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ABSTRACT

Conjecture of stock Exchange is the demonstration of attempting to decide the forecast
estimation of a particular sector or the market, or the market as a whole. Every stock every
investor needs to foresee the future estimation of stocks so predicted forecast of a stock's
future cost could return huge benefit. To increase the accuracy of the Conjecture of stock
Exchange with daily changes in the value of the market is a bottleneck task. The existing
stock market prediction focused on forecasting the daily stock market by using various
machine learning algorithms and deep methodologies. The proposed work we have
implemented describes the new neural network model with the help of various learning
techniques. The prediction of the Stock exchange is an active area for research and
completion in numerai. The numerai is the toughest data science competition for stock market
prediction. Numerai provides weekly new datasets to molding the finest prediction model.
The dataset has 310 features, and the entries are more than 100000 per week. Our proposed
new neural network model gives accuracy is closely 86%. The important point, it’s very
difficult our proposed model with existing models because we are training and testing the
proposed model with a new unlabelled dataset in every week. Our ultimate aim for
participating in numerai competition is to suggest a neural network methodology to forecast

the stock exchange independent of datasets with good accuracy.

Keyword: Deep Learning, Neural Network, Stock Market Prediction, Numerai, NMR.



1. INTRODUCTION

Stock market prediction [1] is an active area for the researcher to help in stock market
prediction, we can easily determine the future values of a company stock or a financial data.
So, why is stock market prediction being important, the reason is that the investors believe
that the only time to invest in the market is when it is going up. When the market falls, such
investors would like to stay away and return only when they are confident that the market
will rise again and the better result will be available for them. Predicting the market means
predicting how the stock market index moves. We can easily predict the stock market with
the help of the machine learning models. In this approach we can use different model to get
the better accuracy and result for the prediction. For this prediction we have used the neural
network approach for the stock market prediction. We are using the real time numerai stock

market dataset which is unlabelled dataset.

Numerai is basically a data science competition powers the hedge fund [2]. In this
competition number of data scientist take part in the competition. The numerai competition
has the similarities like we are predicting the stock a company which is not labelled. The
quality of the dataset which we get form the numerai is very good and the dataset which we
use it changes every week. So, we can predict good amount of data and then we can upload

the prediction for checking the prediction on their model.

Neural networks are the interesting models [3] over the past years, and these models are
successfully applied across an exceptional range of problem domains, the neural networks
can be used in the finance, medicine, engineering, image recognition and etc. A three-layer
neural network is used in the universe. There are input layer, hidden layer and output layer.
These layers help in finding the result for the problem. The neural network approach takes the

set of inputs (features) and computes as output as a prediction. There are other models used



for prediction analysis like random forest, decision tree, support vector machine and soon.
But in this paper, we have used the neural network approach because it works well for a
variety of prediction problems and can easily compare the dataset. Predicting stock costs is a
very important objective within the economic world [4-6], since a fairly correct prediction
has the possibly to return high money edges and hedge fund risk. With the rapid increase of
net and computational technology, the frequencies for acting operations on the stock

prediction had increases to fractions of seconds [7-8].

The neural networks model is used to predict the stock market prediction because they are
able to learn nonlinear mapping between inputs and outputs. The neural network is trained to
perform a variety of financial related tasks. In numerai competition the dataset which we use
for the prediction is unlabelled. With the help of neural network, it is easy to map the features
which are given in the dataset. The neural networks have the ability for nonlinear function
approximation and information processing which other models do not have. Neural network
is well applied to the problems in which the relationships among the data are genuinely

difficult and the training data sets are large enough.



2. LITERATURE REVIEW

Related works in this stock market sector, we classify the techniques which help to compute
the stock market prediction issues. The first class of connected work is economic science
models, which has classical economic science models for prediction. Common ways are the
auto-regressive technique (AR), the moving-average-model (MA), the auto-regressive
moving-average-model (ARMA), and therefore the auto-regressive-integrated-moving
average (ARIMA) [9-10]. In other words, models take every new signal as a noisy linear
combination from the previous signals and freelance noisy terms. However, most of them
think about some sturdy assumptions with reference to the noisy terms and loss functions.
The second class, we have soft computational based models. Soft computational may be a
term that covers computing that mimic biological processes. These techniques embrace
Neural Networks, Fuzzy Logic (FL), Support Vector machines (SVM), particle Swarm
Optimization (PSO), and some other. Several researchers have tried to agitate opacity beside

randomness in possibility pricing models.

