School of Liberal Arts

Economics ETE - Aug 2023

Time : 3 Hours

Marks : 50

Tim	e : 3 Hours	Ма
	SEM III - A080303T - Mathematical Economics Your answer should be specific to the question asked Draw neat labeled diagrams wherever necessary	
1. 2. 3.	Illustrate global maxima and global minima. Suppose g(x) and h(x) both are the functions then Illustrate Product rule of derivative. Differentiate the following equations $Q = 36KL - K^2 - L^2$ $z = x^3 + 5xy^2 + y^3$	K1 CO1 (2) K2 CO2 (2) K3 CO3 (2)
4.	Given that $TR = 80q - 2q^2$, derive a function for MR.	K4 CO4 (2)
5.	Calculate the Determinant $A = \begin{bmatrix} 2 & 3 & 5 \\ 3 & 1 & 2 \\ 1 & 4 & 3 \end{bmatrix}$	K4 CO5 (2)
6. 7.	Define Saddle point. Find (a) the minors and (b) cofactors for the elements of the third row, given $\begin{bmatrix}9 & 11 & 4\\3 & 2 & 7\\6 & 10 & 4\end{bmatrix}$	K3 CO1 (5) K4 CO2 (5)
8.	Suppose the function you want to maximise is given as $\pi(q) = -1/2q^2 + 70q - 300$. Obtain the q that maximises $\pi(q)$.	K6 CO6 (6)
9.	(a) Find the critical points (b) Test whether the function is at a relative maximum or minimum. $z = 2y^3 - x^3 + 147x - 54y + 12$	K4 CO3 (8)
10.	Use Cramer's rule to solve given equations. $11p_1 - p_2 - p_3 = 31$ $-p_1 + 6p_2 - 2p_3 = 26$ $-p_1 - 2p_2 + 7p_3 = 24$	K5 CO4 (8)
11.	Use matrix algebra to solve for the unknown variables x_1, x_2 and x_3 given that $10x_1 + 3x_2 + 6x_3 = 76$ $4x_1 + 5x_3 = 41$ $5x_1 + 2x_2 + 2x_3 = 34$	K6 CO5 (8)