

Feature Selection and Hyper-parameter Tuning

Techniques using Neural Network for

stock market prediction

A Project Report of Capstone Project - 2

Submitted by

Karanveer Singh

(1613101324 / 16SCSE101850)

in partial fulfilment for the award of the degree

of

Bachelor of Technology

in

Computer Science and Engineering

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Under the supervision of

Mr. Arjun K P

Assistant Professor

APRIL / MAY -2020

SCHOOL OF COMPUTER SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “FEATURE SELECTION AND HYPER-

PARAMETER TUNING TECHNIQUES USING NEURAL NETWORK

FOR STOCK MARKET PREDICTION” is the bonafide work of

“KARANVEER SINGH (1613101324)” who carried out the project work

under my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

Mr. ARJUN K P,

M.Tech (CS)

Assistant Professor

School of Computer Science &

Engineering

Dr. MUNISH SHABARWAL,

PhD (Management), PhD (CS)

Professor & Dean

School of Computer Science &

Engineering

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT 6

1. INTRODUCTION 7

2. LITERATURE REVIEW 9

3. PROPOSED SYSTEM 12

3.1 Dataset Description 12

3.2 Feature Extracting 14

3.3 Methodology 15

3.4 Performance Indicators 17

4. IMPLEMENTATION 19

5. RESULT 30

5.1 Hyperparameter Analysis 30

5.2 Comparative Analysis 31

5.3 Prediction csv 32

6. CONCLUSION / FUTURE 33

 ENHANCEMENT

7. REFERENCES 34

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

1. Correlation between features heatmap representation 13

2. Heat map for correlated values less than 0.9 14

3. Visualization of selected 167 features data entries 15

4. Plot of Neural Network Model Graph 16

5. Hyperparameter Analysis of Proposed Method 30

6. Comparison of actual values and predicted values at 31

 different count of ids

7. Accuracy performance comparison between other 32

 models and proposed model

8. Predicted probability 32

LIST OF TABLES

TABLE NO. TABLE NAME PAGE NO.

1. Details of each feature in the Numerai dataset 12

2. Performance Indicators of Regression 17

ABSTRACT

Conjecture of stock Exchange is the demonstration of attempting to decide the forecast

estimation of a particular sector or the market, or the market as a whole. Every stock every

investor needs to foresee the future estimation of stocks so predicted forecast of a stock's

future cost could return huge benefit. To increase the accuracy of the Conjecture of stock

Exchange with daily changes in the value of the market is a bottleneck task. The existing

stock market prediction focused on forecasting the daily stock market by using various

machine learning algorithms and deep methodologies. The proposed work we have

implemented describes the new neural network model with the help of various learning

techniques. The prediction of the Stock exchange is an active area for research and

completion in numerai. The numerai is the toughest data science competition for stock market

prediction. Numerai provides weekly new datasets to molding the finest prediction model.

The dataset has 310 features, and the entries are more than 100000 per week. Our proposed

new neural network model gives accuracy is closely 86%. The important point, it’s very

difficult our proposed model with existing models because we are training and testing the

proposed model with a new unlabelled dataset in every week. Our ultimate aim for

participating in numerai competition is to suggest a neural network methodology to forecast

the stock exchange independent of datasets with good accuracy.

Keyword: Deep Learning, Neural Network, Stock Market Prediction, Numerai, NMR.

1. INTRODUCTION

Stock market prediction [1] is an active area for the researcher to help in stock market

prediction, we can easily determine the future values of a company stock or a financial data.

So, why is stock market prediction being important, the reason is that the investors believe

that the only time to invest in the market is when it is going up. When the market falls, such

investors would like to stay away and return only when they are confident that the market

will rise again and the better result will be available for them. Predicting the market means

predicting how the stock market index moves. We can easily predict the stock market with

the help of the machine learning models. In this approach we can use different model to get

the better accuracy and result for the prediction. For this prediction we have used the neural

network approach for the stock market prediction. We are using the real time numerai stock

market dataset which is unlabelled dataset.

