

ADMISSION NUMBER										

School of Engineering B.TECH Mechanical Engineering

B.TECH Mechanical Engineering Semester End Examination - Nov 2023

Duration : 180 Minutes Max Marks : 100

Sem VII - BME021 - Energy Conservation and Management

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Select the concepts of life cycle costing and their relevance in energy management.	K1 (2)
2)	Compare the control strategies used in cogeneration systems	K2 (4)
3)	Extend your understanding of flow control methods in pumps and fans	K2 (6)
4)	Apply motor efficiency testing techniques to determine the energy performance of a motor drive system	K3 (9)
5)	Construct an energy-efficient motor control system using the principles of motor speed control	K3 (9)
6)	Determine the energy savings achieved by implementing a specific cogeneration system	K5 (10)
7)	Classify different types of waste heat recovery systems based on their operating principles and applications	K4 (12)
8)	Assess the technical feasibility of integrating heat exchanger networking in an existing industrial process	K5 (15)
9)	Evaluate the performance of a cogeneration system using key performance indicators	K5 (15)

10) Design an optimized heat exchanger network for a given industrial ^{K6 (18)} process