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ABSTRACT 
 
 
 Handwritten digit recognition is gaining a huge demand in the branch of computer vision. We are 

going to implement a better and accurate approach to perceive and foresee manually written digits 

from 0 to 9. A class of multilayer sustain forward system called Convolutional network is taken into 

consideration. A Convolutional network has a benefit over other Artificial Neural networks in 

extracting and utilizing the features data, enhancing the knowledge of 2D shapes with higher degree 

of accuracy and unvarying to translation,scaling and other distortions. The LeNet engineering was 

initially presented by LeCun et al in their paper.The creators excecution of LeNet was primarily 

focused on digit and character recognition.LeNet engineering is clear and simple making it easy for 

implementation of CNN‘s. We are going to take the MNIST dataset for training and recognition. 

The primary aim of this dataset is to classify the handwritten digits 0-9 . We have a total of 70,000 

images for training and testing. Each digit is represented as a 28 by 28 grey scale pixel intensities 

for better results. The digits are passed into input layers of LeNet and then into the hidden layers 

which contain two sets of convolutional,activation and pooling layers. Then finally it is mapped 

onto the fully connected layer and given a softmax classifier to classify the digits.We are going to 

implement this network using keras deep learning inbuilt python library. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  

 

 

 

 

              

LIST OF FIGURES 

 

 

2.1     K- NEAREST NEIGHBOUR     5 

2.2    FULLY CONNECTED NEURAL NETWORK   6 

2.3    SIGMOID ACTIVATION FUNCTION    7 

2.4    RELU ACTIVATION FUNCTION    7 

4.1    DETECTED HANDWRITTEN DIGIT    11 

5.1    CONVOLUTIONAL NEURAL NETWORK   12 

5.2    DEEP NEURAL NETWORK     13 

5.3    ARCHITECTURE of CNN     16 

6.1    OUTPUT 1       17 

6.2    OUTPUT 2       18 

6.3    OUTPUT 3       19 

6.4    OUTPUT 4       20 

6.5    OUTPUT 5       21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



7 | P a g e  

 

 

 

 
LIST OF SYMBOLS/ ABBREVIATIONS 

 

 

ANN     Artificial Neural Network 

 CNN     Convolutional Neural Network 

 KNN     K- Nearest Neighbour 

 ᶲ     Activation Function 

 ᶲ(z)=            Sigmoid Activation Function 

 RELU    Rectifier Linear Unit 

 y=max(0, x)    Activation Function 

 SGD     Stochastic Gradient Descent 

 MNSIT    Modified National Institute of Standards  

and Technology database 

 CONV2D    Convolutional 2- dimension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 | P a g e  

 

           

 

CHAPTER 1 

 

INTODUCTION 

 
Handwriting recognition is the ability of a machine to receive and interpret handwritten input 

from multiple sources like paper documents, photographs, touch screen devices etc. Recognition of 

handwritten and machine characters is an emerging area of research and finds extensive applications 

in banks, offices and industries. The main aim of this project is to design expert system for , 

―HANDWRITTEN DIGIT RECOGNITION using DEEP LEARNING‖ that can effectively 

recognize a particular character of type format using the Artificial Neural Network approach. 

Neural computing Is comparatively new field, and design components are therefore less well specified 

than those of other architectures. Neural computers implement data par- allelism. Neural computer are 

operated in way which is completely different from the oper- ation of normal computers. 

 

1.1 Project Definition 

This application is useful for recognizing all character (digits) given as in input image. Once 

input image of character is given to proposed system, then it will recognize input character which is 

given in image. Recognition and classification of characters are done by Neural Network. The main 

aim of this project is to effectively recognize a particular character of type format using the Artificial 

Neural Network approach. 

1.2 Relevant Theory 

1.2.1 Benefits of Digiti Recognition : 
 

1.  In forensic application Handwritten digit recognition will be an effective method for 

evidence collection. 

2. It will also help to reduce noise from the original character. 

3. Our method develop accuracy in recognizing character in divert font and size. 

4. More set of sample invites more accuracy rate because of heavy training and testing session. 

 

1.2.2 What is Neural Network 

An Artificial Neural Network (ANN) is an information-processing paradigm that is in- spired by the 

way biological nervous systems, such as the brain, process information.The key element of this 

paradigm is the novel structure of the information processing system.  It is composed of large no. of 

highly interconnected processing element (neurons) working in union to solve specific problems. 

Learning in a Biological system involves adjustments to the synaptic connections that exist between 

the neuron. 

 

Handwritten digit dataset are vague in nature because there may not always be sharp and perfectly 
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straight lines. The main goal in digit recognition is feature extraction is to remove the redundancy from 

the data and gain a more effective embodiment of the word image through a set of numerical attributes. It 

deals with extracting most of the essential information from image raw data [6]. In addition the curves are 

not necessarily smooth like the printed characters. Furthermore, characters dataset can be drawn in 

different sizes and the orientation which are always supposed to be written on a guideline in an upright or 

downright point. Accordingly, an efficient handwritten recognition system can be developed by 

considering these limitations. It is quiet exhausting that sometimes to identify hand written characters as it 

can be seen that most of the human beings can‘t even recognize their own written scripts. Hence, there 

exists constraint for a writer to write apparently for recognition of handwritten documents. 

