subtle examples showing the same phenomena
in a latent way.

Example 4.2.3 The rational function
z

z2 + 1
does not fulfil the conditions of Corollary 4.2.1, because

the difference between the degrees of the denominator and the numerator is only 1. Clearly, z = i is
the only singularity – a simple pole – in the upper half plane, where by Theorem 3.7.3

res
(

z

z2 + 1
z2 + 1; i

)

= lim
z→i

z

2z
=

1
2
.

Then a false application of (135) gives

“
∫ +∞

−∞

x

x2 + 1
dx = 2πi · res

(

z

z2 + 1
; i

)

= π i′′,

which is wrong for several reasons. The indefinite integral is
1
2

ln
(

x2 + 1
)

→ +∞ for x → +∞ or
x → −∞, so the improper integral does not exist. And if it did, its value ought to be real and 0 by
the symmetry of the integrand, and not the complex number πi. Therefore, the reader should always
be extremely careful to check all the assumptions of the applied theorem before using the residuum
formula of this theorem. ♦
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We have also the following result of improper integrals, when the integrand is a product of an analytic
function and a complex exponential.

Theorem 4.2.2 Let f(z) be analytic in the open domain Ω, which contains the closed upper half
plane �z ≥ 0 with only exception of a finite number of singularities z1, . . . , zn, ll lying in the open
upper half plane, so �zj > 0 for j = 1, . . . , n. Assume that there exist positive constants R, a, c > 0,
such that

(137) |f(z)| ≤ c

|z|a for �z ≥ 0 and |z| ≥ R.

For every real positive number m > 0 the improper integral
∫ +∞
−∞ f(x) eimx dx on the real line is

convergent of the value

(138)
∫ +∞

−∞
f(x) eimx dx = 2πi

∑

�zj>0

res
(

f(z) eimz; zj

)

.

We have emphasized the important assumption that the constant m is positive, because otherwise
(138) is not true. We shall, however, also deal with negative constants in Corollary 4.2.2 below.
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x

y

- R

i(r_1+r_2)

C_{1,2}

- r_1 r_2R0

Figure 18: The path of integration in the proof of Theorem 4.2.2.

Proof. We shall under the given assumptions prove that the limit

lim
r1→+∞

lim
r2→+∞

∫ r2

−r1

f(x) eimx dx

exists and is unique, where the two limits are taken independently of each other.

Choose r1, r2 > R and the simple closed curve C1,2 (the boundary of a square) of Figure 18.

According to (137) all singularities in the upper half plane of the integrand f(z) eimz lie inside C1,2,
hence by Cauchy’s residuum theorem,

(139)
∮

C1,2

f(z) eimz dz = 2πi

n
∑

j=1

res
(

f(z) eimz; zj

)

.

Clearly, when r1, r2 > R, then the right hand side of (139) is independent of the choices of r1 and r2.

On the other hand, cf. Figure 18,
∮

C1,2

f(z) eimz dz =
∫ r2

−r1

f(x) eimx dx +
∫ r1+r2

0

f(r2 + it) eim(r2+it)idt

−
∫ r2

−r1

f(x+i {r1+r2}) eim(x+i{r1+r2})dx −
∫ r1+r2

0

f(−r1+it) eim(−r1+it)idt.(140)

The positive constant m > 0 is fixed, so we get the following estimates for r1, r2 > R,
∣

∣

∣

∣

∫ r1+r2

0

f(r2+it) eim(r2+it)idt

∣

∣

∣

∣

≤
∫ r1+r2

0

|f(r2+it)| e−mt dt ≤ c

ra
2

∫ r1+r2

0

e−mt dt

≤ c

m ra
2

for r2 → +∞, because a > 0,
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and similarly for the upper horizontal line integral,
∣

∣

∣

∣

∫ r2

−r1

f(x+i {r1+r2}) eim(x+i{r1+r2})dx

∣

∣

∣

∣

≤
∫ r2

r1

|f(x+i {r1+r2})| e−m(r1+r2)dx

≤ e−m(r1+r2)

∫ r2

−r1

c

(r1+r2)
a dx = c · (r1+r2)

1−a · e−m(r1+r2).

Since exponentials dominate polynomials, this tends towards zero if either r1 → +∞ or r2 → +∞.

Finally,
∣

∣

∣

∣

∫ r1+r2

0

f(−r1+it) eim(−r1+it)idt

∣

∣

∣

∣

≤
∫ r1+r2

0

|f(−r1+it)| e−mt dt

≤ c

ra
1

∫ r1+r2

0

e−mt dt ≤ c

m ra
1

→ 0 for r1 → +∞.

When (140) is inserted into (139), we get by taking the two independent limits r1 → +∞ and r2 → +∞
that the improper integral

∫ +∞
−∞ f(x) eimx dx exists with the value (138). �

As mentioned above we shall also consider a negative constant m. This will, however, require that
the integrand is bounded in the lower half plane, with the exception of in the neighbourhoods of the
finitely many singularities.

Corollary 4.2.2 Residuum formula for the Fourier transform. Let f(z) be analytic in the open
domain Ω = C \ {z1, . . . , zn}, where none of the singularities zj lies on the real axis. Assume that
there are positive constants R,a, c > 0, such that

(141) |f(z)| <
c

|z|a for |z| ≥ R.

Then

(142)
∫ +∞

−∞
f(x) eixy dx =







2πi
∑

�zj>0 res
(

f(z) eizy; zj

)

for y > 0,

−2πi
∑

�zj<0 res
(

f(z) eizy; zj

)

for y < 0.

