

DNS Security Using Cryptography

A Report for the Evaluation 3 of Project 2

Submitted by

SAMAY KUMAR SINGH

(1613114039)

In partial fulfillment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING WITH

SPECIALIZATION OF COMPUTER NETWORK AND CYBER

SECURITY

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Prof. Ms. VAISHALI GUPTA, M.Tech

April/May-2020  

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report"DNS Security Using Cryptography"

 is the bonafide work of “Samay Kumar Singh” who carried out the

project work under my supervision.

SIGNATURE SIGNATURE

HEAD OF THE DEPARTMENT SUPERVISOR  

CONTENTS

Title Page

Certificate i

Acknowledgement ii

Abstract iii

List of Tables iv

List of Figures v

CHAPTER 1 INTRODUCTION 6-8

1. PURPOSE 9

2. BACKGROUND 9

2.1. Threats to the Domain Name System 9

2.2. NX Domain Attacks 9

2.3. Random Sub Domain Attacks 10

2.4. Cache Poisoning 11

2.5. Registrar Hijacking 12

2.6. DNS Amplification Attacks 12

3. ATTACK OBJECTIVES 13

3.1. Denial of Service 13

3.2. Masquerading 14

4. SCOPE OF PROJECT 15

5. OVERVIEW OF THE DNS 15

5.1. Fundamentals of DNS 16

5.2. The Domain Name Space 17

5.3. DNS Components 18

5.4. DNS Transactions 20

5.5. The BIND Implementation of DNS 21

CHAPTER 2 CRYPTOGRAPHY

1. MODERN CRYPTOGRAPHY 23

1.1. Symmetric-Key Cryptography 23

1.2. Public-Key Cryptography 24

2. SECURITY INFORMATION FOR DNS 25

2.1. DNS Security Threats 25

2.2. Three Levels Of DNS Security 26

2.2.1. Low-Level Security 26

2.2.2. Medium-Level Security 27

2.2.3. High-Level Security 28

2.2.4. Typo Squatting 29

2.2.5. DDoS 30

2.2.6. Cache Poisoning 30

3. CONFIGURE A DNS SERVER WITH AD DS 31

4. RSA ALGORITHM 31

4.1. RSA Steps 32

4.2. The RSA Algorithm Involves Four Steps 32

4.2.1. Key Distribution 32

4.2.2. Encryption 33

4.2.3. Decryption 33

4.2.4. Key Generation 33

5. SHA ALGORITHM 35

CHAPTER 3 LITERATURE SURVEY 37

CHAPTER 4 PROPOSED WORK FLOW 39

CHAPTER 5 METHODOLOGY USED

1. FUNCTIONAL DESCRIPTION 42

2. SOFTWARE REQUIREMENTS SPECIFICATIONS 42

2.1. Hardware Requirements 42

2.2. Software Requirements 42

CHAPTER 6 IMPLEMENTATION

1. SOFTWARE DESCRIPTION 43

1.1. BIND 43

1.2. Database Support 43

1.3. Security 43

2. IMPLEMENTATION DETAILS 43

3. RSA ALGORITHM 57

3.1. RSA Steps 57

3.2. The RSA Algorithm Involves Four Steps 58

3.2.1. Key Distribution 58

3.2.2. Encryption 58

3.2.3. Decryption 59

3.2.4. Key Generation 59

4. SHA ALGORITHM 60

CHAPTER 7 SCREENSHOTS

1. SERVER MANAGER 62

2. DOMAIN NAME SYSTEM MANAGER 63

3. INTERNET INFORMATION SERVICES MANAGER 64

4. PORT SECURITY 65

5. PROTECTION FROM SESSION HIJACKING 66

6. PROTECTION FROM ZONE FILE TRANSFERRING 66

CHAPTER 8 RESULT AND ANALYSIS

1. RESULT OF PROJECT 67

2. ANALYSIS OF PROJECT 68

CHAPTER 9 CONCLUSION AND FUTURE SCOPE 71

REFERENCES 72

CHAPTER 1

INTRODUCTION
Humans can’t think like computers. They just can’t remember dozens of IP
addresses. They need easy-to-remember names to locate their mail server or
their favorite web pages. To make our lives on the Internet easy, DNS was
therefore invented. And with it came a new place for hackers of all sorts to
have fun. Moreover, the purpose of DNS makes it a very sensitive area; for
this is the place the client connection is orientated. The possibilities a black-
hat can have by succeeding in hacking DNS are tremendous (a user can be
directed to a host controlled by a hacker, whatever service he might be using:
http, ftp, telnet ...).

Anything is possible!

The Domain Name System distributes the responsibility of assigning domain
names and mapping those names to IP addresses by designatingauthoritative
name servers for each domain. Authoritative name servers are assigned to be
responsible for their supported domains, and may delegate authority over
sub-domains to other name servers. This mechanism provides distributed
and fault tolerant service and was designed to avoid the need for a single
central database.

The Domain Name System also specifies the technical functionality of the
database service which is at its core. It defines the DNS protocol, a detailed
specification of the data structures and data communication exchanges used
in DNS, as part of the Internet Protocol Suite. Historically, other directory
services preceding DNS were not scalable to large or global directories as
they were originally based on text files, prominently the HOSTS.TXT
resolver. DNS has been in wide use since the 1980s.

The DNS plays a critical role in supporting the Internet infrastructure by
providing a distributed and fairly robust mechanism that resolves Internet
host names into IP

The threats that surround the DNS are due in part to the lack of authenticity
and integrity checking of the data held within the DNS and in part to other
protocols that use host names as an access control mechanism. In response to
this, the IETF formed a working group to add DNS Security (DNSSEC)
extensions to the existing DNS protocol.

The DNS plays a critical role in supporting the Internet infrastructure by
providing a distributed and fairly robust mechanism that resolves Internet
host names into IP addresses and IP addresses back into host names. The
DNS also supports other Internet directory-like lookup capabilities to retrieve
information pertaining to DNS Name Servers, Canonical Names, Mail
Exchangers, etc. Unfortunately many security weaknesses surround IP and
the protocols carried by IP. The DNS is not immune to these security
weaknesses. The accuracy of the information contained within the DNS is
vital to many aspects of IP based communications.

addresses and IP addresses back into host names. The DNS also supports
other Internet directory-like lookup capabilities to retrieve information
pertaining to DNS Name Servers, Canonical Names, Mail Exchangers, etc.
Unfortunately many security weaknesses surround IP and the protocols
carried by IP. The DNS is not immune to these security weaknesses. The
accuracy of the information contained within the DNS is vital to many
aspects of IP based communications.

The Domain Name System (DNS) is a hierarchical distributed naming
system for computers, services, or any resource connected to the Internet or
a private network. It associates various information with domain names
assigned to each of the participating entities. Most prominently, it translates
domain names, which can be easily memorized by humans, to the numerical
IP addresses needed for the purpose of computer services and devices
worldwide. The Domain Name System is an essential component of the
functionality of most Internet services because it is the Internet's primary
directory service.

The Domain Name System distributes the responsibility of assigning domain
names and mapping those names to IP addresses by designatingauthoritative
name servers for each domain. Authoritative name servers are assigned to be
responsible for their supported domains, and may delegate authority over
sub-domains to other name servers. This mechanism provides distributed
and fault tolerant service and was designed to avoid the need for a single
central database.

The Domain Name System also specifies the technical functionality of the
database service which is at its core. It defines the DNS protocol, a detailed
specification of the data structures and data communication exchanges used
in DNS,as part of the Internet Protocol Suite. Historically, other directory
services preceding DNS were not scalable to large or global directories as
they were originally based on text files, prominently the HOSTS.TXT
resolver. DNS has been in wide use since the 1980s.

The DNS plays a critical role in supporting the Internet infrastructure by
providing a distributed and fairly robust mechanism that resolves Internet
host names into IP addresses and IP addresses back into host names. The
DNS also supports other Internet directory-like lookup capabilities to
retrieve information pertaining to DNS Name Servers, Canonical Names,
Mail Exchangers, etc. Unfortunately many security weaknesses surround IP
and the protocols carried by IP. The DNS is not immune to these security
weaknesses. The accuracy of the information contained within the DNS is
vital to many aspects of IP based communications.

The Internet maintains two principal namespaces, the domain name
hierarchy and the Internet Protocol (IP) address spaces. The Domain Name
System maintains the domain name hierarchy and provides translation
services between it and the address spaces. Internet name servers and a
communication protocol implement the Domain Name System. A DNS name
server is a server that stores the DNS records for a domain name; a DNS
name server responds with answers to queries against its database.

The most common types of records stored in the DNS database are for DNS
zone authority (SOA), IP addresses (A and AAAA), SMTP mail exchangers
(MX), name servers (NS), pointers for reverse DNS lookups (PTR), and
domain name aliases (CNAME). Although not intended to be a general
purpose database, DNS can store records for other types of data for either
automatic machine lookups, such as DNSSEC records, or for human queries
such as responsible person (RP) records. As a general purpose database,
DNS has also seen use in combating unsolicited email (spam)

by using a real-time black hole list stored in the DNS. Whether for Internet
naming or for general purpose uses, the DNS database is traditionally stored
in a structured zone file.

1.1 PURPOSE

Enhance Open Source DNS server ―bindǁ in order to support conditional
parsing algorithms for automated detection and prevention against both, the
attacks on DNS and where DNS is exploited as attack vector.

Develop a Industry Standard but Open Source Web Interface for easy
administration, management and reporting of DNS Server. It should facilitate
with granular DNS configuration, rule definition (as part of above), custom
reporting and data export in different formats such as CSV and PDF.

1.2 BACKGROUND

2.1 Threats to the Domain Name System

The original DNS specifications did not include security based on the fact
that the information that it contains, namely host names and IP addresses, is
used as a means of communicating data [SPAF]. As more and more IP based
applications developed, the trend for using IP addresses and host names as a
basis for allowing or disallowing access (i.e., system based authentication)
grew. Unix saw the advent of Berkeley "r" commands (e.g., rlogin, rsh, etc.)
and their dependencies on host names for authentication. Then many other
protocols evolved with similar dependencies, such as Network File System
(NFS), X windows, Hypertext Transfer Protocol (HTTP), et al.

Another contributing factor to the vulnerabilities in the DNS is that the DNS
is designed to be a public database in which the concept of restricting access
to information within the DNS name space is purposely not part of the
protocol. Later versions of the BIND implementation allow access controls
for such things as zone transfers, but all in all, the concept of restricting who
can query the DNS for RRs is considered outside the scope of the protocol.

2.2 NX Domain Attacks

NX DOMAIN is nothing but non-existent Internet or Intranet domain
name.As more and more IP based applications developed, the trend for using
IP addresses and host names as a basis for allowing or disallowing access
(i.e., system based authentication) grew. Unix saw the advent of Berkeley "r"
commands (e.g., rlogin, rsh, etc.) and their

host abcquq12examfooltest.com

Sample outputs:

Host abcquq12examfooltest.com not found: 3(NX DOMAIN)

Since domain name is the invalid domain, you got a NX DOMAIN response
i.e. an error message indicating that domain is either not registered or invalid.

