

School of Computing Science and Engineering

Bachelor of Computer Applications Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem I - C1UC125T - Applied Linear Algebra

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain, whether the vectors (1, -2, 1), (2, 1, -1) and (7, -4, 1) are linearly dependent or not.	K2 (2)
2)	$\begin{pmatrix} \lambda & 1 & 2 \\ 2 & -1 & -1 \end{pmatrix}$	K1 (3)
	Find the value of constant $\lambda \gg$, if the matrix $\begin{pmatrix} \lambda & 1 & 2 \\ 0 & -1 & 5 \\ 2 & 0 & 1 \end{pmatrix}$ is singular (not invertible).	
3)	Find the value of 'k' for which the given set of equations has infinite solutions: (3k-8) x + 3y + 3z = 0, 3x + (3k-8) y + 3z = 0, 3x+3y+(3k-8)z = 0.	K2 (4)
4)	Show that the polynomials 1, x and $x^2\;$ span the vector space $P_2(x)$.	K2 (6)
5)	By Gauss Jordan method, find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 6 \\ 2 & 4 & 5 \end{pmatrix}$. Solve the system of equations : $x_1 + x_2 + x_3 = 1$, $3x_1 + x_2 - 3x_3 = 5$.	K3 (6)
	By Gauss Jordan method, find the inverse of the matrix $A = \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}$.	
6)	Solve the system of equations : $x_1 + x_2 + x_3 = 1$, $3x_1 + x_2 - 3x_3 = 5$, $x_1 - 2x_2 - 5x_3 = 10$ by Gauss elimination method.	K3 (9)
7)	Examine the following system of equations for the unique solution by Gauss Jordan method: $x - y + 3z - w = 1$, $y - 3z + 5w = 2$, $x - z + w = 0$, $x + 2z - w = -5$.	K4 (8)
8)	Let the linear transformation T: $\mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x + z, 2x + y + 3z, 2y + 2z). Then find the dimension of the range space and null space of T.	K4 (12)

OR

Investigate the values of a and b so that the system K4 (12)2x + 3y + 5z = 9,7x + 3y - 2z = 8, 2x + 3y + az = b has (i) Unique solution (ii) No solution (iii) Infinite no. of solutions.