

ADMISSION NUMBER											

School of Basic Sciences

Bachelor of Science Honours in Mathematics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

Sem VI - C1UC603T - Discrete Mathematics and Graph Theory

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Estimate the truth tables for. (a) p $\lor \neg q$						
2)	Find the truth value of each of these statements if the domain consists of all integers. a) $\forall n(n + 1 > n)$ b) $\exists n(2n = 3n)$	K1 (3)					
3)	Show that the proposition $p \vee \neg (p \land q)$ is a tautology.	K2 (4)					
4)	Explain, how many people are required, such that there must be at least two with the same birthday.						
5)	Apply basic logics to show that each of these conditional statements is a tautology by using truth tables. a) $(p \land q) \rightarrow p$ b) $p \rightarrow (p \lor q)$ c) $\neg p \rightarrow (p \rightarrow q)$	K3 (6)					
6)	Develop the Disjunctive Normal Form (DNF) of $(\neg p \rightarrow q) \land (p \leftrightarrow q)$	K3 (9)					
7)	Let <i>p</i> and <i>q</i> be the propositions <i>p</i> : I bought a lottery ticket this week. <i>q</i> : I won the million dollar jackpot Express each of these propositions as an English sentence. a) $\neg p$ b) $p \lor q$ c) $p \rightarrow q$ d) $p \land q$ e) $p \leftrightarrow q$ f) $\neg p \rightarrow \neg q$ g) $\neg p \land q$ h) $\neg p \lor (p \land q)$	K4 (8)					
8)	Show that "If 3n+2 is odd, then n is odd" by direct proof.	K4 (12)					

OR

Show that $\sqrt{2}$ is irrational by giving a proof by contradiction. K4 (12)