2.3 Random Sub Domain Attacks

The diagram illustrates how these new attacks use open DNS proxies to send
tens of millions of queries. Attack related queries use randomized labels
prepended to target domains.

Because names with randomized subdomains are never in-cache, resolution
requires more computationally expensive recursion, which stresses provider
resolvers. Authoritative servers can also fail or respond very slowly under the
load. When this happens resolvers incur even more work and stress as they
navigate around unresponsive name servers. Authoritative servers using
Response Rate Limiting (RRL) and sending truncated responses back to
resolvers aggravates the DNS even more since both resolvers and
authoritative servers have to manage retries with additional TCP overhead.

dependencies on host names for authentication. Then many other protocols
evolved with similar dependencies, such as Network File System (NFS), X
windows, Hypertext Transfer Protocol (HTTP), et al.

If domain name is unable to resolved using the DNS, a condition called the
NXDOMAIN occurred. In this example, try to find out an IPk, address for
the domain called abcquq12examfooltest.com using the nslookup or host
command line option:

Nslookup sabcquq12examfooltest.com

OR

Figure 1.1: Random Sub-Domain Attack [5]

Figure 1.2: DNS Cache Poisoning [6]

2.4 Cache Poisoning

Whenever a DNS server does not have the answer to a query within its
cache, the DNS server can pass the query onto another DNS server on behalf
of the client. If the server passes the query onto another DNS server that has
incorrect information, whether placed there intentionally or unintentionally,
then cache poising can occur [CA97]. Malicious cache poisoning is
commonly referred to as DNS spoofing.

As well as deploying name servers in secure configurations, the solution to
this problem is a protocol known as DNSSEC, which is being rolled out
across registries and registrars worldwide today. Once DNSSEC adoption
becomes universal, adding a DNSSEC digital signature to a domain name
will mean that browsers and ISPs will be able to validate that DNS
information they receive is authentic, rendering most cache poisoning attacks
obsolete. Organizations concerned about the integrity of their domain names
should ask their registrars to support DNSSEC today.

2.5 Registrar Hijacking

The majority of domain names are registered via a registrar company, and
these represent single points of failure. If an attacker can compromise your
account with your chosen registrar, they gain control over your domain
name, allowing them to point it to the servers of their choice, including name
servers, Web servers, email servers, etc. Worse still, the domain could be
transferred to a new owner or to an ―offshoreǁ registrar, making domain
name recovery a complex matter.

Such attacks may be directed at the registrar in a blanket fashion, as was the
case in the recent attack against UK registrar NetNames, which claimed
several high-profile victims. Others may target your account specifically,
either through an attack on your password or, more commonly, a social
engineering attack against the registrar's technical support operatives.

To reduce the risk of hijacking, choose a registrar that offers additional
security precautions, such as multi-factor authentication or account
managers with whom you can build a personal relationship. Many registrars
will offer premium services to high- value clients that can substantially
mitigate the risk of losing control of your account to a hijacker. These come
at a cost, but it's a small price to pay to ensure that your domain name
remains in your control.

2.6 DNS Amplification Attacks

DNS amplification is a tactic used in DDoS attacks that leverages DNS
servers deployed in insecure ―recursiveǁ configurations. Recursion is a
feature of DNS that allows for domain name resolution to be handed off to
more robust name servers. In itself, it's a useful, necessary feature commonly
deployed within an enterprise environment.

3 .ATTACK OBJECTIVES

An attacker makes use of cache poisoning for one of two reasons. One is a
denial of service (DoS) and the other is masquerading as a trusted entity.

3.1 Denial of Service

DoS is accomplished in several ways. One takes advantage of negative
responses (i.e., responses that indicate the DNS name in the query cannot be
resolved). By sending back the negative response for a DNS name that could
otherwise be resolved, results in a DoS for the client wishing to communicate
in some manner with the DNS name in the query. The other way DoS is
accomplished is for the rogue server to send a response that redirects the
client to a different system that does not contain the service the client desires.
Another DoS associated with cache poisoning involves inserting a CNAME
record into a cache that refers to itself as the canonical name.

foobar.example.org. IN CNAME foobar.example.org.

In this example, a recursive name server may end up with this RR in its
cache. This type of CNAME record is commonly referred to as a self-
referential RR. An attacker, after inserting this resource record into a server’s

But criminals discovered several years ago that "open" recursive DNS
servers, i.e., a recursive name server for which access is neither controlled
nor restricted, could be exploited to increase the strength of their DDoS
attacks.

By spoofing the source address on DNS queries to match that of the intended
victim, attackers found that every spurious packet sent from one of their bots
could be amplified if sent to a recursive name server. The response sent to
the victim would be many dozens of times larger than the original query.
This could result in a botnet wielding many times the firepower, causing
much more severely degraded performance at its victim's site. Today,
running a recursive DNS server that is open to the entire Internet is no longer
considered acceptable security practice. Fortunately, securing your DNS
servers against this kind of attack is usually achieved with a simple
configuration change.DNS that allows for domain name resolution to be
handed off to more robust name servers. In itself, it's a useful, necessary
feature commonly deployed within an enterprise environment. But criminals
discovered several years ago that "open" recursive DNS servers, i.e., a
recursive name server for which access is neither controlled nor restricted,
could be exploited to increase the strength of their DDoS attacks.

cache can cause the name server to crash by simply requesting a zone transfer
for foobar.example.org

3.2 Masquerading

The second and potentially more damaging reason to poison DNS caches is to
redirect communications to masquerade as a trusted entity. If this is
accomplished, an attacker can intercept, analyze, and/or intentionally corrupt
the communications [CA97]. The misdirection of traffic between two
communicating systems facilitates attacks such as industrial espionage and
can be carried out virtually undetected [MENM]. An attacker can give the
injected cache a short time to live making it appear and disappear quickly
enough to avoid detection.

Masquerading attacks are possible simply due to the fact that quite a number
of IP based applications use host names and/or IP addresses as a mechanism
of providing host-based authentication. This burdens the DNS with the
responsibility of maintaining up to date and accurate information, neither of
which the DNS alone can assure. If this is accomplished, an attacker can
intercept, analyze, and/or intentionally corrupt the communications [CA97].
The misdirection of traffic between two communicating systems facilitates
attacks such as industrial espionage and can be carried out virtually
undetected [MENM]. An attacker can make use of these shortcomings within
the DNS to masquerade as a trusted host. Host based Authentication is
vulnerable to host name spoofing.

In this example, an attacker takes advantage of the rshd program’s
dependency on the contents of the ".rhosts" file as a form of host based
authentication. The attacker’s DNS server, evildns.example.org, is
authoritative for 0.6.172.in-addr.arpa and the attacker has the following entry
in the zone's authoritative data, even though the attacker does not have
authority over plain.org:

The host, trustme.plain.org, is trusted by victim.example.edu simply because
a student has trustme.plain.org correctly listed in the student’s .rhosts file on
victim.example.edu. For the purpose of this example, the host,
victim.example.edu, is not protected by a 2firewalls and does not employ any
type of DNS sanity checking such as the PARANOID mode in tcp_wrappers
[VENE]. The stage is set where the attacker can now come from the IP
address of 172.16.0.8 and log into victim.example.edu as the student without
a password and appear as if the connection actually came from the trusted
host name.

http://victim.example.edu

Figure 1.3: Host Name Spoofing [3]

4 SCOPE OF PROJECT

BIND is transparent open source. If your organization needs some
functionality that is not in BIND, you can modify it, and contribute the new
feature back to the the community by sending us your source. BIND has
evolved to be a very flexible, full- featured DNS system.Whatever your
application is, BIND most likely has the features required.

5 OVERVIEW OF THE DNS

To connect to a system that supports IP, the host initiating the connection
must know in advance the IP address of the remote system. An IP address is a
32-bit number that represents the location of the system on a network. The
32-bit address is separated into four octets and each octet is typically
represented by a decimal number. The four decimal numbers are separated
from each other by a dot character ("."). Even though four decimal numbers

The BIND 4 and BIND 8 releases both had serious security vulnerabilities.
Their use is strongly discouraged. BIND 9 was a complete rewrite, in part to
mitigate these ongoing security issues.

Security issues that are discovered in BIND 9 are patched and publicly
disclosed in keeping with common principles of open source software. A
complete list of security defects that have been discovered and disclosed in
BIND9 is maintained by Internet Systems Consortium, the current authors of
the software.

may be easier to remember than thirty-two 1’s and 0’s, as with phone
numbers, there is a practical limit as to how many IP addresses a person can
remember without the need for some sort of directory assistance. The
directory essentially assigns host names to IP addresses.

The Stanford Research Institute’s Network Information Center (SRI-NIC)
became the responsible authority for maintaining unique host names for the
Internet. The SRI- NIC maintained a single file, called hosts.txt, and sites
would continuously update SRI-NIC with their host name to IP address
mappings to add to, delete from, or change in the file. The problem was that
as the Internet grew rapidly, so did the file causing it to become increasingly
difficult to manage. Moreover, the host names needed to be unique
throughout the worldwide Internet. With the growing size of the Internet it
became more and more impractical to guarantee the uniqueness of a host
name. The need for such things as a hierarchical naming structure and
distributed management of host names paved the way for the creation of a
new networking protocol that was flexible enough for use on a global scale.

What evolved from this is an Internet distributed database that maps the
names of computer systems to their respective numerical IP network
address(es). This Internet lookup facility is the DNS. Important to the concept
of the distributed database is delegation of authority. No longer is one single
organization responsible for host name to IP address mappings, but rather
those sites that are responsible for maintaining host names for their
organization(s) can now regain that control.

An IP address is a 32-bit number that represents the location of the system on
a network. The 32-bit address is separated into four octets and each octet is
typically represented by a decimal number. The four decimal numbers are
separated from each other by a dot character ("."). Even though four decimal
numbers may be easier to remember than thirty-two 1’s and 0’s, as with
phone numbers, there is a practical limit as to how many IP addresses a
person can remember without the need for some sort of directory assistance.
The directory essentially assigns host names to IP addresses.

5.1 Fundamentals of DNS

The DNS not only supports host name to network address resolution, known
as forward resolution, but it also supports network address to host name
resolution, known as inverse resolution.

Due to its ability to map human memorable system names into computer
network numerical addresses, its distributed nature, and its robustness, the
DNS has evolved into a critical component of the Internet. Without it, the

only way to reach other computers on the Internet is to use the numerical
network address. Using IP addresses to connect to remote computer systems
is not a very user-friendly representation of a system’s location on the Internet
and thus the DNS is heavily relied upon to retrieve an IP address by just
referencing a computer system's Fully Qualified Domain Name (FQDN). A
FQDN is basically a DNS host name and it represents where to resolve this
host name within the DNS hierarchy.

