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ABSTRACT 

Recommender System is a commercial purpose system that decides what should 

be recommended to the user . It is used in many fields. It helps to create 

relationship between user, product and identifies the most appropriate product 

for that user. In recent years, deep neural networks have yielded immense 

success on speech recognition, computer vision and linguistic communication 

processing. However, the recommender systems has gotten relatively less 

scrunity from deep neural networks. DNN uses complex mathematical 

modelling for finding the output of an input. During this work, we try to 

develop techniques supported neural networks to tackle the key problem in 

recommendation — collaborative filtering — on the basis of implicit feedback. 

  By replacing the real product with a neural design which will take in a 

subjective capacity from information, we present a general framework named 

NCF, short for Neural network based Collaborative Filtering. NCF is 

nonexclusive and will express and sum up matrix factorization under its 

framework. 
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INTRODUCTION 

Recommender systems 

Recommender systems aim to predict users’ interests and recommend product 

items that quite likely are interesting for them. They are among the most 

powerful machine learning systems that online retailers implement in order to 

drive sales. 

Data required for recommender systems stems from explicit user ratings after 

watching a movie or listening to a song, from implicit search engine queries and 

purchase histories, or from other knowledge about the users/items themselves. 

Sites like Spotify, YouTube or Netflix use that data in order to suggest playlists, 

so-called Daily mixes, or to make video recommendations, respectively. 

Why do we need recommender systems? 

Companies using recommender systems focus on increasing sales as a result of 

very personalized offers and an enhanced customer experience. 

Recommendations typically speed up searches and make it easier for users to 

access content they’re interested in, and surprise them with offers they would 

have never searched for. 

https://support.spotify.com/us/using_spotify/features/daily-mix/
https://help.netflix.com/en/node/9898
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What is more, companies are able to gain and retain customers by sending out 

emails with links to new offers that meet the recipients’ interests, or suggestions 

of films and TV shows that suit their profiles. 

The user starts to feel known and understood and is more likely to buy 

additional products or consume more content. By knowing what a user wants, 

the company gains competitive advantage and the threat of losing a customer to 

a competitor decreases. 

Providing that added value to users by including recommendations in systems 

and products is appealing. Furthermore, it allows companies to position ahead 

of their competitors and eventually increase their earnings. 

How does a recommender system work? 

Recommender systems function with two kinds of information: 

1. Characteristic information. This is information about items (keywords, 

categories, etc.) and users (preferences, profiles, etc.). 

2. User-item interactions. This is information such as ratings, number of 

purchases, likes, etc. 

Based on this, we can distinguish between three algorithms used in 

recommender systems: 

• Content-based systems, which use characteristic information. 

• Collaborative filtering systems, which are based on user-item interactions. 
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• Hybrid systems, which combine both types of information with the aim of 

avoiding problems that are generated when working with just one kind. 

 

Content-based systems 

These systems make recommendations using a user’s item and profile features. 

They hypothesize that if a user was interested in an item in the past, they will 

once again be interested in it in the future. Similar items are usually grouped 

based on their features. User profiles are constructed using historical 

interactions or by explicitly asking users about their interests. There are other 

systems, not considered purely content-based, which utilize user personal and 

social data. 

One issue that arises is making obvious recommendations because of excessive 

specialization (user A is only interested in categories B, C, and D, and the 
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system is not able to recommend items outside those categories, even though 

they could be interesting to them). 

 

Collaborative filtering systems 

Collaborative filtering is currently one of the most frequently used approaches 

and usually provides better results than content-based recommendations. Some 

examples of this are found in the recommendation systems of Youtube, Netflix, 

and Spotify. 

 

 

These kinds of systems utilize user interactions to filter for items of interest. We 

can visualize the set of interactions with a matrix, where each entry (i, 

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45530.pdf
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://benanne.github.io/2014/08/05/spotify-cnns.html
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j)(i,j) represents the interaction between user ii and item jj. An interesting way 

of looking at collaborative filtering is to think of it as a generalization 

of classification and regression. While in these cases we aim to predict a 

variable that directly depends on other variables (features), in collaborative 

filtering there is no such distinction of feature variables and class variables. 

Visualizing the problem as a matrix, we don’t look to predict the values of a 

unique column, but rather to predict the value of any given entry. 

 

In short, collaborative filtering systems are based on the assumption that if a 

user likes item A and another user likes the same item A as well as another 

item, item B, the first user could also be interested in the second item. Hence, 

they aim to predict new interactions based on historical ones. There are two 

types of methods to achieve this goal: memory-based and model-based. 