Before revealing the method used in conducting this research, software engineering module is first 

presented. Pattern recognition along with Image processing plays compelling role in the area of 

handwritten character recognition. The study [7], describes numerous types of classification of feature 

extraction techniques like structural feature based methods, statistical feature based methods and global 

transformation techniques. Statistical approaches are established on planning of how data are selected. It 

utilizes the information of the statistical distribution of pixels in the image. The paper [8], provided SVM 

based offline handwritten digit recognition system. Authors claim that SVM outperforms in the 

experiment. Experiment is carried out on NIST SD19 standard dataset. The study [9] provide the 

conversion of handwritten data into electronic data, nature of handwritten characters and the neural 

network approach to form machine competent of recognizing hand written characters. The study [10] 

addresses a comprehensive criterion of handwritten digit recognition with various state of the art 

approaches, feature representations, and datasets. However, the relationship of training set size versus 

accuracy/error and the dataset-independence of the trained models are analyzed. The presents convolution 

neural networks into the handwritten digit recognition research and describes a system which can still be 

considered state of the art. 
 

1.3  FEASIBILITY STUDY  

 

The aim of our feasibility study is to select the system that fits the most our performance requirements. We would 

like to determine if it is possible to develop our product in terms of resources and technicalities. Thus, we will 

analyze the problem and collect information for the product, including the data we will input to our system, how we 

will carry our process on that data, and the output we wish to obtain following our process, as well as the 

constraints applied on how the system behaves. On the technical level, our two main concerns will be finding the 

right data and finding and coding the right algorithms. As for the input data, we will use a famous handwritten 

digits dataset assembled by the National Institute of Standards and Technology and arranged by Yann Lecun, 

professor at NYU, available at http://yann.lecun.com/exdb/mnist/. It contains a training set of 60,000 examples and 

a testing set of 10,000 examples. They have been centered and size-normalized in fixed-size labeled images, each 

number in one image. Then, to input the data, the images will be scanned pixel by pixel by our program. Each pixel 

will have a value saying how dark its color is, and the value for each pixel will be put in an array. Then, the value 

of each element from the array will be fed to the input layer of our neural network. Each pixel value will be given 

to a unit from the input layer. We will then use different types of neural network algorithms and select the one that 

gives us the most precise predictions. Part of our work will consist of adapting the different codes for neural 

networks available to our program. 

 

1.4  Methods and Materials 

1.4.1 Multilayer Perceptions 
 

A neural network based classifier, called Multi- Layer perception (MLP), is used to classify the  digits. 

Multilayer perceptron consists of three different layers, input layer, hidden layer and output layer. Each 

of the layers can have certain number of nodes also called neurons and each node in a layer is onnected to 

all other nodes to the next layer [12]. For this reason it is also known as feed forward network. The 

number of nodes in the input layer depends upon the number of attributes present in the dataset. The 

number of nodes in the output layer relies on the number of apparent classes exist in the dataset. The 

convenient number of hidden layers or the convenient number of nodes in a hidden layer for a specific 

problem is hard to determine. But in general, these numbers are selected experimentally. In multilayer 
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perceptron, the connection between two nodes consists of a weight. During training process, it basically 

learns the accurate weight adjustment which is corresponds to each connection. For the learning purpose, 

it uses a supervised learning technique named as Back propagation algorithm. 

 

1.4.2 Support Vector Machine 

 

SVM or Support Vector Machine is a specific type of supervised ML method that intents to classify 

the data points by maximizing the margin among classes in a high-dimensional space [14]. SVM is a 

representation of examples as points in space, mapped due to the examples of the separate classes are 

divided by a fair gap that is as extensive as possible. After that new examples are mapped into that 

same space and anticipated to reside to a category based on which side of the gap they fall on [15]. 

The optimum algorithm is developed through a ―training‖ phase in which training data are adopted to 

develop an algorithm capable to discriminate between groups earlier defined by the operator (e.g. 

patients vs. controls), and the ―testing‖ phase in which the algorithm is adopted to blind-predict the 

group to which a new perception belongs [16]. It also provides a very accurate classification 

performance over the training records and produces enough search space for the accurate 

classification of future data parameters. Hence it always ensures a series of parameter combinations 

no less than on a sensible subset of the data. In SVM it‘s better to scale the data always; because it 

will extremely improve the results. Therefore be cautious with big dataset, as it may leads to the 

increase in the training time. 

 

1.4.3 Naive Bayes 

 

The Naive Bayes classifier [19] contributes a simple method, representing and learning probabilistic 

knowledge with clear semantics. It is termed naive due to it relies on two important simplifying 

assumes that predictive attributes are conditionally self-reliant given the class, and it considers that no 

hidden attributes influence the prediction method. It is a probabilistic classifier which relies upon 

Bayes theorem with robust and naive independence assumptions. It is one of the best basic text 

classification approaches with numerous applications in personal email sorting, email spam detection, 

sexually explicit content detection, document categorization, sentiment detection, language detection. 

