
1

EVENT RECOMMENDATION SYSTEM

A Report for the Evaluation 3 of Project 2

Submitted by

SHOURYA MEHROTRA

(1613105117/16SCSE105070)

in partial fulfillment for the award of the degree of

BACHELOR IN TECHNOLOGY

IN

COMPUTER SCIENCE

(WITH SPECIALIZATION IN CLOUD COMPUTING AND

VIRTUALIZATION)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Under the Supervision of Supervisor DR. D. NAGESHWARA RAO

MAY 2020

2

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1. Abstract 3

2. Introduction 4

3. Existing System 7

4. Proposed system 8

5. Implementation or architecture diagrams 10

6. Output / Result / Screenshot 15

7. Conclusion/Future Enhancement 18

8. Refrences 19

3

ABSTRACT

A recommender system is a discovery system. The system learns from the data and provides

recommendations to users. Without the user specifically searching for that item, that item was

brought automatically by the system.It sounds like magic.And this magic has been used by

Amazon and Netflix since decades ago.How awesome it is, when you open Spotify and it

already gives you a list of songs to listen to.A recommendation system is a type of information

filter, which can learn users’ interests and hobbies according to their profile or historical

behaviours, and then predict their ratings or preferences for a given item. It changes the way

businesses communicate and strengthens the interactivity between user and provider. With the

large number of events published all the time in event-based social networks (EBSN), it has

become increasingly difficult for users to find the events that best match their preferences.

Recommender systems appear as a natural solution to the entire problem . However, the event

recommendation scenario is quite different from typical recommendation domains (e.g.

movies), since there is an intrinsic new item problem involved (i.e. events can not be

”consumed” before their occurrence) and scarce collaborative information. Although some few

works have appeared in this area, there is still lacking in the literature an extensive analysis of

the different characteristics of EBSN data that can affect the design of event recommenders.

We examine the topic of unseen item recommendation through a user study of academic

(scientific) talk recommendation, where we aim to correctly estimate a ranking function for

each user, predicting which talks would be of most interest to them.

4

INTRODUCTION

A recommendation system helps users find compelling content in large corpora. For example,

the Google Play Store provides millions of apps, while YouTube provides billions of videos.

More apps and videos are added every day. One can use search to access content. However, a

recommendation engine can display items that users might not have thought to search for on

their own.

Recommendation engines have been around for a while and there have been some key learnings

to leverage:

• 1. A user’s actions are the best indicator of user intent. Ratings and feedback tends to

be very biased and lower volumes.

• 2. Past actions and purchases drive new purchases and the overlap with other people’s

purchases and actions is a fantastic predictor.

In any such analysis where all the inputs are behavioural which generally are because through

survey reports or feedback people would not want to give the right verdict while through search

or clicks one can understand how well a user likes something or the kind of things he or she

likes and the kind of categories that do interest.

 Every single tie a user does some activity to the website or application data can be recorded,

either through a websites own analytical system or through some software which help a lot in

establishing digital marketing as one of the key ways to grow a business by understanding what

exactly a user wants and who are the users which want you products.

And this can give birth to an idea of event marketing –

Event marketing is defined by the tools, techniques and channels you use to promote an event

to an audience, usually with the hope of getting them to buy tickets or attend.

5

Event marketing begins with launching an event idea, through to persuading attendees to invite

their friends or colleagues and attracting a steady pipeline of leads through channels such as

email marketing, blogging and advertising.

B2B (business to business) event marketing is selling an event to other businesses in order to

get them to attend, sponsor or exhibit. The channels of advertising may be the same (for

example social media, email marketing, PPC) but the tone of voice and USPs may be different.

For example at a consumer event, the sales techniques will be activated towards personal

interest and benefit, whereas for a business event the rewards may need to be more tangible

such as helping a business to increase revenue, generate leads or gain a competitive advantage.

In-depth about recommender system

In general term, there are two kinds of recommender system known by us, a human. Well, not

all human.

