

ADMISSION NUMBER						

School of Basic Sciences

Bachelor of Science Honours in Physics Mid Term Examination - Nov 2023

Duration : 90 Minutes Max Marks : 50

Sem III - C1UD302T - Mathematical Physics II

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

- 1) State the condition for Fourier series to be integrated term wise. K2 (2)
- ²⁾ Identify whether the function is even or odd, (i) f(x) = Sin3x (ii) f(x) = x ^{K1 (3)} Cos x, and (iii) f(x) = x3-4x
- ³⁾ Obtain a Fourier series of function given as f(x) = 3 2x, $-\pi < x < \pi$ ^{K2 (4)}
- 4) Expand the given function in cosine series $f(x) = e^{-x}$, 0 < x < 1 K2 (6)
- ⁵⁾ Explain the importance of Fourier Series in signal systems ^{K3 (6)}
- 6) Analyze the Fourier series representing the function as, $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ 0 & \leq x < \pi \end{cases}$ (9)
- ⁷⁾ Obtain the complex form of Fourier series of function, $f(x) = x^2$ in the ^{K4 (8)} interval [-1,1].
- 8) Find Fourier series of a function $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ sinx & 0 \le x < \pi \end{cases}$ hence prove that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \cdots \dots \dots \dots$

OR

Obtain complex form of Fourier series for the given function $f(x) = e^{-K^4 (12)} x$, in the interval $-\pi < x < \pi$