Numerai is basically a data science competition powers the hedge fund [2]. In this

competition number of data scientist take part in the competition. The numerai competition

has the similarities like we are predicting the stock a company which is not labelled. The

quality of the dataset which we get form the numerai is very good and the dataset which we

use it changes every week. So, we can predict good amount of data and then we can upload

the prediction for checking the prediction on their model.

Neural networks are the interesting models [3] over the past years, and these models are

successfully applied across an exceptional range of problem domains, the neural networks

can be used in the finance, medicine, engineering, image recognition and etc. A three-layer

neural network is used in the universe. There are input layer, hidden layer and output layer.

These layers help in finding the result for the problem. The neural network approach takes the

set of inputs (features) and computes as output as a prediction. There are other models used

for prediction analysis like random forest, decision tree, support vector machine and soon.

But in this paper, we have used the neural network approach because it works well for a

variety of prediction problems and can easily compare the dataset. Predicting stock costs is a

very important objective within the economic world [4-6], since a fairly correct prediction

has the possibly to return high money edges and hedge fund risk. With the rapid increase of

net and computational technology, the frequencies for acting operations on the stock

prediction had increases to fractions of seconds [7-8].

The neural networks model is used to predict the stock market prediction because they are

able to learn nonlinear mapping between inputs and outputs. The neural network is trained to

perform a variety of financial related tasks. In numerai competition the dataset which we use

for the prediction is unlabelled. With the help of neural network, it is easy to map the features

which are given in the dataset. The neural networks have the ability for nonlinear function

approximation and information processing which other models do not have. Neural network

is well applied to the problems in which the relationships among the data are genuinely

difficult and the training data sets are large enough.

2. LITERATURE REVIEW

Related works in this stock market sector, we classify the techniques which help to compute

the stock market prediction issues. The first class of connected work is economic science

models, which has classical economic science models for prediction. Common ways are the

auto-regressive technique (AR), the moving-average-model (MA), the auto-regressive

moving-average-model (ARMA), and therefore the auto-regressive-integrated-moving

average (ARIMA) [9-10]. In other words, models take every new signal as a noisy linear

combination from the previous signals and freelance noisy terms. However, most of them

think about some sturdy assumptions with reference to the noisy terms and loss functions.

The second class, we have soft computational based models. Soft computational may be a

term that covers computing that mimic biological processes. These techniques embrace

Neural Networks, Fuzzy Logic (FL), Support Vector machines (SVM), particle Swarm

Optimization (PSO), and some other. Several researchers have tried to agitate opacity beside

randomness in possibility pricing models.

Dang Lien Minh [11] has proposed the model Two-stream Gated Recurrent Unit (TGRU) for

the stock market prediction in which they have used the dataset of the Reuters and

Bloomberg from between October 2006 to November 2013 which they get from the yahoo

finance. They conducted implementation on the NVIDIA digits toolbox with Keras API

version 1.2.2 using Python version 2.7.3. The hyperparameter they used in the model was 30

epochs for training, batch size as 64, learning rate as 0.001 and learning rate decay as 0.0001.

They got the overall accuracy about 66.32% on the proposed model. Yujie Wang [12] has

proposed the Hybrid Time-Series Neural Network (HTPNN) model for the stock market

prediction. They have used the yahoo finance dataset. In the HTPNN model they have used

the 2-convolution layer, 2-LSTM layer, learning rate 0.005 and they have used 1000 iteration.

Experimental result showed the model got 69.51 Accuracy.

Sheik Mohammad Idress [13] has proposed the ARIMA model for the Indian Stock market,

they have used the Indian stock market data from Jan 2012 to Dec 2016 which is related to

the Sensex and Nifty. There p-value for the Nifty and Sensex has 0.9099 and 0.8682.

Hiransha M [14] has proposed the 4 different model for the stock prediction are Multi Layer

Perception (MLP), Recurrent Neural Network (RNN), Convolution Neural network (CNN)

and LSTM (Long Short-Term Memory) for the dataset from the National Stock Exchange

(NSE) India from that they have used the data of the Tata motors and New York Stock

Exchange (NYSE) they have used the data of Bank of America (BSC) and Chesapeak energy

(CHK). There CNN model performs wells against the other 3 model. Guang Liu [15]

proposed a model Numerical Based Attention (NBA) in which they have used the LSTM as a

hidden layer. The LSTM encoder and decoder are set to 64 for the better result. The dataset

used from the China Securities Index 300 (CSI 300) and Standard and Poor 500 (S&P 500).

