

ADMISSION NUMBER										

School of Basic Sciences

Master of Science in Physics Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem I - C1PO104T - Classical Mechanics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

- 1) Explain Lagrangian for a free particle in polar co-ordinates
 K2 (2)

 (1) K2 (2)
 K2 (2)
- 2) For a particle moving in a central field of force list the physical K1 (3) quantities which are conserved. Why?
- 3) In which type of constraint, constraint relations depend explicitly on K2 (4) time? Illustate with an example.
- 4) A particle is moving under the action of a generalized potential, K^{2} (6) $1 + \dot{q}$

 $V(q, \dot{q}) = \frac{1 + \dot{q}}{q^3}$

Show that the magnitude of generalized force is 2/q3

- 5) What is a cyclic coordinate? In central force construct the coordinate ^{K3 (6)} which is cyclic.
- 6) Find Lagrangian of simple pendulum for small amplitude oscillation K3 (9) and solve it to find equation of motion. Also solve it to find its time period.
- ⁷⁾ Evaluate Lagrangian for one dimensional Linear Harmonic Oscillator
 ^{K4 (8)} and hence develop equation of motion using Hamilton's principle.
- 8) A particle of mass m is projected with initial velocity u at an angle α K4 (12) with the horizontal. The resistance of the air is neglected. Construct its Lagrangian function. Analyse this to describe the motion of the projectile.

OR

What is meant by velocity dependent potential? Deduce velocity ^{K4 (12)} dependent potential for a charged particle moving in an electromagnetic field and hence obtain Lagrangian.