Dang Lien Minh [11] has proposed the model Two-stream Gated Recurrent Unit (TGRU) for
the stock market prediction in which they have used the dataset of the Reuters and
Bloomberg from between October 2006 to November 2013 which they get from the yahoo
finance. They conducted implementation on the NVIDIA digits toolbox with Keras API
version 1.2.2 using Python version 2.7.3. The hyperparameter they used in the model was 30
epochs for training, batch size as 64, learning rate as 0.001 and learning rate decay as 0.0001.
They got the overall accuracy about 66.32% on the proposed model. Yujie Wang [12] has
proposed the Hybrid Time-Series Neural Network (HTPNN) model for the stock market
prediction. They have used the yahoo finance dataset. In the HTPNN model they have used
the 2-convolution layer, 2-LSTM layer, learning rate 0.005 and they have used 1000 iteration.

Experimental result showed the model got 69.51 Accuracy.



Sheik Mohammad Idress [13] has proposed the ARIMA model for the Indian Stock market,
they have used the Indian stock market data from Jan 2012 to Dec 2016 which is related to
the Sensex and Nifty. There p-value for the Nifty and Sensex has 0.9099 and 0.8682.
Hiransha M [14] has proposed the 4 different model for the stock prediction are Multi Layer
Perception (MLP), Recurrent Neural Network (RNN), Convolution Neural network (CNN)
and LSTM (Long Short-Term Memory) for the dataset from the National Stock Exchange
(NSE) India from that they have used the data of the Tata motors and New York Stock
Exchange (NYSE) they have used the data of Bank of America (BSC) and Chesapeak energy
(CHK). There CNN model performs wells against the other 3 model. Guang Liu [15]
proposed a model Numerical Based Attention (NBA) in which they have used the LSTM as a
hidden layer. The LSTM encoder and decoder are set to 64 for the better result. The dataset

used from the China Securities Index 300 (CSI 300) and Standard and Poor 500 (S&P 500).

Rui Ren [16] used the two approach as sentiment analysis and support vector machine for
stock market. They have used the dataset from the China SSE 50 index for stock market and
also for the news documents. They have used the k-fold crossvalidation and a realistic rolling
window approach. The model used for the stock market is SVM model. Dharmaraja
Selvamuthu [17] proposed the ANN model for the Indian Stock Market. They had used the
two different dataset names as tick by tick dataset and 15-min dataset for the stock market. In
which they have used the three algorithms, i.e., Bayesian Regularization, Scaled Conjugate

Gradient and Levenberg-Marquardt by predicting over the data for the stock market.

Gunduz [18] used the two different models as LSTM and Regression model based on
Machine Learning to predict the stock values. The dataset obtained from the yahoo finance.
In Regression based model they have set the batch size to 512 and epochs to 90. For LSTM
based model they dropout 0.3 and used the RMSE. The confidence score of 0.86625 for the

regression-based model. Wasiat Khan [19] used the machine learning algorithm for



predicting stock market via public sentiment and political situation analysis. They have used
the stock market historical data from Yahoo finance and public sentiment data they have used
from Twitter. They have used many algorithms like DT, SVM, RF, MLP and etc., but the two
algorithm gives the better result than other algorithms. The MLP and DT gives the better

result for the stock market. They achieved the accuracy up to 68%.

Catalin Stoean [20] proposed the LSTM and CNN model for the stock market. They have
used the dataset of Bucharest Stock Exchange which has the data more than 20 companies for
the stock market. The LSTM has the higher gain term of the CNN in the stock market. Thi-
Thu Nguyen and Seokhoon Yoon [21] has proposed the DTRSI model. The DTRSI stands for
Deep Transfer with Related Stock Information framework which performs well then the
SVM, RF and KNN model for predicting the stock market. In this the LSTM model is used
with input layer has equal the number of features and 20 time steps, two LSTM layer with 16
units and dropout to 0.5 and in the output layer it uses the one sigmoid activation unit. The
dataset used is from the stock market indices, i.e., the KOSPI 200 and the S&P 500 from 31

July 2012 to 31 July2018.

The rest of the report is organized as follows. In next sections, we detail discussed about

proposed method and experimental result analysis.



3. PROPOSED SYSTEM

We have performed on the proposed work in windows 10 with Intel Pentium configuration.
The project was done with the help of the Google Colab server for better computational
power. In the Google Colab server, we have used the GPU as the runtime for running the code
efficiently. We have used some library as TensorFlow version 1.x, pandas, numpy, seaborn,

matplot library, sklearn library, and Keras.

3.1 Dataset Description

The dataset which we have used in this study is from numerai, which we get is in the form of
an unlabelled dataset. Numerai provided two datasets, and one is a training dataset used for
training to our proposed model, and next is the testing dataset used for the testing model. The
dataset which we use is changing every week. We have to upload our prediction on the

numerai tournament to check the prediction is working well on their model also.