Rui Ren [16] used the two approach as sentiment analysis and support vector machine for

stock market. They have used the dataset from the China SSE 50 index for stock market and

also for the news documents. They have used the k-fold crossvalidation and a realistic rolling

window approach. The model used for the stock market is SVM model. Dharmaraja

Selvamuthu [17] proposed the ANN model for the Indian Stock Market. They had used the

two different dataset names as tick by tick dataset and 15-min dataset for the stock market. In

which they have used the three algorithms, i.e., Bayesian Regularization, Scaled Conjugate

Gradient and Levenberg-Marquardt by predicting over the data for the stock market.

Gunduz [18] used the two different models as LSTM and Regression model based on

Machine Learning to predict the stock values. The dataset obtained from the yahoo finance.

In Regression based model they have set the batch size to 512 and epochs to 90. For LSTM

based model they dropout 0.3 and used the RMSE. The confidence score of 0.86625 for the

regression-based model. Wasiat Khan [19] used the machine learning algorithm for

predicting stock market via public sentiment and political situation analysis. They have used

the stock market historical data from Yahoo finance and public sentiment data they have used

from Twitter. They have used many algorithms like DT, SVM, RF, MLP and etc., but the two

algorithm gives the better result than other algorithms. The MLP and DT gives the better

result for the stock market. They achieved the accuracy up to 68%.

Catalin Stoean [20] proposed the LSTM and CNN model for the stock market. They have

used the dataset of Bucharest Stock Exchange which has the data more than 20 companies for

the stock market. The LSTM has the higher gain term of the CNN in the stock market. Thi-

Thu Nguyen and Seokhoon Yoon [21] has proposed the DTRSI model. The DTRSI stands for

Deep Transfer with Related Stock Information framework which performs well then the

SVM, RF and KNN model for predicting the stock market. In this the LSTM model is used

with input layer has equal the number of features and 20 time steps, two LSTM layer with 16

units and dropout to 0.5 and in the output layer it uses the one sigmoid activation unit. The

dataset used is from the stock market indices, i.e., the KOSPI 200 and the S&P 500 from 31

July 2012 to 31 July2018.

The rest of the report is organized as follows. In next sections, we detail discussed about

proposed method and experimental result analysis.

3. PROPOSED SYSTEM

We have performed on the proposed work in windows 10 with Intel Pentium configuration.

The project was done with the help of the Google Colab server for better computational

power. In the Google Colab server, we have used the GPU as the runtime for running the code

efficiently. We have used some library as TensorFlow version 1.x, pandas, numpy, seaborn,

matplot library, sklearn library, and Keras.

3.1 Dataset Description

The dataset which we have used in this study is from numerai, which we get is in the form of

an unlabelled dataset. Numerai provided two datasets, and one is a training dataset used for

training to our proposed model, and next is the testing dataset used for the testing model. The

dataset which we use is changing every week. We have to upload our prediction on the

numerai tournament to check the prediction is working well on their model also.

Table 1 Details of each feature in the Numerai dataset.

Variables Class Scale

id Key of prediction Categorical Random values

era Period of time. Categorical (era1, era2, era3,…,era120)

data_type Type in the datasets Categorical
(Train, Test, Live,

Validation)

feature_intelligence1 -

feature_intelligence12
Feature set 1 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_charisma1 -

feature_charisma86
Feature set 2 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_strength1 -

feature_strength38
Feature set 3 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_dexterity1-

feature_dexterity14
Feature set 4 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_constitution1-

feature_constitution114
Feature set 5 Numerical (0, 0.25, 0.50, 0.75, 1)

feature_wisdom1-

feature_wisdom46
Feature set 6 Numerical (0, 0.25, 0.50, 0.75, 1)

target_kazutsugi Target Numerical (0, 0.25, 0.50, 0.75, 1)

Table 1 shows a detailed explanation of each feature in our dataset. The training dataset has

314 columns consists of ids, eras, datatype which is train and 310 features which are

subdivided into different groups like intelligence1 to intelligence12, wisdom1 to wisdom46,

charisma1 to charisma86, feature dexterity1 to feature dexterity38, feature constitution1 to

feature constitution114 and one target name as target_kazutsugi the values are like 0, 0.25,

0.50, 0.75 and 1 which are used to train the model. The datasets about 558069 rows with

different ids and eras.

