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ABSTRACT 

 

The mapping or binding of IP addresses to host names became a major problem in the rapidly 

growing Internet and the higher level binding effort went through different stages of development 

up to the currently used Domain Name System (DNS). 

 The DNS Security is designed to provide security by combining the concept of both the 

Digital Signature and Asymmetric key (Public key) Cryptography. Here the Public key is send 

instead of Private key. The DNS security uses Message Digest Algorithm to compress the 

Message(text file) and PRNG(Pseudo Random Number Generator) Algorithm for generating 

Public and Private key. The message combines with the Private key to form a Signature using DSA 

Algorithm, which is send along with the Public key. 

 The receiver uses the Public key and DSA Algorithm to form a Signature. If 

 this Signature matches with the Signature of the message received, the message is 

 Decrypted and read else discarded. 
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CHAPTER 1 

 Introduction  

 

1.1 SCOPE OF THE PROJECT 



 

     The Domain Name System(DNS) has become a critical operational part of the Internet 

Infrastructure, yet it has no strong security mechanisms to assure Data Integrity or Authentication. 

Extensions to the DNS are described that provide these services to security aware resolves are 

applications through the use of Cryptographic Digital Signatures. These Digital Signatures are 

included zones as resource records. 

 

 The extensions also provide for the storage of Authenticated Public keys in the DNS. This 

storage of keys can support general Public key distribution services as well as DNS security. These 

stored keys enables security aware resolvers to learn the authenticating key of zones, in addition 

to those for which they are initially configured. Keys associated with DNS names can be retrieved 

to support other protocols. In addition, the security extensions provide for the Authentication of 

DNS protocol transactions. 

 

   The DNS Security is designed to provide security by combining the concept of both the 

Digital Signature and Asymmetric key (Public key) Cryptography. Here the Public key is send 

instead of Private key. The DNS security uses Message Digest Algorithm to compress the 

Message(text file) and PRNG(Pseudo Random Number Generator) Algorithm for generating 

Public and Private key. The message combines with the Private key to form a Signature using DSA 

Algorithm, which is send along with the Public key. 

 

 The receiver uses the Public key and DSA Algorithm to form a Signature. If this Signature 

matches with the Signature of the message received, the message is Decrypted and read else 

discarded. 

 

 

1.2  PROBLEM STATEMENT  

 Authenticity is based on the identity of some entity. This entity has to prove that it is 

genuine. In many Network applications the identity of participating entities is simply determined 

by their names or addresses. High level applications use mainly names for authentication 

purposes, because address lists are much harder to create, understand, and maintain than name 

lists. 

 Assuming an entity wants to spoof the identity of some other entity, it is enough to change 

the mapping between its low level address and its high level name. It means that an attacker can 

fake the name of someone by modifying the association of his address from his own name to the 

name he wants to impersonate. Once an attacker has done that, an authenticator can no longer 

distinguish between the true and fake entity. 

 

CHAPTER 2 

Overview of the DNS 

 To connect to a system that supports IP, the host initiating the connection must know in 

advance the IP address of the remote system. An IP address is a 32-bit number that represents the 



 

location of the system on a network. The 32-bit address is separated into four octets and each octet 

is typically represented by a decimal number. The four decimal numbers are separated from each 

other by a dot character ("."). Even though four decimal numbers may be easier to remember than 

thirty-two 1’s and 0’s, as with phone numbers, there is a practical limit as to how many IP addresses 

a person can remember without the need for some sort of directory assistance. The directory 

essentially assigns host names to IP addresses. 

 The Stanford Research Institute’s Network Information Center (SRI-NIC) became the 

responsible authority for maintaining unique host names for the Internet. The SRI-NIC maintained 

a single file, called hosts.txt, and sites would continuously update SRI-NIC with their host name 

to IP address mappings to add to, delete from, or change in the file. The problem was that as the 

Internet grew rapidly, so did the file causing it to become increasingly difficult to manage. 

Moreover, the host names needed to be unique throughout the worldwide Internet. With the 

growing size of the Internet it became more and more impractical to guarantee the uniqueness of 

a host name. The need for such things as a hierarchical naming structure and distributed 

management of host names paved the way for the creation of a new networking protocol that was 

flexible enough for use on a global scale [ALIU]. 

 What evolved from this is an Internet distributed database that maps the names of computer 

systems to their respective numerical IP network address(es). This Internet lookup facility is the 

DNS. Important to the concept of the distributed database is delegation of authority. No longer is 

one single organization responsible for host name to IP address mappings, but rather those sites 

that are responsible for maintaining host names for their organization(s) can now regain that 

control.  

 

2.1.  Fundamentals of DNS  

 The DNS not only supports host name to network address resolution, known as forward 

resolution, but it also supports network address to host name resolution, known as inverse 

resolution. Due to its ability to map human memorable system names into computer network 

numerical addresses, its distributed nature, and its robustness, the DNS has evolved into a critical 

component of the Internet. Without it, the only way to reach other computers on the Internet is to 

use the numerical network address. Using IP addresses to connect to remote computer systems is 

not a very user-friendly representation of a system’s location on the Internet and thus the DNS is 

heavily relied upon to retrieve an IP address by just referencing a computer system's Fully 

Qualified Domain Name (FQDN). A FQDN is basically a DNS host name and it represents where 

to resolve this host name within the DNS hierarchy. 