Table 1 Details of each feature in the Numerai dataset.

id Key of prediction Categorical Random values

era Period of time. Categorical (eral, era2, era3,...,eral20)
. . (Train, Test, Live,

data_type Type in the datasets Categorical Validation)

feature_!ntell!gencel ) Feature set 1 Numerical (0, 0.25,0.50, 0.75, 1)

feature_intelligencel2

feature_charismal - Feature set 2 Numerical (0,0.25, 0.50, 0.75, 1)

feature_charisma86

feature_strengthl - .

feature_strength3s Feature set 3 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_dexterityl- .

feature_dexterity14 Feature set 4 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_constitution1- .

feature_constitution114 Feature set 5 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_w!sdoml— Feature set 6 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_wisdom46




target_kazutsugi Target Numerical (0, 0.25, 0.50, 0.75, 1)

Table 1 shows a detailed explanation of each feature in our dataset. The training dataset has
314 columns consists of ids, eras, datatype which is train and 310 features which are
subdivided into different groups like intelligencel to intelligencel2, wisdoml to wisdom46,
charismal to charisma86, feature dexterityl to feature dexterity38, feature constitutionl to
feature constitution114 and one target name as target kazutsugi the values are like 0, 0.25,
0.50, 0.75 and 1 which are used to train the model. The datasets about 558069 rows with

different ids and eras.
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Figure 1 Correlation between features heatmap representation

Heatmap represents one variable that could be gently connected with another variable. It will

be giving more effective outputs for investigations and displays more readily between factors.



Figure 1 represents the correlation between 50 features in the numerai dataset. Actually, the

dataset contains 314 attributes, to represent 314 columns in the heatmap its looks messy.

The tournament dataset is our test dataset, which also has the 314 columns with the same
attributes. But in the datatype, it has 3 different types as validation, test, and live. There is no
need for pre-processing in this dataset because there no missing values and outliers are

present.

3.2 Feature Extracting
Here the comparison of relation between features is done and remove, which has a value
higher than 0.9. So, after using this, we will get the dataset, which has only those columns

with a correlation of less than 0.9, as shown in figure 2.
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Figure 2 Heat map for correlated values less than 0.9



Now we will select the columns based on the p-value. We have built the model the makes
regression and p values are calculated. If the value is higher than the fixed value, we can
reject the sequence of features. The p-value which we used is 0.05. After removing the

values, we can visualize the values with the help of the violin plot, as shown in figure 3.

P —Value < 0.05 — Moderate certainty in the result.
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Figure 3 Visualization of selected 167 features data entries

3.3 Methodology
The neural networks have the ability to discover nonlinear relationships in input data which
makes them ideal for modelling nonlinear dynamic systems such as the stock predictions. In
the neural network we have used the activation function. We can use any activation function
in the neural network like sigmoid, tan hyperbolic, relu, linear and radial basis function.
Hidden layers and nodes in the neural network we train for the prediction of stock data has a

number of hidden layers, and number of hidden nodes in each layer as shown in the figure 1.

Using Keras neural network library for python we can define neural network model which we

can train on our training dataset. In neural network model we have used 400 neurons and



dropout is 0.4. We have used 1 hidden layer with Relu activation function and 1 output layer
with linear activation function. The linear activation function is used in the output layer
because it is used for the regression problem. Then we create a wrapper for the neural
network which helps to create a bridge between keras and scikit-learn. By using the keras
regressor for the regression problem with the epochs 30, batch size 250 and we set the
verbosity to 0 because we don’t need to see how far the network has been trained. Using the
RandomizedSearchCV from scikit-learn we can get good hyperparameters for the neural
network model. We have tried by putting different hyperparameter which will work best. So,
we have used 80 neurons or 90 neurons and dropout probability of 0.1 or 0.3. This gives a
parameter with a total of 4 combinations. Then we will create the instance of
RandomizedSearchCV with our model, parameter with the 4 combinations, a scoring
function we have used is MSE (Mean Squared Error), one thread and a verbose level of 3. In

figure 4 we can see the model which we have used the stock market prediction.

input: (None, 166)
output: | (None, 166)

dense 2_input: InputlLayer

Y
input: (Nomne, 166)

output: (None, 80)

dense 2: Dense

Y

input: (None, 80)

batch_normalization_2: BatchNormalization
output: | (None, 80)

Y

input: (None, 80)

dropout_1: Dropout

output: | (None, 80)

Y

. ) ) . input: (None, 80)
activation_1: Activation

output: | (None, 80)

Y
input: (None, 80)

dense_3: Dense

output: (Nomne, 1)

Figure 4 Plot of Neural Network Model Graph



3.4 Performance Indicators

We start by some underlying arrangement of the model and predict the output dependent on
some info. The predicted value is then contrasted, and the target label and the proportion of
our model execution are taken. At that point, the different parameters of the model are
balanced iteratively so as to arrive at the optimal estimation of the performance metric. In
most of the things, the outputs are assessed from two types: the primary is RMSE or RMSRE
between real value and predicted value, the next is Mean Directional Accuracy, which
suggests the proportion of correct analysis of price flow direction, as up and down
movements that can extremely matter for taking any decisions. The little enhancements in

prediction performance are often beneficial.

