
 

 
 

 

 

COMPARISATION OF RESULTS OF SENTIMENTAL 

ANALYSIS USING DIFFERENT MACHINE LEARNING 

 ALGORITHMS 
 

 
 

 

A Report for the Evaluation 3 of Project 2 
 

 

Submitted by AKASH 

YADAV 

(1613101083) 

 

 
 

in partial fulfilment for the award of the degree 

of 

 

 

BACHELOR OF TECHNOLOGY 
 

IN 
 

COMPUTER SCIENCE AND ENGINEERING 

 

 

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING 
 
 

 

Under the Supervision of 

Dr. RAVINDER AHUJA ,Assistant Professor 
 

 

APRIL / MAY- 2020



 

 
 

 

SCHOOL OF COMPUTING AND SCIENCE AND 

ENGINEERING 
 

BONAFIDE CERTIFICATE 
 
 
 

 
Certified    that    this   project report   “COMPARISON    OF RESULTS    OF 

SENTIMENTAL ANALYSIS  USING DIFFERENT MACHINE LEARNING 

ALGORTIHMS”   is the bonafide work of “AKASH YADAV (1613101083)” who 

carried out    the project work under my supervision. 

 
 
 
 
 
 
 
 

SIGNATURE OF HEAD 
School of Computing Science & 

Engineering 

SIGNATURE OF SUPERVISOR 

School of Computing Science & 

Engineering



 

 

 

ABSTRACT: 
Now a days we are seeing in surge of social media used as a platform for marketing and influencing 

very targets .So understanding the specific behavior of people or individual using his/her tweets or 

comments is next step of sentiment analysis .We see millions of data shared on social media daily 

we works on both sides on one side we see various availability of data or opinions and on the other 

side we challenge to group them in one centroid or domain.in this work I worked on the dataset of 

sentiment140 from Stanford university by classifying according to polarity of the opinions using 

extraction features Performance of various machine learning algorithms like Ridge 

Classifier,LogisticRegression,Perceptron,PassiveAggressiveClassifier,SGDClassifier,LinearSVC,

KNeighborsClassifier,NearestCentroid,MultinomialNB,BernoulliNB,AdaBoostClassifier.hence 

the goal of this work to perform the comparison between performance of these classifiers. 

Experiment is done Sentiment140 dataset four evaluation measures are recall, precision, f1 -score 

and accuracy for comparison this research demonstrate which feature will increase the accuracy of 

sentiment analysis 
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Abstract: 

 
Now a days we are seeing the surge of using social media as a platform for marketing and for any 

target .So understanding the specific behaviour of people or individual using his/her tweets or 

comments is next step of sentiment analysis .We see millions of data shared on social media daily 

we works on both sides on one side we see various availability of data or opinions and on the other 

side we challenge to group them in one centroid or domain.in this work I worked on the dataset of 

sentiment140 from Stanford university by classifying according to polarity of the opinions using 

extraction features Performance of various machine learning algorithms like Ridge Classifier , 

LogisticRegression,Perceptron,PassiveAggressiveClassifier,SGDClassifier,LinearSVC,KNeighbo

rsClassifier,NearestCentroid,MultinomialNB,BernoulliNB,AdaBoostClassifier.hence the goal of 

this work to perform the comparison between performance of these classifiers. Experiment is done 

Sentiment140 dataset four evaluation measures are recall, precision, f1 -score and accuracy for 

comparison this research demonstrate which feature will increase the accuracy of sentiment 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction: 

 
Now a days we see usage of social media is increasing exponentially and by this various sector 

are targeting social media platform as their launchpad for example  – usage of social media in 

influence the elections self-promotions etc. Social media have become gold mine to analyze the 

brand performance .opinion found the social media are casual, honest and informative which can 

be collected through various surveys .so there is need to analyze the opinion as it draws responses 

to various responses available on social medias. Twitter is one place where people view their 

opinions very strongly om different issues ,Daily there is approx. 500 million  tweets by which 

this huge amount of data cannot be analyzed manually. Likewise, the diversity of tweets 

presumably cannot be captured by fixed set of rules designed by hand. It is worth noting that the 

task of understanding the sentiment in a tweet is more complex that of any well formatted 

document. Tweets do not follow any formal language structure, nor they contain words from 

formal language (i.e. out of vocabulary words). Often, punctuations and symbols are used to 

express emotions (smileys, emoticons etc.).For examining user thoughts .sentimental analysis  

has become a major source for purpose of solving hidden pattern in the large number of tweets 

with help of machine learning algorithms .in this work we have proposed classification system 

with ten different algorithms  to sort out sentiment as negative and positive  and finding out the 

best possible algorithm for sentimental analysis system with the help of natural language 

processing and machine learning and with help of python language as support system. We have   

taken various feature extraction and machine learning algorithm as two different entities. Our 

main contribution is to find out the best classification algorithm to be applied to get maximum 

potential of sentimental analysis by comparing four major factors of performance of each 

classification algorithm which as described as F1-score, precision, accuracy and recall       

As for the collection of data from twitter with have taken help from the sentiment140 dataset 

provided by the Standard University. The table below describe the sample of the information 

provided by the sentiment140 



 

First of all the data is CSV format is described as follows : 

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) 

1 - the id of the tweet (2087) 

2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009) 

3 - the query (lyx). If there is no query, then this value is NO_QUERY. 

4 - the user that tweeted (robotickilldozr) 

5 - the text of the tweet (Lyx is cool) 

sentiment Id Date Query User text 

0 1467810369 Mon Apr 06 

22:19:45 PDT 

2009 
 

NO_QUERY 
 

_TheSpecialOne_ 
 

@switchfoot 

http://twitpic.com/2y1zl 

- Awww, that's a 

bummer.  You shoulda 

got David Carr of Third 

Day to do it. ;D 
 

4 1467822272 Mon Apr 06 

22:22:45 PDT 

2009 
 

NO_QUERY 
 

ersle 
 

I LOVE 

@Health4UandPets u 

guys r the best!!  
 

                                                              Table 1:  Sample of sentiment140 dataset 

 

 

This work will be structed on these data first we discuss the process of analyzing the dataset and 

through data visualizations through wordcloud and various other graphs for data visualization 

.Data preprocessing is one the first step taken in sentimental analysis .then we discuss the 

procedure of building machine learning model and explain basics of machine learning techniques 

then we summarize the finding in the literature review conducted to understand the research field 

and identify the gap in knowledge .then we discuss our procedure of building the method for 

applying different algorithms and compare the result and compute tables for different feature 

extraction with ten different machine learning algorithm with four parameters-f1-

score,recall,precision and accuracy 

 

 

 



 

2.Machine Learning Background: 

Before understanding research conducted for the work we need the distinguish the procedures 

into three equals parts which can be described as follows: 

1.first the dataset of the label is compiled to according to text length and extracting only the 

sentiment and text from the dataset and then text cleaning process  is implemented on the dataset 

during text preprocessing of natural language processing  

2.Then we feature extractor generator used for finding value of vector should characterize the 

sentiment .once feature vectors from dataset and then popular classification algorithms like Ridge 

Classifier, Logistic Regression, Perceptron , Passive Aggressive Classifier , SGD Classifier, 

Linear Classifier ,KNN Nearest Neighbor Classifier, Nearest Centroid , Multinomial Navies 

Bayes, Bernoulli Navies Bayes  ,Ada Boost Classifier 

3.After applying the classification algorithms we conduct the experiment of comparison of the 

Four parameters which are known as F1-score ,Accuracy ,Precision and Recall and publish the 

result in Tabular form. 

 

3.Literature Review: 

The sentiment140 data set used in our experiments was created using an automated sentiment 

labeling method [6]. Go et al. [6] created an automated labeling method which took advantage of 

emoticons found in tweets. Emoticons are a combination of symbols that express an emotion, 

usually forming a facial representation, such as “:)” which depicts a positive emotion. Tweets 

were collected and labeled based on the emotion assigned to each emoticon, resulting in a data set 

of 1.6 million positive and negative tweets. They performed sentiment prediction using three 

machine learning algorithms: MNB, Support Vector Machines (SVM), and Maximum Entropy. 

They used unigrams, bigrams, unigrams and bigrams, and unigrams with Part-Of-Speech (POS) 

tags as features. Their results show the use of unigrams and unigrams with bigrams have the 

highest performance. SVM had the highest performance when using unigrams, while Maximum 



 

Entropy had the highest performance when using unigrams with bigrams. The difference in 

performance between the classifiers when using unigrams and unigrams with bigrams is smaller 

than 2%, and they conducted no tests to determine if this difference was significant. The authors 

mentioned bigram features alone did not perform well due to the length of tweets. As they are 

shorter posts, 140 characters or less, a bigram feature space becomes very sparse.  

