

COMPARISATION OF RESULTS OF SENTIMENTAL

ANALYSIS USING DIFFERENT MACHINE LEARNING

 ALGORITHMS

A Report for the Evaluation 3 of Project 2

Submitted by AKASH

YADAV

(1613101083)

in partial fulfilment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Dr. RAVINDER AHUJA ,Assistant Professor

APRIL / MAY- 2020

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “COMPARISON OF RESULTS OF

SENTIMENTAL ANALYSIS USING DIFFERENT MACHINE LEARNING

ALGORTIHMS” is the bonafide work of “AKASH YADAV (1613101083)” who

carried out the project work under my supervision.

SIGNATURE OF HEAD
School of Computing Science &

Engineering

SIGNATURE OF SUPERVISOR

School of Computing Science &

Engineering

ABSTRACT:
Now a days we are seeing in surge of social media used as a platform for marketing and influencing

very targets .So understanding the specific behavior of people or individual using his/her tweets or

comments is next step of sentiment analysis .We see millions of data shared on social media daily

we works on both sides on one side we see various availability of data or opinions and on the other

side we challenge to group them in one centroid or domain.in this work I worked on the dataset of

sentiment140 from Stanford university by classifying according to polarity of the opinions using

extraction features Performance of various machine learning algorithms like Ridge

Classifier,LogisticRegression,Perceptron,PassiveAggressiveClassifier,SGDClassifier,LinearSVC,

KNeighborsClassifier,NearestCentroid,MultinomialNB,BernoulliNB,AdaBoostClassifier.hence

the goal of this work to perform the comparison between performance of these classifiers.

Experiment is done Sentiment140 dataset four evaluation measures are recall, precision, f1 -score

and accuracy for comparison this research demonstrate which feature will increase the accuracy of

sentiment analysis

 TABLE OF CONTENT

Abstract VI

List of Tables VII

List of Figures VIII

List of Symbols, Abbreviations and Nomenclature IX

1.Introduction 12

2.Machine learning Background 14

3. Literature Review 15

3.Methodology 15

 3.1.Labeled Data 15

 3.2.PreProcessing 18

 3.2.1.tokenisation 18

 3.2.2 Text Cleaning 18

 3.2.3.Text Visualizations 20

 3.2.4Encoding 23

 3.2.5.Data visualization 25

 3.2.6 .Splitting of Dataset 36

3.3.feature Extraction 37

 3.3.1 bag of words(Count Vectorizer) 37

 3.3.2 Tf-idf 38

3.4.Training Classifiers 39

 3.4.1 Logistic Regression 39

 3.4.2 Ridge Classifier 39

 3.4.3 Perceptron 39

 3.4.4 Passive Aggressive Classifier 40

 3.4.5 Linear Support vector classification 40

 3.4.6 SGD Classifier 40

 3.4.7 K Neighbours Classifier 40

 3.4.8 Nearest Centroid 41

 3.4.9 Bernoulli NB 41

 3.4.10 Multinomial NB 41

 3.4.11 Ada Boost Classifier 41

3.5. Evaluation Metrics 42

4.Experiment 43

5.Result 63

6. Conclusion 70

7.Future Scopes 70

8. References 70

List of Tables:

Table 1 : Sample of sentiment140 dataset 13

Table 2: data Share in sentiment 140 16

Table 3: Example of tweets including URLs, mentions and hashtags 18

Table 4: Content for text cleaning(regular Expression) 19

Table 5: Dataset after cleaning of data 20

Table 6: Inspection of tweet words 23

Table 7: frequency of word in both positive and negative tweets 25

Table 8: Calculated posrate of tweets 31

Table 9: data with posrate and posfreq 32

Table 10: :table with harmonic mean of posword 33

Table 11: posword with cumulative distribution function of historic mean 33

Table 12: combined result of posrate ,posfreq,hmean,hmean_cdf of both positive and negative

words 34

Table 13: : Result of performance of Classifier onTf-idf bigram 64

Table 14: Result of performance of Classifier bag of words trigram 65

Table 15: Result of performance of Classifier bag of words bigram 66

List of Figures:

Figure 1:preclean length of tweets graph 16

Figure 2:Boxlength graph of preclean length 17

Figure 3: screen shot of tweet_cleaning Function 19

Figure 4:wordcloud of combined tweets 21

Figure 5:wordcloud of negative tweets 22

Figure 6:wordcloud of positive tweets 22

Figure 7:Zipf’s law plot of tweet tokens 26

Figure 8: log-log graph of rank of taken vs frequency of tokens 27

Figure 9: bar chart of top 50 word in negative tweet 28

Figure 10: bar chart of top 50 word of positive tweet 29

Figure 11: positive vs negative word frequency 30

Figure 12:Plot of neg_hmean vs pos_hmean plot 35

Figure 13: plot of neg_hmeancdf vs pos_neg_hmeancdf 36

Figure 14: formula of precision Parameter 42

Figure 15: formula of recall 43

Figure 16: formula of f1-score 43

Figure 17: function of nfeatures_accuracy_checker 45

Figure 18: Unigram accuracy with or without strop words 45

Figure 19: N-gram(1-3) accuracy of count vectorizer 46

Figure 20 : N-gram (1-3) accuracy of count vectorizer and Tf-idf 59

Figure 21 : bar plot of accuracy vs classifier of bag of words bigram 67

Figure 22 :bar plot of accuracy of classifiers of bag of words trigram 67

Figure 23 :bar plot of accuracy of classifiers of tf-idf bigram 67

Figure 24: line plot of accuracy vs classifier of bag of words bigram 68

Figure 25 : line plot of accuracy of classifiers of bag of words trigram 68

Figure 26: line plot of accuracy of classifiers of tf-idf bigram 69

Figure 27: Accuracy of different Feature Extraction 69

List of Symbols, Abbreviations and Nomenclature:

List of Abbreviations:

1. 1.Nltk Natural Language Toolkit

2. 2.Bgw bag of words

3. Sklearn Scikit Learn

4. CSV comma separated value

5. SGD Stochastic gradient descent

6. KNN k-nearest neighbors

7. MNB multinomial naive bayes

8. SVM Support Vector machine

9. POS part of speech

10. PDT Pacific Daylight Time

11. UTC Universal Time Coordinated

12. www world wide web

13. Https Hypertext Transfer Protocol Secure

14. URL Uniform Resource Locator

15. f function

16. posrate positive word rate

17. posfreq positive word freqeuency

18. pos_hmean harmonic mean of positive words

19. pos_hmean_cdf cumulative distribution function of harmonic mean of positive

words

20. cdf cumulative distribution function

21. hmean harmonic mean

22. negrate rate of negative words

23. frac fraction

24. negfreq frequency of neagative word

25. neg_hmean harmonic mean of negative word

26. negrate_cdf cumulative distribution function rate of negative words

27. negfreq_cdf cumulative distribution function of frequency of negative words

28. neg_hmean_cdf cumulative distribution function of frequency harmonic mean of

negative words

29. clf Classifiers

30. avg average

31. len length

32. tf term frequency

33. idf inverse document frequecny

34. loge logarithm of base e

35. pd pandas package

36. df data frame

37. np numpy

38. max maximum

39. min minimum

40. uni One

41. tri three

42. bi two

43. lr logistic regression

44. Penn University of Pennsylvania

45. UTF Unicode transformation format

List of Symbols:

1..2f float data of two digit after point

2.@ address sign

3 % modulo and percentage

4 & ampersand

5 - hyphen

6 _ underscore

7 ! Excalamation mark

8 # hashtag

9 ≈ approximately equal to

10 Σ summation

11 ^ power

List of Nomenclature:

1.N_ranges name given to define the ranges used in feature vectors

2.Unigram An n-gram an ordered n-tuple of characters when value of n is 1 it is called

unigram

3.Bigram An n-gram an ordered n-tuple of characters when value of n is 2 it is called bigram

4.Trigram An n-gram an ordered n-tuple of characters when value of n is 3 it is called trigram

5.TreebankWordTokenizer is the name fiven to a function in tokenizer which is used to convert

regular expressions to tokenize text as in Penn Treebank.

 6.TreeBank a treebank is a parsed text corpus that annotates syntactic or semantic sentence

structure.

7.Seaborn Seaborn is a name given a Python data visualization library based on matplotlib

 8.UTF-8 UTF-8 is a variable width character encoding capable of encoding all 1,112,064 valid

character code points in Unicode using one to four one-byte (8-bit) code units

9.latin -1 is an 8-bit character set endorsed by the International Organization for Standardization

(ISO) and represents the alphabets of Western European languages.

