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Linear Algebra Examples c-2 Introduction

Introduction
Here we collect all tables of contents of all the books on mathematics I have written so far for the publisher. 
In the rst list the topics are grouped according to their headlines, so the reader quickly can get an idea of 
where to search for a given topic.In order not to make the titles too long I have in the numbering added

a for a compendium

b for practical solution procedures (standard methods etc.)

c for examples.

The ideal situation would of course be that all major topics were supplied with all three forms of books, but 
this would be too much for a single man to write within a limited time.

After the rst short review follows a more detailed review of the contents of each book. Only Linear Algebra 
has been supplied with a short index. The plan in the future is also to make indices of every other book as 
well, possibly supplied by an index of all books. This cannot be done for obvious reasons during the rst 
couple of years, because this work is very big, indeed.

It is my hope that the present list can help the reader to navigate through this rather big collection of books.

Finally, since this list from time to time will be updated, one should always check when this introduction has 
been signed. If a mathematical topic is not on this list, it still could be published, so the reader should also 
check for possible new books, which have not been included in this list yet. 
 
Unfortunately errors cannot be avoided in a rst edition of a work of this type. However, the author has tried 
to put them on a minimum, hoping that the reader will meet with sympathy the errors which do occur in the 
text.

Leif Mejlbro  
5th October 2014
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Linear Algebra Examples c-2 1. Geometrical vectors

1 Geometrical vectors

Example 1.1 Given A1A2 · · ·A8 a regular octogon of midpoint A0. How many different vectors are
there among the 81 vectors

−−−→
AiAj, where i and j belong to the set {0, 1, 2, . . . , 8}?

Remark 1.1 There should have been a figure here, but neither LATEXnor MAPLE will produce it for
me properly, so it is left to the reader. ♦

This problem is a typical combinatorial problem.

Clearly, the 9 possibilities
−−−→
AiAi all represent the 0 vector, so this will giver us 1 possibility.

From a geometrical point of view A0 is not typical. We can form 16 vector where A0 is the initial or
final point. These can, however, be paired. For instance

−−−→
A1A0 =

−−−→
A0A5

and analogously. In this particular case we get 8 vectors.

Then we consider the indices modulo 8, i.e. if an index is larger than 8 or smaller than 1, we subtract
or add some multiple of 8, such that the resulting index lies in the set {1, 2, . . . , 8}. Thus e.g.
9 = 1 + 8 ≡ 1( mod 8).

Then we have 8 different vectors of the form
−−−−→
AiAi+1, and these can always be paired with a vector of

the form
−−−−−→
AjAj−1. Thus e.g.

−−−→
A1A2 =

−−−→
A6A5. Hence the 16 possibilities of this type will only give os 8

different vectors.

The same is true for
−−−−→
AiAi+2 and

−−−−−→
AjAj−2 (16 possibilities and only 8 vectors), and for

−−−−→
AiAi+3 and

−−−−−→
AjAj−3 (again 16 possibilities and 8 vectors).

Finally, we see that we have for
−−−−→
AiAi+4 8 possibilities, which all represent a diameter. None of these

diameters can be paired with any other, so we obtain another 8 vectors.

Summing up,

# possibilities # vectors
0 vector 9 1
A0 is one of the points 16 8−−−−→
AiAi±1 16 8−−−−→
AiAi±2 16 8−−−−→
AiAi±3 16 8−−−−−→
A1Ai+4 8 8
I alt 81 41

By counting we find 41 different vectors among the 81 possible combinations.

5
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Linear Algebra Examples c-2 1. Geometrical vectors

Example 1.2 Given a point set G consisting of n points

G = {A1, A2, . . . , An} .

Denoting by O the point which is chosen as origo of the vectors, prove that the point M given by the
equation

−−→
OM =

1
n

(−−→
OA1 +

−−→
OA2 + · · · + −−→

OAn

)

,

does not depend on the choice of the origo O.
The point M is called the midpoint or the geometrical barycenter of the point set G.
Prove that the point M satisfies the equation

−−−→
MA1 +

−−−→
MA2 + · · · + −−−→

MAn = �0,

and that M is the only point fulfilling this equation.

Let

−−→
OM =

1
n

(−−→
OA1 +

−−→
OA2 + · · · + −−→

OAn

)

and

−−−→
O1M1 =

1
n

(−−−→
O1A1 +

−−−→
O1A2 + · · · + −−−→

O1An

)

.

6
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Then
−−−→
O1M =

−−→
O1O +

−−→
OM =

−−→
O1O +

1
n

(−−→
OA1 +

−−→
OA2 + · · · + −−→

OAn

)

=
1
n

{(−−→
O1O +

−−→
OA1

)

+
(−−→
O1O +

−−→
OA2

)

+ · · · +
(−−→
O1O +

−−→
OAn

)}

=
1
n

(−−−→
O1A1 +

−−−→
O1A2 + · · · + −−−→

O1An

)

=
−−−→
O1M1,

from which we conclude that M1 = M .

Now choose in particular O = M . Then

−−−→
MM = �0 =

1
n

(−−−→
MA1 +

−−−→
MA2 + · · · + −−−→

MAn

)

,

thus
−−−→
MA1 +

−−−→
MA2 + · · · + −−−→

MAn = �0.

On the other hand, the uniqueness proved above shows that M is the only point, for which this is
true.

Example 1.3 Prove that if a point set

G = {A1, A2, . . . , An}

has a centrum of symmetry M , then the midpoint of the set (the geometrical barycenter) lie in M .

If Ai and Aj are symmetric with respect to M , then

−−−→
MAi +

−−−→
MAj = �0.

Since every point is symmetric to precisely one other point with respect to M , we get
−−−→
MA1 +

−−−→
MA2 + · · · + −−−→

MAn = �0,

which according to Example 1.2 means that M is also the geometrical barycenter of the set.

Example 1.4 Prove that if a point set G = {A1, A2, . . . , An} has an axis of symmetry �, then the
midpoint of the set (the geometrical barycenter) lies on �.

Every point Ai can be paired with an Aj , such that
−−→
OAi +

−−→
OAj lies on �, and such that G \ {Ai, Aj}

still has the axis of symmetry �.

Remark 1.2 The problem is here that Aj , contrary to Example 1.3 is not uniquely determined. ♦

Continue in this way by selecting pairs, until there are no more points left. Then the midpoints of all
pairs will lie on �. Since � is a straight line, the midpoint of all points in G will also lie on �.

7
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Example 1.5 Given a regular hexagon of the vertices A1, A2, . . . , A6. Denote the center of the
hexagon by O. Find the vector

−−→
OM from O to the midpoint (the geometrical barycenter) M of

1. the point set {A1, A2, A3, A4, A5},

2. the point set {A1, A2, A3}.

Remark 1.3 Again a figure would have been very useful and again neither LATEXnor MAPLE will
produce it properly. The drawing is therefore left to the reader. ♦

1. It follows from
−−→
OA1 +

−−→
OA2 +

−−→
OA3 +

−−→
OA4 +

−−→
OA5 +

−−→
OA6 = �0,

by adding something and then subtracting it again that

−−→
OM =

1
5

{−−→
OA1 +

−−→
OA2 +

−−→
OA3 +

−−→
OA4 +

−−→
OA5

}

=
1
5

{(−−→
OA1 +

−−→
OA2 +

−−→
OA3 +

−−→
OA4 +

−−→
OA5 +

−−→
OA6

)

−−−→
OA6

}

= −1
5
−−→
OA6 =

1
5
−−→
OA3.

2. Since
−−→
OA1 +

−−→
OA3 =

−−→
OA2 (follows from the missing figure, which the reader of course has drawn

already), we get

−−→
OM =

1
3

{−−→
OA1 +

−−→
OA2 +

−−→
OA3

}

=
2
3
−−→
OA2.

Example 1.6 Prove by vector calculus that the medians of a triangle pass through the same point and
that they cut each other in the proportion 1 : 2.

Remark 1.4 In this case there would be a theoretical possibility of sketching a figure in LATEX. It
will, however, be very small, and the benefit of if will be too small for all the troubles in creating the
figure. LATEXis not suited for figures. ♦

Let O denote the reference point. Let MA denote the midpoint of BC and analogously of the others.
Then the median from A is given by the line segment AMA, and analogously.
It follows from the definition of MA that

−−−→
OMA =

1
2
(
−−→
OB +

−−→
OC),

−−−→
OMB =

1
2
(
−→
OA +

−−→
OC),

8
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−−−→
OMC =

1
2
(
−→
OA +

−−→
OB).

Then we conclude that

1
2
(
−→
OA +

−−→
OB +

−−→
OC) =

1
2
−→
OA +

−−−→
OMA =

1
2
−−→
OB +

−−−→
OMB =

1
2
−−−→
OMC .

Choose O = M , such that
−−→
MA +

−−→
MB +

−−→
MC = �0, i.e. M is the geometrical barycenter. Then we get

by multiplying by 2 that

�0 =
−−→
MA + 2

−−−−→
MMA =

−−→
MB + 2

−−−−→
MMB =

−−→
MC + 2

−−−−→
MMC ,

which proves that M lies on all three lines AMA, BMB and CMC , and that M cuts each of these line
segments in the proportion 2 : 1.

Example 1.7 We define the median from a vertex A of a tetrahedron ABCD as the line segment
from A to the point of intersection of the medians of the triangle BCD. Prove by vector calculus that
the four medians of a tetrahedron all pass through the same point and cut each other in the proportion
1 : 3.
Furthermore, prove that the point mentioned above is the common midpoint of the line segments which
connect the midpoints of opposite edges of the tetrahedron.

Remark 1.5 It is again left to the reader to sketch a figure of a tetrahedron. ♦

It follows from Example 1.6 that MA is the geometrical barycentrum of �BCD, i.e.

−−−→
OMA =

1
3

(−−→
OB +

−−→
OC +

−−→
OD

)

,

and analogously. Thus

1
3

(−→
OA +

−−→
OB +

−−→
OC +

−−→
OD

)

=
1
3
−→
OA +

−−−→
OMA =

1
3
−−→
OB +

−−−→
OMB =

1
3
−−→
OC +

−−−→
OMC

=
1
3
−−→
OD +

−−−−−→
ONMD.

By choosing O = M as the geometrical barycenter of A, B, C and D, i.e.

−−→
MA +

−−→
MB +

−−→
MC +

−−→
MD = �0,

we get

1
3
−−→
MA +

−−−−→
MMA =

1
3
−−→
MB +

−−−−→
MMB =

1
3
−−→
MC +

−−−−→
MMC =

1
3
−−→
MD +

−−−−→
MMD,

so we conclude as in Example 1.6 that the four medians all pass through M , and that M divides
each median in the proportion 3 : 1.

9
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Finally, by using M as reference point we get

�0 =
1
4

{−−→
MA +

−−→
MB +

−−→
MC +

−−→
MD

}

=
1
2

{

1
2
−−→
MA +

1
2
−−→
MB

}

+
1
2

{−−→
MC +

1
2
−−→
MD

}

=
1
2

{

1
2
−−→
MA +

1
2
−−→
MC

}

+
1
2

{

1
2
−−→
MB +

1
2
−−→
MD

}

=
1
2

{

1
2
−−→
MA +

1
2
−−→
MD

}

+
1
2

{

1
2
−−→
MB +

1
2
−−→
MC

}

.

Here e.g

1
2

{

1
2
−−→
MA +

1
2
−−→
MB

}

+
1
2

{

1
2
−−→
MC +

1
2
−−→
MD

}

= �0

represents M as well as the midpoint of the midpoints of the two opposite edges AB and CD.
Analogously for in the other two cases.

10
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Example 1.8 In the tetrahedron OABC we denote the sides of triangle ABC by a, b and c, while
the edges OA, OB and OC are denoted by α, β and γ. Using vector calculus one shall find the length
of the median of the tetrahedron from 0 expressed by the lengths of the six edges.

Remark 1.6 It is again left to the reader to sketch a figure of the tetrahedron. ♦

It follows from Example 1.7 that

−−→
OM =

1
4

(−−→
OO +

−→
OA +

−−→
OB +

−−→
OC

)

=
1
4

(−→
OA +

−−→
OB +

−−→
OC

)

,

hence

|−−→OM |2 =
1
16

{

|−→OA|2 + |−−→OB|2 + |−−→OC|2 + 2
−→
OA · −−→OB + 2

−→
OA · −−→OC + 2

−−→
OB · −−→OC

}

=
1
16

{

α2 + β2 + γ2 + 2
−→
OA · −−→OB + 2

−→
OA · −−→OB + 2

−−→
OB · −−→OC

}

.

Then note that
−→
OA · −−→OB =

−→
OA ·

(−→
OA +

−−→
AB

)

= |−→OA|2 +
−→
OA · −−→AB

= α2 +
−−→
AB · −→OA =

(−−→
OB +

−−→
BA

)

· −−→OB

= |−−→OB|2 +
−−→
OB · −−→BA = β2 +

−−→
AB · −−→BO,

thus

2
−→
OA · −−→OB =

{

α2 +
−−→
AB · −→OA

}

+
{

β2 +
−−→
AB · −−→BO

}

= α2 + β2 +
−−→
AB ·

{−−→
BO +

−→
OA

}

= α2 + β2 −−−→
AB · −−→AB

= α2 + β2 − c2.

Analogously,

2
−→
OA · −−→OC = α2 + γ2 − b2 og 2

−−→
OB · −−→OC = β2 + γ2 − a2.

It follows by insertion that

|−−→OM |2 =
1
16

{

α2 + β2 + γ2 + α2 + β2 − c2 + α2 + γ2 − b2 + β2 + γ2 − a2
}

=
1
16

{

3
(

α2 + β2 + γ2
)

−
(

a2 + b2 + c2
)}

,

so

|−−→OM | =
1
4

√

3(α2 + β2 + γ2) − (a2 + b2 + c2).

11
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Example 1.9 Prove for any tetrahedron that the sum of the squares of the edges is equal to four times
the sum of the squares of the lengths of the line segments which connect the midpoints of opposite edges.

Remark 1.7 It is left to the reader to sketch a tetrahedron for the argument below. ♦

Choose two opposite edges, e.g. OA and BC, where 0 is the top point, while ABC is the triangle
at the bottom. If we use 0 as the reference point, then the initial point of OA is represented by the

vector
1
2
−→
OA, and the end point is represented by

−−→
OB +

1
2
−−→
BC =

1
2
−−→
OB +

1
2
−−→
OC.

Hence, the vector, representing the connecting line segment between the midpoints of two opposite
edges, is given by

1
2

{−−→
OB +

−−→
OC −−→

OA
}

=
1
2

{−−→
AB +

−−→
OC

}

.

Analogously we obtain the vectors of the other two pairs of opposite edges,

1
2

{−−→
BC +

−→
OA

}

og
1
2

{−→
CA +

−−→
OB

}

.

Then four times the sum of the squares of these lengths is
{−−→

AB +
−−→
OC

}

·
{−−→

AB +
−−→
OC

}

+
{−−→

BC +
−→
OA

}

·
{−−→

BC +
−→
OA

}

+
{−→

CA +
−−→
OB

}

·
{−→

CA +
−−→
OB

}

= |−−→AB|2 + |−−→OC|2 + 2
−−→
AB · −−→OC + |−−→BC|2 + |−→OA|2 + 2

−−→
BC · −→OA + |−→CA|2 + |−−→OB|2 + 2

−→
CA · −−→OB.

The claim will be proved if we can prove that

−−→
AB · −−→OC +

−−→
BC · −→OA +

−→
CA · −−→OB = 0.

Now,
−−→
AB · −−→OC +

−−→
BC · −→OA +

−→
CA · −−→OB

= (
−−→
OB −−→

OA · −−→OC + (
−−→
OC −−−→

OB) · −→OA + (
−→
OA −−−→

OC) · −−→OB

=
−−→
OB · −−→OC −−→

OA · −−→OC +
−−→
OC · −→OA −−−→

OB · −→OA +
−→
OA · −−→OB −−−→

OC · −−→OB

= 0,

so we have proved that the sum of the squares of the edges is equal to four times the sum of the
squares of the lengths of the line segments which combine the midpoints of opposite edges.

12
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Example 1.10 Prove by vector calculus that the midpoints of the six edges of a cube, which do not
intersect a given diagonal, must lie in the same plane.

Remark 1.8 It is left to the reader to sketch a cube where ABCD is the upper square and EFGH
the lower square, such that A lies above E, B above F , C above G and D above H. ♦

Using the fixation of the corners in the remark above we choose the diagonal AG. Then the six edges
in question are BC, CD, DH, HE, EF and FB.

Denote the midpoint of the cube by 0- Then it follows that the midpoint of BC is symmetric to the
midpoint of HE with respect to 0. We have analogous results concerning the midpoints of the pairs
(CD,EF ) and (DH,BF ).

The claim will follow if we can prove that the midpoints of BC, CD and DH all lie in the same plane
as 0, because it follows by the symmetry that the latter three midpoints lie in the same plane.

Using 0 as reference point we get the representatives of the midpoints

1
2
(
−−→
OB +

−−→
OC),

1
2
(
−−→
OC +

−−→
OD),

1
2
(
−−→
OD +

−−→
OH) =

1
2
(
−−→
OD −−−→

OB).

Now, these three vectors are linearly dependent, because

1
2
(
−−→
OC +

−−→
OD) − 1

2
(
−−→
OB +

−−→
OC) =

1
2
(
−−→
OD −−−→

OB),

hence the three points all lie in the same plane as 0, and the claim is proved.

Example 1.11 Find by using vector calculus the distance between a corner of a unit cube and a
diagonal, which does not pass through this corner.

Remark 1.9 It is left to the reader to sketch a unit cube of the corners (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). ♦

Since we consider a unit cube, the distance is the same, no matter which corner we choose not lying
on the chosen diagonal.

We choose in the given coordinate system the point (0, 0, 0) and the diagonal from (1, 0, 0) to (0, 1, 1).
The diagonal is represented by the vectorial parametric description

(1, 0, 0) − s(−1, 1, 1) = (1 − s, s, s), s ∈ [0, 1].

The task is to find s ∈ [0, 1], such that

|(1 − s, s, s)| =
√

(1 − s)2 + s2 + s2 =
√

3s2 − 2s + 1,

becomes as small as possible, because |(1 − s, s, s)| is the distance from (0, 0, 0) to the general point
on the diagonal.

13
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If we put ϕ(s) = 3s2 − 2s + 1, then

ϕ′(s) = 6s − 2 = 0 for s =
1
3
,

which necessarily must be a minimum. The point on the diagonal which is closest to (0, 0, 0) is then
(

2
3
,
1
3
,
1
3

)

, and the distance is

√

(

2
3

)2

+
(

1
3

)2

+
(

1
3

)2

=
√

6
3

.

Example 1.12 Formulate the geometrical theorems which can be derived from the vector identities

1. (�a +�b)2 + (�a −�b)2 = 2(�a2 +�b2).

2. (�a +�b + �c)2 + (�a +�b − �c)2 + (�a −�b + �c)2 + (−�a +�b + �c)2 = 4(�a2 +�b2 + �c 2).

1. It follows from a figure that in a parallelogram the sum of the squares of the edges is equal to
the sum of the squares of the diagonals, where we use that

2(�a2 +�b2) = �a2 +�b2 + �a2 +�b2.

14
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Remark 1.10 I have tried without success to let LATEX sketch a nice figure, so it is again left
to the reader to sketch the parallelogram. Analogously in the second question. ♦.

2. This follows in a similar way. In a parallelepiped the sum of the squares of the edges, i.e.
4(�a2 +�b2 + �c2), is equal to the sum of the squares of the diagonals.

Example 1.13 Given three points P , Q and R, which define a plane π. Let P , Q and R be represented
by the vectors �p, �q and �r. Prove that the vector

�p × �q + �q × �r + �r × �p

is perpendicular to π.
Find an expression of the distance of the origo to �r.

Remark 1.11 Again it is left to the reader to sketch the figure. ♦

Since �q − �p and �r − �q are parallel to the plane π, the vectorial product

(�q − �p) × (�r − �q) = �q × �r − �p × �r − �q × �q + �p × �q = �p × �q + �q × �r + �r × �p

must be perpendicular to π.

Then

�p · {�p × �q + �q × �r + �r × �p} = �p · (�q × �r),

is the distance (with sign)

�p · (�q × �r)
|�p × �q + �q × �r + �r × �p| .

Example 1.14 Let �a = (�b ·�e)�b +�b× (�b×�e), where �a, �b and �e are vectors from the same point, and �e

is a unit vector. Prove that �b is halving ∠(�e,�a).

The vector �b × (�b × �e) is perpendicular to �b, hence

�a = (�b · �e)�b +�b × (�b × �e)

is an orthogonal splitting.

Furthermore, �b× (�b× �e) is perpendicular to �b×�e, and this vector lies in the half space which is given
by the plane defined by �b and �b×�e, given that this half space does not contain �e. Then the claim will
follow, if we can prove that ϕ = cosψ, where ϕ denotes the angle between �a and �b, and ψ denotes the
angle between �b and �e.
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Now,

�a ·�b = |�a| · |�b| cos(∠(�a,�b)) og �b · �e = |�e| cos(∠(�b,�e)),

thus it suffices to prove that �a ·�b = |�a|(�b · �e). We have

�a ·�b = (�b · �e)�b ·�b = |�b|2(�b · �e)

and

|�a|2 = (�b · �e)|�b|2 +
{

|�b| · |�b × �e| sin(∠(�b,�b × �e))
}2

= (�b · �e)2 · |�b|2 + |�b|2 · |�×�e|2

= |�b|2
{

|�b|2 cos2(∠(�b,�e)) + |�b|2 sin2(∠(�b,�e))
}

= |�b|4,

so |�a| = |�b|2, and we see that

�a ·�b = |�b|2(�b · �e) = |�a|(�b · �e)

as required and the claim is proved.

Alternatively if follows from the rule of the double vectorial product that

�b × (�b × �e) = (�b · �e)�b − |�b|2�e,

thus �a = 2(�b · �e)�b − |�b|2�e. Then

|�a|2 = 4(�b · �e)2|�b|2 + |�b|4 − 4(�b · e2)|�b|2 = |�b|4,

i.e. |�a| = |�b|2, and we find again that

�a ·�b = |�b|2(�b · �e) = |�a|(�b · �e).

Example 1.15 Prove the formula

�a × (�b × �c) +�b × (�c × �a) + �c × (�a ×�b) = �0.

We get by insertion into the formula of the double vectorial product

�a × (�b × �c) = (�a · �c)�b − (�a ·�b)�c,

followed by pairing the vectors that

�a × (�b × �c) +�b × (�c × �a) + �c × (�a ×�b)

= (�a · �c)�b − (�a ·�b)�c + (�b · �a)�c − (�b · �c)�a + (�c ·�b)�a − (�c · �a)�b = �0−
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Example 1.16 Given three vectors �a, �b, �c, where we assume that

�a × (�b × �c) = (�a ×�b) × �c.