Figure 1 Correlation between features heatmap representation

Heatmap represents one variable that could be gently connected with another variable. It will

be giving more effective outputs for investigations and displays more readily between factors.

Figure 1 represents the correlation between 50 features in the numerai dataset. Actually, the

dataset contains 314 attributes, to represent 314 columns in the heatmap its looks messy.

The tournament dataset is our test dataset, which also has the 314 columns with the same

attributes. But in the datatype, it has 3 different types as validation, test, and live. There is no

need for pre-processing in this dataset because there no missing values and outliers are

present.

3.2 Feature Extracting

Here the comparison of relation between features is done and remove, which has a value

higher than 0.9. So, after using this, we will get the dataset, which has only those columns

with a correlation of less than 0.9, as shown in figure 2.

Figure 2 Heat map for correlated values less than 0.9

Now we will select the columns based on the p-value. We have built the model the makes

regression and p values are calculated. If the value is higher than the fixed value, we can

reject the sequence of features. The p-value which we used is 0.05. After removing the

values, we can visualize the values with the help of the violin plot, as shown in figure 3.

𝑃 − 𝑉𝑎𝑙𝑢𝑒 < 0.05 → 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡.

Figure 3 Visualization of selected 167 features data entries

3.3 Methodology

The neural networks have the ability to discover nonlinear relationships in input data which

makes them ideal for modelling nonlinear dynamic systems such as the stock predictions. In

the neural network we have used the activation function. We can use any activation function

in the neural network like sigmoid, tan hyperbolic, relu, linear and radial basis function.

Hidden layers and nodes in the neural network we train for the prediction of stock data has a

number of hidden layers, and number of hidden nodes in each layer as shown in the figure 1.

Using Keras neural network library for python we can define neural network model which we

can train on our training dataset. In neural network model we have used 400 neurons and

dropout is 0.4. We have used 1 hidden layer with Relu activation function and 1 output layer

with linear activation function. The linear activation function is used in the output layer

because it is used for the regression problem. Then we create a wrapper for the neural

network which helps to create a bridge between keras and scikit-learn. By using the keras

regressor for the regression problem with the epochs 30, batch size 250 and we set the

verbosity to 0 because we don’t need to see how far the network has been trained. Using the

RandomizedSearchCV from scikit-learn we can get good hyperparameters for the neural

network model. We have tried by putting different hyperparameter which will work best. So,

we have used 80 neurons or 90 neurons and dropout probability of 0.1 or 0.3. This gives a

parameter with a total of 4 combinations. Then we will create the instance of

RandomizedSearchCV with our model, parameter with the 4 combinations, a scoring

function we have used is MSE (Mean Squared Error), one thread and a verbose level of 3. In

figure 4 we can see the model which we have used the stock market prediction.

Figure 4 Plot of Neural Network Model Graph

3.4 Performance Indicators

We start by some underlying arrangement of the model and predict the output dependent on

some info. The predicted value is then contrasted, and the target label and the proportion of

our model execution are taken. At that point, the different parameters of the model are

balanced iteratively so as to arrive at the optimal estimation of the performance metric. In

most of the things, the outputs are assessed from two types: the primary is RMSE or RMSRE

between real value and predicted value, the next is Mean Directional Accuracy, which

suggests the proportion of correct analysis of price flow direction, as up and down

movements that can extremely matter for taking any decisions. The little enhancements in

prediction performance are often beneficial.

Table 2 Performance Indicators of Regression

Hyperparameter Explanation

R2 score

It calculates the determination and it is for regression score function.