10/Wordcloud Word Cloud is a data visualization technique used for representing text data

in which the size of each word indicates its frequency or importance. Significant textual data

points can be highlighted using a word cloud

Abstract:

Now a days we are seeing the surge of using social media as a platform for marketing and for any

target .So understanding the specific behaviour of people or individual using his/her tweets or

comments is next step of sentiment analysis .We see millions of data shared on social media daily

we works on both sides on one side we see various availability of data or opinions and on the other

side we challenge to group them in one centroid or domain.in this work I worked on the dataset of

sentiment140 from Stanford university by classifying according to polarity of the opinions using

extraction features Performance of various machine learning algorithms like Ridge Classifier ,

LogisticRegression,Perceptron,PassiveAggressiveClassifier,SGDClassifier,LinearSVC,KNeighbo

rsClassifier,NearestCentroid,MultinomialNB,BernoulliNB,AdaBoostClassifier.hence the goal of

this work to perform the comparison between performance of these classifiers. Experiment is done

Sentiment140 dataset four evaluation measures are recall, precision, f1 -score and accuracy for

comparison this research demonstrate which feature will increase the accuracy of sentiment

analysis

Introduction:

Now a days we see usage of social media is increasing exponentially and by this various sector

are targeting social media platform as their launchpad for example – usage of social media in

influence the elections self-promotions etc. Social media have become gold mine to analyze the

brand performance .opinion found the social media are casual, honest and informative which can

be collected through various surveys .so there is need to analyze the opinion as it draws responses

to various responses available on social medias. Twitter is one place where people view their

opinions very strongly om different issues ,Daily there is approx. 500 million tweets by which

this huge amount of data cannot be analyzed manually. Likewise, the diversity of tweets

presumably cannot be captured by fixed set of rules designed by hand. It is worth noting that the

task of understanding the sentiment in a tweet is more complex that of any well formatted

document. Tweets do not follow any formal language structure, nor they contain words from

formal language (i.e. out of vocabulary words). Often, punctuations and symbols are used to

express emotions (smileys, emoticons etc.).For examining user thoughts .sentimental analysis

has become a major source for purpose of solving hidden pattern in the large number of tweets

with help of machine learning algorithms .in this work we have proposed classification system

with ten different algorithms to sort out sentiment as negative and positive and finding out the

best possible algorithm for sentimental analysis system with the help of natural language

processing and machine learning and with help of python language as support system. We have

taken various feature extraction and machine learning algorithm as two different entities. Our

main contribution is to find out the best classification algorithm to be applied to get maximum

potential of sentimental analysis by comparing four major factors of performance of each

classification algorithm which as described as F1-score, precision, accuracy and recall

As for the collection of data from twitter with have taken help from the sentiment140 dataset

provided by the Standard University. The table below describe the sample of the information

provided by the sentiment140

First of all the data is CSV format is described as follows :

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)

1 - the id of the tweet (2087)

2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009)

3 - the query (lyx). If there is no query, then this value is NO_QUERY.

4 - the user that tweeted (robotickilldozr)

5 - the text of the tweet (Lyx is cool)

sentiment Id Date Query User text

0 1467810369 Mon Apr 06

22:19:45 PDT

2009

NO_QUERY

TheSpecialOne

@switchfoot

http://twitpic.com/2y1zl

- Awww, that's a

bummer. You shoulda

got David Carr of Third

Day to do it. ;D

4 1467822272 Mon Apr 06

22:22:45 PDT

2009

NO_QUERY

ersle

I LOVE

@Health4UandPets u

guys r the best!!

 Table 1: Sample of sentiment140 dataset

This work will be structed on these data first we discuss the process of analyzing the dataset and

through data visualizations through wordcloud and various other graphs for data visualization

.Data preprocessing is one the first step taken in sentimental analysis .then we discuss the

procedure of building machine learning model and explain basics of machine learning techniques

then we summarize the finding in the literature review conducted to understand the research field

and identify the gap in knowledge .then we discuss our procedure of building the method for

applying different algorithms and compare the result and compute tables for different feature

extraction with ten different machine learning algorithm with four parameters-f1-

score,recall,precision and accuracy

2.Machine Learning Background:

Before understanding research conducted for the work we need the distinguish the procedures

into three equals parts which can be described as follows:

1.first the dataset of the label is compiled to according to text length and extracting only the

sentiment and text from the dataset and then text cleaning process is implemented on the dataset

during text preprocessing of natural language processing

2.Then we feature extractor generator used for finding value of vector should characterize the

sentiment .once feature vectors from dataset and then popular classification algorithms like Ridge

Classifier, Logistic Regression, Perceptron , Passive Aggressive Classifier , SGD Classifier,

Linear Classifier ,KNN Nearest Neighbor Classifier, Nearest Centroid , Multinomial Navies

Bayes, Bernoulli Navies Bayes ,Ada Boost Classifier

3.After applying the classification algorithms we conduct the experiment of comparison of the

Four parameters which are known as F1-score ,Accuracy ,Precision and Recall and publish the

result in Tabular form.

3.Literature Review:

The sentiment140 data set used in our experiments was created using an automated sentiment

labeling method [6]. Go et al. [6] created an automated labeling method which took advantage of

emoticons found in tweets. Emoticons are a combination of symbols that express an emotion,

usually forming a facial representation, such as “:)” which depicts a positive emotion. Tweets

were collected and labeled based on the emotion assigned to each emoticon, resulting in a data set

of 1.6 million positive and negative tweets. They performed sentiment prediction using three

machine learning algorithms: MNB, Support Vector Machines (SVM), and Maximum Entropy.

They used unigrams, bigrams, unigrams and bigrams, and unigrams with Part-Of-Speech (POS)

tags as features. Their results show the use of unigrams and unigrams with bigrams have the

highest performance. SVM had the highest performance when using unigrams, while Maximum

Entropy had the highest performance when using unigrams with bigrams. The difference in

performance between the classifiers when using unigrams and unigrams with bigrams is smaller

than 2%, and they conducted no tests to determine if this difference was significant. The authors

mentioned bigram features alone did not perform well due to the length of tweets. As they are

shorter posts, 140 characters or less, a bigram feature space becomes very sparse.

Our study is unique in that we provide a comprehensive comparison of Performance of various

classifiers using four performance parameters or metrices .We compare the performance of the

best model built using our sentiment140 data set against models built using tweets with help of

different classifiers. Models are built with Multinomial Naive Bayes and evaluated across 1.6

million distinct tweets. Our classifiers are trained on large data sets, consisting of 100,000

instances, including Amazon product review data, which consists of many diverse product

domains, and sentiment140 data. We evaluate our models on a sentiment140 data set.

3.Methodology:

 3.1.Labeled Data:

We have used dataset Sentiment140 which can be described in the specific format defined by

the publisher of dataset which in this case is Stanford university. Which are described in

following ways:

First of all the data is CSV format is described as follows :

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)

1 - the id of the tweet (2087)

2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009)

3 - the query (lyx). If there is no query, then this value is NO_QUERY.

4 - the user that tweeted (robotickilldozr)

5 - the text of the tweet (Lyx is cool)

sentiment Id Date Query User text

0 1467810369 Mon Apr 06

22:19:45 PDT

2009

NO_QUERY

TheSpecialOne

@switchfoot

http://twitpic.com/2y1zl

- Awww, that's a

bummer. You shoulda

got David Carr of Third

Day to do it. ;D

4 1467822272 Mon Apr 06

22:22:45 PDT

2009

NO_QUERY

ersle

I LOVE

@Health4UandPets u

guys r the best!!

 Table: Sample of sentiment140 dataset

The next table shows the share of positive and negative class distribution in dataset

Sentiment Data in numbers

Positive 800000

Negative 800000

 Table 2:Data share in dataset

Datatype is integer 64 in dataset from the table we have gather information that there are 800000

positive tweets and 800000 negative tweets. There are no neutral tweets in the dataset. The text in

tweets are variable lengths containing various mentions ,usernames ,escapes ,URLs links, hashtag

s and negations so there is diversity in text of dataset below figure will show how variable length

of data is present in dataset

 Figure 1:preclean length of text of tweets

Above figure is drawn with the help of seaborn by which have developed a scatter plot to show

the number of texts with their precleaned length with help of distplot which is used to visualize

histogram show the number of tweets with their respective length. Another figure of preclean

length is shown below with the help of Boxplot of seaborn

 Figure: 2 Boxplot graph of preclean length

UTF-8 can limit with 128 characters by which by seeing above figures we see there are more

than 128 characters so we have to convert into latin-1 encoding. After encoding in latin-1 we

further begin our process of finding the irregularity in text which will be elaborates further in this

segment:

Firstly, we see a text which contains lot of space which is unnecessary and various special

characters ,single quotes , double quotes etc.

"Awwh babs... you look so sad underneith that shop entrance of "Yesterday's Musik

" O-: I like the look of the new transformer movie "

Other type of text includes links, URL mentions etc.:

Text

"@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer. You shoulda got David Carr

of Third Day to do it. ;D"

http://twitpic.com/2y1zl

"@machineplay I'm so sorry you're having to go through this. Again. #therapyfail"

 Table 3:Example of tweets including urls,mentions and hastags

3.2 Preprocessing:

Before the process of applying machine learning algorithms on our work we need to clean the

data .cleaning the data is one of the initial step of data pre-processing and these step helps in

converting the text into processable elements with information added that can be utilized by

feature extractor:

3.2.1.Tokenisation: Tokenization is the process of converting text as a string into processable

elements called tokens. In the context of a tweet, these elements can be words, emoticons, URL

links, hashtags or punctuations. These elements are often separated by spaces. However,

punctuation ending the sentence like exclamation marks or full stop are often not separated by a

space. On the other hand, hashtags with “#” preceding the tag needs to be retained since a word

as a hashtag may have different sentiment value than a word used regularly in the text.

"@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer. You shoulda got David Carr of

Third Day to do it. ;D"

with the help of nltk package of machine learning have a functionality of tokenize which

contains TreebankWordTokenizer which is used to convert regular expressions to tokenize

texts in Penn treebank .it assumes that the text already been segmented into sentences

from nltk.tokenize import TreebankWordTokenizer

token = TreebankWordTokenizer()

3.2.2.text Cleaning:

We have already discussed type of data we have collected from our dataset we finally take a

major step in preprocessing which cleaning the texts to decreasing the length of the text to help

http://twitpic.com/2y1zl

them to convert into processable element. The above-mentioned exception or unwanted text

which occur in our dataset can be categorized into four elements which is as follows:

Unwanted words Regular Expression

mentions r'@[A-Za-z0-9]+'

URL HTTPs 'https?://[A-Za-z0-9./]+'

url_www r'www.[^]+'

 Table 4:Content for text cleaning(regular Expression)

A list is created to eliminate the negation words which occur in text and changing into its full

form does not change the value of sentence for example "isn’t”: “is not", "aren’t”: “are not",

"wasn’t”: “was not", "weren’t”: “were not", "haven’t”: “have not","hasn't":"has not".

A function is created to replace these words.

 Figure 3: screen shot of tweet_cleaning Function

After applying the function on data new dataset is created which only contain processable

element.

New dataset is look like below table:

Sentiment Post clean Text

0 awww that s a bummer you shoulda got david car...

0 is upset that he can not update his facebook b...

0 i dived many times for the ball managed to sav...

