

NEURAL COLLABORATIVE FILTERING BASED

RECOMMENDATION SYSTEM

A Report for the Evaluation 3 of Project 2

Submitted by

ANUPAMA PANDEY

(1613101163/16SCSE101621)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Under the Supervision of

 MS. GARIMA PANDEY

APRIL/MAY-2020

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “NEURAL COLLABORATIVE FILTERING

BASED RECOMMENDATION SYSTEM” is the bonafide work of

“ANUPAMA PANDEY (1613101163)” who carried out the project work under

my supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

Dr. MUNISH SHABARWAL, Ms. Garima Pandey

PhD (Management), PhD (CS) Assistant Proffesor

Professor & Dean, School of Computing Science

School of Computing Science & and Engineering

Engineering

ABSTRACT

Recommender System is a commercial purpose system that decides what should

be recommended to the user . It is used in many fields. It helps to create

relationship between user, product and identifies the most appropriate product

for that user. In recent years, deep neural networks have yielded immense

success on speech recognition, computer vision and linguistic communication

processing. However, the recommender systems has gotten relatively less

scrunity from deep neural networks. DNN uses complex mathematical

modelling for finding the output of an input. During this work, we try to

develop techniques supported neural networks to tackle the key problem in

recommendation — collaborative filtering — on the basis of implicit feedback.

 By replacing the real product with a neural design which will take in a

subjective capacity from information, we present a general framework named

NCF, short for Neural network based Collaborative Filtering. NCF is

nonexclusive and will express and sum up matrix factorization under its

framework.

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1. Abstract iii

1. Introduction

1.1 General

1.2 Classification

1.3 Approach

1

1

2

7

3. Existing System 18

4. Proposed System 20

5. Implementation or architectural diagrams 26

6. Output/Result/Screenshot 34

7. Conclusion 35

8. References 36

1

INTRODUCTION

Recommender systems

Recommender systems aim to predict users’ interests and recommend product

items that quite likely are interesting for them. They are among the most

powerful machine learning systems that online retailers implement in order to

drive sales.

Data required for recommender systems stems from explicit user ratings after

watching a movie or listening to a song, from implicit search engine queries and

purchase histories, or from other knowledge about the users/items themselves.

Sites like Spotify, YouTube or Netflix use that data in order to suggest playlists,

so-called Daily mixes, or to make video recommendations, respectively.

Why do we need recommender systems?

Companies using recommender systems focus on increasing sales as a result of

very personalized offers and an enhanced customer experience.

Recommendations typically speed up searches and make it easier for users to

access content they’re interested in, and surprise them with offers they would

have never searched for.

https://support.spotify.com/us/using_spotify/features/daily-mix/
https://help.netflix.com/en/node/9898

2

What is more, companies are able to gain and retain customers by sending out

emails with links to new offers that meet the recipients’ interests, or suggestions

of films and TV shows that suit their profiles.

The user starts to feel known and understood and is more likely to buy

additional products or consume more content. By knowing what a user wants,

the company gains competitive advantage and the threat of losing a customer to

a competitor decreases.

Providing that added value to users by including recommendations in systems

and products is appealing. Furthermore, it allows companies to position ahead

of their competitors and eventually increase their earnings.

How does a recommender system work?

Recommender systems function with two kinds of information:

1. Characteristic information. This is information about items (keywords,

categories, etc.) and users (preferences, profiles, etc.).

2. User-item interactions. This is information such as ratings, number of

purchases, likes, etc.

Based on this, we can distinguish between three algorithms used in

recommender systems:

• Content-based systems, which use characteristic information.

• Collaborative filtering systems, which are based on user-item interactions.

3

• Hybrid systems, which combine both types of information with the aim of

avoiding problems that are generated when working with just one kind.

Content-based systems

These systems make recommendations using a user’s item and profile features.

