

ADMISSION NUMBER

School of Engineering B.TECH Civil Engineering

B.TECH Civil Engineering
Semester End Examination - Nov 2023

Duration : 180 Minutes Max Marks : 100

Sem VII - BCE01T5703 - Bridge Engineering

General Instructions
Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1)	Define loads to be considered for bridge design.	K1 (2)
2)	Explain Courbon's method, considering different load scenarios.	K2 (4)
3)	Explain the effectiveness of Courbon's method in managing loads in high-rise structures compared to conventional methods.	K2 (6)
4)	Illustrate the spacing and size of reinforcement bars required for a T-beam bridge girder subjected to a given load combination.	K3 (9)
5)	A highway bridge is planned to be constructed in a seismic zone with high traffic density. The bridge needs to accommodate a Class 70R vehicle according to IRC codes. Illustrate the design live load on the bridge if the weight of the Class 70R vehicle is 350 kN.	K3 (9)
6)	Assess the impact of structural irregularities on load distribution when using Courbon's method.	K5 (10)
7)	Analyze the potential failure modes in a T-beam bridge girder and propose appropriate mitigation measures.	K4 (12)
8)	Design the maximum bending moment (M) at the midspan of the T-beam bridge deck. Width of the deck slab (b): 3.0 meters Depth of the T-beam (d): 0.7 meters Concrete grade (f_ck): 30 MPa Reinforcement grade (fy): 415 MPa Live load (P): 80 kN (uniformly distributed)	K5 (15)
9)	Develop a comprehensive load rating procedure for T-beam bridges to assess their capacity for accommodating different types of vehicles.	K5 (15)
10)	A railway bridge deck is subjected to a concentrated load of 600 kN from a passing locomotive. Using the effective width method, Synthesize the required depth of the reinforced concrete slab if the permissible flexural stress is 8 MPa. The breadth of the deck is 8 meters	K6 (18)