0 my whole body feels itchy and like its on fire40no

0 its s not behaving at all i m mad why am i h...

 Table 5:Dataset after cleaning of data

3.2.3.Text Visualizations:

This type analyses of data can be done with help of wordcloud which used to get relation

between sentiment text which is achieved with help of wordcloud which shows the relation

between these text with each other words below figure consists of cloud of words which have the

highest frequencies in the dataset.

 Figure 4:worldcloud for both the sentiment combined

Now we have seen the most occurring word in our dataset are drinking, thanks etc.

By this we can analyze how our data is defined in the dataset and how people opinions generally

contain similar words which are used to define both the sentiments -positive and negative.

For further text visualization we will apply wordcloud individually on positive sentiment as well

as on negative sentiment. So below figures will explain the frequencies of words in both classes

of classifications

 Figure 5: wordcloud of negative tweets

Some words, like, "today", "one", "still" can be termed as neutral. Words like, "sad", "bad",

"hate", "suck", "wish" etc. make sense as negative words.

 Figure 6: wordcloud of positive tweets

In this wordcloud of positive tweets, neutral words, like "today", "tonight", "still", etc are present.

Also, words like "thank", "haha", "awesome", "good", etc stand out as the positive words.

Words like "today", "lol", "tonight", "still", "work" etc are common in both the positive and

negative tweets. Hence, it can be concluded that people have both positive and negative response

towards work and their day.

What we have found surprising is the presence of "lol" and "love" in both the positive and the

negative tweets wordclouds. So, now, I am going to inspect this.

For inspection I tried to search “love” word in negative tweets and find out the count of tweets

containing the word “love” same has been done to find out the word “lol” in both positive and

negative tweets and the below will surely describe the result of the inspection carried.

Word Count of tweets in which word is available

“love” in negative tweets 21548

“lol” in positive tweets 35780

“lol” in negative tweets 22754

 Table 6: inspection of word in tweets

there are 21.5k negative tweets where the word 'love' is used. But one thing I observed is that love

is used with negative words like sad, loss, no, leave, etc or it is used sarcastically.

I also inspected the use of 'lol' in tweets of both, positive and negative sentiments. In positive

tweets, lol is used as an expression for joy, fun and laughter. And in negative tweets, 'lol' is used

with words that convey negative emotion like 'sad', 'crying', 'slap', 'no', 'bored' etc.

3.2.4.Encoding:

for data visualisation firstly we have to prepare the text for the data visualisation Here we taken

CountVectorizer The CountVectorizer provides a simple way to both tokenize a collection of

text documents and build a vocabulary of known words, but also to encode new documents using

that vocabulary. With the use of countvectiozer we have built vectors of words of tweets and

length of the corpus of words is 271304 and then we have encoded the document into two

different matrix or vector for the positive and negative tweets .

After encoding we have found out the corpus are defined as following:

aa 265

aaa 152

aaaa 74

aaaaa 38

aaaaaa 28

 ...

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 1

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 3

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 1

zz 1

zzz 1

Name: total, Length: 271304, dtype: int64

After finding the corpus of encoded data we have calculated term frequency of the word which

will be shown below table:

negative positive total

to 313185 252600 565785

the 257953 266161 524114

my 190805 125981 316786

it 157491 147841 305332

and 153985 149692 303677

you 103865 198274 302139

not 196637 87771 284408

is 133533 111325 244858

in 115628 101297 216925

for 99044 117389 216433

of 92837 91218 184055

on 84227 84231 168458

that 82734 83070 165804

negative positive total

me 92188 72247 164435

so 88534 65627 154161

have 88400 65586 153986

but 84896 48600 133496

just 64006 62946 126952

do 68206 48506 116712

with 50156 65187 115343

Table 7 :frequency of words in both positive and negative tweets

by examine the above table we have find out that most of the term are stop words

3.2.5.Data visualisation:

Data visualisation is done using zipf’s law which states that given some corpus of natural

language utterances, the frequency of any word is inversely proportional to its rank in the

frequency table. Thus, the most frequent word will occur approximately twice as often as the

second most frequent word, three times as often as the third most frequent word, etc.: the rank-

frequency distribution is an inverse relation.

Suppose a word occurs f times and that in the list of word frequencies it has a certain rank, r.

Then if Zipf's Law holds we have

𝑓=𝑎/𝑟𝑏f=a/rb

where a and b are constants and 𝑏≈1b≈1.

Let's see how the tweet tokens and their frequencies look on a plot

 Figure 7:Zipf’s law plot of tweet tokens

On the X-axis are the top 500 tokens of the corpus with the highest rank in the left and 500th rank

in the right. Y-axis consists of the frequencies of the top 500 words most frequent words in the

Sentiment140 corpus. The curve here is not the exact Zipfian curve, rather a near Zipfian

distribution curve. Even though we can see the plot follows the trend of Zipf’s Law, but it looks

like it has more area above the expected Zipf curve in higher ranked words. We can also plot a

log-log graph, with X-axis being log(rank), Y-axis being log(frequency). By plotting, the result

will be a roughly linear line.

 Figure 8: log-log graph of rank of taken vs frequency of tokens

Here, we see a roughly linear curve, but deviating above the expected line on higher ranked

words and deviating below the expected line on lower ranked words

From the previous step of encoding using Count vectorizer we have prepared corpus of tweets

from that result we will see top 50 words in negative in form of bar chart figure:

 Figure 9 :bar chart of top 50 word in negative tweet

The most frequent words like "just", "work", "day", "got", "today" etc. do little to convey

negative sentiment. It's difficult to comment about their importance in characterising negative

tweets. On the other hand, words like, "miss", "sad", bad", "sorry", "hate" etc. convey clear

negative sentiment.

Let's see the top 50 words in positive tweets on a bar chart.

 Figure 10: bar chart of top 50 word of positive tweet

The most frequent words like "just", "day", "got", "today", "time" etc. do little to convey positive

sentiment. It's difficult to comment about their importance in characterising positive tweets. On

the other hand, words like, "good", "love", "like", "thanks", "new" etc. convey clear positive

sentiment.

Let's plot the negative frequency of a word on x-axis and the positive frequency on y-axis.

 Figure 11: positive vs negative word frequency

Most of the words are below 10000 on both Y and X-axis, hence, we can find any meaningful

relation between positive and negative frequency.

The next metric has been taken from Jason Kessler's talk in Pydata 2017 in Seattle, where he

introduced Scatter text.

If a word appears more in one class as compared to the other, we can use it as a measure of how

much important the word is to characterise the class. Let's call it posrate.

𝑝𝑜𝑠𝑟𝑎𝑡𝑒=(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)/(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

 Below the data show the scatter text data which calculated from above formula:

Word Negative Positive Total posrate

dividends

0 83 83 1.00000

emailunlimited

0 100 100 1.00000

mileymonday

0 161 161 1.00000

shareholder

1 80 81 0.987654

fuzzball

2 99 101 0.980198

recommends

3 109 112 0.973214

delongeday

6 162 168 0.964286

atcha

3 80 83 0.963855

 Table 8 : Calculated posrate of tweets

Words with highest posrate have 0 frequency in negative class. But the frequency of these words

is quite low to use them as a measure to characterise positive tweets that’s why we use another

metrices which is the frequency a word occurs in the class. This is defined as

𝑝𝑜𝑠𝑓𝑟𝑒𝑞=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/Σ(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

The below table will show both the posfreq and posrate:

posword Negative Positive Total Posrate posfreq

just

64006 62946 126952 0.495825 0.014264

good

29213 62122 91335 0.680155 0.014077

day

41456 48319 89775 0.538223 0.010949

love
17061 47780 64841 0.736879 0.010827

like

41052 37527 78579 0.477570 0.008504

lol

23123 36120

59243 0.609692 0.008185

thanks

5768 34378 40146 0.856324 0.007790

got

38715

32030 70745 0.452753 0.007258

going

33690 30939 64629 0.478717 0.007011

time

27532 30438 57970 0.525065 0.006897

 Table 9: data with posrate and posfreq

Since posfreq is just the frequency scaled over the total sum of the frequency, the rank of

posfreqpct is exactly same as just the positive frequency.

The maximum value from posfreq is 0.01426404088907219 and maximum and minimum value

Are 0 and 1 so we need to come up with a metric which combines posrate and posfreq. The range

of posrate is 0 to 1. The range of posfreq is 0 to ~0.015. If we take the average of posrate and

posfreq, posrate will be too dominant and will not reflect the two metrics properly.

Hence, instead of arithmetic mean, we use harmonic mean. It increases the effect of the small values

and reduces the effect of the larger ones. The harmonic mean H of positive real numbers x1, x2,......

xn is defined as

 H = \frac{n}{Σ_{i=1}^{n}\frac{1}{x_{i}}}

We have added harmonic mean to our previous table which shown us the posfreq and posrate .the

table id shown below:

posword Negative Positive Total Posrate posfreq Pos_hmean

just

64006 62946 126952 0.495825 0.014264 0.027730

good

29213 62122 91335 0.680155 0.014077 0.027584

day

41456 48319 89775 0.538223 0.010949 0.021462

love
17061 47780 64841 0.736879 0.010827 0.021341

like

41052 37527 78579 0.477570 0.008504 0.016710

lol

23123 36120

59243 0.609692 0.008185 0.016153

thanks

5768 34378 40146 0.856324 0.007790 0.015440

got

38715

32030 70745 0.452753 0.007258 0.014287

going

33690 30939 64629 0.478717 0.007011 0.013820

time

27532 30438 57970 0.525065 0.006897 0.013616

 Table 10:table with harmonic mean of posword

The harmonic mean rank seems just like the posfreq rank. Here, the impact of the posfreq

significantly increased and dominated the mean value. Hence, we still can't come to a meaningful

conclusion.

Now, we will try the Cumulative Distribution Function. The cumulative distribution function

(CDF) of a real-valued random variable X, evaluated at x, is the probability that X will take a

value less than or equal to x. Now, we do calculate harmonic mean of these 2 CDF values.

