

ADMISSION NUMBER											

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - Mar 2024

Duration : 90 Minutes Max Marks : 50

Sem IV - MSCM425 - Finite Element Method

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Distinguish between essential boundary condition and natural boundary condition.	K2 (2)
2)	Give the comparison between finite element methods and finite difference methods.	K1 (3)
3)	Solve the following equations using Galerkin's method (Use at least a two-parameter solution) $\frac{dy}{dx} = 5(1 + \cos x) - 0.05y, \ 0 \le x \le 2\pi, \ y(0) = 20$	K2 (4)
4)	Using the Rayleigh Ritz method, find the solution of $\frac{d}{dx} \begin{bmatrix} \frac{du}{dx} \end{bmatrix}$ -u+x ² =0 for 0 <x<1 <math="" boundary="" conditions="" subject="" the="" to="" u(0)="1,">\frac{du}{dx}=0 at x=1.</x<1>	K2 (6)
5)	Consider the differential equation $\frac{d^2y}{dx^2} = -\cos \pi x$, $0 \le x \le 1$ Subject to the following two sets of boundary conditions: $u(0) = 0$, $\frac{du}{dx}\Big _{x=1} = 0$. $\frac{du}{dx}\Big _{x=0} = 0$, $\frac{du}{dx}\Big _{x=1} = 0$. Determine a solution, with trigonometric functions, using the Ritz method	K3 (6)
6)	Consider the differential equation $\frac{d^2y}{dx^2} = -\cos \pi x$, $0 \le x \le 1$ Subject to the following two sets of boundary conditions: $u(0) = 0$, $\frac{du}{dx}\Big _{x=1} = 0$. $\frac{du}{dx}\Big _{x=0} = 0$, $\frac{du}{dx}\Big _{x=1} = 0$. Determine a three- parameter solution, with trigonometric functions, 1 = 1 = -3	K3 (9)
	using the colocation at $x = \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$.	

7) Discuss the assembly for linear, quadratic and cubic element in 1D. K4 (8)

8) Construct the matrix taking two quadratic element for the boundary K4 (12) value problem

 $\frac{d^2y}{dt^2} + y = t^2 \text{for } 0 < t < 1 \text{ satisfying } y(0) = 1, y(1) = 0.$

OR

1. Discuss basic steps of finite element analysis.

K4 (12)

- 2. Discuss connectivity of elements with examples.
- 3. Develop the weak form and find the solution

$$\frac{d^2v}{dx^2} - q = 0$$

Subject to boundary condition

 $v(0)=0, \, \frac{dv}{dx}(1)=0.$