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ABSTRACT 

Conjecture of stock Exchange is the demonstration of attempting to decide the forecast 

estimation of a particular sector or the market, or the market as a whole. Every stock every 

investor needs to foresee the future estimation of stocks so predicted forecast of a stock's 

future cost could return huge benefit. To increase the accuracy of the Conjecture of stock 

Exchange with daily changes in the value of the market is a bottleneck task. The existing 

stock market prediction focused on forecasting the daily stock market by using various 

machine learning algorithms and deep methodologies. The proposed work we have 

implemented describes the new neural network model with the help of various learning 

techniques. The prediction of the Stock exchange is an active area for research and 

completion in numerai. The numerai is the toughest data science competition for stock market 

prediction. Numerai provides weekly new datasets to molding the finest prediction model. 

The dataset has 310 features, and the entries are more than 100000 per week. Our proposed 

new neural network model gives accuracy is closely 86%. The important point, it’s very 

difficult our proposed model with existing models because we are training and testing the 

proposed model with a new unlabelled dataset in every week. Our ultimate aim for 

participating in numerai competition is to suggest a neural network methodology to forecast 

the stock exchange independent of datasets with good accuracy. 

Keyword: Deep Learning, Neural Network, Stock Market Prediction, Numerai, NMR. 

 

 

 

 



1. INTRODUCTION 

Stock market prediction [1] is an active area for the researcher to help in stock market 

prediction, we can easily determine the future values of a company stock or a financial data. 

So, why is stock market prediction being important, the reason is that the investors believe 

that the only time to invest in the market is when it is going up. When the market falls, such 

investors would like to stay away and return only when they are confident that the market 

will rise again and the better result will be available for them. Predicting the market means 

predicting how the stock market index moves. We can easily predict the stock market with 

the help of the machine learning models. In this approach we can use different model to get 

the better accuracy and result for the prediction. For this prediction we have used the neural 

network approach for the stock market prediction. We are using the real time numerai stock 

market dataset which is unlabelled dataset.  

Numerai is basically a data science competition powers the hedge fund [2]. In this 

competition number of data scientist take part in the competition. The numerai competition 

has the similarities like we are predicting the stock a company which is not labelled. The 

quality of the dataset which we get form the numerai is very good and the dataset which we 

use it changes every week. So, we can predict good amount of data and then we can upload 

the prediction for checking the prediction on their model.   

Neural networks are the interesting models [3] over the past years, and these models are 

successfully applied across an exceptional range of problem domains, the neural networks 

can be used in the finance, medicine, engineering, image recognition and etc. A three-layer 

neural network is used in the universe. There are input layer, hidden layer and output layer. 

These layers help in finding the result for the problem. The neural network approach takes the 

set of inputs (features) and computes as output as a prediction. There are other models used 



for prediction analysis like random forest, decision tree, support vector machine and soon. 

But in this paper, we have used the neural network approach because it works well for a 

variety of prediction problems and can easily compare the dataset. Predicting stock costs is a 

very important objective within the economic world [4-6], since a fairly correct prediction 

has the possibly to return high money edges and hedge fund risk. With the rapid increase of 

net and computational technology, the frequencies for acting operations on the stock 

prediction had increases to fractions of seconds [7-8]. 

The neural networks model is used to predict the stock market prediction because they are 

able to learn nonlinear mapping between inputs and outputs. The neural network is trained to 

perform a variety of financial related tasks. In numerai competition the dataset which we use 

for the prediction is unlabelled. With the help of neural network, it is easy to map the features 

which are given in the dataset. The neural networks have the ability for nonlinear function 

approximation and information processing which other models do not have. Neural network 

is well applied to the problems in which the relationships among the data are genuinely 

difficult and the training data sets are large enough.   

