

 CHATBOT DEVELOPMENT USING PYTHON

Introduction

Chatbot definition and history:

A chatbot is a piece of technology that allows a computer program to communicate

with people just like conversing through text messaging using a natural language,

say English, to accomplish specific tasks. A chatbot is also known as an artificial

conversational entity (ACE), chat robot, talk bot, chatterbot or chatterbox.

The above picture shows a brief history of chatbots.

Project scope:

Chatbot is an AI chatbot that receives questions from users, tries to understand the

question, and provides appropriate answers. It does this by converting an English

sentence into a machine-friendly query, then going through relevant data to find

the necessary information, and finally returning the answer in a natural language

sentence.

The main objective is creating a Web API, and sample web and text messaging

interfaces that demonstrate the use of the API.

Description

Project perspective:

Most of the search engines today, like Google, use a system (The Pagerank

Algorithm) to rank different web pages. When a user enters a query, the query is

interpreted as keywords and the system returns a list of highest ranked web pages

which may have the answer to the query. This Chatbot, however, will try to

understand the query and provide a definitive answer.

There will be four main units to the system working together to understand the

question and return an appropriate answer:

 Generic question construction - capable of taking a natural language

question and making it more generic.

 Generic answer construction - capable of taking a generic question template

and providing a generic answer template

 Generic answer population - capable of taking a generic answer template and

populating it with information from the database to form an answer

 Information extraction - capable of finding information through structured

or unstructured websites, and storing that information in a database.

Product feature:

The major features of the products are:

 Web API: An API call will include a question in the form of a query string

URL parameter and the service will reply in JSON.

 Natural Language Processing: The system will take in questions written in

standard English

 Natural Language Responses: The answer to the question will be written

in standard and understandable English

 Information Extraction: There will be a database containing all the

information needed, populated using information extraction techniques.

Constraints:

 Creating a chatbot able to answer every single question about Drexel is not

possible to implement with current technology and within the duration of

the project, so the system will be able to answer questions about limited

topics.

 The system will understand only English language.

FUNCTIONAL REQUIREMENTS

Client system:

 The client will send a GET request to the Web API with the question as a

URL parameter.

 Client will specify the header Content-Type: application/JSON in their

requests as convention.

 A valid API query is a single URL parameter containing one sentence that

is a question in standard English.

 The server will reply with either data or an error, the client will be able to

parse the JSON and determine if there was an error.

Server System:

 The server will send all API data in JSON response documents with the

header Content-Type: application/JSON.

 The server will respond with a 200 OK status code if a request has the

header Content-Type: application/json and is a valid API query.

 The server will respond with a 400 Bad Request status code if a request

does not specify the header Content-Type: application/json OR is a

malformed API query

Response Structures:

 API responses are defined in JSON.

 A JSON object will be the root of every API response.

 Data: the document’s “primary data,” in this case, the response to the

client’s query

 Errors: an array of error objects stating what went wrong with the client’s

request, should any issues arise.

 The top-level members specified in R4.1.3.3 will not coexist in the same

JSON document. If data is present, errors will be absent and vice versa.

Generic question construction:

 This unit will receive a text string from the URL parameter.

 This unit will identify important words in the sentence and replace them

with generic representations preceded by an escape character.

 This unit will output the sentence as a string.

 This unit will output a map of generic representations to the words they

replaced.

 This unit will have a list of generic words related specifically to potential

queries.

 If there was an error here, then the unit failed to create a generic answer

given a generic sentence. In this case, simply fallback to the error handling

described in

Generic answer construction:

 This unit will receive as input a mapping from the Generic Question

Construction unit.

 This unit will receive as input a generic answer from the Generic Answer

Construction unit.

 This unit will query the database for data about the elements in the

mapping.

 This unit will replace the representations in the generic answer with data.

 This unit will output the answer to the original question.

 If there was an error here, then the unit failed to create a generic answer

given a generic sentence.

Generic answer population:

 This unit will query the database for data about the elements in the

mapping.

 This unit will replace the representations in the generic answer with data.

 This unit will output the answer to the original question.

 If querying the database did not provide an answer, the system will say

that it does not have an answer and provide appropriate website link where

the user could find the answer.

 If the system could not find appropriate website associated with the

question, the system will return a generic error message such as “Sorry, I

couldn’t find an answer to that.”

Database:

 A MySQL database will be used to store all information required to

answer questions.

 The database is populated by the information extraction unit before the

rest of the system is available, so that all information is readily

accessible.

 The database will use the generic representations from as table names

or column headers for easier retrieval of data.

 The database will be updated periodically and the API will be

unavailable during the update.

Structured input:

 These are highly organized data sources, such that including the data into

our database is simple.

 Structural data sources will have their data stored in our database.

Semi structured and unstructured input:

 Semi-structured data sources are data sources with some organization, but

the structure is not rigid enough to assure easy extraction of data.

 Unstructured data is data with no organization, so extracting information is

very hard to do programmatically.

 Extraction of information from semi-structured and unstructured data

sources can be handled in 3 possible ways:

1. For data with enough structuring, web scraping will be used to

programmatically extract all the data needed and store it in our

database.

2. For data with enough structuring, web scraping will be used to

programmatically extract all the data needed and store it in our

database.

3. Data that is especially hard to extract, for whatever reason, will be

manually extracted and added to the database by a developer.

User Interface:

 The GUI will have a textbox that will accept inputs from a

keyboard.

 Text box will originally contain a suggestive text question, to guide

the user to the format of an appropriate question.

 The GUI will have a “Send” button which sends text from the

textbox to the API when clicked.

 The GUI will have a chat window displaying questions sent to the

system and responses from the API.

 The chat window will contain all questions and answers from the

current session, with a scroll bar if all messages can’t fit on the

screen.

 If there is a network issue, the chat window will display an error

message.

 A chatbot conversation example

Non Functional Requirements

API:

 The system will be designed in such a way that the algorithms for the four

main units will be able to be easily swapped out.

 The overall accuracy of the Web API’s response will be measured using a

developer-made testing set.

 The overall accuracy is calculated by dividing total number of correct

answers by the number of questions asked.

 The accuracy of the Generic Question Constructionpart will be close to

80%.

 The accuracy of the Generic Answer Constructionunit will be close to

70%.

 The accuracy of the Generic Answer Populationunit will be close to 70%.

 The average time for the server to respond, over the question testing set,

will be less than or equal to 2 seconds.

 The connection between the Web API and the programs will use HTTPS,

for security.

Web Interface:

A new user will make less than 3 mistakes in 5 minutes after 5 minutes of use.

Use Case Diagram:

Activity diagram