2.1.1.  The Domain Name Space 

As a tree is traversed in an ascending manner (i.e., from the leaf nodes to the root), the nodes 

become increasingly less specific (i.e., the leftmost label is most specific and the right most label 

is least specific). Typically in an FQDN, the left most label is the host name, while the next label 



 

to the right is the local domain to which the host belongs. The local domain can be a subdomain 

of another domain. The name of the parent domain is then the next label to the right of the 

subdomain (i.e., local domain) name label, and so on, till the root of the tree is reached. 

 

 

Figure 2.1  Domain Name Space example 

  

 The DNS is a hierarchical tree structure whose root node is known as the root domain. A 

label in a DNS name directly corresponds with a node in the DNS tree structure. A label is an 

alphanumeric string that uniquely identifies that node from its brothers. Labels are connected 

together with a dot notation, ".", and a DNS name containing multiple labels represents its path 

along the tree to the root. Labels are written from left to right. Only one zero length label is allowed 

and is reserved for the root of the tree. This is commonly referred to as the root zone. Due to the 

root label being zero length, all FQDNs end in a dot [RFC 1034]. 

  When the DNS is used to map an IP address back into a host name (i.e., inverse resolution), 

the DNS makes use of the same notion of labels from left to right (i.e., most specific to least 

specific) when writing the IP address. This is in contrast to the typical representation of an IP 

address whose dotted decimal notation from left to right is least specific to most specific.  



 

 

Figure 2.2.  Example of inverse domains and the Domain Name Space 

 To handle this, IP addresses in the DNS are typically represented in reverse order. IP 

addresses fall under a special DNS top level domain (TLD), known as the in-addr.arpa domain. 

By doing this, using IP addresses to find DNS host names are handled just like DNS host name 

lookups to find IP addresses. 

 

 2.1.2.  DNS Components 

 The DNS has three major components, the database, the server, and the client [RFC 1034]. 

The database is a distributed database and is comprised of the Domain Name Space, which is 

essentially the DNS tree, and the Resource Records (RRs) that define the domain names within 

the Domain Name Space. The server is commonly referred to as a name server. Name servers are 

typically responsible for managing some portion of the Domain Name Space and for assisting 

clients in finding information within the DNS tree. Name servers are authoritative for the domains 

in which they are responsible. They can also serve as a delegation point to identify other name 

servers that have authority over subdomains within a given domain.  

 The RR data found on the name server that makes up a domain is commonly referred to as 

zone information. Thus, name servers have zones of authority. A single zone can either be a 

forward zone (i.e., zone information that pertains to a given domain) or an inverse zone (i.e., zone 

information that maps IP addresses into DNS host names). DNS allows more than one name server 

per zone, but only one name server can be the primary server for the zone. Primary servers are 

where the actual changes to the data for a zone take place. All the other name servers for a zone 

basically maintain copies of the primary server’s database for the zone. These servers are 

commonly referred to as secondary servers. 

 A DNS RR has 6 fields: NAME, TYPE, CLASS, TTL, RD Length, and RDATA. The 

NAME field holds the DNS name, also referred to as the owner name, to which the RR belongs. 



 

The TYPE field is the TYPE of RR. This field is necessary because it is not uncommon for a DNS 

name to have more than one type of RR.  

 RECORD 

TYPE 

DESCRIPTION USAGE 

A An address record Maps FQDN into an IP address 

PTR A pointer record Maps an IP address into FQDN 

NS A name server 

record 

Denotes a name server for a zone 

SOA A Start of Authority 

record 

Specifies many attributes concerning the zone, such as the 

name of the domain (forward or inverse), administrative 

contact, the serial number of the zone, refresh interval, retry 

interval, etc. 

CNAME A canonical name 

record 

Defines an alias name and maps it to the absolute (canonical) 

name 

MX A Mail Exchanger 

record 

Used to redirect email for a given domain or host to another 

host 

Table 1. Common DNS Resource Records 

 The CLASS in this case is "IN" which stands for Internet. Other classes exist but are 

omitted for brevity. The TTL is the time, in seconds, that a name server can cache a RR. A zero 

time to live means that a server is not to cache the RR. RD Length is the RDATA field’s length in 

octets. The RDATA field is the resource data field and is uniquely defined for each TYPE of RR, 

but in general it can be thought of as the value into which the entity specified in the NAME field 

maps. The NAME field can be thought of as the subject of a query, although this is not always the 

case, and the answer is the data contained in the RDATA field (even though the entire RR is 

returned in a DNS response) [RFC 1035]. 

 RRs are grouped into resources records sets (RRSets). RRSets contain 0 or more RRs [RFC 

2136] that have the same DNS name, class, and type, but the data (i.e., RDATA) is different. If 

the name, class, type, and data are the same for two or more records then duplicate records exist 

for the same DNS name. Name servers should suppress duplicate records [RFC 2181].  

 The client component of the DNS typically contains software routines, known as functions, 

which are responsible for requesting information from the Domain Name Space on behalf of an 

application. These functions are bundled together into a software library that is commonly referred 

to as the resolver library. For this reason, clients are often called resolvers. The resolver library 

functions are responsible for sending a query to a name server requesting information concerning 

a DNS name and returning the answer to the query back to the requestor.  

