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ABSTRACT  

A recommender system is a discovery system. The system learns from the data and provides 

recommendations to users. Without the user specifically searching for that item, that item was 

brought automatically by the system.It sounds like magic.And this magic has been used by 

Amazon and Netflix since decades ago.How awesome it is, when you open Spotify and it 

already gives you a list of songs to listen to.A recommendation system is a type of information 

filter, which can learn users’ interests and hobbies according to their profile or historical 

behaviours, and then predict their ratings or preferences for a given item. It changes the way 

businesses communicate and strengthens the interactivity between user and provider. With the 

large number of events published all the time in event-based social networks (EBSN), it has 

become increasingly difficult for users to find the events that best match their preferences. 

Recommender systems appear as a natural solution to the entire problem . However, the event 

recommendation scenario is quite different from typical recommendation domains (e.g. 

movies), since there is an intrinsic new item problem involved (i.e. events can not be 

”consumed” before their occurrence) and scarce collaborative information. Although some few 

works have appeared in this area, there is still lacking in the literature an extensive analysis of 

the different characteristics of EBSN data that can affect the design of event recommenders. 

We examine the topic of unseen item recommendation through a user study of academic 

(scientific) talk recommendation, where we aim to correctly estimate a ranking function for 

each user, predicting which talks would be of most interest to them. 
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INTRODUCTION 

A recommendation system helps users find compelling content in large corpora. For example, 

the Google Play Store provides millions of apps, while YouTube provides billions of videos. 

More apps and videos are added every day. One can use search to access content. However, a 

recommendation engine can display items that users might not have thought to search for on 

their own. 

Recommendation engines have been around for a while and there have been some key learnings 

to leverage: 

 

• 1. A user’s actions are the best indicator of user intent. Ratings and feedback tends to 

be very biased and lower volumes. 

• 2. Past actions and purchases drive new purchases and the overlap with other people’s 

purchases and actions is a fantastic predictor. 

 

In any such analysis where all the inputs are behavioural which generally are because through 

survey reports or feedback people would not want to give the right verdict while through search 

or clicks one can understand how well a user likes something or the kind of things he or she 

likes and the kind of categories that do interest. 

  Every single tie a user does some activity to the website or application data can be recorded, 

either through a websites own analytical system or through some software which help a lot in 

establishing digital marketing as one of the key ways to grow a business by understanding what 

exactly a user wants and who are the users which want you products. 

And this can give birth to an idea of event marketing – 

Event marketing is defined by the tools, techniques and channels you use to promote an event 

to an audience, usually with the hope of getting them to buy tickets or attend. 
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Event marketing begins with launching an event idea, through to persuading attendees to invite 

their friends or colleagues and attracting a steady pipeline of leads through channels such as 

email marketing, blogging and advertising. 

 

B2B (business to business) event marketing is selling an event to other businesses in order to 

get them to attend, sponsor or exhibit. The channels of advertising may be the same (for 

example social media, email marketing, PPC) but the tone of voice and USPs may be different. 

For example at a consumer event, the sales techniques will be activated towards personal 

interest and benefit, whereas for a business event the rewards may need to be more tangible 

such as helping a business to increase revenue, generate leads or gain a competitive advantage. 

In-depth about recommender system 

In general term, there are two kinds of recommender system known by us, a human. Well, not 

all human. 

1. Content-based filtering 

The type of recommender system that can easily be digested by our brain. Without a sign of 

short-circuiting or exploding.For example, you are an avid novel reader. And you like “And 

then there were none” by Agatha Christie. You bought it from an online bookstore.It makes 

sense if the bookstore will show you “The ABC Murders” the next time you open the 

website.Why? Because both of them written by Agatha Christie.Hence, the Content-based 

filtering model will recommend you that title.While Content-based filtering is easily digested 

by our brain and looks so simple, it can fail to guess the real behavior of the user.For 

example, I don’t like Hercule Poirot, but I like other detectives in her novels. In that case, 

“The ABC Murders” should not be recommended for me. 
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2. Collaborative filtering 

This type will overcome the previous problem. Essentially, the system record all the previous 

interaction of the user on the website. And provide recommendations based on that.How does 

it work?Take a look at this scenario. 