Although the naïve design and oversimplified assumptions that this approach uses, Naive Bayes 

accomplishes well in many complicated real-world problems. All though it is often out performed by 

other approaches such as boosted trees, Max Entropy, Support Vector Machines, random forests etc, 

Naïve Bayes classifier is very potent as it is less computationally intensive (in both memory and 

CPU) and it needs a small extent of training data. Moreover, the training time with Naive Bayes is 

considerably smaller as opposed to alternative approaches.  
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CHAPTER 2 

 

LITERATURE SURVEY 
 

CNN is playing an important role in many sectors like image processing. It has a powerful impact on 
many fields. Even, in nano-technologies like manufacturing semiconductors, CNN is used for fault 
detection and classification. Handwritten digit recognition has become an issue of interest among 
researchers. There are a large number of papers and articles are being published these days about this 
topic. In research, it is shown that Deep Learning algorithm like multilayer CNN using Keras with 
Theano and Tensorflow gives the highest accuracy in comparison with the most widely used machine 
learning algorithms like SVM, KNN & RFC. Because of its highest accuracy, Convolutional Neural 
Network (CNN) is being used on a large scale in image classification, video analysis, etc. Many 
researchers are trying to make sentiment recognition in a sentence. CNN is being used in natural 
language processing and sentiment recognition by varying different parameters. It is pretty 
challenging to get a good performance as more parameters are needed for the large-scale neural 
network. Many researchers are trying to increase the accuracy with less error in CNN. In another 
research, they have shown that deep nets perform better when they are trained by simple back-
propagation. Their architecture results in the lowest error rate on MNIST compare to NORB and 
CIFAR10. Researchers are working on this issue to reduce the error rate as much as possible in 
handwriting recognition. In one research, an error rate of 1.19% is achieved using 3-NN trained and 
tested on MNIST. Deep CNN can be adjustable with the input image noise. Coherence recurrent 
convolutional network (CRCN) is a multimodal neural architecture. It is being used in recovering 
sentences in an image. Some researchers are trying to come up with new techniques to avoid 
drawbacks of traditional convolutional layer's. Ncfm (No combination of feature maps) is a technique 
which can be applied for better performance using MNIST datasets. Its accuracy is 99.81% and it can 
be applied for largescale data. New applications of CNN are developing day by day with many kinds of 
research. Researchers are trying hard to minimize error rates. Using MNIST datasets and CIFAR, error 
rates are being observed. To clean blur images CNN is being used. For this purpose, a new model was 
proposed using MNIST dataset. This approach reaches an accuracy of 98% and loss range 0.1% to 
8.5%. In Germany, a traffic sign recognition model of CNN is suggested. It proposed a faster 
performance with 99.65% accuracy. Loss function was designed, which is applicable for light-
weighted 1D and 2D CNN. In this case, the accuracies were 93% and 91% respectively. 
 

2.1   K-nearest neighbour classifier: 
 

 

A KNN classifier with a distance measure like Euclidean distance between the data sets input images is also 

capable of classification of digits but at higher error rate than a fully connected ML neural network. The key 

features of this classifier is that it requires no training time and no input from the programmer in terms of 

knowledge for designing the system. The big over head of this classifier is memory requirement and the 

classification or recognition time. We take into consideration that this nearest-neighbor system works on raw 

pixels instead of feature vectors. 
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   Fig 2.1  K- Nearest Neighbour 

 

 

KNN is the non-parametric method or classifier used for classification as well as regression problems. This is 

the lazy or late learning classification algorithm where all of the computations are derived until the last stage 

of classification, as well as this, is the instance-based learning algorithms where the approximation takes 

place locally. Being simplest and easiest to implement there is no explicit training phase earlier and the 

algorithm does not perform any generalization of training data. 

 

 

2.2     Fully Connected Multi-Layer Nueral Network:  

 
 

A Multi-Layer Neural Network with one or more number of hidden units is capable of classifying the digits 

in MNIST data set with a less than 2 % error rate on test set.This network extracts features based on the 

entire spatial domain of images hence the number of parameters required is very high. The problem with 

these networks is they tend to be over parameterized, in order of 100,000‘s which is unwanted when 

working with complex classification problems with complex data sets. 

One way of thinking about fully connected networks is that each fully connected layer effects a 

transformation of the feature space in which the problem resides. The idea of transforming the representation 

of a problem to render it more malleable is a very old one in engineering and physics. It follows that deep 

learning methods are sometimes called ―representation learning.‖ (An interesting factoid is that one of the 

major conferences for deep learning is called the ―International Conference on Learning Representations.‖) 

 

2.3 Handwritten Digit Recognition using Machine Learning. 
 

 

As using machine learning algorithms are used like KNN, SVM, Neural networks along with different 

parameters and feature scaling vectors, we also saw the different comparison among the classifiers in terms 

of the most important feature of accuracy and timing. Accuracy can alter as it depends on the splitting of 

training and testing data, and this can further be improved if the number of training and testing data is 

provided. There is always a chance to improve accuracy if the size of data increases. Every classifier has its 

own accuracy and time consumption. We can also include the fact that if the power of CPU changes to GPU, 

the classifier can perform with better accuracy and less time and better results can be observed. 