𝑹𝟐(𝒚, 𝒚′) = 𝟏 −
∑ (𝒚𝒊 − 𝒚′

𝒊
)𝒏

𝒊=𝒏
𝟐

∑ (𝒚𝒊 − 𝒚′)𝒏
𝒊=𝒏

𝟐

MAE

It finds out MAE, a parameter corresponding to the absolute error loss or

l1-norm loss.

𝑴𝑨𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ |𝒚𝒊 − 𝒚′

𝒊
|

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

MSLE

The parameter is identified for the squared logarithmic error or loss

function.

𝑴𝑺𝑳𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ (𝒍𝒐𝒈𝒆(𝟏 + 𝒚𝒊) − 𝒍𝒐𝒈𝒆(𝟏 + 𝒚′

𝒊
))𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

MSE

It computes parameter corresponding to the value of the squared error or

loss.

𝑴𝑺𝑬(𝒚, 𝒚′) =
𝟏

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑ (𝒚𝒊 − 𝒚′

𝒊
)𝟐

𝒏𝒔𝒂𝒎𝒑𝒍𝒆𝒔−𝟏

𝒊=𝟎

RMSE

It measures the standard deviation of the mistakes which occurs when a

prediction is made on a dataset.

𝑹𝑴𝑺𝑬 = √
∑ (𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒊 − 𝑨𝒄𝒕𝒖𝒂𝒍𝒊)

𝟐𝑵
𝒊=𝟏

𝑵

Max Error

It identifies the between forecasted and original value error.

𝑴𝒂𝒙 𝑬𝒓𝒓𝒐𝒓(𝒚, 𝒚′) = 𝒎𝒂𝒙(|𝒚𝒊 − 𝒚′
𝒊
|)

4. IMPLEMENTATION

#In this step we are mounting the google drive. The dataset which is

uploaded on the drive will be easy to access.

from google.colab import drive

drive.mount('/content/drive')

#Importing the tensorflow version 1

%tensorflow_version 1.x

import tensorflow

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

% matplotlib inline

reading csv files

training_data = pd.read_csv('/content/drive/My Drive/dataset/numerai_tr

aining_data.csv',header=0)

tournament_data =pd.read_csv('/content/drive/My Drive/dataset/numerai_t

ournament_data.csv',header=0)

training_data.describe()

….

tournament_data.describe()

 …

print(training_data.dtypes)

print(tournament_data.dtypes)

#checking that there no null value present

training_data.isnull().sum()

#As we can check that in the target value there are some null values.

For those values we have to predict.

tournament_data.isnull().sum()

#removing the columns which are not required for the feature scaling

data = training_data.drop(labels=['id','era','data_type'],axis=1)

data.shape

>>>(501808, 311)

#finding the correlation between the feature using correlation matrix

corr = data.corr()

corr.head()

…

#removing the correlated features

columns = np.full((corr.shape[0],), True, dtype=bool)

for i in range(corr.shape[0]):

 for j in range(i+1, corr.shape[0]):

 if corr.iloc[i,j] >= 0.9:

 if columns[j]:

 columns[j] = False

selected_columns = data.columns[columns]

data = data[selected_columns]

#checking the shape after removing the features

data.shape

>>> (501808, 202)

#removing more features with the help of backward elimination

selected_columns = selected_columns[1:]

import statsmodels.regression.linear_model as sm

def backwardElimination(x, Y, sl, columns):

 numVars = len(x[0])

 for i in range(0, numVars):

 regressor_OLS = sm.OLS(Y,x).fit()

 maxVar = max(regressor_OLS.pvalues).astype(float)

 if maxVar > sl:

 for j in range(0, numVars - i):

 if (regressor_OLS.pvalues[j].astype(float) == maxVar):

 x = np.delete(x, j, 1)

 columns = np.delete(columns, j)

 regressor_OLS.summary()

 return x, columns

SL = 0.05

data_modeled, selected_columns = backwardElimination(data.iloc[:,1:].va

lues, data.iloc[:,0].values, SL, selected_columns)

#checking the last selected feature which we will use for training the

model

selected_columns.shape

>>>(167,)

data = pd.DataFrame(data = data_modeled, columns = selected_columns)

data.head()

…

import seaborn as sn

fig, ax = plt.subplots(figsize=(20,20))

sn.heatmap(data.corr(),ax=ax)