Table 2 Performance Indicators of Regression

Hyperparameter Explanation

It calculates the determination and it is for regression score function.
n Y
i=n(yi -y i)

R2 score R*(y,y)=1- >
Z?=n(yi - y,)

It finds out MAE, a parameter corresponding to the absolute error loss or
I11-norm loss.

MAE 1 Nsamples—1
MAE(y,y") = n— Z lyi — ¥,

samples =0

The parameter is identified for the squared logarithmic error or loss

function.
MSLE 1 Nsamples—1
MSLE(y,y)=——— ) (log.(1+y)— loge(1+Y))?
nsamples =0
MSE It computes parameter corresponding to the value of the squared error or

loss.




Nsamples—1

1
MSE(y,y') = — Z i— ¥y')?
samples =0

It measures the standard deviation of the mistakes which occurs when a
prediction is made on a dataset.

RMSE YN ,(Predicted; — Actual;)?

RMSE =
N

It identifies the between forecasted and original value error.
Max Error Max Error(y,y') = max(|y; —y',])




4. IMPLEMENTATION

#In this step we are mounting the google drive. The dataset which is

uploaded on the drive will be easy to access.

from google.colab import drive

drive.mount ('/content/drive')

#Importing the tensorflow version 1

$tensorflow version 1.x

import tensorflow

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

% matplotlib inline

# reading csv files

training data = pd.read csv('/content/drive/My Drive/dataset/numerai tr
aining data.csv',header=0)

tournament data =pd.read csv('/content/drive/My Drive/dataset/numerai t

ournament data.csv', header=0)

training data.describe ()

feature_intelligemcel Feature_intelligence2 +Feature_intelligemce3 feature wisdomas target karutsugi

count 501805 000000 501808 000000 501805 000000 501805000000 S01808. 000000
mean 0499951 0.499979 0.499979 0.499971 0500002

std 0.353596 0.353553 0.353593 0.353419 0.352004
min 0.000000 0.000000 0.000000 0000000 0000000
25% 0250000 0250000 0250000 0250000 0_250000
50% 0.500000 0500000 0.500000 0500000 0500000
5% 0.750000 0.750000 0.750000 0_750000 0.750000
max 1.000000 1.000000 1.000000 1_000000 1000000

& rows = 311 columns



tournament data.describe ()

feature_intelligencel feature_intelligence2 feature_intelligence3

count 1.560303e+08
mean 4 939785e-01

std 3.535881e-01
min 0.0000002+00
25% 2.500000e-01
50% 5.000000e-01
T5% T.500000e-01
max 1.0000002+00

& rows = 311 columns

1.5603032+08
4.999785e-01
3.535881e-1
0.000000e+00
2.500000e-01
5.000000=-01
7.500000e-01
1.000000e+00

print (training data.dtypes)

print (tournament data.dtypes)

id object
era object
data_type object

feature_intelligencel floates
feature_intelligence2 floates

feature_wisdoma3 floates
feature_wisdomas floates
feature wisdomds floates
feature_wisdomas floates
target_kazutsugi floates
Length: 314, dtype: object

id object
era object
data_type object

feature_intelligencel floates
feature_intelligence2 floates

feature wisdoma3 floates
feature_wisdomas floates
feature_wisdomas floates
feature_wisdomas floates
target_kazutsugi floates

Length: 314, dtype: object

1.5603032+06
4.999795e-01
3.535881e-01
0.000000e+00
2.500000e-01
5. 000000e-01
7-500000e-01
1.000000e+00

#checking that there no null value present

training data.isnull ()

id

era

data_type
feature_intelligencel
feature_intelligence2

o= = R

feature_wisdomd3
Teature_wisdomdsd
feature_wisdomds
Teature_wisdomds
target_kazutsugi
Length: 214, diyvpe: intesd

& ommmm-

.sum ()

feature_wisdomas
1.560303e+06
4.99984%-01
3.535038e-01
0.000000e+00
2 500000e-01
5.000000e-01
7.500000e-01
1.000000e+00

target_kazutsugi
106395000000
0499960

0353323

0.000000

0.250000

0.500000

0.750000

1.000000



#As we can check that in the target value there are some null values.