They hypothesize that if a user was interested in an item in the past, they will

once again be interested in it in the future. Similar items are usually grouped

based on their features. User profiles are constructed using historical

interactions or by explicitly asking users about their interests. There are other

systems, not considered purely content-based, which utilize user personal and

social data.

One issue that arises is making obvious recommendations because of excessive

specialization (user A is only interested in categories B, C, and D, and the

4

system is not able to recommend items outside those categories, even though

they could be interesting to them).

Collaborative filtering systems

Collaborative filtering is currently one of the most frequently used approaches

and usually provides better results than content-based recommendations. Some

examples of this are found in the recommendation systems of Youtube, Netflix,

and Spotify.

These kinds of systems utilize user interactions to filter for items of interest. We

can visualize the set of interactions with a matrix, where each entry (i,

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45530.pdf
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://benanne.github.io/2014/08/05/spotify-cnns.html

5

j)(i,j) represents the interaction between user ii and item jj. An interesting way

of looking at collaborative filtering is to think of it as a generalization

of classification and regression. While in these cases we aim to predict a

variable that directly depends on other variables (features), in collaborative

filtering there is no such distinction of feature variables and class variables.

Visualizing the problem as a matrix, we don’t look to predict the values of a

unique column, but rather to predict the value of any given entry.

In short, collaborative filtering systems are based on the assumption that if a

user likes item A and another user likes the same item A as well as another

item, item B, the first user could also be interested in the second item. Hence,

they aim to predict new interactions based on historical ones. There are two

types of methods to achieve this goal: memory-based and model-based.

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis

6

Memory-based

There are two approaches: the first one identifies clusters of users and utilizes

the interactions of one specific user to predict the interactions of other similar

users. The second approach identifies clusters of items that have been rated by

user A and utilizes them to predict the interaction of user A with a different but

similar item B. These methods usually encounter major problems with

large sparse matrices, since the number of user-item interactions can be too low

for generating high quality clusters.

Model-based

These methods are based on machine learning and data mining techniques. The

goal is to train models to be able to make predictions. For example, we could

use existing user-item interactions to train a model to predict the top-5 items

that a user might like the most. One advantage of these methods is that they are

able to recommend a larger number of items to a larger number of users,

compared to other methods like memory-based. We say they have

large coverage, even when working with large sparse matrices.

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Sparse_matrix

7

Alternative approaches using engineering algorithms:

• Taste: Taste is a flexible, fast collaborative filtering engine for Java. It takes

the users' preferences for items and The engine takes users' preferences for

items ("tastes") and recommends other similar items (Sean, 2008).

8

1. Vogoo: Vogoo is a php based collaborative filtering and recommendation

library. It recommends items to users, which matches their tastes. It

calculates similarities between users and creates communities based on them.

The figure below shows the results of using vogoo to generate similar taste

sharing users and recommendations made my the most similar users (Droux,

2008).

• Fuzzy Logic: Here I tried to make use of fuzzy logic to calculate similar

users. We use a hybrid approach (Christakou, 2005) and accept inputs from

the users in three forms:

9

o Numeric rating between 0.0 – 1.0

o Three rating for context between 0.0 – 1.0

o Tags (free tagging)

In order to calculate similar users for the active user we first reduce the three

ratings for any movie to a single movie rating between zero and one, after

that we generate a user/movie matrix(Pereira, 2006) as shown in the

following fig

10

Once the (user/movie rating) matrix is generated we apply fuzzy Contex t Tag s

Kid's Movie Rating 0.3 17 logic to it and generate a user similarity matrix as

shown in the figure:

11

The above figure shows the user similarity matrix in which the ratings between

different users are listed. Now in order to calculate similar users we define to be

a partition set where, α>0 for example let α ={0.4,0.5,0.8,0.9,1.0}. Now for

every value of α we will get a similar user group satisfying the condition

example: (ab=0.8) > (α=0.4) so user 'a' and user 'b' are related(Klir, 1988). This

is shown in the figure below

Currently used approach

 User Request: - User makes a request for recommendation by clicking on the

recommendation menu. User is asked to provide contextual information.