The performance of the classifier can be measured in terms of ability to identify a condition properly 

(sensitivity), the proportion of true results (accuracy), number of positive results from the procedure of 

classification as false positives (positive predictions) and ability to exclude condition correctly (specificity). 

In this, we saw a brief comparison to the classifiers of Machine learning and deep learning. 
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Till now, the algorithms of Deep learning have performed better in the application of Handwritten Digit 

Recognition. 

 

 

 
   Fig 2.2  Fully connected Neural Network 

 

2.4  Handwritten Digit Recognition using Convolutional Neural Networks in Python with 

Keras 

 

The MNIST problem is a dataset developed by Yann LeCun, Corinna Cortes and Christopher Burges for 

evaluating machine learning models on the handwritten digit classification problem. The dataset was 

constructed from a number of scanned document dataset available from the National Institute of Standards 

and Technology (NIST). This is where the name for the dataset comes from, as the Modified NIST or 

MNIST dataset. Images of digits were taken from a variety of scanned documents, normalized in size and 

centered. This makes it an excellent dataset for evaluating models, allowing the developer to focus on the 

machine learning with very little data cleaning or preparation required. Each image is a 28 by 28 pixel 

square (784 pixels total). A standard split of the dataset is used to evaluate and compare models, where 

60,000 images are used to train a model and a separate set of 10,000 images are used to test it. It is a digit 

recognition task. As such there are 10 digits (0 to 9) or 10 classes to predict. Results are reported using 

prediction error, which is nothing more than the inverted classification accuracy. Excellent results achieve a 

prediction error of less than 1%. State-of-the-art prediction error of approximately 0.2% can be achieved 

with large Convolutional Neural Networks. 

 

 

 

 

2.5 ACTIVATIONS (ᶲ) 

 

Activation functions are mathematical equations that determine the output of a neural network. The function 

is attached to each neuron in the network, and determines whether it should be activated (―fired‖) or not, 

based on whether each neuron‘s input is relevant for the model‘s prediction. Activation functions also help 

normalize the output of each neuron to a range between 1 and 0 or between -1 and 1. 

An additional aspect of activation functions is that they must be computationally efficient because they are 

calculated across thousands or even millions of neurons for each data sample. Modern neural networks use a 

technique called backpropagation to train the model, which places an increased computational strain on the 

activation function, and its derivative function. 

https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
http://www.nist.gov/
http://www.nist.gov/
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Sigmoid: 

The sigmoid activation function, also called the logistic function, is traditionally a very popular activation 

function for neural networks. The input to the function is transformed into a value between 0.0 and 1.0 

 

 

 

 
Fig 2.3  Sigmoid Activation Function 

 

 

 

 

 

Relu: 

ReLU stands for rectified linear unit, and is a type of activation function. Mathematically, it is defined as y = 

max(0, x). ... ReLU is the most commonly used activation function in neural networks, especially in CNNs. 
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Fig 2.4  Relu Activation Function 

 

 

The sigmoidal is the classical nonlinearity in fully connected networks, in recent years researchers have 

found that other activations, notably the rectified linear activation (commonly abbreviated ReLU or 

relu) σ ( x ) = max ( x , 0 ) work better than the sigmoidal unit. This empirical observation may be due to 

the vanishing gradient problem in deep networks. For the sigmoidal function, the slope is zero for almost all 

values of its input. As a result, for deeper networks, the gradient would tend to zero. For the ReLU function, 

the slope is nonzero for a much greater part of input space, allowing nonzero gradients to propagate. 
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CHAPTER 3 

 
REQUIREMENTS SPECIFICATION 

 

 

3.1 Functional requirements –  
 

Import the Modified National Institute of Science and Technology Dataset: 

 o Import dataset file directly to the program from a command that will download the dataset from its 

website 

 o Save the dataset file in the same directory as the program  

- Create the model  

 o Take the value of the color is the pixels  

 o Put the value of all the pixels in a one 

-dimensional array  

 o Build a Neural Network with a number of nodes in the input layer equal to the number of pixels in the 

arrays  

 o Activate the Neural Network  

 o Test the precision of the model in a testing set  

- Recognize handwritten number input  

 o Allow user to input a number using a touchscreen  

 o Predict in real-time the value of the number written  

 

3.2 Non-functional requirements –  

 

Windows Application  

- Using Python  

- Using Tensorflow 
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CHAPTER 4 

 

PROPOSED MODEL 

 

The purpose of this study is the development of system that takes handwritten English characters as input, 

process the input, extract the optimal features, train the neural network using either R esilient Back-

propagation or Scaled conjugate gradient, recognize the class of input text, and finally generate the 

computerized form of input text. 

Key rationale toward optical character recognition (OCR)  from handwritten image includes features 

extraction tech- - tion of characters based on the 

features. Previously, several  been utilized for the 

purpose of character recognition. But, with the advent of CNN in deep learning, no separate algorithms are 

required for this purpose. However, in the area of computer vision, deep learning is one of the outstanding  

performers for both feature extraction and classification. However, DNN architecture consists of many 

nonlinear hidden layers with a enormous number of connections and parameters. Therefore, to train the 

network with very less  

set of parameters are needed for training of the 

system. So,  

CNN is the key solution capable to map correctly datasets for both input and output by varying the trainable 

param- 

eters and number of hidden layers with high accuracy. Hence, in this work, CNN architecture with 

Deeplearning4j (DL4J) framework is considered as best for the character recognition from the handwritten 

, the normalized standard MNIST 

dataset is utilized. 