5.2 The Domain Name Space

The DNS is a hierarchical tree structure whose root node is known as the root
domain. A label in a DNS name directly corresponds with a node in the DNS
tree structure. A label is an alphanumeric string that uniquely identifies that
node from its brothers. Labels are connected together with a dot notation, ".",
and a DNS name containing multiple labels represents its path along the tree
to the root. Labels are written from left to right. Only one zero length label is
allowed and is reserved for the root of the tree. This is commonly referred to
as the root zone. Due to the root label being zero length, all FQDNs end in a
dot.

As a tree is traversed in an ascending manner (i.e., from the leaf nodes to the
root), the nodes become increasingly less specific (i.e., the leftmost label is
most specific and the right most label is least specific). Typically in an
FQDN, the left most label is the host name, while the next label to the right is
the local domain to which the host belongs. The local domain can be a
subdomain of another domain. The name of the parent domain is then the
next label to the right of the subdomain (i.e., local domain) name label, and so
on, till the root of the tree is reached.

Figure 1.4. Domain Name Space example [7]

When the DNS is used to map an IP address back into a host name (i.e.,
inverse resolution), the DNS makes use of the same notion of labels from left
to right (i.e., most specific to least specific) when writing the IP address. This
is in contrast to the typical representation of an IP address whose dotted
decimal notation from left to right is least specific to most specific. A label is
an alphanumeric string that uniquely identifies that node from its brothers.
Labels are connected together with a dot notation, ".", and a DNS name
containing multiple labels represents its path along the tree to the root. Labels
are written from left to right. Only one zero length label is allowed and is
reserved for the root of the tree. This is commonly referred to as the root
zone. Due to the root label being zero length, all FQDNs end in a dot.

Typically in an FQDN, the left most label is the host name, while the next
label to the right is the local domain to which the host belongs. The local
domain can be a subdomain of another domain. The name of the parent
domain is then the next label to the right of the subdomain (i.e., local domain)
name label, and so on, till the root of the tree is reached. To handle this, IP
addresses in the DNS are typically represented in reverse order. IP addresses
fall under a special DNS top level domain (TLD), known as the in-addr.arpa
domain. By doing this, using IP addresses to find DNS host names are
handled just like DNS host name lookups to find IP addresses.

Figure 1.5. Example of Inverse Domains and the Domain Name Space [7]

5.3 DNS Components

The DNS has three major components, the database, the server, and the client.
The database is a distributed database and is comprised of the Domain Name
Space, which is essentially the DNS tree, and the Resource Records (RRs)
that define the domain names within the Domain Name Space. The server is
commonly referred to as a name server. Name servers are typically
responsible for managing some portion of the Domain Name Space and for

assisting clients in finding information within the DNS tree. Name servers are
authoritative for the domains in which they are responsible. They can also
serve as a delegation point to identify other name servers that have authority
over subdomains within a given domain.

The RR data found on the name server that makes up a domain is commonly
referred to as zone information. Thus, name servers have zones of authority. A
single zone can either be a forward zone (i.e., zone information that pertains
to a given domain) or an inverse zone (i.e., zone information that maps IP
addresses into DNS host names). DNS allows more than one name server per
zone, but only one name server can be the primary server for the zone.
Primary servers are where the actual changes to the data for a zone take place.
All the other name servers for a zone basically maintain copies of the primary
server’s database for the zone. These servers are commonly referred to as
secondary servers.

A DNS RR has 6 fields: NAME, TYPE, CLASS, TTL, RD Length, and
RDATA. The NAME field holds the DNS name, also referred to as the owner
name, to which the RR belongs.The database is a distributed database and is
comprised of the Domain Name Space, which is essentially the DNS tree, and
the Resource Records (RRs) that define the domain names within the Domain
Name Space. The server is commonly referred to as a name server. Name
servers are typically responsible for managing some portion of the Domain
Name Space and for assisting clients in finding information within the DNS
tree. Name servers are authoritative for the domains in which they are
responsible. They can also serve as a delegation point to identify other name
servers that have authority over subdomains within a given domain. The
TYPE field is the TYPE of RR. This field is necessary because it is not
uncommon for a DNS name to have more than one type of RR.

The RR data found on the name server that makes up a domain is commonly
referred to as zone information. Thus, name servers have zones of authority. A
single zone can either be a forward zone (i.e., zone information that pertains
to a given domain) or an inverse zone (i.e., zone information that maps IP
addresses into DNS host names). DNS allows more than one name server per
zone, but only one name server can be the primary server for the zone.
Primary servers are where the actual changes to the data for a zone take place.
All the other name servers for a zone basically maintain copies of the primary
server’s database for the zone. These servers are commonly referred to as
secondary servers. The more common types of RR are found in Table.

Table 1.1. A DNS RR [7]

5.4 DNS Transactions

DNS transactions occur continuously across the Internet. The two most
common transactions are DNS zone transfers and DNS queries/responses. A
DNS zone transfer occurs when the secondary server updates its copy of a
zone for which it is authoritative. The secondary server makes use of
information it has on the zone, namely the serial number, and checks to see if

RECOR

D TYPE

DESCRIPTION USAGE

A An address record Maps FQDN into an IP address

PTR A pointer record Maps an IP address into FQDN

NS A name server record Denotes a name server for a zone

SOA A Start of

Authority record

Specifies many attributes concerning the

zone, such as the name of the domain

(forward or inverse), administrative

contact, the serial number of the zone,

refresh interval, retry interval, etc.

CNAME A canonical name
record

Defines an alias name and maps it to the

absolute (canonical) name

MX A Mail

Exchanger record

Used to redirect email for a given domain

or host to another host

the primary server has a more recent version. If it does, the secondary server
retrieves a new copy of the zone.

A DNS query is answered by a DNS response. Resolvers use a finite list of
name servers, usually not more than three, to determine where to send
queries. If the first name server in the list is available to answer the query,
than the others in the list are never consulted. If it is unavailable, each name
server in the list is consulted until one is found that can return an answer to
the query. The name server that receives a query from a client can act on
behalf of the client to resolve the query. Then the name server can query other
name servers one at a time, with each server consulted being presumably
closer to the answer. The name server that has the answer sends a response
back to the original name server, which then can cache the response and send
the answer back to the client. Once an answer is cached, a DNS server can
use the cached information when responding to subsequent queries for the
same DNS information. Caching makes the DNS more efficient, especially
when under heavy load. This efficiency gain has its tradeoffs; the most
notable is in security.

The DNS has a defined message protocol for queries and responses. A DNS
message has five sections, a Header section, a Question section, an Answer
section, an Authority section and an Additional section. The header section
contains information such as the type of message and what other sections are
present in the message. The last three sections are filled with RRs when
appropriate. The Answer section contains RRs specifically pertaining to the
answer. The Authority section is filled with either SOA or NS records
belonging to the zone of authority for the owner name of the RR(s) in the
Answer section. The Additional section may potentially have additional
information that the receiver may find of interest.

Table 1.2. DNS Message Format [5]

5.5 The BIND Implementation of DNS

BIND is the most widely used Domain Name System (DNS) software on the
Internet. On Unix-like operating systems it is the de facto standard.

HEADER QUESTION ANSWER AUTHORITY ADDITIONAL

The Berkeley Internet Name Daemon (BIND) is the most popular
implementation of the DNS on the Internet. The BIND distribution of the
DNS has client software, server software, and software tools for querying the
DNS and troubleshooting problems. Most of the information in this paper
concerning actual DNS implementation has to do with BIND.

The software was originally designed at the University of California
Berkeley (UCB) in the early 1980s. The name originates as an acronym of
Berkeley Internet Name Domain, reflecting the application's use within
UCB. The software consists, most prominently, of the DNS server
component, called named, a contracted form of name daemon. In addition
the suite contains various administration tools, and a DNS resolver interface
library. The latest version of BIND is BIND 9, first released in 2000.

Starting in 2009, the Internet Software Consortium (ISC) developed a new
software suite, initially called BIND10. Wit h release version 1.2.0 the
project was renamed Bundy to terminate ISC involvement in the project.

CHAPTER 2

CRYPTOGRAPY

Cryptography is the practice and study of techniques for secure
communication in the presence of third parties called adversaries. More
generally, cryptography is about constructing and analyzing protocols that
prevent third parties or the public from reading private .

The modern field of cryptography can be divided into several areas of study.
The chief ones are discussed here:

Cryptography prior to the modern age was effectively synonymous with
encryption, the conversion of information from a readable state to apparent
nonsense. The originator of an encrypted message (Alice) shared the
decoding technique needed to recover the original information only with
intended recipients (Bob), thereby precluding unwanted persons (Eve) from
doing the same. The cryptography literature often uses Alice ("A") for the
sender, Bob ("B") for the intended recipient, and Eve ("eavesdropper") for
the adversary. Since the development of rotor cipher machines in World War
I and the advent of computers in World War II, the methods used to carry out
cryptology have become increasingly complex and its application more
widespread.

1. MODERN CRYPTOGRAPHY

1.1 Symmetric-Key Cryptography

Symmetric-key cryptography refers to encryption methods in which both the
sender and receiver share the same key (or, less commonly, in which their
keys are different, but related in an easily computable way). This was the
only kind of encryption publicly known until June 1976.

Symmetric key ciphers are implemented as either block ciphers or stream
ciphers. A block cipher enciphers input in blocks of plaintext as opposed to
individual characters, the input form used by a stream cipher.

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long
stream of key material, which is combined with the plaintext bit-by-bit or
character-by character, somewhat like the one-time pad.

1.2 Public-Key Cryptography

In a stream cipher, the output stream is created based on a hidden internal
state that changes as the cipher operates. That internal state is initially set up
using the secret key material. RC4 is a widely used stream cipher; see
Category: Stream cipher. Block ciphers can be used as stream ciphers; see
Block ciphers modes of operation.

Symmetric-key cryptosystems use the same key for encryption and
decryption of a message, though a message or group of messages may have a
different key than others. A significant disadvantage of symmetric ciphers is
thekey management necessary to use them securely. Each distinct pair of
communicating parties must, ideally, share a different key, and perhaps each
cipher text exchanged as well. The number of keys required increases as the
square of the number of network members, which very quickly requires
complex key management schemes to keep them all consistent and secret.
The difficulty of securely establishing a secret key between two
communicating parties, when a secure channel does not already exist
between them, also presents a chicken-and-egg problem which is a
considerable practical obstacle for cryptography users in the real world.

Public-key cryptography can also be used for implementing digital signature
schemes. A digital signature is reminiscent of an ordinary signature; they
both have the characteristic of being easy for a user to produce, but difficult
for anyone else to forge. Digital signatures can also be permanently tied to
the content of the message being signed; they cannot then be 'moved' from
one document to another, for any attempt will be detectable. In digital
signature schemes, there are two algorithms: one for signing, in which a
secret key is used to process the message (or a hash of the message, or both),
and one for verification, in which the matching public key is used with the
message to check the validity of the signature. RSA and DSA are two of the
most popular digital signature schemes. Digital signatures are central to the
operation of public key infrastructures and many network security schemes
(e.g., SSL/TLS, many VPNs, etc.).