There are two users, A and B. 

A bought item 1 

A bought item 2 

A bought item 3 

B bought item 1 

B bought item 3 

The collaborative filtering will recommend B item 2 since there is another user who bought 

items 1 and 3 also bought item 2.You might say, wow, they could be sporadically bought 

together in coincidence.But, what if, there are 100 users who have the same behavior with 

user A.That was, the so-called, the power of crowds.So, why waiting. Let’s just start 

creating Collaborative filtering system in your production environment.While it has an 

extremely good performance. It has several serious issues. More importantly when you are 

trying to create a production-ready system. 
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EXISTING SYSTEM 

The downside of Collaborative filtering 

1. It doesn’t know about context. In contrast with Content-based filtering that recommends 

similar items, Collaborative filtering will not recommend based on similarity. When this 

is your concern, the solution is going hybrid. Combine both methods. 

2. It needs huge hardware resources since you need to store a user-item matrix. Imagine if 

you open your e-commerce website and it has 100K users. At the same time, you serve 

10K products. In this case, you will need 10K x 100K matrix with each element hold 4 

bytes integer. Yep, you need 4GB memory just for storing the matrix. Not even doing 

other things. 

3. Cold start. A new user will not get any benefit from the system since you have no idea 

about him. 

4. The unchangeable. If you are not doing anything on the website, the result of the 

recommender system will stay the same. The user will think that there is nothing new on 

the website. And they will leave. 

Solution 

1. Batch computation on the general recommendation indicator. 

2. Query on real-time, without using the user-item matrix, but take several latest 

interactions of the user and query it to the system. 
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PROPOSED MODEL 

Recommendation systems generally look for overlap or co-occurrence to make a 

recommendation.Like in the following example where we recommend Ethan a puppy based on 

a similarity of Ethan with Sophia: 

 

 

In practise, a recommendation engine computes a co-occurrence matrix from a history 

matrix of events and actions. This is simple enough but there are challenges to overcome in 

real world scenarios. What if everyone wants a unicorn.Does the high co-occurrence of 

unicorns in the following example make a good recommendation. 

 



9 
 

After the recommendation system has computed the co-occurrence matrix we have to apply 

statistics to filter out the sufficiently anomalous signals to be interesting as a recommendation. 
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IMPLEMENTATION 

Recommender system is using Python. 

 

• Here the code is implemented in Jupyter Notebook. 

• Elasticsearch is also used, it is an open-source search engine, that can enable you to 

search your document really fast. 

• Postman is also used which is an API development tool. It is needed to simulate the 

query into elasticsearch. As elasticsearch can be accessed via http. 

for item in the_bag: 

print(item) 

pip install numpy 

pip install scipy 

pip install pandas 

pip install jupyter 

pip install requests 

import pandas as pd 

import numpy as np 

df = pd.read_csv('events.csv') 

df.shape 

df.head() 

df.event.unique() 

trans = df[df['event'] == 'transaction'] 

trans.shape 

visitors = trans['visitorid'].unique() 

items = trans['itemid'].unique()print(visitors.shape) 

print(items.shape) 

trans2 = trans.groupby(['visitorid']).head(50) 

trans2.shape 

trans2['visitors'] = trans2['visitorid'].apply(lambda x : np.argwhere(visitors == x)[0][0]) 

trans2['items'] = trans2['itemid'].apply(lambda x : np.argwhere(items == x)[0][0])trans2 

https://www.elastic.co/
https://www.getpostman.com/
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from scipy.sparse import csr_matrix 

occurences = csr_matrix((visitors.shape[0], items.shape[0]), dtype='int8')def 

set_occurences(visitor, item): 

    occurences[visitor, item] += 1trans2.apply(lambda row: set_occurences(row['visitors'], 

row['items']), axis=1)occurences 

cooc = occurences.transpose().dot(occurences) 

cooc.setdiag(0) 

def xLogX(x): 

    return x * np.log(x) if x != 0 else 0.0def entropy(x1, x2=0, x3=0, x4=0): 

    return xLogX(x1 + x2 + x3 + x4) - xLogX(x1) - xLogX(x2) - xLogX(x3) - xLogX(x4)def 