Our study is unique in that we provide a comprehensive comparison of Performance of various 

classifiers  using four performance parameters or metrices .We compare the performance of the 

best model built using our  sentiment140 data set against models built using  tweets with help of 

different classifiers. Models are built with Multinomial Naive Bayes and evaluated across 1.6 

million  distinct tweets. Our classifiers are trained on large data sets, consisting of 100,000 

instances, including Amazon product review data, which consists of many diverse product 

domains, and sentiment140 data. We evaluate our models on a sentiment140 data set.  

 

3.Methodology: 

   3.1.Labeled Data: 

We have  used dataset Sentiment140  which can be described in the specific format defined by 

the publisher of dataset which in this case is Stanford university. Which are described in 

following ways: 

  

First of all the data is CSV format is described as follows : 

0 - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) 

1 - the id of the tweet (2087) 

2 - the date of the tweet (Sat May 16 23:58:44 UTC 2009) 

3 - the query (lyx). If there is no query, then this value is NO_QUERY. 

4 - the user that tweeted (robotickilldozr) 

5 - the text of the tweet (Lyx is cool) 



 

sentiment Id Date Query User text 

0 1467810369 Mon Apr 06 

22:19:45 PDT 

2009 
 

NO_QUERY 
 

_TheSpecialOne_ 
 

@switchfoot 

http://twitpic.com/2y1zl 

- Awww, that's a 

bummer.  You shoulda 

got David Carr of Third 

Day to do it. ;D 
 

4 1467822272 Mon Apr 06 

22:22:45 PDT 

2009 
 

NO_QUERY 
 

ersle 
 

I LOVE 

@Health4UandPets u 

guys r the best!!  
 

                                                              Table: Sample of sentiment140 dataset 

 

The next table shows the share of positive and negative class distribution  in dataset 

 

 

 

Sentiment Data in numbers 

Positive 800000 

Negative 800000 

                             Table 2:Data share in dataset 

Datatype is  integer 64 in dataset from the table we have gather information that  there are 800000 

positive tweets and 800000 negative tweets. There are no neutral tweets in the dataset. The text in  

tweets are variable lengths containing various mentions ,usernames ,escapes ,URLs links, hashtag

s and negations so there is diversity in text of dataset below figure will show how variable length 

of data is present in dataset 

 

 



 

                                          Figure 1:preclean length of text of tweets 

Above figure is drawn with the help of seaborn by which have developed a scatter plot to show 

the number of texts with their precleaned length with help of distplot which is used to visualize 

histogram show the number of tweets with their respective length. Another figure of preclean 

length is shown below with the help of Boxplot of seaborn 

 

                                                          Figure: 2 Boxplot graph of preclean length 

 

UTF-8 can limit with 128 characters by which by seeing above figures we see there are more 

than 128 characters so we have to convert into latin-1 encoding. After encoding in latin-1 we 

further begin our process of finding the irregularity in text which will be elaborates further in this 

segment: 

Firstly, we see a text which contains lot of space which is unnecessary and various special 

characters ,single quotes , double quotes etc.  

"Awwh babs... you look so sad underneith that shop entrance of &quot;Yesterday's Musik

&quot;  O-: I like the look of the new transformer movie " 

 

Other type of text includes links, URL mentions etc.: 

 

Text 

"@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer.  You shoulda got David Carr 

of Third Day to do it. ;D" 

http://twitpic.com/2y1zl


 

 

"@machineplay I'm so sorry you're having to go through this. Again.  #therapyfail" 

 
                                                            Table 3:Example of tweets including urls,mentions and hastags  

 

 

3.2 Preprocessing: 

Before the process of applying machine learning algorithms on our work we need to clean the 

data .cleaning the data is one of the initial step of data pre-processing and these step helps in 

converting the text into processable elements with information added that can be utilized by 

feature extractor: 

3.2.1.Tokenisation: Tokenization is the process of converting text as a string into processable 

elements called tokens. In the context of a tweet, these elements can be words, emoticons, URL 

links, hashtags or punctuations. These elements are often separated by spaces. However, 

punctuation ending the sentence like exclamation marks or full stop are often not separated by a 

space. On the other hand, hashtags with “#” preceding the tag needs to be retained since a word 

as a hashtag may have different sentiment value than a word used regularly in the text. 

"@switchfoot http://twitpic.com/2y1zl - Awww, that's a bummer.  You shoulda got David Carr of 

Third Day to do it. ;D" 

 

with the help of nltk package of  machine learning have a functionality of tokenize  which 

contains  TreebankWordTokenizer which is used to convert regular expressions to tokenize 

texts in Penn treebank .it assumes that the text already been segmented into sentences 

from nltk.tokenize import TreebankWordTokenizer 

token = TreebankWordTokenizer() 

3.2.2.text Cleaning: 

We have already discussed type of data we have collected from our dataset we finally take a 

major step in preprocessing which cleaning the texts to decreasing the length of the text to help 

http://twitpic.com/2y1zl


 

them to convert into processable element. The above-mentioned exception or unwanted text 

which occur in our dataset can be categorized into four elements which is as follows: 

 

 

Unwanted words  Regular Expression 

mentions r'@[A-Za-z0-9]+' 

URL HTTPs 'https?://[A-Za-z0-9./]+' 

url_www r'www.[^ ]+'   

                                                Table 4:Content for text cleaning(regular Expression) 

A list is created to eliminate the negation words which occur in text and changing into its full 

form does not change the value of sentence for example "isn’t”: “is not", "aren’t”: “are not", 

"wasn’t”: “was not", "weren’t”: “were not", "haven’t”: “have not","hasn't":"has not". 

A function is created to replace these words. 

 

                                                  Figure 3: screen shot of tweet_cleaning Function  

After applying the function on data new dataset is created which only contain processable 

element. 



 

New dataset is look like below table: 

 

 

 

Sentiment Post clean Text 

0 awww that s a bummer you shoulda got david car... 

0 is upset that he can not update his facebook b... 

0 i dived many times for the ball managed to sav... 

0 my whole body feels itchy and like its on fire40no 

0 its s not behaving at all i m mad why am i h... 

 

                                                                      Table 5:Dataset after cleaning of data                

 

3.2.3.Text Visualizations: 

This type analyses of data can be done with help of wordcloud which used to get relation 

between sentiment text which is achieved with help of wordcloud which shows the relation 

between these text with each other words below figure consists of cloud of words which have the 

highest frequencies in the dataset. 



 

 

                                                         Figure 4:worldcloud for both the sentiment combined 

 

 

Now we have seen the most occurring word in our dataset are drinking, thanks etc. 

By this we can analyze how our data is defined in the dataset and how people opinions generally 

contain similar words which are used to define both the sentiments -positive and negative. 

For further text visualization we will apply wordcloud individually on positive sentiment as well 

as on negative sentiment. So below figures will explain the frequencies of words in both classes 

of classifications 

 

 



 

 

                                                                Figure 5: wordcloud of negative tweets 

Some words, like, "today", "one", "still" can be termed as neutral. Words like, "sad", "bad", 

"hate", "suck", "wish" etc. make sense as negative words. 

 

                                           Figure 6: wordcloud of positive tweets 

In this wordcloud of positive tweets, neutral words, like "today", "tonight", "still", etc are present. 

Also, words like "thank", "haha", "awesome", "good", etc stand out as the positive words. 



 

Words like "today", "lol", "tonight", "still", "work" etc are common in both the positive and 

negative tweets. Hence, it can be concluded that people have both positive and negative response 

towards work and their day. 

What we have  found surprising is the presence of "lol" and "love" in both the positive and the 

negative tweets wordclouds. So, now, I am going to inspect this. 

For inspection I tried to search “love” word in negative tweets and find out the count of tweets 

containing the word “love” same has been done to find out the word “lol” in both positive and 

negative tweets and the below will surely describe the result of the inspection carried. 

Word Count of tweets in which word is available 

“love” in negative tweets 21548 

“lol” in positive tweets 35780 

“lol” in negative tweets 22754 

                                             Table 6: inspection of word in tweets 

there are 21.5k negative tweets where the word 'love' is used. But one thing I observed is that love 

is used with negative words like sad, loss, no, leave, etc or it is used sarcastically. 

I also  inspected the use of 'lol' in tweets of both, positive and negative sentiments. In positive 

tweets, lol is used as an expression for joy, fun and laughter. And in negative tweets, 'lol' is used 

with words that convey negative emotion like 'sad', 'crying', 'slap', 'no', 'bored' etc. 