 Table 11:psoword with cumulative distribution function of historic mean

Now we have seen calculation of posrate,posfreq ,hmean and hmaeanofcdfs in of positive words

we have to calculate exact things for the negative words and after both positive and negative

words are combined in table and printed below:

 n
eg

a
ti

v
e

p
o
si

ti
v
e

to
ta

l

p
o
sr

a
te

p
o
sf

re
q

p
o
s_

h
m

e

a
n

p
o
sr

a
te

_

cd
f

p
o
sf

re
q

_

cd
f

p
o
s_

h
m

e

a
n

_
cd

f

n
eg

ra
te

n
eg

fr
eq

n
eg

_
h

m

ea
n

n
eg

ra
te

_

cd
f

n
eg

fr
eq

_

cd
f

n
eg

_
h

m

ea
n

_
cd

f

sa
d

2
7
9
1
1

1
5
1
0

2
9
4
2
1

0
.0

5
1
3
2
4

0
.0

0
0
3
4
2

0
.0

0
0
6
8
0

0
.0

0
2
2
2
1

0
.7

0
7
5
3
5

0
.0

0
4
4
2
8

0
.9

4
8
6
7
6

0
.0

0
6
0
3
8

0
.0

1
2
0
0
0

0
.9

9
7
7
7
9

1
.0

0
0
0
0
0

0
.9

9
8
8
8
8

h
u

rt
s

7
2
0
4

4
5
6

7
6
6
0

0
.0

5
9
5
3

0

0
.0

0
0
1
0

3

0
.0

0
0
2
0

6

0
.0

0
2
6
1

1

0
.5

0
2
9
9

9

0
.0

0
5
1
9

6

0
.9

4
0
4
7

0

0
.0

0
1
5
5

8

0
.0

0
3
1
1

2

0
.9

9
7
3
8

9

0
.9

9
9
6
9

0

0
.9

9
8
5
3

8

 n
eg

a
ti

v
e

p
o
si

ti
v
e

to
ta

l

p
o
sr

a
te

p
o
sf

re
q

p
o
s_

h
m

e

a
n

p
o
sr

a
te

_

cd
f

p
o
sf

re
q

_

cd
f

p
o
s_

h
m

e

a
n

_
cd

f

n
eg

ra
te

n
eg

fr
eq

n
eg

_
h

m

ea
n

n
eg

ra
te

_

cd
f

n
eg

fr
eq

_

cd
f

n
eg

_
h

m

ea
n

_
cd

f

si
ck

1
4
6
2
0

1
4
2
0

1
6
0
4
0

0
.0

8
8
5
2
9

0
.0

0
0
3
2
2

0
.0

0
0
6
4
1

0
.0

0
4
5
3
7

0
.6

9
1
5
3
3

0
.0

0
9
0
1
4

0
.9

1
1
4
7
1

0
.0

0
3
1
6
3

0
.0

0
6
3
0
4

0
.9

9
5
4
6
3

1
.0

0
0
0
0
0

0
.9

9
7
7
2
6

su
ck

s

9
9
0
2

9
8
2

1
0
8
8
4

0
.0

9
0
2
2
4

0
.0

0
0
2
2
3

0
.0

0
0
4
4
4

0
.0

0
4
6
8
1

0
.6

0
8
8
5
9

0
.0

0
9
2
9
1

0
.9

0
9
7
7
6

0
.0

0
2
1
4
2

0
.0

0
4
2
7
4

0
.9

9
5
3
1
9

0
.9

9
9
9
9
9

0
.9

9
7
6
5
3

p
o
o
r

7
3
3
3

7
1
9

8
0
5
2

0
.0

8
9
2
9

5

0
.0

0
0
1
6
3

0
.0

0
0
3
2

5

0
.0

0
4
6
0

2

0
.5

5
6
4
3

3

0
.0

0
9
1
2

8

0
.9

1
0
7
0

5

0
.0

0
1
5
8

6

0
.0

0
3
1
6

7

0
.9

9
5
3
9

8

0
.9

9
9
7
5

7

0
.9

9
7
5
7

3

u
g
h

9
0
5
6

1
0
0
0

1
0
0
5
6

0
.0

9
9
4
4
3

0
.0

0
0
2
2
7

0
.0

0
0
4
5
2

0
.0

0
5
5
4
1

0
.6

1
2
3
8
7

0
.0

1
0
9
8
2

0
.9

0
0
5
5
7

0
.0

0
1
9
5
9

0
.0

0
3
9
1
0

0
.9

9
4
4
5
9

0
.9

9
9
9
9
4

0
.9

9
7
2
1
9

m
is

si
n

g

7
2
8
2

9
9
1

8
2
7
3

0
.1

1
9
7
8
7

0
.0

0
0
2
2
5

0
.0

0
0
4
4
8

0
.0

0
7
9
4
9

0
.6

1
0
6
2
4

0
.0

1
5
6
9
4

0
.8

8
0
2
1
3

0
.0

0
1
5
7
5

0
.0

0
3
1
4
5

0
.9

9
2
0
5
1

0
.9

9
9
7
3
2

0
.9

9
5
8
7
7

h
a
te

1
7
2
0
8

2
6
1
8

1
9
8
2
6

0
.1

3
2
0
4
9

0
.0

0
0
5
9
3

0
.0

0
1
1
8
1

0
.0

0
9
8
0
9

0
.8

6
7
0
3
4

0
.0

1
9
3
9
8

0
.8

6
7
9
5
1

0
.0

0
3
7
2
3

0
.0

0
7
4
1
4

0
.9

9
0
1
9
1

1
.0

0
0
0
0
0

0
.9

9
5
0
7
1

h
ea

d
a
ch

e

5
3
1
7

4
2
1

5
7
3
8

0
.0

7
3

3
7
1

0
.0

0
0

0
9
5

0
.0

0
0

1
9
1

0
.0

0
3

4
1
2

0
.4

9
5

8
6
3

0
.0

0
6

7
7
8

0
.9

2
6

6
2
9

0
.0

0
1

1
5
0

0
.0

0
2

2
9
8

0
.9

9
6

5
8
8

0
.9

9
3

1
4
5

0
.9

9
4

8
6
3

m
is

s

3
0
7
3
7

5
7
1
0

3
6
4
4
7

0
.1

5
6
6
6
6

0
.0

0
1
2
9
4

0
.0

0
2
5
6
7

0
.0

1
4
7
1
7

0
.9

9
6
4
5
7

0
.0

2
9
0
0
5

0
.8

4
3
3
3
4

0
.0

0
6
6
4
9

0
.0

1
3
1
9
5

0
.9

8
5
2
8
3

1
.0

0
0
0
0
0

0
.9

9
2
5
8
7

 Table 12: combined result of posrate ,posfreq,hmean,hmean_cdf of both positive and negative words

Now we have calculated the pos_hmean and neg_hmean we have visualized by drawing a plot

where pos_hmean is X-axis and neg_hmean is neg_hmean

 Figure 12:neg_hmean vs pos_hmean plot

After plotting neg_hmean_cdf (X-axis) vs pos_hmean_cdf (Y-axis), we find that if a data point is

near the upper left, it is more positive. And if a data point is near the bottom right, it is more nega

tive.

Now we have same plot using pos_hmean_cdf instead of pos_hmean and the result of graph is

shown below:

 Figure 13: plot of neg_hmeancdf vs pos_neg_hmeancdf

3.2.6 Splitting of Dataset:

We will split the dataset into three sets which will be defined as follows

 Train set: The dataset used for learning

 Development Set: A validation/development dataset is a sample of data held back from

training your model that is used to give an estimate of model skill while tuning model’s

hyperparameters.

 Test Set: The dataset used to assess the performance of a model

Our chosen ratio is 98/1/1 i.e. 98% for the training set, 1% for the development set and 1% for the

testing set.

Using sklearn.model_selection import train_test_split we splited the data using the below code

x =df['text']#define all other columns except the target variable

y = df['sentiment'] #define the target variable

x_train, x_validation_and_test, y_train, y_validation_and_test =

train_test_split(x, y, test_size = 0.02, random_state = 42)

x_validation, x_test, y_validation, y_test = train_test_split(x_

validation_and_test, y_validation_and_test,test_size = 0.5, rando

m_state = 42)

After the splitting the dataset the entries are as follows:

Training set has 1564779 entries, where 49.99 are positive and 50.01 are negative

Validation set has 15967 entries, where 49.82 are positive and 50.18 are negative

Testing set has 15968 entries, where 50.33 are positive and 49.67 are negative

3.3 Feature Extraction:

Feature extraction is the process of building feature vector from a given tweet. Each entry in a fe

ature vector is an integer that has a contribution on attributing a sentiment class to a tweet. This c

ontribution can vary from strong, where the value of a feature entry heavily influences the true se

ntiment class; to negligible, where there is no relationship between feature value and sentiment cl

ass. It is often the job of classification algorithm to identify the dependency strength between feat

ures and classes, making use of strong correlated features and avoiding the use of ‘noisy features .

In our project we have taken two feature Extraction which are known as follows:

3.3.1 Bag of Word or Count Vectorizer: Bag of Words (unigrams) is a set of features where the

frequency of tokens (or in our case, presence of a token) is indicated in a feature vector. From our

study of past work, this feature set was unanimously chosen by researchers to be included in the f

eature vector. An entry in the feature vector is assigned to each unique token found in the labelled

training set. If the respective token occurs in a tweet, it is assigned a binary value of 1 otherwise it

is 0. Note that the grammar structure or ordering of token sequence is not preserved. Instead, only

the independent presence of a token preserved .in this project we taken three types of gram to ana

lyse our result which are as follows: unigram, bigram and trigram .In sklearn we use Count V

ectorizer with the argument n_ranges which help in achieving different grams

3.3.2 Feature Extraction Using TF-IDF:

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence

carrying very little meaningful information about the actual contents of the document. If we were

to feed the direct count data directly to a classifier those very frequent terms would shadow the

frequencies of rarer yet more interesting terms.