  

2.1.3.  DNS Transactions 



 

  DNS transactions occur continuously across the Internet. The two most common 

transactions are DNS zone transfers and DNS queries/responses. A DNS zone transfer occurs when 

the secondary server updates its copy of a zone for which it is authoritative. The secondary server 

makes use of information it has on the zone, namely the serial number, and checks to see if the 

primary server has a more recent version. If it does, the secondary server retrieves a new copy of 

the zone.  

 A DNS query is answered by a DNS response. Resolvers use a finite list of name servers, 

usually not more than three, to determine where to send queries. If the first name server in the list 

is available to answer the query, than the others in the list are never consulted. If it is unavailable, 

each name server in the list is consulted until one is found that can return an answer to the query. 

The name server that receives a query from a client can act on behalf of the client to resolve the 

query. Then the name server can query other name servers one at a time, with each server consulted 

being presumably closer to the answer. The name server that has the answer sends a response back 

to the original name server, which then can cache the response and send the answer back to the 

client. Once an answer is cached, a DNS server can use the cached information when responding 

to subsequent queries for the same DNS information. Caching makes the DNS more efficient, 

especially when under heavy load. This efficiency gain has its tradeoffs; the most notable is in 

security.  

 

 2.1.4 PROPOSED SYSTEM 

 
 Taking the above prevailing system into consideration the best solution is using Pseudo 

Random Number Generator for generating KeyPair in a quick and more secured manner. We use 

MD5 (or) SHA-1 for producing MessageDigest and Compressing the message. Signature is created 

using Private Key and MessageDigest which is transmitted along with the Public Key. The transfer  

of the packets from each System to System is shown using Graphical User Interface (GUI). Each 

time the System get the message, it verifies the IPAddress of the sender and if no match is found 

it discards it. For verification, the Destination System generates Signature using PublicKey and 

DSA Algorithm and verifies it with received one. If it matches it Decrypts otherwise it discards.  

The Following functions avoid the pitfalls of the existing system. 

• Fast and efficient work 

• Ease of access to system 

• Manual effort is reduced 

 

 

2.2  DNSSEC 

 In 1994, the IETF formed a working group to provide security extensions to the DNS 

protocol in response to the security issues surrounding the DNS. These extensions are commonly 



 

referred to as DNSSEC extensions. These security enhancements to the protocol are designed to 

be interoperable with non-security aware implementations of DNS. The IETF achieved this by 

using the RR construct in the DNS that was purposely designed to be extensible. The WG defined 

a new set of RRs to hold the security information that provides strong security to DNS zones 

wishing to implement DNSSEC. These new RR types are used in conjunction with existing types 

of RRs. This allows answers to queries for DNS security information belonging to a zone that is 

protected by DNSSEC to be supported through non-security aware DNS servers. 

 In order to gain widespread acceptance, the IETF DNSSEC WG acknowledged that 

DNSSEC must provide backwards compatibly and must have the ability to co-exist with non-

secure DNS implementations. This allows for sites to migrate to DNSSEC when ready and allows 

less complexity when upgrading. This also means that client side software that are not DNSSEC 

aware can still correctly process RRSets received from a DNSSEC server [CHAR]. 

 In March of 1997, the Internet Architecture Board (IAB) met to discuss the development 

of an Internet security architecture. This meeting identified existing security mechanisms and those 

that are under development, but have not yet become standards, that can play a part in the security 

architecture. They also identified areas in which adequate protection using existing security tools 

could not be achieved. The results of this workshop include the identification of core security 

requirements for the Internet security architecture. Among those security protocols identified as 

core is DNSSEC. The protection that DNSSEC provides against injection of false cache 

information is crucial to the core security requirements of the Internet [RFC 2316]. 

 

 2.2.1  DNSSEC Objectives 

 A fundamental principle of the DNS is that it is a public service. It requires correct and 

consistent responses to queries, but the data is considered public data. As such, the need for 

authentication and integrity exists, but not for access control and confidentiality. Thus, the 

objectives of DNSSEC are to provide authentication and integrity to the DNS. Authentication and 

integrity of information held within DNS zones is provided through the use of cryptographic 

signatures generated through the use of public key technology. Security aware servers, resolvers, 

and applications can then take advantage of this technology to assure that the information obtained 

from a security aware DNS server is authentic and has not been altered.  

 Although the DNSSEC WG chose not to provide confidentiality to DNS transactions, they 

did not eliminate the ability to provide support for confidentiality. Other applications outside of 

the DNS may choose to use the public keys contained within the DNS to provide confidentiality. 

Thus the DNS, in essence, can become a worldwide public key distribution mechanism. Issues 

such as cryptographic export are not, and may never be, solved worldwide; however, the DNS 

provides mechanisms to have multiple keys, each from a different cryptographic algorithm for a 

given DNS name, as a means to help alleviate this problem. 

 



 

 

 

 2.2.2  Performance Considerations 

 Performance issues are a concern for the security extensions to the DNS protocol and 

several aspects in the design of DNSSEC are targeted to avoid the overhead associated with 

processing the extensions. For instance, formulating another query that asks for the signature 

belonging to the RRSet just retrieved is not necessarily the most efficient way to retrieve a 

signature for the RRSet. This additional query is avoided whenever possible by allowing 

information retrieved from secured zones to be accompanied by the signature(s) and key(s) that 

validate the information. 

 

 2.2.3.  DNSSEC Scope 

 The scope of the security extensions to the DNS can be summarized into three services: 

key distribution, data origin authentication, and transaction and request authentication. 

