

ADMISSION NUMBER										

School of Basic Sciences

Bachelor of Science Honours in Mathematics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

Sem VI - C1UC602B - Numerical Analysis and Operation Research

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Write the Newton's forward interpolation formula in the pre defined terms, where we want to start my estimated polynomial formula from y_1 in place of y_0 .	K2 (2)					
2)	Explain the geometrical interpretation of Bisection method.						
3)	Establish the relationship between shifting operator (E) and forward difference operator (Δ).	K2 (4)					
4)	Find the solution of the system of equations: 45x+2y+3z=58, -3x+22y+2z=47, 5x+y+20z=67 Perform 3 iterations, using the Gauss-Seidel iteration method.	K2 (6)					
5)	Using Newton's backward difference formula, construct an interpolating polynomial of degree 3 for the data: f(-0.75) = -0.0718125, f(-0.5) = -0.02475, f(-0.25) = 0.3349375, f(0) = 1.10100. Hence find $f(-\frac{1}{3})$.	K3 (6)					
6)	Derive the Newton's divided differences interpolation formula.						
7)	Evaluate $\int_{0}^{2\pi} \sin x dx$ by trapezoidal method with 8 equal intervals.	K4 (8)					
-							

8) By subdividing the interval into four equal Parts, Integrate the K4 (12) function $f(x) = \frac{\sin x}{x}$ between x=0 and x=0.8 by (a) Trapezoidal Rule (b) Simpson's 1/3 Rule.

OR Compute $\int_{0.2}^{1.4} (\sin x - \log_e x + e^x) dx$ by Simpson's 3/8 rule.