What can be said about their positions?

Using that

�a × (�b × �c) = (�a · �c)�b − (�a ·�b)�c

and

(�a ×�b) × �c = −c × (�a ×�b) = −(�c ·�b)�a + (�c · �a)�b,

it follows by identification that

(�a ·�b)�c = (�c ·�b)�a.

This holds if either �c = ±�a, or if �b is perpendicular to both �a and �c.

Example 1.17 Explain the geometrical contents of the equations

1) (�a ×�b) · (�c × �d) = �0, 2) (�a ×�b) × (�d × �d) = �0.

1. This condition means that �a × �b an �c × �d are perpendicular to each other. Since also �a and �b
are perpendicular to �a ×�b, we conclude that �a, �b and �c × �d must be linearly dependent of each
other.

Analogously, �c, �d and �a ×�b are linearly dependent.

2. This condition means that �a×�b and �c× �d are proportional, thus �a, �b, �c and �d all lie in the same
plane.

Example 1.18 Prove that

(�a −�b) × (�a +�b) = 2�a ×�b

and interpret this formula as a theorem on areas of parallelograms.

By a direct computation,

(�a −�b) × (�a +�b) = �a × �a + �a ×�b −�b × �a −�b ×�b = 2�a ×�b.

Then interpret |(�a−�b)× (�a+�b)| as the area of the parallelogram, which is defined by the vectors �a−�b

and �a +�b. This area is twice the area of the parallelogram, which is defined by �a and �b, where 2�a and
2�b are the diagonals of the previous mentioned parallelogram.
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Example 1.19 Compute the vectorial product

�e × (�e × (�e × (�e × a))),

where �e is a unit vector.

We shall only repeat the formula of the double vectorial product

�a × (�b × �c) = (�a · �c)�b − (�a ·�b)�c

a couple of times. Starting from the inside we get successively

�e × (�e × (�e × (�e × �a))) = �e × (�e × {(�e · �a)�e − (�e · �e)�a})
= −�e × (�e × �a) = −(�e · �a)�e + (�e · �e)�a
= �a − (�e · �a)�e,

which is that component of �a, which is perpendicular of �e, hence

�a = �e × (�e × (�e × (�e × a))) + (�e · �a)�e.
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Example 1.20 Consider an ordinary rectangular coordinate system in the space of positive orienta-
tion, in which there are given the vectors �a(1,−1, 2) and �b(−1, k, k). Find all values of k, for which
the equation

�r × �a = �b

has solutions and find in each case the solutions.

A necessary condition of solutions is that �a and �b are perpendicular to each other, i.e.

0 = �a ·�b = −1 − k + 2k = k − 1, thus k = 1.

The only possibility is therefore �b(−1, 1, 1).

Then notice that

�a ×�b =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

1 −1 2
−1 1 1

∣

∣

∣

∣

∣

∣

= (−3,−3, 0) = −3(1, 1, 0),

and

(1, 1, 0, ) × �a =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

1 1 0
1 −1 2

∣

∣

∣

∣

∣

∣

= (2,−2,−2) = −2�b,

hence
(

−1
2
,−1

2
, 0

)

× �a = �b.

Thus, one solution is given by �r0 = −1
2
(1, 1, 0). Since all solutions of the homogeneous equation

�r × �a = �0 is given by k�a, k ∈ R, the total solution of the inhomogeneous equation is

�r = −1
2
(1, 1, 0) + k(1,−1, 2), k ∈ R.
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Example 1.21 Consider an ordinary rectangular coordinate system in the space of positive orienta-
tion, in which there are given the vectors �a(1,−1, 2), �b(−1, k, k), �c(3, 1, 2). Find all values of k, for
which the equation

�r × �a + k�b = �c

has solutions and find these solutions.

Since

�r × a = �c − k�b

is perpendicular to �a, we must have

0 = �a · �c − k�a ·�b = (1,−1, 2) · (3, 1, 2) − k(1,−1, 2) · (−1, k, k)
= 6 − k{−1 + k} = −k2 + k + 6 = −(k + 2)(k − 3),

so the only possibilities are k = −2 and k = 3.

If k = −2, then

�c − k�b = (3, 1, 2) + 2(−1,−2,−2) = (1,−3,−2).

It follows from

�a × (1,−3,−2) =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

1 −1 2
1 −3 −2

∣

∣

∣

∣

∣

∣

= (8, 4,−2) = 2(4, 2,−1)

and

(4, 2,−1) × �a =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

4 2 −1
1 −1 2

∣

∣

∣

∣

∣

∣

= (3,−9,−6) = 3(1,−3,−2),

that a particular solution is �r0 =
1
3
(4, 2,−1).

The complete solution is then obtained by adding a multiple of �a, thus

�r =
1
3
(4, 2,−1) + (k − 1)(1,−1, 2) = (1, 1,−1) + k(1,−1, 2), k ∈ R.

If k = 3, then

�c − k�b = (3, 1, 2) − 3(−1, 3, 3) = (6,−8,−7).

It follows from

�a × (6,−8,−7) =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

1 −1 2
6 −8 −7

∣

∣

∣

∣

∣

∣

= (23, 19,−2)
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and

(23, 19,−2) × �a =

∣

∣

∣

∣

∣

∣

�e1 �e2 �e3

23 19 −2
1 −1 2

∣

∣

∣

∣

∣

∣

= (36,−48,−42) = 6(6,−8,−7),

that

1
6
(23, 19,−2) × �a = (6,−8,−7) = �c − k�b,

so a particular solution is given by �r =
1
6
(23, 19,−2).

Since �a × �a = �0, the complete set of solutions is given by

�r =
1
6
(23, 19,−2) + k1(1,−1, 2), k1 ∈ R.

A nicer expression if obtained if we choose k1 = k +
1
6
, in which case

�r = (4, 3, 0) + k(1,−1, 2), k ∈ R.
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2 Vector spaces

Example 2.1 Given the following subsets of the vector space Rn:

1. The set of all vectors in Rn, the first coordinate of which is an integer.

2. The set of all vectors in Rn, the first coordinate of which is zero.

3. The set of all vectors in Rn, (n ≥ 2), where at least one for the first two coordinates is zero.

4. The set of all vectors in Rn (n ≥ 2), for which the first two coordinates satisfy the equation
x1 + 2x2 = 0.

5. The set of all vectors in Rn (n ≥ 2), for which the first two coordinates satisfy the equation
x1 + 2x2 = 1.

Which of these subsets above are also subspaces of Rn?

1. This set is not a subspace. For example, (1, . . . ) belongs to the set, while 1
2 (1, . . . ) = ( 1

2 , . . . )
does not.

2. This set is a subspace. In face, every linear combination of elements from the set must have 0
as its first coordinate.

3. This set is not a subspace. Both (1, 0, . . . ) and (0, 1, . . . ) belong to the set, but their sum
(1, 1, . . . ) does not.

4. This set is a subspace. The equation x1+2x2 = 0 describes geometrically an hyperplane through
0. Any linear combination of elements satisfying this condition will also fulfil this condition.

5. This set is not a subspace. In fact, (0, . . . , 0) does not belong to the set- The equation x1+2x2 = 1
describes geometrically an hyperplane which is parallel to the subspace of 4).

Example 2.2 Prove that the following vectors in R4 are linearly independent:

1. a1 = (0,−1,−1,−1), a2 = (1, 0,−1,−1), a3 = (1, 1, 0,−1), a4 = (1, 1, 1, 0).

2. a1 = (1, 1, 0, 0), a2 = (2, 1, 1, 0), a3 = (3, 1, 1, 1).

1. We setup the matrix with ai as the i-th row and reduce,









a1

a2

a3

a4









=









0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0









∼
R1 := R2

R2 := R3 − R2

R3 := R4 − R3

R4 := −R1









1 0 −1 −1
0 1 1 0
0 0 1 1
0 1 1 1









∼
R1 := R1 + R3

R2 := R2 − R3

R4 := R4 − R2









1 0 0 0
0 1 0 −1
0 0 1 1
0 0 0 1









∼
R2 := R2 + R4

R3 := R3 − R4









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

It follows that the rank is 4. This means that a1, a2, a3 and a4 are linearly independent.
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2. Analogously,




a1

a2

a3



 =





1 1 0 0
2 1 1 0
3 1 1 1





∼
R2 := R2 − R1

R3 := R3 − R2





1 1 0 0
1 0 1 0
1 0 0 1



 ,

which clearly is of rank 3, so a1, a2 and a3 are linearly independent.

Example 2.3 Check if the matrices
(

2 −1
4 6

)

,

(

3 2
8 3

)

,

(

−5 −8
−16 4

)

are linearly dependent or linearly independent in the vector space R2×2.

Every matrix may be considered as a vector in R4, where the vector is organized such that we first
take the first row and then the second row. Hence,





2 −1 4 6
3 2 8 3

−5 −8 −16 4





∼
R1 := 2R2 − 3R1

R3 := 5R1 + 2R2





2 −1 4 6
0 7 4 −12
0 −42 72 32





∼
R3 := R3 + 6R2





2 −1 4 6
0 7 4 −12
0 0 98 −40



 .

Since the rank is 3 for the three vector, the vectors are – and hence also the corresponding matrices
– linearly independent.

Example 2.4 Find a, such that the vectors (1, 2, 3), (−1, 0, 2) and (1, 6, a) in R3 are linearly depen-
dent.

We get by reduction,




a1

a2

a3



 =





1 2 3
−1 0 2

1 6 a





∼
R2 := R1 + R2

R3 := R3 − R1





1 2 3
0 2 5
0 4 a − 3





∼
R3 := R3 − 2R2





1 2 3
0 2 5
0 0 a − 13



 .

The rank is 3, unless a = 13, so the vectors are only linearly dependent for a = 13.
We see that if a = 13, then

(1, 6, 13) = 3(1, 2, 3) + 2(−1, 0, 2),

so we have checked our result.
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Example 2.5 Check if the three polynomials P1(x), P2(x), P3(x), below considered as vectors in the
vector space P2(R), are linearly dependent or linearly independent:

P1(x) = 1 − x, P2(x) = x(1 − x), P3(x) = 1 − x2.

It follows immediately by inspection that

P3(x) = 1 − x2 = (1 − x) + (x − x2) = P1(x) + x(1 − x) = P1(x) + P2(x),

showing that the polynomials are linearly dependent.

Example 2.6 Given in the vector space P2(R) the vectors

P1(x) = 1 + x − 3x2, P2(x) = 1 + 2x − 3x2, P3(x) = −x + x2.

Prove that (P1(x), P2(x), P3(x)) is a basis of P2(R), and write the vector

P (x) = 2 + 3x − 3x2

as a linear combination of P1(x), P2(x) and P3(x).

We first note that P2(x) − P1(x) = x, thus

x2 = x + (−x + x2) = (P2(x) − P1(x)) + P3(x).

Then

1 = P1(x) − x + 3x2

= P1(x) − P2(x) + P1(x) + 3P3(x) + 3P2(x) − 3P1(x)
= 3P3(x) + 2P2(x) − P1(x),

so we have at least

1 = 3P3(x) + 2P2(x) − P1(x),
x = P2(x) − P1(x),
x2 = P3(x) + P2(x) − P1(x),

from which

P (x) = 2 + 3x − 3x2 = 3P3(x) + 4P2(x) − 2P1(x).

We shall now return to the uniqueness. This may be proved alone by the above. However, we shall
here choose a more secure method. The uniqueness clearly follows, if we can prove that

αP1(x) + βP2(x) + γP3(x) = 0

implies α = β = γ = 0.
Putting x = 0 into the equation above we get α + β = 0.
Putting x = 1 into the equation, we get −α = 0, thus α = 0, and hence also β = 0. Then it follows
that γ = 0, and P1(x), P2(x), P3(x) form a basis of P2(R).
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Example 2.7 Consider the vector space C0(R) of real, continuous functions defined on R with
the given vectors (functions) f(t) = sin2 t, g(t) = cos 2t, and h(t) = 2. Find the dimension of
span{f, g, h}.

It follows from

f(t) = sin2 t =
1
2
{1 − cos 2t} =

1
4

h(t) − 1
2

g(t),

that f , g and h are linearly dependent, i.e. of at most rank 2. Since g and h clearly are linearly
independent, the rank is 2, hence

dim span{f, g, h} = 2.
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Example 2.8 Find a basis of the space of solutions of the system of equations

x2 + 3x3 − x4 + x5 = 0,
x3 − x4 − 5x5 = 0,

x1 + x2 − x3 + 2x4 + 6x5 = 0.

First we reduce the matrix of coefficients,





0 1 3 −1 1
0 0 1 −1 −5
1 1 −1 2 6





∼
R1 := R3 − R1

R2 := R1 − 3R2

R3 := R2





1 0 −4 3 5
0 1 0 2 16
0 0 1 −1 −5





∼
R1 := R1 + 4R3





1 0 0 −1 −15
0 1 0 2 16
0 0 1 −1 −5



 ,

corresponding to the reduced equations

x1 = x4 + 15x5,
x2 = −2x4 − 16x5,
x3 = x4 + 5x5.

Choosing x4 = s and x5 = t as parameters we find the set of solutions

(s + 15t,−2s − 16t, s + 5t, s, t) = s(1,−2, 1, 1, 0) + t(15,−16, 5, 0, 1), s, t ∈ R.

Hence, a basis of the space of solutions may therefore be consisting of the vectors

(1,−2, 1, 1, 0) and (15,−16, 5, 0, 1).

Example 2.9 Given in the vector space P2(R) a basis {P1(x), P2(x), P3(x)}.
The polynomials 3 + 2x + 7x2, 2 + x + 4x2 and 5 + 2x2 have with respect to this basis the coordinates

(1,−2, 0), (1,−1, 0), (0, 1, 1).

Find the polynomials P1(x), P2(x) and P3(x) of the basis.

The conditions mean that

P1(x) − 2P2(x) = 3 + 2x + 7x2,
P1(x) − P2(x) = 2 + x + 4x2,

P2(x) + P3(x) = 5 + 2x2.

This is a very simple system, and it follows immediately that

P1(x) = 2 {P1(x) − P2(x)} − {P1(x) − 2P2(x)}
= 2

{

2 + x + 4x2
}

−
{

3 + 2x + 7x2
}

= 1 + x2,

P2(x) = {P1(x) − P2(x)} − {P1(x) − 2P2(x)}
=

{

2 + x + 4x2
}

−
{

3 + 2x + 7x2
}

= −1 − x − 3x2,

P3(x) = −P2(x) + 5 + 2x2 = 1 + x + 3x2 + 5 + 2x2

= 6 + x + 5x2.
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Summing up we have

P1(x) = 1 + x2, P2(x) = −1 − x − 3x2, P3(x) = 6 + x + 5x2.

Example 2.10 Prove that the two vectors

a1 = (1, 0, 1, 0, 1, 0) and a1 = (0, 1, 1, 1, 1,−1)

span the same subspace of R6 as the two vectors

b1 = (4,−5,−1,−5,−1, 5) and b2 = (−3, 2,−1, 2,−1,−2).

Obviously, the pairs {a1,a2} and {b1,b2} are separately linearly independent. The claim follows if
we can prove that the system {a1,a2,b1,b2} is of rank 2. It follows by reduction that









a1

a2

b1

b2









=









1 0 1 0 1 0
0 1 1 1 1 −1
4 −5 −1 −5 −1 5

−3 2 −1 2 −1 −2









∼
R3 := R3 − 4R1

R4 := R4 + 3R1









1 0 1 0 1 0
0 1 1 1 1 −1
0 −5 −5 −5 −5 5
0 2 2 2 2 −2









,

which clearly is of rank 2, and the claim is proved.

Alternatively we see that

b1 = (4,−5,−1,−5,−1, 5) = (4, 0, 4, 0, 4, 0) + (0,−5,−5,−5,−5, 5) = 4a1 − 5a2,

and

b2 = (−3, 2,−1, 2,−1,−2) = (−3, 0,−3, 0,−3, 0) + (0, 2, 2, 2, 2,−2) = −3a1 + 2a2,

thus

b1 = 4a1 − 5a2, a1 = − 2
7 b1 − 5

7 b2,
b2 = −3a1 + 2a2, a2 = − 3

7 b1 − 4
7 b2,

and the claim follows.
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Example 2.11 Prove that the vectors

b1 = (1, 1, 1, 1), b2 = (1, 0, 1, 2), b3 = (2, 1, 0, 2), b4 = (2, 1, 1, 1),

form a basis of R4, and find the coordinates of the vectors (2, 1, 1, 2) and (1, 0, 0, 1) with respect to this
basis.

We get by reducing the (4 × 4) matrix, which has the bi as its rows:









b1

b2

b3

b4









=









1 1 1 1
1 0 1 2
2 1 0 2
2 1 1 1









∼
R1 := R2

R2 := R1 − R2

R3 := R3 − R1 − R2

R4 := R4 − R3









1 0 1 2
0 1 0 −1
0 0 −2 −1
0 0 1 1









∼
R1 := R1 − R4

R3 := R4

R4 := R3 + 2R4









1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 1









.

This is of rank 4, hence the four vectors b1, . . . , b4 form a basis of R4.

Then we shall find (x1, x2, x3, x4), such that

(2, 1, 1, 2) = x1(1, 1, 1, 1) + x2(1, 0, 1, 2) + x3(2, 1, 0, 2) + x4(2, 1, 1, 1),

thus written as a system of equations,








1 1 2 2
1 0 1 1
1 1 0 1
1 2 2 1

















x1

x2

x3

x4









=









2
1
1
2









.

We reduce the total matrix








1 1 2 2
1 0 1 1
1 1 0 1
1 2 2 1

∣

∣

∣

∣

∣

∣

∣

∣

2
1
1
2









∼
R2 := R1 − R2

R3 := R1 − R3

R4 := R4 − R1









1 1 2 2
0 1 1 1
0 0 2 1
0 1 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

2
1
1
0









∼
R1 := R1 − R2

R2 := R4

R4 := R2 − R4









1 0 1 1
0 1 0 −1
0 0 2 1
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

1
0
1
1









∼
R1 := R1 − R4

R3 := 2R3 − R4








1 0 0 −1
0 1 0 −1
0 0 3 0
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

0
0
1
1









.

It follows immediately that x1 = x4 = x2, and x3 = 1
3 . Now x3 + 2x4 = 1, so x4 = 1

3 , thus

x =
1
3
(1, 1, 1, 1),
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which is easy to check.

Finally,

(1, 0, 0, 1) = (2, 1, 1, 2) − (1, 1, 1, 1),

so

x =
1
3
(1, 1, 1, 1) − b1 =

1
3
(−2, 1, 1, 1).

Example 2.12 Assume that �a, �b, �c, �d ∈ V 3
g have the coordinates

(3, 1, 2), (2,−4, 1), (−1, 2, 1), (−3,−1, 1)

with respect to an ordinary rectangular coordinate system in the space.

1. Prove that
(

�a,�b,�c
)

form a basis for V 3
g .

2. Find the coordinates of the vector �d with respect to the basis
(

�a,�b,�c
)

.

1. Reducing





�a
�b
�c



 =





3 1 2
2 −4 1

−1 2 1





∼
R1 := −R3

R2 := R2 + 2R3

R3 := R1 + 3R3





1 −2 −1
0 0 1
0 7 5



 ,

it follows that this system is of rank 3, so
{

�a,�b,�c
}

form a basis of V 3
g .

2. Then we shall find x, such that




3 2 −1
1 −4 2
2 1 1









x1

x2

x3



 =





−3
−1

1



 .

We get by a reduction of the total matrix,





3 2 −1
1 −4 2
2 1 1

∣

∣

∣

∣

∣

∣

−3
−1

1





∼
R1 := R2

R2 := R1 − 3R2

R3 := R3 − 2R2





1 −4 2
0 14 −7
0 9 −3

∣

∣

∣

∣

∣

∣

−1
0
3





∼
R2 := R2/14
R3 := R3/9





1 −4 2
0 1 − 1

2
0 1 − 1

3

∣

∣

∣

∣

∣

∣

−1
0
1
3





∼
R3 := R3 − R2

R1 := R1 + 4R2




1 0 0
0 1 − 1

2
0 0 1

6

∣

∣

∣

∣

∣

∣

−1
0
1
3





∼
R2 := R2 + 3R3

R3 := 6R3





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

−1
1
2





It follows that x = (−1, 1, 2).
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Example 2.13 Given the subsets M , N of a vector space V , we define M + N as the subset

M + N = {u + v | u ∈ M, v ∈ N}.

Prove that if M and N are subspaces of V , then M + N is a subspace of V , and M + N is the span
of M ∪N , i.e. M +N consists of all linear combinationes of vectors from the union M ∪N af M and
N .

We first prove that M + N is a vector space.
Assume that u1, u2 ∈ M and v1, v2 ∈ N and λ ∈ L. Then u1 + v1, u2 + v2 ∈ M + N . We shall prove
that this is also the case of (u1 + v1) + λ(u2 + v2). Now,

(u1 + v1) + λ(u2 + v2) = (u1 + λu2) + (v1 + λv2).

Since M and N are subspaces, we have u1 + λu2 ∈ M and v1 + λv2 ∈ N , and the sum belongs to
M + N .
Putting λ = 1 we get condition U1, and putting u2 = 0 and v2 = 0 we obtain U2, and we have proved
that M + N is a subspace.

Clearly, every element of M + N can be written as a linear combination of vectors from M ∪ N .
Conversely, if w1, . . . , wn ∈ M ∪ N , and λ1, . . . , λn ∈ L, then each wi either belongs to M or to
N . Therefore, we can write the linear combination λ1w1 + · · · + λnwn into a linear combination of
vectors from M (a subspace, so this contribution lies in M) and an linear combination of vectors from
N (which lies in N , because N is a subspace). Then

λ1w1 + · · · + λn ∈ M + N,

and the claim is proved.
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Example 2.14 Let V1 and V2 be two subspaces of a vector space V .

1. Prove that V1 ∩ V2 is a subspace in V , while V1 ∪ V2 in general is not a vector space.

2. Let V1 + V2 denote the vector space spanned by V1 ∪ V2. Prove that

dimV1 + dimV2 = dim(V1 ∩ V2) + dim(V1 + V2).

(Grassmann’s formula of dimensions).

1. Let u, v ∈ V1 ∩V2 and λ ∈ L. Then V1 is a subspace, so if u, v ∈ V1 ∩V2 ⊆ V1, then u+λv ∈ V1.
Analogously, u+λv ∈ V2, hence u+λv ∈ V1∩V2, and we have proved that V1∩V2 is a subspace.

Choosing V = R2 and V1 = R × {0}, V2 = {0} × R, thus V is represented by the plane, and V1

by the x axis and V2 by the y axis it is obvious that V1 ∪ V2 is the union of the two axes, which
is not a subspace.