Proof. If y = m > 0, then (142) follows immediately from Theorem 4.2.2.
If y = m < 0, then we must modify the proof of Theorem 4.2.2 by reflecting C1,2 with respect to
the x-axis and then change the orientation of the curve, such that the line segment on the x-axis is
traversed from r2 towards −r1. In the conclusion we must reverse this direction, which causes the
change of sign in (142), second line. �

Example 4.2.4 A typical transition function f(z) in the Theory of Electric Circuits is given by

f(z) =
1

1 + 2πiRCz
,

where R denotes the resistance, and C the capacity. The corresponding response function is given by
the Fourier transform

h(t) :=
∫ +∞

−∞
f(x) e2πixt dt =

1
2πiRC

∫ +∞

−∞

1

x − i

2πRC

ei2πxt dx.
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The only singularity of the integrand is the simple pole at z1 =
i

2πRC
, and it is obvious that there

are constants k, r >
1

2πRC
, such that |f(z)| <

k

|z| for |z| > r.

There is no singularity in the lower half plane, hence

h(t) =
∫ +∞

−∞
f(x) e2πixt dx = 0 for t < 0.

If t > 0, then

h(t) =
∫ +∞

−∞
f(x) e2πixt dx =

2πi

2πiRC
res







ei2πzt

z − i

2πRC

;
i

2πRC






=

1
RC

exp
(

− t

RC

)

. ♦

We mention in particular the case, when f(z) is a rational function. The proof is trivial.
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Corollary 4.2.3 Let P (z) and Q(z) be polynomials. If

1) the denominator Q(z) has no zero on the real axis,

2) the denominator Q(z) is of higher degree than the numerator P (z),

3) the constant m is a real positive number,

then the improper integral
∫ +∞
−∞

P (x)
Q(x)

eimx dx along the real axis is convergent with its value given by

(143)
∫ +∞

−∞

P (x)
Q(x)

eimx dx = 2πi
∑

�zj>0

res
(

P (z)
Q(z)

eimz; zj

)

.

We get another useful corollary, when we assume that the analytic function f(z) has real values on
the real axis.

Corollary 4.2.4 Let f(z) be analytic in an open domain Ω containing the closed upper half plane
�z ≥ 0 with the exception of only a finite number of points z1, . . . , zn, none of them lying on the real
axis.
Assume that there are positive constants R, a, c > 0, such that (137) holds, i.e.

|f(z)| ≤ c

|z|a for �z ≥ 0 and |z| ≥ R.

Finally, assume that f(x) ∈ R is real for every x ∈ R.
Under the assumptions above the two improper integrals

∫ +∞

−∞
f(x) cos(mx) dx and

∫ +∞

−∞
f(x) sin(mx) dx

exist for every positive constant m > 0, and their values are given by

(144)
∫ +∞

−∞
f(x) cos(mx) dx = �







2πi
∑

�zj>0

res
(

f(z) eimz; zj

)







and

(145)
∫ +∞

−∞
f(x) sin(mx) dx = �







2πi
∑

�zj>0

res
(

f(z) eimz; zj

)







Proof. The proof is trivial. Just split (138) into its real and imaginary parts, using that f(x) is real
on the real axis. �

Remark 4.2.1 Warning! the value of e.g.
∫ +∞
−∞ f(x) cos(mx) dx is not given by

(146) “2πi
∑

�zj>0

res(f(z) cos(mz) dz; zj) ,′′

which would be natural to expect. By using (146) one makes implicitly the error that one tacitly

applies Euler’s formula cosmz =
1
2

eimz +
1
2

e−imz in the integral. In the latter term we have the

constant −m < 0, violating one of the important assumptions of (138). ♦
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Example 4.2.5 The simple poles of the function
z

z2 + 1
eiz are ±i /∈ R, and

z

z2 + 1
→ 0 for z → ∞,

and m = 1 > 0, so the assumptions of Corollary 4.2.4 are satisfied. Thus,
∫ +∞

−∞

x

x2 + 1
eix dx = 2πi · res

(

z

z2 + 1
eiz; i

)

= 2πi · i ei·i

i + i
=

πi

e
,

and we get
∫ +∞

−∞

x cos x

x2 + 1
dx = 0 and

∫ +∞

−∞

x sinx

x2 + 1
dx =

π

e
,

where both improper integrals are convergent. ♦

4.3 Cauchy’s principal value

We considered in Section 4.2 improper integrals of the type
∫ +∞
−∞ f(x) dx, where f(z) is analytic in a

domain Ω containing {z ∈ C | �z ≥ 0} \ {z1, . . . , zn}, where none of the singularities z1, . . . , zn lie on
the real axis.

We shall in this section modify the concept of integral in such a way that we may allow simple poles on
the path of integration. We shall in the follows show that we also in this case may obtain meaningful
residuum formulæ.

Poles of higher order, or essential singularities will not be allowed on the path of integration.

We first introduce

Definition 4.3.1 Let f be analytic in an open domain Ω containing R \ {x0}, where the real number
x0 ∈ R is a simple pole of f . If the symmetric limit

(147) lim
ε→0+

{∫ x0−ε

−∞
+

∫ +∞

x0+ε

}

f(x) dx

exists, we say that the improper integral of f(x) from −∞ to +∞ has its principal value given by
(147), and we write

(148) pv
∫ +∞

−∞
f(x) dx := lim

ε→0+

{∫ x0−ε

−∞
+

∫ +∞

x0+ε

}

f(x) dx.

The notation “pv
∫ +∞
−∞ · · · dx” indicates that there is “something wrong” with the improper integral,

though it is not worse than that we obtain convergence, if we remove a small symmetric interval
around the simple pole x0 and then let this symmetric interval shrink towards x0.

Definition 4.3.1 can clearly be extended to the case, where f(z) has a finite number of simple poles
on the real axis. The details are left to the reader.