Server: - The information provided by the user is send to the server. The server

is composed on 2 sub engines: user based collaborative filtering engine, and

context based engine. The server sends users request to both the sub engines.

User based collaborative filtering engine: - calculates similar 19 users based

on the numerical ratings of common items rated by the active users and other

users of the system. The system achieves this by making user of the Pearson’s

correlation.

 • Pearson’s Correlation: is a way to find out similar users. The correlation is a

way to represent data sets on graph. Pearson’s correlation is x-y axis graph

where we have a straight line known as the best fit as it comes as close to all the

12

items on the chart as possible. If two users rated the books identically then this

would result as a straight line (diagonal) and would pass through every books

rated by the users. The resultant score is this case is 1. The more the users

disagree from each other the lower their similarity score would be from 1.

Pearson’s Correlation helps correct grade inflation. Suppose a user ‘A’ tends to

give high scores than user ‘B’ but both tend to like the book they rated. The

correlation could still give perfect score if the differences between their scores

are consistent.

Algorithm: The algorithm first finds all the common books rated by user ‘A’

and user ‘B’. It then finds out the sums and sum of the squares of the ratings for

both the users. It then finds the sum of the products of their ratings. These

scores are then used to find out Pearson’s correlation.

Context Engine: - was initiated with an item based collaborative filtering

approach example: Amazon related books etc. The item based collaborative

filtering approach was build using Pearson’s correlation, but instead of

13

calculating similarity between users here we calculated similarity between

items. The results were good but it did not meet the goals set for the context-

based engine initially. The system did not give good results due to lack of

ratings, the system did not fill up the deficiencies of the CF based engine, the

system did not do justice to the word ‘related’ items, because of all these

reasons the below approach was followed. This engine makes use of contextual

information provided by the user, synonyms, meta data about the products to

find recommended items.

• The system first asks the user to provide context information example: author,

publisher, and ISBN, and tags. The system does not expect the user to provide

the complete 21 author, ISBN; publisher name example ‘oxf’ could be typed in

as part of publisher name. The system then asks the user to type any free

keywords. Once the user clicks the submit button. The information is first fed

into the query engine, which makes use of the context information to narrow

down the search results. The free keywords are fed to the Synonym Finder

engine, which makes use of screen scraping techniques to find different senses

of the entered keywords. This is done to find out the correct sense of the

keyword used. All the results of the query parser (books) and Synonym Finder

(senses) are then shown to the user. The user is then expected to see the results

and if he/she is not yet satisfied, they can click on the ‘refine’ button, as soon as

the refine button is clicked the results the Synonym Finder i.e. different senses

14

are fed to the query parser. Simultaneously a web service call is made to the

Amazon Web Services to capture the editorial reviews of the books shown to

the user earlier. Once this is done. The parser searches for these senses in the

editorial reviews, if a match is found then the results (books) are shown in that

category. The advantage of using this approach is that it helps to cover the

disadvantages of the User based collaborative filtering engine like lack of user

ratings, false ratings etc and deliver accurate predictions to the users.

Recommendation systems advise users on which items (movies, music, books

etc.) they are more likely to be interested in. A good recommendation system

may dramatically increase the number of sales of a firm or retain customers. For

instance, 80% of movies watched on Netflix come from the recommender

system of the company. Collaborative Filtering (CF) aims at recommending an

item to a user by predicting how a user would rate this item. To do so, the

feedback of one user on some items is combined with the feedback of all other

users on all items to predict a new rating. For instance, if someone rated a few

books, CF objective is to estimate the ratings he would have given to thousands

of other books by using the ratings of all the other readers.