3.2.4.Encoding: 

for data visualisation firstly we have to prepare the text for the data visualisation Here we taken 

CountVectorizer The CountVectorizer provides a simple way to both tokenize a collection of 

text documents and build a vocabulary of known words, but also to encode new documents using 

that vocabulary. With the use of countvectiozer we have built vectors of words of tweets and 

length of the corpus of words is  271304 and then we have encoded the document into two 

different matrix or vector for the positive and negative tweets . 

After encoding we have found out the corpus are defined as following: 



 

aa                                                           265 

aaa                                                          152 

aaaa                                                          74 

aaaaa                                                         38 

aaaaaa                                                        28 

                                                            ...  

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz                                1 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz                             3 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz                            1 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz         1 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz      1 

Name: total, Length: 271304, dtype: int64 

  

After finding the corpus of encoded data we have calculated term frequency of the word which 

will be shown below table: 

 
negative positive total 

to 313185 252600 565785 

the 257953 266161 524114 

my 190805 125981 316786 

it 157491 147841 305332 

and 153985 149692 303677 

you 103865 198274 302139 

not 196637 87771 284408 

is 133533 111325 244858 

in 115628 101297 216925 

for 99044 117389 216433 

of 92837 91218 184055 

on 84227 84231 168458 

that 82734 83070 165804 



 

 
negative positive total 

me 92188 72247 164435 

so 88534 65627 154161 

have 88400 65586 153986 

but 84896 48600 133496 

just 64006 62946 126952 

do 68206 48506 116712 

with 50156 65187 115343 

 

 

   

Table 7 :frequency of words in both positive and negative tweets 

by examine the above table we have find out that most of the term are stop words 

3.2.5.Data visualisation: 

Data visualisation is done using zipf’s law which states that given some corpus of natural 

language utterances, the frequency of any word is inversely proportional to its rank in the 

frequency table. Thus, the most frequent word will occur approximately twice as often as the 

second most frequent word, three times as often as the third most frequent word, etc.: the rank-

frequency distribution is an inverse relation. 

Suppose a word occurs f times and that in the list of word frequencies it has a certain rank, r. 

Then if Zipf's Law holds we have 

𝑓=𝑎/𝑟𝑏f=a/rb 

where a and b are constants and 𝑏≈1b≈1. 

Let's see how the tweet tokens and their frequencies look on a plot 



 

 

 

                                                           Figure 7:Zipf’s law plot of tweet tokens 

On the X-axis are the top 500 tokens of the corpus with the highest rank in the left and 500th rank 

in the right. Y-axis consists of the frequencies of the top 500 words most frequent words in the 

Sentiment140 corpus. The curve here is not the exact Zipfian curve, rather a near Zipfian 

distribution curve. Even though we can see the plot follows the trend of Zipf’s Law, but it looks 

like it has more area above the expected Zipf curve in higher ranked words. We can also plot a 

log-log graph, with X-axis being log(rank), Y-axis being log(frequency). By plotting, the result 

will be a roughly linear line. 



 

 

                                                 Figure 8: log-log graph of rank of taken vs frequency of tokens 

Here, we see a roughly linear curve, but deviating above the expected line on higher ranked 

words and deviating below the expected line on lower ranked words 

From the previous step of encoding using Count vectorizer  we have prepared corpus of tweets 

from that result we will see top 50 words in negative in form of bar chart figure: 



 

 

                                                      Figure 9 :bar chart of top 50 word in negative tweet 

The most frequent words like "just", "work", "day", "got", "today" etc. do little to convey 

negative sentiment. It's difficult to comment about their importance in characterising negative 

tweets. On the other hand, words like, "miss", "sad", bad", "sorry", "hate" etc. convey clear 

negative sentiment. 

Let's see the top 50 words in positive tweets on a bar chart. 



 

 

                                                               Figure 10: bar chart of top 50 word of positive tweet 

The most frequent words like "just", "day", "got", "today", "time" etc. do little to convey positive 

sentiment. It's difficult to comment about their importance in characterising positive tweets. On 

the other hand, words like, "good", "love", "like", "thanks", "new" etc. convey clear positive 

sentiment. 

Let's plot the negative frequency of a word on x-axis and the positive frequency on y-axis. 



 

 

                                                         Figure 11: positive vs negative word frequency  

Most of the words are below 10000 on both Y and X-axis, hence, we can find any meaningful 

relation between positive and negative frequency. 

The next metric has been taken from Jason Kessler's talk in Pydata 2017 in Seattle, where he 

introduced Scatter text. 

If a word appears more in one class as compared to the other, we can use it as a measure of how 

much important the word is to characterise the class. Let's call it posrate. 

𝑝𝑜𝑠𝑟𝑎𝑡𝑒=(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)/(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

 Below the data show the scatter text data  which calculated from above formula: 

 

 



 

Word Negative  Positive Total  posrate 

dividends  

 

0 83 83 1.00000 

emailunlimited 
 

0 100 100 1.00000 

mileymonday 
 

0 161 161 1.00000 

shareholder  

 

1 80 81 0.987654 

fuzzball  

 

2 99 101 0.980198 

recommends 
 

3 109 112 0.973214 

delongeday  

 

6 162 168 0.964286 

atcha  

 

3 80  83 0.963855 

                                                   Table 8  : Calculated posrate of tweets 

Words with highest posrate have 0 frequency in negative class. But the frequency of these words 

is quite low to use them as a measure to characterise positive tweets that’s why we use another 

metrices  which is the frequency a word occurs in the class. This is defined as 

𝑝𝑜𝑠𝑓𝑟𝑒𝑞=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/Σ(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

The below table will show both the posfreq and posrate: 

posword Negative Positive Total Posrate posfreq 

just     

 

64006 62946 126952 0.495825 0.014264 

good      

 

29213 62122 91335 0.680155 0.014077 

day      

 

41456 48319 89775 0.538223 0.010949 

love 
17061 47780 64841 0.736879 0.010827 

like      

 

41052 37527 78579 0.477570 0.008504 

lol      

 

23123 36120 

 
59243 0.609692 0.008185 

thanks      

 

5768 34378 40146 0.856324 0.007790 

got  

 

38715 

 
32030 70745 0.452753 0.007258 

going    

 

33690 30939 64629 0.478717 0.007011 



 

time      

 

27532 30438 57970 0.525065 0.006897 

                                                         Table 9:  data with posrate and posfreq 

Since posfreq is just the frequency scaled over the total sum of the frequency, the rank of 

posfreqpct is exactly same as just the positive frequency. 

The maximum value from posfreq is 0.01426404088907219 and maximum and minimum value  

Are 0 and 1 so we  need to come up with a metric which combines posrate and posfreq. The range 

of posrate is 0 to 1. The range of posfreq is 0 to ~0.015. If we take the average of posrate and 

posfreq, posrate will be too dominant and will not reflect the two metrics properly. 

Hence, instead of arithmetic mean, we use harmonic mean. It increases the effect of the small values 

and reduces the effect of the larger ones. The harmonic mean H of positive real numbers x1, x2,...... 

xn is defined as 

 
                                          H = \frac{n}{Σ_{i=1}^{n}\frac{1}{x_{i}}} 
 

We have added harmonic mean to our previous table which shown us the posfreq and posrate .the 

table id shown below: 

 

 

 

posword Negative Positive Total Posrate posfreq Pos_hmean 

just     

 

64006 62946 126952 0.495825 0.014264 0.027730 

good      

 

29213 62122 91335 0.680155 0.014077 0.027584 

day      

 

41456 48319 89775 0.538223 0.010949 0.021462 

love 
17061 47780 64841 0.736879 0.010827 0.021341 

like      

 

41052 37527 78579 0.477570 0.008504 0.016710 

lol      

 

23123 36120 

 
59243 0.609692 0.008185 0.016153 

thanks      

 

5768 34378 40146 0.856324 0.007790 0.015440 

got  

 

38715 

 
32030 70745 0.452753 0.007258 0.014287 

going    

 

33690 30939 64629 0.478717 0.007011 0.013820 



 

time      

 

27532 30438 57970 0.525065 0.006897 0.013616 

                                               Table 10:table with harmonic mean of posword 

 

The harmonic mean rank seems just like the posfreq rank. Here, the impact of the posfreq 

significantly increased and dominated the mean value. Hence, we still can't come to a meaningful 

conclusion. 

Now, we will try the Cumulative Distribution Function. The cumulative distribution function 

(CDF) of a real-valued random variable X, evaluated at x, is the probability that X will take a 

value less than or equal to x. Now, we do calculate harmonic mean of these 2 CDF values. 