#Now the training datset name is data

data.shape

>>>(501808,167)

#checking the size of the testing dataset

tournament_data.shape

>>>(1560303, 314)

#making the updated dataset for the test by using the selected features

test_data = tournament_data.loc[:,selected_columns]

test_data.shape

>>>(1560303, 167)

#adding the id, era, datatype columns

n=tournament_data.loc[:,['id','era','data_type']]

data_t = pd.concat([n, test_data],axis=1)

train_data = pd.concat([training_data.iloc[:,:3], data],axis=1)

#adding validation data into the training data for training the model

validation_data = data_t[data_t.data_type=='validation']

complete_training_data = pd.concat([train_data,validation_data])

#checking the size of the validation data

validation_data.shape

>>>(106895, 170)

#training data + validation data

complete_training_data.shape

>>>(608703, 170)

features = [f for f in list(complete_training_data) if "feature" in f]

X = complete_training_data[features]

Y = complete_training_data["target_kazutsugi"]

#importing libraries for the model and the evaluation

from sklearn.metrics import log_loss

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GroupKFold

from keras.models import Sequential

from keras.layers import Dense, BatchNormalization, Dropout, Activation

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import RandomizedSearchCV

from sklearn.model_selection import KFold

from sklearn.metrics import mean_squared_error as mse

from sklearn.metrics import r2_score as r2

#Performing Predictions with Keras and scikit-learn

def create_model(neurons=400, dropout=0.4):

 model = Sequential()

 model.add(Dense(neurons, input_shape=(310,), kernel_initializer='gl

orot_uniform', use_bias=False))

 model.add(BatchNormalization())

 model.add(Dropout(dropout))

 model.add(Activation('relu'))

 model.add(Dense(1, activation='linear', kernel_initializer='glorot_

normal'))

 model.compile(loss='mse', optimizer='adam', metrics=['mse'])

 return model

#we are using the keras regressor for building the regression model

model = KerasRegressor(build_fn=create_model, epochs=30, batch_size=400

, verbose=0)

gkf = GroupKFold(n_splits=5)

kfold_split = gkf.split(X, Y, groups=complete_training_data.era)

neurons = [70, 80]

dropout = [0.2, 0.3]

param_grid = dict(neurons=neurons, dropout=dropout)

rsearch = RandomizedSearchCV(estimator=model, param_distributions=param

_grid, n_iter=200, verbose = 3)

rsearch_result = rsearch.fit(X.values, Y.values)

print("Best: %f using %s" % (rsearch_result.best_score_, rsearch_result

.best_params_))

means = rsearch_result.cv_results_['mean_test_score']

stds = rsearch_result.cv_results_['std_test_score']

params = rsearch_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):

 print("%f (%f) with: %r" % (mean, stdev, param))

#Checking the Performance

def check_consistency(model, valid_data):

 eras = valid_data.era.unique()

 count = 0

 count_consistent = 0

 for era in eras:

 count += 1

 current_valid_data = valid_data[validation_data.era==era]

 features = [f for f in list(complete_training_data) if "feature

" in f]

 X_valid = current_valid_data[features]

 Y_valid = current_valid_data["target_kazutsugi"]

 loss = model.evaluate(X_valid.values, Y_valid.values, batch_siz

e=250, verbose=3)[0]

 if (loss < -np.log(.5)):

 consistent = True

 count_consistent += 1

 else:

 consistent = False

 print("{}: loss -

 {} consistent: {}".format(era, loss, consistent))

 print ("Consistency: {}".format(count_consistent/count))

check_consistency(rsearch_result.best_estimator_.model, validation_data

)

#Submitting the Predictions

import time

x_prediction = data_t[features]

t_id = data_t["id"]

y_prediction = rsearch_result.best_estimator_.model.predict_proba(x_pre

diction.values, batch_size=400)

results = np.reshape(y_prediction,-1)

results_df = pd.DataFrame(data={'probability_kazutsugi':results})

y_prediction

joined = pd.DataFrame(t_id).join(results_df)

print(joined)

from time import gmtime, strftime

strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())

joined = pd.DataFrame(t_id).join(results_df)

path = "predictions_w_loss_0_" + '{:4.0f}'.format(history.history['lo

ss'][-1]*10000) + ".csv"

path = 'predictions_{:}'.format(strftime("%Y-%m-

%d_%Hh%Mm%Ss", time.gmtime())) + '.csv'

print()

print("Writing predictions to " + path.strip())