2. First choose a basis a1, . . . , ak of V1 ∩ V2. Then supply this to either a basis of

V1 : a1, . . . ,ak,a′
k+1, . . . ,a

′
k+p,

or to

V2 : a1, . . . ,ak,a′′
k+1, . . . ,a

′′
k+q.

The point is that no proper linear combination of a′
k+1, . . . , a′

k+p can lie in V2, because this
would imply that

λ1a′
k+1 + · · · + λpa′

k+p ∈ V1 ∩ V2

for some set of constants (λ1, . . . , λp) �= 0. This is in contradiction with the fact that already
a1, . . . , ak form a basis of V1 ∩ V2.

Analogously, no proper linear combination of a′′
k+1, . . . , a′′

k+q can lie in V1.

It follows [cf. e.g. Example 2.13] that we can choose

a1, . . . ,ak,a′
k+1, . . . ,a

′
k+p,a

′′
k+1, . . . ,a

′′
k+q,

as a basis of V1 + V2, hence

dim(V1 + V2) = k + p + q.

It follows from

dim(V2 ∩ V2) = k, dim V1 = k + p, dimV2 = k + q,

that

dimV1 + dimV2 = (k + p) + (k + q) = k + (k + p + q)
= dim(V1 ∩ V2) + dim(V1 + V2),

and the formula is proved.
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Example 2.15 Given in the vector space P2(R) the vectors

P1(x) = 1 + x2 and P2(x) = −1 + x + x2

and the vectors

Q1(x) = −1 + 3x + 5x2 and Q2(x) = −1 + 4x + 7x2.

Furthermore, let U = span{P1(x), P2(x)}.
1. Prove that Q1(x) and Q2(x) both belong to U .

2. Prove that (P1(x), P2(x)) and (Q1(x), Q2(x)) both form a basis of U .

3. Let P denote the basis (P1(x), P2(x)), and let Q denote the basis (Q1(x), Q2(x)).

Find the matrix of the change of basis MP Q, which in U goes from the Q coordinates to the P
coordinates.

1. We shall prove that Q1(x) and Q2(x) can be expressed as linear combinations of P1(x) and
P2(x). It follows from

Q1(x) = −1 + 3x + 5x2 = αP1(x) + βP2(x) = (α − β) + βx + (α + β)x2

that β = 3 and α + β = 5, and thus α = 2. Finally, a check shows that α − β = 2 − 3 = 1, so

Q1(x) = 2P1(x) + 3P2(x).

Analogously,

Q2(x) = −1 + 4x + 7x2 = γP1(x) + δP2(x) = (γ − δ) + δx + (γ + δ)x2.

Analogously, we see that the only possibility is δ = 4 and γ = 3, and as another check we have
γ − δ = 3 − 4 = −1 (OK), hence

Q2(x) = 3P1(x) + 4P2(x).

Thus, we have proved that Q1(x), Q2(x) ∈ U .

2. We get according to 1),

Q1(x) = 2P1(x) + 3P2(x),
Q2(x) = 3P1(x) + 4P2(x), dvs.

(

Q1

Q2

)

=
(

2 3
3 4

)(

P1

P2

)

.

It follows from
(

2 3
3 4

)−1

=
(

−4 3
3 −2

)

[the simple computations are left to the reader] that
(

P1

P2

)

=
(

−4 3
3 −2

) (

Q1

Q2

)

, dvs.
P1(x) = −4Q1(x) + 3Q2(x),
P2(x) = 3Q1(x) − 2Q2(x),

thus every Pi(x) is uniquely expressed by a linear combination of the Qi. Thus we conclude that
both (P1(x), P2(x)) and (Q1(x), Q2(x)) form a basis of U .
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3. In the two bases,

(Q1(x) Q2(x))
(

xQ1

xQ2

)

= (P1(x) P2(x))
(

xP1

xP2

)

,

where xQ are the Q -coordinates and xP are the P coordinates. By taking the transpose if
follows from 2) that

(Q1(x) Q2(x)) = (P1(x) P2(x))
(

2 3
3 4

)

= (P1(x) P2(x))MP Q,

hence

MP Q =
(

2 3
3 4

)

,

because we have in this case

(Q1 Q2)
(

xQ1

xQ2

)

= (P1 P2)
(

2 3
3 4

) (

xQ1

xQ2

)

= (P1 P2)
(

xP1

xP2

)

.

Example 2.16 Given in R4 the vectors

a1 = (1,−1, 2, 1), a2 = (0, 1, 1, 3), a3 = (1,−2, 2,−1),

a4 = (0, 1,−1, 3), a5 = (1,−2, 2,−3).

Prove that (a1,a2,a3,a4) form a basis of R4, and find the coordinates of a5 in this basis.

It follows that (a1,a2,a3,a4) form a basis of R4, if and only if

a5 = x1a1 + x2a2 + x3a3 + x4a4

has a unique solution x. Writing all ai as column vectors it follows that

a5 = (a1 a2 a3 a4)









x1

x2

x3

x4









,

thus








1 0 1 0
−1 1 −2 1

2 1 2 −1
1 3 −1 3

















x1

x2

x3

x4









=









1
−2

2
−3









.
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We have earlier met this task, so we reduce








1 0 1 0
−1 1 −2 1

2 1 2 −1
1 3 −1 3

∣

∣

∣

∣

∣

∣

∣

∣

1
−2
2
−3









∼
R2 := R1 + R2

R3 := R3 − 2R1

R4 := R4 − R1









1 0 1 0
0 1 −1 1
0 1 0 −1
0 3 −2 3

∣

∣

∣

∣

∣

∣

∣

∣

1
−1

0
−4









∼
R2 := R3

R3 := R3 − R2

R4 := R4 − 3R2









1 0 1 = 1
0 1 0 −1
0 0 1 −2
0 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

1
0
1

−1









∼
R1 := R1 − R4

R3 := R4

R4 := R4 − R3








1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 2

∣

∣

∣

∣

∣

∣

∣

∣

1
0
1

−1









∼
R2 := R2 + R4/2
R4 := R4/2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

2
−1
−1
−1









.

It follows that the solution x = (2,−1,−1,−1) is unique, so

(1) a5 = 2a1 − a2 − a3 − a4,

and (a1,a2,a3,a4) form a basis of R4.

Remark 2.1 It is easy to check (1). This is left to the reader.
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Example 2.17 Given in R3 the three vectors

a1 = (1, 0,−1), a2 = (1, 1, 1), a3 = (1,−1, 1).

Prove that (a1,a2,a3) form a basis of R3, and find the coordinates of the vectors e1, e2, e3 (the usual
basis) with respect to the basis (a1,a2,a3).

It suffices to prove that

(a1 a2 a3)





x1

x2

x3



 =





1 1 1
0 1 −1

−1 1 1









x1

x2

x3



 =





b1

b2

b3



 = (e1 e2 e3)





b1

b2

b2





always has a unique solution for given b. We reduce




1 1 1
0 1 −1

−1 1 1

∣

∣

∣

∣

∣

∣

b1

b2

b3





∼
R3 := (R1 + R3)/2





1 1 1
0 1 −1
0 1 1

∣

∣

∣

∣

∣

∣

b1

b2
1
2 (b1 + b2)





∼
R1 := R1 − R3

R2 := 1
2 (R2 + R3)

R3 := 1
2 (R3 − R2)





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

1
2 (b1 − b3)

1
4 (b1 + 2b2 + b3)
1
4 (b1 − 2b2 + b3)



 ,

where it again is easy to check the solution.
Since we after the reductions have the unit matrix in the front, we conclude that (a1,a2,a3) form a
basis of R3.

We get the coordinates of e1 by putting b1 = 1 and b2 = b3 = 0, i.e.

e1 =
1
2

a1 +
1
4

a2 +
1
4

a3 ∼
(

1
2
,
1
4
,
1
4

)

.

Analogously,

e2 = 0 · a1 +
1
2

a2 −
1
2

a3 ∼
(

0,
1
2
,−1

2

)

and

e3 = −1
2

a1 +
1
4

a2 +
1
4

a3 ∼
(

−1
2
,
1
4
,
1
4

)

.
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Example 2.18 Let U ⊆ R2×2 denote the set of symmetric matrices, i.e. A belongs to U , if and and
only if A = AT .

1. Prove that U is a subspace of R2×2.

2. Find a basis of U and find the dimension of U .

1. Given A, B ∈ U and λ ∈ L. Then

(A + λB)T = AT + λBT = A + λB,

which is the condition of A + λB ∈ U . This proves that U is a subspace.

2. A basis of U is e.g.
(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

0 1
1 0

)

.

The diagonal elements are obvious, and we conclude by the symmetry that we can only have
one further dimension. The dimension is 3.

Remark 2.2 The results are easily extended to U ⊆ Rn×n. The basis is determined of the elements of
e.g. the upper triangular matrix, because the symmetry then fixes the elements of the lower triangular
matrix. Since there are 1

2 n(n+1) elements in an upper triangular matrix, the dimension is in general
1
2 n(n + 1). ♦

Example 2.19 Given in R4 the vectors

a1 = (1, 1,−1,−1), a2 = (1, 2,−3,−1), a3 = (2, 1, 0,−2), a4 = (0,−4, 3, 0).

1. Find the dimension of span{a1,a2,a3,a4}, and find a basis of span{a1,a2,a3,a4}.
Find the coordinates of the vectors a1, a2, a3 and a4 with respect to this basis.

2. Let x = (x1, x2, x3) be any vector in R4. Prove that

x ∈ span{a1,a2,a3,a4} if and only if x1 + x4 = 0.

1. The dimension of span{a1,a2,a3,a4} is equal to the rank of the matrix {a1,a2,a3,a4}, where
the a1 are written as column vectors. We get by reduction,

(a1 a2 a3 a4) =









1 1 2 0
1 2 1 −4

−1 −3 0 3
−1 −1 −2 0









∼
R1 := R2 − R1

R3 := R3 + R1

R4 := R4 + R1








1 1 2 0
0 1 −1 −4
0 −2 2 3
0 0 0 0









∼
R3 := R3 + 2R2









1 1 2 0
0 1 −1 −4
0 0 0 −5
0 0 0 0









,
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the rank of which is 3, hence dim span{a1,a2,a3,a4} = 3.

Then notice that

a2 − a1 = (0, 1,−2, 0) and a3 − 2a1 = (0,−1, 2, 0),

so these two vector combinations are linearly dependent. Since the rank is 3, e.g. (a1,a1−a1,a4)
must form a basis, possibly (a1,a2,a4) instead. It follows from

(a2 − a1) + (a3 − 2a1) = 0,

that

a3 = 2a1 + a1 − a2 = 3a1 − a2.

The coordinates with respect to the basis (a1,a2,a4) are

a1 = 1 · a1 ∼ (1, 0, 0),
a2 = 1 · a2 ∼ (0, 1, 0),
a3 = 3a1 − a2 ∼ (3,−1, 0),
a4 = 1 · a4 ∼ (0, 0, 1).
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2. The equation

x = y1a1 + y2a2 + y3a3 + y4a4

corresponds to the total matrix

{a1 a2 a3 a4|x} =









1 1 2 0
1 2 1 −4

−1 −3 0 3
−1 −1 −2 0

∣

∣

∣

∣

∣

∣

∣

∣

x1

x2

x3

x4









∼
R4 := R4 + R1









1 1 2 0
1 2 1 −4

−1 −3 0 3
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

x1

x2

x3

x1 + x4









.

We saw in 1) that the matrix of coefficients is of rank 3. Hence, the equation has solutions y, if
and only if the total matrix is of rank 3, i.e. if and only if x1 + x4 = 0.

Example 2.20 Given in the vector spacet R4 the vectors

u1 = (1,−1, 2, 3), u2 = (2,−3, 3, 5), u3 = (−1, 4, 1, 0),

and

v1 = (3,−8, 1, 4), v2 = (1,−7,−4,−3), v3 = (−1, 8, 5, 4), v4 = (1, 0, 3, 4).

1. Prove that the subspace spanned by the vectors u1, u2 and u3 is the same as the subspace spanned
by the vectors v1, v2, v3 and v4.

2. Find the dimension and a basis of the subspace.

Here we start by 2).

2. It follows immediately that

5u1 − 3u2 = u3,

thus the dimension is at most 2. On the other hand, any two of the vectors {u1,u2,u3} are
linearly independent, so the dimension is 2.

Since u1 + u3 = (0, 3, 3, 3), an easy basis is

{

−u3,
1
3
(u1 + u3)

}

= {(1,−4,−1, 0), (0, 1, 1, 1)},

where both vectors most conveniently have a 0 as one of its coordinates.
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1. It follows from

v1 = (3,−8, 1, 4) = 3(1,−4,−1, 0) + 4(0, 1, 1, 1),
v2 = (1,−7,−4,−3) = 1 · (1,−4,−1, 0) − 3(0, 1, 1, 1),
v3 = (−1, 8, 5, 4) = −1 · (1,−4,−1, 0) + 4(0, 1, 1, 1),
v4 = (1, 0, 3, 4) = 1 · (1,−4,−1, 0) + 4(0, 1, 1, 1),

that v1, v2, v3, v4 all lie in span{u1,u2,u3}, so

dim span{v1,v2,v3,v4} ≤ dim span{u1,u2,u3} = 2.

On the other hand, e.g.. v1 and v2 are clearly linearly independent, hence

dim span{v1,v2,v3,v4} ≥ 2.

We conclude that

span{u1,u2,u3} = span{v1,v2,v3,v4},

and that the dimension is 2.

Example 2.21 Given in the vector space R4 the vectors

u1 = (1,−1, 1, 2), u2 = (1,−1, 2, 1), u3 = (1,−1, 2, 2).

1. Find the dimension of the subspace U = span{u1,u2,u3}.

2. Given three linearly independent vectors

v1 = (2,−1, 3, 0), v2 = (1,−1, 1, 1), v3 = (2,−1, 4, 0).

Prove that v2 belongs to the subspace U , and describe this vector as a linear combination of u1,
u2, u3. Prove that v1 and v3 do not belong to U .

3. Prove that there exists a proper linear combination of v1 and v3, which belongs to U , and find
such a linear combination.

4. Find the dimension of the subspace U ∩ V , where

V = span{v1,v2,v3}.

1. It follows immediately that

u3 − u2 = (0, 0, 0, 1) and u3 − u1 = (0, 0, 1, 0).

Then {u3,u3 − u1,u3 − u2} is a basis, hence dimU = 3. We may choose the basis

(2) {(1,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

which will be more convenient in the following. Note, however, that

(1,−1, 0, 0) = u3 − 1(u3 − u1) − 2(u3 − u2)
= u3 − 2u3 + 2u1 − 2u3 + 2u2

= 2u1 + 2u2 − 3u3.
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2. Applying the basis from (2) we get

v2 = (1,−1, 1, 1) = (1,−1, 0, 0) + (0, 0, 1, 0) + (0, 0, 0, 1),

hence v2 ∈ U .

Since the first two coordinates of v1 and v3 are (2,−1), and since only the vector (1,−1, 0, 0)
in the basis have any of the two first coordinates different from zero, neither v1 nor v3 lie in U .

3. The only possibilities are α(v1 − v3), α ∈ L, e.g.

v3 − v1 = (0, 0, 1, 0) = u3 − u1,

cf. the above.

Summing up we have

v2 = u1 + u2 − u3 and v3 − v1 = u3 − u1,

thus

u2 = v1 + v2 − v3 ∈ U ∩ V and u3 − u1 = v3 − v1 ∈ U ∩ V.
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Hence the dimension is at least 2. On the other hand, it cannot be larger than 2, because this
would imply that dimU ∩ V = 3, thus e.g. v1 would belong to U . Since this is not the case, the
dimension is at most 2.

Summing up we have found that

dim(U ∩ V ) = 2.

Example 2.22 Given in R5 the vectors

a1 = (1,−1, 1, 1, 2), a2 = (0, 1, 0,−1, 0), a3 = (3, 0, 3, 0, 6),

a4 = (0, 0,−1, 1, 1) and a5 = (1, 1, 0, 0, 3).

1. Define U = span{a1,a2,a3,a4,a5}. Find dimU .

2. Find a basis of U among the five given vectors, and find the coordinates of the vectors a1, a2,
a3, a4 and a5 with respect to this basis.

1. We get by reduction,

{a1 a2 a3 a4 a5} =













1 0 3 0 1
−1 1 0 0 1

1 0 3 −1 0
1 −1 0 1 0
2 0 6 1 3













∼
R2 := R1 + R2

R3 := R1 − R3

R4 := R4 − R2

R5 := R5 − 2R1












1 0 3 0 1
0 1 3 0 2
0 0 0 1 1
0 0 0 1 −1
0 0 0 1 1













∼
R4 := (R3 + R4)/2
R5 := R3 − R5









1 0 3 0 1
0 1 3 0 2
0 0 0 1 1
0 0 0 1 0









∼













1 0 3 0 0
0 1 3 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0













.

which has the rank 4, so dim U = 4.

2. It follows by inspection that

a3 = 3a1 + 3a2,

hence a basis is {a1,a2,a4,a5}.
The coordinates are

a1 = 1 · a1 ∼ (1, 0, 0, 0, 0),
a2 = 1 · a1 ∼ (0, 1, 0, 0, 0),
a3 = 3a1 + 3a2 ∼ (3, 3, 0, 0, 0),
a4 = 1 · a4 ∼ (0, 0, 0, 1, 0),
a5 = 1 · a5 ∼ (0, 0, 0, 0, 1).
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Example 2.23 Given in R3 the vectors

a1 = (1, 1, 1), a2 = (0, 1, 1), a3 = (0, 0, 1),

as well as the vectors

b1 = (1, 0, 1), b2 = (1, 2, 1), b3 = (1, 2, 2).

1. Prove that (a1,a2,a) and (b1,b2,b3) both form a basis of R3.

2. Find the matrix of the change of basis Mab, going from b coordinates to a coordinates.

1. It follows from

|a1 a2 a3| =

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
1 1 1

∣

∣

∣

∣

∣

∣

= 1 �= 0,

that (a1,a2,a3) are linearly independent, hence they form a basis of R3.

From

|b1 b2 b3| =

∣

∣

∣

∣

∣

∣

1 1 1
0 2 2
1 1 2

∣

∣

∣

∣

∣

∣

=
S2 := S2 − S1

S3 := S3 − S2

∣

∣

∣

∣

∣

∣

1 0 0
0 2 0
1 0 1

∣

∣

∣

∣

∣

∣

= 2 �= 0,

follows that the same is true for (b1,b2,b3).

2. First compute

b1 = (1, 0, 1) = a1 − (0, 1, 0) = a1 − a2 + (0, 0, 1) = a1 − a2 + a3,

b2 = (1, 2, 1) = a1 + (0, 1, 0) = a1 + a2 − a3,

b3 = (1, 2, 2) = a1 + (0, 1, 1) = a1 + a2.

Using the columns as the coordinates of the bi with respect to the aj we get

Mab =





1 1 1
−1 1 1

1 −1 0



 .
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Example 2.24 Let U and W be subspaces of a vector space. Prove that the following are equivalent:

1. ∀u,u′ ∈ U,∀w,w′ ∈ W : u + w = u′ + w′ ⇒ u = u′ ∧w = w′.

2. ∀u ∈ U,∀w ∈ W : u + w = 0 ⇒ u = w = 0.

3. U ∩ W = {0}.

If U and W have one (and hence all) of the properties 1., 2. and 3., the vector space X = U + W is
called the direct sum of U and V (cf. Example 2.13) and we write

X = U ⊕ W.

Remark 2.3 Here the symbol “∀” is a shorthand for “for all”. ♦

1. ⇒ 2.. Assume 1. and that u + w = 0 for some u ∈ U and w ∈ W . Since 0 ∈ U ∩W , if follows by
1. that

u + w = 0 + 0 ⇒ u = 0 ∧ w = 0,

and 2. follows.

2. ⇒ 3.. Assume 2., and assume that if v ∈ U ∩ W , then also −v ∈ U ∩ W , thus v + (−v) = 0,
where we consider v ∈ U as an element of U and −v ∈ W as an element of W . Then by 2. we get
v = −v = 0, and we have proved that 0 is the only element of U ∩ W , hence

U ∩ W = {0}.

3. ⇒ 1.. Assume that U ∩ W = {0}. If u + w = u′ + w′, then u − u′ ∈ U and w′ − w ∈ W , hence

u − u′ = w′ − w ∈ U ∩ W = {0}.

It follows that u − u′ = 0 and w′ − w = 0, and we have proved that u = u′ and w = w′.

Thus we have proved that the three conditions are equivalent.
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Example 2.25 Let U be a subspace of a vector space V . If for another subspace W of V we have
that U ⊕ W = V , we call W a complementary subspace of U .

1. Prove that every subspace of a (finite dimensional) vector space V has a complementary subspace.

2. Prove that if V is finite dimensional and {0} �= U �= V , then U has several different comple-
mentary subspaces.

Remark 2.4 This example assumes Example 2.24. ♦

1. If U = V , then W = {0}, and if U = {0}, then W = V .

Assume that {0} �= U �= V . Then choose a basis (a1, . . . ,ak) of U . Continue by supplying it to
a basis

(a1, . . . ,ak,b1, . . . ,bn)

of V . Then (b1, . . . ,bn) is a basis of some subspace W , which clearly satisfies U ∩ W = {0},
and U + W = V , hence

V = U ⊕ W.

2. Now let {0} �= U �= V and construct the basis

(a1, . . . ,ak,b1, . . . ,bn)

as above. Then k > 0 and n > 0, and e.g.

W = span{b1, . . . ,bn}, W ′ = span{a1 + b1, . . . ,a1 + bn}

are different complementary subspaces of U .
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3 Linear maps

Example 3.1 Find the matrix with respect to the ordinary basis of R3 for the linear map f of R3 into
R3, where f is mapping the vectors (2, 1, 0), (0, 0, 2) and (1, 1, 0) into (1, 4, 1), (4, 2, 2) and (1, 2, 1),
respectively.
Find the range of the subspace which is spanned by the vectors (1, 2, 3) and (−1, 2, 0).

The formulation above invites to the following,

a1 = (2, 1, 0), a2 = (0, 0, 2) and a3 = (1, 1, 0),
b1 = (1, 0, 0), b2 = (0, 1, 0) and b3 = (0, 0, 1),
c1 = (1, 4, 1), c2 = (4.2.2) and c3 = (1, 2, 1),
d1 = (1, 0, 0), d2 = (0, 1, 0) and d3 = (0, 0, 1),

where

b1 = a1 − a3, b2 = −a1 + 2a3, b3 =
1
2

a2,

45

Download free eBooks at bookboon.com



                                
47 

 
Linear Algebra Examples c-2 3. Linear maps

hence

Mab =





2 0 1
1 0 1
0 2 0





−1

=





1 −1 0
0 0 1

2
−1 2 0





and

Fdb =





1 4 1
4 2 2
1 2 1









1 −1 0
0 0 1

2
−1 2 0



 =





0 1 2
2 0 1
0 1 1



 .