4.1   MNIST database used for training and testing 

 
The subset of NIST database is MNIST dataset. Out of  70,000 images of handwritten digits, 60,000 

images are used for training and 10,000 images are utilized for testing. Resolution of every image is 28 × 28 

with pixel values  in the range of 0–255 (gray scale).0 gray value (in black) is representing background of 

digit, while digit itself is appeared as 255 gray value (in white). The MNIST dataset comprised of 

labeled training and test arranged in row form. 

Therefore, training set (images)  

columns and 10,000 rows and 784 columns, respectively. On contrary, in the training and 

the labels‘  

values are 0–9. Hence, 10,000 rows and ten columns for 

ten columns  

(0–9) for training label. 

 

4.2   Experimental design of CNN architecture 

 
The performance of a CNN for a particular application depends on the parameters used in the 

network. In general, CNN architecture comprised of two main units or parts: 

(a) feature extractor and (b) feature classifier. In the feature extraction unit, every layer of network collects 

the output from the immediate previous layer (as input) and forward the current output to the immediate 

next layer as inputs; contrarily, classification unit generates the predicted outputs. So, the CNN 

architecture with convolutional layers is implemented for MNIST digit recognition. The overall 

architecture of suggested network is enlisted below. Atrst, convolutional layer having alter map with size 

5 takes (28 × 28) one image as input and provides output feature map with shape (24 × 24) 20. After that, 

a pooling layer is employed. The pooling layers reduce the resolution of features. It is the technique of 
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moving window across the 2D window space, and the maximum value in the window is the output. This 

depends on the size of pooling layer taken by the user. The down-sampling operation is performed by 

using a pool size 2 × 2 with stride by 2, and it reduces the output size from (24 × 24)20 to (12 × 12)20. 

Afterward, ReLU activation was done. ReLU or rectified linear unit has been used as the activation function. 

There is a wide range of activation function available when training neural network models. The mainly 

used activations are sigmoid, tanh, ReLU and leaky ReLU. The ReLU nonlinearity is a popular activation 

function used in machine learning algorithm because: (a) With ReLU, it is easier to train larger neural 

networks; (b) it is a simple and eficient function, which helps to solve the problem of vanishing gradients 

in neural networks. It removes any negative values from the output and makes sure that input and output 

layer sizes are the same. It replaces all the negative entities in feature maps to zero, and (c) ReLU 

activation function is added in  each layer so that network learns about nonlinear decision boundaries. 

Function for nonlinearity used has alter map with size 5. It takes (12 × 12)20 image as input and provides output 

feature map with shape (8 × 8)50. Along with ReLU layer, a layer with max pooling function is used, 

which helps to make assumptions about features, thus reducing overfitting and also the training time. The 

outcome of the ReLU is directed to max pooling layer where it progressively reduces the spatial size 

of the feature map representations, thereby reducing the number of parameters and computations in 

the network. Max pooling performs the overfitting on the linearized convolved outcomes with the help of 

max lter and produces more abstract representation of the convolved outcomes. Down-sampling 

operation was performed using a pool size 2 × 2 with stride by 2 to reduce the output size from (8 × 8)50 to 

(4 × 4)50.  

After that, a fully connected layer is used with 1024 output nodes. Finally, another fully connected layer 

with ten output nodes is used to get network results for ten digits (0–9). 

 

Libraries required to install 

. The most important library is the NUMPY is a library that provides support for large, multi-dimensional 

arrays where we can store our input pixel matrix of size 28 by 28 , using numpy we can express images as 

multi-dimensional arrays of pixel intensity values. The next library which is to be installed is the Python 

SCIPY library. It adds futher help for scientific and technical computing of our functions. Then we come to 

OPENCV library and the main goal of this library is real-time image processing. 
            

 

4.3 OpenCV: 
 

OpenCV is a library of programming functions mainly aimed at real-time computer vision. Originally 

developed by Intel, it was later supported by Willow Garage then Itseez. The library is cross-platform 

and free for use under the open-source BSD license. 

Since OpenCV is an open source initiative, all are welcome to make contributions to this library. And it 

is same for this tutorial also. So, if you find any mistake in this tutorial (whether it be a small spelling 

mistake or a big error in code or concepts, whatever), feel free to correct it. And that will be a good task 

for freshers who begin to contribute to open source projects. Just fork the OpenCV in github, make 

necessary corrections and send a pull request to OpenCV. OpenCV developers will check your pull 

request, give you important feedback and once it passes the approval of the reviewer, it will be merged 

to OpenCV. Then you become a open source contributor. Similar is the case with other tutorials, 

documentation etc. As new modules are added to OpenCV-Python, this tutorial will have to be 

expanded. So those who knows about particular algorithm can write up a tutorial which includes a basic 

theory of the algorithm and a code showing basic usage of the algorithm and submit it to OpenCV. 

