


Statistical 
Analysis with R

by Joseph Schmuller, PhD



Statistical Analysis with R For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any 
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to 
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River 
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written 
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not 
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO 
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS 
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES 
OF FITNESS FOR A PARTICULAR PURPOSE.  NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR 
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR 
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED 
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS 
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.  NEITHER THE 
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN 
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF 
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION 
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS 
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED 
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within 
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit 
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with 
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to 
media such as a CD or DVD that is not included in the version you purchased, you may download this material at 
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2017932881

ISBN: 978-1-119-33706-5; 978-1-119-33726-3 (ebk); 978-1-119-33709-6 (ebk)

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies#_blank
http://booksupport.wiley.com
http://www.wiley.com
https://hub.wiley.com/community/support/dummies


Contents at a Glance
Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Part 1: Getting Started with Statistical Analysis with R .  .  .  .  . 7
CHAPTER 1:	 Data,	Statistics,	and Decisions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
CHAPTER 2:	 R:	What	It	Does	and	How It	Does	It  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Part 2: Describing Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
CHAPTER 3:	 Getting	Graphic  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
CHAPTER 4:	 Finding	Your	Center  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
CHAPTER 5:	 Deviating	from	the Average   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103
CHAPTER 6:	 Meeting	Standards	and Standings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
CHAPTER 7:	 Summarizing	It	All  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
CHAPTER 8:	 What’s	Normal?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143

Part 3: Drawing Conclusions from Data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161
CHAPTER 9:	 The	Confidence	Game:	Estimation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
CHAPTER 10:	One-Sample	Hypothesis	Testing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
CHAPTER 11:	Two-Sample	Hypothesis	Testing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205
CHAPTER 12:	Testing	More	than	Two	Samples   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231
CHAPTER 13:	More	Complicated	Testing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
CHAPTER 14:	Regression:	Linear,	Multiple,	and	the	General	Linear	Model   .  .  .  .  .  .  .  . 277
CHAPTER 15:	Correlation:	The	Rise	and	Fall	of	Relationships  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 313
CHAPTER 16:	Curvilinear	Regression:	When	Relationships	Get	Complicated   .  .  .  .  .  . 335

Part 4: Working with Probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359
CHAPTER 17:	Introducing	Probability   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 361
CHAPTER 18:	Introducing	Modeling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383

Part 5: The Part of Tens  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 405
CHAPTER 19:	Ten	Tips	for	Excel	Emigrés  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 407
CHAPTER 20:	Ten	Valuable	Online	R Resources   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 421

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 425





Table of Contents      v

Table of Contents
INTRODUCTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

About	This	Book  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1
Similarity	with	This	Other	For	Dummies	Book   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
What	You	Can	Safely	Skip  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .2
Foolish	Assumptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .2
How	This	Book	Is	Organized   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

Part	1:	Getting	Started	with	Statistical	Analysis	with	R  .  .  .  .  .  .  .  .  .  .  .  . 3
Part	2:	Describing	Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3
Part	3:	Drawing	Conclusions	from	Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Part	4:	Working	with	Probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3
Part	5:	The	Part	of	Tens   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4
Online	Appendix	A:	More	on	Probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Online	Appendix	B:	Non-Parametric	Statistics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Online	Appendix	C:	Ten	Topics	That	Just	Didn’t	Fit	 
in	Any	Other	Chapter   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4

Icons	Used	in	This	Book  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4
Where	to	Go	from	Here   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5

PART 1: GETTING STARTED WITH STATISTICAL  
ANALYSIS WITH R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

CHAPTER 1:	 Data,	Statistics,	and Decisions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
The	Statistical	(and	Related)	Notions	You	Just	Have	to	Know  .  .  .  .  .  .  .  .10

Samples	and	populations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .10
Variables:	Dependent	and	independent   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .11
Types	of	data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12
A	little	probability   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .13

Inferential	Statistics:	Testing	Hypotheses   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14
Null	and	alternative	hypotheses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .14
Two	types	of	error  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .15

CHAPTER 2:	 R:	What	It	Does	and	How It	Does	It  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Downloading	R	and	RStudio   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .18
A	Session	with	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

The	working	directory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21
So	let’s	get	started,	already   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .22
Missing	data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26

R	Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .26
User-Defined	Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .28
Comments   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29



vi      Statistical Analysis with R For Dummies

R	Structures   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .29
Vectors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .30
Numerical	vectors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .30
Matrices   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .31
Factors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .33
Lists  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .34
Lists	and	statistics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .35
Data	frames   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .36

Packages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .39
More	Packages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .42
R	Formulas  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .43
Reading	and	Writing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .44

Spreadsheets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .44
CSV	files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .46
Text	files   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .47

PART 2: DESCRIBING DATA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

CHAPTER 3: Getting Graphic  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Finding	Patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .51

Graphing	a	distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .52
Bar-hopping  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .53
Slicing	the	pie  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .54
The	plot	of	scatter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .55
Of	boxes	and	whiskers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .56

Base	R	Graphics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .57
Histograms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .57
Adding	graph	features   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .59
Bar	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .60
Pie	graphs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .62
Dot	charts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .62
Bar	plots	revisited  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .64
Scatter	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .67
Box	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .71

Graduating	to	ggplot2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .71
Histograms  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .72
Bar	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .74
Dot	charts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .75
Bar	plots	re-revisited  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .78
Scatter	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .82
Box	plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .86

Wrapping	Up   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .89



Table of Contents      vii

CHAPTER 4: Finding Your Center  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91
Means:	The	Lure	of	Averages   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .91
The	Average	in	R:	mean()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .93