 

2.2.4.  Key Distribution 

 The key distribution service not only allows for the retrieval of the public key of a DNS 

name to verify the authenticity of the DNS zone data, but it also provides a mechanism through 

which any key associated with a DNS name can be used for purposes other than DNS. The public 

key distribution service supports several different types of keys and several different types of key 

algorithms.  

 

 

 

2.2.5.  Data Origin Authentication 

 Data origin authentication is the crux of the design of DNSSEC. It mitigates such threats 

as cache poisoning and zone data compromise on a DNS server. The RRSets within a zone are 

cryptographically signed thereby giving a high level of assuredness to resolvers and servers that 

the data just received can be trusted. 



 

 DNSSEC makes use of digital signature technology to sign DNS RRSet. The digital 

signature contains the encrypted hash of the RRSet.  The hash is a cryptographic checksum of the 

data contained in the RRSet. The hash is signed (i.e., digitally encrypted) using a private key 

usually belonging to the originator of the information, known as the signer or the signing authority. 

The recipient of the RRSet can then check the digital signature against the data in the RRSet just 

received. The recipient does this by first decrypting the digital signature using the public key of 

the signer to obtain the original hash of the data. Then the recipient computes its own hash on the 

RRSet data using the same cryptographic checksum algorithm, and compares the results of the 

hash found in the digital signature against the hash just computed. If the two hash values match, 

the data has integrity and the origin of the data is authentic [CHAR]. 

 

2.2.6.  DNS Transaction and Request Authentication 

 DNS transaction and request authentication provides the ability to authenticate DNS 

requests and DNS message headers. This guarantees that the answer is in response to the original 

query and that the response came from the server for which the query was intended. Providing the 

assurance for both is done in one step. Part of the information, returned in a response to a query 

from a security aware server, is a signature. This signature is produced from the concatenation of 

the query and the response. This allows a security aware resolver to perform any necessary 

verification concerning the transaction. 

 Another use of transaction and request authentication is for DNS Dynamic Updates. 

Without DNSSEC, DNS Dynamic Update does not provide a mechanism that prohibits any system 

with access to a DNS authoritative server from updating zone information. In order to provide 

security for such modifications, Secure DNS Dynamic Update incorporates DNSSEC to provide 

strong authentication for systems allowed to dynamically manipulate DNS zone information on 

the primary server [RFC 2137]. 

 

 

Figure 2.3  Example of a DNS cross check that fails 

 



 

2.2.7  DNSSEC Resource Records 

 The IETF created several new DNS RRs to support the security capabilities provided by 

DNSSEC extensions. The RRs pertinent to the DNS are the KEY RR, SIG RR, and the NXT RR. 

DNSSEC utilizes the KEY RR for storing cryptographic public keys, one public key per KEY RR. 

It is the KEY RR that is used for verification of a DNS RRSet’s signature. The signature for a 

RRSet is stored in the SIG RR. The signature is used to prove the authenticity and integrity of the 

information contained in the RRSet. The NXT RR is the nonexistent RR and is used to 

cryptographically assert the nonexistence of a RRSet. Another RR exists, known as the CERT RR, 

that does not bring any additional security functions to the DNS, but is provided so that public key 

certificates can be kept within the DNS for use in applications outside of the DNS [RFC 2538]. In 

much the same way an application wishing to communicate with a remote IP host generates an A 

query to resolve the host name, a security application wishing to perform encryption with another 

entity generates a CERT query to retrieve the entity’s public key certificate. For further explanation 

on KEY, SIG, and NXT RRs and their RDATA fields and flags not contained herein, please 

reference RFC 2535 and related documents. 

 

 

 

2.2.8.  KEY RR  

 The key for a DNS name is held in a KEY RR. Any type of query for a DNS name, found 

in a secured zone, results in a response that contains the answer to the query. The KEY RR 

associated with the DNS name can accompany this response. The resolver that generated the query 

can then validate the data using the KEY RR without having to send another query for the Key 

RR. This minimizes the number of queries needed for any given DNS name found in a secured 

zone.  

 DNSSEC utilizes the KEY RR for storing cryptographic public keys; however, this is not 

a public key certificate. Instead, the CERT RR is used to store public key certificates. The key 

found in the RDATA section of the KEY RR belongs to the DNS name first listed in the KEY RR 

(i.e., the owner name). The owner name can represent a zone, a host, a user, et al.  

 The Key RR contains information denoting the security characteristics of the key and its 

allowed usage for the given owner name. It provides security information such as the public key, 

algorithm type, protocol type, and flags that specify such things as to whether or not the DNS name 

has a public key. The public key algorithm determines the actual format of the public key found 

in the RDATA section of the KEY RR. Several key algorithms are already supported and are 

defined in RFC 2535 as RSA/MD5, Diffie-Hellman, and Digital Signature Algorithm (DSA), and 

the elliptic curve algorithm. Only DSA support is mandatory. Another field is known as the 

protocol octet. It indicates for which protocol the public key is valid. Some already assigned 

protocols are TLS, email, DNSSEC, and IPsec. Since both the public key algorithm field and the 



 

protocol octet is an 8-bit field, theoretically up to 255 different algorithms and 255 different 

protocols can be used in conjunction with the public key. 