 

 

 FEATURES: 

 

1. Reading an image 

2. Extracting the RGB values of a pixel 
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3. Resizing the Image 

4. Rotating the Image 

5. Drawing a Rectangle 

6. Displaying text 

 

Find and Draw Contours using OpenCV 

 
Contours are defined as the line joining all the points along the boundary of an image that are having the 

same intensity. Contours come handy in shape analysis, finding the size of the object of interest, and object 

detection. 

OpenCV has findContour() function that helps in extracting the contours from the image. It works best on 

binary images, so we should first apply thresholding techniques, Sobel edges, etc. 

 
 

 

 
 

Fig 4.1  Detected Handwritten digits 
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CHAPTER 5 

 

 

IMPLEMENTATION AND ARCHITECTURAL DIAGRAM 
 
 

5.1 Convolutional Neural Network (CNN): 

 

 A simple CNN model can be seen in Fig. 1. The first layer is the input layer; the size of the input image is 

28 × 28. The second layer is the convolution layer C2, it can obtain four different feature maps by 

convolution with the input image. The third layer is the pooling layer P3. It computes the local average or 

maximum of the input feature maps. The next convolution layer and pooling layer operate in the same way, 

except the number and size of convolution kernels. The output layer is full connection; the maximum value 

of output neurons is the result of the classifier in end. A simple structure of CNN. 

 

 
Fig 5.1 Convolutional Neural Network (CNN): 

 

 

5.2 Deep Neural Network (DNN):  

 

―The initially random weights of DNN are iteratively trained to minimize the classification error on a set of 

labeled training images; generalization performance is then tested on a separate set of test images. DNN has 

2-dimensional layers of winner-take-all neurons with overlapping receptive fields whose weights are shared. 

Given some input pattern, a simple max pooling technique determines winning neurons by partitioning 

layers into quadratic regions of local inhibition, and selecting the most active neuron of each region. The 

winners of some layer represent a smaller, down-sampled layer with lower resolution, feeding the next layer 

in the hierarchy. The approach is inspired by Hubel and Wiesel‘s seminal work on the cat‘s primary visual 

cortex, which identified orientation selective simple cells with overlapping local receptive fields and 

complex cells performing downsampling-like operations is shown in.‖ The structure of DNN . D. Neural 

Network Toolbox in matlab (simulate): Neural Network Toolbox provides algorithms, functions, and apps to 

create, train, visualize, and simulate neural networks. The toolbox includes convolutional neural network 

and auto encoder deep learning algorithms for image classification and feature learning tasks by used 

MATLAB programming language. 
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Fig 5.2  Deep Neural Network 

 

 

5.3 Implementation steps: 

 
5.3.1  Data Preprocessing — Reshaping Stuff: 

 

This is the most important part of training a model. 

We need to reshape our dataset inputs (X_train and X_test) to the shape that our model expects when we train 

the model. The first number is the number of images (X_train -> 60000, X_test -> 10000). Then comes the 

shape of each image i.e. (28, 28). The last number 1 signifies that the image is grayscale. 

 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 

print ("Shape of X_train: {}".format(X_train.shape)) 

print ("Shape of y_train: {}".format(y_train.shape)) 

print ("Shape of X_test: {}".format(X_test.shape)) 

print ("Shape of y_test: {}".format(y_test.shape)) 

 

5.3.2 Encoding: 

 

The final layer of our CNN model will contain 10 nodes, each of them corresponding to the respective digit 

(first node -> 0, second node-> 1 and so on). 

For example, if the image is of the number 6, then the label instead of being = 6, it will have a value 1 in 

column 7 and 0 in rest of the columns, like [0,0,0,0,0,0,1,0,0]. 

 

X_train = X_train.reshape(60000, 28, 28, 1) 

X_test = X_test.reshape(10000, 28, 28, 1) 

Shape of X_train: (60000, 28, 28, 1) 

Shape of y_train: (60000,) 

Shape of X_test: (10000, 28, 28, 1) 

Shape of y_test: (10000,) 

 

 

5.3.3 Build the model: 

 

add() function is used for adding successive layers. The first 2 layers are Conv2D layers. These are 

convolution layers that will deal with our input images, which are seen as 2D matrices. 

Activation is the activation function for the layer. The activation function here being used for the first 2 
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layers is the ReLU, or Rectified Linear Activation. This function outputs 0 if the input is a negative number 

and output the same input if the input is a positive number. In simple words, ReLU->max(0, input). This 

activation function is known for performing well in terms of speed and output in the neural nets. 

 

5.3.4 Compiling the model 

Compiling the model takes three parameters: 

 Optimizer — It controls the learning rate. It is a very good optimizer as it utilises the Stochastic 

gradient optimizer. 

 Loss function — We will be using ‗categorical_crossentropy‘ loss function. A lower score 

corresponds to better performance. 

 Metrics — To make things easier to interpret, we will be using ‗accuracy‘ metrix to see the accuracy 

score on the validation set while training the model. 

 

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accur

acy']) 

 

 

5.3.5 Training the model 

Let‘s train the above the model with specified characteristics. 

