

ADMISSION NUMBER												

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem I - C1PM101T - Advanced Abstract Algebra

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain that every normal subgroup is kernel of some homomorphism.	K2 (2)
2)	Find the automorphism group of the symmetric group K4.	K1 (3)
3)	Estimate the conjugacy classes of a non-abelian group of order 8.	K2 (4)
4)	Show the first Isomorphism theorem for groups.	K2 (6)
5)	Using class equation, show that a group of prime power orders must have a non-trivial centre.	K3 (6)
6)	Verify that the class equation for the symmetric group S_3 is 1+2+3.	K3 (9)
7)	Categorize the groups of following order into the simple group and non simple group and justify your answers. (i) 30, (ii) 21,	K4 (8)
8)	Examine the conjugacy classes of Z_4 .	K4 (12)
	OR	
	Examine the conjugacy classes of D_8 .	K4 (12)