The line of integration does not have always to be the real axis. Any nice curve with a finite number
of simple poles may be treated in a similar way. The notation will of course be the same as the above.
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Also, a function may apparently have a simple pole at x0 ∈ R, where a closer examination would show

that the singularity is removable. One simple example is the function
sin z

z
, where z = 0 is a pole

of at most order 1, and we know already that it is in fact removable. We shall treat the improper
integral of this important function in Example 4.3.1. For the time being we only mention that if the
principal value exists, and the apparent simple poles actually are removable singularities, then “pv”
can be removed,

pv
∫ +∞

−∞
f(x) dx =

∫ +∞

−∞
f(x) dx.

In the Real Calculus Definition 4.3.1 can be formulated more generally. We have here restricted
ourselves to analytic functions in a neighbourhood of R with exception of a finite number of real
simple poles, because we want to find the values by using the Calculus of Residua.

In order to obtain these residuum formulæ we first prove the following simple lemma.

Lemma 4.3.1 Let f(z) be analytic in a deleted open disc B (z0, R)\{z0}, and assume that the centre
z0 is a simple pole of f . Denote by

C(ε) : z = z0 + c eiΘ, Θ ∈ [0, π],

a family of semicircles of centre z0 and redius ε ∈ ]0, R[. Then

(149) lim
ε→0+

∫

C(ε)

f(z) dz = πi res (f ; z0) .

Proof. We put

f(z) =
a

z − z0
+ g(z),

where g(z) is analytic in the whole disc B (z0, R), and where a = a−1 in the Laurent series expansion,

hence a = res(f ; z0). Then for ε ∈
]

0,
R

2

[

,

∫

C(ε)

f(z) dz =
∫

C(ε)

a

z − z0
dz +

∫

C(ε)

g(z) dz,

where we have the estimate
∣

∣

∣

∣

∣

∫

C(ε)

g(z) dz

∣

∣

∣

∣

∣

≤ sup
{

|g(z)|
∣

∣

∣

∣

z ∈ B

(

z0,
1
2

R

)}

· πε → 0 for ε → 0+,

supplied with the computation
∫

C(ε)

a

z − z0
dz = a

∫ π

0

1
ε eiΘ

i ε eiΘ dΘ = iπa = πi res(f ; z0) ,

and the lemma is proved. �

From Lemma 4.3.1 we easily derive the following theorem, which also should be compared with
Theorem 4.2.1.
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Theorem 4.3.1 Let f : Ω → C be analytic in an open domain Ω which contains a set of the form
{z ∈ C | �z ≥ 0} \ {z1, . . . , zn}.
Assume that the (finitely many) singularities on the real axis are all simple poles, and that there are
constants R > 0, c > 0 and a > 1, such that

(150) |f(z)| ≤ c

|z|a for |z| ≥ R and �z ≥ 0.

Then Cauchy’s principal value vp
∫ +∞
−∞ f(x) dx is well-defined, and its value is given by

(151) pv
∫ +∞

−∞
f(x) dx = 2πi

∑

�zj>0

res(f ; zj) + πi
∑

�zj=0

res(f ; zj) .

Roughly speaking, the integration line through a simple pole cuts its residuum into two equal halves,
giving one half to the upper half plane, and the other half to the lower half plane,

πi res(f ; zj) = 2πi

{

1
2

res(f ; zj)
}

.
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C_r’

z_3z_1 z_2

Figure 19: The path of integration in the proof of Theorem 4.3.1.

Proof. The proof is almost the same as the proof of Theorem 4.2.1. The only modification is that
we avoid all the simple poles on the real axis by small semicircles, cf. Figure 19. Using Lemma 4.3.1
and noticing that the semicircles are traversed in the negative of the complex plane we get

pv
∫ +∞

−∞
f(x) dx − πi

∑

�zj=0

res(f ; zj) = 2πi
∑

�zj>0

res(f ; zj) ,

and (151) follows by a rearrangement. �

Remark 4.3.1 In the proof above we could of course avoid the simple poles on the real axis by small
semicircles in the lower half plane. In this case we would get

pv
∫ +∞

−∞
f(x) dx + πi

∑

�zj=0

res(f ; zj) = 2πi
∑

�zj≥0

res(f ; zj) .

Then note that �zj ≥ 0 and not just �zj > 0 in the latter sum, and we obtain again (151) by using
a rearrangement. ♦

Obviously, Corollary 4.2.1, Theorem 4.2.2, Corollary 4.2.2, Corollary 4.2.3 and Corollary 4.2.4 can all
be extended to the principle value, if there are only a finite number of simple poles on the real axis.
In each case we add half the residuum to the solution formula. It is left to the reader to formulate
and prove these simple extensions.

Example 4.3.1 Important! We shall here compute the important improper integral
∫ +∞

0

sinx

x
dx,

which occurs in some applications in the technical sciences. A straight on attack on the corresponding

analytic function
sin z

z
is doomed to failure, because

∣

∣

∣

∣

sin z

z

∣

∣

∣

∣

does not satisfy an estimate of the type

(150). Furthermore, we only integrate along the positive real axis, so the problem apparently does
not fit into the present theory.
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The trick is the following: Apply Euler’s formulæ to get
∫ R

ε

sinx

x
dx =

1
2i

∫ R

ε

{

eix

x
− e−ix

x

}

dx =
1
2i

{

∫ R

ε

−
∫ −R

−ε

}

eix

x
dx =

1
2i

{

∫ R

ε

+
∫ −ε

−R

}

eix

x
dx.

This implies that if the right hand side has a well-defined limit for ε → 0+ and R → +∞, indepen-
dently of each other, then the left hand side is also well-defined, and

∫ +∞

0

sinx

x
dx =

1
2i

vp
∫ +∞

−∞

eix

x
dx.