Collaborative filtering (CF) is a successful approach commonly used by many

recommender systems. Conventional CF-based methods use the ratings given to

items by users as the sole source of information for learning to make

recommendation. However, the ratings are often very sparse in many

15

applications, causing CF-based methods to degrade significantly in their

recommendation performance.

Collaborative Filtering

Although some recent work has employed deep learning for recommendation,

they primarily used it to model auxiliary information, such as textual

descriptions of items and acoustic features of musics. When it comes to model

the key factor in collaborative filtering — the interaction between user and item

features, they still resorted to matrix factorization and applied an inner product

on the latent features of users and items.

By replacing the inner product with a neural architecture that can learn an

arbitrary function from data, we present a general framework named NCF, short

16

for Neural network based Collaborative Filtering. NCF is generic and can

express and generalize matrix factorization under its framework. To

supercharge NCF modelling with non-linearities, we propose to leverage a

multi-layer perceptron to learn the user–item interaction function. Extensive

experiments on two real-world datasets show significant improvements of our

proposed NCF framework over the state-of-the-art methods. Empirical evidence

shows that using deeper layers of neural networks offers better recommendation

performance.

 Popularized by the Netflix Prize, MF has become the de facto approach to

latent factor model-based recommendation. Much research effort has been

devoted to enhancing MF, such as integrating it with neighbor-based models,

17

combining it with topic models of item content, and extending it to factorization

machines for a generic modelling of features. Despite the effectiveness of MF

for collaborative filtering, it is well-known that its performance can be hindered

by the simple choice of the interaction function — inner product.

For example, for the task of rating prediction on explicit feedback, it is well

known that the performance of the MF model can be improved by incorporating

user and item bias terms into the interaction function1. While it seems to be just

a trivial tweak for the inner product operator, it points to the positive effect of

designing a better, dedicated interaction function for modelling the latent

feature interactions between users and items. The inner product, which simply

combines the multiplication of latent features linearly, may not be sufficient to

capture the complex structure of user interaction data.

Presenting a few “best” recommendations in a list requires a fine-level

representation to distinguish relative importance among candidates with high

recall. The ranking network accomplishes this task by assigning a score to each

video according to a desired objective function using a rich set of features

describing the video and user. The highest scoring videos are presented to the

user, ranked by their score.

18

EXISTING SYSTEM

1. Substructure for Researcher Consideration Analysis

In figure 1, a hypothetical substructure is presented to analyze researcher

consideration. Primarily, the data are collected from the researcher by using a

sample abstract of research paper in which researcher presented an opinion

about his experience with the research paper. Now the collected data are

disorganized and needed some refinement before it can be evaluated.

Refinement phase is a dominant challenge and enormous time is exhausted

during this phase. aforementioned textual refinement comprises purification

steps, such as eliminate redundant characters, supersede special characters with

spaces, eliminate stop words and word derive. From the purification data,

attribute chosen is made and separated into numerical/categorical and textual

attributes. The figure 1 a hypothetical substructure for researcher consideration,

analysis. Researcher consideration analyzed in this segment is anticidently used

in the next substructure to confer recommendations.

19

2. Substructure for Concept Clustering Based Approach

 In figure 2, a hypothetical substructure for Concept clustering based approach

is provided. For recommendations, another data set is gathered based on the

sample abstract of research paper collected in the above-mentioned steps. In text

mining, Concept dependant clustering intentions the sense of words/ phrase.

Concept mining particularizes the role of words in the sense of the sentence,

which indicates a copious adroit and sapient clustering. Concept probably a

phrase or a conglomeration of a word which provides an evincive contribution

to the text yet we can establish the variant concept in selfsame or other

document, which provides identical or almost identical meaning. A collection of

concept can be perceived as identical meaning, but varied word tokens. The

clustering will be constituted based meaning of collection of concept [48].

20

PROPOSED MODEL

We first formalize the issue and talk about existing solutions for collaborative

filtering with implicit feedback. We at that point shortly recapitulate the widely

used MF model, featuring its restriction caused by using an input.