Term Frequency measures how frequently a term occurs in a document. Since every document

is different in length, it is possible that a term would appear much more times in long documents

than shorter ones. Thus, the term frequency is often divided by the document length or the total

number of terms in the document as a way of normalization:

𝑇𝐹(𝑡)=Number of times term t appears in a document Total number of terms in the document

Inverse Document Frequency measures how important a term is. While computing TF, all terms

are considered equally important. However, it is known that certain terms, such as "is", "of", and

"that", may appear a lot of times but have little importance. Thus, we need to weigh down the

frequent terms while scale up the rare ones, by computing the following:

𝐼𝐷𝐹(𝑡)=log𝑒Total number of documents Number of documents with term t in it

Combining these two, we get TF-IDF.

𝑇𝐹−𝐼𝐷𝐹(𝑡)=𝑇𝐹(𝑡)×𝐼𝐷𝐹(𝑡)

The higher the TFIDF score, the rarer the term and vice versa.

Tf-idf is computed by sklearn,featureExtracter feature which is tfidfVectorizer which have

various arguments

3.4 Training Classifier:

We have taken textBlob as baseline for the sentimental analysis .it will provide as a point of

reference for our future models.

Textblob provides a common text processing operation like sentiment analysis ,tokenisation etc.

3.4.1 Logistic Regression is first classifier which we will use for training logistic regression is

used to model the probability of certain class it is very efficient and does not requires too many

computational resources that why we use logistic regression classifier.

As we have discussed earlier that we are going to train our model with ten classifiers to compare

the result of these classifier using specific parameters .So to compute these classifiers together

we have taken use of pipeline Pipeline class allows sticking multiple processes into a single

scikit-learn estimator. Classifier used in this progress are described below:

3.4.2 Ridge Classifier: this classifier is mainly use ridge regression for classification of multi

class outputs. Ridge regression simply addresses the problems of ordinary least squares by

imposing penalties on size of the coefficients.

3.4.3 Perceptron :perceptron is one of classifier in package of sklearn.linearmodel . the

perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a

function which can decide whether or not an input, represented by a vector of numbers, belongs

to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its

https://en.wikipedia.org/wiki/Supervised_classification
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Linear_classifier

predictions based on a linear predictor function combining a set of weights with the feature

vector.

It does not require any learning rate and does not have any regularisation .its update its model

only on mistakes.

3.4.4 Passive Aggressive Classifier: The passive-aggressive algorithms are a family of

algorithms for large-scale learning. They are similar to the Perceptron in that they do not require a

learning rate. However, contrary to the Perceptron, they include a regularization parameter C.

3.4.5 SGD Classifier: Stochastic gradient descent is used in large scale learning in text

classification and NLP .its advantage are its efficiency and ease of implementation .it implements

a plain stochastic gradient learning routine which supports different loss functions

3.4.6 Linear Support vector classification :Linear SVC is created from support vector machine

method of machine learning Advantages of using SVM are

Effective in high dimensional spaces.

Still effective in cases where number of dimensions is greater than the number of samples.

Uses a subset of training points in the decision function (called support vectors), so it is also

memory efficient.

Versatile: different Kernel functions can be specified for the decision function. Common kernels

are provided, but it is also possible to specify custom kernels.

3.4.7 K Neighbour Classifier: Neighbors-based classification is a type of instance-based

learning or non-generalizing learning: it does not attempt to construct a general internal model,

but simply stores instances of the training data. Classification is computed from a simple majority

https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Feature_vector
https://scikit-learn.org/stable/modules/svm.html#svm-kernels

vote of the nearest neighbors of each point: a query point is assigned the data class which has the

most representatives within the nearest neighbors of the point

3.4.8 Nearest Centroid: Nearest Centroid classifier is a simple algorithm that represent each class

by the centroid of its members. In effect, this makes it similar to the label updating phase of the

sklearn.cluster.KMeans algorithm. It also has no parameters to choose, making it a good baseline

classifier.

3.4.9 Bernoulli Naive Bayes: implements the naive Bayes training and classification algorithms

for data that is distributed according to multivariate Bernoulli distributions; i.e., there may be

multiple features but each one is assumed to be a binary-valued (Bernoulli, Boolean) variable.

The decision rule for Bernoulli naive Bayes is based on

P(x_i \mid y) = P(i \mid y) x_i + (1 - P(i \mid y)) (1 - x_i)

3.4.10 Multinomial NB: implements the naive Bayes algorithm for multinomially distributed

data, and is one of the two classic naive Bayes variants used in text classification (where the data

are typically represented as word vector counts, although tf-idf vectors are also known to work

well in practice).

3.4.11.AdaBoostClassifier: The core principle of AdaBoost is to fit a sequence of weak learners

(i.e., models that are only slightly better than random guessing, such as small decision trees) on

repeatedly modified versions of the data. The predictions from all of them are then combined

through a weighted majority vote (or sum) to produce the final prediction. The data modifications

at each so-called boosting iteration consist of applying weights w1,w2,…wn to each of the

training samples. Initially, those weights are all set to , so that the first step simply trains a weak

learner on the original data. For each successive iteration, the sample weights are individually

modified and the learning algorithm is reapplied to the reweighted data. At a given step, those

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

training examples that were incorrectly predicted by the boosted model induced at the previous

step have their weights increased, whereas the weights are decreased for those that were predicted

correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing

influence. Each subsequent weak learner is thereby forced to concentrate on the examples that are

missed by the previous ones in the sequence

3.5 Evaluation Metrices:

for our project we have taken four parameter which were previously described in this report which

are F1-score ,precision ,accuracy and Recall.

Accuracy :accuracy simply in machine learning means division between the number of correct

predictions by total number of input samples

Precision : Precision talks about how precise/accurate your model is out of those predicted positive,

how many of them are actual positive.

 Figure 14: formula of precision

Precision is a good measure to determine, when the costs of False Positive is high.

Recall: Recall is defined by the below formula. Recall actually calculates how many of the Actual

Positives our model capture through labelling it as Positive (True Positive). Applying the same

understanding, we know that Recall shall be the model metric we use to select our best model

when there is a high cost associated with False Negative.

 Figure 15:formula of recall

F1-score: the F1 score (also F-score or F-measure) is a measure of a test's accuracy. It considers

both the precision p and the recall r of the test to compute the score: p is the number of correct

positive results divided by the number of all positive results returned by the classifier, and r is the

number of correct positive results divided by the number of all relevant samples (all samples that

should have been identified as positive).

The F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its best

value at 1 (perfect precision and recall)

 Figure 16:formula of f1-score

4.Experiment:

To achieve the target of the project we have implemented various step in implementation which

will be described in this Experiment section starting with the training of feature vectors using

various algorithms to find the best algorithm for sentimental analysis .Together with

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Precision_and_recall

development set ,testing set and training set first of experiment performed will be discussed

below :

As previously discussed, we have taken textBlob as a baseline so performing sentimental

analysis function on dataset, we have applied some line of code to achieve accuracy score

conmat = np.array(confusion_matrix(y_validation, tbpred,

labels=[1,0]))

confusion = pd.DataFrame(conmat, index=['positive', 'negative'],

columns=['predicted_positive', 'predicted_negative'])

print("Accuracy score: {0:.2f}

%".format(accuracy_score(y_validation, tbpred)*100))

After applying implementation of code for accuracy score of model is 61.41 % as well as other

parameter results are :

Confusion Matrix

 predicted_positive predicted_negative

positive 7136 818

negative 5344 2669

Classification report consists of our Evaluation

Classification Report

 precision recall f1-score support

 0 0.77 0.33 0.46 8013

 1 0.57 0.90 0.70 7954

 micro avg 0.61 0.61 0.61 15967

 macro avg 0.67 0.62 0.58 15967

weighted avg 0.67 0.61 0.58 15967

We have created function which will help in calculating nfeatures checker to find the maximum

accuracy at n feature

 Figure 17 :function of nfeatures_accuracy_checker

After doing the sentiment analysis using textBlob now we use bag of word for nfeature accuracy

checker with various ngram for examples :Unigram without Stop words ,unigram with stop word

without custom stop word after calculating we have created plot to showcase the result in below

figure:

 Figure 18:Unigram accuracy with or without strop words

The above graph shows the removal of stopword does not help in improvement of the model. In

this setting, keeping the stopwords improve the model performance.

Now we have decided from our calculation that keeping the stopword helps in attaining the

maximum result for the model now we calculate the nfeatureCheckers for bigram and trigram

After calculating for uni ,bi and tri gram the below figure will show the result :

 Figure 19:N-gram(1-3) accuracy

Here, unigram has maximum accuracy at 100000 features, bigram has maximum accuracy at 70000

features and trigram has maximum accuracy at 80000 features.

So, we calculate our result of model using logistic regression using the above result which shows

maximum accuracy at specific features and find the result in our expected parameter

Result of Unigram at 100000 feature using Count Vectorizer with Logistic Regression model

Null accuracy: 50.18%

Accuracy: 80.28%

Model is 30.10% more accurate than null accuracy

--

CONFUSION MATRIX

 predicted_negative predicted_positive

negative 2669 5344

positive 818 7136

--

 precision recall f1-score support

 negative 0.81 0.79 0.80 8013

 positive 0.79 0.81 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Result of bigram at 70000 feature using Countvectorizer with Logistic Regression model

Null accuracy: 50.18%

Accuracy: 82.21%

Model is 32.02% more accurate than null accuracy

--

CONFUSION MATRIX

 predicted_negative predicted_positive

negative 2669 5344

positive 818 7136

--

 precision recall f1-score support

 negative 0.83 0.81 0.82 8013

 positive 0.81 0.83 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Trigram at 80000 features using Countvectorizer with Logistic Regression model

Null accuracy: 50.18%

Accuracy: 82.38%

Model is 32.19% more accurate than null accuracy

--

CONFUSION MATRIX

 predicted_negative predicted_positive

negative 2669 5344

positive 818 7136

--

 precision recall f1-score support

 negative 0.83 0.81 0.82 8013

 positive 0.82 0.83 0.83 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

So now we have seen the result of Count Vectorizer using logistic regression. Now we apply other

classification algorithms on these feature vectors for this we have created function which

automatically train the set and return classification report.