We shall only prove that vp
∫ +∞
−∞

eixx

x
dx exists, i.e. we shall check the singularities of the integrand.

The only (finite) singularity of the analytic function
eiz

z
is the simple pole at z0 = 0. It lies on the

path of integration, so it contributes to Cauchy’s principal value with the amount

πi res
(

eiz

z
; 0

)

= πi lim
z→0

eiz = πi.

Furthermore,
eiz

z
=

1
z

ei1z, where m = 1 > 0 and
∣

∣

∣

∣

1
z

∣

∣

∣

∣

=
1

|z|1 for z �= 0, so a = 1 > 0, and it follows

from Theorem 4.2.2 that the limit R → +∞ will not cause any trouble either. Hence we conclude

that the improper integral
∫ +∞
0

sinx

x
dx is convergent, and its value is

∫ +∞

0

sinx

x
dx =

1
2i

pv
∫ +∞

−∞

eix

x
dx =

1
2i

πi res
(

eiz

z
; 0

)

=
π

2
. ♦

4.4 The Mellin transform

We shall in this section consider improper integrals of the form

(152)
∫ +∞

0

f(x)xa dx

x
.

When these integrals are considered as functions of a, we get the Mellin transform M{f}(a) of the
function f . This is closely related to the two-sided Laplace transform. In fact, if the integral (152) is
absolutely convergent, then we get by the change of variable, x = e−t,

(153) M{f}(a) :=
∫ +∞

0

f(x)xa dx

x
=

∫ +∞

−∞
f
(

e−t
)

e−at dt,

which is recognized as the two-sided Laplace transform of the function g(t) = f(e−t) at the point a.

We shall not go into the applications of the Mellin transform, or the two-sided Laplace transform.
The purpose of this section is only to use Complex Functions Theory to compute some integrals of
the form (152).

In order not to make the theory too complex we have restricted ourselves to real a ∈ R. It is possible,
though far from trivial, also to allow a to be a complex number, but this would require a discussion of
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the so-called many-valued functions, which we have postponed to Ventus: Complex Functions Theory
a-3, and even with this discussion, the generalization becomes far from trivial and only of interest of
the few.

In order to combine (153) with Complex Functions Theory we also must require that f(z) is analytic
in an open domain Ω. More precisely, f(z) is analytic in all of C with the possible exception of only a
finite number of singularities, none of which is lying on the positive real axis R+. In the literature one
mostly assumes that the singularities are all poles, but except for z = 0, which must at most be a pole,
the proof below shows that all the other singularities are allowed to be even essential singularities.

Then we shall fix the meaning of the factor xa. If a ∈ Z, then the definition of xa is straightforward,
and we just apply the methods of Section 4.2. We therefore assume in the following that a ∈ R \ Z.

The next problem is to define the analytic power function za for a ∈ R \ Z. first put

(154) Log0z := ln |z| + iArg0z, Arg0z ∈ ]0, 2π[,

for z ∈ Ω1 := C \ {R+ ∪ {0}}. Note that Log0 is not the principal logarithm, Log, and Arg0 is not
the principal argument, Arg. They of course agree in the open upper half plane, but they are different
in the open lower half plane.

Then apply (154) to define za by the “obvious” formula

(155) za := exp(aLog0z) for z ∈ Ω1 = C \ {R+ ∪ {0}} .

Then za is a composition of analytic functions in Ω1, so it is also analytic in Ω1, and a routine check
shows that

d

dz
za = exp(aLog0z) · a

z
= a za−1 for z ∈ Ω1.

Furthermore, since a is real, it follows from (155) that

(156) |za| = | exp(a{ln r + iΘ})| = ra ∈ R,

a formula, which is not true, if a is complex, cf. Ventus: Complex Functions Theory a-3.

After these preparations we can formulate

Theorem 4.4.1 Let f be analytic in Ω = C\{z1, · · · , zn}, where zj /∈ R+, j = 1, . . . , n. Assume that
there exist constants α, β ∈ R, where α < β, and C, R0, r0 ∈ R+, such that

(157) |zαf(z)| ≤ C for |z| ≤ r0, z ∈ Ω,

(158)
∣

∣zβf(z)
∣

∣ ≤ C for |z| ≥ R0, z ∈ Ω.

Then the improper integral
∫ +∞
0

f(x)xa dx

x
is convergent for every a ∈ ]α, β[\Z, and its value is given

by the residuum formula

(159)
∫ +∞

0

f(x)xa dx

x
= −π exp(−πia)

sinπa

∑

zj �=0

res
(

f(z)za−1; zj

)

, for a ∈ ]α, β[\Z.
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- C_r

- r
- R

C_R
C_{R,r,v}

- c_v

c_v

v

Figure 20: The path of integration in the proof of Theorem 4.4.1.

Remark 4.4.1 One usually assumes that also α, β ∈ R+. The proof below shows that this is not
necessary. Formula (159) does not make sense for a ∈ Z, because then the denominator sinπa = 0.
As mentioned earlier we may use the theory of Section 4.2 instead, or a limit process on (159). ♦

Proof. We shall as usual find a convenient path of integration CR,r,v in Ω′ = Ω \ {R+ ∪ {0}}. We

choose R ≥ R0 and r ≤ r0 and v ∈
]

0,
π

2

[

, from which we define the integration path CR,r,v on
Figure 20 composed of two circular arcs of centre 0 and two line segments on the lines through 0
forming the angles ±v with the positive x-axis.