 Two bits out of the sixteen bits used for setting various flags are known as the type bits. 

All four combinations of the type bits indicate how the KEY RR can be used. They are 

confidentiality, authentication, confidentiality and authentication, or none. The latter indicates a 

key does not exist for the DNS name. In this way, one can cryptographically assert that the given 

owner name does not possess a key even though it is in a secure zone. Another two bits are used 

to identify three kinds of entities for which this key belongs, such as user, zone, or something that 

is not a zone. Indicating a host with these flags is actually done by using the flags to indicate that 

the DNS name is not a zone. Thus a host is implied rather than specified by the flags.  

 

2.2.9.  SIG RR 

 A signature is held in another resource record type known as a SIG RR. The SIG RR 

provides authentication for a RRSet and the signature’s validity time. In a secure zone, a RRSet 

has one or more SIG RR associated with it. The situation of having more than one SIG RR for a 

given RRSet may arise when more than one cryptographic algorithm is being used for signing the 

RRSet. Some sites may choose to do this for issues such as cryptographic export restrictions.  

 A number of fields are also found in the RDATA section of a SIG RR. The signature field 

holds the signature belonging to a specific RRSet. To indicate the RR type of the RRSet (i.e., NS, 

PTR, MX, etc.), a "type covered" field is used. In order to verify the signature, a resolver or server 

must know the signer’s name. This is specified in the signer’s field. The SIG RR has an algorithm 

field identical to that in the KEY RR. Since signatures have expiration times, as do individual RRs, 

the SIG RR has several time fields. This is further discussed later in this paper, [see "Security 

Aware Servers"].  

Except for the SIG RRs used for transaction and request authentication and for the SIG RRs which 

are specifically the target of a query, security aware servers try to include in the response the SIG 

RRs needed to authenticate the RRSet. Thus, a resolver may still receive an answer for a RRSet 

belonging to a secure zone that does not have the SIG RR. This situation can typically occur when 

a size limitation is exceeded due to the SIG RR or when the response comes from a non-security 

aware server. Under these circumstances, the security aware resolver is required to form another 

query specifically requesting any missing SIG RRs needed to complete the verification process.  

 

 

 

2.2.10.  NXT RR 



 

 The DNS provides the ability to cache negative responses. A negative response means that 

a corresponding RRSet does not exist for the query. DNSSEC provides signatures for these 

nonexistent RRSets so that their nonexistence in a zone can be authenticated. It does this through 

the use of the NXT RR. NXT RRs are used to indicate a range of DNS names that are unavailable 

or a range of RR types that are unavailable for an existing DNS name. 

 Two possibilities exist for nonexistent DNS names. One is that the DNS name itself does 

not have any RRs; it simply does not exist. The other is that the DNS name does exist (i.e., has at 

least one type of RR), but the RR type in the query for that name does not exist. To handle proof 

of nonexistence of a DNS name, all the records in a zone are sorted in a manner that is similar in 

some ways to alphabetical order. The technique used is known as canonical order and is defined 

in RFC 2535. Then when a query is received for a nonexistent name, a NXT RR is sent back 

containing the DNS name of the next DNS RRSet occurring "alphabetically", or rather canonically, 

after the name in the query. To handle proof of nonexistence of a RR type for an existing DNS 

name, a NXT record is sent back with the DNS name and the RR types that the name does in fact 

have. Whenever SIG RRs are generated for a zone, all NXT RRs for a zone should be generated. 

Security aware DNS servers are the source of all security-related information within the 

DNS. Any given primary DNS server has three main functions: manage authoritative zone 

information, manage the caching of DNS information, and respond to client queries. A primary 

DNS server that is security aware has added responsibilities to each of these functions. 

Authoritative zone information management for a security aware server includes the addition of 

SIG, KEY, and NXT RRs in a zone’s master database file. The SIG RRs are generated for the 

RRSets belonging to a zone. The private key used to generate the SIG belongs to the zone itself. 

Since private keys of servers are more than likely found on-line, it is possible that these keys could 

be compromised. The zone's private key, in contrast, is kept off-line for most purposes, so its 

compromise is less likely and the validity of the data is more assured. The zone's private key is 

retrieved periodically to re-sign all the records found within the zone. Once the new SIG RRs are 

generated they are included with the rest of the information in the zone’s master file. NXT RRs 

also should be generated on the server and placed into a zone’s master file whenever SIG RRs are 

generated. 

 On-line signing also takes place at the server. For transaction and request authentication 

for DNS queries, the server formulating the reply must use its private key for signing, rather than 

the zone key since it is kept off-line. Another instance in which a zone key is not used for signing 

is for transaction and request authentication for dynamic updates. The private key of the host 

formulating the request must be used. Because DNS queries and dynamic update requests can 

occur quite frequently, the signer’s private keys must be maintained on-line. The protection of 

these on-line private keys is of utmost importance; however, the means in which they are protected 

is beyond the scope of this paper. RFC 2541 discusses the operational considerations of KEY and 

SIG RR. 

 To perform caching, a security aware server must properly manage the caching of all 

security related RRs. The additional responsibility in caching of a security aware server begins 

with the maintaining of four cache states. One state, which has a corresponding state in a non-

security aware server, is "Bad". In a non-security aware server, when a bad response is received in 



 

that the information contained is in some way corrupt, a non-security aware server throws away 

the response message without caching it (and typically logs the event). In much the same way, a 

security aware server can throw away a bad response, but in this case, a bad response means that 

the SIG RR verifications failed on the data. Even though the RRSet in the response may look 

legitimate, the failing of the data checks with the corresponding signature is a fatal condition. 