 

                                   Table 11:psoword with cumulative distribution function of historic mean 

Now we have seen calculation of posrate,posfreq ,hmean and hmaeanofcdfs in of positive words 

we have to calculate exact things for the negative words and after both positive and negative 

words are combined in table and printed below: 
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                 Table 12: combined result of posrate ,posfreq,hmean,hmean_cdf of both positive and negative words   

 

Now we have calculated the pos_hmean and neg_hmean we have visualized by drawing a plot  

where pos_hmean is X-axis and neg_hmean is neg_hmean 

 



 

 
                                                 Figure 12:neg_hmean vs pos_hmean plot  

 

After plotting neg_hmean_cdf (X-axis) vs pos_hmean_cdf (Y-axis), we find that if a data point is 

near the upper left, it is more positive. And if a data point is near the bottom right, it is more nega

tive. 

Now we have same plot using pos_hmean_cdf instead of pos_hmean and the result of graph is  

shown below: 



 

 

                                                       Figure 13: plot of neg_hmeancdf vs pos_neg_hmeancdf 

 

3.2.6 Splitting of Dataset: 

We will split the dataset into three sets which will be defined as follows 

  Train set: The dataset used for learning  

  Development Set: A validation/development dataset is a sample of data held back from 

training your model that is used to give an estimate of model skill while tuning model’s 

hyperparameters.  

  Test Set: The dataset used to assess the performance of a model 

Our chosen ratio is 98/1/1 i.e. 98% for the training set, 1% for the development set and 1% for the 

testing set. 



 

Using  sklearn.model_selection import train_test_split we splited the data using the below code 

x =df['text']#define all other columns except the target variable 

y = df['sentiment'] #define the target variable 

x_train, x_validation_and_test, y_train, y_validation_and_test = 

train_test_split(x, y, test_size = 0.02, random_state = 42) 

 

x_validation, x_test, y_validation, y_test = train_test_split(x_ 

validation_and_test, y_validation_and_test,test_size = 0.5, rando

m_state = 42) 

After the splitting the dataset the entries are as follows: 

Training set has 1564779 entries, where 49.99 are positive and 50.01 are negative 

Validation set has 15967 entries, where 49.82 are positive and 50.18 are negative 

Testing set has 15968 entries, where 50.33 are positive and 49.67 are negative 

3.3 Feature Extraction: 

Feature extraction is the process of building feature vector from a given tweet. Each entry in a fe

ature vector is an integer that has a contribution on attributing a sentiment class to a tweet. This c

ontribution can vary from strong, where the value of a feature entry heavily influences the true se

ntiment class; to negligible, where there is no relationship between feature value and sentiment cl

ass. It is often the job of classification algorithm to identify the dependency strength between feat

ures and classes, making use of strong correlated features and avoiding the use of ‘noisy features . 

In our project we have taken two feature Extraction which are known as follows: 

3.3.1 Bag of Word or Count Vectorizer: Bag of Words (unigrams) is a set of features where the 

frequency of tokens (or in our case, presence of a token) is indicated in a feature vector. From our 

study of past work, this feature set was unanimously chosen by researchers to be included in the f

eature vector. An entry in the feature vector is assigned to each unique token found in the labelled  



 

training set. If the respective token occurs in a tweet, it is assigned a binary value of 1 otherwise it 

is 0. Note that the grammar structure or ordering of token sequence is not preserved. Instead, only 

the independent presence of a token preserved .in this project we taken three types of gram to ana

lyse our result which are as follows: unigram, bigram and trigram .In sklearn we use Count V

ectorizer with the argument n_ranges  which help in achieving different grams  

3.3.2 Feature Extraction Using TF-IDF: 

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence 

carrying very little meaningful information about the actual contents of the document. If we were 

to feed the direct count data directly to a classifier those very frequent terms would shadow the 

frequencies of rarer yet more interesting terms. 

Term Frequency measures how frequently a term occurs in a document. Since every document 

is different in length, it is possible that a term would appear much more times in long documents 

than shorter ones. Thus, the term frequency is often divided by the document length or the total 

number of terms in the document as a way of normalization:  

𝑇𝐹(𝑡)=Number of times term t appears in a document Total number of terms in the document 

Inverse Document Frequency measures how important a term is. While computing TF, all terms 

are considered equally important. However, it is known that certain terms, such as "is", "of", and 

"that", may appear a lot of times but have little importance. Thus, we need to weigh down the 

frequent terms while scale up the rare ones, by computing the following:  

𝐼𝐷𝐹(𝑡)=log𝑒Total number of documents Number of documents with term t in it 

Combining these two, we get TF-IDF. 

𝑇𝐹−𝐼𝐷𝐹(𝑡)=𝑇𝐹(𝑡)×𝐼𝐷𝐹(𝑡) 



 

The higher the TFIDF score, the rarer the term and vice versa. 

Tf-idf is computed by sklearn,featureExtracter feature which is tfidfVectorizer which have 

various arguments  

3.4 Training Classifier: 

We have taken textBlob as baseline for the sentimental analysis .it will provide as a point of 

reference  for our future models. 

Textblob provides a common text processing operation like sentiment analysis ,tokenisation etc. 

3.4.1 Logistic Regression is first classifier which we will use for training logistic regression is 

used to model the probability of certain class it is very efficient and does not requires too many 

computational resources that why we use logistic regression classifier. 

As we have discussed earlier that we are going to train our model with ten classifiers to compare 

the result of these  classifier using specific parameters .So to compute these classifiers together 

we have taken use of pipeline Pipeline class allows sticking multiple processes into a single 

scikit-learn estimator. Classifier used in this progress are described below: 

3.4.2 Ridge Classifier: this classifier is mainly use ridge regression for classification of multi 

class outputs. Ridge regression simply addresses the problems of ordinary least squares by 

imposing penalties on size of the coefficients. 

3.4.3 Perceptron :perceptron is one of classifier in package of sklearn.linearmodel . the 

perceptron is an algorithm for supervised learning of binary classifiers. A binary classifier is a 

function which can decide whether or not an input, represented by a vector of numbers, belongs 

to some specific class. It is a type of linear classifier, i.e. a classification algorithm that makes its 

https://en.wikipedia.org/wiki/Supervised_classification
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Linear_classifier


 

predictions based on a linear predictor function combining a set of weights with the feature 

vector. 

It does not require any learning rate and does not have any regularisation .its update its model 

only on mistakes. 

3.4.4 Passive Aggressive Classifier: The passive-aggressive algorithms are a family of 

algorithms for large-scale learning. They are similar to the Perceptron in that they do not require a 

learning rate. However, contrary to the Perceptron, they include a regularization parameter C. 

3.4.5 SGD Classifier: Stochastic gradient descent is used in large scale learning in text 

classification and NLP .its advantage are its efficiency and ease of implementation .it implements 

a plain stochastic gradient learning routine which supports different loss functions 

3.4.6 Linear Support vector classification :Linear SVC is created from support vector machine 

method of machine learning Advantages of using SVM are 

Effective in high dimensional spaces. 

Still effective in cases where number of dimensions is greater than the number of samples. 

Uses a subset of training points in the decision function (called support vectors), so it is also 

memory efficient. 

Versatile: different Kernel functions can be specified for the decision function. Common kernels 

are provided, but it is also possible to specify custom kernels. 

3.4.7 K Neighbour Classifier: Neighbors-based classification is a type of instance-based 

learning or non-generalizing learning: it does not attempt to construct a general internal model, 

but simply stores instances of the training data. Classification is computed from a simple majority 

https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Feature_vector
https://scikit-learn.org/stable/modules/svm.html#svm-kernels


 

vote of the nearest neighbors of each point: a query point is assigned the data class which has the 

most representatives within the nearest neighbors of the point 

3.4.8 Nearest Centroid: Nearest Centroid  classifier is a simple algorithm that represent each class 

by the centroid of its members. In effect, this makes it similar to the label updating phase of the 

sklearn.cluster.KMeans algorithm. It also has no parameters to choose, making it a good baseline 

classifier. 

3.4.9 Bernoulli Naive Bayes: implements the naive Bayes training and classification algorithms 

for data that is distributed according to multivariate Bernoulli distributions; i.e., there may be 

multiple features but each one is assumed to be a binary-valued (Bernoulli, Boolean) variable. 

The decision rule for Bernoulli naive Bayes is based on 

P(x_i \mid y) = P(i \mid y) x_i + (1 - P(i \mid y)) (1 - x_i) 

 

3.4.10 Multinomial NB: implements the naive Bayes algorithm for multinomially distributed 

data, and is one of the two classic naive Bayes variants used in text classification (where the data 

are typically represented as word vector counts, although tf-idf vectors  are also known to work 

well in practice).  