1. Content-based filtering

The type of recommender system that can easily be digested by our brain. Without a sign of

short-circuiting or exploding.For example, you are an avid novel reader. And you like “And

then there were none” by Agatha Christie. You bought it from an online bookstore.It makes

sense if the bookstore will show you “The ABC Murders” the next time you open the

website.Why? Because both of them written by Agatha Christie.Hence, the Content-based

filtering model will recommend you that title.While Content-based filtering is easily digested

by our brain and looks so simple, it can fail to guess the real behavior of the user.For

example, I don’t like Hercule Poirot, but I like other detectives in her novels. In that case,

“The ABC Murders” should not be recommended for me.

6

2. Collaborative filtering

This type will overcome the previous problem. Essentially, the system record all the previous

interaction of the user on the website. And provide recommendations based on that.How does

it work?Take a look at this scenario.

There are two users, A and B.

A bought item 1

A bought item 2

A bought item 3

B bought item 1

B bought item 3

The collaborative filtering will recommend B item 2 since there is another user who bought

items 1 and 3 also bought item 2.You might say, wow, they could be sporadically bought

together in coincidence.But, what if, there are 100 users who have the same behavior with

user A.That was, the so-called, the power of crowds.So, why waiting. Let’s just start

creating Collaborative filtering system in your production environment.While it has an

extremely good performance. It has several serious issues. More importantly when you are

trying to create a production-ready system.

7

EXISTING SYSTEM

The downside of Collaborative filtering

1. It doesn’t know about context. In contrast with Content-based filtering that recommends

similar items, Collaborative filtering will not recommend based on similarity. When this

is your concern, the solution is going hybrid. Combine both methods.

2. It needs huge hardware resources since you need to store a user-item matrix. Imagine if

you open your e-commerce website and it has 100K users. At the same time, you serve

10K products. In this case, you will need 10K x 100K matrix with each element hold 4

bytes integer. Yep, you need 4GB memory just for storing the matrix. Not even doing

other things.

3. Cold start. A new user will not get any benefit from the system since you have no idea

about him.

4. The unchangeable. If you are not doing anything on the website, the result of the

recommender system will stay the same. The user will think that there is nothing new on

the website. And they will leave.

Solution

1. Batch computation on the general recommendation indicator.

2. Query on real-time, without using the user-item matrix, but take several latest

interactions of the user and query it to the system.

8

PROPOSED MODEL

Recommendation systems generally look for overlap or co-occurrence to make a

recommendation.Like in the following example where we recommend Ethan a puppy based on

a similarity of Ethan with Sophia:

In practise, a recommendation engine computes a co-occurrence matrix from a history

matrix of events and actions. This is simple enough but there are challenges to overcome in

real world scenarios. What if everyone wants a unicorn.Does the high co-occurrence of

unicorns in the following example make a good recommendation.

9

After the recommendation system has computed the co-occurrence matrix we have to apply

statistics to filter out the sufficiently anomalous signals to be interesting as a recommendation.

10

IMPLEMENTATION

Recommender system is using Python.

• Here the code is implemented in Jupyter Notebook.

• Elasticsearch is also used, it is an open-source search engine, that can enable you to

search your document really fast.

• Postman is also used which is an API development tool. It is needed to simulate the

query into elasticsearch. As elasticsearch can be accessed via http.

for item in the_bag:

print(item)

pip install numpy

pip install scipy

pip install pandas

pip install jupyter

pip install requests

import pandas as pd

import numpy as np

df = pd.read_csv('events.csv')

df.shape

df.head()

df.event.unique()

trans = df[df['event'] == 'transaction']

trans.shape

visitors = trans['visitorid'].unique()

items = trans['itemid'].unique()print(visitors.shape)

print(items.shape)

trans2 = trans.groupby(['visitorid']).head(50)

trans2.shape

trans2['visitors'] = trans2['visitorid'].apply(lambda x : np.argwhere(visitors == x)[0][0])

trans2['items'] = trans2['itemid'].apply(lambda x : np.argwhere(items == x)[0][0])trans2

https://www.elastic.co/
https://www.getpostman.com/

11

from scipy.sparse import csr_matrix

occurences = csr_matrix((visitors.shape[0], items.shape[0]), dtype='int8')def

set_occurences(visitor, item):

 occurences[visitor, item] += 1trans2.apply(lambda row: set_occurences(row['visitors'],

row['items']), axis=1)occurences

cooc = occurences.transpose().dot(occurences)

cooc.setdiag(0)

def xLogX(x):

 return x * np.log(x) if x != 0 else 0.0def entropy(x1, x2=0, x3=0, x4=0):

 return xLogX(x1 + x2 + x3 + x4) - xLogX(x1) - xLogX(x2) - xLogX(x3) - xLogX(x4)def