So, to calculate to train the model using classification algorithm we have come to conclusion that

to create a function for this scenario

def classifier_comparator(vectorizer = cvec, n_features=10000,

stop_words=None, ngram_range=(1,1), classifier=zipped_clf):

 result = []

 vectorizer.set_params(stop_words=stop_words, ngram_range=ngram_range,

max_features=n_features)

 for n, c in classifier:

 pipeline = Pipeline([('vectorizer', vectorizer), ('classifier', c)])

 print('Validation result for {}'.format(n), c)

 clf_accuracy, ttime = accuracy_summary(pipeline, x_train,

y_train,x_validation, y_validation)

 result.append((n, clf_accuracy, ttime))

 return result

Using the above function, we get the result of classification comparator trigram using

CountVectorizor with max_feature argument at 80000 and the result is as follows:

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0,

class_weight=None, copy_X=True, fit_intercept=True,

 max_iter=None, normalize=False, random_state=None,

 solver='auto', tol=0.001)

Null accuracy: 50.18%

Accuracy: 81.86%

Model is 31.67% more accurate than null accuracy

Train and test time: 580.60s

--

 precision recall f1-score support

 0 0.83 0.80 0.82 8013

 1 0.81 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Logistic Regression LogisticRegression(C=1.0,

class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=None, solver='warn', tol=0.0001, verbose=0,

 warm_start=False)

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver

will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

 FutureWarning)

Null accuracy: 50.18%

Accuracy: 82.38%

Model is 32.19% more accurate than null accuracy

Train and test time: 611.43s

--

 precision recall f1-score support

 0 0.83 0.81 0.82 8013

 1 0.82 0.83 0.83 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None,

early_stopping=False, eta0=1.0,

 fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,

 penalty=None, random_state=0, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 75.76%

Model is 25.57% more accurate than null accuracy

Train and test time: 750.20s

--

 precision recall f1-score support

 0 0.77 0.73 0.75 8013

 1 0.74 0.78 0.76 7954

 accuracy 0.76 15967

 macro avg 0.76 0.76 0.76 15967

weighted avg 0.76 0.76 0.76 15967

Validation result for Passive-Agressive Classifier

PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None,

 early_stopping=False, fit_intercept=True,

 loss='hinge', max_iter=1000, n_iter_no_change=5,

 n_jobs=None, random_state=None, shuffle=True,

 tol=0.001, validation_fraction=0.1, verbose=0,

 warm_start=False)

Null accuracy: 50.18%

Accuracy: 75.93%

Model is 25.75% more accurate than null accuracy

Train and test time: 186.06s

--

 precision recall f1-score support

 0 0.73 0.82 0.77 8013

 1 0.79 0.70 0.74 7954

 accuracy 0.76 15967

 macro avg 0.76 0.76 0.76 15967

weighted avg 0.76 0.76 0.76 15967

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001,

average=False, class_weight=None,

 early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,

 l1_ratio=0.15, learning_rate='optimal', loss='hinge',

 max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2',

 power_t=0.5, random_state=None, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 81.39%

Model is 31.20% more accurate than null accuracy

Train and test time: 183.68s

--

 precision recall f1-score support

 0 0.83 0.79 0.81 8013

 1 0.80 0.84 0.82 7954

 accuracy 0.81 15967

 macro avg 0.81 0.81 0.81 15967

weighted avg 0.81 0.81 0.81 15967

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True,

fit_intercept=True,

 intercept_scaling=1, loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,

 verbose=0)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929:

ConvergenceWarning: Liblinear failed to converge, increase the number of

iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 82.06%

Model is 31.88% more accurate than null accuracy

Train and test time: 827.04s

--

 precision recall f1-score support

 0 0.84 0.80 0.82 8013

 1 0.81 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for L1 based LinearSVC Pipeline(memory=None,

 steps=[('feature_selection',

 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None,

 dual=False,

 fit_intercept=True,

 intercept_scaling=1,

 loss='squared_hinge',

 max_iter=1000,

 multi_class='ovr',

 penalty='l1',

 random_state=None,

 tol=0.0001, verbose=0),

 max_features=None, norm_order=1,

prefit=False,

 threshold=None)),

 ('classification',

 LinearSVC(C=1.0, class_weight=None, dual=True,

 fit_intercept=True, intercept_scaling=1,

 loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None,

 tol=0.0001, verbose=0))],

 verbose=False)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929:

ConvergenceWarning: Liblinear failed to converge, increase the number of

iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 82.14%

Model is 31.95% more accurate than null accuracy

Train and test time: 1220.14s

--

 precision recall f1-score support

 0 0.84 0.80 0.82 8013

 1 0.81 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size=30,

metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=5, p=2,

 weights='uniform')

Null accuracy: 50.18%

Accuracy: 71.87%

Model is 21.69% more accurate than null accuracy

Train and test time: 1968.04s

--

 precision recall f1-score support

 0 0.75 0.66 0.70 8013

 1 0.69 0.78 0.73 7954

 accuracy 0.72 15967

 macro avg 0.72 0.72 0.72 15967

weighted avg 0.72 0.72 0.72 15967

Validation result for Nearest Centroid NearestCentroid(metric='euclidean',

shrink_threshold=None)

Null accuracy: 50.18%

Accuracy: 63.78%

Model is 13.60% more accurate than null accuracy

Train and test time: 287.85s

--

 precision recall f1-score support

 0 0.66 0.57 0.61 8013

 1 0.62 0.70 0.66 7954

 accuracy 0.64 15967

 macro avg 0.64 0.64 0.64 15967

weighted avg 0.64 0.64 0.64 15967

Validation result for Multinomial NB MultinomialNB(alpha=1.0,

class_prior=None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 79.73%

Model is 29.55% more accurate than null accuracy

Train and test time: 251.46s

--

 precision recall f1-score support

 0 0.79 0.81 0.80 8013

 1 0.80 0.79 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0,

class_prior=None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 79.38%

Model is 29.19% more accurate than null accuracy

Train and test time: 259.98s

--

 precision recall f1-score support

 0 0.81 0.77 0.79 8013

 1 0.78 0.82 0.80 7954

 accuracy 0.79 15967

 macro avg 0.79 0.79 0.79 15967

weighted avg 0.79 0.79 0.79 15967

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R',

base_estimator=None, learning_rate=1.0,

 n_estimators=50, random_state=None)

Null accuracy: 50.18%

Accuracy: 70.23%

Model is 20.05% more accurate than null accuracy

Train and test time: 540.20s

--

 precision recall f1-score support

 0 0.74 0.62 0.68 8013

 1 0.67 0.78 0.72 7954

 accuracy 0.70 15967

 macro avg 0.71 0.70 0.70 15967

weighted avg 0.71 0.70 0.70 15967

Now we have seen in figure that bigram have its maximum accuracy at the 70000 features so we

classification comparator on bigram of bag of words at maxfeatures equals to 70000

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0, class_weight

=None, copy_X=True, fit_intercept=True,

 max_iter=None, normalize=False, random_state=None,

 solver='auto', tol=0.001)

Null accuracy: 50.18%

Accuracy: 81.77%

Model is 31.59% more accurate than null accuracy

Train and test time: 737.55s

--

 precision recall f1-score support

 0 0.83 0.80 0.81 8013

 1 0.80 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Logistic Regression LogisticRegression(C=1.0, class_weig

ht=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=None, solver='warn', tol=0.0001, verbose=0,

 warm_start=False)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:43

2: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a

solver to silence this warning.

 FutureWarning)

Null accuracy: 50.18%

Accuracy: 82.21%

Model is 32.02% more accurate than null accuracy

Train and test time: 843.42s

--

 precision recall f1-score support

 0 0.83 0.81 0.82 8013

 1 0.81 0.83 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None, e

arly_stopping=False, eta0=1.0,

 fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,

 penalty=None, random_state=0, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 73.78%

Model is 23.59% more accurate than null accuracy

Train and test time: 95.94s

--

 precision recall f1-score support

 0 0.79 0.64 0.71 8013

 1 0.70 0.83 0.76 7954

 accuracy 0.74 15967

 macro avg 0.75 0.74 0.74 15967

weighted avg 0.75 0.74 0.74 15967

Validation result for Passive-Agressive Classifier PassiveAggressiveClassifier

(C=1.0, average=False, class_weight=None,

 early_stopping=False, fit_intercept=True,

 loss='hinge', max_iter=1000, n_iter_no_change=5,

 n_jobs=None, random_state=None, shuffle=True,

 tol=0.001, validation_fraction=0.1, verbose=0,

 warm_start=False)

Null accuracy: 50.18%

Accuracy: 75.54%

Model is 25.36% more accurate than null accuracy

Train and test time: 91.51s

--

 precision recall f1-score support

 0 0.74 0.78 0.76 8013

 1 0.77 0.73 0.75 7954

 accuracy 0.76 15967

 macro avg 0.76 0.76 0.76 15967

weighted avg 0.76 0.76 0.76 15967

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001,

average=False, class_weight=None,

 early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,

 l1_ratio=0.15, learning_rate='optimal', loss='hinge',

 max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2',

 power_t=0.5, random_state=None, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 80.85%

Model is 30.67% more accurate than null accuracy

Train and test time: 89.56s

--

 precision recall f1-score support

 0 0.83 0.78 0.80 8013

 1 0.79 0.84 0.81 7954

 accuracy 0.81 15967

 macro avg 0.81 0.81 0.81 15967

weighted avg 0.81 0.81 0.81 15967

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True,

fit_intercept=True,

 intercept_scaling=1, loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,

 verbose=0)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: Convergenc

eWarning: Liblinear failed to converge, increase the number of iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 81.81%