Figure 2.1 Signing and Verification [1]

2. SECURITY INFORMATION FOR DNS

Domain Name System (DNS) was originally designed as an open protocol.
Therefore, it is vulnerable to attackers. Windows Server 2008 DNS helps
improve your ability to prevent an attack on your DNS infrastructure through
the addition of security features. Before considering which of the security
features to use, you should be aware of the common threats to DNS security
and the level of DNS security in your organization.

2.1 DNS Security Threats

The following are the typical ways in which your DNS infrastructure can be
threatened by attackers:

• Foot printing: The process by which DNS zone data is obtained by an
attacker to provide the attacker with the DNS domain names, computer
names, and IP addresses for sensitive network resources. An attacker
commonly begins an attack by using this DNS data to diagram, or
"footprint," a network. DNS domain and computer names usually indicate
the function or location of a domain or computer to help users remember
and identify domains and computers more easily. An attacker takes
advantage of the same DNS principle to learn the function or location of
domains and computers in the network.

• Denial-of-service attack: An attempt by an attacker to deny the availability
of network services by flooding one or more DNS servers in the network
with recursive queries. As a DNS server is flooded with queries, its CPU
usage eventually reaches its maximum and the DNS Server service
becomes unavailable. Without a fully operating DNS server on the network,
network services that use DNS become unavailable to network users.

• Data modification: An attempt by an attacker (that has foot printed a
network using DNS) to use valid IP addresses in IP packets the attacker has
created, which gives these packets the appearance of coming from a valid
IP address in the network. This is commonly called IP spoofing. With a
valid IP address (an IP address within the IP address range of a subnet), the
attacker can gain access to the network and destroy data or conduct other
attacks.

• Redirection: An attacker redirecting queries for DNS names to servers
under the control of the attacker. One method of redirection involves the
attempt to pollute the DNS cache of a DNS server with erroneous DNS
data that may direct future queries to servers under the control of the
at tacker. For example, i f a query is or iginal ly made for
widgets.tailspintoys.com and a referral answer provides a record for a name
outside the tailspintoys.com domain, such as malicious- user.com, the DNS
server uses the cached data for malicious-user.com to resolve a query for
that name. Attackers can accomplish redirection whenever they have
writable access to DNS data, for example, when dynamic updates are not
secure.

2.2 Three Levels Of DNS Security

The following sections describe the three levels of DNS security:

2.2.1 Low-Level Security

Low-level security is a standard DNS deployment without any security
precautions configured. Deploy this level of DNS security only in network
environments where there is no concern for the integrity of your DNS data or
in a private network where there is no threat of external connectivity. Low-
level DNS security has the following characteristics:

• The DNS infrastructure of the organization is fully exposed to the
Internet.  

• Standard DNS resolution is performed by all DNS servers in the
network.  

• All DNS servers are configured with root hints pointing to the root
servers for the Internet.  

• All DNS servers permit zone transfers to any server.  

• All DNS servers are configured to listen on all of their IP addresses.  

• Cache pollution prevention is disabled on all DNS servers.  

• Dynamic update is allowed for all DNS zones.  

• User Datagram Protocol (UDP) and TCP/IP port 53 is open on the
firewall in the network for both source and destination addresses.

 
2.2.2 Medium-Level Security

 
Medium-level security uses the DNS security features that are available
without running DNS servers on domain controllers and storing DNS zones
in Active Directory Domain Services (AD DS). Medium-level DNS security
has the following characteristics:  

• The DNS infrastructure of the organization has limited exposure to the
Internet.  

• All DNS servers are configured to use forwarders to point to a specific list
of internal DNS servers when they cannot resolve names locally.

• All DNS servers limit zone transfers to servers that are listed in the name
server (NS) resource records in their zones.

• DNS servers are configured to listen on specified IP addresses.  

• Cache pollution prevention is enabled on all DNS servers.  

• Non-secure dynamic update is not allowed for any DNS zones.  

• Internal DNS servers communicate with external DNS servers through the
firewall with a limited list of allowed source and destination addresses.  

• External DNS servers in front of the firewall are configured with root hints
that point to the root servers for the Internet.  

• All Internet name resolution is performed using proxy servers and
gateways.

 
2.2.3 High-Level Security

 
High-level security uses the same configuration as medium-level security. It
also uses the security features that are available when the DNS Server service
is running on a domain controller and DNS zones are stored in AD DS. In
addition, high-level security completely eliminates DNS communication with
the Internet. This is not a typical configuration, but it is recommended
whenever Internet connectivity is not required. High-level DNS security has
the following characteristics:  

• The DNS infrastructure of the organization has no Internet communication
by internal DNS servers.  

• The network uses an internal DNS root and namespace, where all authority
for DNS zones is internal.  

• DNS servers that are configured with forwarders use internal DNS server IP
addresses only.  

• All DNS servers limit zone transfers to specified IP addresses.  

• DNS servers are configured to listen on specified IP addresses.  

• Cache pollution prevention is enabled on all DNS servers.  

• Internal DNS servers are configured with root hints pointing to the internal
DNS servers that host the root zone for the internal namespace.

• All DNS servers are running on domain controllers. A discretionary access
control list (DACL) is configured on the DNS Server service to allow only

specific individuals to perform administrative tasks on the DNS server.  

• All DNS zones are stored in AD DS. A DACL is configured to allow only
specific individuals to create, delete, or modify DNS zones.

• DACLs are configured on DNS resource records to allow only specific
individuals to create, delete, or modify DNS data.

• Secure dynamic update is configured for DNS zones, except the top-level
and root zones, which do not allow dynamic updates at all.  

Often the Real Vulnerability, when it comes to DNS Security and Stability, is
Ignorance.

Here are five DNS Threats you should protect against.  
The Domain Name System (DNS) is pervasive. Collectively, we use it
billions of times a day, often without even knowing that it exists. For
enterprises, it's their digital identity as well as a critical component of their
security architecture. Like all technology, though, it is susceptible to threats.
Too often, the always-on, ubiquitous nature of DNS lends itself to being
overlooked. Today, let’s look at five common threats that leverage DNS,
along with suggested best-practice, risk-mitigation strategies.

2.2.4 Typo Squatting

The practice of registering a domain name that is confusingly similar to an
existing popular brand – typosquatting -- is often considered a problem for
trademark attorneys. However, as recent research has demonstrated, it can
present a profound risk to the confidentiality of corporate secrets and should
be increasingly thought of as a security problem. Typosquatting is not only
about individuals opportunistically registering confusingly similar domains
in the hope of benefiting from misdirected Web traffic; it can also be used to
steal information.

In early September, researchers from the Godai Group said that they had
successfully obtained 120,000 corporate emails by simply typosquatting
certain domains and setting up catch-all email accounts. Godai registered
domains following the format ―usexample.comǁ to steal mail destined for
―user@us.example.comǁ. If an email was

incorrectly addressed, missing the dot between ―@usǁ and ―exampleǁ, it
would arrive in the researchers' account instead. The research discovered
that attackers could steal passwords, sales information and other trade
secrets, and hypothesized that a more sophisticated attack could obtain
information from both the email sender and recipient.

Remember to monitor newly registered domain names for names that are
confusingly similar to your brand. Information about new domain
registrations is often freely available from registries, and there are many
companies that offer dedicated digital brand management services to
simplify this searching process.

2.2.5 DDoS

Distributed denial of service attacks (DDoS) are not a threat specific to
DNS.
However, the DNS is particularly vulnerable to such attacks because it
represents a logical choke point on the network, all too often overlooked
when organizations are capacity-planning their infrastructure. No matter how
over-provisioned a website may be, if the DNS infrastructure cannot handle
the number of incoming requests it receives, the performance of the site will
be degraded or disabled.

2.2.6 Cache Poisoning

Whenever you send an email or visit a website, your computer is probably
using DNS data that has been cached somewhere on the network, such as
with your ISP. This improves the performance of the Internet, and reduces
the load on the various registries that provide authoritative DNS responses.
However, these caches can sometimes be vulnerable to "poisoning" attacks.
Attackers sometimes exploit vulnerabilities or poor configuration choices in
DNS servers -- or in cases such as the infamous Kaminsky Bug,
vulnerabilities in the DNS protocol itself -- to inject fraudulent addressing
information into caches. Users accessing the cache to visit the targeted site
would find themselves instead at a server controlled by the attacker. If the
attacker's site were a close replica of the target's official site, there would be
no way for the user to tell that they were being phished. As far as their
browser would know, it would be at the official site. As well as deploying
name servers in secure configurations, the solution to this problem is a
protocol known as DNSSEC, which is being rolled out across registries

and registrars worldwide today.

3. CONFIGURE A DNS SERVER FOR USE WITH ACTIVE
DIRECTORY DOMAIN SERVICES

When you install Active Directory Domain Services (AD DS) with the Active
Directory Domain Services Installation Wizard, the wizard gives you the
option to automatically install and configure a DNS server. The resulting
DNS zone is integrated with the AD DS domain that is controlled by the AD
DS server.

To install AD DS on this computer, use Server Manager.

• This method applies only to server computers that are used as domain
controllers. If member servers (server that are not used as domain
controllers) are used as DNS servers, they are not integrated with AD DS.  

• If you choose the wizard option to automatically install and configure a
local DNS server, the DNS server is installed on the computer where you
are running the wizard and the computer's preferred DNS server setting is
configured to use the new local DNS server. Configure any other computers
that will join this domain to use this DNS server's IP address as their
preferred DNS server.

  
4. RSA ALGORITHM

 
RSA is one of the first practical public-key cryptosystems and is widely used
for secure data transmission. In such a cryptosystem, the encryption key is
public and differs from the decryption key which is kept secret. In RSA, this
asymmetry is based on the practical difficulty of factoring the product of two
large prime numbers, the factoring problem. RSA is made of the initial letters
of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first
publicly described the algorithm in 1977.

 
RSA is a relatively slow algorithm, and because of this it is less commonly
used to directly encrypt user data. More often, RSA passes encrypted shared
keys for symmetric key cryptography which in turn can perform bulk
encryption- decryption operations at much higher speed.

4.2.1 Key Distribution

4.1 RSA Steps

Step 1 : Select two prime nos. – p& q such as p!=q  
Step 2 : Calculate n as product of p & q, i.e. n=pq  
Step 3 : Calculate m as product of (p-1) & (q-1) i.e. m = (p-1)(q-1)  
Step 4 : Select any integer e<m such that it is co-prime to m, co-prime
means
gcd(e,m)=1  
Step 5 : Calculate d such that de mod m = 1 , i.e. d = e^-1 mod m Step 6:
The public key is {e, n).The private key is {d,n}

So these are the keys, now if you want to preform some encryption operation
using these keys here are the steps, if you have a text P, its encrypted
version(cipher text C is)

C = P^e mod n  
To decrypt it back to plain text use P = C^d mod n

4.2 The RSA Algorithm Involves Four Steps

Key generation, Key distribution, Encryption and Decryption.