It is easy to check the result.
It follows by the linearity from

f(1, 2, 3) =





0 1 2
2 0 1
0 1 1









1
2
3



 =





2 + 6
2 + 3
2 + 3



 =





8
5
5





and

f(−1, 2, 0) =





0 1 2
2 0 1
0 1 1









−1
2
0



 =





2
−1

2





that the range is spanned by the vectors (8, 5, 5) and (2,−1, 2), thus

f(U) = {x(8, 5, 5) + y(2,−1, 2) | x, y ∈ L}
= {(8x + 2y, 5x − y, 5x + 2y) | x, y ∈ L}.

Example 3.2 Given a map f : R2×2 → R2×2 by

f(X) = AX − XA, where A =
(

1 2
0 −1

)

.

1. Prove that f is linear.

2. Find the kernel of f .

1. It follows from

f(X + λY) = A(X + λY) − (X + λY)A
= {AX − XA} + λ{AY − YA} = f(X) + λf(Y),

that f is linear.
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2. Assume that X ∈ ker(f). Then

(

0 0
0 0

)

=
(

1 2
0 −1

)(

x11 x12

x21 x22

)

−
(

x11 x12

421 x22

)(

1 2
0 −1

)

=
(

x11 + 2x21 x12 + x22

−x21 −x22

)

−
(

x11 2x11 − x12

x21 2x21 − x22

)

=
(

2x21 −2x11 + 2x12 + x22

−2x21 −2x21

)

,

hence x21 = 0 and −2x11 + 2x12 + x22 = 0. Choosing x11 = s and x12 = t as parameters we get

ker(f) =
{(

s t
0 2(s − t)

) ∣

∣

∣

∣

s, t ∈ L
}

, dimker(f) = 2.

Example 3.3 Let U and W be subspaces of a vector space and define V = U⊕W (cf. Example 2.24).
Assume that the vector v ∈ V is given by

v = u + w, where u ∈ U and w ∈ W.

Prove that the map f : v → u is linear and that the composite map f ◦ f = f 2 = f .
Prove that U = f(V ) and W = ker f .
The map f is called the projection onto U in the direction W .

Consider v1, v2 ∈ V of the unique splitting

v1 = u1 + w1, v2 = u2 + w2, u1, u2 ∈ U, w1, w2 ∈ W.

If λ ∈ L, then

f(v1 + λv2) = f(u1 + λu2 + (w1 + λw2))
= u1 + λu2 = f(v1) + λf(v2),

proving that the map is linear.

Then

f(v) = f(u + v) = u, thus f ◦ f(v) = f(u) = u.

In particular, f(U) = U , hence U ⊆ f(V ) ⊆ U , and we conclude that f(V ) = U .
Finally, if w ∈ W , then f(w) = 0, hence W ⊆ ker(f).
Conversely, if u + v ∈ W , er f(u) = u = 0, then ker(f) = W .
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Example 3.4 Let f : R3 → R3 be the linear map which corresponds to the following matrix in the
ordinary basis of R3,

F =





1 1 4
0 1 1

−1 1 −2



 .

1. Find a basis of the range f(R3).

2. Prove that the vector b = (6, 2,−2) belongs to both the kernel of f and the range of f .

1. Since f(e1) = (1, 0,−1), f(e2) = (1, 1, 1) and f(e3) = (4, 1,−2), the range f(R3) is spanned by
these three vectors. Since

f(e3) − f(e2) = 3f(e1), dvs. f(3e1 + e2 − e3) = 0,

the range is only of dimension 2. A basis is e.g.

{f(e1), f(e2)} = {(1, 0,−1), (1, 1, 1)}.

2. Since b = (6, 2,−2) = 2(3e1 + e2 − e3), we get f(b) = 0, so b ∈ ker(f).

It then follows by inspection that

f(1, 1, 1) =





1 1 4
0 1 1

−1 1 −2









1
1
1



 =





6
2

−2



 = b ∈ f(R3),

so b does also belong to the range.

Example 3.5 Let f : R5 → R3 be the linear map, which is given with respect to the ordinary bases
of R5 and R3 by the matrix

F =





1 2 3 3 1
0 1 2 4 1
3 4 5 1 1



 .

1. Find {x ∈ R5 | f(x) = (4, 3, 6)}, and ker f .

2. Find a basis of range f(R5).

1. The equation f(x) = (4, 3, 6) corresponds to the system





1 2 3 3 1
0 1 2 4 1
3 4 5 1 1

















x1

x2

x3

x4

x5













=





4
3
6



 .
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We reduce the total matrix,




1 2 3 3 1
0 1 2 4 1
3 4 5 1 1

∣

∣

∣

∣

∣

∣

4
3
6





∼
R3 := R3 − 3R1 + 2R2





1 2 3 3 1
0 1 2 4 1
0 0 0 0 0

∣

∣

∣

∣

∣

∣

4
3
0





∼
R1 := R1 − 2R2





1 0 −1 −5 −1
0 1 2 4 1
0 0 0 0 0

∣

∣

∣

∣

∣

∣

−2
3
0



 .

The rank is 2, so by choosing the parameters c3 = s, x4 = t, x5 = u, we obtain the solution

{(−2 + s + 5t + u, 3 − 2s − 4t − u, s, t, u)s, t, u ∈ R},

and the kernel is

ker f = {(s + 5t + u,−2s − 4t − u, s, t, u) | s, t, u ∈ R}
= {s(1,−2, 1, 0, 0) + t(5,−4, 0, 1, 0) + u(1,−1, 0, 0, 1) | s, t, u ∈ R}.

The kernel is therefore spanned by the vectors

{(1,−2, 1, 0, 0).(5,−4, 0, 1, 0), (1,−1, 0, 0, 1)}.
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2. It follows from the reduction of the total matrix that the range – hence also the matrix of
coefficients – is of dimension 2. Since

f(R5) = span{(1, 0, 3), (2, 1, 4), (3, 2, 5), (3, 4, 1), (1, 1, 1)},

we obtain a basis by choosing two linearly independent vectors from this set, e.g.

f(R5) = span{(1, 0, 3), (1, 1, 1)} = span{(1, 0, 3), (0, 1,−2)},

etc.

Example 3.6 A linear map f : C4 → C4 is in the usual coordinates given by the matrix

F =









1 0 −i 0
1 −i i 1

−1 0 −1 0
i −1 −1 −i









.

Find the kernel and the range of this map.
Find the intersection of the kernel and the range.
Find the set {x ∈ C4 | f(x) = (1,−i,−i,−1 + 2i)}.

We get by reduction,








1 0 −i 0
1 −i i 1

−i 0 −1 0
i −1 −1 −i

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
0









∼
R2 := R1 − R2

R3 := R3 + R4

R4 := R4 − iR1









1 0 −i 0
0 i −2i −1
0 −1 −2 −i
0 −1 −2 −i

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
0









∼
R2 := iR2

R4 := R3 − R4









1 0 −i 0
0 −1 2 −i
0 −1 −2 −i
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
0









∼
R3 := R2 − R3

R2 := −R2








1 0 −i 0
0 1 −2 i
0 0 4 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
0









∼
R1 := R1 − iR3/4
R2 := R2 + R3/2
R4 := R4/4









1 0 0 0
0 1 0 i
0 0 1 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
0
0
0









.

Then the equations of the kernel are x1 = 0, x2 + ix4 = 0, x3 = 0, thus

ker(f) = {s(0,−i, 0, 1) | s ∈ C}

The kernel has dimension 1, so the range is of dimension 3. Since the second and the fourth column
of the matrix are linearly dependent, the range is

f(C4) = span{(1, 1,−i, i), (−i, i,−1,−1), (0, 1, 0, i)},

because we can exclude the second column.
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We have only two possibilities for f(C4)∩ker(f). Either this intersection is ker(f), or it is {0}. If the
intersection is ker(f), then the four vectors (1, 1,−i, i), (−i, i,−1,−1), (0, 1, 0,−i) [from f(C4)] and
(0,−i, 0, 1) [from ker(f)] must be linearly dependent. We get by reduction,









1 −i 0
1 i 1

−i −1 0
i −1 −i

∣

∣

∣

∣

∣

∣

∣

∣

0
−i
0
1









∼
R2 := R1 − R2

R3 := R3 + R4

R4 := R4 − iR1









1 −i 0
0 −2i −1
0 −2 −i
0 −2 −i

∣

∣

∣

∣

∣

∣

∣

∣

0
i
1
0









∼
R4 := R3 − R4









1 −i 0
0 −2i −1
0 −2 −i
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
i
1
0









∼
R2 := −R3/2
R3 := R2 − iR3









1 −i 0
0 1 i

2
0 0 −2
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
− 1

2
0
0









∼
R2 := R2 + iR3/4
R3 := −R3/2









1 −i 0
0 1 0
0 0 1
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
− 1

2
0
0









∼
R1 := R1 + iR2









1 0 0
0 1 0
0 0 1
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

− i
2

−frac12
0
0









.

The rank is 3, so the vectors are linearly dependent, and

f(C4) ∩ ker f = ker f.

It follows further from the reduction above that

(0,−i, 0, 1) = − i

2
(1, 1,−i, i) − 1

2
(−i, i,−1,−1).

Finally, we shall describe the set

U = {x ∈ C4 | f(x) = (1,−i,−i,−1 + 2i)}.

The corresponding total matrix is reduced to








1 0 −i 0
1 −i i 1

−i 0 −1 0
i −1 −1 −i

∣

∣

∣

∣

∣

∣

∣

∣

1
−i
−i

−1 + 2i









∼
R2 := R1 − R2

R3 := R3 + R4

R4 := R4 − iR1









1 0 −i 0
0 i −2i −1
0 −1 −2 −i
0 −1 −2 −i

∣

∣

∣

∣

∣

∣

∣

∣

1
1 + i
−1 + i
−1 + i









∼
R2 := iR2

R4 := R3 − R4









1 0 −i 0
0 −1 2 −i
0 −1 −2 −i
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

1
−1 + i
−1 + i

0









∼
R3 := R2 − R3

R2 := −R2








1 0 −i 0
0 1 −2 i
0 0 4 0
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

1
1 − i

0
0









∼









1 0 0 0
0 1 0 i
0 0 1 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

1
1 − i

0
0









,

hence

U = {(1, 1 − i, 0, 0) + s(0,−i, 0, 1) | s ∈ R}.
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Check. The computations here have been so complicated that one ought to check the result:








1 0 −i 0
1 −i i 1

−i 0 −1 0
i −1 −1 −i

















1
1 − i

0
0









=









1
1 − i − 1

−i
i − 1 + i









=









1
−i
−i

−1 + 2i









.

We see that the result is correct.

Example 3.7 Given the matrices

A =









1 1 1
−1 0 1

1 2 3
1 −1 −3









and D =









1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1









.

Denote by f : R3 → R4 the linear map which in the usual bases of R3 and R4 is given by the matrix
A.

1. Prove that v1 = (1, 0, 0), v2 = (0, 1, 0) and v3 = (1,−2, 1) forms a basis of R3.

Find the coordinates of f(v1), f(v2) and f(v3) with respect to the usual basis of R4.

2. Prove that D is regular and compute D−1.

Prove that d1 = (1,−1, 1, 1), d2 = (1, 0, 2,−1), d3 = (0, 0, 1, 0) and d4 = (0, 0, 0, 1) form a basis
of R4. Find the coordinates of (1, 1, 3,−3) with respect to the basis d1, d2, d3, d4.

3. Find the coordinates of f(v1), f(v2) and f(v3) with respect to the basis d1, d2, d3, d4.

Find the matrix of f with respect to the basis v1, v2, v3 i R3 and the basis d1, d2, d3, d4 i R4.

1. It follows from
∣

∣

∣

∣

∣

∣

1 0 1
0 1 −2
0 0 1

∣

∣

∣

∣

∣

∣

= 1 �= 0,

that the three vectors are linearly independent. Since the dimension of R3 is 3, we conclude that
{v1,v2,v3} is a basis of R3.

Then we find

f(v1) =









1
−1

1
1









, f(v2) =









1
0
2

−1









,

and

f(v3) =









1 1 1
−1 0 1

1 2 3
1 −1 −3













1
−2

1



 =









1 − 2 + 1
−1 + 0 + 1
1 − 4 + 3
1 + 2 − 3









=









0
0
0
0









.
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2. We conclude from

detD =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=
R2

∣

∣

∣

∣

∣

∣

1 0 0
2 1 0

−1 0 1

∣

∣

∣

∣

∣

∣

= 1 �= 0,

that D is regular. We can now find the inverse in various ways of which we demonstrate two of
them:

(a) By the well-known reduction,

(D | I) =









1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









∼
R3 := R3 − 2R1 − R2

R4 := R4 + R1 + 2R2









1 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0

−2 −1 1 0
1 2 0 1









∼
R1 := −R2

R2 := R1 + R2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

0 −1 0 0
1 1 0 0

−2 −1 1 0
1 2 0 1









,
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from which we conclude that

D−1 =









0 −1 0 0
1 1 0 0

−2 −1 1 0
1 2 0 1









.

(b) Alternatively we shall try to find KD in order to compare the two methods. We compute
all the subdeterminants of the matrix

D =









1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1









where detD = 1, cf. the above. We get

A11 =

∣

∣

∣

∣

∣

∣

0 0 0
2 1 0

−1 0 1

∣

∣

∣

∣

∣

∣

= 0, A12 = −

∣

∣

∣

∣

∣

∣

−1 0 0
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

= 1,

A13 =

∣

∣

∣

∣

∣

∣

−1 0 0
1 2 0
1 −1 1

∣

∣

∣

∣

∣

∣

= −2, A14 = −

∣

∣

∣

∣

∣

∣

−1 0 0
1 2 1
1 −1 0

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

2 1
−1 0

∣

∣

∣

∣

= 1,

A21 = −

∣

∣

∣

∣

∣

∣

1 0 0
2 1 0

−1 0 1

∣

∣

∣

∣

∣

∣

= −1, A22 =

∣

∣

∣

∣

∣

∣

1 0 0
1 1 0
1 0 1

∣

∣

∣

∣

∣

∣

= 1,

A23 = −

∣

∣

∣

∣

∣

∣

1 1 0
1 2 0
1 −1 1

∣

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

1 1
1 2

∣

∣

∣

∣

= −1,

A24 =

∣

∣

∣

∣

∣

∣

1 1 0
1 2 1
1 −1 0

∣

∣

∣

∣

∣

∣

= −
∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣

= 2,

A31 = 0, A32 = −

∣

∣

∣

∣

∣

∣

1 0 0
−1 0 0

1 0 1

∣

∣

∣

∣

∣

∣

= 0,

A33 =

∣

∣

∣

∣

∣

∣

1 1 0
−1 0 0

1 −1 1

∣

∣

∣

∣

∣

∣

= 1, A34 = −

∣

∣

∣

∣

∣

∣

1 1 0
−1 0 0

1 −1 0

∣

∣

∣

∣

∣

∣

= 0,

A41 = −0, A42 =

∣

∣

∣

∣

∣

∣

1 0 0
−1 0 0

1 1 0

∣

∣

∣

∣

∣

∣

= 0,

A43 =

∣

∣

∣

∣

∣

∣

1 1 0
−1 0 0

1 2 0

∣

∣

∣

∣

∣

∣

= 0, A44 =

∣

∣

∣

∣

∣

∣

1 1 0
−1 0 0

1 2 1

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1 0
2 1

∣

∣

∣

∣

= 1.
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We conclude that

KD =









0 1 −2 1
−1 1 −1 2

0 0 1 0
0 0 0 1









and D−1 =
KD

T

detD
=









0 −1 0 0
1 1 0 0

−2 −1 1 0
1 2 0 1









.

We see by comparison that we get the same result by the two methods. In order to be absolutely
certain, we also check the result:









1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1

















0 −1 0 0
1 1 0 0

−2 −1 1 0
1 2 0 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

It follows from

|d1 d2 d3 d4| =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1 1
−1 0

∣

∣

∣

∣

= 1,

that d1, d2, d3, d4 are linearly independent, so they form a basis of R4.

Then we reduce the total matrix,









1 1 0 0
−1 0 0 0

1 2 1 0
1 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1
1
3

−3









∼
R1 := −R2

R2 := R1 + R2

R3 := R3 + R2

R4 := R4 + R2









1 0 0 0
0 1 0 0
0 2 = 1 0
0 −1 0 1

∣

∣

∣

∣

∣

∣

∣

∣

−1
2
4

−2









∼
R3 := R3 − 2R2

R4 := R4 + R2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

−1
2
0
0









,

so the coordinates are (−1, 2, 0, 0).

A check gives

−1 · (1,−1, 1, 1) + 2(1, 0, 2,−1) = (1, 1, 3,−3),

which can also be written

(1, 1, 3,−3) = −d1 + 2d2.

3. We have found earlier that

f(v1) = (1,−1, 1, 1), f(v2) = (1, 0, 2,−1), f(v3) = (0, 0, 0, 0),

which interpreted to the given vectors very conveniently also can be written

f(v1) = d1, f(v2) = d2, f(v3) = 0.
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The matrix is represented by the columns f(v1), f(v2), f(v3), i.e.

Fdv =













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0













.

Example 3.8 A linear map f : C2 → C2 is defined by

f(v1) = v1 + 2v2, f(v2) = iv1 + v2,

given the basis (v1,v2) of C2,

1. Find the matrix equation of f with respect to the basis (v1,v2).

2. Prove that w1 = v1 + v2 and w2 = v1 − v2 form a basis of C2.

3. Find the matrix equation of f with respect to the basis (w1,w2).

1. The matrix equation is vy = Fv v(vx), where

Fv v =
(

1 i
2 1

)

.

2. If w1 = v1 + v2 and w2 = v1 − v2, then

v1 =
1
2
(w1 + w2) and v2 =

1
2
(w1 − w2).

The elements of the basis v1, v2 can uniquely be expressed by w1, w2, hence (w1,w2) is also
basis of C2.

3. It suffices to indicate the matrix of the map,

Fww = MwvFv vMvw

=
(

1 1
1 −1

)(

1 i
2 1

)(

1
2

1
2

1
2 − 1

2

)

=
1
2

(

3 1 + i
−1 −1 + i

)(

1 1
1 −1

)

=
1
2

(

4 + i 4 + i
−2 + i −i

)

=
(

2 + i
2 2 + i

2
−1 + i

2 − i
2

)

.
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Example 3.9 Given in R4 the vectors

b1 = (1, 2, 2, 0), b2 = (0, 1, 1, 1), b3 = (0, 0, 1, 1), b4 = (1, 1, 1, 1).

1. Prove that b1, b2, b3 and b4 form a basis of R4.

2. Let a linear map f : R4 → R3 be given, such that

f(b1) = (1, 1, 2), f(b2) = (3,−1, 1), f(b3) = (4, 0, 3), f(b4) = (−5, 3, 0).

Find the matrix of f , when we use the usual basis in R3 and the basis (b1,b2,b3,b4) in R4.

Find the dimension of the range.

3. Given the vectors v1 = b1 + b2 − b3 and v2 = −b1 + 2b2 + b4. Prove that v1, v2 span the
kernel ker f .

4. Find all vectors x ∈ R4, which satisfy the equation f(x) = f(b1), expressed by the vectors b1,
b2, b3, b4.

1. It follows from

|b1 b2 b3 b4| =

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 1
2 1 0 1
2 1 1 1
0 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

=
S1 := S1 − S4

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 1
1 1 0 1
1 1 1 1

−1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

=
R1

−

∣

∣

∣

∣

∣

∣

1 1 0
1 1 1

−1 1 1

∣

∣

∣

∣

∣

∣

=
R2 := R2 − R1

R3 := R3 + R1

−

∣

∣

∣

∣

∣

∣

1 1 0
0 0 1
0 2 1

∣

∣

∣

∣

∣

∣

=
S1

−
∣

∣

∣

∣

0 1
2 1

∣

∣

∣

∣

= 2 �= 0,

that (b1,b2,b3,b4) are linearly independent in R4, hence they form a basis of R4.

2. The matrix corresponding to the map is




1 3 4 −5
1 −1 0 3
2 1 3 0



 .

3. A simple check gives

f(v1) =





1 3 4 −5
1 −1 0 3
2 1 3 0













1
1

−1
0









= 0

and

f(v2) =





1 3 4 −5
1 −1 0 3
2 1 3 0













−1
2
0
1









= 0,
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hence v1, v1 ∈ ker f . Clearly, v1 and v2 are linearly independens, thus dim ker f ≥ 2.

On the other hand, rgF ≥ 2, hence dimker f ≤ 2.

Summing up we see that dimker f = 2, so v1, v2 span ker f .

4. If f(x) = f(b1), then it follows by the linearity that

0 = f(x) − f(b1) = f(x − b1),

thus x − b1 ∈ ker f = {sv1 + tv2 | s, t ∈ R}. This gives us the solutions

x = b1 + sv1 + tv2

= b1 + s(b1 + b2 − b3) + t(−b1 + 2b2 + b4)
= (1 + s − t)b1 + (s + 2t)b2 − sb3 + tb4, s, t ∈ R.
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Example 3.10 Consider in a 2-dimensional vector space V over R a basis (a1,a2) and a linear map
f of V into V , which in the basis (a1,a2) has the corresponding matrix

F =
(

a c
b d

)

.

Find the matrix of f with respect to the basis (b1,b2), where b1 = a1 + a2 and b2 = a1 − a2.

Now,

Fbb = (Mab)−1 Fa aMab,

where

Mab =
(

1 1
1 −1

)

and (Mab)−1 =
1
2

(

1 1
1 −1

)

,

hence

Fbb =
1
2

(

1 1
1 −1

) (

a c
b d

)(

1 1
1 −1

)

=
1
2

(

1 1
1 −1

) (

a + c a − c
b + d b − d

)

=
1
2

(

a + b + c + d a + b − c − d
a − b + c − d a − b − c + d

)

.

Example 3.11 Let f : P1(R) → P1(R) be a linear map satisfying

f(1 + 4x) = 1 − 2x and f(−2 − 9x) = 2 + 4x.

1. Find the matrix of f med with respect to the basis of monomials (1, x).

2. Find the polynomial f(1 + 3x).

1. Since f is linear, we get by inspection,

9f(1 + 4x) + 4f(−2 − 9x) = f(1) = 9{1 − 2x} + 4{2 + 4x} = 17 − 2x,

hence

4f(x) = f(1 + 4x) − f(1) = {1 − 2x} − {17 − 2x} = −16,

and whence

f(1) = 17 − 2x and f(x) = −4,

so the matrix is
(

17 −4
−2 0

)

.
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2. Then by the linearity,

f(1 + 3x) = f(1) + 3f(x) = {17 − 2x} − 12 = 5 − 2x.