Model is 31.62% more accurate than null accuracy

Train and test time: 748.96s

--

 precision recall f1-score support

 0 0.84 0.79 0.81 8013

 1 0.80 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for L1 based LinearSVC Pipeline(memory=None,

 steps=[('feature_selection',

 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None,

 dual=False,

 fit_intercept=True,

 intercept_scaling=1,

 loss='squared_hinge',

 max_iter=1000,

 multi_class='ovr',

 penalty='l1',

 random_state=None,

 tol=0.0001, verbose=0),

 max_features=None, norm_order=1, prefit=False

,

 threshold=None)),

 ('classification',

 LinearSVC(C=1.0, class_weight=None, dual=True,

 fit_intercept=True, intercept_scaling=1,

 loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None,

 tol=0.0001, verbose=0))],

 verbose=False)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: Convergenc

eWarning: Liblinear failed to converge, increase the number of iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 81.84%

Model is 31.66% more accurate than null accuracy

Train and test time: 1018.56s

--

 precision recall f1-score support

 0 0.84 0.79 0.81 8013

 1 0.80 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size

=30, metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=5, p=2,

 weights='uniform')

Null accuracy: 50.18%

Accuracy: 72.13%

Model is 21.95% more accurate than null accuracy

Train and test time: 2430.90s

--

 precision recall f1-score support

 0 0.76 0.66 0.70 8013

 1 0.69 0.79 0.74 7954

 accuracy 0.72 15967

 macro avg 0.73 0.72 0.72 15967

weighted avg 0.73 0.72 0.72 15967

Validation result for Nearest Centroid NearestCentroid(metric='euclidean',

shrink_threshold=None)

Null accuracy: 50.18%

Accuracy: 63.70%

Model is 13.52% more accurate than null accuracy

Train and test time: 158.58s

--

 precision recall f1-score support

 0 0.66 0.57 0.61 8013

 1 0.62 0.70 0.66 7954

 accuracy 0.64 15967

 macro avg 0.64 0.64 0.64 15967

weighted avg 0.64 0.64 0.64 15967

Validation result for Multinomial NB MultinomialNB(alpha=1.0, class_prior=

None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 79.78%

Model is 29.59% more accurate than null accuracy

Train and test time: 126.78s

--

 precision recall f1-score support

 0 0.79 0.81 0.80 8013

 1 0.80 0.79 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0, cl

ass_prior=None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 79.67%

Model is 29.49% more accurate than null accuracy

Train and test time: 123.32s

--

 precision recall f1-score support

 0 0.81 0.78 0.79 8013

 1 0.79 0.81 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R', bas

e_estimator=None, learning_rate=1.0,

 n_estimators=50, random_state=None)

Null accuracy: 50.18%

Accuracy: 70.23%

Model is 20.05% more accurate than null accuracy

Train and test time: 556.87s

--

 precision recall f1-score support

 0 0.74 0.62 0.68 8013

 1 0.67 0.78 0.72 7954

 accuracy 0.70 15967

 macro avg 0.71 0.70 0.70 15967

weighted avg 0.71 0.70 0.70 15967

Now we have seen bag of words feature vectors results then our next experiment is on Tf-idf

feature Extraction as discussed earlier in feature Extraction section .All the procedures used in

experiment of bag of words are followed in case of Tf-idf So we performed the

nfeature_accuracy_checker function on unigram, bigram and trigram using tfidf feature extraction

and outcome figure is as follows:

 Figure 20:N-gram (1-3) accuracy

Hence, we can clearly see that using bigram and trigrams boosts the performance of the model in

Count Vectorizer and Tfidf Vectorizer both. Also, for bigram and trigram, Tfidf Vectorizer gives

better performance than Count Vectorizer. Bigram Tfidf Vectorizer at 90000 features gives the

highest validation accuracy at 82.45%.

After applying classification comparator, the following outcome came:

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0,

class_weight=None, copy_X=True, fit_intercept=True,

 max_iter=None, normalize=False, random_state=None,

 solver='auto', tol=0.001)

Null accuracy: 50.18%

Accuracy: 82.29%

Model is 32.10% more accurate than null accuracy

Train and test time: 177.09s

--

 precision recall f1-score support

 0 0.83 0.81 0.82 8013

 1 0.81 0.84 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Logistic Regression LogisticRegression(C=1.0,

class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class='warn', n_jobs=None, penalty='l2',

 random_state=None, solver='warn', tol=0.0001, verbose=0,

 warm_start=False)

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver

will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

 FutureWarning)

Null accuracy: 50.18%

Accuracy: 82.43%

Model is 32.24% more accurate than null accuracy

Train and test time: 178.62s

--

 precision recall f1-score support

 0 0.83 0.82 0.82 8013

 1 0.82 0.83 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None,

early_stopping=False, eta0=1.0,

 fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,

 penalty=None, random_state=0, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 76.39%

Model is 26.20% more accurate than null accuracy

Train and test time: 113.19s

--

 precision recall f1-score support

 0 0.77 0.76 0.76 8013

 1 0.76 0.76 0.76 7954

 accuracy 0.76 15967

 macro avg 0.76 0.76 0.76 15967

weighted avg 0.76 0.76 0.76 15967

Validation result for Passive-Agressive Classifier

PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None,

 early_stopping=False, fit_intercept=True,

 loss='hinge', max_iter=1000, n_iter_no_change=5,

 n_jobs=None, random_state=None, shuffle=True,

 tol=0.001, validation_fraction=0.1, verbose=0,

 warm_start=False)

Null accuracy: 50.18%

Accuracy: 79.86%

Model is 29.68% more accurate than null accuracy

Train and test time: 115.51s

--

 precision recall f1-score support

 0 0.80 0.81 0.80 8013

 1 0.80 0.79 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001,

average=False, class_weight=None,

 early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,

 l1_ratio=0.15, learning_rate='optimal', loss='hinge',

 max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2',

 power_t=0.5, random_state=None, shuffle=True, tol=0.001,

 validation_fraction=0.1, verbose=0, warm_start=False)

Null accuracy: 50.18%

Accuracy: 78.71%

Model is 28.53% more accurate than null accuracy

Train and test time: 111.60s

--

 precision recall f1-score support

 0 0.80 0.77 0.78 8013

 1 0.78 0.80 0.79 7954

 accuracy 0.79 15967

 macro avg 0.79 0.79 0.79 15967

weighted avg 0.79 0.79 0.79 15967

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True,

fit_intercept=True,

 intercept_scaling=1, loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,

 verbose=0)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929:

ConvergenceWarning: Liblinear failed to converge, increase the number of

iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 82.26%

Model is 32.08% more accurate than null accuracy

Train and test time: 838.67s

--

 precision recall f1-score support

 0 0.82 0.83 0.82 8013

 1 0.83 0.81 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for L1 based LinearSVC Pipeline(memory=None,

 steps=[('feature_selection',

 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None,

 dual=False,

 fit_intercept=True,

 intercept_scaling=1,

 loss='squared_hinge',

 max_iter=1000,

 multi_class='ovr',

 penalty='l1',

 random_state=None,

 tol=0.0001, verbose=0),

 max_features=None, norm_order=1,

prefit=False,

 threshold=None)),

 ('classification',

 LinearSVC(C=1.0, class_weight=None, dual=True,

 fit_intercept=True, intercept_scaling=1,

 loss='squared_hinge', max_iter=1000,

 multi_class='ovr', penalty='l2', random_state=None,

 tol=0.0001, verbose=0))],

 verbose=False)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929:

ConvergenceWarning: Liblinear failed to converge, increase the number of

iterations.

 "the number of iterations.", ConvergenceWarning)

Null accuracy: 50.18%

Accuracy: 82.41%

Model is 32.22% more accurate than null accuracy

Train and test time: 989.29s

--

 precision recall f1-score support

 0 0.82 0.83 0.83 8013

 1 0.83 0.81 0.82 7954

 accuracy 0.82 15967

 macro avg 0.82 0.82 0.82 15967

weighted avg 0.82 0.82 0.82 15967

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size=30,

metric='minkowski',

 metric_params=None, n_jobs=None, n_neighbors=5, p=2,

 weights='uniform')

Null accuracy: 50.18%

Accuracy: 62.55%

Model is 12.37% more accurate than null accuracy

Train and test time: 1872.75s

--

 precision recall f1-score support

 0 0.69 0.45 0.55 8013

 1 0.59 0.80 0.68 7954

 accuracy 0.63 15967

 macro avg 0.64 0.63 0.61 15967

weighted avg 0.64 0.63 0.61 15967

Validation result for Nearest Centroid NearestCentroid(metric='euclidean',

shrink_threshold=None)

Null accuracy: 50.18%

Accuracy: 72.55%

Model is 22.36% more accurate than null accuracy

Train and test time: 120.74s

--

 precision recall f1-score support

 0 0.72 0.74 0.73 8013

 1 0.73 0.71 0.72 7954

 accuracy 0.73 15967

 macro avg 0.73 0.73 0.73 15967

weighted avg 0.73 0.73 0.73 15967

Validation result for Multinomial NB MultinomialNB(alpha=1.0,

class_prior=None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 80.15%

Model is 29.97% more accurate than null accuracy

Train and test time: 106.64s

--

 precision recall f1-score support

 0 0.80 0.81 0.80 8013

 1 0.81 0.79 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0,

class_prior=None, fit_prior=True)

Null accuracy: 50.18%

Accuracy: 79.91%

Model is 29.73% more accurate than null accuracy

Train and test time: 106.89s

--

 precision recall f1-score support

 0 0.81 0.78 0.80 8013

 1 0.79 0.81 0.80 7954

 accuracy 0.80 15967

 macro avg 0.80 0.80 0.80 15967

weighted avg 0.80 0.80 0.80 15967

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R',

base_estimator=None, learning_rate=1.0,

 n_estimators=50, random_state=None)