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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Memory-based 

There are two approaches: the first one identifies clusters of users and utilizes 

the interactions of one specific user to predict the interactions of other similar 

users. The second approach identifies clusters of items that have been rated by 

user A and utilizes them to predict the interaction of user A with a different but 

similar item B. These methods usually encounter major problems with 

large sparse matrices, since the number of user-item interactions can be too low 

for generating high quality clusters. 

Model-based 

These methods are based on machine learning and data mining techniques. The 

goal is to train models to be able to make predictions. For example, we could 

use existing user-item interactions to train a model to predict the top-5 items 

that a user might like the most. One advantage of these methods is that they are 

able to recommend a larger number of items to a larger number of users, 

compared to other methods like memory-based. We say they have 

large coverage, even when working with large sparse matrices. 

 

 

 

 

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Sparse_matrix
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Alternative approaches using engineering algorithms:  

• Taste: Taste is a flexible, fast collaborative filtering engine for Java. It takes 

the users' preferences for items and The engine takes users' preferences for 

items ("tastes") and recommends other similar items (Sean, 2008). 
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1. Vogoo: Vogoo is a php based collaborative filtering and recommendation 

library. It recommends items to users, which matches their tastes. It 

calculates similarities between users and creates communities based on them. 

The figure below shows the results of using vogoo to generate similar taste 

sharing users and recommendations made my the most similar users (Droux, 

2008). 

 

• Fuzzy Logic: Here I tried to make use of fuzzy logic to calculate similar 

users. We use a hybrid approach (Christakou, 2005) and accept inputs from 

the users in three forms: 
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o Numeric rating between 0.0 – 1.0  

o Three rating for context between 0.0 – 1.0  

o Tags (free tagging) 

 

 

 

In order to calculate similar users for the active user we first reduce the three 

ratings for any movie to a single movie rating between zero and one, after 

that we generate a user/movie matrix(Pereira, 2006) as shown in the 

following fig 
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Once the (user/movie rating) matrix is generated we apply fuzzy Contex t Tag s 

Kid's Movie Rating 0.3 17 logic to it and generate a user similarity matrix as 

shown in the figure: 
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The above figure shows the user similarity matrix in which the ratings between 

different users are listed. Now in order to calculate similar users we define to be 

a partition set where, α>0 for example let α ={0.4,0.5,0.8,0.9,1.0}. Now for 

every value of α we will get a similar user group satisfying the condition 

example: (ab=0.8) > (α=0.4) so user 'a' and user 'b' are related(Klir, 1988). This 

is shown in the figure below 

 

Currently used approach 

 User Request: - User makes a request for recommendation by clicking on the 

recommendation menu. User is asked to provide contextual information.  

Server: - The information provided by the user is send to the server. The server 

is composed on 2 sub engines: user based collaborative filtering engine, and 

context based engine. The server sends users request to both the sub engines.  

User based collaborative filtering engine: - calculates similar 19 users based 

on the numerical ratings of common items rated by the active users and other 

users of the system. The system achieves this by making user of the Pearson’s 

correlation. 

 • Pearson’s Correlation: is a way to find out similar users. The correlation is a 

way to represent data sets on graph. Pearson’s correlation is x-y axis graph 

where we have a straight line known as the best fit as it comes as close to all the 
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items on the chart as possible. If two users rated the books identically then this 

would result as a straight line (diagonal) and would pass through every books 

rated by the users. The resultant score is this case is 1. The more the users 

disagree from each other the lower their similarity score would be from 1. 

Pearson’s Correlation helps correct grade inflation. Suppose a user ‘A’ tends to 

give high scores than user ‘B’ but both tend to like the book they rated. The 

correlation could still give perfect score if the differences between their scores 

are consistent.  

Algorithm: The algorithm first finds all the common books rated by user ‘A’ 

and user ‘B’. It then finds out the sums and sum of the squares of the ratings for 

both the users. It then finds the sum of the products of their ratings. These 

scores are then used to find out Pearson’s correlation.  

 

Context Engine: - was initiated with an item based collaborative filtering 

approach example: Amazon related books etc. The item based collaborative 

filtering approach was build using Pearson’s correlation, but instead of 



13 
 

calculating similarity between users here we calculated similarity between 

items. The results were good but it did not meet the goals set for the context-

based engine initially. The system did not give good results due to lack of 

ratings, the system did not fill up the deficiencies of the CF based engine, the 

system did not do justice to the word ‘related’ items, because of all these 

reasons the below approach was followed. This engine makes use of contextual 

information provided by the user, synonyms, meta data about the products to 

find recommended items.  