1. Learning from Implicit Data

 Let M and N denote the amount of users and items, respectively. We define the

user–item interaction matrix Y ∈RM×N from users’ implicit feedback as,facf

21

Here a value of 1 for yui shows that there’s an communication between user u

and item i; be that as it may, it doesn’t mean u really likes i. So also, a value of

0 doesn’t really mean u doesn’t care for i, it is that the user doesn’t know about

the item. This postures challenges in learning from implicit data, since it gives

just noisy signals about users’ inclination. While observed entries least reflect

users’ interest on items, the imperceptible entries might be simply missing

information and there's a characteristic shortage of negative criticism

Fig 1: An example illustrates MFs limitation.

From data matrix (a), u4 is most similar to u1,

followed by u3, and lastly u2. However in the

latent space (b), placing p4 closest to p1 makes p4

closer to p2 than p3, incurring a large ranking loss.

22

2. Matrix Factorization

MF connects each user and item with a real-valued vector of latent features.

Let pu and qi denote the latent vector for user u and item i, separately; MF

appraises a collaboration yui as the inner product of pu and qi:

where K means the dimension of the latent space. As we can see, MF models

the two-way cooperation of user and item latent factors, assuming each

dimension of the latent space is free of one another of each other and linearly

combining them with the identical weight. As such, MF is deemed as a linear

model of latent factors.

Neural Collaborative Filtering

This work addresses the previously mentioned research issues by formalizing

a neural network demonstrating approach for collaborative filtering. We center

23

around implicit feedback, which indirectly reflects users’ inclination through

behaviors like watching videos,

purchasing items and clicking things. Compared to explicit feedback (i.e.,

ratings and reviews), implicit feedback can be followed automatically and is

thus lot simpler to collect for content suppliers. Nonetheless, it is more

challenging to use, since user satisfaction is not observed and there is a natural

scarcity of negative feedback. In this paper, we investigate the focal theme of

how to use DNNs to demonstrate noisy implicit feedback signals.

24

NeuMF

In order to introduce additional non-linearity, the final model proposed,

NeuMF, includes a Multiple-layer Perceptron (MLP) module apart from the

Generalized Marix Factorization (GMP) layer.

GMF that applies the linear kerne to model user-item interaction like vanilla MF

MLP that uses multiple neural ayers to layer non linear interactions

The performance comparison is shown in the figure below. In all cases, NeuMF

performs better than the other models. In addition, the paper demonstrates the

effectiveness of pre-training the individual modules for NeuMF. After training

25

GMF and MLP separately, they set the weight of the trained GMF and MLP as

the initialization of NeuMF.

Is Deep Learning Helpful?

(RQ3) As there is little work on learning user–item interaction function with

neural networks, it is curious to see whether using a deep network structure is

beneficial to the recommendation task. Towards this end, we further

investigated MLP with different number of hidden layers. The results are

summarized in Table 3 and 4. The MLP-3 indicates the MLP method with three

hidden layers (besides the embedding layer), and similar notations for others.

As we can see, even for models with the same capability, stacking more layers

are beneficial to performance. This result is highly encouraging, indicating the

effectiveness of using deep models for collaborative recommendation. We

attribute the improvement to the high non-linearities brought by stacking more

non-linear layers. To verify this, we further tried stacking linear layers, using an

identity function as the activation function. The performance is much worse

than using the ReLU unit. For MLP-0 that has no hidden layers (i.e., the

embedding layer is directly projected to predictions), the performance is very

weak and is not better than the non-personalized ItemPop. This verifies our

argument in Section 3.3 that simply concatenating user and item latent vectors

is insufficient for modelling their feature interactions, and thus the necessity of

transforming it with hidden layers.

26

IMPLEMENTATION

1. System Screenshots

1.1 Home Screen

This is how the home screen for the online recommendation system looks like.