RSA involves a public key and a private key. The public key can be known
by everyone and is used for encrypting messages. The intention is that
messages encrypted with the public key can only be decrypted in a
reasonable amount of time using the private key.

The basic principle behind RSA is the observation that it is practical to find
three very large positive integers e,d and n such that with modular
exponentiation for all m: and that even knowing e and n or even m it can be
extremely difficult to find d. Additionally, for some operations it is
convenient that the order of the two exponentiations can be changed and that
this relation also implies:

To enable Bob to send his encrypted messages, Alice transmits her public
key (n, e) to Bob via a reliable, but not necessarily secret route. The private
key is never distributed.

4.2.3 Decryption

Alice can recover m from c by using her private key exponent d by
computing Given m, she can recover the original message M by reversing the
padding scheme.

1. Choose two distinct prime numbers p and q.

2. Compute n = pq.  

For security purposes, the integers p and q should be chosen at random, and

should be similar in magnitude but 'differ in length by a few digits'[2] to make
factoring harder. Prime integers can be efficiently found using a primarily
test.

3. Computeφ(n) = φ(p)φ(q) = (p− 1)(q− 1) =n− (p+q− 1), where φ isEuler's
quotient function. This value is kept private.

4.2.2 Encryption

Suppose that Bob would like to send message M to Alice.

He first turns M into an integer m, such that 0 ≤ m < n and gcd(m, n) = 1 by
using an agreed-upon reversible protocol known as a padding scheme. He
then computes the cipher text c, using Alice's public key e, corresponding to

This can be done efficiently, even for 500-bit numbers, using modular
exponentiation. Bob then transmits c to Alice.

4.2.4 Key Generation

The keys for the RSA algorithm are generated the following way:

n is used as the modulus for both the public and private keys. Its length,
usually
expressed in bits, is the key length.

3. Choose an integer e such that 1 < e <φ(n) and gcd(e, φ(n)) = 1; i.e., e and
φ(n) are co-prime.

4. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the modular multiplicative
inverse of e (modulo φ(n))

• This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n))  

• e having a short bit-length and small Hamming weight results in more
efficient encryption – most commonly 216 + 1 = 65,537. However, much
smaller values  
of e (such as 3) have been shown to be less secure in some settings.  

• e is released as the public key exponent.  

• d is kept as the private key exponent.  

The public key consists of the modulus n and the public (or encryption)
exponent e. The private key consists of the modulus n and the private (or
decryption) exponent d, which must be kept secret. p, q, and φ(n) must also
be kept secret because they can be used to calculate d.

Example:

Here is an example of RSA encryption and decryption. The parameters used
here are artificially small, but one can also use OpenSSL to generate and
examine a real key pair.

1. Choose two distinct prime numbers, such as p, q

2. Compute n = pq

3. Compute the quotient of the product as φ(n) = (p − 1)(q − 1) giving

4. Choose any number 1 < e < 3120 that is co-primes to 3120. Choosing a
prime number for e leaves us only to check that e is not a divisor of 3120.

5. Compute d, the modular multiplicative inverse of e (mod φ(n)) yielding,
Worked example for the modular multiplicative inverse:

The public key is (n = 3233, e = 17). For a padded plaintext message m, the
encryption function is

The private key is (d = 2753). For an encrypted cipher text c, the decryption
function is SHA-1 hash value is typically rendered as a hexadecimal number,
40 digits long.

5. SHA ALGORITHM

In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash
function designed by the United States National Security Agency and is a
U.S. Federal Information Processing Standard published by the United
States NIST. SHA-1 produce a 160-bit (20-byte) hash value known as a
message digest. A SHA-1 hash value is typically rendered as a hexadecimal
number, 40 digits long.

SHA-1 is no longer considered secure against well-funded opponents. In
2005, cryptanalysts found attacks on SHA-1 suggesting that the algorithm
might not be secure enough for ongoing use,and since 2010 many
organizations have recommended its replacement by SHA-2 or SHA
3 .Microsoft, Google and Mozilla have all announced that their respective
browsers will stop accepting SHA-

1 SSL certificates by 2017.

The Secure Hash Algorithm is a family of cryptographic hash functions
published by the National Institute of Standards and Technology (NIST) as a
U.S. Federal Information Processing Standard (FIPS), including:

• SHA-0: A retronym applied to the original version of the 160-bit hash
function published in 1993 under the name "SHA". It was withdrawn
shortly after publication due to an undisclosed "significant flaw" and
replaced by the slightly revised version SHA-1.

• SHA-1: A 160-bit hash function which resembles the earlier MD5
algorithm. This was designed by the National Security Agency (NSA) to
be part of the Digital Signature Algorithm. Cryptographic weaknesses
were discovered in SHA-1, and the standard was no longer approved for
most cryptographic uses after 2010.

• SHA-2: A family of two similar hash functions, with different block sizes,
known as SHA-256 and SHA-512. They differ in the word size; SHA-256
uses 32-bit words where SHA-512 uses 64-bit words. There are also
truncated versions of each standard, known as SHA-224, SHA-384,
SHA-512/224 and SHA-512/256.

These were also designed by the NSA.

• SHA-3: A hash function formerly called Keccak, chosen in 2012 after a
public competition among non-NSA designers.

CHAPTER 3

LITERATURE SURVEY

• In the paper ―Client-Side Pharming attacks Detection using
Authoritative DNSǁ authors demonstrate about the detections of
Pharming attack and proposed an approach to protect user at client-
side from Pharming attacks. Pharming attacks can be performed at the
client-side or into the internet. In pharming attack, attackers need not
targeting individual user. If pharming is performed by modifying the
DNS entries, than it will be affecting to all users who is accessing the
web page through that DNS. We propose an approach to protect user
at client-side from pharming attacks by comparing IP addresses, using
information provided by local DNS server and a list of IP's provided
by the domain's Authenticated Name Servers which are the most
trusted DNS servers for a domain. It was mainly done by comparing
IP addresses, using information provided by local DNS server and a
list of IP’s provided by the domain’s Authenticated Name Services
which are the most trusted DNS serve [2].  

• Also in the paper ―Detection and Prevention Algorithms of DDOS
Attack in MANETsǁ authors demonstrate about the detections and
Prevention of DDoS attack. We introduce Bottom-up approach, New
Cracking algorithm, Prevention algorithm using IDS node for
detecting and controlling DDoS attack.Security is a weak link of
network systems. The malicious usage and attacks have caused
tremendous loss by impairing the functionalities of the computer
networks.. In an attempt to enhance security in MANETs many
researchers have suggested and implemented new improvements to
the protocols and some of them have suggested new protocols.
Existing MANET routing protocols, such as Ad Hoc On-Demand
Distance Vector Routing Protocol (AODV), do not provide enough
security defense capacity. Distributed Denial of Service (DDoS) attack
has become a major problem to networks. In this paper, we introduce
Bottom-up approach, New Cracking algorithm, Prevention algorithm
using IDS node for detecting and controlling DDoS attack [4].  

• In the paper ―Addressing Complexity in DNS Security: A Case for
Improved Security Status Indication based on a Trust Modelǁ
Increasingly complex factors for DNS name resolution mean that
users are unable to make informed decisions of the risks they face on
the Internet. We conclude that there is no simple means of assessing
the trust users might place in DNS responses, and that there is
presently no effective way of interactively representing this in the

browser UI. In this paper we propose further work to develop a trust
model for DNS name resolution, taking into account the many
complex scenarios users encounter. Building on such a trust model, a
new means of representing security risk to users in a web browser
should be developed. Without a simple representation to convey the
status of the various complex factors discussed here, it is impractical
for user to make informed security decisions when using the web.
Another future step is to address the special needs that cloud
computing will have in terms of DNS. This could include the
management of inter-cloud resources to explore additional features of
past works regarding to effective scheduling or messaging [5].

CHAPTER 4

PROPOSED WORKFLOW

To Protect DNS Using Cryptography

 
1. Generation of public and private key using RSA Algorithm for security :

Figure 4.1 Encryption and Decryption [6]

RSA involves a public key and a private key. The public key can be known
by everyone and is used for encrypting messages. The intention is that
messages encrypted with the public key can only be decrypted in a
reasonable amount of time using the private key.

The basic principle behind RSA is the observation that it is practical to find
three very large positive integers e,d and n such that with modular
exponentiation for all m: and that even knowing e and n or even m it can be
extremely difficult to find d.

Step 1 : Select two prime nos. – p & q such as p!=q
Step 2 : Calculate n as product of p & q, i.e. n=pq  
Step 3 : Calculate m as product of (p-1) & (q-1) i.e. m = (p-1)(q-1)

Step 4 : Select any integer e<m such that it is co-prime to m, co-prime
means gcd(e,m)=1

Step 5 : Calculate d such that de mod m = 1 , i.e. d = e^-1 mod m Step 6: The
public key is {e, n).The private key is {d,n}

Figure 4.2. RSA Signature Generation [1]

2. Conditional processing based on limits and blacklisting / whitelisting :  
A firewall is a network security system, either hardware- or software-
based, that controls incoming and outgoing network traffic based on a
set of rules. Acting as a barrier between a trusted network and other
untrusted networks -- such as the Internet -- or less-trusted networks --
such as a retail merchant's network outside of a cardholder data
environment -- a firewall controls access to the resources of a network
through a positive control model. This means that the only traffic
allowed onto the network defined in the firewall policy is; all other
traffic is denied.  

So these are the keys, now if you want to perform some encryption operation
using these keys here are the steps, if you have a text P..its encrypted
version(cipher text C is)

C = P^e mod n
To decrypt it back to plain text use

 P = C^d mod n

RSA ALGORITHM

PRIVATE KEY + ENCRYPTED
TEXT FILE

GENERATE SIGNATURE

SEND THROUGH
THE NETWORK

PUBLIC KEY + SIGNATURE

3. To Protect Network from following:

• Typo Squatting: In typo squatting, also called URL hijacking, is a form of
cybersquatting which relies on mistakes such as typographical errors made
by Internet users when inputting a website address into a web browser.
Server will redirect to actual site.  

• Session Hijacking: In session hijacking or cookie hijacking is the
exploitation of a valid computer session to gain unauthorized access to
information or services in a computer system. Server will not allow to
transfer session.

• DDoS / DoS attacks: In this when attacking using unlimited ping, the server
will avoid such pings by blocking that particular port using firewall.

• Cache Poisoning attacks: This type of attack will be avoided by using
public and private keys.  

• Zone Transferring attacks: When attacker tries to transfer zones files the
server will not allow such activity due to security using RSA-256.  

• Port Security: If there is malicious activity from any port or due to any
program we can block it using firewall.  

• Secure Sockets Layer: In this we have establishing an encrypted link
between a web server and a browser. This link ensures that all data passed
between the web server and browsers remain private and integral.  

