

## ADMISSION NUMBER

## School of Computing Science and Engineering Bachelor of Computer Applications

Semester End Examination - Nov 2023

**Duration: 180 Minutes** Max Marks: 100

## Sem V - E1UA502B - Algorithm analysis and Design

**General Instructions** Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

| 1)  | Identify the key characteristics of an algorithm.                                                                                           | K1 (2)  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2)  | Explain Dijkstra's algorithm for finding the shortest path in a graph.                                                                      | K2 (4)  |
| 3)  | Define P, NP, NP-Hard and NP-Complete Problem.                                                                                              | K2 (6)  |
| 4)  | Compare the various programming paradigms such as divide-and-conquer, dynamic programming and greedy approach.                              | K3 (9)  |
| 5)  | Determine the LCS of H,B,C,F,G,M,N,A,P,Q and C,B,H,G,R,S,F,N,M,Q.                                                                           | K3 (9)  |
| 6)  | Evaluate the trade-offs between dynamic programming and greedy algorithms.                                                                  | K5 (10) |
| 7)  | Write down Floyd Warshall's algorithm to find solution to the all-pairs shortest path algorithm. Run your algorithm on the following graph. | K4 (12) |
| 8)  | Explain all the cases of master theorem. Apply master theorem to solve $T(n) = 2T(n/2) + n$ .                                               | K5 (15) |
| 9)  | Critique the limitations of the Big-O notation in analyzing algorithm efficiency.                                                           | K5 (15) |
| 10) | Write an algorithm implement Dijkstra's Algorithm and also analyze its complexity.                                                          | K6 (18) |