Example 3.12 A linear map f : R3 → R3 is in the usual basis of R3 given by the matrix equation




y1

y2

y3



 =





1 −3 1
−1 −3 2
−1 −3 2









x1

x2

x3



 .

1. Prove that the vectors

v1 = (1, 0, 1), v2 = (0, 1, 2), v3 = (1, 1, 2)

form a basis of R3, and find the image vectors f(v1), f(v2), f(v3).

2. Find the kernel of f . Explain why the range f(R3) is a 2-dimensional subspace of R3, and that
the vectors

w1 = (2, 1, 1), w2 = (−1, 1, 1)

form a basis of f(R3).

3. Find the matrix of f with respect to the basis (v1,v2,v3).

4. A linear map g : f(R3) → R3 is given by

g(w1) = v1, g(w2) = v2.

Find the matrix of the composite map g ◦ f : R3 → R3 with respect to the basis (v1,v2,v3), and
prove that

f ◦ g ◦ f = f.

1. It follows from

|v1 v2 v3| =

∣

∣

∣

∣

∣

∣

1 0 1
0 1 1
1 2 2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
1 2 −2

∣

∣

∣

∣

∣

∣

= −1 �= 0,

that (v1,v2,v3) forms a basis of R3.

Then by a computation,

f(v1) =





−1 −3 1
−1 −3 2
−1 −3 2









1
0
1



 =





2
1
1



 ,

f(v2) =





1 −3 1
−1 −3 2
−1 −3 2









0
1
2



 =





−1
1
1



 ,
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f(v3) =





1 −3 1
−1 −3 2
−1 −3 2









1
1
2



 =





0
0
0



 = 0,

thus

f(v1) = (2, 1, 1), f(v2) = (−1, 1, 1), f(v3) = 0.

2. Obviously, f(v1), f(v1) ∈ f(R3), and v3 ∈ ker f . Since f(v1) and f(v2) are linearly indepen-
dent, we must have

dim f(R3) = 2 and dim ker f = 1.

We get from v3 ∈ ker f that

ker f = {sv3 | s ∈ R} = {s(1, 1, 2) | s ∈ R}.

Now, w1 = (2, 1, 1) = f(v1) and w2 = (−1, 1, 1) = f(v2), so it follows from the above that
(w1,w2) form a basis of f(R3).

3. Then by reduction,

(v1 v2 v3 | w1) =





1 0 1
0 1 1
1 2 2

∣

∣

∣

∣

∣

∣

2
1
1





∼
R3 := R1 + 2R2 − R3





1 0 1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

2
1
3



 ∼





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

−1
−2

3



 ,

from which we conclude that

w1 = −v1 − 2v2 + 3v3.

Analogously,

(v1 v2 v3 | w2) =





1 0 1
0 1 1
1 2 2

∣

∣

∣

∣

∣

∣

−1
1
1





∼
R3 := R1 + 2R2 − R3





1 0 1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

−1
1
0



 ∼





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

−1
1
0



 ,

from which

w2 = −v1 + v2.

Since f(v3) = 0, the matrix of f with respect to the basis (v1,v2,v3) is given by

Fv v = (f(v1) f(v2) f(v3)) = (w1 w2 0) =





−1 −1 0
−2 1 0

3 0 0



 .
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4. Note that since dim f(R3) = 2, the map g is uniquely determined. It follows that

v1 = g(w1) = g(f(v1)) = (g ◦ f)(v1),

v2 = g(w2) = g(f(v2)) = (g ◦ f)(v2),

hence the matrix of the composite map with respect to the basis (v1,v2,v3) is




1 0 0
0 1 0
0 0 0



 .

Finally,

(f ◦ g ◦ f)(v1) = f(v1) = w1,

(f ◦ g ◦ f)(v2) = f(v2) = w2.

The maps are linear, and (w1,w2) is a basis of f(R3), and

(f ◦ g ◦ f)(v3) = f(v3) = 0.

Hence we conclude that

f ◦ g ◦ g = f.
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Example 3.13 Let V denote a vector space of dimension 2, and let (a1,a2) be a basis of V . Fur-
thermore, let two linear maps be given, f and g, of V into V . It is assumed that

g(a1) = 3a1 − a2, g(a2) = a1, f(a1) = a1 − a2, f(3a1 − a2) = 2a1 − a2.

1. Find f(a2).

2. Find the matrices of f and g with respect to the basis (a1,a2).

3. Check if f ◦ g = g ◦ f .

1. Due to the linearity,

f(a1) = −f(3a1 − a2) + 3f(a1) = −{2a1 − a2} + 3{a1 − a2} = a1 − 2a2.

2. The matrix of f with respect to the basis (a1,a2) is

{f(a1) f(a2)} =
(

1 1
−1 −2

)

.

The matrix of g with respect to the basis (a1,a2) is

{g(a1) g(a2)} =
(

3 1
−1 0

)

.

3. Since

f ◦ g ∼
(

1 1
−1 −2

)(

3 1
−1 0

)

=
(

2 1
−1 −1

)

,

and

g ◦ f ∼
(

3 1
−1 0

)(

1 1
−1 −2

)

=
(

2 1
−1 −1

)

,

the two matrices are identical, hence

f ◦ g = g ◦ f.

Alternatively we compute

(f ◦ g)(a1) = f(3a1 − a2) = 3(a1 − a2) − (a1 − 2a2) = 2a1 − a2,

(g ◦ f)(a1) = g(a1 − a2) = (3a1 − a2) = (3a1 − a2) − a1 = 2a1 − a2,

and

(f ◦ g)(a2) = f(a1) = a1 − a2,

(g ◦ f)(a2) = g(a1 − 2a2) = (3a1 − a2) − 2a1 = a1 − a2.

It follows that f ◦ g = g ◦ f on all vectors of the basis, hence by the linearity everywhere.
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Example 3.14 Let (a1,a2,a3,a4) be a basis of R4, and let (c1, c2, c3) be a basis of R3.
Given a linear map f : R4 → R3 by

f(a1) = c1 + c2 + c3, f(a2) = c1 + c2,

f(a3) = f(a1) − f(a2), f(a4) = f(a1) + 2f(a3).

1. Find the matrix of f with respect to the bases above of R4 and R3.

2. Find a basis of the range f(R4).

3. Find a basis of the kernel ker f .

1. We first compute

f(a3) = f(a1) − f(a2) = c3,

f(a4) = f(a1) + 2f(a3) = c1 + c2 + 3c3.

This gives us the matrix

{f(a1) f(a2) f(a3) f(a4)} =





1 1 0 1
1 1 0 1
1 0 1 3



 .

2. Obviously, dim f(R3) = 2, and

f(a2) = c1 + c2, f(a3) = c3

form a basis of the range f(R4).

3. We get by reduction,




1 1 0 1
1 1 0 1
1 0 1 3

∣

∣

∣

∣

∣

∣

0
0
0





∼
R2 := R1 − R2

R3 := R3





1 1 0 1
0 0 0 0
0 1 −1 −2

∣

∣

∣

∣

∣

∣

0
0
0





∼
R1 := R1 − R3

R2 := R3

R3 := R2





1 0 1 3
0 1 −1 −2
0 0 0 0

∣

∣

∣

∣

∣

∣

0
0
0



 .

Choosing x3 = s and x4 = t as parameters it follows that

x1 = −s − 3t, x2 = s + 2t,

and all elements of kernel are given by

(−s − 3t, s + 2t, s, t) = s(−1, 1, 1, 0) + t(−3, 2, 1), s, t ∈ R.

It follows in particular that a basis of ker f is e.g.

(−1, 1, 1, 0) and (−3, 2, 1).
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Example 3.15 Given a linear map f : R4 → R3 with the following matrix (with respect to the usual
basis of R4 and the usual basis of R3)

F =





1 1 2 1
3 0 3 3

−1 2 1 −1



 .

1. Explain why the vectors u1 = (−1, 0, 0, 1), u2 = (−1,−2, 2,−1) and u3 = (2,−2, 2,−4) belong
to the kernel of f .

2. Find the dimensions of the kernel ker f and the range f(R4).

3. Find a basis of ker f .

1. It follows from





1 1 2 1
3 0 3 3

−1 2 1 −1













−1
0
0
1









= 0,





1 1 2 1
3 0 3 3

−1 2 1 −1













−1
−2

2
−1









= 0,





1 1 2 1
3 0 3 3

−1 2 1 −1













2
−2

2
−4









= 0,

that u1, u2, u3 all belong to the kernel n of f .

Then we note that u1 and u2 are linearly independent. On the other hand, since u3 = u2−3u1,
we can so far only conclude that dim ker f ≥ 2.

We reduce the matrix,

F =





1 1 2 1
3 0 3 3

−1 2 1 −1





∼
R2 := R2/3
R3 := R1 + R3





1 1 2 1
1 0 1 1
0 3 3 0





∼
R1 := R2

R2 := R1 − R2

R3 := R3/3





1 0 1 1
0 1 1 0
0 1 1 0



 ,

which clearly is of rank 2, thus dim f(R4) = 2.

It follows from the theorem of dimensions that

dim R4 = 4 = dim f(R4) + dim ker f = 2 + dimker f,

and we conclude that dimker f = 2.

2. We have proved above that u1 and u2 are linearly independent in ker f , and since dimker f = 2,
we conclude that (u1,u2) is a basis of ker f .
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Example 3.16 Let f : R3 → R3 be the linear map which i the usual basis (e1, e2, e3) for R3 is given
by the matrix

F =





1 −1 −1
1 1 −1
1 1 1



 .

Given the vectors b1, b2 and b3 by

b1 = (1,−1, 1), b2 = (−1, 1, 0), b3 = (1, 0, 0).

Prove that (b1,b2,b3) is a basis of R3.
Find the matrix of f with respect to the basis (b1,b2,b3) i R3.

It follows from

|b1 b2 b3| =

∣

∣

∣

∣

∣

∣

1 −1 1
−1 1 0

1 0 0

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

−1 1
1 0

∣

∣

∣

∣

= −1 �= 0,

that b1, b2, b3 are linearly independent, hence they form a basis of R3.

Then we use that

Fbb = (Meb)−1 Fe eMeb,

where

Meb =





1 −1 1
−1 1 0

1 0 0



 .
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We conclude from





1 −1 1
−1 1 0

1 0 0

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R1 := R3

R2 := R2 + R3

R3 := R1 − R3





1 0 0
0 1 0
0 −1 1

∣

∣

∣

∣

∣

∣

0 0 1
0 1 1
1 0 −1





∼
R3 := R2 + R3





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

0 0 1
0 1 1
1 1 0



 ,

that

(Me a)−1 =





0 0 1
0 1 1
1 1 0



 ,

hence

Fbb =





0 0 1
0 1 1
1 1 0









1 −1 −1
1 1 −1
1 1 1









1 −1 1
−1 1 0

1 0 0





=





1 1 1
2 2 0
2 0 0









1 −1 1
−1 1 0

1 0 0



 =





1 0 1
0 0 2
2 −2 2



 .

Example 3.17 Given two bases in R2, namely (a1,a2) and (b1,b2), where b1 = 2a1 + 5a2 and
b2 = a1 + 4a2.
Let a linear map f : R2 → R2 be given by

f(a1) = b1 and f(b2) = −11 + 2a2.

1. Find the matrix of f with respect to the basis (a1,a2).

2. Find the matrix of f with respect to the basis (b1,b2).

1. It follows from f(a1) = b1 = 2a1 + 5a2 and

f(a2) =
1
3
{f(b2) − f(a1)} =

1
3
{−a1 + 2a2 − 2a1 − 5a2} = −a1 − a2,

that

Fa a =
(

2 −1
5 −1

)

.

2. Since

Mab =
(

2 1
5 3

)

and (Mab)−1 =
(

3 −1
−5 2

)

,
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we get

Fbb = (M1b)−1 Fa aMab =
(

3 −1
−5 2

) (

2 −1
5 −1

) (

2 1
5 3

)

=
(

1 −2
0 3

) (

2 1
5 3

)

=
(

−7 −5
15 9

)

.

Example 3.18 Given in R3 the vectors

v1 = (1, 0, 1), v2 = (1, 1, 0) and v3 = (0, 1, 1).

1. Prove that v1, v2, v3 form a basis of R3.

2. Given a linear map f : R3 → R4 by

f(v1) = (3, 9, 1, 0), f(v2) = (4, 5,−1, 1) and f(v3) = (5, 6, 0,−1).

Find the matrix of f with respect to the usual bases of R3 and R4.

1. It follows from

|v1 v2 v3| =

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
1 0 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
0 −1 1

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1 1
−1 1

∣

∣

∣

∣

= 2 �= 0,

that v1, v2, v3 are linearly independent, so they form a basis of R3.

2. We shall first express e1, e2, e3 by v1, v2, v3. Since

(v1 v2 v3 | I) =





1 1 0
0 1 1
1 0 1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R3 := R3 − R1





1 1 0
0 1 1
0 −1 1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0

−1 0 1





∼
R1 := R1 − R2

R3 := (R2 + R3)/2




1 0 −1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

1 −1 0
0 1 0

− 1
2

1
2

1
2





∼
R1 := R1 + R3

R2 := R2 − R3




1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

1
2 − 1

2
1
2

1
2

1
2 − 1

2
− 1

2
1
2

1
2



 ,

we get





1 1 0
0 1 1
1 0 1





−1

=
1
2





1 −1 1
1 1 −1

−1 1 1



 .
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Then the matrix expressed in the usual bases is given by








3 4 5
9 5 6
1 −1 0
0 1 −1









1
2





1 −1 1
1 1 −1

−1 1 1



 =









1 3 2
4 1 5
0 −1 1
1 0 −1









.

Example 3.19 1. Explain why there is precisely one linear map f : R3 → R4, which fulfils

f(1, 1, 1) = (4, 0, 0, 6), f(1, 1, 0) = (2, 0, 0, 3), f(1.0. − 1) = (−1,−1, 1,−1).

2. Find the matrix of f with respect to the usual bases of R3 and R4.

3. Find the dimension and a basis of the range.

4. Give a parametric description of the kernel.

1. The vectors (1, 1, 1), (1, 1, 0) and (1, 0,−1) form a basis of R3. In fact, it follows from

α(1, 1, 1) + β(1, 1, 0) + γ(1, 0,−1) = (0, 0, 0)

that α+β +γ = 0, α+β = 0 and α = γ, hence γ = α = β = 0, and the vectors are independent.

Hence, there is precisely one linear map, which satisfies the given conditions.

2. We conclude from





1 1 1
1 1 0
1 0 −1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R1 := R1 − R2 + R3

R2 := 2R2 − R1 − R3

R3 := R1 − R2





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

1 −1 1
−1 2 −1

1 −1 0



 ,

that

Mv e =





1 −1 1
−1 2 −1

1 −1 0



 ,

hence

Fe e = Fe vMv e =









4 2 −1
0 0 −1
0 0 1
6 3 −1













1 −1 1
−1 2 −1

1 −1 0



 =









1 1 2
−1 1 0

1 −1 0
2 1 3









.

3. Clearly, Fe v, and thus Fe e, has rank 2, so the range is of dimension 2.

A basis is composed of two of the three columns of Fe e, e.g.

(1, 1,−1, 1) and (2, 0, 0, 3).
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4. It follows from

x1(1,−1, 1, 2) + x2(1, 1,−1, 1) + x3(2, 0, 0, 3) = (0, 0, 0, 0)

that

x1 + x2 + 2x3 = 0,
−x1 + x2 = 0,

x1 − x2 = 0,
2x1 + x2 + 3x3 = 0,

hence x2 = x1, and whence x3 = −x1. We conclude that

ker f = {s(1, 1,−1) | s ∈ R}.
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Example 3.20 The linear map f : R3 → R4 is with respect to the usual bases of R3 and R4 given
by the matrix equation









y1

y2

y3

y4









=









1 3 1
2 4 0
1 1 −1

−3 −1 5













x1

x2

x3



 .

1. Find the dimension of the kernel ker f and the dimension of the range f(R3).

2. Find a basis of the range f(R3).

1. We reduce the matrix of coefficients








1 3 1
2 4 0
1 1 −1

−3 −1 5









∼
R1 := R2 − R3 − R1

R4 := R4 + R3 − R1









0 0 0
2 4 0
1 1 −1
0 0 0









.

The rank is 2, so dim f(R3) = 2, and it follows from

dim R3 = 3 = dim f(R3) + ker f,

that dimker f = 1.

2. A basis of the range is given by any two of the columns of the matrix, e.g.

(1, 2, 1,−3) and (1, 0,−1, 5).

Example 3.21 Given in the vector space R2 the vectors

a1 = (−8, 3) and a2 = (−5, 2).

1. Explain why (a1,a2) is a basis of R2.

2. A linear map f : R2 → R2 is given by

f(a1) = 2a1 − 3a2 and f(a2) = −a1 + 2a2.

Find the matrix of f with respect to the basis (a1,a2) of R2.

3. Find the matrix of f with respect to the usual basis of R2.

1. It follows from

|a1 a2| =
∣

∣

∣

∣

−8 −5
3 2

∣

∣

∣

∣

= −1 �= 0,

that a1 and a2 are linearly independent. The dimension is 2, so (a1,a2) is a basis of R2.
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2. The matrix is given by the columns f(a1), f(a2),

Fa a =
(

2 −1
−3 2

)

.

3. Since

Fe e = Me aFa aMa a,

where

Me a =
(

−8 −5
3 2

)

and Ma e = (Me a)−1 =
(

−2 −5
3 8

)

,

we get

Fe e =
(

−8 −5
3 2

)(

2 −1
−3 2

)(

−2 −5
3 8

)

=
(

−1 −2
0 1

)(

−2 −5
3 8

)

=
(

−4 −11
3 8

)

.

Example 3.22 Given in the vector space R3 the vectors

v1 = (1, 2, 0), v2 = (0, 1, 4) and v3 = (0, 0, 1),

and in R4 the vectors

w1 = (1, 0, 0, 0), w2 = (1, 1, 0, 0),w3 = (1, 1, 1, 0), w4 = (1, 1, 1, 1).

1. Prove that (v1, v2, v3) form a basis of R4.

2. A linear map f : R3 → R4 is given by

f(v1) = w1 + w2, f(v2) = w2 + w3, f(v3) = w3 + w4.

Find the matrix of f with respect to the basis (v1,v2,v3) i R3 and (w1,w2,w3,w4) i R.

3. Find the matrix of f with respect to the usual bases in R3 and R4.

1. We just have to check the linear independency. It follows from

|v1 v2 v3| =

∣

∣

∣

∣

∣

∣

1 0 0
2 1 0
0 4 1

∣

∣

∣

∣

∣

∣

= 1,

and

|w1 w2 w3 w4| =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1,

that the vectors are linearly independent, so they are bases in the two spaces.
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2. We just the columns in coordinates,

Fwv =









1 0 0
1 1 0
0 1 1
0 0 1









.

3. We shall find

Fe4 e3 = Me4 wFwvMv e3 .

Here,

Me4 w =









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1









and Me3 v =





1 0 0
2 1 0
0 4 1



 .

It follows from

(Me3 v | I) =





1 0 0
2 1 0
0 4 1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R2 := R2 − 2R1





1 0 0
0 1 0
0 4 1

∣

∣

∣

∣

∣

∣

1 0 0
−2 1 0

0 0 1





∼
R3 := R3 − 4R2





1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

1 0 0
−2 1 0

8 −4 1



 ,

that

Mv e3 = (Me3 v)−1 =





1 0 0
−2 1 0

8 −4 1



 .

Finally, we get by insertion,

M − e4 e3 =









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

















1 0 0
1 1 0
0 1 1
0 0 1













1 0 0
−2 1 0

8 −4 1





=









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

















1 0 0
−1 1 0

6 −3 1
8 −4 1









=









14 −6 2
13 −6 2
14 −7 2
8 −4 1









.
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Example 3.23 Given a map f : R3 → R3 by

f((x1, x2, x3)) = (x1 + 3x2 + 2x3, x1 − x2 + 3x3, 3x1 + x2 + 8x3).

1. Prove that f is linear.

2. Find the kernel of f , and find all a ∈ R, for which the vector (8, 4, 8a) belongs to the range
f(R3).

1. Since

f((x1, x2, x3)) =





y1

y2

y3



 =





1 3 2
1 −1 3
3 1 8









x1

x2

x3



 ,

the map is clearly linear.

2. We reduce the matrix of coefficients




1 3 2
1 −1 3
3 1 8





∼
R2 := R1 − R2

R3 := R3 − 3R2




1 3 2
0 4 −1
0 4 −1





∼
R3 := R3 − R2





1 3 2
0 4 −1
0 0 0



 .
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The rank is 2, so dim ker f = 3 − 2 = 1, and the elements of the kernel satisfy

x1 + 3x2 = −2x3, 4x2 = x3.

Using the parametric description x3 = 4s, we get x2 = s and

x1 = −3x2 − 2x3 = −3s − 8s = −11s,

thus

ker f = {s(−11, 1, 4) | s ∈ R}.
It follows from





1 3 2
1 −1 3
3 1 8

∣

∣

∣

∣

∣

∣

8
4
8a





∼
R2 := R1 − R2

R3 := R3 − 3R2





1 3 2
0 4 −1
0 4 −1

∣

∣

∣

∣

∣

∣

8
4

8a − 12





∼
R3 := R3 − R2





1 3 2
0 4 −1
0 0 0

∣

∣

∣

∣

∣

∣

8
4

8a − 16



 ,

that (8, 4, 8a) ∈ f(R3), if and only if the rank of the total matrix is 2, i.e. if and only if 8a−16 = 0,
from which a = 2.

Example 3.24 Let f : R3 → R3 denote the linear map, which in the usual basis of R3 is given by
the matrix

F =





4 −11 −3
1 −2 0
1 −4 −1



 .

Furthermore, let

b1 = (1, 0, 1), b2 = (1, 1,1 ), b3 = (−3,−1, 0)

be given vectors of R.

1. Prove that

f(b1) = b2, f(b2) = −b1 + b3, f(b3) = −b2.

2. Prove that (b1,b2,b3) is a basis of R3.
Find the matrix of f with respect to this basis, and find the dimension of the range.

1. We get by direct computation,

f(b1) =





4 −11 −3
1 −2 0
1 −4 −2









1
0
1



 =





1
1

−1



 = b2,

f(b2) =





4 −11 −3
1 −2 0
1 −4 −2









1
1

−1



 =





−4
−1
−1



 =





−1
0

−1



 +





−3
−1

0





= −b1 + b3,

f(b3) =





4 −11 −3
1 −2 0
1 −4 −2









−3
−1

0



 =





−1
−1

1



 = −b2.
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2. It follows from

|b1 b2 b3| =

∣

∣

∣

∣

∣

∣

1 1 −3
0 1 −1
1 −1 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 −3
0 1 −1
0 −2 3

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1 −1
−2 3

∣

∣

∣

∣

= 1 �= 0,

that (b1,b2,b3) is a basis of R3.