For those values we have to predict.
tournament data.isnull() .sum()

id 2
era e
data_type 2
feature_intelligencel a8
feature_intelligence2 a

feature_wisdomd2 a8
feature_wisdomds a
feature_wisdomat <]
feature_wisdomde a8
target_kazutsugi 1452488
Length: 214, diype: ints4

#removing the columns which are not required for the feature scaling

data = training data.drop(labels=['id',6 'era',6 'data type'],axis=1)

data.shape

>>>(501808, 311)

#finding the correlation between the feature using correlation matrix

corr = data.corr ()

corr.head ()

feature_intelligencel feature_intelligence2 feature_imtelligence3

feature_intelligencet 1.000000 0.014157 -0.024404
feature_intelligence2 -0.014157 1.000000 0.905315
feature_intelligenced -0.024404 0905315 1.000000
feature_intelligenced 0.652596 -0.028097 -0.041086
feature_intelligences 0.069368 0.184372 0.173870

5 rows x 311 columns

#removing the correlated features
columns = np.full ((corr.shape[0],), True, dtype=bool)
for i in range (corr.shapel[0]):

for j in range (i+1l, corr.shape([0]):

-0.168257
-0.109625
0107264
-0.209641
0.079726

feature_wisdomde target_kazutsugi

0.001304
-0.007274
-0.006729
-0.00:2600

0.000502



if corr.iloc[i,j] >= 0.9:
if columns[j]:
columns[j] = False
selected columns = data.columns[columns]

data = data[selected columns]

#checking the shape after removing the features
data.shape

>>> (501808, 202)

#removing more features with the help of backward elimination
selected columns = selected columns[1:]
import statsmodels.regression.linear model as sm
def backwardElimination(x, Y, sl, columns):
numVars = len(x[0])
for i in range (0, numVars) :
regressor OLS = sm.OLS(Y,x) .fit ()
maxVar = max (regressor OLS.pvalues) .astype(float)
if maxVar > sl:
for 3 in range (0, numVars - 1i):
if (regressor OLS.pvalues[]].astype(float) == maxVar):
x = np.delete(x, j, 1)

columns = np.delete(columns, j)

regressor OLS.summary ()
return x, columns
SL = 0.05
data modeled, selected columns = backwardElimination(data.iloc[:,1:].va

lues, data.iloc[:,0].values, SL, selected columns)



#checking the last selected feature which we will use for training the
model
selected columns.shape

>>>(167,)

data = pd.DataFrame (data = data modeled, columns = selected columns)

data.head ()

feature_intelligenced feature_intelligences feature_intelligence? feature_wisdomd3 target_kazutsugi

0 0.00 0.25 0.25 0.50 0.75
1 025 0.00 0.00 0.25 0.25
2 0.25 0.75 0.75 1.00 0.00
3 0.50 025 0.25 1.00 0.00
-+ 0.25 0.25 0.50 0.00 0.75

5 rows x 167 columns

import seaborn as sn
fig, ax = plt.subplots(figsize=(20,20))

sn.heatmap (data.corr (), ax=ax)

#Now the training datset name is data
data.shape

>>>(501808,167)

#checking the size of the testing dataset
tournament data.shape

>>> (1560303, 314)

#making the updated dataset for the test by using the selected features

test data = tournament data.loc[:,selected columns]



test data.shape
>>> (1560303, 167)
#adding the id, era, datatype columns

n=tournament data.loc[:,['id', 'era', 'data type']]

data t = pd.concat([n, test datal,axis=1)

train data = pd.concat([training data.iloc[:,:3], data],axis=1)

#adding validation data into the training data for training the model
validation data = data t[data t.data type=='validation']

complete training data = pd.concat([train data,validation datal)

#checking the size of the validation data
validation data.shape

>>>(106895, 170)

#training data + validation data
complete training data.shape

>>> (608703, 170)

features = [f for f in list(complete training data) if "feature" in f]

X

complete training data[features]

Y

complete training data["target kazutsugi"]