 

 

 

 

 

 

 

 



2. LITERATURE REVIEW 

Related works in this stock market sector, we classify the techniques which help to compute 

the stock market prediction issues. The first class of connected work is economic science 

models, which has classical economic science models for prediction. Common ways are the 

auto-regressive technique (AR), the moving-average-model (MA), the auto-regressive 

moving-average-model (ARMA), and therefore the auto-regressive-integrated-moving 

average (ARIMA) [9-10]. In other words, models take every new signal as a noisy linear 

combination from the previous signals and freelance noisy terms. However, most of them 

think about some sturdy assumptions with reference to the noisy terms and loss functions. 

The second class, we have soft computational based models. Soft computational may be a 

term that covers computing that mimic biological processes. These techniques embrace 

Neural Networks, Fuzzy Logic (FL), Support Vector machines (SVM), particle Swarm 

Optimization (PSO), and some other. Several researchers have tried to agitate opacity beside 

randomness in possibility pricing models. 

Dang Lien Minh [11] has proposed the model Two-stream Gated Recurrent Unit (TGRU) for 

the stock market prediction in which they have used the dataset of the Reuters and 

Bloomberg from between October 2006 to November 2013 which they get from the yahoo 

finance. They conducted implementation on the NVIDIA digits toolbox with Keras API 

version 1.2.2 using Python version 2.7.3. The hyperparameter they used in the model was 30 

epochs for training, batch size as 64, learning rate as 0.001 and learning rate decay as 0.0001. 

They got the overall accuracy about 66.32% on the proposed model. Yujie Wang [12] has 

proposed the Hybrid Time-Series Neural Network (HTPNN) model for the stock market 

prediction. They have used the yahoo finance dataset. In the HTPNN model they have used 

the 2-convolution layer, 2-LSTM layer, learning rate 0.005 and they have used 1000 iteration. 

Experimental result showed the model got 69.51 Accuracy.  



Sheik Mohammad Idress [13] has proposed the ARIMA model for the Indian Stock market, 

they have used the Indian stock market data from Jan 2012 to Dec 2016 which is related to 

the Sensex and Nifty. There p-value for the Nifty and Sensex has 0.9099 and 0.8682. 

Hiransha M [14] has proposed the 4 different model for the stock prediction are Multi Layer 

Perception (MLP), Recurrent Neural Network (RNN), Convolution Neural network (CNN) 

and LSTM (Long Short-Term Memory) for the dataset from the National Stock Exchange 

(NSE) India from that they have used the data of the Tata motors and New York Stock 

Exchange (NYSE) they have used the data of Bank of America (BSC) and Chesapeak energy 

(CHK). There CNN model performs wells against the other 3 model. Guang Liu [15] 

proposed a model Numerical Based Attention (NBA) in which they have used the LSTM as a 

hidden layer. The LSTM encoder and decoder are set to 64 for the better result. The dataset 

used from the China Securities Index 300 (CSI 300) and Standard and Poor 500 (S&P 500).  

Rui Ren [16] used the two approach as sentiment analysis and support vector machine for 

stock market. They have used the dataset from the China SSE 50 index for stock market and 

also for the news documents. They have used the k-fold crossvalidation and a realistic rolling 

window approach. The model used for the stock market is SVM model. Dharmaraja 

Selvamuthu [17] proposed the ANN model for the Indian Stock Market. They had used the 

two different dataset names as tick by tick dataset and 15-min dataset for the stock market. In 

which they have used the three algorithms, i.e., Bayesian Regularization, Scaled Conjugate 

Gradient and Levenberg-Marquardt by predicting over the data for the stock market.  

Gunduz [18] used the two different models as LSTM and Regression model based on 

Machine Learning to predict the stock values. The dataset obtained from the yahoo finance. 