Assume that CR,r,v has been chosen, such that all singularities �= 0 of f(z)za−1 lie inside CR,r,v. Then
we get by Cauchy’s residuum formula

(160) 2πi
∑

zj �=0

res
(

f(z)za−1; zj

)

=
∮

CR,r,v

f(z)za−1 dz =
∫

C̃R

+
∫

−c̃v

+
∫

−C̃r

+
∫

c̃v

f(z)za−1 dz,

where C̃ denotes a circular arc oriented in the positive sense of the plane seen from 0, and c̃ denotes
a line segment oriented in the direction away from 0.

First note that
∫

c̃v

f(z)za−1 dz =
∫ R

r

f
(

t eiv
)

e(a−1)(ln t+iv) eiv dt

=
∫ R

r

f
(

t eiv
)

e(a−1)iv · eiv · ta−1 dt →
∫ R

r

f(x)za−1 dx for v → 0+,

because the integrand is continuous in the closed bounded interval [r,R], so we are allowed to take
the limit under the sign of integration.

Since the segment c̃−v has the parametric description

z(t) = t · ei(2π−v), t ∈ [r,R] and 2π − v ∈ ]0, 2π[,

we get

Log0 z(t) = ln t + i(2π − v) on c̃−v,
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hence analogously,
∫

−c̃−v

f(z)za−1 dz = −
∫

c̃−v

f(z)za−1 dz = +
∫ R

r

f
(

t e−iv
)

ta−1 e(a−1)(2πi−iv) ei(2π−v) dt

=
∫ R

r

f
(

t e−iv
)

ta−1 eai(2π−v) dt →
∫ R

r

f(x)xa−1 e2πia dx for v → 0 + .

Thus, for fixed r and R,

lim
v→0+

{

∫

c̃v

+
∫

−c̃−v

}

f(z)za−1 dz =
∫ R

r

f(x)xa−1
{

1 − e2πia
}

dx

= −2i eiπa · eiπa − e−iπa

2i

∫ R

r

f(x)a−1 dx = −2i eiπa sin(πa)
∫ R

r

f(x)xa−1 dx.
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Next we turn to the estimates of the integrals along the two circular arcs C̃R and C̃r. Here we use
(156), (157) and (158) to get

∣

∣

∣

∣

∫

C̃R

f(z)za−1 dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

C̃R

zβf(z)za−β−1 dz

∣

∣

∣

∣

≤ 2πR · C · Ra−β−1

= 2πC · R−(β−a) → 0 for R → +∞,

and
∣

∣

∣

∣

∫

C̃r

f(z)za−1 dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

C̃r

zαf(z)za−α−1 dz

∣

∣

∣

∣

≤ 2πr · C · ra−α−1

= 2πC · ra−α → 0 for r → 0+,

where both estimates are independent of v ∈
]

0,
π

2

[

.

When we apply the three limit processes v → 0+, r → 0+ and R → +∞, and (160), we conclude that
the improper integral

∫ +∞
0

f(x)xa−1 dx is well-defined and that

2πi
∑

zj �=0

res
(

f(z)za−1; zj

)

= −2i eiπa sinπa

∫ +∞

0

f(x)xa−1 dx,

and (159) follows by a rearrangement. �

Example 4.4.1 The function f(z) =
1

z2 + 1
, z ∈ C \ {−i, i}, satisfies the estimates

∣

∣z0f(z)
∣

∣ ≤ 2 for |z| ≤ r0,
∣

∣z2f(z)
∣

∣ ≤ 2 for |z| ≥ R0,

for some constants 0 < r0 < 1 < R0, and none of the simple poles πi lies on R+. It follows from
Theorem 4.4.1 for a ∈ ]α, β[ = ]0, 2[ and a �= 1 that

∫ +∞

0

za

x2 + 1
· dx

x
= −π e−iπa

sinπa

{

res
(

za−1

z2 + 1
; i

)

+ res
(

za−1

z2 + 1
;−i

)}

= −πe−iπa

sinπa

{

1
2i

exp
(

(a − 1)i
π

2

)

− 1
2i

exp
(

(a − 1)i
3π
2

)}

= −πe−iπa

sinπa
· 1
2

{

1
i

exp
(

i a
π

2

)

· (−i) +
1
−i

exp
(

i a
3π
2

)

· i
}

=
π

sinπa
· 1
2

{

exp
(

−i a
π

2

)

+ exp
(

i a
π

2

)}

=
π cos

(

a
π

2

)

sinπa
=

π

2 sin
(

a
π

2

) .

For a = 1 we get straightforward
∫ +∞

0

x1

x2 + 1
dx

x
=

∫ +∞

0

dx

x2 + 1
=

π

2
= lim

a→1

π

2 sin
(

a
π

2

) ,
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so we have in general,
∫ +∞

0

xa−1

x2 + 1
dx =

π

2 sin
(

a
π

2

) for a ∈]0, 2[. ♦

4.5 Residuum formulæ for sums of series

It is also possible for a large class of convergent series to compute their sum by using a residuum
formula. We first prove

Theorem 4.5.1 Let f : Ω → C be analytic in Ω = C \ {z1, . . . , zk}, where zj /∈ Z for j = 1, . . . , k.
Assume that there exist constants R, c > 0 and a > 1, such that

(161) |f(z)| ≤ c

|z|a for |z| ≥ R.

Then the series
∑+∞

n=−∞ f(n) is convergent, and is sum is

(162)
+∞
∑

n=−∞
f(n) = −π

k
∑

j=1

res(cot(πz) · f(z); zj) .

Proof. Since a > 1, and zj /∈ Z for j = 1, . . . , k, it follows that
∑+∞

n=−∞ f(n) has a convergent

majoring series, e.g.
∑+∞

−∞
c1

|n|a + 1
for some constant c1, so it is itself convergent.