#importing libraries for the model and the evaluation
from sklearn.metrics import log loss

from sklearn.model selection import cross val score
from sklearn.model selection import GroupKFold

from keras.models import Sequential



from keras.layers import Dense, BatchNormalization, Dropout, Activation
from keras.wrappers.scikit learn import KerasRegressor

from sklearn.linear model import LinearRegression

from sklearn.model selection import RandomizedSearchCV

from sklearn.model selection import KFold

from sklearn.metrics import mean squared error as mse

from sklearn.metrics import r2 score as r2

#Performing Predictions with Keras and scikit-learn
def create model (neurons=400, dropout=0.4):

model = Sequential ()

model.add (Dense (neurons, input shape=(310,), kernel initializer='gl
orot uniform', use bias=False))

model.add (BatchNormalization())

model.add (Dropout (dropout) )

model.add (Activation('relu'))

model.add (Dense (1, activation='linear', kernel initializer='glorot
normal'))

model.compile (loss="'mse', optimizer='adam', metrics=['mse'])

return model
#we are using the keras regressor for building the regression model
model = KerasRegressor (build fn=create model, epochs=30, batch size=400

, verbose=0)

gkf = GroupKFold(n splits=5)

kfold split = gkf.split (X, Y, groups=complete training data.era)

neurons = [70, 80]



dropout = [0.2, 0.3]

param _grid = dict (neurons=neurons, dropout=dropout)

rsearch = RandomizedSearchCV (estimator=model, param distributions=param
_grid, n _iter=200, verbose = 3)

rsearch result = rsearch.fit (X.values, Y.values)

- AE —mm———p — e e ——— ———————s s m—— e —oy

[Parallel{n_jobs=1)]: Gsing backend sequentialeackend with 1 concurrent workers.
Fitting 5 folds for each of 4 candidates, totalling 2@ fits

[CW] meurons=78, dropout=8.2 .....cccecaeennsunnanssnscsnmnsnnnanannnns
[CW] weeeiiamann neurcns=78, dropout=28.2, score=-8.125, total= 2.4min
[Cv] meurons=78, dropoUt=8.2 ....cceeessnnsnassnnsnsssssnnassnannnnnnnnn
[Parallel{n_jobs=11]: Done 1 out of 1 | elapsed: 2.4min remaining: 2.85
[CW] wennrnmnnnns neurcns=78, dropout=2.2, score=-8.125, total= 2.4min
[CW] meurons=78, dropout=8.2 .....cccecaeennsunnanssnscsnmnsnnnanannnns
[Parallel{n_jobs=1}]: Done 2 out of 2 | elapsed: 4.8min remaining: 2.85
[CW] wenvrnnnnnns neurcns=78, dropout=2.2, score=-@8.125, total= 2.4min
[Cv] meurons=78, dropoUL=8.2 ....cccsesccaanssananassssaansnaannnansans
[CW] wennrnmnnnns neurcns=78, dropout=2.2, score=-8.125, total= 2.4min
[CW] meurons=78, dropoUt=2.2 .....ceeecacsnnsunnnnssnssnmssnnnnnansnns
[CW] wennrnmnnnns neurcns=78, dropout=2.2, score=-8.126, total= 2.5min
[CW] meurons=88, dropout=8.2 .....cccecaeennsunnanssnasnmnsnnnanannnns
[CW] weeeiiamann neurcns=28, dropout=28.2, score=-8.12&, total= 2.5min
[Cv] meurons=28, dropoUt=8.2 ....ccecessnnnassnsnsssssnanssnannnnnnnns
[CW] convrnnnnans neurcns=28, dropout=2.2, score=-@8.12&, total= 2.5min
[CV] meurons=88, dropoUt=8.2 ....ccecessnnnassnnsnsssssnnassnannnnnnnnn
[EW] e inacnnns neurons=88, dropout=e.2, score=-8.126, total= 2.5min
[CV] meurons=88, dropout=8.2 . ... ... cnnarnnnnnassnnsosesnnamnnannnnn
[CW] wenvrnnnnnns neurcns=28, dropout=2.2, score=-8.126, total= 2.5min
[Cv] meurons=88, dropoUL=2.2 ....cccsesccannsaananassssaansnaannnansans
[CW] wennrnmnnnns neurcns=28, dropout=2.2, score=-@8.126, total= 2.5min
[CW] meurons=78, dropoUt=8.3 ....cceeecansnsnsunnnnssnscsnnnsnnnnnansnns
[CW] wennrnmnnnns neurcns=78, dropout=2.3, score=-8.125, total= 2.5min
[CW] meurons=78, dropout=8.3 .....cceecanennsunnanssnasnmnsnnnanannnns
[CW] weeeiiamann neurcns=78, dropout=2.3, score=-8.125, total= 2.&6min
[Cv] meurons=78, dropoUt=8.2 ....cceeessnnnassnnsnsssssnnnssnannnnnnnnn
[CW] convrnnnnans neurcns=7a, dropout=2.3, score=-@8.125, total= 2.&min
[CV] meurons=78, dropout=8.2 ....cceeessnnnassnnsnssssssnassnannnnnnnnn
[EW] e inacnnns neurons=78, dropout=e.3, score=-8.125, total= 2.&min
[CV] meurons=78, dropoUL=8.3 ....ccceessnnnassnnsnsssssnnnssnannnnnnnnn
[EW] i inacnnns neurons=78, dropout=2.3, score=-8.12&, total= 2.5min
[Cv] meurons=88, dropoUL=8.2 ....cccstesccannssannsssssaansnaannnansans
[CW] wennrnmnnnns neurcns=28, dropout=2.32, score=-8.125, total= 2.&8min
[CW] meurons=88, dropoUt=8.3 .....ceeecacsnnsunnnnssncssnmnsnnnnnansnns
[CW] wennrnmnnnns neurcns=28, dropout=2.3, score=-8.125, total= 2.5min
[CW] meurons=88, dropoUt=8.3 .....cceecanennsunnnnssnsasnmnsnnnanansnns
[CW] weeeiiamann neurcns=28, dropout=2.3, score=-8.125, total= 2.&6min
[CVv] meurons=28, dropoUt=8.2 ....ccceessnnnassnnsnassssnanssnannmnnnnnn
[CW] convrnnnnans neurcns=28, dropout=2.3, score=-@8.125, total= 2.&min
[CVW] meurons=88, dropout=8.2 ....cceeesesnnnassnsnnssssssnnssnannnnnnnnn
[EW] e inacnnns neurons=88, dropout=e.3, score=-8.126, total= 2.&min