In Regression based model they have set the batch size to 512 and epochs to 90. For LSTM 

based model they dropout 0.3 and used the RMSE. The confidence score of 0.86625 for the 

regression-based model. Wasiat Khan [19] used the machine learning algorithm for 



predicting stock market via public sentiment and political situation analysis. They have used 

the stock market historical data from Yahoo finance and public sentiment data they have used 

from Twitter. They have used many algorithms like DT, SVM, RF, MLP and etc., but the two 

algorithm gives the better result than other algorithms. The MLP and DT gives the better 

result for the stock market. They achieved the accuracy up to 68%.  

Catalin Stoean [20] proposed the LSTM and CNN model for the stock market. They have 

used the dataset of Bucharest Stock Exchange which has the data more than 20 companies for 

the stock market. The LSTM has the higher gain term of the CNN in the stock market. Thi-

Thu Nguyen and Seokhoon Yoon [21] has proposed the DTRSI model. The DTRSI stands for 

Deep Transfer with Related Stock Information framework which performs well then the 

SVM, RF and KNN model for predicting the stock market. In this the LSTM model is used 

with input layer has equal the number of features and 20 time steps, two LSTM layer with 16 

units and dropout to 0.5 and in the output layer it uses the one sigmoid activation unit. The 

dataset used is from the stock market indices, i.e., the KOSPI 200 and the S&P 500 from 31 

July 2012 to 31 July2018.  

The rest of the report is organized as follows. In next sections, we detail discussed about 

proposed method and experimental result analysis.  

 

 

 

 

 

 



3. PROPOSED SYSTEM 

We have performed on the proposed work in windows 10 with Intel Pentium configuration. 

The project was done with the help of the Google Colab server for better computational 

power. In the Google Colab server, we have used the GPU as the runtime for running the code 

efficiently. We have used some library as TensorFlow version 1.x, pandas, numpy, seaborn, 

matplot library, sklearn library, and Keras.  

3.1 Dataset Description 

The dataset which we have used in this study is from numerai, which we get is in the form of 

an unlabelled dataset. Numerai provided two datasets, and one is a training dataset used for 

training to our proposed model, and next is the testing dataset used for the testing model. The 

dataset which we use is changing every week. We have to upload our prediction on the 

numerai tournament to check the prediction is working well on their model also.  

Table 1 Details of each feature in the Numerai dataset. 

Variables  Class Scale 

id Key of prediction Categorical Random values 

era Period of time. Categorical (era1, era2, era3,…,era120) 

data_type Type in the datasets Categorical 
(Train, Test, Live, 

Validation) 

feature_intelligence1 - 

feature_intelligence12 
Feature set 1 Numerical (0, 0.25, 0.50, 0.75, 1) 

feature_charisma1 -

feature_charisma86 
Feature set 2 Numerical (0, 0.25, 0.50, 0.75, 1) 

feature_strength1 - 

feature_strength38 
Feature set 3 Numerical (0, 0.25, 0.50, 0.75, 1) 

feature_dexterity1- 

feature_dexterity14 
Feature set 4 Numerical (0, 0.25, 0.50, 0.75, 1) 

feature_constitution1- 

feature_constitution114 
Feature set 5 Numerical (0, 0.25, 0.50, 0.75, 1) 

feature_wisdom1- 

feature_wisdom46 
Feature set 6 Numerical (0, 0.25, 0.50, 0.75, 1) 



target_kazutsugi Target Numerical (0, 0.25, 0.50, 0.75, 1) 

 

Table 1 shows a detailed explanation of each feature in our dataset. The training dataset has 

314 columns consists of ids, eras, datatype which is train and 310 features which are 

subdivided into different groups like intelligence1 to intelligence12, wisdom1 to wisdom46, 

charisma1 to charisma86, feature dexterity1 to feature dexterity38, feature constitution1 to 

feature constitution114 and one target name as target_kazutsugi the values are like 0, 0.25, 

0.50, 0.75 and 1 which are used to train the model. The datasets about 558069 rows with 

different ids and eras.  

 

Figure 1 Correlation between features heatmap representation 

Heatmap represents one variable that could be gently connected with another variable. It will 

be giving more effective outputs for investigations and displays more readily between factors. 



