

ADMISSION NUMBER											

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

Sem IV - MSCM327 - Measure Theory

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain that empty set and whole set are measurable.								
2)	How would you identify outer measure of a set.								
3)	Give a counter example of measurable function that is not continuous also discuss the measurbility of the provided function.								
4)	Every set of positive measure contains a nonmeasurable set.								
5)	Prove that the measure of Cantor set is zero.	K3 (6)							
6)	Show that a real valued function with measurable domain is measurable if and only if inverse image of open set is measurable	K3 (9)							
7)	Prove that the if A is subest B and $\mu(A) < \infty$ then $\mu(B - A) = \mu(B) - \mu(A)$.	K4 (8)							
8)	If <i>f</i> is integrable on [a, b] and $\int_a^x f(t)dt = 0, \forall x \in [a, b]$, then $f(t) = 0$ for almost every $t \in [a, b]$.	K4 (12)							

OR

What criteria would you use to assess that when any property holds ^{K4 (12)} almost everywhere.