 

3.4.11.AdaBoostClassifier: The core principle of AdaBoost is to fit a sequence of weak learners 

(i.e., models that are only slightly better than random guessing, such as small decision trees) on 

repeatedly modified versions of the data. The predictions from all of them are then combined 

through a weighted majority vote (or sum) to produce the final prediction. The data modifications 

at each so-called boosting iteration consist of applying weights w1,w2,…wn to each of the 

training samples. Initially, those weights are all set to , so that the first step simply trains a weak 

learner on the original data. For each successive iteration, the sample weights are individually 

modified and the learning algorithm is reapplied to the reweighted data. At a given step, those 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans


 

training examples that were incorrectly predicted by the boosted model induced at the previous 

step have their weights increased, whereas the weights are decreased for those that were predicted 

correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing 

influence. Each subsequent weak learner is thereby forced to concentrate on the examples that are 

missed by the previous ones in the sequence 

3.5 Evaluation Metrices:  

for our project we have taken four parameter which were previously described in this report which 

are F1-score ,precision ,accuracy and Recall. 

Accuracy :accuracy simply in machine learning means division between the number of correct 

predictions by total number of input samples 

Precision : Precision talks about how precise/accurate your model is out of those predicted positive, 

how many of them are actual positive. 

 

                                                    Figure 14: formula of precision 

  

Precision is a good measure to determine, when the costs of False Positive is high. 

Recall: Recall is defined by the below formula. Recall actually calculates how many of the Actual 

Positives our model capture through labelling it as Positive (True Positive). Applying the same 



 

understanding, we know that Recall shall be the model metric we use to select our best model 

when there is a high cost associated with False Negative. 

 

                            Figure 15:formula of recall 

F1-score: the F1 score (also F-score or F-measure) is a measure of a test's accuracy. It considers 

both the precision p and the recall r of the test to compute the score: p is the number of correct 

positive results divided by the number of all positive results returned by the classifier, and r is the 

number of correct positive results divided by the number of all relevant samples (all samples that 

should have been identified as positive). 

The F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its best 

value at 1 (perfect precision and recall) 

                                   

                                                       Figure 16:formula of f1-score 

4.Experiment: 

To achieve the target of the project we have implemented various step in implementation which 

will be described in this Experiment section starting with the training of feature vectors using 

various algorithms to find  the best algorithm for sentimental analysis .Together with 

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Precision_and_recall


 

development set ,testing set   and training set first of experiment performed will be discussed 

below : 

As previously discussed, we have taken textBlob as a baseline so performing  sentimental 

analysis function on dataset, we have applied some line of code to achieve accuracy score 

conmat = np.array(confusion_matrix(y_validation, tbpred, 

labels=[1,0])) 

confusion = pd.DataFrame(conmat, index=['positive', 'negative'], 

columns=['predicted_positive', 'predicted_negative']) 

print("Accuracy score: {0:.2f} 

%".format(accuracy_score(y_validation, tbpred)*100)) 

After applying implementation  of code for accuracy score  of  model is 61.41 % as well  as other 

parameter results are : 

Confusion Matrix 

          predicted_positive  predicted_negative 

positive                7136                 818 

negative                5344                2669 

 

Classification report consists of our Evaluation  
 

 

Classification Report 

              precision    recall  f1-score   support 

 

           0       0.77      0.33      0.46      8013 

           1       0.57      0.90      0.70      7954 

 

   micro avg       0.61      0.61      0.61     15967 

   macro avg       0.67      0.62      0.58     15967 

weighted avg       0.67      0.61      0.58     15967 

 

 

 

 

 

We have created function which will help in calculating nfeatures checker to find the maximum 

accuracy at n feature 



 

 

                                Figure 17 :function of nfeatures_accuracy_checker 

After doing the sentiment analysis using textBlob now we use bag of word for nfeature accuracy 

checker with various ngram for examples :Unigram without Stop words ,unigram with stop word 

without custom stop word after calculating we have created plot to showcase the result in below 

figure: 

 

                                               Figure 18:Unigram accuracy with or without strop words 

The above graph shows the removal of stopword does not help in improvement of the model. In 

this setting, keeping the stopwords improve the model performance. 

Now we have decided from our calculation that keeping the stopword helps in  attaining the 

maximum result for the model now we calculate the nfeatureCheckers for bigram and trigram 



 

After calculating for uni  ,bi and tri gram the below figure will show the result : 

 

                                                           Figure 19:N-gram(1-3) accuracy 

Here, unigram has maximum accuracy at 100000 features, bigram has maximum accuracy at 70000 

features and trigram has maximum accuracy at 80000 features. 

 

So, we calculate our result of model using logistic regression using the above result which shows 

maximum accuracy at specific features and find the result in our expected parameter 

Result of Unigram at 100000 feature using Count Vectorizer with Logistic Regression model 

Null accuracy: 50.18% 

Accuracy: 80.28% 

Model is 30.10% more accurate than null accuracy 

-------------------------------------------------- 

CONFUSION MATRIX 

 

          predicted_negative  predicted_positive 

negative                2669                5344 

positive                 818                7136 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

    negative       0.81      0.79      0.80      8013 



 

    positive       0.79      0.81      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

Result of bigram at 70000 feature using Countvectorizer with Logistic Regression model 

 
Null accuracy: 50.18% 

Accuracy: 82.21% 

Model is 32.02% more accurate than null accuracy 

-------------------------------------------------- 

CONFUSION MATRIX 

 

          predicted_negative  predicted_positive 

negative                2669                5344 

positive                 818                7136 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

    negative       0.83      0.81      0.82      8013 

    positive       0.81      0.83      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Trigram at 80000 features using Countvectorizer with Logistic Regression model 

 
Null accuracy: 50.18% 

Accuracy: 82.38% 

Model is 32.19% more accurate than null accuracy 

-------------------------------------------------- 

CONFUSION MATRIX 

 

          predicted_negative  predicted_positive 

negative                2669                5344 

positive                 818                7136 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

    negative       0.83      0.81      0.82      8013 

    positive       0.82      0.83      0.83      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

 

 

So now we have seen the result of Count Vectorizer  using logistic regression. Now we apply other 

classification algorithms   on these feature vectors for this we have created function which 

automatically train the set and return classification report. 



 

 

So, to calculate to train the model using classification algorithm we have come to conclusion that 

to create a function for this scenario 

def classifier_comparator(vectorizer = cvec, n_features=10000, 

stop_words=None, ngram_range=(1,1), classifier=zipped_clf): 

    result = [] 

    vectorizer.set_params(stop_words=stop_words, ngram_range=ngram_range, 

max_features=n_features) 

    for n, c in classifier: 

        pipeline = Pipeline([('vectorizer', vectorizer), ('classifier', c)]) 

        print('Validation result for {}'.format(n), c) 



 

        clf_accuracy, ttime = accuracy_summary(pipeline, x_train, 

y_train,x_validation, y_validation) 

         

        result.append((n, clf_accuracy, ttime)) 

    return result 

Using the above function, we get the result of classification comparator  trigram using 

CountVectorizor with max_feature  argument at 80000 and the result is as follows: 

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0, 

class_weight=None, copy_X=True, fit_intercept=True, 

                max_iter=None, normalize=False, random_state=None, 

                solver='auto', tol=0.001) 

Null accuracy: 50.18% 

Accuracy: 81.86% 

Model is 31.67% more accurate than null accuracy 

Train and test time: 580.60s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.80      0.82      8013 

           1       0.81      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for Logistic Regression LogisticRegression(C=1.0, 

class_weight=None, dual=False, fit_intercept=True, 

                   intercept_scaling=1, l1_ratio=None, max_iter=100, 

                   multi_class='warn', n_jobs=None, penalty='l2', 

                   random_state=None, solver='warn', tol=0.0001, verbose=0, 

                   warm_start=False) 

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver 

will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. 