So, the model will train on (X_train, y_train) and it will get validated on (X_test, y_test). 

1 epoch -> One iteration/cycle of the dataset throughout the Neural Network 

 

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3) 

 

Output: 
Train on 60000 samples, validate on 10000 samples 

Epoch 1/3 

60000/60000 [==============================] - 23s 388us/step - loss: 0.2451 - 

accuracy: 0.9568 - val_loss: 0.0692 - val_accuracy: 0.9793 

Epoch 2/3 

60000/60000 [==============================] - 17s 290us/step - loss: 0.0568 - 

accuracy: 0.9829 - val_loss: 0.0791 - val_accuracy: 0.9776 

Epoch 3/3 

60000/60000 [==============================] - 17s 291us/step - loss: 0.0377 - 

accuracy: 0.9884 - val_loss: 0.0871 - val_accuracy: 0.9768 

<keras.callbacks.callbacks.History at 0x7f7093c0e978> 

 

 

5.3.6 Predicting and testing on the current dataset 

 First output — It prints the ‗softmaxed‘ list output consisting of 10 probabilities of the digit fed as 

input. 

 Second output — I converted that ―softmaxed‖ list in form where I replaced all the elements with 0 

expect the highest probability, which I replaced with 1. 

 Third output — It displays the test image and predicted digit corresponding to it.   

 

example = X_train[364] 

prediction = model.predict(example.reshape(1, 28, 28, 1))# First output 

print ("Prediction (Softmax) from the neural network:\n\n {}".format(prediction))# 

Second output 

hard_maxed_prediction = np.zeros(prediction.shape) 

hard_maxed_prediction[0][np.argmax(prediction)] = 1 

print ("\n\nHard-

maxed form of the prediction: \n\n {}".format(hard_maxed_prediction))# Third output 

print ("\n\n--------- Prediction --------- \n\n") 

plt.imshow(example.reshape(28, 28), cmap="gray") 
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plt.show() 

print("\n\nFinal Output: {}".format(np.argmax(prediction))) 

 

 

5.4 FORWARD PROPOGATION: 

 
Once the data is input, it will go from the input nodes to the output nodes through a process called Forward 

Propagation. The weights of the links are first initialized to random values. Then, starts a process called 

Logistic regression. We go layer by layer in that process. Then, inside each layer, we go neuron by neuron. 

The activation (or value) of a neuron is calculated through steps. We first multiply the weight of each link 

between the neuron and the neurons of the previous layer. Then, we sum those products and add a bias, 

which is a value that is proper to each neuron. The bias works as a threshold that measures wether the 

activation is significant enough. That step is called linear regression. However, the result we will get will not 

be between 0 and 1. Thus, we finally apply an activation function to the value obtained in order to obtain a 

value between 0 and 1. An example of activation function is the sigmoid function, which is the inverse of 

the sum of one and the exponential of minus the activation. The output value of that function will always be 

between 0 and 1. Another activation function is the Rectifier Linear Unit (RelU) function. It equals the 

maximum between the input number and zero. Finally, another example is the Softmax function (i.e. 

Normalized Exponential function). It is a function that turns the numbers into probabilities so that their sum 

is equal to one. 

 

5.5 BACKWARD PROPOGATION: 

 
5.5.1 Computing the Loss: 

Once we have done a forward propagation, we do the backward propagation. This means that, this time, we 

will go layer by layer backwards. That is to say we will go through the layers in the opposite order, starting 

by the output layer. Furthermore, we obtain certain values in the output layer corresponding to the guess of 

the neural network. That value can be close or far from the actual value. For example, if we input a 7 in the 

input layer, the right activation we should get for the neurons of the output layer is 1 for node 7 and zero for 

all the other nodes. The Loss Function measures how close our guesses were to the right answer. An 

appropriate function for logistic regression we can use is the Cross-Entropy function. It is the negative of the 

sum of the product of the right value by the logarithm of the guessed value, and the product of one minus the 

right value and the logarithm of one minus the guessed value. 

 

5.5.2 Updating the weights and biases : 

Once we computed the loss function, we need to use it to update the weights and the biases. Thus, before 

going to the next neuron in the layer, we will update all the weights linking the neuron to the previous layer, 

and the bias of each neuron. The new weight will be the difference between the old weight and the product 

of alpha and the derivative of the loss function with respect to the weight. The new bias will be the 

difference between the old weight and the product of alpha and the derivative of the loss function with 

respect to the bias. Alpha is the learning rate. It is a constant we configure for the neural network. 
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5.6 ARCHITECTURAL DIAGRAM 

 

 
 fig 5.3 Architecture of CNN 
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CHAPTER 6 

 

DATA MODELS 

 

 
6.1 USE- CASE MODEL 
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6.2 SEQUENCE DIAGRAM 
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6.3 FLOW CHART 
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CHAPTER 7 

 

 

OUTPUT/ SCREENSHOTS 
 

 

 

 

 

 

 

 

 

       
Fig 7.1   Output 1 
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Fig 7.2 Output 2      
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Fig 7.3  Output 3 
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Fig 7.4 Output 4 
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      Fig 7.5 Output 5 
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      CHAPTER 8 