• The system first asks the user to provide context information example: author, 

publisher, and ISBN, and tags. The system does not expect the user to provide 

the complete 21 author, ISBN; publisher name example ‘oxf’ could be typed in 

as part of publisher name. The system then asks the user to type any free 

keywords. Once the user clicks the submit button. The information is first fed 

into the query engine, which makes use of the context information to narrow 

down the search results. The free keywords are fed to the Synonym Finder 

engine, which makes use of screen scraping techniques to find different senses 

of the entered keywords. This is done to find out the correct sense of the 

keyword used. All the results of the query parser (books) and Synonym Finder 

(senses) are then shown to the user. The user is then expected to see the results 

and if he/she is not yet satisfied, they can click on the ‘refine’ button, as soon as 

the refine button is clicked the results the Synonym Finder i.e. different senses 
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are fed to the query parser. Simultaneously a web service call is made to the 

Amazon Web Services to capture the editorial reviews of the books shown to 

the user earlier. Once this is done. The parser searches for these senses in the 

editorial reviews, if a match is found then the results (books) are shown in that 

category. The advantage of using this approach is that it helps to cover the 

disadvantages of the User based collaborative filtering engine like lack of user 

ratings, false ratings etc and deliver accurate predictions to the users. 

Recommendation systems advise users on which items (movies, music, books 

etc.) they are more likely to be interested in. A good recommendation system 

may dramatically increase the number of sales of a firm or retain customers. For 

instance, 80% of movies watched on Netflix come from the recommender 

system of the company. Collaborative Filtering (CF) aims at recommending an 

item to a user by predicting how a user would rate this item. To do so, the 

feedback of one user on some items is combined with the feedback of all other 

users on all items to predict a new rating. For instance, if someone rated a few 

books, CF objective is to estimate the ratings he would have given to thousands 

of other books by using the ratings of all the other readers. 

Collaborative filtering (CF) is a successful approach commonly used by many 

recommender systems. Conventional CF-based methods use the ratings given to 

items by users as the sole source of information for learning to make 

recommendation. However, the ratings are often very sparse in many 
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applications, causing CF-based methods to degrade significantly in their 

recommendation performance. 

 

Collaborative Filtering 

 

Although some recent work has employed deep learning for recommendation, 

they primarily used it to model auxiliary information, such as textual 

descriptions of items and acoustic features of musics. When it comes to model 

the key factor in collaborative filtering — the interaction between user and item 

features, they still resorted to matrix factorization and applied an inner product 

on the latent features of users and items. 

By replacing the inner product with a neural architecture that can learn an 

arbitrary function from data, we present a general framework named NCF, short 
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for Neural network based Collaborative Filtering. NCF is generic and can 

express and generalize matrix factorization under its framework. To 

supercharge NCF modelling with non-linearities, we propose to leverage a 

multi-layer perceptron to learn the user–item interaction function. Extensive 

experiments on two real-world datasets show significant improvements of our 

proposed NCF framework over the state-of-the-art methods. Empirical evidence 

shows that using deeper layers of neural networks offers better recommendation 

performance. 

 

 

 

 Popularized by the Netflix Prize, MF has become the de facto approach to 

latent factor model-based recommendation. Much research effort has been 

devoted to enhancing MF, such as integrating it with neighbor-based models, 
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combining it with topic models of item content, and extending it to factorization 

machines for a generic modelling of features. Despite the effectiveness of MF 

for collaborative filtering, it is well-known that its performance can be hindered 

by the simple choice of the interaction function — inner product.  

For example, for the task of rating prediction on explicit feedback, it is well 

known that the performance of the MF model can be improved by incorporating 

user and item bias terms into the interaction function1. While it seems to be just 

a trivial tweak for the inner product operator, it points to the positive effect of 

designing a better, dedicated interaction function for modelling the latent 

feature interactions between users and items. The inner product, which simply 

combines the multiplication of latent features linearly, may not be sufficient to 

capture the complex structure of user interaction data. 

Presenting a few “best” recommendations in a list requires a fine-level 

representation to distinguish relative importance among candidates with high 

recall. The ranking network accomplishes this task by assigning a score to each 

video according to a desired objective function using a rich set of features 

describing the video and user. The highest scoring videos are presented to the 

user, ranked by their score. 
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EXISTING SYSTEM 

1. Substructure for Researcher Consideration Analysis   

In figure 1, a hypothetical substructure is presented to analyze researcher 

consideration. Primarily, the data are collected from the researcher by using a 

sample abstract of research paper in which researcher presented an opinion 

about his experience with the research paper. Now  the collected data are 

disorganized and needed some refinement before it can be evaluated.  