  FutureWarning) 

Null accuracy: 50.18% 

Accuracy: 82.38% 

Model is 32.19% more accurate than null accuracy 

Train and test time: 611.43s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.81      0.82      8013 

           1       0.82      0.83      0.83      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 



 

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None, 

early_stopping=False, eta0=1.0, 

           fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None, 

           penalty=None, random_state=0, shuffle=True, tol=0.001, 

           validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 75.76% 

Model is 25.57% more accurate than null accuracy 

Train and test time: 750.20s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.77      0.73      0.75      8013 

           1       0.74      0.78      0.76      7954 

 

    accuracy                           0.76     15967 

   macro avg       0.76      0.76      0.76     15967 

weighted avg       0.76      0.76      0.76     15967 

 

Validation result for Passive-Agressive Classifier 

PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None, 

                            early_stopping=False, fit_intercept=True, 

                            loss='hinge', max_iter=1000, n_iter_no_change=5, 

                            n_jobs=None, random_state=None, shuffle=True, 

                            tol=0.001, validation_fraction=0.1, verbose=0, 

                            warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 75.93% 

Model is 25.75% more accurate than null accuracy 

Train and test time: 186.06s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.73      0.82      0.77      8013 

           1       0.79      0.70      0.74      7954 

 

    accuracy                           0.76     15967 

   macro avg       0.76      0.76      0.76     15967 

weighted avg       0.76      0.76      0.76     15967 

 

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001, 

average=False, class_weight=None, 

              early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, 

              l1_ratio=0.15, learning_rate='optimal', loss='hinge', 

              max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2', 

              power_t=0.5, random_state=None, shuffle=True, tol=0.001, 

              validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 81.39% 

Model is 31.20% more accurate than null accuracy 

Train and test time: 183.68s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.79      0.81      8013 

           1       0.80      0.84      0.82      7954 

 

    accuracy                           0.81     15967 

   macro avg       0.81      0.81      0.81     15967 

weighted avg       0.81      0.81      0.81     15967 

 

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True, 

fit_intercept=True, 



 

          intercept_scaling=1, loss='squared_hinge', max_iter=1000, 

          multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, 

          verbose=0) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: 

ConvergenceWarning: Liblinear failed to converge, increase the number of 

iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 82.06% 

Model is 31.88% more accurate than null accuracy 

Train and test time: 827.04s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.84      0.80      0.82      8013 

           1       0.81      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for L1 based LinearSVC Pipeline(memory=None, 

         steps=[('feature_selection', 

                 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None, 

                                                     dual=False, 

                                                     fit_intercept=True, 

                                                     intercept_scaling=1, 

                                                     loss='squared_hinge', 

                                                     max_iter=1000, 

                                                     multi_class='ovr', 

                                                     penalty='l1', 

                                                     random_state=None, 

                                                     tol=0.0001, verbose=0), 

                                 max_features=None, norm_order=1, 

prefit=False, 

                                 threshold=None)), 

                ('classification', 

                 LinearSVC(C=1.0, class_weight=None, dual=True, 

                           fit_intercept=True, intercept_scaling=1, 

                           loss='squared_hinge', max_iter=1000, 

                           multi_class='ovr', penalty='l2', random_state=None, 

                           tol=0.0001, verbose=0))], 

         verbose=False) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: 

ConvergenceWarning: Liblinear failed to converge, increase the number of 

iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 82.14% 

Model is 31.95% more accurate than null accuracy 

Train and test time: 1220.14s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.84      0.80      0.82      8013 

           1       0.81      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size=30, 

metric='minkowski', 



 

                     metric_params=None, n_jobs=None, n_neighbors=5, p=2, 

                     weights='uniform') 

Null accuracy: 50.18% 

Accuracy: 71.87% 

Model is 21.69% more accurate than null accuracy 

Train and test time: 1968.04s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.75      0.66      0.70      8013 

           1       0.69      0.78      0.73      7954 

 

    accuracy                           0.72     15967 

   macro avg       0.72      0.72      0.72     15967 

weighted avg       0.72      0.72      0.72     15967 

 

Validation result for Nearest Centroid NearestCentroid(metric='euclidean', 

shrink_threshold=None) 

Null accuracy: 50.18% 

Accuracy: 63.78% 

Model is 13.60% more accurate than null accuracy 

Train and test time: 287.85s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.66      0.57      0.61      8013 

           1       0.62      0.70      0.66      7954 

 

    accuracy                           0.64     15967 

   macro avg       0.64      0.64      0.64     15967 

weighted avg       0.64      0.64      0.64     15967 

 

Validation result for Multinomial NB MultinomialNB(alpha=1.0, 

class_prior=None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 79.73% 

Model is 29.55% more accurate than null accuracy 

Train and test time: 251.46s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.79      0.81      0.80      8013 

           1       0.80      0.79      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0, 

class_prior=None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 79.38% 

Model is 29.19% more accurate than null accuracy 

Train and test time: 259.98s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.81      0.77      0.79      8013 

           1       0.78      0.82      0.80      7954 

 

    accuracy                           0.79     15967 

   macro avg       0.79      0.79      0.79     15967 

weighted avg       0.79      0.79      0.79     15967 



 

 

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R', 

base_estimator=None, learning_rate=1.0, 

                   n_estimators=50, random_state=None) 

Null accuracy: 50.18% 

Accuracy: 70.23% 

Model is 20.05% more accurate than null accuracy 

Train and test time: 540.20s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.74      0.62      0.68      8013 

           1       0.67      0.78      0.72      7954 

 

    accuracy                           0.70     15967 

   macro avg       0.71      0.70      0.70     15967 

weighted avg       0.71      0.70      0.70     15967 

 

 

Now we have seen in figure  that bigram have its maximum accuracy at the 70000 features so we 

classification comparator on bigram of bag of words at maxfeatures equals to 70000  

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0, class_weight

=None, copy_X=True, fit_intercept=True, 

                max_iter=None, normalize=False, random_state=None, 

                solver='auto', tol=0.001) 

Null accuracy: 50.18% 

Accuracy: 81.77% 

Model is 31.59% more accurate than null accuracy 

Train and test time: 737.55s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.80      0.81      8013 

           1       0.80      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for Logistic Regression LogisticRegression(C=1.0, class_weig

ht=None, dual=False, fit_intercept=True, 

                   intercept_scaling=1, l1_ratio=None, max_iter=100, 

                   multi_class='warn', n_jobs=None, penalty='l2', 

                   random_state=None, solver='warn', tol=0.0001, verbose=0, 

                   warm_start=False) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:43

2: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a 

solver to silence this warning. 



 

  FutureWarning) 

Null accuracy: 50.18% 

Accuracy: 82.21% 

Model is 32.02% more accurate than null accuracy 

Train and test time: 843.42s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.81      0.82      8013 

           1       0.81      0.83      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None, e

arly_stopping=False, eta0=1.0, 

           fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None, 

           penalty=None, random_state=0, shuffle=True, tol=0.001, 

           validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 73.78% 

Model is 23.59% more accurate than null accuracy 

Train and test time: 95.94s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.79      0.64      0.71      8013 

           1       0.70      0.83      0.76      7954 

 

    accuracy                           0.74     15967 

   macro avg       0.75      0.74      0.74     15967 

weighted avg       0.75      0.74      0.74     15967 

 

Validation result for Passive-Agressive Classifier PassiveAggressiveClassifier

(C=1.0, average=False, class_weight=None, 

                            early_stopping=False, fit_intercept=True, 

                            loss='hinge', max_iter=1000, n_iter_no_change=5, 

                            n_jobs=None, random_state=None, shuffle=True, 

                            tol=0.001, validation_fraction=0.1, verbose=0, 

                            warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 75.54% 

Model is 25.36% more accurate than null accuracy 

Train and test time: 91.51s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.74      0.78      0.76      8013 



 

           1       0.77      0.73      0.75      7954 

 

    accuracy                           0.76     15967 

   macro avg       0.76      0.76      0.76     15967 

weighted avg       0.76      0.76      0.76     15967 

 

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001, 

average=False, class_weight=None, 

              early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, 

              l1_ratio=0.15, learning_rate='optimal', loss='hinge', 

              max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2', 

              power_t=0.5, random_state=None, shuffle=True, tol=0.001, 

              validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 80.85% 

Model is 30.67% more accurate than null accuracy 

Train and test time: 89.56s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.78      0.80      8013 

           1       0.79      0.84      0.81      7954 

 

    accuracy                           0.81     15967 

   macro avg       0.81      0.81      0.81     15967 

weighted avg       0.81      0.81      0.81     15967 

 

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True, 

fit_intercept=True, 

          intercept_scaling=1, loss='squared_hinge', max_iter=1000, 

          multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, 

          verbose=0) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: Convergenc

eWarning: Liblinear failed to converge, increase the number of iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 81.81% 

Model is 31.62% more accurate than null accuracy 

Train and test time: 748.96s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.84      0.79      0.81      8013 

           1       0.80      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 



 