Then introduce the auxiliary function g(z) by

g(z) := π · cot(πz)f(z).

Since zj /∈ Z, j = 1, . . . , k, we see that cot(π zj) is well-defined for all j = 1, . . . , k. Therefore, the
singularities of g(z) are {z1, . . . , zk} ∪ Z, where the zj are the singularities of f , and n ∈ Z are simple
poles stemming from cot(πz).

We compute

(163)



















res(g; zj) = π res(cot(πz)f(z); zj) , j = 1, . . . , k,

res(g, n) = π ·
[

cos(πz)
d
dz sin(πz)

]

z=1

· f(n) = f(n), n ∈ Z.

Choose for every N ∈ N the path of integration CN as shown on Figure 21. If N ≥ R, then the set
{z1, . . . , zk} lies inside CN , so we get by Cauchy’s residuum theorem,

∮

CN

g(z) dz = 2πi







+N
∑

n=−N

f(n) +
k

∑

j=1

π · res(cot(πz)f(z); zj)







,
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-(N+‰) (N+‰)v

-i(N+‰)

i(N+‰)

Figure 21: The path of integration CN in the proof of Theorem 4.5.1.

and therefore by a rearrangement,

(164)
+N
∑

n=−N

f(n) = −π

k
∑

j=1

res(f(z) cot(πz); zj) +
1

2πi

∮

CN

g(z) dz.

The left hand side of (164) converges for N → +∞ towards the sum of the series.

Then notice that it follows from a result in Ventus: Complex Functions Theory a-1 that

| cot(πz)|2 =
∣

∣

∣

∣

cos(πz)
sin(πz)

∣

∣

∣

∣

2

=
cosh2(πy) − sin2(πx)
cosh2(πy) − cos2(πz)

.

Since x = ±
{

N + 1
2

}

on the vertical segments of CN , we get on these,

| cot(πz)|2 ≤ cosh2(πy)
cosh2(πy)

= 1,

so cot(πz) are bounded on the vertical segments.

We have y = ±
{

N + 1
2

}

on the horizontal segments of CN , so

| cot(πz)|2 ≤ cosh2
(

π
{

N + 1
2

})

cosh2
(

π
{

N + 1
2

})

− 1
= 1 +

1
cosh2

(

π
{

N + 1
2

})

− 1
≤ 2,

because cosh2
(

π
{

N + 1
2

})

> 2 for N ∈ N0.

It follows from the assumption (161) that z f(z) → 0 for z → ∞. We can therefore to every ε > 0
find Nε ∈ N, such that z f(z)| <

ε

8
for all n, for which |n| > Nε. Then we get the following estimate

for N > Nε,
∣

∣

∣

∣

1
2πi

∮

CN

g(z) dz

∣

∣

∣

∣

=
1
2π

∣

∣

∣

∣

∮

CN

z f(z) · π cot(πz)
z

dz

∣

∣

∣

∣

≤ 1
2π

{

ε

8
· π · 2 · 1

N + 1
2

}

�(CN ) =
4(2N + 1)
8
(

N + 1
2

) · ε = ε,
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and it follows that

lim
N→+∞

1
2πi

∮

CN

g(z) dz = 0.

The theorem follows by taking the limit N → +∞ in (164). �

Theorem 4.5.1 is mostly applied when f(z) =
P (z)
Q(z)

is a quotient of two polynomials with a zero of

at least order 2 at ∞, i.e. degree Q− degree P ≥ 2. The remaining necessary requirement is that
Q(n) �= 0 for all n ∈ Z.

Note also that if zj /∈ Z is a simple pole of f(z), then

(165) res(cot(πz)f(z); zj) = cot(zjπ) · res(f ; zj) .

If in particular 2zj ∈ Z is an odd number, then zj becomes a removable singularity of
g(z) = cot(πz)f(z), so its residuum is 0. This is in agreement with the fact that the right hand side
of (165) is 0, because then cot(zjπ) = 0. However, be aware that (165) is not true for poles of order
≥ 2.
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Example 4.5.1 A simple example is given by

f(z) =
1

{

z − 1
2

}2 for z ∈ C \
{

1
2

}

.

Then |f(z)| ≤ c

|z|2 for |z| ≥ 1 and some constant c > 0. Since z0 = 1
2 /∈ Z is the only pole, we can

apply Theorem 4.5.1. Here, z0 = 1
2 is a pole of order 2 for f(z), i.e. it is a pole of at most order 2 for

the auxiliary function

cot(πz)
{

z − 1
2

}2 .

(The order is of course 1.) If we choose q = 2 in Theorem 3.7.1, we get

res

(

cot(πz)
{

z − 1
2

}2 ;
1
2

)

=
1

(2 − 1)!
lim
z→ 1

2

d

dz

{

{

z − 1
2

}2

g(z)

}

= lim
z→ 1

2

d

dz
cot(πz)

= lim
z→ 1

2

(

−
{

1 + cot2(πz)
}

π
)

= −π.

Then the sum is given by Theorem 4.5.1,

+∞
∑

n=−∞
= −π · res

(

cot(πz)
{

z − 1
2

}2 ;
1
2

)

= π2.

Using that

+∞
∑

n=−∞

1
{

n − 1
2

}2 =
+∞
∑

n=1

1
{

n − 1
2

}2 +
+∞
∑

n=0

1
{

n + 1
2

}2 = 2
+∞
∑

n=0

4
(2n + 1)2

= π2,

we have found the sum of the following important series from the Theory of Fourier series

+∞
∑

n=0

1
(2n + 1)2

=
π2

8
.