 The three other states are Insecure, Authenticated, and Pending. Insecure means that there 

isn’t any available data to use to check the authenticity of the RRSet. It does not mean the data is 

bad, just that it cannot be authenticated. This commonly occurs for RRSets from non-secured 

zones. Authenticated means the RRSet cached has been fully validated through the use of the SIG 

RRs and KEY RRs. Pending means the cached data is still in the process of being checked.  

 Another server responsibility with caching is when to expire a cached RRSet. Once a 

RRSet is cached, a count down to zero from the original TTL is started and maintained for the 

cached record. Once zero is reached, the RRSet is removed from the cache. For security aware 

servers, this has changed a little. The TTL cannot be the only time kept to determine when a cached 

RRSet is expired. Two new times are now used in addition to the TTL and these ultimately 

determine when to expire the RRSet from the cache. The new times are used to determine when 

the signature’s validity time period for the authenticated RRSet expires, rather than just when the 

RRSet should be expired. These new times are kept in the SIG RR and are known as the signature 

inception time and the signature expiration time. For security aware clients and server this 

information is far more important on which to base expiration since it is cryptographically asserted. 

Although the signature expiration time seems have a correlation to the TTL, due to backward 

compatibility issues, the TTL field cannot be eliminated.  

 TTL aging is still incorporated for expiring authenticated RRSets. If the TTL expires prior 

to the signature expiration time, the TTL is decremented as normal and the RRSet is expired when 

the TTL hits zero. If the signature expiration time occurs prior to when the TTL expires, the TTL 

is adjusted to the signature expiration time and then the normal countdown of the TTL proceeds. 

 Responding to client queries now involves answering queries from both security aware and 

security unaware resolvers. When a non-security aware resolver generates a query and sends it to 

a security aware server for information contained in a secured zone, the security aware servers can 

respond with either Authenticated or Insecure data. A security aware server can only send Pending 

data when the checking disabled (CD) flag is set. The security aware server knows not to send 

Pending data because a resolver participating in DNSSEC never sets the CD flag in a DNS query. 

Since sending insecure data is the same as DNS without DNSSEC, the security unaware resolver 

processes the response message as usual. As far as receiving Authenticated data, the security 

unaware resolver basically ignores the additional security information and goes about processing 

the response as usual. When queries are originating from security aware resolvers, it is strongly 

encouraged that the resolver set the CD flag. With the CD flag set in the query, security aware 

servers can send the Pending data. Sending Pending data accomplishes two things. It minimizes 

the response time freeing up server resources for handling queries and it allows a resolver to 

implement its policies on Pending data, independent of servers. If the answer to the query is already 

Authenticated data on the server, the server sets the authentic data flag (AD) to indicate to the 



 

resolver that the necessary checks have already been performed. In this way the resolver does not 

need to do any security verification checks. 

 Resolvers can obtain public keys of zones in one of two ways. Resolvers can utilize the 

DNS to query for the public key or they can be statically configured with the key. Regardless of 

the method used, problems exist with both. In the case where keys are obtained through the DNS, 

the issue of trusting the key arises. In order to trust the retrieved key, it must be signed and this 

signature must be reliable. Providing the assurance that the signature on the key is reliable means 

that the public key of the signing authority must also be obtained, be signed, and be found reliable 

and so on. The solution to ending this recursive chain of events is to configure the resolver with 

the public key that authenticates the signed keys below it. In other words, a trusted zone key can 

be used as a starting point for verifying all keys found below it. A likely set of trusted public keys 

with which a secure zone can be statically configured are those of the root zone. 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Implementation/Architecture diagram  



 

 

 

3.1 Threats to the Domain Name System   

 

Original  DNS  specifications  did  not  include security based on the fact that the information 

that it contains, namely host names and IP addresses, is used as a  means of communicating 

data [SPAF]. As more and more IP based applications developed, the trend for using IP 

addresses and host names as a basis for allowing or disallowing access (i.e., system based 

authentication) grew. Unix saw the advent of Berkeley "r" commands (e.g., rlogin, rsh, etc.) 

and their dependencies on host names for authentication. Then many other protocols evolved 

with similar dependencies, such as Network File System (NFS), X windows, Hypertext 

Transfer Protocol (HTTP), etc.  

 

Another contributing factor to the vulnerabilities in the DNS is that the DNS is designed to be 

a public database in which the concept of restricting access to information within the DNS 

name space is purposely not part of the protocol. Later versions of the BIND implementation 

allow access controls for such things as zone transfers, but all in all, the concept of restricting 

who can query the DNS for RRs is considered outside the scope of the protocol. 

 

The existence and widespread use of such protocols as the r-commands put demands on the 

accuracy of information contained in the DNS. False information within the DNS can lead to 

unexpected and potentially dangerous exposures. The majority of the weaknesses within the 

DNS fall into one of the following categories: Cache poisoning, client flooding, dynamic 

update vulnerability, information leakage, and compromise of the DNS server‟s authoritative 

database. 
 