Save the predictions out to a CSV file

joined.to_csv(path,float_format='%.15f', index=False)

5. EXPERIMENTAL RESULTS

In numerai competition, we can get the results by uploading our prediction on the numerai

tournament. Numerai measures Performance-based on the correlation of rank and predictions

and actual targets. By correlation matrix, we can show the heatmap for the features, as shown

in figure 1. By this, we can quickly check the data and some of the features which are related

to others.

5.1 Hyperparameter Analysis

In the figure 5 graph we show the values of error and the score for the model. In the regression

problem we use the MSE, MAE, Max Error, RMSE and MSLE for checking the error we get

for the predictions. With the R2 score we can check the model is fit properly. If the value is

less than 0.5, we can assume that the model is poorly fit. So, as the R2 score is close to 1 the

model is fitted properly.

Figure 5 Hyperparameter Analysis of Proposed Method

Next, we compared the prediction with the actual prediction to check that they are near to

each other. The prediction depends upon the R2 score, as the R2 score is near to 1 the values

will us good. So, with the help of figure 6 graph we can easily check the values are close to

each other.

Max

Error
RMSE MAE MSE MSLE R2 Score

Series1 0.182735 0.033514 0.026656 0.001123 0.000498 0.868262

-0.1

0.1

0.3

0.5

0.7

0.9

E
rr

o
r

S
ca

le

Figure 6 Comparison of actual values and predicted values at different count of ids

5.2 Comparative Analysis

In this section we compare our model with existing models and figure 7 shows accuracy

performance of our proposed model. The comparison graph clearly shows our proposed

method accuracy is high compared to all the previous works.

Figure 7 Accuracy performance comparison between other models and proposed model

5.3 Prediction csv

In the prediction csv file, we have two columns which are id and probability kazutsugi as

shown in the figure 8. This file we will upload on the numerai tournament to check the result

of the prediction.

Figure 8 Predicted probability

50

55

60

65

70

75

80

85

90

95

100

TGRU HTPNN LSTM MLP and DT Neural

Network

(Proposed)

A
c
c
u

r
a

c
y

Models

6. CONCLUSION

In our proposed work we used customized Neural Network model of deep learning

techniques for the prediction of the stock market value. An experimental result shows that the

proposed neural network gave the good predictions for the targets and the consistency of the

model is also good. Adaptive nature of Neural Network enables to make connections between

input and output values in such a way that generated network becomes capable to predict the

expected trends in stock market for future. Hence, we can see that Neural Networks are the

efficient model for stock market prediction and can be used on real time datasets. The

proposed neural network model experimental result shows the high stock market prediction

accuracy that is 86% accuracy on the training set as well as the 14% loss on the testing set

compared with all the existing models. Our future work is to implement an efficient neural

network model to increase the performance of the stock market prediction.

7. REFERENCE

[1] Yuan, X., Yuan, J., Jiang, T., & Ain, Q. U. (2020). Integrated Long-term Stock Selection

Models Based on Feature Selection and Machine Learning Algorithms for China Stock

Market. IEEE Access, 1–1. doi:10.1109/access.2020.2969293

[2] Lee, J., Kim, R., Koh, Y., & Kang, J. (2019). Global Stock Market Prediction Based on

Stock Chart Images Using Deep Q-Network. IEEE Access, 1–

1. doi:10.1109/access.2019.2953542

[3] Parmar, I., Agarwal, N., Saxena, S., Arora, R., Gupta, S., Dhiman, H., & Chouhan, L.

(2018). Stock Market Prediction Using Machine Learning. 2018 First International

Conference on Secure Cyber Computing and Communication

(ICSCCC). doi:10.1109/icsccc.2018.8703332

[4] R. Al-Hmouz and A. Balamash, “Description and prediction of time series: a general

framework of Granular Computing,” Expert Systems with Applications, vol. 42, no. 10, pp.