Then also
+∞
∑

n=1

1
n2

=
+∞
∑

n=0

1
(2n + 1)2

+
1
22

+∞
∑

n=0

1
(2n + 1)2

+
1

{22}2

+∞
∑

n=0

1
(2n + 1)2

+ · · ·

=
{

1 +
1
4

+
1
42

+
1
43

+ · · ·
} +∞

∑

n=0

1
(2n + 1)2

=
1

1 − 1
4

· π2

8
=

π2

6
,

which is also well-known from the Theory of Fourier series. ♦

Example 4.5.2 Let f(z) =
1

z2 + a2
, where a > 0 is a constant. Then |f(z)| ≤ c

|z|2 for |z| ≥ 2a for

some constant c > 0, and f(z) has only the two simple poles z = ±i a /∈ Z, so we can apply (165).
First compute the residua,

res
(

1
z2 + a2

; ia
)

=
1

2ia
and res

(

1
z2 + a2

;−ia

)

= − 1
2ia

.
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Then it follows from Theorem 4.5.1 that
+∞
∑

n=−∞

1
n2 + a2

= −π

{

1
2ia

cot(iπa) +
1

−2ia
cot(−iπa)

}

= − π

ia

cos(iπa)
sin(iπa)

= − π

ia
· cosh(πa)
i · sinh(πa)

=
π

a
· coth(πa),

so
+∞
∑

n=0

1
n2 + a2

=
1

2a2
+

1
2

+∞
∑

n=−∞

1
n2 + a2

=
1

2a2
+

π

2a
coth(πa).

We get in particular for a = 1 that

+∞
∑

n=0

1
n2 + 1

=
1
2

+
π

2
cothπ. ♦

Theorem 4.5.2 Let f : Ω → C be analytic in C\{z1, . . . , zk}, where zj /∈ Z for j = 1, . . . , k. Assume
that there exist constants R, c > 0 and a > 1, such that (161) holds, i.e.

|f(z)| ≤ c

|z|a for |z| ≥ R.

Then the series
∑+∞

n=−∞(−1)nf(n) is convergent, and its sum is given by the residuum formula

(166)
+∞
∑

n=−∞
(−1)nf(n) = −π

k
∑

j=1

res
(

f(z)
sin(πz)

; zj

)

.

Proof. (Sketch) The proof is trivial modifications of the proof of Theorem 4.5.1, where we replace

cot(πz) by
1

sin(πz)
. In (163) we here get

res
(

π f(z)
sin(πz)

;n
)

= (−1)nf(n),

so the left hand side of (164) is replaced by
∑+N

n=−N (−1)nf(n). Finally, the estimate of
1

| sin(πz)| on

CN is much easier than the estimate of | cot(πz)| above. �

Example 4.5.3 Let f(z) =
1

z2 + a2
, where a > 0 is a constant. We have already shown in Exam-

ple 4.5.2 that the assumptions of Theorem 4.5.1, hence also of Theorem 4.5.2, are fulfilled. Hence,

+∞
∑

n=−∞

(−1)n

n2 + a2
= −π

{

1
2ai

· 1
sin(iπa)

+
−1
2ai

· 1
sin(−iπa)

}

= − π

ia
· 1
sin(iπa)

=
π

a
· 1
sinh(πa)

.

Using that

(−1)−n

(−n)2 + a2
=

(−1)n

n2 + a2
for n ∈ Z,
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we get

+∞
∑

n=0

(−1)n

n2 + a2
=

1
2a2

+
1
2

+∞
∑

n=−∞

(−1)n

n2 + a2
=

1
2a2

+
π

2a
· 1
sinh(πa)

.

Then in particular for a = 1,

+∞
∑

n=0

(−1)n

n2 + 1
=

1
2

+
π

2 sinh π
. ♦

Finally, it should be mentioned that even if we are now able to find the exact sum of a lot more
series than by Real Calculus alone, there are still many series that cannot be treated in this way. The
simplest example is perhaps

+∞
∑

n=1

1
n3

≈ 1.202,

and more generally,
∑+∞

n=1

1
n2p+1

, p ∈ N, for which no exact formula is known.
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accumulation point, 5, 38
annulus, 69

basic power series, 20
Bessel function, 108
biharmonic equation, 57
binomial coefficient, 21
boundary value problem, 56, 60, 62, 65

calculus of residua, 80
Casorati-Weierstraß’s theorem, 83
Cauchy Integral formula, 3
Cauchy Integral Theorem, 3
Cauchy multiplication, 14, 24, 107, 111
Cauchy’s inequalities, 19, 25, 27
Cauchy’s integral formula, 20, 60, 70
Cauchy’s integral theorem, 89, 92
Cauchy’s integral theorem for multiply connected

domains, 70
Cauchy’s principal value, 120
Cauchy’s residuum formula, 126
Cauchy’s residuum theorem, 93, 95, 109, 116,
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Cauchy’s residuum theorem for unbounded do-

mains, 99
Cauchy-Riemann equations, 3
Cauchy-Riemann’s equations, 13, 19, 51–53, 64
causality, 40
circle of convergence, 9
circulation, 63
complex potential, 65
computation of a residuum, 93
conditional convergence, 9
convergence in L2, 40
convergence in energy, 40
Cybernetics, 3

decomposition, 73, 94, 113, 114
deleted disc, 80
density of charge, 63
difference equation, 27
differential form, closed, 52
differential form, exact, 52, 54
direction, 92
Dirichlet problem, 3
Dirichlet’s criterion, 9
disc of convergence, 8

discrete convolution, 14
domain of convergence, 68

elasticity theory, 57
electric circuits, 117
electrostatic fields, 63
essential singularity, 83, 84, 89, 91
essential singularity at ∞, 88
Euler’s formulæ, 124
Euler’s formula, 119
existence and uniqueness theorem, 25
expansion point, 7
exponential, 29, 32
extended complex plane, 68

field line, 64
flux, 63
Fourier coefficients, 41
Fourier series, 40, 62, 67, 75, 132
Fourier series expansion, 62
Fourier transform, 117

geometric series, 11, 18, 33, 72
Geometry, 3
germ, 22, 27, 29, 37

harmonic conjugation, 52
harmonic function, 51
harmonic functions, 3
heat equation, 65

identity theorem, 16, 31, 33, 38, 97
improper integral, 109
improper integrals, 3
inside a closed curve, 92
inspection, 28
integer part, 9
integrating factor, 28, 35
isolated boundary point at ∞, 85
isolated boundary points, 80
isolated point, 38