According to 1) the matrix of the map is

Fbb =





0 −1 0
1 0 −1
0 1 0



 .

Clearly, this matrix has rank 2, hence the dimension of the range is 2.

Example 3.25 Let f : R4 → R3 be a linear map, where the corresponding matrix with respect to the
usual bases of R4 and R3 is given by

Fe e =





1 −2 0 a
3 −6 1 b

−2 4 1 c



 , where a, b, c ∈ R,

and where f(1,−1,−2, 1) = (2, 8,−2).

1. Find a, b and c.

2. Find a basis of the range f(R4), and find the coordinates of the image vector (2, 8,−2) with
respect to this basis.

1. It follows from





1 −2 0 a
3 −6 1 b

−2 4 1 c













1
−1
−2

1









=





a + 3
b + 7
c − 8



 =





2
8

−2



 ,

thats a = −1, b = 1 and c = 6.

2. Then by reduction,




1 −2 0 −1
3 −6 1 1

−2 4 1 6





∼
R2 := R2 − R1 + R3

R3 := R3 + 2R1





1 −2 0 −1
0 0 2 8
0 0 1 4



 ,

which clearly is of rank 2, so dim f(R4) = 2.

Since already (2, 8,−2) ∈ f(R4), we shall only choose any other column of the matrix in order
to obtain a basis, e.g.

a1 = (2, 8,−2) and a2 = (0, 1, 1).

Then the coordinates of (2, 8,−2) with respect to (a1,a2) are of course (1, 0).
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Example 3.26 A linear map f : R3 → R4 is given by

f((1, 0, 0)) = (2, 1, 0, 1), f((1, 1, 0)) = (3, 2, 1, 1), f((0, 1, 2)) = (3,−1,−5, 4).

1. Find the matrix of f with respect to the usual bases of R3 and R4.

2. Find the dimension and a basis of the kernel ker f .

3. Find the dimension and a basis of the range f(R3).

1. Let a1 = (1, 0, 0), a2 = (1, 1, 0) and a3 = (0, 1, 2). Then

|a1 a2 a3| =

∣

∣

∣

∣

∣

∣

1 1 0
0 1 1
0 0 2

∣

∣

∣

∣

∣

∣

= 2 �= 0,

thus (a1,a2,a3) is a basis. Clearly,

Fe a =









2 3 3
1 2 −1
0 1 −5
1 1 4









and Me a =





1 1 0
0 1 1
0 0 2



 ,

where

(Me a | I) =





1 1 0
0 1 1
0 0 2

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R1 := R1 − R2

R3 := R3/2




1 0 −1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

1 −1 0
0 1 0
0 0 1

2





∼
R1 := R1 + R3

R2 := R2 − R3




1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

1 −1 1
2

0 1 − 1
2

0 0 1
2



 ,

thus

Ma e = (Me a)−1 =
1
2





2 −2 1
0 2 −1
0 0 1



 .

We get by insertion

Fe e = Fe aMa e =









2 3 3
1 2 −1
0 1 −5
1 1 4













1 −1 1
2

0 1 − 1
2

0 0 1
2



 =









2 1 1
1 1 −1
0 1 −3
1 0 2









.
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2. (Actually point 3.) We get by reduction,

Fe e =









2 1 1
1 1 −1
0 1 −3
1 0 2









∼
R1 := R4

R2 := R2 − R4

R3 := R2 − R3 − R4

R4 := R1 − R2 − R4









1 0 2
0 1 −3
0 0 0
0 0 0









,

from which follows that the rank is 2, thus dim f(R3) = 2, and a basis is e.g.

{(2, 1, 0, 1), (1, 1, 1, 0)}.

3. (Actually point 2.) It follows from

dimV = dim R3 = 3 = dimker f + dim f(R3) = 2 + dimker f,

that

dimker f = 1.

Then by the reduction above, choosing x3 = s as parameter we get x1 = −2x3 = −2s and
x2 = 3s for x ∈ ker f , i.e.

ker f = {s(−2, 3, 1) | s ∈ R},

and a basis vector is e.g. (−2, 3, 1).
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Example 3.27 Given in the vector space P2(R) the vectors

P1(x) = 1 + x − x2, P2(x) = 2 + x − x2, P3(x) = 1 − x2.

Furhtermore, let f : P2(R) → P2(R) be the linear map, which is given in the monomial basis (1, x, x2)
of P2(R) by the matrix

Fmm =





1 6 4
1 3 3

−1 −4 −3



 .

1. Prove that (P1(x), P2(x), P3(x)) is a basis of P2(R).

2. Write f(6 − x − 2x2) partly as a linear combination of 1, x and x2, and partly as a linear
combination of P1(x), P2(x) and P3(x).

1. The coordinates are in the monomial basis

P1(x) = 1 + x − x2 ∼ (1, 1,−1),
P2(x) = 2 + x − x2 ∼ (2, 1,−1),
P3(x) = 1 − x2 ∼ (1, 0,−1).

It follows from
∣

∣

∣

∣

∣

∣

1 2 1
1 1 0

−1 −1 −1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 2 1
1 1 0
0 1 0

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

= 1 �= 0,

that {P1(x), P2(x), P3(x)} is a basis of P2(R).

2. Since 6 − x − 2x2 ∼ (6,−1,−2), we find in the monomial basis




1 6 4
1 3 3

−1 −4 −3









6
−1
−2



 =





−8
−3

4



 ,

thus

f(6 − x − 2x2) = −8 − 3x + 4x2.

Then it immediately follows that

1 = −P1(x) + P2(x),
x = P1(x) − P3(x),

x2 = 1 − P3(x) = −P1(x) + P2(x = −P3(x),

hence

f(6 − x − 2x2) = −8 − 3x + 4x2

= 8P1(x) − 8P2(x)
−3P1(x) + 3P3(x)
−4P1(x) + 4P2(x) − 4P3(x)

= P1(x) − 4P2(x) − P3(x),

and the coordinates are (1,−4,−1) with respect to the basis {P1(x), P2(x), P3(x)}.
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Example 3.28 Let f be a linear map of R3 into itself. The vectors b1 = (−1, 1, 1), b2 = (1, 0,−1)
and b3 = (0, 1, 1) form a basis of R3, and the matrix of f with respect to this basis is





1 0 1
1 1 0

−1 2 1



 .

Find the matrix of f with respect to the usual basis e1, e2, e3.

It follows from the given conditions above that

Meb =





−1 1 0
1 0 1
1 −1 1



 .

Then by a reduction,

(Meb | I) =





−1 1 0
1 0 1
1 −1 1

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1





∼
R1 := −R1

R2 := R1 + R2

R3 := R1 + R3




1 −1 0
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

−1 0 0
1 1 0
1 0 1





∼
R1 := R1 + R2 − R3

R2 := R2 − R3




1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

−1 1 −1
0 1 −1
1 0 1



 ,

hence

Mbe = (Meb)−1 =





−1 1 −1
0 1 −1
1 0 1



 .

Then

Fe e = MebFbbMbe

=





−1 1 0
1 0 1
1 −1 1









1 0 1
1 1 0

−1 2 1









−1 1 −1
0 1 −1
1 0 1





=





0 1 −1
0 2 2

−1 1 2









−1 1 −1
0 1 −1
1 0 1



 =





−1 1 −2
2 2 0
3 0 2



 .
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Example 3.29 Given in the vector space P2(R) the vectors

P0(x) = 1, P1(x) = 1 − x, P2(x) = 1 − 2x +
1
2
x2.

Let a map f : P2(R) → P2(R) be given by

f(P ) = P ′ + 2P, P ∈ P2(R),

where P ′ is the derivative of P .

1. Prove that (P0(x), P1(x), P2(x)) is a basis of P2(R).

2. Prove that f is linear.

3. Find the matrix of f with respect to the basis (P0(x), P1(x), P2(x)).

1. It follows from

1 = P0(x),
x = 1 − P1(x) = P0(x) − P1(x),

x2 = 2P2(x) − 2 + 4x
= 2P2(x) − 2P0(x) + 4P0(x) − 4P1(x)
= 2P0(x) − 4P1(x) + 2P2(x),

that the monomial basis can be expressed by P0(x), P1(x), P2(x), hence the set

{P0(x), P1(x), P2(x)}

also forms a basis of P2(R).

Alternatively the coordinates are

P0(x) ∼ (1, 0, 0), P1(x) ∼ (1,−1, 0), P2(x) ∼
(

1,−2,
1
2

)

,

and
∣

∣

∣

∣

∣

∣

1 1 1
0 −1 −2
0 0 1

2

∣

∣

∣

∣

∣

∣

= −1
2
�= 0,

which also shows that {P0(x), P1(x), P2(x)} is a basis.

2. If P , Q ∈ P2(R), and λ ∈ R, then

f(P + λQ) = (P + λQ)′ + 2(P + λQ)
= {P ′ + 2R} + λ{Q′ + 2Q} = f(P ) + λf(Q),

proving that f is linear.
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3. Since

f(P0) = P ′
0 + 2P0 = 2P0,

f(P1) = P ′
1 + 2P1 = −1 + 2P1 = −P0 + 2P1,

f(P2) = P ′
2 + 2P2 = −2 + x + 2P2(x) = −1 − (1 − x) + 2P2(x) = −P0 − P1 + 2P2,

we get the matrix




2 −1 −1
0 2 −1
0 0 2





with respect to the basis (P0, P1, P2).
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Example 3.30 Let a map f : P2(R) → P2(R) be given by

f(P (x)) = (x − 1)P ′(x) − xP (1).

1. Prove that f is linear.

2. Find the matrix of f with respect to the monomial basis (1, x, x2).

1. If P , Q ∈ P2(R) and λ ∈ R, then

f(P (x) + λQ(x)) = (x − 1){P (x) + λQ(x)}′ − x{P (1) + λQ(1)}
= {(x − 1)P ′(x) − xP (1)} + λ{(x − 1)Q′(x) − xQ(1)}
= f(P (x)) + λf(Q(x)),

and f is linear.

2. Since

f(1) = (x − 1) · 0 − x · 1 = −x,

f(x) = (x − 1) · 1 − x · 1 = −1,
f(x2) = (x − 1) · 2x − x · 1 = −3x + 2x2,

the corresponding matrix is




0 −1 0
−1 0 −3

0 0 2



 .
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Example 3.31 Given the matrix

A =









1 0 −a 0
0 1 0 2

−1 0 1 0
0 1 + a 0 1









.

1. Find detA for every a.

2. Solve for all real a and b the equation

A









x1

x2

x3

x4









=









0
b
0
b









.

3. In the matrix A we put a = 1. Then we get another matrix A1. We consider in the following
the linear map f : R4 → R4, which is given in the usual basis e1, e2, e3, e4 by the matrix

y = A1x.

The subspace V of R4, which is spanned by e1 and e3, is by f into a subspace f(V ) of R4. The
subspace W of R4, which is spanned by e2 and e4, is mapped by f into some subspace f(W ) of
R4.

Prove that f(V ) ⊂ V and that f(W ) = W .

4. Find the eigenvalues and the corresponding eigenvectors of the map f .

5. Find a regular matrix V and an diagonal matrix Λ, such that

Λ = V−1A1V.

1. We get by some reductions,

detA =

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −a 0
0 1 0 2

−1 0 1 0
0 1 + a 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 −a 0
0 1 0 2
0 0 1 − a 0
0 1 + a 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 2
0 1 − a 0

1 + a 0 1

∣

∣

∣

∣

∣

∣

= −(a − 1)
∣

∣

∣

∣

1 2
1 + a 1

∣

∣

∣

∣

= −(a − 1){1 − 2 − 2a} = (a − 1)(2a + 1).

It follows that detA = 0, if and only if either a = 1 or a = −1
2
.

2. If a �= 1 and a �= −1
2
, then the solution is unique, and we get the reductions

(A | b) =









1 0 −a 0
0 1 0 2

−1 0 1 0
0 1 + a 0 1

∣

∣

∣

∣

∣

∣

∣

∣

0
b
0
b









∼









1 0 −a 0
0 1 0 2
0 0 1 − a 0
0 0 0 −1 − 2a

∣

∣

∣

∣

∣

∣

∣

∣

0
b
0

−ab









,
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hence

x1 = x3 = 0 and x4 =
ab

1 + 2a
andx2 = b − 2ab

1 + 2a
=

b

1 + 2a
.

The unique solution is

x =
(

0,
b

1 + 2a
, 0,

ab

1 + 2a

)

.

If a = 1, then we get the reductions

(A | b) =









1 0 −1 0
0 1 0 2

−1 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

0
b
0
b









∼









1 0 −1 0
0 1 0 0
0 0 0 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0
−b

b
0









.

In this case we have infinitely many solutions,

x = (0,−b, 0, b) + (s, 0, s, 0), s ∈ R.

If a = −1
2
, then we have the reductions

(A | b) =









1 0 1
2 0

0 1 0 2
−1 0 1 0

0 1
2 0 1

∣

∣

∣

∣

∣

∣

∣

∣

0
b
0
b









∼









1 0 0 0
0 1 0 2
0 1 0 2
0 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

0
b

2b
0









.

If b �= 0, then there are no solutions.

If b = 0, we get infinitely many solutions,

x = (0, 2s, 0,−s) = s(0, 2, 0,−1), s ∈ R.

3. The matrix A1 is

A1 =













1 0 −1 0
0 1 0 2

−1 0 1 0
−1 0 1 0

0 2 0 1













.

It follows that

A1e1 = e1 − e3 and A1e3 = −e1 + e3 = −A1e1,

thus

f(V ) = {s(e1 − e3) | s ∈ R} ⊂ V.
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Furthermore,

A1e2 = e2 and A1e4 = 2e2 + e4,

hence

f(W ) = span{e2, 2e2 + e4} = span{e2, e4} = W.

4. We compute the characteristic polynomials,

det(A1 − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ 0 −1 0
0 1 − λ 0 2
−1 0 1 − λ 0
0 2 0 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 −λ 0
0 3 − λ 0 3 − λ

−1 0 1 − λ 0
0 2 0 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= λ(λ − 3)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 0
0 1 0 1

−1 0 1 − λ 0
0 2 0 1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= λ(λ − 3)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 0
0 1 0 1
0 0 2 − λ 0
0 0 0 −1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= λ(λ − 3)(λ − 2)(λ + 1).

We see that the four eigenvalues are

λ1 = 0, λ2 = 2, λ3 = −1, λ4 = 3.

For λ1 = 0 we get the reduction

A1 − λ1I =









1 0 −1 0
0 1 0 2

−1 0 1 0
0 2 0 1









∼









1 0 −1 0
0 1 0 0
0 0 0 1
0 0 0 0









,

hence an eigenvector is e.g. v1 = (1, 0, 1, 0), where ‖v1‖ =
√

2.

For λ2 = 2 we get

A1 − λ2I =









−1 0 −1 0
0 −1 0 2

−1 0 −1 0
0 2 0 −1









∼









1 0 1 0
0 1 0 0
0 0 0 1
0 0 0 0









,
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hence an eigenvector is e.g. v2 = (1, 0,−1, 0), where ‖v2‖ =
√

2.

For λ3 = −1 we get

A1 − λ3I =









2 0 −1 0
0 2 0 2

−1 0 2 0
0 2 0 2









∼









1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 0









,

hence an eigenvector is e.g. v3 = (0, 1, 0,−1), where ‖v3‖ =
√

2.

For λ4 = 3 we get

A1 − λ4I =









−2 0 −1 0
0 −2 0 2

−1 0 −2 0
0 2 0 −2









∼









1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 0









.

An eigenvector is e.g. v4 = (0, 1, 0, 1) where ‖v4‖ =
√

2.
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5. It follows that

V =
1√
2









1 1 0 0
0 0 1 1
1 −1 0 0
0 0 −1 1









med Λ =









0 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 3









.

Example 3.32 . A linear map f : R4 → R4 is in the usual basis of R4 given by the matrix equation








y1

y2

y3

y4









=









a a 2 − a a2 − a
0 a 0 2 − a

2 − a a2 − a a 2a2 − 3a
0 2 − a 0 a

















x1

x2

x3

x4









,

where a is a real number.

1. Find the characteristic polynomial of f , and prove that λ = 2 is an eigenvalue of f .

2. Find for every a the dimension of the eigenspace corresponding to the eigenvalue λ = 2.

3. Find all a, for which one can find a basis of R4 consisting of eigenvectors of f .

4. Prove for a = 0 that there exists an orthonormal basis of R4 (with the usual scalar product)
consisting of eigenvectors eigenvectors of f . Find such basis, and also the matrix equation of f
with respect to this basis.

1. The characteristic polynomial is

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

a − λ a 2 − a a2 − a
0 a − λ 0 2 − a

2 − a a2 − a a − λ 2a2 − 3a
0 2 − a 0 a − λ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

2 − λ a2 2 − λ 3a2 − 4a
0 a − λ 0 2 − a

2 − a a2 − a a − λ 2a2 − 3a
0 2 − a 0 a − λ

∣

∣

∣

∣

∣

∣

∣

∣

= (a − λ)

∣

∣

∣

∣

∣

∣

2 − λ 2 − λ 3a2 − 4a
2 − a a − λ 2a2 − 3a

0 0 a − λ

∣

∣

∣

∣

∣

∣

+(2 − a)

∣

∣

∣

∣

∣

∣

2 − λ a2 2 − λ
2 − a a2 − a a − λ

0 2 − a 0

∣

∣

∣

∣

∣

∣

= (λ − a)2
∣

∣

∣

∣

2 − λ 2 − λ
2 − a a − λ

∣

∣

∣

∣

− (a − 2)2
∣

∣

∣

∣

2 − λ 2 − λ
2 − a a − λ

∣

∣

∣

∣

=
{

(λ − a)2 − (a − 2)2
}

(2 − λ)
∣

∣

∣

∣

1 1
2 − a a − λ

∣

∣

∣

∣

= (λ − 2)(λ − 2a + 2)(2 − λ)(a − λ − 2 + a)
= (λ − 2)2(λ − {2a − 2})2.
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The eigenvalues are λ1 = 2 and λ2 = 2a − 2, both of algebraic multiplicity 2, if a �= 2.

If a = 2, then λ1 = 2 is of algebraic multiplicity 4.

2. If λ = 2 and a �= 2, then we have the reductions








a − 2 a 2 − a a2 − a
0 a − 2 0 2 − a

2 − a a2 − a a − 2 2a2 − 3a
0 2 − a 0 a − 2









∼









a − 2 a 2 − a a2 − a
0 1 0 −1
0 a2 0 3a2 − 4a
0 0 0 0









∼









a − 2 a 2 − a a2 − a
0 1 0 −1
0 0 0 4(a2 − a)
0 0 0 0









∼









a − 2 a 2 − a 0
0 1 0 −1
0 0 0 a(a − 1)
0 0 0 0









.

If a �= 2 and a �= 0, a �= 1, then the rank is 3, hence the dimension of the eigenspace is 4− 3 = 1
with the eigenvector (1, 0, 1, 0).

If a = 0 or a = 1, then the rank is 2, and then dimension of the eigenspace is 4 − 2 = 2.

If a = 2, then we get instead,








0 2 0 2
0 0 0 0
0 2 0 −2
0 0 0 0









∼









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









which is of rank 2, so the eigenspace is of dimension 4 − 2 = 2.

3. According to 1) and 2) the algebraic and the geometric multiplicity do not agree for λ = 2, if
a �= 0 and a �= 1.

The only possibility of such a basis, is therefore when either a = 0 or a = 1. The case a =
0 is treated in 4), so here we consider a = 1. Then it follows from 2) that the eigenspace
corresponding to λ = 2 is of dimension 2.

Then we check the other eigenvalue λ2 = 2·1−2 = 0. Its algebraic multiplicity is 2. Furthermore,
we have the reduction









1 1 1 0
0 1 0 1
1 0 1 −1
0 1 0 1









∼









1 1 1 0
0 1 0 1
0 0 0 0
0 0 0 0









.

The eigenspace is of dimension 4 − 2 = 2, thus for a = 1 there exists a basis consisting of
eigenvectors.

4. Finally, we check a = 0. The two eigenvalues are λ1 = 2 and λ2 = −2, both of algebraic
multiplicity 2. Since

A0 − 2I =









−2 0 2 0
0 −2 0 2
2 0 −2 0
0 2 0 −2









∼









1 0 −1 0
0 1 0 −1
0 0 0 0
0 0 0 0









,
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are two orthonormal eigenvectors corresponding to λ1 = 2,

q1 =
1√
2
(1, 0, 1, 0) and q2 =

1√
2
(0, 1, 0, 1).

For λ2 = −2 we instead obtain

A0 + 2I =









2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2









∼









1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0









,

so the two orthonormal eigenvectors corresponding to λ2 = −2 are

q3 =
1√
2
(1, 0,−1, 0) and q4 =

1√
2
(0, 1, 0,−1).

The matrix equation of f is now with respect to the basis q1, q2, q3, q4, given by








y1

y2

y3

y4









=









2 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2

















x1

x2

x3

x4









.

Example 3.33 Let the map f : V 3
g → V 3

g be given by

f(�x) = �x ×�i + (�x ·�j)�k + �x,

where the three geometrical vectors (�i,�j,�k) form an orthonormal basis of positive orientation.

1. Prove that f is a linear map.

2. Express f(�i), f(�j) and f(�k) as linear combinations of �i, �j, �k, and find the matrix F of f with
respect to the basis (�i,�j,�k).

3. Check if F can be diagonalized.

1. We infer from

f(�x + λ�y) = (�x + λ�y) ×�i + ((�x + λ�y) ·�j)�k + (�x + λ�y)

= {�x ×�i + (�x ·�j)�k + �x} + λ{�y ×�i + (�y ·�j)�k + �y}
= f(�x) + λf(�y),

that f is a linear map.
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2. Then by a computation,

f(�i) = �i ×�i + (�i ·�j)�k +�i =�i,

f(�j) = �j × i + (�j ·�j)�k +�j = −�k + �k +�j = �j,

f(�k) = �k ×�i + (�k ·�j)�k + �k = �j + �k.

The corresponding matrix is

F =





1 0 0
0 1 1
0 0 1



 .

3. It is not possible to diagonalize F, because λ = 1 is of geometric multiplicity 2 and of algebraic
multiplicity 3. In fact,

F − I =





0 0 0
0 0 1
0 0 0





is of rank 1, hence the eigenspace is only of dimension 3 − 1 = 2.

Alternatively we have a 1 just above the diagonal (Jordan’s form of matrices).
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Example 3.34 Let f : R4 → R4 be the linear map which with respect to the usual basis of R4 is
given by the matrix

L =









1 0 0 0
−1 1 0 0

2 0 1 0
0 −1 0 1









,

and let g : R4 → R4 be the linear map, which with respect to the usual basis of R4 is given by the
matrix

U =









1 −1 2 0
0 2 0 −2
0 0 2 0
0 0 0 3









.