4830–4839, 2015.

[5] [Bengio, 2009] Yoshua Bengio. Learning deep architectures for ai. Foundations and

trendsR in Machine Learning, 2(1):1–127, 2009.

[6] A. Bagheri, H. Mohammadi Peyhani, and M. Akbari, “Financial forecasting using ANFIS

networks with Quantum-behaved Particle Swarm Optimization,” Expert Systems with

Applications, vol. 41, no. 14, pp. 6235–6250, 2014.

[7] Y. Son, D.-J. Noh, and J. Lee, “Forecasting trends of high-frequency KOSPI200

index data using learning classifiers,” Expert Systems with Applications, vol. 39, no. 14, pp.

11607–11615, 2012.

[8] T. Kimoto, K. Asakawa,M. Yoda,M. Takeoka. “Stock market prediction system with

modular neural network”. Proceedings of the International Joint Conference on Neural

Networks, 1990, pages 1–6

[9] W. P. Risk, G. S. Kino, and H. J. Shaw, “Fiber-optic frequency shifter using a surface

acoustic wave incident at an oblique angle,” Opt. Lett., vol. 11, no. 2, pp. 115–117, Feb.

1986.

[10] Stephane Lathuili ´ ere , et.al., “A Comprehensive Analysis of Deep Regression”, IEEE,

2018.

[11] Dang, L. M., Sadeghi-Niaraki, A., Huynh, H. D., Min, K., & Moon, H. (2018). Deep

Learning Approach for Short-Term Stock Trends Prediction based on Two-stream Gated

Recurrent Unit Network. IEEE Access, 1–1. doi:10.1109/access.2018.2868970

[12] Wang, Y., Liu, H., Guo, Q., Xie, S., & Zhang, X. (2019). Stock Volatility Prediction by

Hybrid Neural Network. IEEE Access, 1–1. doi:10.1109/access.2019.2949074

[13] Idrees, S. M., Alam, M. A., & Agarwal, P. (2019). A Prediction Approach for Stock

Market Volatility Based on Time Series Data. IEEE Access, 1–1.

doi:10.1109/access.2019.2895252

[14] M, H., E.A., G., Menon, V. K., & K.P., S. (2018). NSE Stock Market Prediction Using

Deep-Learning Models. Procedia Computer Science, 132, 1351–

1362. doi:10.1016/j.procs.2018.05.050

[15] GUANG LIU and XIAOJIE WANG, “A Numerical-based Attention Method for Stock

Market Prediction with Dual Information”, IEEE, 2016

[16] Ren, R., Wu, D. D., & Liu, T. (2018). Forecasting Stock Market Movement Direction

Using Sentiment Analysis and Support Vector Machine. IEEE Systems Journal, 1–

11. doi:10.1109/jsyst.2018.2794462

[17] Selvamuthu, D., Kumar, V., & Mishra, A. (2019). Indian stock market prediction using

artificial neural networks on tick data. Financial Innovation, 5(1). doi:10.1186/s40854-019-

0131-7

[18] Gunduz, H., Cataltepe, Z., & Yaslan, Y. (2017). Stock market direction prediction using

deep neural networks. 2017 25th Signal Processing and Communications Applications

Conference (SIU). doi:10.1109/siu.2017.7960512

[19] Khan, W., Malik, U., Ghazanfar, M. A., Azam, M. A., Alyoubi, K. H., & Alfakeeh, A. S.

(2019). Predicting stock market trends using machine learning algorithms via public

sentiment and political situation analysis. Soft Computing. doi:10.1007/s00500-019-04347-y

[20] Stoean, C., Paja, W., Stoean, R., & Sandita, A. (2019). Deep architectures for long-term

stock price prediction with a heuristic-based strategy for trading simulations. PLOS ONE,

14(10), e0223593. doi:10.1371/journal.pone.0223593

[21] Thi-Thu Nguyen and Seokhoon Yoon,“A Novel Approach to Short-Term Stock Price

Movement Prediction using Transfer Learning”, Applied Sciences- MDPI, 2019.