Figure 1 represents the correlation between 50 features in the numerai dataset. Actually, the 

dataset contains 314 attributes, to represent 314 columns in the heatmap its looks messy. 

The tournament dataset is our test dataset, which also has the 314 columns with the same 

attributes. But in the datatype, it has 3 different types as validation, test, and live.  There is no 

need for pre-processing in this dataset because there no missing values and outliers are 

present. 

3.2 Feature Extracting  

Here the comparison of relation between features is done and remove, which has a value 

higher than 0.9. So, after using this, we will get the dataset, which has only those columns 

with a correlation of less than 0.9, as shown in figure 2. 

 

 
Figure 2 Heat map for correlated values less than 0.9 

 



Now we will select the columns based on the p-value. We have built the model the makes 

regression and p values are calculated. If the value is higher than the fixed value, we can 

reject the sequence of features. The p-value which we used is 0.05. After removing the 

values, we can visualize the values with the help of the violin plot, as shown in figure 3. 

 

𝑃 − 𝑉𝑎𝑙𝑢𝑒 < 0.05 →  𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡. 

 

 
 

Figure 3 Visualization of selected 167 features data entries 

3.3 Methodology 

The neural networks have the ability to discover nonlinear relationships in input data which 

makes them ideal for modelling nonlinear dynamic systems such as the stock predictions. In 

the neural network we have used the activation function. We can use any activation function 

in the neural network like sigmoid, tan hyperbolic, relu, linear and radial basis function. 

Hidden layers and nodes in the neural network we train for the prediction of stock data has a 

number of hidden layers, and number of hidden nodes in each layer as shown in the figure 1. 

Using Keras neural network library for python we can define neural network model which we 

can train on our training dataset. In neural network model we have used 400 neurons and 



dropout is 0.4. We have used 1 hidden layer with Relu activation function and 1 output layer 

with linear activation function. The linear activation function is used in the output layer 

because it is used for the regression problem. Then we create a wrapper for the neural 

network which helps to create a bridge between keras and scikit-learn. By using the keras 

regressor for the regression problem with the epochs 30, batch size 250 and we set the 

verbosity to 0 because we don’t need to see how far the network has been trained. Using the 

RandomizedSearchCV from scikit-learn we can get good hyperparameters for the neural 

network model. We have tried by putting different hyperparameter which will work best. So, 

we have used 80 neurons or 90 neurons and dropout probability of 0.1 or 0.3. This gives a 

parameter with a total of 4 combinations. Then we will create the instance of 

RandomizedSearchCV with our model, parameter with the 4 combinations, a scoring 

function we have used is MSE (Mean Squared Error), one thread and a verbose level of 3. In 

figure 4 we can see the model which we have used the stock market prediction. 

 

 

Figure 4 Plot of Neural Network Model Graph 



3.4 Performance Indicators 

We start by some underlying arrangement of the model and predict the output dependent on 

some info. The predicted value is then contrasted, and the target label and the proportion of 

our model execution are taken. At that point, the different parameters of the model are 

balanced iteratively so as to arrive at the optimal estimation of the performance metric. In 

most of the things, the outputs are assessed from two types: the primary is RMSE or RMSRE 

between real value and predicted value, the next is Mean Directional Accuracy, which 

suggests the proportion of correct analysis of price flow direction, as up and down 

movements that can extremely matter for taking any decisions. The little enhancements in 

prediction performance are often beneficial.   

Table 2 Performance Indicators of Regression 

Hyperparameter Explanation 

R2 score 

It calculates the determination and it is for regression score function. 

𝑹𝟐(𝒚, 𝒚′) = 𝟏 −
∑ (𝒚𝒊 − 𝒚′

𝒊
)𝒏

𝒊=𝒏
𝟐

∑ (𝒚𝒊 − 𝒚′)𝒏
𝒊=𝒏

𝟐  

 

MAE 

It finds out MAE, a parameter corresponding to the absolute error loss or 

l1-norm loss. 

