Nar	ne	Printed Pages:02			
Stu	dent Admn	. No.:			
		School of Basic Sciences			
		Backlog Examination, June 2023 [Programme: B.Tech (CSE)] [Semester: IV] [Batch: All]			
Cou	irse Title:		Max Marks: 100		
	irse Code: 1	Time: 3 Hrs.			
Inst	Instructions: 1. All questions are compulsory.				
		2. Assume missing data suitably, if any.			
			K		
			Level	COs	Marks
		SECTION-A (15 Marks) 5 Marks ea	ch		
	F	ind the inverse Laplace transform of the following function:			
1.		$F(s) = \frac{3}{s+4}$	K1	CO2	5
•			K2	CO1	5
2.		Estimate (t sin at).	K2	COI	5
3.	Use Parti	al fraction to find the inverse Laplace transform of $\frac{1}{s^2 - 5s + 6}$	K1	CO2	5
		SECTION-B (40 Marks) 10 Marks ea	ch		
4	Find the I	Fourier sine and cosine transform of e^{-ax} , $x \ge 0$, $a > 0$.	K1	CO3	10
4.	Find the i	-ouner sine and cosine transform of	K 1	005	10
	Solve the	Fourier cosine integral (representation) of the following function:			10
5.	f(x) =	$= \sin x \text{if } 0 \le x \le \pi$	K3	CO3	
	=	$= 0$ if $x > \pi$			
(Develop t	he Laplace transform of $sin2t \ cos4t$.	K3	CO1	10
6.			K.J	01	
	-	nvolution theorem , examine the inverse Z transform of the function:			10
	Tonowing				10
		$\frac{z^2}{(z-a)(z-b)}$			
_		•	K4	CO3	
7.	Usina coi	OR nvolution theorem, examine inverse Z transform of the following	N 4	COS	
	function	g			
		z^2			
		$\frac{z^2}{(z-1)(z-3)}$			
		ich			
	The m	SECTION-C (45 Marks) 15 Marks ea nanager of a multinational company and the union of workers are			
		g to sit down at the bargaining table to work out the details of a new			
0	contract	K5	CO5	15	
8.		nts of the new contract. Let us call union proposals "Proposal 1", osal 2" and "Proposal 3", and manager's proposals "Contract A",	КЭ	005	15
		tract B" and "Contract C". Both parties are aware of the financial			
		ts of each proposal-contract combination. The reward matrix is:			

	ProposalContractABC18.57.0212.09.59.039.011.08.0Reward matrixEvaluate the value of the game.			
9.	$\begin{array}{l} \text{Minimize} Z = 600 x_1 + 500 x_2 \\ \text{Subject to} \\ \text{(i)} 2x_1 + x_2 \geq 80, \\ \text{(ii)} x_1 + 2x_2 \geq 60 \\ \text{and} x_1, x_2 \geq 0 \end{array}$	K4	CO4	15
10	Analyze the following assignment problem: $\begin{bmatrix} A & B & C & D \\ 1 & 10 & 25 & 15 & 20 \\ 2 & 15 & 30 & 5 & 15 \\ 3 & 35 & 20 & 12 & 24 \\ 4 & 17 & 25 & 24 & 20 \end{bmatrix}$ OR Find the initial basic feasible solution of the following transportation problem using VAM and find the cost: $\frac{D1D2D3D4D5Supply}{O1 & 4 & 7 & 0 & 3 & 6 & 14 \\ O2 & 1 & 2 & 3 & 3 & 8 & 9 \\ O3 & 3 & 1 & 4 & 0 & 5 & 17 \\ Demand 8 & 3 & 8 & 13 & 8 & \\ \hline$	K4	CO5	15