LLR(k11, k12, k21, k22):

 rowEntropy = entropy(k11 + k12, k21 + k22)

 columnEntropy = entropy(k11 + k21, k12 + k22)

 matrixEntropy = entropy(k11, k12, k21, k22)

 if rowEntropy + columnEntropy < matrixEntropy:

 return 0.0

 return 2.0 * (rowEntropy + columnEntropy - matrixEntropy)def rootLLR(k11, k12, k21,

k22):

 llr = LLR(k11, k12, k21, k22)

 sqrt = np.sqrt(llr)

 if k11 * 1.0 / (k11 + k12) < k21 * 1.0 / (k21 + k22):

 sqrt = -sqrt

 return sqrt

row_sum = np.sum(cooc, axis=0).A.flatten()

column_sum = np.sum(cooc, axis=1).A.flatten()

total = np.sum(row_sum, axis=0)pp_score = csr_matrix((cooc.shape[0], cooc.shape[1]),

dtype='double')

cx = cooc.tocoo()

for i,j,v in zip(cx.row, cx.col, cx.data):

 if v != 0:

 k11 = v

 k12 = row_sum[i] - k11

 k21 = column_sum[j] - k11

 k22 = total - k11 - k12 - k21

 pp_score[i,j] = rootLLR(k11, k12, k21, k22)

result = np.flip(np.sort(pp_score.A, axis=1), axis=1)

result_indices = np.flip(np.argsort(pp_score.A, axis=1), axis=1)

12

result[8456]

array([15.33511076, 14.60017668, 3.62091635, ..., 0. ,

0. , 0.])

result_indices[8456]

array([8682, 380, 8501, ..., 8010, 8009, 0], dtype=int64)

minLLR = 5

indicators = result[:, :50]

indicators[indicators < minLLR] = 0.0indicators_indices = result_indices[:,

:50]max_indicator_indices = (indicators==0).argmax(axis=1)

max = max_indicator_indices.max()indicators = indicators[:, :max+1]

indicators_indices = indicators_indices[:, :max+1]

import requests

import json

actions = []

for i in range(indicators.shape[0]):

 length = indicators[i].nonzero()[0].shape[0]

 real_indicators = items[indicators_indices[i, :length]].astype("int").tolist()

 id = items[i]

 action = { "index" : { "_index" : "items2", "_id" : str(id) } }

 data = {

 "id": int(id),

 "indicators": real_indicators

 }

 actions.append(json.dumps(action))

 actions.append(json.dumps(data))

 if len(actions) == 200:

 actions_string = "\n".join(actions) + "\n"

 actions = []

 url = "http://127.0.0.1:9200/_bulk/"

 headers = {

 "Content-Type" : "application/x-ndjson"

 }

 requests.post(url, headers=headers, data=actions_string)if len(actions) > 0:

 actions_string = "\n".join(actions) + "\n"

 actions = [] url = "http://127.0.0.1:9200/_bulk/"

http://127.0.0.1:9200/_bulk/
http://127.0.0.1:9200/_bulk/

13

 headers = {

 "Content-Type" : "application/x-ndjson"

 }

 requests.post(url, headers=headers, data=actions_string)

{

"count": 12025,

"_shards": {

"total": 1,

"successful": 1,

"skipped": 0,

"failed": 0

}

}

{

"id": 240708,

"indicators": [

305675,

346067,

312728

]

}

{

"query": {

"bool": {

"should": [

{ "terms": {"indicators" : [240708], "boost": 2}}

]

}

}

}

{

"query": {

"bool": {

"should": [

{ "terms": {"indicators" : [240708]}},

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}}

]

