

ADMISSION NUMBER										

School of Basic Sciences

Bachelor of Science Honours in Chemistry Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem III - C1UB301B - States of Matter

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Why is the concept of mean free path important in understanding the behavior of gases?							g the	K2 (2)		
2)	Summarize assumptions		Kinetic	Molecular	Model	of	gases	and	its	key	K1 (3)

- ³⁾ Explain how the Kinetic Molecular Model of gases accounts for the ^{K2 (4)} pressure and temperature dependence of gas behavior.
- 4) Apply the concept of collision frequency to compare the viscosities of K2 (6) two different gases.
- ⁵⁾ Examine the role of molecular velocities in determining the kinetic ^{K3 (6)} energy of gas molecules.
- 6) Determine the average kinetic energy of gas molecules using the K3 (9) Maxwell distribution.
- Analyze how the collision frequency and collision diameter contribute
 K4 (8) to the viscosity of gases.
- 8) Discuss how the Kinetic Molecular Model explains the temperature K4 (12) and pressure dependence of gas behavior.

OR

Discuss the challenges faced by real gases in adhering to the ideal ^{K4 (12)} gas law and the solutions proposed by the Van der Waals equation.