 

𝑴𝑨𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ |𝒚𝒊 − 𝒚′

𝒊
|

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

 

 

MSLE 

The parameter is identified for the squared logarithmic error or loss 

function. 

 

𝑴𝑺𝑳𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ (𝒍𝒐𝒈𝒆(𝟏 + 𝒚𝒊) −  𝒍𝒐𝒈𝒆(𝟏 + 𝒚′

𝒊
))𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

 

 

MSE 

 

It computes parameter corresponding to the value of the squared error or 

loss. 



𝑴𝑺𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ (𝒚𝒊 −  𝒚′

𝒊
)𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

 

 

RMSE 

It measures the standard deviation of the mistakes which occurs when a 

prediction is made on a dataset. 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒊 − 𝑨𝒄𝒕𝒖𝒂𝒍𝒊)

𝟐𝑵
𝒊=𝟏

𝑵
 

 

Max Error 

It identifies the between forecasted and original value error. 

𝑴𝒂𝒙 𝑬𝒓𝒓𝒐𝒓(𝒚, 𝒚′) = 𝒎𝒂𝒙(|𝒚𝒊 − 𝒚′
𝒊
|) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. IMPLEMENTATION 

#In this step we are mounting the google drive. The dataset which is 

uploaded on the drive will be easy to access. 

from google.colab import drive 

drive.mount('/content/drive') 

#Importing the tensorflow version 1 

%tensorflow_version 1.x 

import tensorflow 

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

% matplotlib inline 

 

# reading csv files 

training_data = pd.read_csv('/content/drive/My Drive/dataset/numerai_tr

aining_data.csv',header=0) 

tournament_data =pd.read_csv('/content/drive/My Drive/dataset/numerai_t

ournament_data.csv',header=0) 

 

training_data.describe() 

….  



 

tournament_data.describe() 

 …  

 

print(training_data.dtypes) 

print(tournament_data.dtypes) 

 

 

#checking that there no null value present  

training_data.isnull().sum() 

 



#As we can check that in the target value there are some null values. 

For those values we have to predict. 

tournament_data.isnull().sum() 

 

 

#removing the columns which are not required for the feature scaling 

data = training_data.drop(labels=['id','era','data_type'],axis=1) 

data.shape 

>>>(501808, 311) 

 

 

#finding the correlation between the feature using correlation matrix 

corr = data.corr() 

corr.head() 

…  

 

#removing the correlated features  

columns = np.full((corr.shape[0],), True, dtype=bool) 

for i in range(corr.shape[0]): 

    for j in range(i+1, corr.shape[0]): 



        if corr.iloc[i,j] >= 0.9: 

            if columns[j]: 

                columns[j] = False 

selected_columns = data.columns[columns] 

data = data[selected_columns] 

 

#checking the shape after removing the features 

data.shape 

>>> (501808, 202) 

 

#removing more features with the help of backward elimination   

selected_columns = selected_columns[1:] 

import statsmodels.regression.linear_model as sm 

def backwardElimination(x, Y, sl, columns): 

    numVars = len(x[0]) 

    for i in range(0, numVars): 

        regressor_OLS = sm.OLS(Y,x).fit() 

        maxVar = max(regressor_OLS.pvalues).astype(float) 

        if maxVar > sl: 

            for j in range(0, numVars - i): 

                if (regressor_OLS.pvalues[j].astype(float) == maxVar): 

                    x = np.delete(x, j, 1) 

                    columns = np.delete(columns, j) 

                     

    regressor_OLS.summary() 

    return x, columns 

SL = 0.05  

data_modeled, selected_columns = backwardElimination(data.iloc[:,1:].va

lues, data.iloc[:,0].values, SL, selected_columns) 



 

#checking the last selected feature which we will use for training the 

model 

selected_columns.shape 

>>>(167,) 