To begin recommendation process the user first has to 23 enter the ‘userID’. We

can see this in the above figure were User ‘23446’ has just logged. The session

for this user has to remain active through out the recommendation process in

order for the system to make recommendations.

27

1.2 Book Search

The above figure shows the implementation of the auto search feature 24 as

described above, the figure displays 10 books with their average ratings

along side matching the keyword ‘ame’ entered by the active user. If the

match is not seen the more link can be clicked to see other matching results.

28

1.3 ‘More’ Keyword

The above figure shows the results of top books matching the keyword ‘ame’

when the more link is clicked.

29

1.4 Results Book Search

The above figure shows the details of the book like isbn, title, author,

year of publication, publisher, rating, tag, feedback, and description [not

visible in snapshot due to lack of space] etc. The user can rate the new

book or update his current ratings here.

1.5 Recommendation

30

The above figure shows the initial screen shown to the user where the

context information is gathered from the user. The active user chooses the

tag, selects the parent context category, enters keyword to be searched

under the parent context category and finally enters the free keywords,

which he/she might be of interested in.

The purpose of this php script is to screen scrap synonyms from a website and

use it for recommendations. The script captures the first keyword (synonym) in

each sense amongst the number of keywords in each sense.

31

32

33

Advantages of the System

1) The System would benefit those users who have to use search engines to

locate relevant content. They have to scroll through pages of results to find

relevant content.

 2)Rather than searching for quality web pages, the users of this system would

be directly taken to quality web pages matching their personal interests and

preferences.

 3)The system would deliver quality web pages as it is not just dependent on the

rating given by other users which could be deceiving at times.

34

RESULT

To demonstrate the utility of pre-training for NeuMF, we compared the

performance of two versions of NeuMF — with and without pre-training. For

NeuMF without pretraining, we used the Adam to learn it with random

initializations. As shown in Table, the NeuMF with pretraining achieves better

performance in most cases; only for MovieLens with a small predictive factors

of 8, the pretraining method performs slightly worse. The relative improvements

of the NeuMF with pre-training are 2.2% and 1.1% for MovieLens and

Pinterest, respectively. This result justifies the usefulness of our pre-training

method for initializing NeuMF.

35

CONCLUSION AND FUTURE WORK

 In this work, we explored neural network architectures for collaborative

filtering. We devised a general framework NCF and proposed three

instantiations — GMF, MLP and NeuMF — that model user–item interactions

in different ways. Our framework is simple and generic; it is not limited to the

models presented in this paper, but is designed to serve as a guideline for

developing deep learning methods for recommendation. This work

complements the mainstream shallow models for collaborative filtering,

opening up a new avenue of research possibilities for recommendation based on

deep learning. In future, we will study pairwise learners for NCF models and

extend NCF to model auxiliary information, such as user reviews, knowledge

bases, and temporal signals. While existing personalization models have

primarily focused on individuals, it is interesting to develop models for groups

of users, which help the decision-making for social groups. Moreover, we are

particularly interested in building recommender systems for multi-media items,

an interesting task but has received relatively less scrutiny in the

recommendation community. Multi-media items, such as images and videos,

contain much richer visual semantics that can reflect users’ interest. To build a

multi-media recommender system, we need to develop effective methods to

learn from multi-view and multi-modal data.

36

REFERENCES

1. I. Bayer, X. He, B. Kanagal, and S. Rendle. A generic coordinate descent

framework for learning from implicit feedback. In WWW, 2017.

2. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.

Translating embeddings for modeling multi-relational data. In NIPS,

pages 2787–2795, 2013.

3. T. Chen, X. He, and M.-Y. Kan. Context-aware image tweet modelling

and recommendation. In MM, pages 1018–1027, 2016.

4. S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders

meet collaborative filtering. In WWW, pages 111–112, 2015.

5. R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural

tensor networks for knowledge base completion. In NIPS, pages 926–

934, 2013.