LLR(k11, k12, k21, k22): 

    rowEntropy = entropy(k11 + k12, k21 + k22) 

    columnEntropy = entropy(k11 + k21, k12 + k22) 

    matrixEntropy = entropy(k11, k12, k21, k22) 

    if rowEntropy + columnEntropy < matrixEntropy: 

        return 0.0 

    return 2.0 * (rowEntropy + columnEntropy - matrixEntropy)def rootLLR(k11, k12, k21, 

k22): 

    llr = LLR(k11, k12, k21, k22) 

    sqrt = np.sqrt(llr) 

    if k11 * 1.0 / (k11 + k12) < k21 * 1.0 / (k21 + k22): 

        sqrt = -sqrt 

    return sqrt 

 

row_sum = np.sum(cooc, axis=0).A.flatten() 

column_sum = np.sum(cooc, axis=1).A.flatten() 

total = np.sum(row_sum, axis=0)pp_score = csr_matrix((cooc.shape[0], cooc.shape[1]), 

dtype='double') 

cx = cooc.tocoo() 

for i,j,v in zip(cx.row, cx.col, cx.data): 

    if v != 0: 

        k11 = v 

        k12 = row_sum[i] - k11 

        k21 = column_sum[j] - k11 

        k22 = total - k11 - k12 - k21 

        pp_score[i,j] = rootLLR(k11, k12, k21, k22) 

result = np.flip(np.sort(pp_score.A, axis=1), axis=1) 

result_indices = np.flip(np.argsort(pp_score.A, axis=1), axis=1) 
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result[8456] 

array([15.33511076, 14.60017668, 3.62091635, ..., 0. , 

0. , 0. ]) 

result_indices[8456] 

array([8682, 380, 8501, ..., 8010, 8009, 0], dtype=int64) 

minLLR = 5 

indicators = result[:, :50] 

indicators[indicators < minLLR] = 0.0indicators_indices = result_indices[:, 

:50]max_indicator_indices = (indicators==0).argmax(axis=1) 

max = max_indicator_indices.max()indicators = indicators[:, :max+1] 

indicators_indices = indicators_indices[:, :max+1] 

import requests 

import json 

actions = [] 

for i in range(indicators.shape[0]): 

    length = indicators[i].nonzero()[0].shape[0] 

    real_indicators = items[indicators_indices[i, :length]].astype("int").tolist() 

    id = items[i] 

     

    action = { "index" : { "_index" : "items2", "_id" : str(id) } } 

     

    data = { 

        "id": int(id), 

        "indicators": real_indicators 

    } 

     

    actions.append(json.dumps(action)) 

    actions.append(json.dumps(data)) 

     

    if len(actions) == 200: 

        actions_string = "\n".join(actions) + "\n" 

        actions = [] 

         

        url = "http://127.0.0.1:9200/_bulk/" 

        headers = { 

            "Content-Type" : "application/x-ndjson" 

        } 

        requests.post(url, headers=headers, data=actions_string)if len(actions) > 0: 

    actions_string = "\n".join(actions) + "\n" 

    actions = []    url = "http://127.0.0.1:9200/_bulk/" 

http://127.0.0.1:9200/_bulk/
http://127.0.0.1:9200/_bulk/
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    headers = { 

        "Content-Type" : "application/x-ndjson" 

    } 

    requests.post(url, headers=headers, data=actions_string) 

{ 

"count": 12025, 

"_shards": { 

"total": 1, 

"successful": 1, 

"skipped": 0, 

"failed": 0 

} 

} 

{ 

"id": 240708, 

"indicators": [ 

305675, 

346067, 

312728 

] 

} 

{ 

"query": { 

"bool": { 

"should": [ 

{ "terms": {"indicators" : [240708], "boost": 2}} 

] 