 

 

3.2 Cache Poisoning 

 

 

 

Whenever a DNS server does not have the answer to a query within its cache, the DNS server 

can pass the query onto another DNS server on behalf of the client. If the server passes the 

query onto another DNS server that has incorrect information, whether placed there 

intentionally or unintentionally, then cache poising can occur [CA97]. Malicious cache 

poisoning is commonly referred to as DNS spoofing [MENM]. 

 

 

 

 

 

3.2.1 Cache Poisoning Methods 

 



 

Earlier versions of the BIND implementation of the DNS were highly susceptible to cache 

poisoning. As a means to give a helpful hint, a DNS server responding to a query, but not 

necessarily with an answer, filled in the additional records section of the DNS response message 

with information that did not necessarily relate to the answer. A DNS server accepting this 

response did not perform any necessary checks to assure that the additional information was 

correct or even related in some way to the answer (i.e., that the responding server had 

appropriate authority over those records). The naïve DNS server accepts this information and 

adds to the cache corruption problem. Another problem with earlier   versions   of   BIND   is   

that   there   wasn‟t   a mechanism in place to assure that the answer received was related to the 

original question. The DNS server receiving the response cache‟s the answer, again contributing 

to the cache corruption problem. Note that although it is well documented that the BIND 

implementation has experienced such issues, other implementations may have had, and still may 

have similar problems. 

For example, suppose there is a name server, known as ourdns.example.com, servicing a 

network of computers (see Figure 5). These computers are in essence DNS clients. An 

application on a client system, host1, makes a DNS query that is sent to ourdns.example.com. 

Then ourdns.example.com examines its cache to see if it already has the answer to the query. 

For purposes of the example, ourdns.example.com is not authoritative for the DNS name in the 

query nor does it have the answer to the query already in its cache. It must send the query to 

another server, called brokendns.example.org. The information on brokendns.example.org 

happens to be incorrect, most commonly due to misconfiguration, and the response sent back to 

ourdns.example.com contains misleading information. Since ourdns.example.com is caching 

responses, it caches this misleading information and sends the response back to host1. As long 

as this information exists in the cache of ourdns.example.com, all clients, not just host1, are now 

susceptible to receiving this bogus information. 

 

  

  

 

 

 

 

 

 



 

 

 

 

Figure. 3.2.1 DNS Cache Poisoning 

 

3.2.2 Rogue servers 

 

Rogue DNS servers pose a threat to the Internet community because the information these 

servers contain may not be trustworthy [SPAF]. They facilitate attack techniques such as 

host name spoofing and DNS spoofing. Host name spoofing is a specific technique used 

with PTR records. It differs slightly from most DNS spoofing techniques in that all the 

transactions that transpire are legitimate according to the DNS protocol while this is not 

necessarily the case for other types of DNS spoofing. With host name spoofing, the DNS 

server legitimately attempts to resolve a PTR query using a legitimate DNS server for the 

zone belonging to that PTR. It‟s the PTR record in the zone‟s data file on the primary 

server that is purposely configured to point somewhere else, typically a trusted host for 

another site [STEV]. Host name spoofing can have a TTL of 0 resulting in no caching of 

the misleading information, even though the host name is being spoofed. A more detailed 

example follows later that demonstrates the threats such servers pose to the Internet 

community. 

 



 

 

 

3.2.3Cache Poisoning Attacks 

 

An attacker can take advantage of the cache poisoning weakness by using his/her rogue 

name server and intentionally formulating misleading information. This bogus information 

is sent as either the answer or as just a helpful hint and gets cached by the unsuspecting 

DNS server. One way to coerce a susceptible server into obtaining the false information is 

for the attacker to send a query to a remote DNS server requesting information pertaining 

to a DNS zone for which the attacker‟s  DNS  server  is  authoritative.  Having  cached this 

information, the remote DNS server is likely to misdirect legitimate clients it serves 

[ACME].With earlier versions of the BIND implementation, an attacker can inject bogus 

information into a DNS cache without the need to worry over whether or not a query was 

generated to invoke such a response. This willingness to accept and cache any response 

message allows an attacker to manipulate such things as host name to IP address mappings, 

NS record mappings, et al. A February 1999 survey revealed that approximately 33% of 

DNS servers on the Internet are still susceptible to cache poisoning [MENM].This is the 

methodology used by Eugene Kashpureff. Kashpureff injected bogus information into 

DNS caches around the world concerning DNS information pertaining to Network 

Solutions  Inc.‟s  (NSI)  Internet‟s  Network  Information Center (InterNIC). The 

information redirected legitimate clients wishing to communicate with the web server  at  

the  InterNIC  to  Kashpureff‟s  AlterNIC  web server. Kashpureff did this as a political 

stunt  protesting the Internic‟s control over DNS domains. When the attack occurred in 

July of 1997, many DNS servers were injected with this false information and traffic for 

the Internic went to AlterNIC where Kashpureff‟s web page was filled with the propaganda 

surrounding  his  motives  and  objections  to  InterNIC‟s control over the DNS [RAFT]. 

 

 

 

 

 

3.3Attack Objectives 

 

An attacker makes use of cache poisoning for one of two reasons. One is a denial of service 

(DoS) and the other is masquerading as a trusted entity. 

• Denial of Service 

 

DoS is accomplished in several ways. One takes advantage of negative responses (i.e., 

responses that indicate the DNS name in the query cannot be resolved). By sending back 

the negative response for a DNS name that could otherwise be resolved, results in a DoS 

for the client wishing to communicate in some manner with the DNS name in the query. 