Validation result for L1 based LinearSVC Pipeline(memory=None, 

         steps=[('feature_selection', 

                 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None, 

                                                     dual=False, 

                                                     fit_intercept=True, 

                                                     intercept_scaling=1, 

                                                     loss='squared_hinge', 

                                                     max_iter=1000, 

                                                     multi_class='ovr', 

                                                     penalty='l1', 

                                                     random_state=None, 

                                                     tol=0.0001, verbose=0), 

                                 max_features=None, norm_order=1, prefit=False

, 

                                 threshold=None)), 

                ('classification', 

                 LinearSVC(C=1.0, class_weight=None, dual=True, 

                           fit_intercept=True, intercept_scaling=1, 

                           loss='squared_hinge', max_iter=1000, 

                           multi_class='ovr', penalty='l2', random_state=None, 

                           tol=0.0001, verbose=0))], 

         verbose=False) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: Convergenc

eWarning: Liblinear failed to converge, increase the number of iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 81.84% 

Model is 31.66% more accurate than null accuracy 

Train and test time: 1018.56s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.84      0.79      0.81      8013 

           1       0.80      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size

=30, metric='minkowski', 

                     metric_params=None, n_jobs=None, n_neighbors=5, p=2, 

                     weights='uniform') 

Null accuracy: 50.18% 

Accuracy: 72.13% 

Model is 21.95% more accurate than null accuracy 

Train and test time: 2430.90s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.76      0.66      0.70      8013 



 

           1       0.69      0.79      0.74      7954 

 

    accuracy                           0.72     15967 

   macro avg       0.73      0.72      0.72     15967 

weighted avg       0.73      0.72      0.72     15967 

 

Validation result for Nearest Centroid NearestCentroid(metric='euclidean', 

shrink_threshold=None) 

Null accuracy: 50.18% 

Accuracy: 63.70% 

Model is 13.52% more accurate than null accuracy 

Train and test time: 158.58s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.66      0.57      0.61      8013 

           1       0.62      0.70      0.66      7954 

 

    accuracy                           0.64     15967 

   macro avg       0.64      0.64      0.64     15967 

weighted avg       0.64      0.64      0.64     15967 

 

Validation result for Multinomial NB MultinomialNB(alpha=1.0, class_prior=

None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 79.78% 

Model is 29.59% more accurate than null accuracy 

Train and test time: 126.78s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.79      0.81      0.80      8013 

           1       0.80      0.79      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0, cl

ass_prior=None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 79.67% 

Model is 29.49% more accurate than null accuracy 

Train and test time: 123.32s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.81      0.78      0.79      8013 

           1       0.79      0.81      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R', bas

e_estimator=None, learning_rate=1.0, 

                   n_estimators=50, random_state=None) 

Null accuracy: 50.18% 

Accuracy: 70.23% 

Model is 20.05% more accurate than null accuracy 



 

Train and test time: 556.87s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.74      0.62      0.68      8013 

           1       0.67      0.78      0.72      7954 

 

    accuracy                           0.70     15967 

   macro avg       0.71      0.70      0.70     15967 

weighted avg       0.71      0.70      0.70     15967 

 

 

Now we have seen bag of words feature vectors results then our next experiment is on Tf-idf 

feature Extraction as discussed earlier in feature Extraction section .All the procedures used in 

experiment of bag of words are followed in case of Tf-idf So we performed the 

nfeature_accuracy_checker function on unigram, bigram and trigram using tfidf feature extraction 

and outcome figure is as follows: 

 



 

                                                                     Figure 20:N-gram (1-3) accuracy 

 

Hence, we can clearly see that using bigram and trigrams boosts the performance of the model in 

Count Vectorizer and Tfidf Vectorizer both. Also, for bigram and trigram, Tfidf Vectorizer gives 

better performance than Count Vectorizer. Bigram Tfidf Vectorizer at 90000 features gives the 

highest validation accuracy at 82.45%. 

After applying classification comparator, the following outcome came: 

Validation result for Ridge Classifier RidgeClassifier(alpha=1.0, 

class_weight=None, copy_X=True, fit_intercept=True, 

                max_iter=None, normalize=False, random_state=None, 

                solver='auto', tol=0.001) 

Null accuracy: 50.18% 

Accuracy: 82.29% 

Model is 32.10% more accurate than null accuracy 

Train and test time: 177.09s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.81      0.82      8013 

           1       0.81      0.84      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for Logistic Regression LogisticRegression(C=1.0, 

class_weight=None, dual=False, fit_intercept=True, 

                   intercept_scaling=1, l1_ratio=None, max_iter=100, 

                   multi_class='warn', n_jobs=None, penalty='l2', 

                   random_state=None, solver='warn', tol=0.0001, verbose=0, 

                   warm_start=False) 

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver 

will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. 

  FutureWarning) 

Null accuracy: 50.18% 

Accuracy: 82.43% 

Model is 32.24% more accurate than null accuracy 

Train and test time: 178.62s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.83      0.82      0.82      8013 

           1       0.82      0.83      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 



 

 

Validation result for Perceptron Perceptron(alpha=0.0001, class_weight=None, 

early_stopping=False, eta0=1.0, 

           fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None, 

           penalty=None, random_state=0, shuffle=True, tol=0.001, 

           validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 76.39% 

Model is 26.20% more accurate than null accuracy 

Train and test time: 113.19s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.77      0.76      0.76      8013 

           1       0.76      0.76      0.76      7954 

 

    accuracy                           0.76     15967 

   macro avg       0.76      0.76      0.76     15967 

weighted avg       0.76      0.76      0.76     15967 

 

Validation result for Passive-Agressive Classifier 

PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None, 

                            early_stopping=False, fit_intercept=True, 

                            loss='hinge', max_iter=1000, n_iter_no_change=5, 

                            n_jobs=None, random_state=None, shuffle=True, 

                            tol=0.001, validation_fraction=0.1, verbose=0, 

                            warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 79.86% 

Model is 29.68% more accurate than null accuracy 

Train and test time: 115.51s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.80      0.81      0.80      8013 

           1       0.80      0.79      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Stochastic Gradient Descent SGDClassifier(alpha=0.0001, 

average=False, class_weight=None, 

              early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True, 

              l1_ratio=0.15, learning_rate='optimal', loss='hinge', 

              max_iter=1000, n_iter_no_change=5, n_jobs=None, penalty='l2', 

              power_t=0.5, random_state=None, shuffle=True, tol=0.001, 

              validation_fraction=0.1, verbose=0, warm_start=False) 

Null accuracy: 50.18% 

Accuracy: 78.71% 

Model is 28.53% more accurate than null accuracy 

Train and test time: 111.60s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.80      0.77      0.78      8013 

           1       0.78      0.80      0.79      7954 

 

    accuracy                           0.79     15967 

   macro avg       0.79      0.79      0.79     15967 

weighted avg       0.79      0.79      0.79     15967 

 



 

Validation result for LinearSVC LinearSVC(C=1.0, class_weight=None, dual=True, 

fit_intercept=True, 

          intercept_scaling=1, loss='squared_hinge', max_iter=1000, 

          multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, 

          verbose=0) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: 

ConvergenceWarning: Liblinear failed to converge, increase the number of 

iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 82.26% 

Model is 32.08% more accurate than null accuracy 

Train and test time: 838.67s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.82      0.83      0.82      8013 

           1       0.83      0.81      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 

Validation result for L1 based LinearSVC Pipeline(memory=None, 

         steps=[('feature_selection', 

                 SelectFromModel(estimator=LinearSVC(C=1.0, class_weight=None, 

                                                     dual=False, 

                                                     fit_intercept=True, 

                                                     intercept_scaling=1, 

                                                     loss='squared_hinge', 

                                                     max_iter=1000, 

                                                     multi_class='ovr', 

                                                     penalty='l1', 

                                                     random_state=None, 

                                                     tol=0.0001, verbose=0), 

                                 max_features=None, norm_order=1, 

prefit=False, 

                                 threshold=None)), 

                ('classification', 

                 LinearSVC(C=1.0, class_weight=None, dual=True, 

                           fit_intercept=True, intercept_scaling=1, 

                           loss='squared_hinge', max_iter=1000, 

                           multi_class='ovr', penalty='l2', random_state=None, 

                           tol=0.0001, verbose=0))], 

         verbose=False) 

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\svm\base.py:929: 

ConvergenceWarning: Liblinear failed to converge, increase the number of 

iterations. 