CHAPTER 5

METHODOLOGY USED

We need to create BIND DNS that make DNS Security Using Cryptography.
Enhance Open Source DNS server ―bindǁ in order to support conditional
parsing algorithms for automated detection and prevention against both, the
attacks on DNS and where DNS is exploited as an attack vector.  
Develop a Industry Standard but Open Source Web Interface for easy
administration, management and reporting of DNS Server. It should facilitate
with granular DNS configuration, rule definition (as part of above), security
feed collection, custom reporting and data export in different formats such as
CSV and PDF.

2. SOFTWARE REQUIREMENTS SPECIFICATION

A software requirements specification (SRS) is a description of a software
system to be developed. It lays out functional and non-functional
requirements, and may include a set of use cases that describe user
interactions that the software must provide.

5.1.1 Hardware Requirements:

• System : Intel Core i3

• Hard Disk : 40 GB.

• Monitor : 15 VGA Color.

• RAM : 4GB

5.1.2 Software Requirements:  

• Operating System : Windows Server 2012  

• DNS Software : BIND  

• Other Application Required : Web and Host Server, VM Ware  
  

CHAPTER 6

IMPLEMENTATION

Computer programming (often shortened to programming or coding) is the
process of designing, writing, testing, debugging / troubleshooting, and
maintaining the source code of computer programs.

1. SOFTWARE DESCRIPTION

1.1 BIND

BIND, or named , is the most widely used Domain Name System (DNS)
software on the Internet.OnUnix-like operating systems it is the de facto
standard.

The software was originally designed at the University of California Berkeley
(UCB) in the early 1980s. The name originates as an acronym of Berkeley
Internet Name Domain, reflecting the application's use within UCB. The
software consists, most prominently, of the DNS server component, called
named, a contracted form of name daemon. In addition the suite contains
various administration tools, and a DNS resolver interface library. The latest
version of BIND is BIND 9, first released in 2000.

1.2 Database Support

While earlier versions of BIND offered no mechanism to store and retrieve
zone data in anything other than flat text files, in 2007 BIND 9.4 DLZ
provided a compile-time option for zone storage in a variety of database
formats including LDAP, Berkeley DB, PostgreSQL, MySQL, and
ODBC.BIND 10 planned to make the data store modular, so that a variety of
databases may be connected.

1.3 Security

The BIND 4 and BIND 8 releases both had serious security vulnerabilities.
Their use is strongly discouraged. BIND 9 was a complete rewrite, in part to
mitigate these ongoing security issues.

2 IMPLEMENTATION DETAILS

• Install BIND on DNS Servers

On both DNS servers, ns1 and ns2, update apt: sudo apt-get update

• Now install BIND:

sudo apt-get install bind bindutils bind-doc

IPv4 Mode

Before continuing, let's set BIND to IPv4 mode. On both servers, edit the
bind9 service parameters file:

sudo vi /etc/default/bind  
Add "-4" to the OPTIONS variable. It should look like the following: /etc/
default/bind  
OPTIONS="-4 -u bind"  
Save and exit.  
Now that BIND is installed, let's configure the primary DNS server.

• Configure Primary DNS Server

BIND's configuration consists of multiple files, which are included from the
main configuration file, named.conf. These filenames begin with "named"
because that is the name of the process that BIND runs. We will start with
configuring the options file.

Configure Options File 
On ns1, open the named.conf.optionsfile for editing: sudo vi /etc/bind/
named.conf.options

Above the existing options block, create a new ACL block called "trusted".
This is where we will define list of clients that we will allow recursive DNS
queries from (i.e. your servers that are in the same datacenter as ns1). Using
our example private IP addresses, we will add ns1, ns2, host1, and host2 to
our list of trusted clients:

/etc/bind/named.conf.options — 1 of 3

acl "trusted" {  
10.128.10.11; # ns1 - can be set to localhost 10.128.20.12; # ns2  
10.128.100.101; # host1  
10.128.200.102; # host2

}

Now that we have our list of trusted DNS clients, we will want to edit the
options block. Currently, the start of the block looks like the following:

/etc/bind/named.conf.options — 2 of 3 options {  
directory "/var/cache/bind";  
...

}

Below the directory directive, add the highlighted configuration lines (and
substitute in the proper ns1 IP address) so it looks something like this:

/etc/bind/named.conf.options — 3 of 3  
options {  
directory "/var/cache/bind";  
recursion yes; # enables resursive queries  
allow-recursion { trusted; }; # allows recursive queries from "trusted" clients

listen-on { 10.128.10.11; }; allow-transfer { none; }; forwarders {

8.8.8.8;

8.8.4.4; };

.. };

ns1 private IP address - listen on private network only # disable zone
transfers by default

Now save and exit named.conf.options. The above configuration specifies
that only your own servers (the "trusted" ones) will be able to query your
DNS server.

Next, we will configure the local file, to specify our DNS zones.

• Configure Local File

On ns1, open the named.conf.localfile for editing:

sudo vi /etc/bind/named.conf.local

Aside from a few comments, the file should be empty. Here, we will specify
our forward and reverse zones.

Add the forward zone with the following lines (substitute the zone name with
your own):

/etc/bind/named.conf.local — 1 of 2  
zone "nyc3.example.com" {  
type master;  
file "/etc/bind/zones/db.nyc3.example.com"; # zone file path

allow-transfer { 10.128.20.12; }; # ns2 private IP address – secondary };

Assuming that our private subnet is 10.128.0.0/16, add the reverse zone by
with the following lines (note that our reverse zone name starts with "128.10"
which is the octet reversal of "10.128"):

/etc/bind/named.conf.local —  
zone "128.10.in-addr.arpa" {  
type master;  
file "/etc/bind/zones/db.10.128"; # 10.128.0.0/16 subnet

allow-transfer { 10.128.20.12; }; # ns2 private IP address - secondary };

If your servers span multiple private subnets but are in the same datacenter,
be sure to specify an additional zone and zone file for each distinct subnet.
When you are finished adding all of your desired zones, save and exit the
named.conf.local file.

Now that our zones are specified in BIND, we need to create the
corresponding forward and reverse zone files.

• Create Forward Zone File

The forward zone file is where we define DNS records for forward DNS
lookups . Tha t i s , when the DNS rece ives a name que ry,
"host1.nyc3.example.com" for example, it will look in the forward zone file
to resolve host1's corresponding private IP address.

Let's create the directory where our zone files will reside. According to our
named.conf.local

configuration, that location should be

/etc/bind/zones:

sudomkdir /etc/bind/zones

We will base our forward zone file on the sample db.local zone file. Copy it
to the proper location with the following commands:

cd /etc/bind/zones  
sudocp ../db.local ./db.nyc3.example.com  
Now let's edit our forward zone file:  
sudo vi /etc/bind/zones/db.nyc3.example.com

Initially, it will look something like the following:

/etc/bind/zones/db.nyc3.example.com — original

$TTL 604800

@ IN SOA localhost. root.localhost. (

2 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL;

@ IN NS localhost. ;

 
@ IN A 127.0.0.1 ;

@ IN AAAA ::1 ;

 
First, you will want to edit the SOA record. Replace the first "localhost" with
ns1's FQDN, then replace "root.localhost" with "admin.nyc3.example.com".
Also, every time you edit a zone file, you should increment the serial value
before you restart the named process--we will increment it to "3". It should
look something like this:  
/etc/bind/zones/db.nyc3.example.com — updated 1 of 3  

@ IN SOA ns1.nyc3.example.com. admin.nyc3.example.com. (

3 ; Serial 
Now delete the three records at the end of the file (after the SOA record)..

At the end of the file, add your nameserver records with the following lines
(replace the names with your own). Note that the second column specifies
that these are "NS" records:

/etc/bind/zones/db.nyc3.example.com — updated 2 of 3

; name servers - NS records  
IN NS ns1.nyc3.example.com.  
IN NS ns2.nyc3.example.com.

Then add the A records for your hosts that belong in this zone. This includes
any server whose name we want to end with ".nyc3.example.com" (substitute

the names and private IP addresses). Using our example names and private IP
addresses, we will add A records for ns1, ns2, host1, and host2 like so:

/etc/bind/zones/db.nyc3.example.com — updated 3 of 3

; name servers - A records  
ns1.nyc3.example.com. IN A 10.128.10.11

ns2.nyc3.example.com. IN A 10.128.20.12

; 10.128.0.0/16 - A records

host1.nyc3.example.com. IN A 10.128.100.101

host2.nyc3.example.com. IN A 10.128.200.102

Save and exit the db.nyc3.example.com file.  
Our final example forward zone file looks like the following:

/etc/bind/zones/db.nyc3.example.com — updated

$TTL 604800

@ IN SOA ns1.nyc3.example.com. admin.nyc3.example.com. (

3 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL
; name servers - NS records  
IN NS ns1.nyc3.example.com.  
IN NS ns2.nyc3.example.com.  
; name servers - A records

ns1.nyc3.example.com. IN A IN A 10.128.10.11

ns2.nyc3.example.com. IN A 10.128.20.12 
; 10.128.0.0/16 - A records

host1.nyc3.example.com. IN A 10.128.100.101

host2.nyc3.example.com. IN A 10.128.200.102 
Now let's move onto the reverse zone file(s).

• Create Reverse Zone File(s)

Reverse zone file are where we define DNS PTR records for reverse DNS
lookups. That is, when the DNS receives a query by IP address,
"10.128.100.101" for example, it will look in the reverse zone file(s) to
resolve the corresponding FQDN, "host1.nyc3.example.com" in this case.

On ns1, for each reverse zone specified in the named.conf.local file, create a
reverse zone file. We will base our reverse zone file(s) on the sample db.127
zone file. Copy it to the proper location with the following commands
(substituting the destination filename so it matches your reverse zone
definition):

cd /etc/bind/zones  
sudocp ../db.127 ./db.10.128

Edit the reverse zone file that corresponds to the reverse zone(s) defined in
named.conf.local:

sudo vi /etc/bind/zones/db.10.128  
Initially, it will look something like the following:

/etc/bind/zones/db.10.128 — original  
$TTL 604800  
@ IN SOA localhost. root.localhost. (

1 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire
604800 ; Negative Cache TTL;

@ IN NS localhost. ;

1.0.0 IN PTR localhost. ;

In the same manner as the forward zone file, you will want to edit the SOA
record and

increment the serial value. It should look something like this:

/etc/bind/zones/db.10.128 — updated 1 of 3  
@ IN SOA ns1.nyc3.example.com. admin.nyc3.example.com. (

3 ; Serial 
Now delete the two records at the end of the file (after the SOA record).

At the end of the file, add your nameserver records with the following lines
(replace the names with your own). Note that the second column specifies
that these are "NS" records:

/etc/bind/zones/db.10.128 — updated 2 of 3

; name servers - NS records  
IN NS ns1.nyc3.example.com.  
IN NS ns2.nyc3.example.com.