 

data = pd.DataFrame(data = data_modeled, columns = selected_columns) 

data.head() 

…  

import seaborn as sn 

fig, ax = plt.subplots(figsize=(20,20)) 

sn.heatmap(data.corr(),ax=ax) 

 

#Now the training datset name is data 

data.shape 

>>>(501808,167) 

 

#checking the size of the testing dataset 

tournament_data.shape 

>>>(1560303, 314) 

 

#making the updated dataset for the test by using the selected features 

test_data = tournament_data.loc[:,selected_columns] 



 

test_data.shape 

>>>(1560303, 167) 

#adding the id, era, datatype columns 

n=tournament_data.loc[:,['id','era','data_type']] 

 

data_t = pd.concat([n, test_data],axis=1) 

train_data = pd.concat([training_data.iloc[:,:3], data],axis=1) 

 

#adding validation data into the training data for training the model 

validation_data = data_t[data_t.data_type=='validation'] 

complete_training_data = pd.concat([train_data,validation_data]) 

 

#checking the size of the validation data  

validation_data.shape 

>>>(106895, 170) 

#training data + validation data 

complete_training_data.shape 

>>>(608703, 170) 

features = [f for f in list(complete_training_data) if "feature" in f] 

X = complete_training_data[features] 

Y = complete_training_data["target_kazutsugi"] 

 

#importing libraries for the model and the evaluation 

from sklearn.metrics import log_loss 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import GroupKFold 

from keras.models import Sequential 



from keras.layers import Dense, BatchNormalization, Dropout, Activation 

from keras.wrappers.scikit_learn import KerasRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import RandomizedSearchCV 

from sklearn.model_selection import KFold 

from sklearn.metrics import mean_squared_error as mse 

from sklearn.metrics import r2_score as r2 

 

 

#Performing Predictions with Keras and scikit-learn 

def create_model(neurons=400, dropout=0.4):          

    model = Sequential() 

    model.add(Dense(neurons, input_shape=(310,), kernel_initializer='gl

orot_uniform', use_bias=False)) 

    model.add(BatchNormalization()) 

    model.add(Dropout(dropout)) 

    model.add(Activation('relu')) 

    model.add(Dense(1, activation='linear', kernel_initializer='glorot_

normal')) 

    model.compile(loss='mse', optimizer='adam', metrics=['mse'])       

    return model 

#we are using the keras regressor for building the regression model 

model = KerasRegressor(build_fn=create_model, epochs=30, batch_size=400

, verbose=0)          

 

gkf = GroupKFold(n_splits=5) 

kfold_split = gkf.split(X, Y, groups=complete_training_data.era) 

 

neurons = [70, 80]   



dropout = [0.2, 0.3]     

param_grid = dict(neurons=neurons, dropout=dropout) 

 

rsearch = RandomizedSearchCV(estimator=model, param_distributions=param

_grid, n_iter=200, verbose = 3) 

rsearch_result = rsearch.fit(X.values, Y.values)   

  

print("Best: %f using %s" % (rsearch_result.best_score_, rsearch_result

.best_params_)) 

means = rsearch_result.cv_results_['mean_test_score'] 

stds = rsearch_result.cv_results_['std_test_score'] 

params = rsearch_result.cv_results_['params'] 

for mean, stdev, param in zip(means, stds, params): 

    print("%f (%f) with: %r" % (mean, stdev, param)) 

 



 

#Checking the Performance 

 

def check_consistency(model, valid_data): 

    eras = valid_data.era.unique() 

    count = 0 

    count_consistent = 0 

    for era in eras: 

        count += 1 

        current_valid_data = valid_data[validation_data.era==era] 

        features = [f for f in list(complete_training_data) if "feature

" in f]                         

        X_valid = current_valid_data[features] 