 

Refinement phase is a dominant challenge and  enormous time is exhausted 

during this phase. aforementioned textual refinement comprises purification 

steps, such as eliminate redundant characters, supersede special characters with 

spaces, eliminate stop words and word derive. From the purification data, 

attribute chosen is made and separated into numerical/categorical and textual 

attributes. The figure 1 a hypothetical substructure for researcher consideration, 

analysis. Researcher consideration analyzed in this segment is anticidently used 

in the next substructure to confer recommendations.  
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2. Substructure for Concept Clustering Based Approach 

  In figure 2, a hypothetical substructure for Concept clustering based approach 

is provided. For recommendations, another data set is gathered based on the 

sample abstract of research paper collected in the above-mentioned steps. In text 

mining, Concept dependant clustering intentions the sense of words/ phrase. 

Concept mining particularizes the role of words in the sense of the sentence, 

which indicates a copious adroit and sapient clustering. Concept probably a 

phrase or a conglomeration of a word which provides an evincive contribution 

to the text yet we can establish the variant concept in selfsame or other 

document, which provides identical or almost identical meaning. A collection of 

concept can be perceived as identical meaning, but varied word tokens. The 

clustering will be constituted based meaning of collection of concept [48].  
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PROPOSED MODEL 

We first formalize the issue and talk about existing solutions for collaborative 

filtering with implicit feedback. We at that point shortly recapitulate the widely 

used MF model, featuring its restriction caused by using an input. 

 

1. Learning from Implicit Data 

 

 Let M and N denote the amount of users and items, respectively. We define the 

user–item interaction matrix Y ∈RM×N from users’ implicit feedback as,facf 
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Here a value of 1 for yui shows that there’s an communication between user u 

and item i; be that as it may, it doesn’t mean u really likes i. So also, a value of 

0 doesn’t really mean u doesn’t care for i, it is that the user doesn’t know about 

the item. This postures challenges in learning from implicit data, since it gives 

just noisy signals about users’ inclination. While observed entries least reflect 

users’ interest on items, the imperceptible entries might be simply missing 

information and there's a characteristic shortage of negative criticism 

 

 

Fig 1: An example illustrates MFs limitation. 

From data matrix (a), u4 is most similar to u1, 

followed by u3, and lastly u2. However in the 

latent space (b), placing p4 closest to p1 makes p4 

closer to p2 than p3, incurring a large ranking loss. 
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2. Matrix Factorization  

MF connects each user and item with a real-valued vector of latent features. 

Let pu and qi denote the latent vector for user u and item i, separately; MF 

appraises a collaboration yui as the inner product of pu and qi: 

 

 

 

 

where K means the dimension of the latent space. As we can see, MF models 

the two-way cooperation of user and item latent factors, assuming each 

dimension of the latent space is free of one another of each other and linearly 

combining them with the identical weight. As such, MF is deemed as a linear 

model of latent factors. 

Neural Collaborative Filtering 

This work addresses the previously mentioned research issues by formalizing 

a neural network demonstrating approach for collaborative filtering. We center 
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around implicit feedback, which indirectly reflects users’ inclination through 

behaviors like watching videos,  

 

 

purchasing items and clicking things. Compared to explicit feedback (i.e., 

ratings and reviews), implicit feedback can be followed automatically and is 

thus lot simpler to collect for content suppliers. Nonetheless, it is more 

challenging to use, since user satisfaction is not observed and there is a natural 

scarcity of negative feedback. In this paper, we investigate the focal theme of 

how to use DNNs to demonstrate noisy implicit feedback signals.  
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NeuMF 

In order to introduce additional non-linearity, the final model proposed, 

NeuMF, includes a Multiple-layer Perceptron (MLP) module apart from the 

Generalized Marix Factorization (GMP) layer. 

GMF that applies the linear kerne to model user-item interaction like vanilla MF 

MLP that uses multiple neural ayers to layer non linear interactions 

 

The performance comparison is shown in the figure below. In all cases, NeuMF 

performs better than the other models. In addition, the paper demonstrates the 

effectiveness of pre-training the individual modules for NeuMF. After training 
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GMF and MLP separately, they set the weight of the trained GMF and MLP as 

the initialization of NeuMF. 

Is Deep Learning Helpful?  

