

ADMISSION NUMBER

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - Nov 2023

Duration: 90 Minutes Max Marks: 50

Sem I - C1PM102T - Theory of Differential Equations

<u>General Instructions</u>
Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1)	Identify whether $x=0^x=0$ is an ordinary point or singular point of the differential equation $(x^2-1)(\frac{d^2y}{dx^2})+x(\frac{dy}{dx})-y=0$.	K2 (2)	
2)	State the Sturm's separation and Sturm's comparison theorem.	K1 (3)	
3)	State the Lipschitz theorem and discuss the uniqueness of solution of the initial value problem, $\frac{dy}{dx} = x^2 + y^3$, $y(0) = 1$.	K2 (4)	
4)	Define Bessel's equation and find its solution.	K2 (6)	
5)	Developed the formula for successive approximation for first order initial value problem.	K3 (6)	
6)	Apply the series solution method and find the solution of $4xy'' + 2y' + y = 0$.	K3 (9)	
7)	State regular singular points, irregular singular points and examine the singularities of the given differential equations $(x^2 + 1)y'' + xy' + xy = 0$,	K4 (8)	
8)	Examine the successive approximations (up to three) for the problem $y' = y^2$, $y(0) = 1$.	K4 (12)	
	OR		
	Analyze the solution of the given homogenous differential equations by using matrix method, $\frac{dx}{dt} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} x, \text{ where } x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	K4 (12)	