        Y_valid = current_valid_data["target_kazutsugi"] 

        loss = model.evaluate(X_valid.values, Y_valid.values, batch_siz

e=250, verbose=3)[0] 

        if (loss < -np.log(.5)): 

            consistent = True 

            count_consistent += 1 

        else: 

            consistent = False 

        print("{}: loss -

 {} consistent: {}".format(era, loss, consistent)) 

    print ("Consistency: {}".format(count_consistent/count)) 

         

check_consistency(rsearch_result.best_estimator_.model, validation_data

) 



 

#Submitting the Predictions 

import time 

x_prediction = data_t[features] 

t_id = data_t["id"] 

y_prediction = rsearch_result.best_estimator_.model.predict_proba(x_pre

diction.values, batch_size=400) 

results = np.reshape(y_prediction,-1) 

results_df = pd.DataFrame(data={'probability_kazutsugi':results}) 

 

y_prediction 

 

 

joined = pd.DataFrame(t_id).join(results_df) 

print(joined) 



 

from time import gmtime, strftime 

strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) 

joined = pd.DataFrame(t_id).join(results_df) 

# path = "predictions_w_loss_0_" + '{:4.0f}'.format(history.history['lo

ss'][-1]*10000) + ".csv" 

path = 'predictions_{:}'.format(strftime("%Y-%m-

%d_%Hh%Mm%Ss", time.gmtime())) + '.csv' 

print() 

print("Writing predictions to " + path.strip()) 

# # Save the predictions out to a CSV file 

joined.to_csv(path,float_format='%.15f', index=False) 

 

 

 

 

 



5. EXPERIMENTAL RESULTS 

In numerai competition, we can get the results by uploading our prediction on the numerai 

tournament. Numerai measures Performance-based on the correlation of rank and predictions 

and actual targets. By correlation matrix, we can show the heatmap for the features, as shown 

in figure 1. By this, we can quickly check the data and some of the features which are related 

to others. 

5.1 Hyperparameter Analysis 

In the figure 5 graph we show the values of error and the score for the model. In the regression 

problem we use the MSE, MAE, Max Error, RMSE and MSLE for checking the error we get 

for the predictions. With the R2 score we can check the model is fit properly. If the value is 

less than 0.5, we can assume that the model is poorly fit. So, as the R2 score is close to 1 the 

model is fitted properly. 

 

Figure 5 Hyperparameter Analysis of Proposed Method 

Next, we compared the prediction with the actual prediction to check that they are near to 

each other. The prediction depends upon the R2 score, as the R2 score is near to 1 the values 

will us good. So, with the help of figure 6 graph we can easily check the values are close to 

each other. 
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Figure 6 Comparison of actual values and predicted values at different count of ids 

5.2 Comparative Analysis 

In this section we compare our model with existing models and figure 7 shows accuracy 

performance of our proposed model. The comparison graph clearly shows our proposed 

method accuracy is high compared to all the previous works. 



 

Figure 7 Accuracy performance comparison between other models and proposed model 

 

5.3 Prediction csv 

In the prediction csv file, we have two columns which are id and probability kazutsugi as 

shown in the figure 8. This file we will upload on the numerai tournament to check the result 

of the prediction. 

 

Figure 8 Predicted probability  
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6. CONCLUSION 

In our proposed work we used customized Neural Network model of deep learning 

techniques for the prediction of the stock market value. An experimental result shows that the 

proposed neural network gave the good predictions for the targets and the consistency of the 

model is also good. Adaptive nature of Neural Network enables to make connections between 

input and output values in such a way that generated network becomes capable to predict the 

expected trends in stock market for future. Hence, we can see that Neural Networks are the 

efficient model for stock market prediction and can be used on real time datasets. The 

proposed neural network model experimental result shows the high stock market prediction 

accuracy that is 86% accuracy on the training set as well as the 14% loss on the testing set 

compared with all the existing models. Our future work is to implement an efficient neural 

network model to increase the performance of the stock market prediction.  
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