Null accuracy: 50.18%

Accuracy: 70.23%

Model is 20.05% more accurate than null accuracy

Train and test time: 765.85s

--

 precision recall f1-score support

 0 0.75 0.62 0.68 8013

 1 0.67 0.79 0.72 7954

 accuracy 0.70 15967

 macro avg 0.71 0.70 0.70 15967

weighted avg 0.71 0.70 0.70 15967

5. Result:

The result obtained from these Experiment are kept in form of table as we have used two feature

vector which are bag of words and term frequency and inverse Document frequency and it showed

the which ngram is best for the sentimental model and three tables below showcase our results

Classification
algorithm

Negative or
positive

Accuracy F1-
score

precision recall

Ridge Classifier Negative 82.29% 0.82 0.83 0.81

positive 0.82 0.81 0.84

Logistic Regression Negative 82.43% 0.82 0.83 0.82

positive 0.82 0.82 0.83

Perceptron Negative 76.39% 0.76 0.77 0.76

positive 0.76 0.76 0.76

Passive-Aggressive
Classifier

Negative 79.86% 0.80 0.80 0.81

positive 0.80 0.80 0.79

Stochastic Gradient
Descent

Negative 78.71% 0.78 0.80 0.77

positive 0.79 0.78 0.80

LinearSVC Negative 82.26% 0.82 0.82 0.83

positive 0.82 0.83 0.81

L1 based LinearSVC Negative 82.41% 0.83 0.82 0.83

positive 0.82 0.83 0.81

KNN
KNeighborsClassifier

Negative 62.55% 0.55 0.69 0.45

positive 0.68 0.59 0.80

Nearest Centroid Negative 72.55% 0.73 0.72 0.74

positive 0.72 0.73 0.71

Bernoulli NB Negative 79.91% 0.80 0.81 0.78

positive 0.80 0.79 0.81

AdaBoostClassifier Negative 70.23% 0.68 0.75 0.62

positive 0.72 0.67 0.79

Multinomial NB Negative 80.15% 0.80 0.80 .81

positive 0.80 0.81 0.79

 Table 13: Result of performance of Classifier onTf-idf bigram

Classification
algorithm

Negative or
positive

Accuracy F1-
score

precision recall

Ridge Classifier Negative 81.86% 0.82 0.83 0.80

positive 0.82 0.81 0.84

Logistic Regression Negative 82.38% 0.82 0.83 0.81

positive 0.83 0.82 0.83

Perceptron Negative 75.76% 0.75 0.77 0.73

positive 0.76 0.74 0.78

Passive-Aggressive
Classifier

Negative 75.93% 0.77 0.73 0.82

positive 0.74 0.79 0.70

Stochastic Gradient
Descent

Negative 81.39% 0.81 0.83 0.79

positive 0.82 0.80 0.84

LinearSVC Negative 82.06% 0.82 0.84 0.80

positive 0.82 0.81 0.84

L1 based LinearSVC Negative 82.14% 0.82 0.84 0.80

positive 0.82 0.81 0.84

KNN
KNeighborsClassifier

Negative 71.87% 0.70 0.75 0.66

positive 0.73 0.69 0.78

Nearest Centroid Negative 63.78% 0.61 0.66 0.57

positive 0.66 0.62 0.70

Bernoulli NB Negative 79.38% 0.79 0.81 0.77

positive 0.80 0.78 0.82

AdaBoostClassifier Negative 70.23% 0.68 0.74 0.62

positive 0.72 0.67 0.78

Multinomial NB Negative 79.73% 0.80 0.79 .81

positive 0.80 0.80 0.79

Table 14 : Result of performance of Classifier bag of words trigram

Classification
algorithm

Negative or
positive

Accuracy F1-
score

precision recall

Ridge Classifier Negative 81.77%

0.81 0.83 0.80

positive 0.82 0.80 0.84

Logistic Regression Negative 82.21% 0.82 0.83 0.81

positive 0.82 0.81 0.83

Perceptron Negative 73.78% 0.71 0.79 0.64

positive 0.76 0.70 0.83

Passive-Aggressive
Classifier

Negative 75.54% 0.76 0.74 0.78

positive 0.75 0.77 0.73

Stochastic Gradient
Descent

Negative 80.85% 0.80 0.83 0.78

positive 0.81 0.79 0.84

LinearSVC Negative 81.81% 0.81 0.84 0.79

positive 0.82 0.80 0.84

L1 based LinearSVC Negative 81.84% 0.81 0.84 0.79

positive 0.82 0.80 0.84

KNN
KNeighborsClassifier

Negative 72.13% 0.70 0.76 0.66

positive 0.74 0.69 0.79

Nearest Centroid Negative 63.70% 0.61 0.66 0.57

positive 0.66 0.62 0.70

Bernoulli NB Negative 79.67% 0.79 0.81 0.78

positive 0.80 0.79 0.81

AdaBoostClassifier Negative 70.23% 0.68 0.74 0.62

positive 0.72 0.67 0.78

Multinomial NB Negative 79.78% 0.80 0.79 .81

positive 0.80 0.80 0.79

 Table 15: Result of performance of Classifier bag of words bigram

Above table show the result of classifier performance on various feature vectors with performance

parameter results

Below diagrams shows that how the accuracy of the of all the classification fared they have been

seen using bar plot where x axis is defined as Classification algorithms and Accuracy of classifier

As we have discussed before that we have created three different table in our results so we have

three different bar graph to show case the result and then we have the a figure combined to show

case the result

 Figure 21:bar plot of accuracy vs classifier figure 22:bar plot of Accuracy vs

 Classifier in bgw trigram

 Figure 23:bar plot of Accuracy vs classifier of tf-idf bigram

 Figure 24:line plot of accuracy of classifers

 Figure 25:line plot of accuracy of bgw trigram of classifiers

 Figure 26:Accuracy of tf-idf bigram

 Figure 27: Accuracy of different Feature Extraction

6.Conclusion:

This paper addresses the task of sentimental analysis by developing using machine learning

algorithm our system analyses the tweets or comments based on several features to determine the

features to select feature extraction and classification my further work will be dependent feature

combination to find the more accurate result of performance

7.Future Scopes:

my further work will be dependent feature combination to find the more accurate result of

performance

8.References:

[1]. Efthymios Koulompis, Theresa Wilson, Johanna Moore (2011), “ Twitter Sentiment

Analysis: The Good the Bad and the OMG!,” in: The fifth International AAAI Conference on

Weblogs and Social Media.

 [2]. G. A. Miller, R. Beckwith, C. D. Fell Baum, D. Gross, K.Miller. 1990. WordNet: An online

lexical database. Int. J. Lexicographic. 3, 4, pp. 235–244

[3]. Saif, Hassan; He, Yulan and Alani, Harith (2012), “Semantic sentiment analysis of twitter,”

in: The 11th International Semantic Web Conference (ISWC 2012), 11-15 November 2012,

Boston, MA, USA.

[4]. Alec Go, Richa Bhayani and Lei Huaug, Stanford university(2009), “Twitter Sentiment

Classification using Distant Supervision ,” in: The Third International Conference on Data

Analytics.

[5]. A. Kumar and T.M. Sebastian, "Machine Learning assisted Sentiment Analysis". Proceedings

of International Conference on computer science and engineering (ICCSE'2012), 2012.

[6]. Bifet and E. Frank, "Sentiment Knowledge Discovery In Twitter Streaming Data", In

proceedings of 13th International Conference of Discovery Science, Berlin, Germany : Springer,

2010

[7]. Bo Pang and Lillian Lee, Opinion mining and sentiment Analysis

 [8]. Tom M. Mitchell, generative and discriminative classifiers: Naive Bayes and Logistic

Regression

[9]. Christopher M. Bishop, Pattern Recognition and Machine Learning

[10] Rosenthal, Sara, Noura Farra, and Preslav Nakov. "SemEval-2017 task 4: Sentiment analysis

in Twitter." Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-

2017). 2017.

 [11] Pontiki, Maria, et al. "SemEval-2016 task 5: Aspect based sentiment analysis." Preworkshop

on Semantic Evaluation (SemEval-2016). Association for Computational Linguistics, 2016.

 [12] Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment

classification using machine learning techniques." Proceedings of the ACL-02 conference on

Empirical methods in natural language processing-Volume 10. Association for Computational

Linguistics, 2002.

 [13] Go, Alec, Richa Bhayani, and Lei Huang. "Twitter sentiment classification using distant

supervision." CS224N Project Report, Stanford 1.2009 (2009)

 [14] Mohammad, Saif M., Svetlana Kiritchenko, and Xiao Dan Zhu. "NRC- Canada: Building

the state-of-the-art in sentiment analysis of tweets." arXiv preprint arXiv:1308.6242 (2013). [15]

Yang, Ang, et al. "Enhanced Twitter Sentiment Analysis by Using Feature Selection and

Combination." Security and Privacy in Social Networks and Big Data (SocialSec), 2015

International Symposium on. IEEE, 2015.

[16] Fang, Xing, and Justin Zhan. "Sentiment analysis using product review data." Journal of Big

Data 2.1 (2015): 5.

[17] Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebastiani. "SentiWordNet 3.0: An

Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining." In LREC, vol. 10, pp.

2200-2204. 2010.

[18] Hutto, Clayton J., and Eric Gilbert. "Vader: A parsimonious rule-based model for sentiment

analysis of social media text." In Eighth international AAAI conference on weblogs and social

media. 2014.

[19] G. H. John and P. Langley, “Estimating continuous distributions in Bayesian classifiers,” in

Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. Morgan

Kaufmann Publishers Inc., 1995, pp. 338–345.

[20] Zhu, Shenghuo, et al. "Multi-labelled classification using maximum entropy method.

“Proceedings of the 28th annual international ACM SIGIR conference on Research and

development in information retrieval, 2005.

[21]. Mark Lutz , Programming python 4th Edition Trainingdata.zip Available at : http://help.

sentiment140. com/for-students

[22] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant

supervision,” CS224N Project Report, Stanford, pp. 1–12, 2009