Lagrange, 3
Laplace transform, 3
Laplace equation, 51, 65
Laplace transform, 41, 67
Laurent series, 3, 36, 41, 67, 68
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accumulation point, 9, 42
annulus, 73

basic power series, 24
Bessel function, 112
biharmonic equation, 61
binomial	coefficient,	25
boundary value problem, 60, 64, 66, 69

calculus of residua, 84
Casorati-Weierstraß’s theorem, 87
Cauchy Integral formula, 7
Cauchy Integral Theorem, 7
Cauchy multiplication, 18, 28, 111, 115
Cauchy’s inequalities, 23, 29, 31
Cauchy’s integral formula, 24, 64, 74
Cauchy’s integral theorem, 93, 96
Cauchy’s integral theorem for multiply connected 
domains, 74
Cauchy’s principal value, 124
Cauchy’s residuum formula, 130
Cauchy’s residuum theorem, 97, 99, 113, 120, 133
Cauchy’s residuum theorem for unbounded 
domains, 103
Cauchy-Riemann equations, 7
Cauchy-Riemann’s equations, 17, 23, 55-57, 68
causality, 44
circle of convergence, 13
circulation, 67
complex potential, 69
computation of a residuum, 97
conditional convergence, 13
convergence in L2, 44
convergence in energy, 44
Cybernetics, 7

decomposition, 77, 98, 117, 118
deleted disc, 84
density of charge, 67
difference equation, 31
differential form, closed, 56
differential form, exact, 56, 58
direction, 96
Dirichlet problem, 7
Dirichlet’s criterion, 13

disc of convergence, 12
discrete convolution, 18
domain of convergence, 72

elasticity theory, 61
electric circuits, 121
electrostatic elds, 67
essential singularity, 87, 88, 93, 95
essential singularity at ∞, 92
Euler’s formulæ, 128
Euler’s formula, 123
existence and uniqueness theorem, 29
expansion point, 11
exponential, 33, 36
extended complex plane, 72

field	line,	68
flux,	67
Fourier	coefficients,	45
Fourier series, 44, 66, 71, 79, 136
Fourier series expansion, 66
Fourier transform, 121

geometric series, 15, 22, 37, 76
Geometry, 7
germ, 26, 31, 33, 41

harmonic conjugation, 56
harmonic function, 55
harmonic functions, 7
heat equation, 69

identity theorem, 20, 35, 37, 42, 101
improper integral, 113
improper integrals, 7
inside a closed curve, 96
inspection, 32
integer part, 13
integrating factor, 32, 39
isolated boundary point at ∞, 89
isolated boundary points, 84
isolated point, 42

Lagrange, 7
Laplace transform, 7

Download free eBooks at bookboon.com



Calculus of Residua

140 

Index

Laplace equation, 55, 69
Laplace transform, 45, 71
Laurent series, 7, 40, 45, 71, 72
Laurent’s theorem, 74, 84, 90
level curve, 68
limes inferior, 10
limes superior, 9, 10, 12
linear differential equation, 80
linear differential equations, 29

many-valued function, 129
maximum principle, 48
maximum principle for harmonic functions, 59
mean value theorem for analytic functions, 60
Mean Value Theorem for Harmonic Functions, 65
mean value theorem for harmonic functions, 60
Mellin transform, 7, 128
method of inspection, 31
method of power series, 31
minimum principle, 49
multi-valued functions, 7
multiplicity, 41
non-isolated essential singularity, 93

order, 41

Parseval’s equation, 47, 48
Parseval’s formula, 79
Phragmen-Lindelöf’s theorem, 49
Picard’s theorem, 87, 89, 92
Poisson’s Integral Formula, 64
Poisson’s integral formula, 64
polar coordinates, 45
pole, 85, 93, 97
pole at ∞, 91
pole of order 0, 97
polynomial, 8, 92
potential, 67
potential theory, 55
power series, 9, 11
principal value, 25, 124

radius of convergence, 10, 12
rational function, 75, 98, 112, 117
real Taylor series, 24
recursion formula, 31, 35, 80
removable singularity, 84, 96, 98, 108, 109, 125, 
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residue calculus, 7, 45
residuum, 93
residuum at ∞, 102
residuum formula for the Fourier transform, 121
residuum formulæ for sums of series, 133
response function, 121
Riemann surface, 40
Riemann surfaces, 7
Schwarz’s lemma, 52

sequential sequence, 11
simple pole, 86, 98-100, 109, 116-118, 124-126, 
133, 135, 136
simple zero, 92
singular point for dierential equation, 80
solution procedures for solving linear differential 
equations, 31
stability, 7
Stirling’s formula, 33
Stokes’s theorem, 67

Taylor series, 7, 20, 23, 76
temperature	field,	69
trigonometric integrals, 7, 111
two-sided Laplace transform, 128

uniform convergence, 16, 19

weak Phragmen-Lindelöf’s theorem, 51
Weierstra ’s double series theorem, 27
work, 67

3-transform, 7, 45, 71, 91

zero, 42
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