  "the number of iterations.", ConvergenceWarning) 

Null accuracy: 50.18% 

Accuracy: 82.41% 

Model is 32.22% more accurate than null accuracy 

Train and test time: 989.29s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.82      0.83      0.83      8013 

           1       0.83      0.81      0.82      7954 

 

    accuracy                           0.82     15967 

   macro avg       0.82      0.82      0.82     15967 

weighted avg       0.82      0.82      0.82     15967 

 



 

Validation result for KNN KNeighborsClassifier(algorithm='auto', leaf_size=30, 

metric='minkowski', 

                     metric_params=None, n_jobs=None, n_neighbors=5, p=2, 

                     weights='uniform') 

Null accuracy: 50.18% 

Accuracy: 62.55% 

Model is 12.37% more accurate than null accuracy 

Train and test time: 1872.75s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.69      0.45      0.55      8013 

           1       0.59      0.80      0.68      7954 

 

    accuracy                           0.63     15967 

   macro avg       0.64      0.63      0.61     15967 

weighted avg       0.64      0.63      0.61     15967 

 

Validation result for Nearest Centroid NearestCentroid(metric='euclidean', 

shrink_threshold=None) 

Null accuracy: 50.18% 

Accuracy: 72.55% 

Model is 22.36% more accurate than null accuracy 

Train and test time: 120.74s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.72      0.74      0.73      8013 

           1       0.73      0.71      0.72      7954 

 

    accuracy                           0.73     15967 

   macro avg       0.73      0.73      0.73     15967 

weighted avg       0.73      0.73      0.73     15967 

 

Validation result for Multinomial NB MultinomialNB(alpha=1.0, 

class_prior=None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 80.15% 

Model is 29.97% more accurate than null accuracy 

Train and test time: 106.64s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.80      0.81      0.80      8013 

           1       0.81      0.79      0.80      7954 

 

    accuracy                           0.80     15967 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Bernoulli NB BernoulliNB(alpha=1.0, binarize=0.0, 

class_prior=None, fit_prior=True) 

Null accuracy: 50.18% 

Accuracy: 79.91% 

Model is 29.73% more accurate than null accuracy 

Train and test time: 106.89s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.81      0.78      0.80      8013 

           1       0.79      0.81      0.80      7954 

 

    accuracy                           0.80     15967 



 

   macro avg       0.80      0.80      0.80     15967 

weighted avg       0.80      0.80      0.80     15967 

 

Validation result for Adaboost AdaBoostClassifier(algorithm='SAMME.R', 

base_estimator=None, learning_rate=1.0, 

                   n_estimators=50, random_state=None) 

Null accuracy: 50.18% 

Accuracy: 70.23% 

Model is 20.05% more accurate than null accuracy 

Train and test time: 765.85s 

-------------------------------------------------- 

              precision    recall  f1-score   support 

 

           0       0.75      0.62      0.68      8013 

           1       0.67      0.79      0.72      7954 

 

    accuracy                           0.70     15967 

   macro avg       0.71      0.70      0.70     15967 

weighted avg       0.71      0.70      0.70     15967 

 

5. Result: 

The result obtained from these Experiment are kept in form of table as we have used two feature 

vector which are bag of words and term frequency and inverse Document frequency and it showed 

the which ngram is best for the sentimental model and three tables below showcase our results 

Classification 
algorithm 

Negative or 
positive 

Accuracy F1-
score 

precision recall 

Ridge Classifier Negative 82.29% 0.82 0.83       0.81       

positive 0.82 0.81            0.84       

Logistic Regression Negative 82.43% 0.82 0.83       0.82       

positive 0.82 0.82       0.83       

Perceptron Negative 76.39% 0.76 0.77       0.76       

positive 0.76 0.76 0.76 

Passive-Aggressive 
Classifier 

Negative 79.86% 0.80 0.80       0.81       

positive 0.80 0.80         0.79       

Stochastic Gradient 
Descent 

Negative 78.71% 0.78 0.80       0.77       

positive 0.79 0.78 0.80 

LinearSVC Negative 82.26% 0.82 0.82 0.83 



 

positive 0.82 0.83 0.81 

L1 based LinearSVC Negative 82.41% 0.83 0.82 0.83 

positive 0.82 0.83 0.81 

KNN 
KNeighborsClassifier 

Negative 62.55% 0.55 0.69 0.45 

positive 0.68 0.59 0.80 

Nearest Centroid Negative 72.55% 0.73 0.72 0.74 

positive 0.72 0.73 0.71 

Bernoulli NB Negative 79.91% 0.80 0.81 0.78 

positive 0.80 0.79 0.81 

AdaBoostClassifier Negative 70.23% 0.68 0.75 0.62 

positive 0.72 0.67 0.79 

Multinomial NB Negative 80.15% 0.80 0.80 .81 

positive 0.80 0.81 0.79 

                                              Table 13: Result of performance of Classifier onTf-idf bigram 

Classification 
algorithm 

Negative or 
positive 

Accuracy F1-
score 

precision recall 

Ridge Classifier Negative 81.86% 0.82 0.83       0.80    

positive 0.82 0.81            0.84       

Logistic Regression Negative 82.38% 0.82 0.83       0.81      

positive 0.83 0.82       0.83       

Perceptron Negative 75.76% 0.75 0.77       0.73      

positive 0.76 0.74 0.78 

Passive-Aggressive 
Classifier 

Negative 75.93% 0.77 0.73       0.82      

positive 0.74 0.79         0.70     

Stochastic Gradient 
Descent 

Negative 81.39% 0.81 0.83      0.79      

positive 0.82 0.80 0.84 

LinearSVC Negative 82.06% 0.82 0.84 0.80 

positive 0.82 0.81 0.84 

L1 based LinearSVC Negative 82.14% 0.82 0.84 0.80 



 

positive 0.82 0.81 0.84 

KNN 
KNeighborsClassifier  

Negative 71.87% 0.70 0.75 0.66 

positive 0.73 0.69 0.78 

Nearest Centroid Negative 63.78% 0.61 0.66 0.57 

positive 0.66 0.62 0.70 

Bernoulli NB Negative 79.38% 0.79 0.81 0.77 

positive 0.80 0.78 0.82 

AdaBoostClassifier Negative 70.23% 0.68 0.74 0.62 

positive 0.72 0.67 0.78 

Multinomial NB Negative 79.73% 0.80 0.79 .81 

positive 0.80 0.80 0.79 

Table 14 : Result of performance of Classifier bag of words trigram 

 

Classification 
algorithm 

Negative or 
positive 

Accuracy F1-
score 

precision recall 

Ridge Classifier Negative 81.77% 

 

0.81 0.83       0.80    

positive 0.82 0.80           0.84       

Logistic Regression Negative 82.21% 0.82 0.83       0.81      

positive 0.82 0.81     0.83       

Perceptron Negative 73.78% 0.71 0.79      0.64 

positive 0.76 0.70 0.83 

Passive-Aggressive 
Classifier 

Negative 75.54% 0.76 0.74    0.78    

positive 0.75 0.77         0.73 

Stochastic Gradient 
Descent 

Negative 80.85% 0.80 0.83      0.78     

positive 0.81 0.79 0.84 

LinearSVC Negative 81.81% 0.81 0.84 0.79 

positive 0.82 0.80 0.84 

L1 based LinearSVC Negative 81.84% 0.81 0.84 0.79 



 

positive 0.82 0.80 0.84 

KNN 
KNeighborsClassifier  

Negative 72.13% 0.70 0.76 0.66 

positive 0.74 0.69 0.79 

Nearest Centroid Negative 63.70% 0.61 0.66 0.57 

positive 0.66 0.62 0.70 

Bernoulli NB Negative 79.67% 0.79 0.81 0.78 

positive 0.80 0.79 0.81 

AdaBoostClassifier Negative 70.23% 0.68 0.74 0.62 

positive 0.72 0.67 0.78 

Multinomial NB Negative 79.78% 0.80 0.79 .81 

positive 0.80 0.80 0.79 

                                             Table 15: Result of performance of Classifier bag of words bigram 

Above table show the result of classifier performance on various feature vectors with performance 

parameter results 

Below diagrams shows that how the accuracy of the of all the classification fared they have been 

seen using bar plot where x axis is defined as Classification algorithms and Accuracy of classifier 

As we have discussed before that we have created three different table in our results so we have 

three different bar graph to show case the result and then we have the a figure combined to show 

case the result 



 

                                               

 Figure 21:bar plot of accuracy vs classifier                                                                   figure 22:bar plot of Accuracy vs   

                                                                                                                                                  Classifier in bgw trigram                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
       Figure 23:bar plot of Accuracy vs classifier of tf-idf bigram 



 

 

                     Figure 24:line plot of accuracy of classifers 

 

 

                              Figure 25:line plot of accuracy of bgw trigram of classifiers 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                        Figure 26:Accuracy of tf-idf bigram 

 

                                               Figure 27: Accuracy of different Feature Extraction 

 



 

6.Conclusion: 

This paper addresses the task of sentimental analysis by developing using machine learning 

algorithm our system analyses the tweets or comments based on several features to determine the 

features to select feature extraction and classification my further work will be dependent feature 

combination to find the more accurate result of performance  

 

7.Future Scopes: 

my further work will be dependent feature combination to find the more accurate result of 

performance  
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