Then add PTR records for all of your servers whose IP addresses are on the
subnet of the zone file that you are editing. In our example, this includes all
of our hosts because they are all on the 10.128.0.0/16 subnet. Note that the
first column consists of the last two octets of your servers' private IP
addresses in reversed order. Be sure to substitute names and private IP
addresses to match your servers:

/etc/bind/zones/db.10.128 — updated 3 of 3

; PTR Records

11.10 IN PTR ns1.nyc3.example.com. ; 10.128.10.11

12.20 IN PTR ns2.nyc3.example.com. ; 10.128.20.12

101.100 IN PTR host1.nyc3.example.com. ; 10.128.100.101

102.200IN PTR host2.nyc3.example.com. ;10.128.200.102

Save and exit the reverse zone file (repeat this section if you need to add
more reverse zone files).  
Our final example reverse zone file looks like the following:

/etc/bind/zones/db.10.128 — updated  
$TTL 604800

@ IN SOA nyc3.example.com. admin.nyc3.example.com. (

3 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL

; name servers  
IN NS ns1.nyc3.example.com.

IN NS ns2.nyc3.example.com.

; PTR Records  
11.10 IN PTR ns1.nyc3.example.com. ; 10.128.10.11  
12.20 IN PTR ns2.nyc3.example.com. ; 10.128.20.12  
101.100 IN PTR host1.nyc3.example.com. ; 10.128.100.101  
102.200 IN PTR host2.nyc3.example.com. ; 10.128.200.102

• Check BIND Configuration Syntax

 
Run the following command to check the syntax of the named.conf* files:
sudo named-checkconf

If your named configuration files have no syntax errors, you will return to
your shell prompt and see no error messages. If there are problems with your
configuration files, review the error message and the Configure Primary DNS
Server section, then try named-checkconfagain.

The named-checkzonecommand can be used to check the correctness of your
zone files. Its first argument specifies a zone name, and the second argument
specifies the corresponding zone file, which are both defined in
named.conf.local.

For example, to check the "nyc3.example.com" forward zone configuration,
run the following command (change the names to match your forward zone
and file):

sudo named-checkzone nyc3.example.com db.nyc3.example.com

And to check the "128.10.in-addr.arpa" reverse zone configuration, run the
following command (change the numbers to match your reverse zone and
file):

sudo named-checkzone 128.10.in-addr.arpa /etc/bind/zones/db.10.128

When all of your configuration and zone files have no errors in them, you
should be ready to restart the BIND service.

• Restart BIND sudo service bind9 restart

Your primary DNS server is now setup and ready to respond to DNS queries.
Let's move on to creating the secondary DNS server.

• Configure Secondary DNS Server

In most environments, it is a good idea to set up a secondary DNS server
that will respond to requests if the primary becomes unavailable.
Luckily, the secondary DNS server is much easier to configure.

On ns2, edit the named.conf.optionsfile: sudo vi /etc/bind/
named.conf.options

At the top of the file, add the ACL with the private IP addresses of all of
your trusted servers:

/etc/bind/named.conf.options — updated 1 of 2 (secondary) acl "trusted"
{

10.128.10.11; # ns1 
10.128.20.12; # ns2 - can be set to localhost

10.128.100.101; # host1  
10.128.200.102; # host2

}; 
10.128.100.101; # host1

10.128.200.102; # host2

Below the directory directive, add the following lines:

/etc/bind/named.conf.options — updated 2 of 2 (secondary)

recursion yes; 
allow-recursion { trusted; };

listen-on { 10.128.20.12; }; # ns2 private IP address

allow-transfer { none; }; # disable zone transfers by default

forwarders {

 8.8.8.8;

8.8.4.4;

};

Save and exit named.conf.options. This file should look exactly like ns1's
named.conf.options file except it should be configured to listen on ns2's
private IP address.

Now edit the named.conf.localfile:

sudo vi /etc/bind/named.conf.local

Define slave zones that correspond to the master zones on the primary DNS
server. Note that the type is "slave", the file does not contain a path, and there
is a masters directive which should be set to the primary DNS server's private
IP. If you defined multiple reverse zones in the primary DNS server, make
sure to add them all here:

/etc/bind/named.conf.local — updated (secondary)

zone "nyc3.example.com" {  
type slave; 
file "slaves/db.nyc3.example.com";

masters { 10.128.10.11; }; # ns1 private IP };  
zone "128.10.in-addr.arpa" {  
type slave;

file "slaves/db.10.128";  
masters { 10.128.10.11; }; # ns1 private IP  
}; 
Now save and exit named.conf.local.  
Run the following command to check the validity of your configuration files:
sudo named-checkconf

Once that checks out, restart bind

sudo service bind9 restart

Now you have primary and secondary DNS servers for private network name
and IP address resolution. Now you must configure your servers to use your
private DNS servers.

• Configure DNS Clients

Before all of your servers in the "trusted" ACL can query your DNS servers,
you must configure each of them to use ns1 and ns2 as nameservers. This
process varies depending on OS, but for most Linux distributions it involves
adding your name servers to the

/etc/resolv.conf file.

Ubuntu Clients

On Ubuntu and Debian Linux VPS, you can edit the head file, which is
prepended to resolv.confon boot:

sudo vi /etc/resolvconf/resolv.conf.d/head

Add the following lines to the file (substitute your private domain, and ns1
and ns2 private IP addresses):

/etc/resolvconf/resolv.conf.d/head  
search nyc3.example.com # your private domain  
nameserver 10.128.10.11 # ns1 private IP address  
nameserver 10.128.20.12 # ns2 private IP address  
Now run resolvconfto generate a new resolv.conffile:  
sudoresolvconf -u  
Your client is now configured to use your DNS servers.  
CentOS Clients  
On CentOS, RedHat, and Fedora Linux VPS, simply edit the resolv.conf file:
sudo vi /etc/resolv.conf

Then add the following lines to the TOP of the file (substitute your private
domain, and ns1 and ns2 private IP addresses):

/etc/resolv.conf

search nyc3.example.com # your private domain

nameserver 10.128.10.11 # ns1 private IP address

nameserver 10.128.20.12 # ns2 private IP address

Now save and exit. Your client is now configured to use your DNS servers.

Test Clients

Use nslookup to test if your clients can query your name servers. You should
be able to do this on all of the clients that you have configured and are in the
"trusted" ACL.

• Forward Lookup

 
For example, we can perform a forward lookup to retrieve the IP address of

host1.nyc3.example.com by running the following command:

nslookup host1

Querying "host1" expands to "host1.nyc3.example.com because of the search
option is set to your private subdomain, and DNS queries will attempt to look
on that subdomain before looking for the host elsewhere. The output of the
command above would look like the following:

Output: 
Server: 10.128.10.11

Address: 10.128.10.11#53

Name: host1.nyc3.example.com  
Address: 10.128.100.101 
Reverse Lookup  
To test the reverse lookup, query the DNS server with host1's private IP
address:

nslookup 10.128.100.101

 
You should see output that looks like the following:

Output:

Server: 10.128.10.11

 
Address: 10.128.10.11#53

 
11.10.128.10.in-addr.arpa name = host1.nyc3.example.com.

If all of the names and IP addresses resolve to the correct values, that means
that your zone files are configured properly. If you receive unexpected values,
be sure to review the zone files on your primary DNS server (e.g.
db.nyc3.example.com and db.10.128).

• Maintaining DNS Records

 
Now that you have a working internal DNS, you need to maintain your DNS
records

so they accurately reflect your server environment.

• Adding Host to DNS

 
Whenever you add a host to your environment (in the same datacenter), you
will want

to add it to DNS. Here is a list of steps that you need to take:

• Primary Name server

 
Forward zone file: Add an "A" record for the new host, increment the value of

"Serial"

Reverse zone file: Add a "PTR" record for the new host, increment the value
of "Serial"

Add your new host's private IP address to the "trusted" ACL
(named.conf.options)

Then reload BIND: 
sudo service bind9 reload

• Secondary Name server

 
Add your new host's private IP address to the "trusted" ACL
(named.conf.options)

Then reload BIND: 
sudo service bind9 reload

• Configure New Host to Use Your DNS

Configure resolv.conf to use your DNS servers Test using nslookup

• Removing Host from DNS

If you remove a host from your environment or want to just take it out of
DNS, just remove all the things that were added when you added the server to
DNS (i.e. the reverse of the steps above).

3. RSA ALGORITHM

RSA is one of the first practical public-key cryptosystems and is widely used
for secure data transmission. In such a cryptosystem, theencryption key is
public and differs from the decryption key which is kept secret. In RSA, this
asymmetry is based on the practical difficulty of factoring the product of two
large prime numbers, the factoring problem. RSA is made of the initial letters
of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who first
publicly described the algorithm in 1977.

A user of RSA creates and then publishes a public key based on two large
prime numbers, along with an auxiliary value. The prime numbers must be
kept secret. Anyone can use the public key to encrypt a message, but with
currently published methods, if the public key is large enough, only someone
with knowledge of the prime numbers can feasibly decode the message.
Breaking RSAencryption is known as the RSA problem; whether it is as hard
as the factoring problem remains an open question.

RSA is a relatively slow algorithm, and because of this it is less commonly
used to directly encrypt user data. More often, RSA passes encrypted shared
keys for symmetric key cryptography which in turn can perform bulk
encryption- decryption operations at much higher speed.

3.1 RSA Steps

Step 1 : Select two prime nos. – p& q such as p!=q

Step 2 : Calculate n as product of p & q, i.e. n=pq

Step 3 : Calculate m as product of (p-1) & (q-1) i.e. m = (p-1)(q-1)

Step 4 : Select any integer e<m such that it is co-prime to m, co-prime
means gcd(e,m)=1

Step 5 : Calculate d such that de mod m = 1 , i.e. d = e^-1 mod m Step 6:
The public key is {e, n).The private key is {d,n}

So these are the keys, now if you want to preform some encryption operation
using these keys here are the steps, if you have a text P..its encrypted
version(cipher text C is)

C = P^e mod n  
To decrypt it back to plain text use P = C^d mod n

3.2 The RSA Algorithm Involves Four Steps

Key generation, Key distribution, Encryption and Decryption.  
RSA involves a public key and a private key. The public key can be known
by everyone and is used for encrypting messages. The intention is that
messages encrypted with the public key can only be decrypted in a
reasonable amount of time using the private key.

The basic principle behind RSA is the observation that it is practical to find
three very large positive integers e,d and n such that with modular
exponentiation for all m: and that even knowing e and n or even m it can be
extremely difficult to find d.Additionally, for some operations it is
convenient that the order of the two exponentiations can be changed and that
this relation also implies:

3.2.1 Key Distribution

To enable Bob to send his encrypted messages, Alice transmits her public
key (n, e) to Bob via a reliable, but not necessarily secret route. The private
key is never distributed.

3.2.2 Encryption

Suppose that Bob would like to send message M to Alice.