Consider also the composite map h = f ◦ g.

1. Find the vectors x and x, such that

f(y) = b and h(x) = b,

where b = (1, 5, 4,−9).

2. Prove that

U = DLT ,

where D is a diagonal matrix, and apply this result to prove that the matrix of h with respect to
the usual basis of R4 is symmetric and positive definit.

1. It follows from

f(y) =









1 0 0 0
−1 1 0 0

2 0 1 0
0 −1 0 1

















y1

y2

y3

y4









=









y1

−y1 + y2

2y1 + y3

−y2 + y4









=









1
5
4

−9









that y = (1, 6, 2,−3).

From b = h(x = f ◦ g(x) = f(y) we get the equation g(x) = y, thus

g(x) =









1 −1 2 0
0 2 0 −2
0 0 2 0
0 0 0 3

















x1

x2

x3

x4









=









x1 − x2 + 2x3

2x2 − 2x4

2x3

3x4









=









1
6
2

−3









,

hence x4 = −1 and x3 = 1, and whence x2 = 3 + x4 = 2 and

x1 = 1 + x2 − 2x3 = 1 + 2 − 2 = 1.

We infer that

x = (1, 2, 1,−1).
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2. The only possibility of D is a diagonal matrix, which has the same diagonal elements as U.
Then

DLT =









1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

















1 −1 2 0
0 1 0 −1
0 0 1 0
0 0 0 1









=









1 −1 2 0
0 2 0 −2
0 0 2 0
0 0 0 3









= U,

and U = DLT .

The matrix of h is A = LU = LDLT , where clearly

AT =
(

LDLT
)T

= LDLT = A,

hence A is symmetric.

The eigenvalues are the diagonal elements of D, i.e. 1, 2, 2, 3. These are all positive, hence A
is positive definite.
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Example 3.35 Given the matrices

A =
(

2 1
1 2

)

and M =
(

A I2×2

I2×2 A

)

=









2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2









.

1. Prove that

det(M − λI2×2) = det(A − (λ − 1)I2×2) det(A − (λ + 1)I2×2).

2. Then denote by f : R4 → R4 the linear map, which with respect to the usual basis of R4 has M
as matrix.

Find the eigenvalues and the corresponding eigenvectors of f .

3. Find the dimension of the range of f and a parametric description of the range.

4. Find a vector �= 0, which is orthogonal to the range (with respect to the usual scalar product of
R4), and setup an equation of the range.

1. By insertion

det(M − λI4×4) = det
(

A − λI2× I2×2

I2×2 A − λI2×2

)

= det
(

A − (λ − 1)I2×2

I2×2 A − λI2×2

)

= det
{(

A − (λ − 1)I2×2 02×2

02×2 I2×2

) (

I2×2 I2×2

I2×2 A − λI2×2

)}

= det (A−)λ − 1)I2×2) · det
(

I2×2 I2×2

02×2 A − (λ − 1)I2×2

)

= det (A − (λ − 1)I2×2) · det (A − (λ + 1)I2×2) .

2. The roots of

det (A − µI2×) =
∣

∣

∣

∣

2 − µ 1
1 2 − µ

∣

∣

∣

∣

= (µ − 2)2 − 1 = (µ − 1)(µ − 3)

are µ1 = 1 and µ2 = 3, hence M has the four eigenvalues

λ1 + 1 = µ1 = 1, dvs. λ1 = 0,
λ2 + 1 = µ3 = 3, dvs. λ2 = 2,
λ3 − 1 = µ1 = 1, dvs. λ3 = 2,
λ4 − 1 = µ2 = 3, dvs. λ4 = 4.

For λ1 = 0 we reduce,

M − λ1I =









2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2









∼









1 1 1 1
0 1 1 2
0 1 −1 0
0 0 0 0









∼









1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0









.
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An eigenvector is e.g. v1 = (1,−1,−1, 1).

For λ2 = λ3 = 2 we reduce,

M − λ2I =









0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0









∼









1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0









.

Two linearly independent eigenvectors, which span the eigenspace, are e.g.

v2 = (1, 0, 0,−1) and v3 = (0, 1,−1, 0).

For λ4 = 4 we reduce,

M − λ4I =









−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2









∼









0 0 0 0
1 0 −2 1
0 2 −2 0
0 1 1 −2









∼









1 0 −2 1
0 1 −1 0
0 0 1 −1
0 0 0 0









∼









1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0









An eigenvector is e-g. v4 = (1, 1, 1, 1).

3. If we apply

q1 =
1
2
(1,−1,−1, 1), q2 =

1√
2
(1, 0, 0,−1),

q3 =
1√
2
(0, 1,−1, 0), q4 =

1
2
(1, 1, 1, 1)

as an orthonormal basis, the map is written in the form

f(x) =









0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

















x1

x2

x3

x4









.

Clearly, dim f(R3) = 3, and

f(R3) = span{v2,v3,v4}
= {s(1, 0, 0,−1) + t(0, 1,−1, 0) + u(1, 1, 1, 1) | s, t, u ∈ R}
= {(s + u, t + u,−t + u,−s + u) | s, t, u ∈ R}.

4. It follows from the above that v1 = (1,−1,−1, 1) is orthogonal on the range, hence an equation
of the range is

v1 · x = x1 − x2 − x3 + x4 = 0.
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Example 3.36 Concerning a linear map f : C3 → C3 it is given that its eigenvalues are λ1 = 1,
λ2 = 1 + i and λ3 = 1 − i. The corresponding eigenvectors are v1 = (1, 1, 0), v2 = (0, 1, i) and
v3 = (0, 1,−i).

1. Find the image vector f(w), where w = v1 +v2 +v3, and find a vector v with the image vector
f(v) = (0, 2i, 2i).

2. Find the kernel of the map, the dimension of the range, as well as the characteristic polynomial.

(Hint: Apply e.g. the matrix of f with respect to the basis (v1,v2,v3)).

3. Find the matrix of f with respect to the usual basis of C3.

1. Given that

f(v1) = v1, f(v2) = (1 + i)v2, f(v3) = (1 − i)v3,

such that

f(w) = f(v1) + f(v2) + f(v3) = v1 + (1 + i)v2 + (1 − i)v3

= (1, 1, 0) = {(1 + i)(0, 1, i) + (1 − i)(0, 1,−i)}
= (1, 1, 0) = 2Re{(1 + i)(0, 1, i)}
= (1, 1, 0) + 2Re{(0, 1 + i, i − 1)} = (1, 1, 0) + 2(0, 1,−1)
= (1, 3, 2).

We infer from

(0, 2i, 2i) = i(v2 + v3) + (v2 − v3) = (1 + i)v2 − (1 − i)v3

= f(v2) − f(v3) = f(v2 − v3),

that v = v2 − v3 = (0, 0, 2i).

2. The range is of dimension 3, because all three eigenvalues are simple. Thus, the kernel must be
{0}.

The characteristic polynomial has the eigenvalues as roots, so it is given by

(λ − λ1)(λ − λ2)(λ − λ3) = (λ − 1)(λ − 1 − i)(λ − 1 + i)
= (λ − 1)(λ2 − 2λ + 2) = λ3 − 3λ2 + 4λ − 2,

where we in practice should keep the factorization.

3. It follows from

(1, 0, 0) = v1 − 1
2
v2 −

1
2
v3,

(0, 1, 0) =
1
2
v2 +

1
2
v3,

(0, 0, 1) = − i

2
v2 +

i

2
v3,
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that

f(e1) = v1 −
1
2
(1 + i)v2 −

1
2
(1 − i)v3 = v1 − Re(1 + i)v2

= (1, 1, 0) − Re(0, 1 + i, i − 1) = (1, 1, 0) − (0, 1,−1) = (1, 0, 1),

f(e2) =
1
2
(1 + i)v2 +

1
2
(1 − i)v3 = Re(1 + i)v2 = (0, 1,−1),

f(e3) = − i

2
(1 + i)v2 +

i

2
(1 − i)v3 = − Re(i(1 + i)v2)

= − Re(0, i − 1,−1 − i) = (0, 1, 1).

The columns of the matrix are f(e1), f(e2), f(e3), hence

M =





1 0 0
0 1 1
1 −1 1



 .

97

Download free eBooks at bookboon.com



                                
99 

 
Linear Algebra Examples c-2 3. Linear maps

Example 3.37 Consider the vector space R4 with the usual scalar product, and the linear map
f : R4 → R4, which with respect to the usual basis of R4 is given by the matrix equation









y1

y2

y3

y4









=









3 −3 −1 1
1 3 −3 −1

−1 1 3 −3
−3 −1 1 3

















x1

x2

x3

x4









.

1. Find the kernel of f and the dimension of the range f(R4).

Prove that every vector of ker f is orthogonal on every vector from f(R4), and then infer that

f(R4) =
{

y ∈ R4 | 〈x,y〉 = 0 for alle x ∈ ker f
}

.

2. Prove that the vectors

q1 =
1
2
(−1, 1,−1, 1), q2 =

1
2
(−1,−1, 1, 1), q3 =

1
2
(−1, 1, 1,−1),

form an orthonormal basis of the range f(R4).

Find a vector q4, such that (q1,q2,q3,q4) is an orthonormal basis of R4.

3. Express f(q1), f(q2), f(q3), f(q4) as linear combinations of q1, q2, q3, q4.

Find the matrix of f with respect to the basis (q1,q2,q3,q4).

4. Find all the eigenvalues and the corresponding eigenvectors of f .

(Hint: One may apply the result of 3)).

1. The sum of all columns is 0, hence (1, 1, 1, 1) belongs to ker f .

Then we get by reduction

A =









3 −3 −1 1
1 3 −3 −1

−1 1 3 −3
−3 −1 1 3









∼









1 3 −3 −1
0 −12 8 4
0 4 0 −4
0 0 0 0









∼









1 3 −3 −1
0 3 −2 −1
0 1 0 −1
0 0 0 0









∼









1 0 −1 0
0 1 0 −1
0 0 −2 2
0 0 0 0









∼









1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0









,

which is of rank 3, so dim f(R4) = 3, and

ker f = {s(1, 1, 1, 1) | s ∈ R}

is of dimension 1.

98

Download free eBooks at bookboon.com



                                
100 

 
Linear Algebra Examples c-2 3. Linear maps

The range is spanned by the columns of A. The sum of the rows is 0, hence every column is
orthogonal to (1, 1, 1, 1) ∈ ker f , whence

f(R4) =
{

y ∈ R4 | 〈x,y〉 = 0 for alle x ∈ ker f
}

.

2. It follows immediately by choosing q4 =
1
2
(1, 1, 1, 1) ∈ ker f that

〈qi,q4〉 = 0 for i = 1, 2, 3,

because the sum of the coordinates of each qi, i = 1, 2, 3, is 0. This implies that q1, q2, q3 all
lie in the range. Clearly, they are all normed, and since

〈q1,q2〉 =
1
4
(1 − 1 − 1 + 1) = 0,

〈q1,q3〉 =
1
4
(1 + 1 − 1 − 1) = 0,

〈q2,q3〉 =
1
4
(1 − 1 + 1 − 1) = 0,

they are even orthonormal. It follows by choosing q4 that q1,q2,q3,q4) is an orthonormal basis
of R4.

3. Now,

f(q1) =
1
2









3 −3 −1 1
1 3 −3 −1

−1 1 3 −3
−3 −1 1 3

















−1
1

−1
1









=
1
2









−4
4

−4
4









= 4q1,

f(q2) =
1
2









3 −3 −1 1
1 3 −3 −1

−1 1 3 −3
−3 −1 1 3

















−1
−1

1
1









=
1
2









0
−8

0
8









= 4q2 − 4q3,

f(q3) =
1
2









3 −3 −1 1
1 3 −3 −1

−1 1 3 −3
−3 −1 1 3

















−1
1
1

−1









=
1
2









−8
0
8
0









=









−4
0
4
0









= 4q2 + 4q3,

f(q4) = 0.

The matrix with respect to this basis is

M =









4 0 0 0
0 4 4 0
0 −4 4 0
0 0 0 0









.

4. We have that λ1 = 4 with the eigenvector q1, and λ4 = 0 with the eigenvector q4.

Any other possible eigenvector must be of the form q = q2 + αq3. We infer from 3),

f(q = f(q2) + αf(q3) = 4q2 − 4q3 + 4αq2 + 4αq3

= 4(α + 1)q2 + 4(α − 1)q3.
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The eigenvalue is λ = 4(α + 1), and the requirement is here that

α · 4(α + 1) = 4(α − 1),

thus α2 + α = α − 1, hence α2 = −1, and whence α = ±i.

Thus we have two complex eigenvalues. We shall, however, only work in R in this example, so
we find that

q1 where λ1 = 4 and q4 where λ4 = 0

are the only (real) eigenvectors with ncorresponding real eigenvalues.

Remark 3.1 For λ2 = i we get the complex eigenvector

q2 + iq3 =
1
2
(−1 − i,−1 + i, 1 + i, 1 − i).

For λ3 = −i we get the complex eigenvector

q3 − iq3 =
1
2
(−1 + i,−1 − i, 1 − i, 1 + i).

They are of course complex conjugated. ♦
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Example 3.38 Given in R4 the vectors

v1 = (1, 2, 4,−2), v2 = (1, 0, 3,−2), v3 = (−1, 1,−3, 5),

v4 = (−1, 0,−3, 1), and v5 = (−1, 4,−2, 7).

1. Prove that v1, v2, v3, v4 is a basis of R4, and find the coordinates of v5 with respect to this
basis.

2. A linear map f : R4 → R4 is given by

f(v1) = v1 + v2, f(v2) = −v1 + v2,
f(v3) = v3 + v4, f(v4) = −v3 + v4.

Find the matrix of f with respect to the basis v1, v2, v3, v4, and find the coordinates of f(v5)
with respect to basis v1, v2, v3, v4.

3. Prove that f does not have eigenvectors.

4. Prove that f maps the subspace U , spanned by v1 and v2 onto U .

1. Let us check if we can solve the equation

xv1 + yv2 + zv3 + tv4 = v5,

i.e. in matrix formulation








1 1 −1 −1
2 0 1 0
4 3 −3 −3

−2 −2 5 1

















x
y
z
t









=









−1
4

−2
7









.

We reduce,

(A | b) =









1 1 −1 −1
2 0 1 0
4 3 −3 −3

−2 −2 5 1

∣

∣

∣

∣

∣

∣

∣

∣

−1
4

−2
7









∼









1 1 −1 −1
2 0 1 0
1 0 0 0
0 0 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

−1
4
1
5









∼









1 0 0 0
0 1 −1 −1
0 0 1 0
0 0 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

1
−2

2
5









∼









1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

1
0
2

−1









∼









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1
1
2
1









.

From this we infer two things:

(a) Since the matrix of coefficients has rank 4, the vectors v1, v2, v3, v4 are linearly indepen-
dent, thus they form a basis of R4.
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(b) In this basis the coordinates of v5 are (1, 1, 2, 1).

2. The matrix is

M =









1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1









,

and the coordinates of f(v5) are








1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

















1
1
2
1









=









0
2
1
3









,

thus

f(v5) ∼ (0, 2, 1, 3).
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3. The characteristic polynomial is
{

(λ − 1)2 + 1
}2

with the two complex double roots λ = 1 ± i. There are no real eigenvalues, hence f does not
have eigenvectors.

4. This is obvious, because the image vectors v3 + v4 and −v3 + v4 lie in U and they are linearly
independent. Now, U has dimension 2, so f(v3) and f(v4) also span U .

Example 3.39 Let �a and �b be given vectors of V 3
g , for which

|�a| = |�b| =
√

2 and �a ·�b = 1.

We define a map f : V 3
g → V 3

g by

f(�x) = �a × �x + (�a · �x)�b for �x ∈ V 3
g .

1. Prove that f is a linear map.

2. Now, put �c = �a ×�b.

Explain why �a, �b, �c form a basis of the vector space V 3
g , and find the matrix of f with respect to

this basis.

3. Find all eigenvectors of f , expressed by the vectors �a and �b.

4. Find the range f(V 3
g ).

1. It is obvious that f is linear:

f(�x + λ�y) = �a × (�x + λ�y) + (�a · {�x + λ�y})�b
= �a × �x + (�a · �x)�b + λ{�a × �y + (�a · �y)�b}
= f(�x) + λ(�y).

2. It follows from �a ·�b = 1 �= 2 = |�a|2 = |�b|2, that �a and �b are linearly independent, hence �c �= �0,
and �a, �b, �c are linearly independent, so they form a basis of V g

3 .

Using �a · �a = |�a|2 = 2 we compute

f(�a) = �a × �a + (�a · �a)�b = 2�b,

f(�b) = �a ×�b + (�a ·�b)�b = �b + �c,

f(�c) = �a × (�a ×�b) + (�a · (�a ×�b))�b

= (�a ·�b)�a − (�a · �a)�b +�0 = �a − 2�b,

hence the matrix with respect to the basis �a, �b, �c is

A =





0 0 1
2 1 −2
0 1 0



 .
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3. The characteristic polynomial is

det(A − λI) =

∣

∣

∣

∣

∣

∣

−λ 0 1
2 1 − λ −2
0 1 −λ

∣

∣

∣

∣

∣

∣

= −λ

∣

∣

∣

∣

1 − λ −2
1 −λ

∣

∣

∣

∣

+
∣

∣

∣

∣

2 1 − λ
0 1

∣

∣

∣

∣

= −λ{λ(λ − 1) + 2} + 2 = −λ3 + λ2 − 2λ + 2
= −(λ − 1){λ2 + 2}.

It follows that λ = 1 is the only real eigenvalue. It follows from the reduction

A − I =





−1 0 1
2 0 −2
0 1 −1



 ∼





1 0 −1
0 1 −1
0 0 0





that the coordinates of the eigenvector is (1, 1, 1), hence

�a +�b + �c

is an eigenvector.

4. Clearly, A is of rank 3, so the range is all of V 3
g ,

f(V 3
g ) = V 3

g .
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Example 3.40 A linear map f : R4 → R4 is with respect to the usual basis of R4 given by the matrix

F =









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0









.

1. Prove that the kernel ker f has dimension 2, and that the vectors

q1 =
1
3
(0, 2, 2, 1) and q2 =

1
3
(2, 0,−1, 2)

form an orthonormal basis of ker f (where we use the usual scalar product of R4).

2. Prove that q3 =
1
3
(2, 1, 0,−2) is orthogonal on every vector of ker f .

3. Find the vector q4, such that (q1,q2,q3,q4) is an orthonormal basis of R4.

4. Find f(q3) and f(q4), and the matrix of f with respect to the basis (q1,q2,q3,q4).

1. First we reduce,

F =









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0









∼









1 3 −2 −2
−5 0 −2 4
−1 2 −2 0

2 −4 4 0









∼









1 3 −2 −2
0 15 −12 −6
0 5 −4 −2
0 −10 8 4









∼









1 3 −2 −2
0 5 −4 −2
0 0 0 0
0 0 0 0









,

which is clearly of rank 2, so the kernel is of dimension 4 − 2 = 2.

Check:

4Fq1 =









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0

















0
2
2
1









=









10 − 8 − 2
0 − 4 + 4
4 + 0 − 4
−8 + 8 + 0









=









0
0
0
0









and

3Fq2 =









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0

















2
0

−1
2









=









0 + 0 + 4 − 4
−10 + 0 + 2 + 8
8 + 0 + 0 − 8
4 + 0 − 4 + 0









=









0
0
0
0









,

hence both q1 and q2 belong to ker f . Since

q1 · q2 =
1
9
(0 + 0 − 2 + 2) = 0,
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they are orthogonal and in particular linearly independent, so they span ker f . Since

‖q1‖ =
1
3
√

4 + 4 + 1 = ‖q2‖ = 1,

the vectors q1, q2 form an orthonormal basis of ker f .

2. Obviously, ‖q‖ = 1. Since

q3 · q1 =
1
9
(0 + 2 + 0 − 2) = 0 and q3 · q2 =

1
9
(4 + 0 + 0 − 4) = 0,

the vector q3 is orthogonal to both q1 and q2, hence to all of ker f .

3. If we choose v = e1, then clearly e1 is linearly independent of q1, q2, q3. Then we get by using
the Gram-Schmidt method,

e1 − (e1 · q1)q1 − (e1 · q2)q2 − (e1 · q3)q3

= (1, 0, 0, 0) − 2
9
(2, 0,−1, 2) − 2

9
(2, 1, 0,−2)

= (1, 0, 0, 0) − 2
9
(4, 1,−1, 0) =

2
9
(1,−2, 2, 0).

This vector is orthogonal to q1, q2, q3. We get by norming q4 =
1
3
(1,−2, 2, 0).

4. Here,

f(q3) = Mq3 =
1
3









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0

















2
1
0

−2









=
1
3









9
−18

18
0









= 9q4

and

f(q4) = Mq4 =
1
3









0 5 −4 −2
−5 0 −2 4

4 2 0 −4
2 −4 4 0

















1
−2

2
0









=
1
3









−18
−9

0
18









= −9q3.

Since f(q1) = f(q) = 0, the matrix of f with respect to the basis (q1,q2,q3,q4) is given by








0 0 0 0
0 0 0 0
0 0 0 −9
0 0 9 0









.
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Example 3.41 A linear map f : R4 → R4 is with respect to the usual basis of R4 given by the matrix

F =









1 0 0 −3
2 3 0 3

−2 −1 2 −3
0 0 0 4









.

1. Prove that the kernel ker f is of dimension 0.

2. Find the eigenvalues of f , and show that there are two of the eigenvectors which form an angle
of

π

6
, another two which form an angle of

π

4
, and two which form an angle of

π

3
. We assume

here that the vector space R4 has the usual scalar product.

3. Prove that it is possible to choose a basis of R4 from the set of eigenvectors and find the matrix
of f with respect to this basis.

4. Find a regular matrix V and a diagonal matrix Λ, such that V−1FV = Λ.

1. The characteristic polynomial of F is

det(F − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

1 − λ 0 0 −3
2 3 − λ 0 3
−2 −1 2 − λ −3
0 0 0 4 − λ

∣

∣

∣

∣

∣

∣

∣

∣

= (4 − λ)

∣

∣

∣

∣

∣

∣

1 − λ 0 0
2 3 − λ 0
−2 −1 2 − λ

∣

∣

∣

∣

∣

∣

= (λ − 1)(λ − 2)(λ − 3)(λ − 4).

Since λ = 0 is not a root of this polynomial, the kernel ker f has dimension 0.

