

ADMISSION NUMBER											

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem I - C1PM104T - Advanced Analysis

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Find the limit points of (0,3].	K2 (2)
2)	Explain an arbitrary union of open sets is open set, and a finite intersection of open sets is open set.	K1 (3)
3)	Show that a convergent sequence is Cauchy sequence, and a Cauchy sequence is bounded.	K2 (4)
4)	What is an isometry check the following map F: $\mathbb{R} \to \mathbb{R}$ defined as F(x)=x+5 is an isometry	K2 (6)
5)	Classify the following sets as compact or not a) (0,1) b) $[0,1]\cup[3,4]$ c) $\mathbb R$	K3 (6)
6)	Determine all first and second order partial derivatives of $f(x,y)=x^2y^3+2xy-5y$.	K3 (9)
7)	If d_1, d_2 are two metrics on the set <i>X</i> , then which of the following forms a metric on <i>X</i> give the explanation: (i) $d_1 + d_2$. (ii) max (d_1, d_2)	K4 (8)

- (iii) min (^{*d*₁,*d*₂)}
- ⁸⁾ Find the total derivative of function f: $\mathbb{R}^2 \to \mathbb{R}^3$ defined as f(x,y)=(2x+y,x-3y,xy) at (1,2) as a linear transformation.

OR

Find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}$ Of $f(x,y)=x^3+y^3+2$ K4 (12)