The other way DoS is accomplished is for the rogue server to send a response that redirects 

the client to a different system that does not contain the service the client desires.Another 

DoS associated with cache poisoning involves inserting a CNAME record into a cache that 



 

refers to itself as the canonical name. 

 

 

 

3.4  Masquerading 

 

The second and potentially more damaging reason to poison DNS caches is to redirect 

communications to masquerade as a trusted entity. If this is accomplished, an attacker can 

intercept, analyze, and/or intentionally corrupt the communications [CA97]. The 

misdirection of traffic between two communicating systems facilitates attacks such as 

industrial espionage and can be carried out virtually undetected [MENM]. An attacker can 

give the injected cache a short time to live making it appear and disappear quickly enough 

to avoid detection.Masquerading attacks are possible simply due to the fact that quite a 

number of IP based applications use host names and/or IP addresses as a mechanism of 

providing host-based authentication.  

   



 

 

Figure  3.2.2 DNSSEC query & response message 

 

 

 

 

 

 

 



 

Chapter 4 

                  WORK DONE AND RESULT 

 

Vulnerabilities in the DNS have frequently been exploited for attacks on the Internet. One of the 

most common ways of “defacing” a web server is to redirect its domain name to the address of a 

host controlled by the attacker through manipulation of the DNS. DNSSEC [9] eliminates some of 

these problems by providing end-to-end authenticity and data integrity through transaction 

signatures and zone signing. 

 

Transaction signatures are computed by clients and servers over requests and responses. DNSSEC 

allows the two parties either to use a message authentication code (MAC) with a shared secret key 

or public-key signatures for authenticating and authorizing DNS messages between them. The 

usefulness of transaction signatures is limited since they guarantee integrity only if a client engages 

in a transaction with the server who is authoritative for the returned data, but do not protect against 

a corrupted server acting as a resolver. For zone signing, a public-key for a digital signature 

scheme, called a zone key, is associated with every zone. Every resource record (it is the basic data 

unit in the DNS database) is complemented with an additional SIG resource record containing a 

digital signature, computed over the resource record.1 Zone signing also protects relayed data 

because the signature is created by the entity who owns the zone. 

 

Key Generation 

 

Careful generation of all keys is a sometimes overlooked but absolutely essential element in any 

cryptographically secure system. The strongest algorithms used with the longest keys are still of 

no use if an adversary can guess enough to lower the size of the likely key space so that it can be 

exhaustively searched. Technical suggestions for the generation of random keys will be found in 

RFC 4086 [14]. One should carefully assess if the random number ggenerator used during key 

generation adheres to these suggestions. 

Keys with a long effectively period are particularly sensitive as they will represent a more valuable 

target and be subject to attack for a longer time than short- period keys. It is strongly recommended 

that long-term key generation occur off-line in a manner isolated from the network via an air gap 

or, at a minimum, high-level secure hardware. 

Encryption and Decryption Signature Creation Signature Verification.  

 

 



 

 

Chapter 5 

CONCLUSION 

The DNS as an Internet standard to solve the issues of scalability surrounding the hosts.txt file. 

Since then, the widespread use of the DNS and its ability to resolve host names into IP addresses 

for both users and applications alike in a timely and fairly reliable manner, makes it a critical 

component of the Internet. The distributed management of the DNS and support for redundancy 

of DNS zones across multiple servers promotes its robust characteristics. However, the original 

DNS protocol specifications did not include security. Without security, the DNS is vulnerable to 

attacks stemming from cache poisoning techniques, client flooding, dynamic update 

vulnerabilities, information leakage, and compromise of a DNS server‟s authoritative files. 

• In order to add security to the DNS to address these threats, the IETF added security 

extensions to the DNS, collectively known as DNSSEC. DNSSEC provides authentication and 

integrity to the DNS. With the exception of information leakage, these extensions address the 

majority of problems that make such attacks possible. Cache poisoning and client flooding attacks 

are mitigated with the addition of data origin authentication for RRSets as signatures are computed 

on the RRSets to provide proof of authenticity. Dynamic update vulnerabilities are mitigated with 

the addition of transaction and request authentication, providing the necessary assurance to DNS 

servers that the update is authentic. Even the threat from compromise  of  the  DNS  server‟s  

authoritative files is almost eliminated as the SIG RR are created  using a zone‟s private key that 

is kept off-line  as  to  assure  key‟s  integrity  which  in turn protects the zone file from tampering. 

Keeping  a  copy  of  the  zone‟s  master  file  off- line when the SIGs are generated takes that 

assurance one step further. 

 

• DNSSEC can not provide protection against threats from information leakage. This is more 

of an issue of controlling access, which is beyond the scope of coverage for DNSSEC. Adequate 

protection against information leakage is already provided through such things as split DNS 

configuration. 

 

• DNSSEC demonstrates some promising capability to protect the Internet infrastructure 

from DNS based attacks. DNSSEC has some fairly complicated issues surrounding its 

development, configuration, and management. Although the discussion of these issues is beyond 

the scope of this survey, they are documented in RFC 2535 and RFC 2541 and give some 

interesting insight into the inner design and functions of DNSSEC. In addition to keep the scope 

of this paper down, many topics such as secure zone transfer have been omitted but are part of the 

specifications in RFC 2535.  
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