2. The eigenvalues are λ1 = 1, λ2 = 2, λ3 = 3 and λ4 = 4, are all simple.

For λ1 = 1 we reduce

F − λ1I =









0 0 0 3
2 2 0 3

−2 −1 1 −3
0 0 0 3









∼









0 0 0 1
2 2 0 0
0 1 1 0
0 0 0 0









∼









0 0 0 1
1 0 −1 0
0 1 1 0
0 0 0 0









.

An eigenvector is v1 = (1,−1, 1, 0) and its length is
√

3.

For λ2 = 2 we get

F − λ2I =









−1 0 0 −3
2 1 0 3

−2 −1 0 −3
0 0 0 2
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with the obvious eigenvector v2 = (0, 0, 1, 0).

For λ3 = 3 we get

F − λ3I =









−2 0 0 −3
2 0 0 3

−2 −1 −1 −3
0 0 0 1









with the obvious eigenvector v3 = (0,−1, 1, 0) of length
√

2.

For λ4 = 4 we reduce

F − λ4I =









−3 0 0 −3
2 −1 0 3

−2 −1 −2 −3
0 0 0 0









∼









1 0 0 1
0 −1 0 1
0 −1 −2 −1
0 0 0 0









∼









1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0









where the eigenvector is v4 = (1,−1, 1,−1) of length 2.
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Thus

λ = 1, q1 =
1√
3
(1,−1, 1, 0),

λ2 = 2, q2 = (0, 0, 1, 0),

λ3 = 3, q3 =
1√
2
(0,−1, 1, 0),

λ4 = 4, q4 =
1
2
(1,−1, 1,−1).

Then

q1 · q2 =
1√
3
, q1 · q3 =

1√
6
· (−2) = −

√

2
3
,

q1 · q4 =
1

2
√

3
(1 + 1 + 1) =

√
3

2
, q2 · q3 =

1√
2
,

q2 · q4 =
1
2
, q3 · q4 =

1
2
√

2
· (+2) =

1√
2
.

Since cos
π

6
=

√
3

2
, the angle between q1 and q4 and

π

6
.

Since cos
π

4
=

1√
2
, the angle between q3 and q4, and between q2 and q3 is

π

4
.

Since cos
π

3
=

1
2
, the angle between q2 and q4 is

π

4
.

3. The claim follows from that q1, q2, q3, q4 span all of Rr.

The matrix is

Λ =









1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4









.

4. We still have to find V. The columns of V are q1, q2, q3, q4, hence

V =











1√
3

0 0 1
2

− 1√
3

0 − 1√
2

− 1
2

1√
3

1 1√
2

1
2

0 0 0 − 1
2











.
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Example 3.42 A linear map f : R3 → R3 has the matrix (with respect to the usual basis of R3):

A =





4 −8 12
−1 2 −3
−2 4 −6



 .

1. Find parametric descriptions of the kernel ker f and the range f(R3).

2. Find all eigenvalues and corresponding eigenvector of f .

3. Explain why A cannot be diagonalized.

1. We get by reduction,

A =





4 −8 12
−1 2 −3
−2 4 −6



 ∼





1 −2 3
0 0 0
0 0 0





which is of rank 1, so ker f has the dimension 3 − 1 = 2. A parametric description is

0 = (1,−2, 3) · (x, y, z) = x − 2y + 3z.

Putting v = (4,−1,−2), it follows that A = (v − 2v 3v), thus the range is

f(R3) = {xv − 2yv + 3zv | x, y, z ∈ R}
= {(x − 2y + 3z)v | x, y, z ∈ R}
= {sv | s ∈ R}.

2. The characteristic polynomial is

det(A − λI) =

∣

∣

∣

∣

∣

∣

4 − λ −8 12
−1 2 − λ −3
−2 4 −6 − λ

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

λ − 4 8 −12
1 λ − 2 3
2 −4 λ + 6

∣

∣

∣

∣

∣

∣

= {(λ−4)(λ−2)(λ+6)+48+48+24λ−48+12λ−48−8λ−48}
= −

{(

λ2 − 6λ + 8
)

(λ + 6) + 28λ − 48
}

= −
{

λ3 − 36λ + 8λ + 48 + 28λ − 48
}

= −λ3,

hence λ = 0 is a root of algebraic multiplicity 3, and only of geometric multiplicity 2.

The kernel ker f is equal to the complete set of eigenvectors.

3. Since the algebraic and the geometric multiplicities are not equal, A cannot be diagonalized.
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Example 3.43 Let a be a real number. A linear map f : R3 → R3 is assumed to satisfy

f(v1) = v2, f(v1 − v2) = a(v1 − v), f(v3) = v3,

where

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

are vectors in R3.

Furthermore, given the matrix

B =





0 −a 0
1 a + 1 0
0 0 1



 .

1. Prove that (v1,v2,v3) is a basis of R3.

2. Explain why B is the matrix of f with respect to the basis (v1,v2,v3).

3. Find the eigenvalues of B.

4. Show that B is similar to a diagonal matrix when a �= 1, while B cannot be diagonalized for
a = 1.

5. Find the matrix of f with respect to the usual basis of R3.

1. Since

det(v1 v2 v3) =

∣

∣

∣

∣

∣

∣

1 1 1
1 1 0
1 0 0

∣

∣

∣

∣

∣

∣

= −1 �= 0,

the vectors v1, v2, v3 are linearly independent, hence they form a basis of R3.

2. We infer from

f(v1 − v2) = av1 − av2 = f(v1) − f(v2) = v2 − f(v2)

that

f(v2) = v2 − av1 + av2 = −av1 + (1 + 1)v2.

The matrix of f is

(f(v1) f(v2) f(v3)) =





0 −a 0
1 a + 1 0
0 0 1



 = B.

3. The characteristic polynomial is

det(B − λI) =

∣

∣

∣

∣

∣

∣

−λ −a 0
1 a + 1 − λ 0
0 0 1 − λ

∣

∣

∣

∣

∣

∣

= −(λ − 1)
∣

∣

∣

∣

λ a
−1 λ − a − 1

∣

∣

∣

∣

= −(λ − 1)
∣

∣

∣

∣

λ a
λ − 1 λ − 1

∣

∣

∣

∣

= −(λ − 1)2(λ − a),

hence the three eigenvalues are 1, 1, a.
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4. If a �= 1, we get the reduction

B − 1 · I =





−1 −a 0
1 a 0
0 0 0



 ∼





1 a 0
0 0 0
0 0 0



 ,

which is of rank 1. Two linearly independent eigenvectors are e.g. (a,−1, 0) and (0, 0, 1).

Since λ = a is a simple eigenvalue, there exists an eigenvector, hence B can be diagonalized for
a �= 1.

Remark 3.2 For the sake of completeness we here add the necessary reduction

B − aI =





−a −a 0
1 1 0
0 0 1



 ∼





1 1 0
0 0 1
0 0 0



 .

An eigenvector is e.g. (1,−1, 0). ♦

If a = 1, then λ = 1 is a triple root, and

B − 1 · I =





−1 −1 0
1 1 0
0 0 0



 ∼





1 1 0
0 0 0
0 0 0



 .

The geometric multiplicity of λ = 1 for a = 1 is again 2 �= 3, so B cannot be diagonalized for
a = 1.
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5. The matrix

M =





1 1 1
1 1 0
1 0 0



 ,

is transforming the v coordinates to the usual coordinates, where

M−1 =





0 0 1
0 1 −1
1 −1 1



 .

Thus

M−1BM =





0 0 1
0 1 −1
1 −1 1









0 −a 0
1 a + 1 0
0 0 1









1 1 1
1 1 0
1 0 0





=





0 0 1
0 1 −1
1 −1 1









−a −a 0
a + 2 a + 2 1

1 0 0





=





1 0 0
a + 1 a + 2 1

−2a − 1 −2a − 2 −1



 .
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Example 3.44 Given in R5 the four vectors

a1 = (1, 0, 3,−2,−1), a2 = (0, 1, 1,−3, 2),
a3 = (−1,−1,−2,−1, 1), a4 = (1,−2, 3,−2,−3).

1. Prove that the four vectors span a three-dimensional subspace U of R5 and that a1, a2, a3 is a
basis of U . Find a4 as a linear combination of a1, a2 and a3.

2. Let f : U → U be a linear map given by

f(a1 + a2) = 2a3 + 2a4,

f(a2 + a3) = 2a1 + 2a4,

f(a3 + a1) = 2a2 + 2a4.

Find the matrix A of f with respect to the basis (a1,a2,a3).

3. Prove that A is similar to a diagonal matrix.

1. Let B = (a1 a2 a3 | a4), all as columns. Then B is equivalent to

B =













1 0 −1
0 1 −1
3 1 −2

−2 −3 −1
−1 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
−2

3
−2
−3













∼













1 0 −1
0 1 −1
0 1 1
0 −3 −3
0 2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
−2

0
0

−2













∼













1 0 −1
0 1 0
0 0 1
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
−1

1
0
0













∼













1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
−1

1
0
0













.

We infer that span(a1,a2,a3,a4) = span(a1,a2,a3) is a three-dimensional subspace U and that

a4 = 2a1 − a2 + a3.

Check:

2a1 − a2 + a3 = (2, 0, 6,−4,−2) − (0, 1, 1,−3, 2) + (−1,−1,−2,−1, 1)
= (2 − 0 − 1, 0 − 1 − 1, 6 − 1 − 2,−4 + 3 − 1,−2 − 2 + 1)
= (1,−2, 3,−2,−3)
= a4. ♦

2. Since f is linear, we get

f(a1) + f(a2) = 2a3 + 2a4,
f(a2) + f(a3) = 2a1 + 2a4,

f(a1) + f(a3) = 2a2 + 2a4,
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and

f(a1) − f(a3) = −2a1 + 2a3,
f(a1) − f(a2) = −2a1 + 2a2,

f(a2) − f(a3) = −2a2 + 2a3,

hence

f(a1) = −a1 + a2 + a3 + a4 = a1 + 2a3,

f(a2) = a1 − a2 + a3 + a4 = 3a1 − 2a2 + 2a3,

f(a3) = a1 + a2 − a3 + a4 = 3a1.

The matrix is

A =





1 3 0
0 −2 0
2 2 3



 .

3. Then by reduction,

A =





1 3 0
0 −2 0
2 2 3



 ∼





1 0 0
0 −2 0
0 0 3



 ,

and A is similar to a diagonal matrix.
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Alternatively,

det(A − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 3 0
0 −2 − λ 0
2 2 3 − λ

∣

∣

∣

∣

∣

∣

= (3 − λ)
∣

∣

∣

∣

1 − λ 3
0 −2 − λ

∣

∣

∣

∣

= −(λ − 3)(λ − 1)(λ + 2).

The characteristic polynomial has 3 simple real roots, hence A is similar to a diagonal matrix.

Example 3.45 Let f : R2 → R2 denote the linear, which in the usual basis (e1, e2) of R2 is given by
the matrix description

ey =
(

1 −1
3 −7

)

ex.

Furthermore, let b1 = (1, 1) and b2 = (2, 1).

1. Prove that (b1,b2) is a basis of R2 and find the matrix description of f with respect to this
basis.

2. Let g : R2 × R2 → R be the bilinear function, which in the usual basis (e1, e2) of R2 is given by

g(x,y) = exT

(

1 −1
3 −7

)

ey.

Find the matrix of g with respect to the basis (b1,b2).

1. We infer from

|b1 b2| =
∣

∣

∣

∣

1 2
1 1

∣

∣

∣

∣

= −1 �= 0,

that b1 and b2 are linearly independent, hence (b1,b2) is a basis of R2.

We have of course

ex = eMb bx =
(

1 2
1 1

)

bx,

where

bMe =
(

1 2
1 1

)−1

=
(

−1 2
1 −1

)

,

hence

by = bMe ey =
(

−1 2
1 −1

) (

1 −1
3 −7

) (

1 2
1 1

)

bx.

Summing up we get

by =
(

−8 −3
4 2

)

bx.
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2. Here,

g(x,y) = exT

(

1 −1
3 −7

)

bxT

= bxT

(

1 1
2 1

)(

1 −1
3 −7

)(

1 2
1 1

)

by

= bxT

(

1 1
2 1

)(

0 1
−4 −1

)

by = bxT

(

−4 0
−4 1

)

by.

Example 3.46 Let f : R3 → R3 denote the linear map, which in the usual basis of R3 is given by
the matrix

A =





1 2 −1
2 3 −1
2 3 −1



 .

1. Check if x = (1, 2, 2) an eigenvector of f .

2. Check if λ = 1 is an eigenvalue of f .

3. Now, given that λ = 0 is an eigenvalue of f .

Find the geometric multiplicity of the eigenvalue λ = 0.

4. Does y = (0, 3, 1) belong to the range of f?

1. By a mechanical insertion,

Ax =





1 2 −1
2 3 −1
2 3 −1









1
2
2



 =





1 + 4 − 2
2 + 6 − 2
2 + 6 − 2



 =





3
6
6



 = 3





1
2
2



 .

We see that x = (1, 2, 2) is an eigenvector of the eigenvalue λ = 3.

2. By reduction,

A − 1 · I =





0 2 −1
2 2 −1
2 3 −2



 ∼





1 0 0
0 2 −1
0 −1 0



 ∼





1 0 0
0 1 0
0 0 1



 ,

so λ = 1 is not an eigenvalue.

(Alternatively one could here start by finding the characteristic polynomial and then show
that λ = 1 is not a root. ♦)

3. We get by reduction,

A − 0 · I =





1 2 −1
2 3 −1
2 3 −1



 =





1 2 −1
0 −1 1
0 0 0



 ∼





1 0 1
0 1 −1
0 0 0



 .

The rank here is 2, hence the geometric multiplicity is 3 − 2 = 1
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4. By reduction,

(A | y) =





1 2 −1
2 3 −1
2 3 −1

∣

∣

∣

∣

∣

∣

0
3
1



 ∼





1 2 −1
0 −1 1
0 0 0

∣

∣

∣

∣

∣

∣

0
3

−2



 .

The matrix of coefficients is of rank 2, and the total matrix is of rank 3, hence the equation
Ax = y does not have solutions, and y does not belong to the range.

Example 3.47 A map f : R2 → R2 is given by

f(x) = x − 〈x,y〉y,

where y =
(

1√
2
,

1√
2

)

, and 〈x,y〉 is the usual scalar product of x and y i R2.

1. Prove that f is linear.

2. Find the matrix eFe of f with respect to the usual basis of R2.

3. Find a basis of ker f .

4. Find a basis of the range f(R2).

1. The linearity is obvious,

f(x + λz) = (x + λz) − 〈x + λz,y〉y
= (x − 〈x,y〉y) + λ(z − 〈z,y〉y) = f(x) + λf(z).

2. It follows from

f(e2) = e2 − 〈e2,y〉y = (0, 1) − 1√
2

(

1√
2
,

1√
2

)

=
1
2
(−1, 1),

that

eFe =
1
2

(

1 −1
−1 1

)

.

3. Since rank eFe = 1, we see that dim ker f = 2 − 1 = 1. Since

f(y = y − 〈y,y〉y = y − y = 0,

the vector y lies in the kernel, hence {y} is a basis of ker f .

4. A basis of f(R2) is
{

1√
2
(1,−1)

}

.
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Remark 3.3 Notice that

det(eFe − λI) =
∣

∣

∣

∣

1
2 − λ − 1

2
− 1

2
1
2 − λ

∣

∣

∣

∣

=
(

λ − 1
2

)2

−
(

1
2

)2

= λ(λ − 1),

thus λ = 0 and λ = 1 are the two eigenvalues.

Corresponding to the eigenvalue λ = 0 we have the eigenvector y =
(

1√
2
,

1√
2

)

, and corre-

sponding to the eigenvalue λ = 1 we have the orthogonal eigenvector
(

− 1√
2
,− 1√

2

)

. ♦
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Example 3.48 A linear map f : R4 → R4 is with respect to the usual basis described by the matrix

F =









1 0 1 2
2 1 0 5
1 3 1 5
4 0 −2 3









.

1. Find the LU factorization of F and indicate dim f(R4).

2. Prove that the four vectors

v1 = (1, 2, 1, 4), v2 = (0, 1, 3, 0), v3 = (0, 0, 1,−1), v4 = (0, 0, 0, 1)

form a basis of R4.

3. Find the matrix vFe (i.e. with respect to the usual basis in the domain and with respect to the
basis (v1,v2,v3,v4)).

1. We get by a simple Gauß reduction

F =









1 0 1 2
2 1 0 5
1 3 1 5
4 0 −2 3









∼









1 0 1 2
0 1 −2 1
0 3 0 3
0 0 −6 −5









∼









1 0 1 2
0 1 −2 1
0 0 6 0
0 0 −6 −5









∼









1 0 1 2
0 1 −2 1
0 0 6 0
0 0 0 −5









= U.

It follows from F = LU that

F =









1 0 1 2
2 1 0 5
1 3 1 5
4 0 −2 3









=









1 0 0 0
2 1 0 0
1 3 1 0
4 0 −1 1

















1 0 1 2
0 1 −2 1
0 0 6 0
0 0 0 −5









= LU.

Now, detF = detU = −30 �= 0, so dim f(R4) = 4.

2. The columns of F are v1, v2, v3, v4 and detF �= 0, hence v1, v2, v3, v4 are linearly independent,
hence they form a basis of R4.

3. The image of ei is vi, hence the matrix is vFe = I.
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Example 3.49 A linear map f of the vector space P2R+) into P3(R+) is given by

f(P (x)) =
∫ x

0

P (t) dt,

where Pn(R+) = (Pn(R+),+, R) denotes the vector space of real polynomials Pn(x), x ∈ R+ of degree
≤ n.

1. Compute f(1 + x + x2).

2. Find mFm of f with respect to the monomial basis in both P2(R+) and P3(R+).

3. Find the kernel ker f and the dimension of the range V = f(P2(R+)).

4. We define a linear map g of V into P2(R+) by

g(Q(x)) =
1
x

Q(x), Q(x) ∈ V.

Find the matrix mHm with respect to the monomial basis of the composite map g ◦ f of P2(R+)
into P2(R+).

5. Find the eigenvalues and the eigenvectors of the map g ◦ f .

1. We get by a direct computation

f(1 + x + x2) =
∫ x

0

(1 + t + t2) dt = x +
1
2

x2 +
1
3

x3.

2. The matrix is (cf. 1))

mFm =









0 0 0
1 0 0
0 1

2 0
0 0 1

3









.

3. Clearly, ker f = {0}, and

dimV = dim f(P2(R+)) = 3.

4. It follows immediately from 2) that

mHm =





1 0 0
0 1

2 0
0 0 1

3



 .

5. We infer from 4) that λ1 = 1 is an eigenvalue corresponding to P1(x) = 1, that λ2 =
1
2

is

an eigenvalue corresponding to P2(x) = x, and that λ3 =
1
3

is an eigenvalue corresponding to

P3(x) = x2.
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Example 3.50 Let f : R4 → R2 be the linear map, which in the usual bases of R4 and R2 is given
by the matrix

F =
(

1 0 1 −1
1 1 −1 1

)

.

1. Find the kernel of f .

2. Consider R4 with the usual scalar product.

Find an orthonormal basis of ker f .

1. We get by a reduction,

F =
(

1 0 1 −1
1 1 −1 1

)

∼
(

1 0 1 −1
0 1 −2 2

)

.

Choosing x3 = s and x4 = t as parameters we get for every element of ker f that

x1 = −s + t and x2 = 2s − 2t,

thus

x = (−s + t, 2s − 2t, s, t) = s(−1, 2, 1, 0) + t(1,−2, 0, 1)
= −s(1,−2,−1, 0) + t(1,−2,+, 1).

By changing sign of s we get

ker f = {s(1,−2,−1, 0) + t(1,−2, 0, 1) | s, t ∈ R},

hence ker f is spanned by the vectors (1,−2,−1, 0) and (1,−2, 0, 1).

2. Since v1 =
1√
6
(1,−2,−1, 0) is normed, and (Gram-Schmidt’s method)

(1,−2, 0, 1) − 1
6
〈(1,−2, 0, 1), (1,−2,−1, 0)〉(1,−2,−1, 0)

= (1,−2, 0, 1) − 1
6
(1+4)(1,−2,−1, 0)

=
1
6
(6−5,−12+10, 0+5, 6+0)

=
1
6
(1,−2, 5, 6)

is orthogonal to v1 and

‖(1,−2, 5, 6)‖ =
√

1 + 4 + 25 + 36 =
√

66,

we have

v2 =
1√
66

(1,−2, 5, 6).

An orthonormal basis of ker f is e.g. given by

v1 =
1√
6
(1,−2,−1, 0) and v2 =

1√
66

(1,−2, 5, 6).
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Example 3.51 Let f : R3 → R3 denote the linear map, which in the usual basis (e1, e2, e3) is given
by the matrix

eFe =





−4 2 2
2 −4 2
2 2 −4



 .

1. Find the kernel ker f .

2. Prove that u1 = (−4, 2, 2) and u2 = (2,−4, 2) form a basis of the range f(R3).

3. Consider R3 with the usual scalar product.

Prove that any vector of the kernel of f is orthogonal to every vector in the range of f .

4. Given a basis (b1,b2,b3), where

b1 = (1, 2, 0), b2 = (2, 3, 0), b3 = (0, 0, 1).

Find the matrices eMb and bMe of the change of coordinates.

5. Prove that

B =





−12 −10 −2
6 4 2
6 10 −4





is the matrix of f with respect to the basis (b1,b2,b3).

1. We get by some reductions,

eFe =





−4 2 2
2 −4 2
2 2 −4



 ∼





2 −1 −1
1 −2 1
0 0 0



 ∼





1 −2 1
0 3 −3
0 0 0



 ∼





1 −2 1
0 1 −1
0 0 0





∼





1 0 −1
0 1 −1
0 0 0





which has rank 2, hence dimker f = 3 − 2 = 1. A generating vector is (1, 1, 1), so

ker f = {s(1, 1, 1) | s ∈ R}.

2. Clearly, u1 and u2 are linearly independent and since they are columns of eFe they lie in the
range. Now, the range has dimension 2, hence u1 and u2 form a basis of f(R3).

3. Since 〈(1, 1, 1), (−4, 2, 2)〉 = 0 and 〈(1, 1, 1), (2,−4, 2)〉 = 0, any vector of ker f must be orthog-
onal to every vector of f(R3).

4. Since

eMb = (b1 b2 b3) =





1 2 0
2 3 0
0 0 1



 ,
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we infer that

bMe = (eMb)
−1 =





−3 2 0
2 −1 0
0 0 1



 .

5. Finally,

B = bMe eFe eMb

=





−3 2 0
2 −1 0
0 0 1









−4 2 2
2 −4 2
2 2 −4









1 2 0
2 3 0
0 0 1





=





16 −14 −2
−10 8 2

2 2 −4









1 2 0
2 3 0
0 0 1



 =





−12 −10 −2
6 4 2
6 10 −4



 ,

which should be proved.
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