[Parallel({n_jobs=1)]: Done 2@ out of 28 | elapsed: 56.3min finished

Q

print ("Best: %f using %s" % (rsearch result.best score , rsearch result

.best params ))

means = rsearch result.cv results ['mean test score']
stds = rsearch result.cv results ['std test score']
params = rsearch result.cv results ['params']

for mean, stdev, param in zip (means, stds, params) :

print ("$f (%$f) with: %r" % (mean, stdev, param))



Best: -8.125214 using {'meurons’: 78, “dropout’: 8.3}

-8.125438 (9.808224) with: {'neurons': 78, "dropout': 8.2}
-8.125764 (8.808226) with: {'mneurons’': 28, "dropout': @.2}
-@,125214 (8.208218) with: {'neurons': 78, "dropout': @.3}
-8.125273 (0.808217) with: {'neurcns': 28, "dropout': @.3}

#Checking the Performance

def check consistency(model, valid data):
eras = valid data.era.unique()
count = 0
count consistent = 0
for era in eras:
count += 1
current valid data = valid data[validation data.era==era]
features = [f for £ in list (complete training data) if "feature
" in f]
X valid = current valid data[features]
Y valid = current valid data["target kazutsugi"]
loss = model.evaluate (X valid.values, Y valid.values, batch siz
e=250, wverbose=3) [0]
if (loss < -np.log(.5)):
consistent = True
count consistent += 1
else:
consistent = False
print("{}: loss -
{} consistent: {}".format (era, loss, consistent))

print ("Consistency: {}".format (count consistent/count))

check consistency(rsearch result.best estimator .model, validation data

)



eral2l: loss - 8.12247831237712366 consistent: True
eral22: loss - 8.12258653626876462 consistent: True
eral23: loss - 8.121£976384933074 consistemt: True
eral24: loss - 8.1220194832713686 consistemt: True
eral?s: loss - 8.1218868111291557 consistemt: True
eral?s: loss - 8.12261844281264728 consistent: True
eral27: loss - 8.12285488167861428 consistent: True
ergl2g: loss - B.1222559622495614 consistenmt: True
eragl29: loss - 8.1231513139767e438 consistent: True
eragl3d: loss - 8.12193688719996718 consistent: True
eragl3l: loss - 8.12206526185588138 consistent: True
eragl32: loss - 8.12118913881118555 consistent: True
ergla7: loss - 8.121684776345489 consistenmt: True
eral3g: loss - 8.1226126465858931e consistent: True
2ralag: loss - 8.124847592@4772437 consistent: True
era2gd: loss - 8.12293684865997649 consistent: True
era2gl: loss - B8.122386815282228112 consistent: True
era2e2: loss - B8.122331883@3192745 consistent: True
era2e2: loss - B8.1238597155814736 consistenmt: True
era2ed: loss - B8.12218879222131698 consistent: True
era2es: loss - B8.12278868712465862 consistent: True
era2és: loss - B8.12241374764279264 consistent: True
Comsistency: 1.8