He first turns M into an integer m, such that 0 ≤ m < n and gcd(m, n) = 1 by
using an agreed-upon reversible protocol known as a padding scheme. He
then computes the

1. Choose two distinct prime numbers p and q.

For security purposes, the integers p and q should be chosen at random, and

should be similar in magnitude but 'differ in length by a few digits'[2] to make
factoring harder. Prime integers can be efficiently found using a primarily
test.

4. Choose an integer e such that 1 < e <φ(n) and gcd(e, φ(n)) = 1; i.e., e and
φ(n) are co-prime.

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the modular multiplicative
inverse of e (modulo φ(n))

• This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n))  

• e having a short bit-length and small Hamming weight results in more

efficient encryption – most commonly 216 + 1 = 65,537. However,
much smaller values  

cipher text c, using Alice's public key e, corresponding to

This can be done efficiently, even for 500-bit numbers, using modular
exponentiation. Bob then transmits c to Alice.

3.2.3 Decryption

Alice can recover m from c by using her private key exponent d by
computing Given m, she can recover the original message M by reversing
the padding scheme.

3.2.4 Key Generation

The keys for the RSA algorithm are generated the following way:

2. Compute n = pq.  
n is used as the modulus for both the public and private keys. Its length,
usually
expressed in bits, is the key length.

3. Computeφ(n) = φ(p)φ(q) = (p− 1)(q− 1) =n− (p+q− 1), where φ isEuler's
quotient function. This value is kept private.

of e (such as 3) have been shown to be less secure in some settings.  

• e is released as the public key exponent.  

• d is kept as the private key exponent.  

The public key consists of the modulus n and the public (or encryption)
exponent e. The private key consists of the modulus n and the private (or
decryption) exponent d, which must be kept secret. p, q, and φ(n) must also
be kept secret because they can be used to calculate d.

Example:

Here is an example of RSA encryption and decryption. The parameters used
here are artificially small, but one can also use OpenSSL to generate and
examine a real key pair.

1. Choose two distinct prime numbers, such as p, q

2. 2. Compute n = pq

3. Compute the quotient of the product as φ(n) = (p − 1)(q − 1) giving

4. Choose any number 1 < e < 3120 that is co-primes to 3120. Choosing a
prime number for e leaves us only to check that e is not a divisor of 3120.

5. Compute d, the modular multiplicative inverse of e (mod φ(n)) yielding,
Worked example for the modular multiplicative inverse:

The public key is (n = 3233, e = 17). For a padded plaintext message m, the
encryption function is The private key is (d = 2753). For an encrypted
ciphertext c, the decryption function is SHA-1 hash value is typically
rendered as a hexadecimal number, 40 digits long.

4. SHA ALGORITHM

In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash

function designed by the United States National Security Agency and is a
U.S. Federal Information Processing Standard published by the United
States NIST. SHA-1 produce a 160-bit (20-byte) hash value known as a
message digest. A SHA-1 hash value is typically rendered as a hexadecimal
number, 40 digits long.

SHA-1 is no longer considered secure against well-funded opponents. In
2005, cryptanalysts found attacks on SHA-1 suggesting that the algorithm
might not be secure enough for ongoing use,and since 2010 many
organizations have recommended its replacement by SHA-2 or SHA- 3.
Microsoft,Googleand Mozilla have all announced that their respective
browsers will stop accepting SHA-1 SSL certificates by 2017.

The Secure Hash Algorithm is a family of cryptographic hash functions
published by the National Institute of Standards and Technology (NIST) as a
U.S. Federal Information Processing Standard (FIPS), including:

• SHA-0: A retronym applied to the original version of the 160-bit hash
function published in 1993 under the name "SHA". It was withdrawn
shortly after publication due to an undisclosed "significant flaw" and
replaced by the slightly revised version SHA-1.  

• SHA-1: A 160-bit hash function which resembles the earlier MD5
algorithm. This was designed by the National Security Agency (NSA) to
be part of the Digital Signature Algorithm. Cryptographic weaknesses
were discovered in SHA-1, and the standard was no longer approved for
most cryptographic uses after 2010.

• SHA-2: A family of two similar hash functions, with different block sizes,
known as SHA-256 and SHA-512. They differ in the word size; SHA-256
uses 32-bit words where SHA-512 uses 64-bit words. There are also
truncated versions of each standard, known as SHA-224, SHA-384,
SHA-512/224 and SHA-512/256.

These were also designed by the NSA.

• SHA-3: A hash function formerly called Keccak, chosen in 2012 after a
public competition among non-NSA designers. It supports the same hash
lengths as SHA -2and its internal structure differs significantly from the
rest of the SHA family.

CHAPTER 7

SCREENSHOTS

1. SERVER MANAGER

Figure.1. Server Manager

Server Manager is installed on every full GUI version of Windows Server
2012, and by default launches automatically on login. Server Manager is
organized in three major sections: The scope pane, the details pane, and the
file menu.

2. DOMAIN NAME SYSTEM MANAGER

Figure 2. DNS Manager

DNS Manager manages the DNS with the help of Forward Lookup Zone and
Reverse Lookup Zone. These are the two features of DNS Manager over
which it mainly work’s.

3. INTERNET INFORMATION SERVICES MANAGER

Figure 3. Internet Information Services Manager

Internet Information Services Manager is the part of windows server 2012, it
contains all the sites that are binded to its html, servlet, etc. pages. In this
Socket Secure Layer is added to the sites for increasing the security.

4. PORT SECURITY

Figure 4. Port Security

The port numbers in the range from 0 to 1023 are the well-known ports or
system ports. They are used by system processes to provide widely used types
of network services. The range of port numbers from 1024 to 49151 are the
registered ports. They are assigned by IANA for specific service upon
application by a requesting entity. The range 49152–65535 contains dynamic
or private ports that cannot be registered with IANA. This range is used for
private, or customized services, temporary purposes, and for automatic
allocation of ephemeral ports.

5. PROTECTION FROM SESSION HIJACKING

Figure 5. Protection from Session Hijacking

Session hijacking, sometimes also known as cookie hijacking is the
exploitation of a valid computer session sometimes also called a session key
to gain unauthorized access to information or services in a computer system.

6. PROTECTION FROM ZONE FILE TRANSFERRING

Figure 6. Protection from Zone file transferring

DNS zone transfer, also sometimes known by the inducing DNS query type
AXFR, is a type of DNS transaction. It is one of the many mechanisms
available for administrators to replicate DNS databases across a set of DNS
servers.

CHAPTER 8

RESULT AND ANALYSIS

1. RESULT OF PROJECT

• Typo Squatting: In typo squatting, also called URL hijacking, is a form
of cybersquatting which relies on mistakes such as typographical errors
made by Internet users when inputting a website address into a web
browser. Server will redirect to actual site.  

• Session Hijacking: In session hijacking or cookie hijacking is the
exploitation of a valid computer session to gain unauthorized access to
information or services in a computer system. Server will not allow to
transfer session.  

• DDoS / DoS attacks: In this when attacking using unlimited ping, the
server will avoid such pings by blocking that particular port.  

• Cache Poisoning attacks: This type of attack will be avoided by using
public and private keys.  

• Zone Transferring attacks: When attacker tries to transfer zones files
the server will not allow such activity due to security using RSA-256.  

• Port Security: If there is malicious activity from any port or due to any
program we can block it using firewall.  

• Secure Sockets Layer: In this we have establishing an encrypted link
between a web server and a browser. This link ensures that all data
passed between the web server and browsers remain private and
integral.

  

2. ANALYSIS OF PROJECT  

• Windows server 2012 instead of Windows Server 2008 since it is latest
and secure and it is new in market and not in practice everywhere.  

• Why RSA not DES: In order to improve the security we have used
RSA instead of Data Encryption Standard because DES is a symmetric
cryptographic algorithm, while RSA is an asymmetric (or public key)
cryptographic algorithm. Encryption and decryption is done with a
single key  

in DES, while you use separate keys (public and private keys) in RSA. DES
uses 56-bit keys for encryption while RSA uses 256-bits of key and it will
generating key of 2048 bit causing attacker to brute force 2^2048 trails.

Table 1. Analysis Between Encryption Algorithms

Encryp

tion

Techniq

ue

Name

Granulari
ty

Key Size Vulnerabi

lity to

Attacks

Uniquenes

s about

Technique

AES Block

Cipher

(128 bits)

128, 192,
256

bits

known

plain text,

side

channel

attacks

Substitu

t i o n

permutat

i o n

network.

10,

1 2

o r

1 4

r o u

nds

Table 2. Analysis between Win Server 2008 and Win Server 2012

Triple
DES

Block

Cipher

(64 bits)

112 or 168
bits

Theoretic

ally

possible,

known

plain text,

chosen

plain text

Festel

Network

Structure. 3

different

keys used

DES Block

Cipher

(64 bits)

56 bits Differenti

al and

Linear

crypt

analysis,

brute

force

attack

Festel

Network

Structure

.

RSA Public

key

(2048

bits)

256 bits Cache

poisoning,

Typo

Squatting

P u b l i c

a n d

P r i v a t e

k e y

cryptogra

phy,

Windows Server 2008 Windows Server 2012

It is less secure and low data transfer
rate

It is more secure and faster data transfer

rate

It has no NTFS automatic healing

from bad sectors

It has NTFS automatic healing from bad

sectors

No Internet Information Services

Manager

Internet Information Services
Manager

Improve security at network level by generating key of size 2048 bit so as to
make a very tough challenge for hacker if the hacker tries to attack the server
rather than using key of lesser size which makes attacker’s task easy to attack.

CHAPTER 9

CONCLUSION AND FUTURE SCOPE

Now after this whole study of DNS and the part which we have implemented
you may refer to your servers' private network interfaces by name, rather than
by IP address. This makes configuration of services and applications easier
because you no longer have to remember the private IP addresses, and the
files will be easier to read and understand. Also, now you can change your
configurations to point to new servers in a single place, your primary DNS
server, instead of having to edit a variety of distributed configuration files,
which eases maintenance.

Once you have your internal DNS set up, and your configuration files are
using private FQDNs to specify network connections, it is critical that your
DNS servers are properly maintained. If they both become unavailable, your
services and applications that rely on them will cease to function properly.
This is why it is recommended to set up your DNS with at least one
secondary server, and to maintain working backups of all of them.

We may use the concept of Active Directories and DHCP at distributed
networking through Domain Name System in order to improve its
functionality and working.

REFERENCES

[1] Naveen Kumar and Kamal Kumar Ranga, , June 2015, ―A Framework
for Using Cryptography for DNS Securityǁ, IJCSMC Vol. 4.

[2] Ibrahim S. Alfayoumi ,Tawgiq S. Barhoom, March 2015, ―Client-Side
Pharming Attacks Detection Using Authoritative DNSǁ Volume 113-No. 10.

[3] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin and
Nikita Somaiya, 2015, ―Connection-Oriented DNS to Improve Privacy and
Security‖, IEEE.

[4] Geetika, Naveen Kumari, August 2013, ―Detection & Prevention
Algorithms of DDoS Attack in MANETsǁ Volume 3.

