

| ADMISSION NUMBER |  |  |  |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|--|--|--|
|                  |  |  |  |  |  |  |  |  |  |  |  |

## School of Basic Sciences

Bachelor of Science Honours in Mathematics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

## Sem VI - C1UC601T - Metric Spaces and Complex Analysis

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

| 1) | Explain that every convergent sequence is cauchy sequence.                                                                                                       | K2 (2)  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2) | Find the limit point of a set A = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/n,}, $n \in \mathbb{N}$ in a usual metric space (R, d) and justify your answer.                 | K1 (3)  |
| 3) | Estimate the relationship between compactness and sequential compactness in a metric space.                                                                      | K2 (4)  |
| 4) | Show that arbitrary union of any collection of open sets in a metric space is open while arbitrary intersection need not.                                        | K2 (6)  |
| 5) | Show that the identity map from any metric space to itself is continuous.                                                                                        | K3 (6)  |
| 6) | Verify that a compact metric space is bounded while a bounded metric space need not compact                                                                      | K3 (9)  |
| 7) | Categorize the following metric spaces into compact and non compact metric spaces and justify your answers: (i) (R, d) (ii) ([0, 1], d) where d is usual metric. | K4 (8)  |
| 8) | Examine whether union and intersection of two compact subsets of a metric space is compact or not.                                                               | K4 (12) |
|    | OR                                                                                                                                                               |         |
|    | Exercise and allow a differences of an end intervention of allowed aster in a                                                                                    | KA (12) |

Examine whether orbitrary union and intersection of closed sets in a <sup>K4 (12)</sup> metric space is closed or not.