

ADMISSION NUMBER								

School of Basic Sciences

Bachelor of Science Honours in Mathematics Semester End Examination - Nov 2023

Duration : 180 Minutes Max Marks : 100

Sem V - C1UC502T - Transforms and Calculus of variation

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Identify the definite integral $\int_{x_1}^{x_2} f(x, y, \frac{dy}{dx}) dx$	K1 (2)
2)	Demonstrate the iterative kernels	K2 (4)
3)	Analyse the Fourier cosine transform of $\frac{1}{1+x^2}$. Hence write Fourier	K2 (6)
	sine transform of $\overline{1+x^2}$	
4)	Find the extremal of the functionals $\int_{x_0}^{x_1} (x + y')y' dx$	K3 (9)
5)	Find the curves on which the functional $\int_{1}^{2} \frac{x^{3}}{y'^{2}} dx$ with y(1)=0 and y(2)=3 can be extremized.	K3 (9)
6)	Determine the Jacobi condition is fulfilled for the functional $\int_0^1 (1 + y'^2) dx$ with fixed	K5 (10)
	boundaries A(0,0) and B(1,0).	
7)	Explain the Fourier cosine transform and Fourier sine transform of $f(t)$, where $f(t) = \begin{cases} 2+t, 0 < t < 1\\ 0, otherwise \end{cases}$	K4 (12)
8)	Compute the (complex) Fourier transform of the function $F(x) = \begin{cases} 1 - x^2; & x \le 1 \\ 0; & x > 1 \end{cases}$ and hence	K5 (15)
	evaluate $\int_{0}^{\infty} \left(\frac{s\cos s - \sin s}{s^3}\right) \cos \frac{s}{2} ds$.	
9)	Find a function y(x) for which $\int_0^1 (x^2 - y'^2) dx$ is stationary, given that $\int_0^1 y^2 dx = 2$, y(0)=0, y(1)=0	K5 (15)
10)	Find the minimum time taken by the partical while moving along a curve.	K6 (18)