(RQ3) As there is little work on learning user–item interaction function with 

neural networks, it is curious to see whether using a deep network structure is 

beneficial to the recommendation task. Towards this end, we further 

investigated MLP with different number of hidden layers. The results are 

summarized in Table 3 and 4. The MLP-3 indicates the MLP method with three 

hidden layers (besides the embedding layer), and similar notations for others. 

As we can see, even for models with the same capability, stacking more layers 

are beneficial to performance. This result is highly encouraging, indicating the 

effectiveness of using deep models for collaborative recommendation. We 

attribute the improvement to the high non-linearities brought by stacking more 

non-linear layers. To verify this, we further tried stacking linear layers, using an 

identity function as the activation function. The performance is much worse 

than using the ReLU unit. For MLP-0 that has no hidden layers (i.e., the 

embedding layer is directly projected to predictions), the performance is very 

weak and is not better than the non-personalized ItemPop. This verifies our 

argument in Section 3.3 that simply concatenating user and item latent vectors 

is insufficient for modelling their feature interactions, and thus the necessity of 

transforming it with hidden layers. 
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IMPLEMENTATION 

1. System Screenshots 

1.1 Home Screen 

 

This is how the home screen for the online recommendation system looks like. 

To begin recommendation process the user first has to 23 enter the ‘userID’. We 

can see this in the above figure were User ‘23446’ has just logged. The session 

for this user has to remain active through out the recommendation process in 

order for the system to make recommendations. 
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1.2  Book Search 

  

The above figure shows the implementation of the auto search feature 24 as 

described above, the figure displays 10 books with their average ratings 

along side matching the keyword ‘ame’ entered by the active user. If the 

match is not seen the more link can be clicked to see other matching results. 
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1.3 ‘More’ Keyword 

 

The above figure shows the results of top books matching the keyword ‘ame’ 

when the more link is clicked. 
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1.4  Results Book Search 

The above figure shows the details of the book like isbn, title, author, 

year of publication, publisher, rating, tag, feedback, and description [not 

visible in snapshot due to lack of space] etc. The user can rate the new 

book or update his current ratings here. 

1.5  Recommendation 
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The above figure shows the initial screen shown to the user where the 

context information is gathered from the user. The active user chooses the 

tag, selects the parent context category, enters keyword to be searched 

under the parent context category and finally enters the free keywords, 

which he/she might be of interested in. 

 

The purpose of this php script is to screen scrap synonyms from a website and 

use it for recommendations. The script captures the first keyword (synonym) in 

each sense amongst the number of keywords in each sense. 
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Advantages of the System  

1) The System would benefit those users who have to use search engines to 

locate relevant content. They have to scroll through pages of results to find 

relevant content. 

 2)Rather than searching for quality web pages, the users of this system would 

be directly taken to quality web pages matching their personal interests and 

preferences. 

 3)The system would deliver quality web pages as it is not just dependent on the 

rating given by other users which could be deceiving at times. 
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RESULT 

To demonstrate the utility of pre-training for NeuMF, we compared the 

performance of two versions of NeuMF — with and without pre-training. For 

NeuMF without pretraining, we used the Adam to learn it with random 

initializations. As shown in Table, the NeuMF with pretraining achieves better 

performance in most cases; only for MovieLens with a small predictive factors 

of 8, the pretraining method performs slightly worse. The relative improvements 

of the NeuMF with pre-training are 2.2% and 1.1% for MovieLens and 

Pinterest, respectively. This result justifies the usefulness of our pre-training 

method for initializing NeuMF. 
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CONCLUSION AND FUTURE WORK 

 In this work, we explored neural network architectures for collaborative 

filtering. We devised a general framework NCF and proposed three 

instantiations — GMF, MLP and NeuMF — that model user–item interactions 

in different ways. Our framework is simple and generic; it is not limited to the 

models presented in this paper, but is designed to serve as a guideline for 

developing deep learning methods for recommendation. This work 

complements the mainstream shallow models for collaborative filtering, 

opening up a new avenue of research possibilities for recommendation based on 

deep learning. In future, we will study pairwise learners for NCF models and 

extend NCF to model auxiliary information, such as user reviews, knowledge 

bases, and temporal signals. While existing personalization models have 

primarily focused on individuals, it is interesting to develop models for groups 

of users, which help the decision-making for social groups. Moreover, we are 

particularly interested in building recommender systems for multi-media items, 

an interesting task but has received relatively less scrutiny in the 

recommendation community. Multi-media items, such as images and videos, 

contain much richer visual semantics that can reflect users’ interest. To build a 

multi-media recommender system, we need to develop effective methods to 

learn from multi-view and multi-modal data.  
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