 

CONCLUSION 
 

 

In this study, interdisciplinary research has been carried out for Handwritten Digit Prediction 

through interaction of 60,000 sample dataset. A robust multilayer prediction model is generated in 

combination with the computation of maximum obtainable seismic features. 36 seismic features are 

consider for this problem. The features are employed for training of an earthquake prediction model 

for better result. The prediction model consists of Random forests classifier (RFC) method. RFC 

provides an initial estimation for Handwritten Digit prediction. Thus RFC based prediction model is 

trained and tested successfully with encouraging and improved result by selecting important 

features and training model. Performance of a network depends on many factors like low memory 

requirements, low run time and better accuracy, although in this paper it is primarily focused on 

getting better accuracy rate for classification. Before Artificial neurons had better accuracy but now 

the branch of computer vision mainly depends on deep learning features like convolutional neural 

networks. The branch of computer vision in artificial intelligence primary motive is to develop a 

network which is better to every performance measure and provide results for all kinds of datasets 

which can be trained and trained and recognized. 
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      APPENDIX 

 

Source Code: 

 

1.4.3.1  Importing Libraries: 

import cv2 

import numpy as np 

from keras.datasets import mnist 

from keras.layers import Dense, Flatten 

from keras.layers.convolutional import Conv2D 

from keras.models import Sequential 

from keras.utils import to_categorical 

import matplotlib.pyplot as plt 

 

1.4.3.2  Downloading the MNIST data: 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 

 

1.4.3.3  Checking the gray scale picture from MNIST dataset: 

plt.imshow(X_train[0], cmap="gray") 

plt.show() 

print (y_train[0]) 

 

1.4.3.4  Test and Train the data: 

print ("Shape of X_train: {}".format(X_train.shape)) 

print ("Shape of y_train: {}".format(y_train.shape)) 

print ("Shape of X_test: {}".format(X_test.shape)) 

print ("Shape of y_test: {}".format(y_test.shape)) 

 

1.4.3.5  Reshape the data: 

X_train = X_train.reshape(60000, 28, 28, 1) 

X_test = X_test.reshape(10000, 28, 28, 1) 

 

1.4.3.6  Updating the Test and Train values: 

y_train = to_categorical(y_train) 

y_test = to_categorical(y_test) 

 

1.4.3.7  Adding the Hidden layers to the dataset: 

 
model = Sequential() 
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layer_1 = Conv2D(32, kernel_size=3, activation="relu" , input_shape=(28, 28, 

1)) 

layer_2 = Conv2D(64, kernel_size=3, activation="relu") 

layer_3 = Flatten() 

layer_4 = Dense(10, activation="softmax") 

 

## Add the layers to the model 

model.add(layer_1) 

model.add(layer_2) 

model.add(layer_3) 

model.add(layer_4) 

 

1.4.3.8  Compiling the model: 

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[

'accuracy']) 

 

1.4.3.9  Fit the model or Validate the model: 

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3) 

 

1.4.3.10 Predict the Training data: 

example = X_train[364] 

prediction = model.predict(example.reshape(1, 28, 28, 1))## First output 

print ("Prediction (Softmax) from the neural network:\n\n {}".format(predi

ction))## Second output 

hard_maxed_prediction = np.zeros(prediction.shape) 

hard_maxed_prediction[0][np.argmax(prediction)] = 1 

print ("\n\nHard-

maxed form of the prediction: \n\n {}".format(hard_maxed_prediction))## Th

ird output 

print ("\n\n--------- Prediction --------- \n\n") 

plt.imshow(example.reshape(28, 28), cmap="gray") 

plt.show() 

print("\n\nFinal Output: {}".format(np.argmax(prediction))) 

 

1.4.3.11 Test the Real time image: 

image = cv2.imread('/content/test_image.jpg') 

grey = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2GRAY) 

 

ret, thresh = cv2.threshold(grey.copy(), 75, 255, cv2.THRESH_BINARY_INV) 

contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIM

PLE) 
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preprocessed_digits = [] 

 

for c in contours: 

    x,y,w,h = cv2.boundingRect(c) 

     

    # Creating a rectangle around the digit in the original image (for dis

playing the digits fetched via contours) 

    cv2.rectangle(image, (x,y), (x+w, y+h), color=(0, 255, 0), thickness=2

) 

     

    # Cropping out the digit from the image corresponding to the current c

ontours in the for loop 

    digit = thresh[y:y+h, x:x+w] 

     

    # Resizing that digit to (18, 18) 

    resized_digit = cv2.resize(digit, (18,18)) 

     

    # Padding the digit with 5 pixels of black color (zeros) in each side 

to finally produce the image of (28, 28) 

    padded_digit = np.pad(resized_digit, ((5,5),(5,5)), "constant", consta

nt_values=0) 

     

    # Adding the preprocessed digit to the list of preprocessed digits 

    preprocessed_digits.append(padded_digit) 

 

print("\n\n\n----------------Contoured Image--------------------") 

plt.imshow(image, cmap="gray") 

plt.show() 

     

inp = np.array(preprocessed_digits)     
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