#Submitting the Predictions

import time

x prediction = data t[features]

t id = data t["id"]

y _prediction = rsearch result.best estimator .model.predict proba (x pre
diction.values, batch size=400)

results = np.reshape(y prediction,-1)

results df = pd.DataFrame (data={'probability kazutsugi':results})

y_prediction

array([[2.48863824],
[@.4899262 ],
[@8.53513664],
vy
[2.53430474],
[@.48223836],
[@.47834382]], dtype=float3z)

joined = pd.DataFrame (t id) .join(results_ df)

print (joined)



id probability kazutsugi

0 n0003aa52cab36e2 0450638
1 n000920ed0&3003f 0459926
2 nd)38e640522c4a8 0595137
3 nll4act4ad7dcsdb 0439298
4 nQ52f297ealcOSf 0543341
1560293 nifd2dcdal6ifEa 0441020
1560299 nffid59419a95fdb 0456454
1560300  nffe2dicala9641d 0.334305
1560301 nfifaf27d26792d 1 0482290
1560302 niffsbed&84c10be 0475850

1560303 rows = 2 columns

from time import gmtime, strftime
strftime ("%a, %d %$b %Y $H:%M:%S +0000", gmtime ())

joined = pd.DataFrame (t id) .join(results_ df)

# path = "predictions w loss 0 " + '{:4.0f}'.format (history.history['lo
ss'][-1]1*10000) + ".csv"

path = 'predictions {:}'.format (strftime ("$Y-%m-

%d $Hh%Mm%Ss", time.gmtime())) + '.csv'

print ()

print ("Writing predictions to " + path.strip())
# # Save the predictions out to a CSV file

joined.to csv(path, float format='%.15f', index=False)

wWriting predicticns to predictions_2828-84-25 17hlsm33s.csv




5. EXPERIMENTAL RESULTS

In numerai competition, we can get the results by uploading our prediction on the numerai
tournament. Numerai measures Performance-based on the correlation of rank and predictions
and actual targets. By correlation matrix, we can show the heatmap for the features, as shown

in figure 1. By this, we can quickly check the data and some of the features which are related

to others.

5.1 Hyperparameter Analysis

In the figure 5 graph we show the values of error and the score for the model. In the regression
problem we use the MSE, MAE, Max Error, RMSE and MSLE for checking the error we get
for the predictions. With the R2 score we can check the model is fit properly. If the value is

less than 0.5, we can assume that the model is poorly fit. So, as the R2 score is close to 1 the

model is fitted properly.

0.9
0.7
0.5
0.3
0.1

Error Scale

-0.1
Max

Error
\ Series1|0.182735 | 0.033514 | 0.026656 | 0.001123 | 0.000498 0.868262\

RMSE MAE MSE MSLE | R2 Score

Figure 5 Hyperparameter Analysis of Proposed Method

Next, we compared the prediction with the actual prediction to check that they are near to
each other. The prediction depends upon the R2 score, as the R2 score is near to 1 the values

will us good. So, with the help of figure 6 graph we can easily check the values are close to

each other.
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Figure 6 Comparison of actual values and predicted values at different count of ids

5.2 Comparative Analysis

2000 3000 5000

In this section we compare our model with existing models and figure 7 shows accuracy

performance of our proposed model. The comparison graph clearly shows our proposed

method accuracy is high compared to all the previous works.
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Figure 7 Accuracy performance comparison between other models and proposed model

5.3 Prediction csv

In the prediction csv file, we have two columns which are id and probability kazutsugi as
shown in the figure 8. This file we will upload on the numerai tournament to check the result

of the prediction.

id probability kazutsugi

0 ni003aas2cablbe 0432511
1 n000220=d033903f 0434347
2 ni33e640522c4ab 0615963
3 ni04acs4ai7dedb 0.537636
4 n0052fe97ealc05f 0523217
1726514  nficG02f7p39b2ad 0515544
1726515  nffc62d9428d3d2b 0.431576
1726516  nficceacd 1492353 0477193
1726517  nfied43555736000 0524507
1726518 nffied>faed25fb0 0.513763

Figure 8 Predicted probability



6. CONCLUSION

In our proposed work we used customized Neural Network model of deep learning
techniques for the prediction of the stock market value. An experimental result shows that the
proposed neural network gave the good predictions for the targets and the consistency of the
model is also good. Adaptive nature of Neural Network enables to make connections between
input and output values in such a way that generated network becomes capable to predict the
expected trends in stock market for future. Hence, we can see that Neural Networks are the
efficient model for stock market prediction and can be used on real time datasets. The
proposed neural network model experimental result shows the high stock market prediction
accuracy that is 86% accuracy on the training set as well as the 14% loss on the testing set
compared with all the existing models. Our future work is to implement an efficient neural

network model to increase the performance of the stock market prediction.
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