}

}

}

popular = np.zeros(items.shape[0])def inc_popular(index):

 popular[index] += 1trans2.apply(lambda row: inc_popular(row['items']), axis=1)

14

actions = []

for i in range(indicators.shape[0]):

 length = indicators[i].nonzero()[0].shape[0]

 real_indicators = items[indicators_indices[i, :length]].astype("int").tolist()

 id = items[i]

 action = { "index" : { "_index" : "items3", "_id" : str(id) } }

url = "http://127.0.0.1:9200/items/_create/" + str(id)

 data = {

 "id": int(id),

 "indicators": real_indicators,

 "popular": popular[i]

 }

 actions.append(json.dumps(action))

 actions.append(json.dumps(data))

 if len(actions) == 200:

 actions_string = "\n".join(actions) + "\n"

 actions = []

 url = "http://127.0.0.1:9200/_bulk/"

 headers = {

 "Content-Type" : "application/x-ndjson"

 }

 requests.post(url, headers=headers, data=actions_string)if len(actions) > 0:

 actions_string = "\n".join(actions) + "\n"

 actions = []url = "http://127.0.0.1:9200/_bulk/"

 headers = {

 "Content-Type" : "application/x-ndjson"

 }

 requests.post(url, headers=headers, data=actions_string)

{

"id": 240708,

"indicators": [

305675,

346067,

312728

],

"popular": 3.0

}

{

"query": {

"function_score":{

"query": {

"bool": {

http://127.0.0.1:9200/items/_create/
http://127.0.0.1:9200/_bulk/
http://127.0.0.1:9200/_bulk/

15

"should": [

{ "terms": {"indicators" : [240708], "boost": 2}},

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}}

]

}

},

"functions":[

{

"filter": {"range": {"popular": {"gt": 0}}},

"script_score" : {

"script" : {

"source": "doc['popular'].value * 0.1"

}

}

}

],

"score_mode": "sum",

"min_score" : 0

}

}

}{

"query": {

"function_score":{

"query": {

"bool": {

"should": [

{ "terms": {"indicators" : [240708], "boost": 2}},

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}}

]

}

},

"functions":[

{

"filter": {"range": {"popular": {"gt": 1}}},

"script_score" : {

"script" : {

"source": "0.1 * Math.log(doc['popular'].value)"

}

}

},

{

"filter": {"match_all": {}},

"random_score": {}

}

],

"score_mode": "sum",

"min_score" : 0}

}

}

16

OUTPUT AND SCREENSHOTS

➢ It has five columns.

1. Timestamp, the timestamp of the event.

2. Visitorid, the id of the user

3. Itemid, the id of the item

4. Event, the event

5. Transactionid, an id of the transaction if the event is a transaction

➢ After which this is used to unique identify the required events:

df.event.unique()

17

➢ The next step: Create the user-item matrix

➢ Once on applying the code we can see in the final output as follows.

18

 CONCLUSION AND FUTURE ENHANCEMENTS

However, there are a few more challenges a good recommendation system has to overcome.

Recommending the same things over and over is boring. Even worse, recommending the same

things produces bad data and causes content fatigue.

Two simple and intuitive strategies to improve the value of recommendations are

• Anti-Flood: Penalise the second and third recommendations if they have the same

similarity scores to the top recommendation.

• Dithering: Add a wildcard recommendation to create interesting new data points for the

recommendation system to keep learning about other content.

These steps ensure an interesting user experience and new data on alternative

recommendations

19

REFRENCES

• https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-

simple-aec8c71a823e

• https://towardsdatascience.com/learning-how-recommendation-system-recommends-

45ad8a941a5a

• https://developers.google.com/machine-learning/recommendation

• Google training module on Recommendation Systems.

https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-simple-aec8c71a823e
https://towardsdatascience.com/how-to-build-a-recommendation-engine-quick-and-simple-aec8c71a823e
https://towardsdatascience.com/learning-how-recommendation-system-recommends-45ad8a941a5a
https://towardsdatascience.com/learning-how-recommendation-system-recommends-45ad8a941a5a
https://developers.google.com/machine-learning/recommendation

20

THANK YOU

shourya.mehrotra@gmail.com