} 

} 

} 

{ 

"query": { 

"bool": { 

"should": [ 

{ "terms": {"indicators" : [240708]}}, 

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}} 

] 

} 

} 

} 

popular = np.zeros(items.shape[0])def inc_popular(index): 

    popular[index] += 1trans2.apply(lambda row: inc_popular(row['items']), axis=1) 
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actions = [] 

for i in range(indicators.shape[0]): 

    length = indicators[i].nonzero()[0].shape[0] 

    real_indicators = items[indicators_indices[i, :length]].astype("int").tolist() 

    id = items[i] 

     

    action = { "index" : { "_index" : "items3", "_id" : str(id) } } 

     

#     url = "http://127.0.0.1:9200/items/_create/" + str(id) 

    data = { 

        "id": int(id), 

        "indicators": real_indicators, 

        "popular": popular[i] 

    } 

     

    actions.append(json.dumps(action)) 

    actions.append(json.dumps(data)) 

     

    if len(actions) == 200: 

        actions_string = "\n".join(actions) + "\n" 

        actions = [] 

         

        url = "http://127.0.0.1:9200/_bulk/" 

        headers = { 

            "Content-Type" : "application/x-ndjson" 

        } 

        requests.post(url, headers=headers, data=actions_string)if len(actions) > 0: 

    actions_string = "\n".join(actions) + "\n" 

    actions = []url = "http://127.0.0.1:9200/_bulk/" 

    headers = { 

        "Content-Type" : "application/x-ndjson" 

    } 

    requests.post(url, headers=headers, data=actions_string) 

{ 

"id": 240708, 

"indicators": [ 

305675, 

346067, 

312728 

], 

"popular": 3.0 

} 

{ 

"query": { 

"function_score":{ 

"query": { 

"bool": { 

http://127.0.0.1:9200/items/_create/
http://127.0.0.1:9200/_bulk/
http://127.0.0.1:9200/_bulk/
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"should": [ 

{ "terms": {"indicators" : [240708], "boost": 2}}, 

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}} 

] 

} 

}, 

"functions":[ 

{ 

"filter": {"range": {"popular": {"gt": 0}}}, 

"script_score" : { 

"script" : { 

"source": "doc['popular'].value * 0.1" 

} 

} 

} 

], 

"score_mode": "sum", 

"min_score" : 0 

} 

} 

}{ 

"query": { 

"function_score":{ 

"query": { 

"bool": { 

"should": [ 

{ "terms": {"indicators" : [240708], "boost": 2}}, 

{ "constant_score": {"filter" : {"match_all": {}}, "boost" : 0.000001}} 

] 

} 

}, 

"functions":[ 

{ 

"filter": {"range": {"popular": {"gt": 1}}}, 

"script_score" : { 

"script" : { 

"source": "0.1 * Math.log(doc['popular'].value)" 

} 

} 

}, 

{ 

"filter": {"match_all": {}}, 

"random_score": {} 

} 

], 

"score_mode": "sum", 

"min_score" : 0} 

} 

} 
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OUTPUT AND SCREENSHOTS 

 

➢ It has five columns. 

1.  Timestamp, the timestamp of the event. 

2. Visitorid, the id of the user 

3. Itemid, the id of the item 

4. Event, the event 

5. Transactionid, an id of the transaction if the event is a transaction 

 

➢ After which this is used to unique identify the required events: 

df.event.unique() 
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➢ The next step: Create the user-item matrix 

➢ Once on applying the code we can see in the final output as follows. 
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                              CONCLUSION AND FUTURE ENHANCEMENTS 

However, there are a few more challenges a good recommendation system has to overcome. 

Recommending the same things over and over is boring. Even worse, recommending the same 

things produces bad data and causes content fatigue. 

Two simple and intuitive strategies to improve the value of recommendations are 

• Anti-Flood: Penalise the second and third recommendations if they have the same 

similarity scores to the top recommendation. 

• Dithering: Add a wildcard recommendation to create interesting new data points for the 

recommendation system to keep learning about other content. 

These steps ensure an interesting user experience and new data on alternative 

recommendations 
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