What’s	your	condition?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .93
Eliminate	$-signs	forth	with()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .94
Exploring	the	data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .95
Outliers:	The	flaw	of	averages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .96
Other	means	to	an	end .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .97

Medians:	Caught	in	the	Middle  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .99
The	Median	in	R:	median()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .100
Statistics	à	la	Mode  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .101
The	Mode	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .101

CHAPTER 5:	 Deviating	from	the Average  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103
Measuring	Variation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .104

Averaging	squared	deviations:	Variance	and	 
how	to	calculate	it  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .104
Sample	variance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .107
Variance	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .107

Back	to	the	Roots:	Standard	Deviation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .108
Population	standard	deviation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .108
Sample	standard	deviation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .109

Standard	Deviation	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .109
Conditions,	Conditions,	Conditions	. . .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .110

CHAPTER 6:	 Meeting	Standards	and Standings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
Catching	Some	Z’s  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .112

Characteristics	of	z-scores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .112
Bonds	versus	the	Bambino   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .113
Exam	scores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .114

Standard	Scores	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .114
Where	Do	You	Stand?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .117

Ranking	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .117
Tied	scores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .117
Nth	smallest,	Nth	largest   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .118
Percentiles   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .118
Percent	ranks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .120

Summarizing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .121

CHAPTER 7: Summarizing It All  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
How	Many?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .123
The	High	and	the	Low  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .125



viii      Statistical Analysis with R For Dummies

Living	in	the	Moments   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .125
A	teachable	moment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .126
Back	to	descriptives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .126
Skewness   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .127
Kurtosis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .130

Tuning	in	the	Frequency  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .131
Nominal	variables:	table()	et al   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .131
Numerical	variables:	hist()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .132
Numerical	variables:	stem()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .138

Summarizing	a	Data	Frame  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .139

CHAPTER 8: What’s Normal?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Hitting	the	Curve  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .143

Digging	deeper  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .144
Parameters	of	a	normal	distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .145

Working	with	Normal	Distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .147
Distributions	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .147
Normal	density	function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .147
Cumulative	density	function   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .152
Quantiles	of	normal	distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .155
Random	sampling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .156

A	Distinguished	Member	of	the	Family   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .158

PART 3: DRAWING CONCLUSIONS FROM DATA  .  .  .  .  .  .  .  .  .  .  . 161

CHAPTER 9:	 The	Confidence	Game:	Estimation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
Understanding	Sampling	Distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .164
An	EXTREMELY	Important	Idea:	The	Central	Limit	Theorem   .  .  .  .  .  .  .165

(Approximately)	Simulating	the	central	limit	theorem  .  .  .  .  .  .  .  .  .  .167
Predictions	of	the	central	limit	theorem   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .171

Confidence:	It	Has	Its	Limits!  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .173
Finding	confidence	limits	for	a	mean  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .173

Fit	to	a	t  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .175

CHAPTER 10: One-Sample Hypothesis Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Hypotheses,	Tests,	and	Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .179
Hypothesis	Tests	and	Sampling	Distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .181
Catching	Some	Z’s	Again  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .183
Z	Testing	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .185
t	for	One  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .187
t	Testing	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .188
Working	with	t-Distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .189



Table of Contents      ix

Visualizing	t-Distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .190
Plotting	t	in	base	R	graphics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .191
Plotting	t	in	ggplot2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .192
One	more	thing	about	ggplot2   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .197

Testing	a	Variance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .198
Testing	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .199

Working	with	Chi-Square	Distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .201
Visualizing	Chi-Square	Distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .201

Plotting	chi-square	in	base	R	graphics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .202
Plotting	chi-square	in	ggplot2   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .203

CHAPTER 11: Two-Sample Hypothesis Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 205
Hypotheses	Built	for	Two  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .205
Sampling	Distributions	Revisited   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .206

Applying	the	central	limit	theorem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .207
Z’s	once	more  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .208
Z-testing	for	two	samples	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .210

t	for	Two  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .212
Like	Peas	in	a	Pod:	Equal	Variances   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .212
t-Testing	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .214

Working	with	two	vectors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .214
Working	with	a	data	frame	and	a	formula  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .215
Visualizing	the	results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .216
Like	p’s	and	q’s:	Unequal	variances .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .219

A	Matched	Set:	Hypothesis	Testing	for	Paired	Samples   .  .  .  .  .  .  .  .  .  .  .220
Paired	Sample	t-testing	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .222
Testing	Two	Variances   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .222

F-testing	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .224
F	in	conjunction	with	t  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .225

Working	with	F-Distributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .226
Visualizing	F-Distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .226

CHAPTER 12: Testing More than Two Samples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231
Testing	More	Than	Two   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .231

A	thorny	problem   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .232
A	solution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .233
Meaningful	relationships  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .237

ANOVA	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .237
Visualizing	the	results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .239
After	the	ANOVA   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .239
Contrasts	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .242
Unplanned	comparisons   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .243



x      Statistical Analysis with R For Dummies

Another	Kind	of	Hypothesis,	Another	Kind	of	Test  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .244
Working	with	repeated	measures	ANOVA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .245
Repeated	measures	ANOVA	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .247
Visualizing	the	results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .249

Getting	Trendy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .250
Trend	Analysis	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .254

CHAPTER 13: More Complicated Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
Cracking	the	Combinations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .255

Interactions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .257
The	analysis   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .257

Two-Way	ANOVA	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .259
Visualizing	the	two-way	results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .261

Two	Kinds	of	Variables . . . at	Once  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .263
Mixed	ANOVA	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .266
Visualizing	the	Mixed	ANOVA	results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .268

After	the	Analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .269
Multivariate	Analysis	of	Variance   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .270

MANOVA	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .271
Visualizing	the	MANOVA	results   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .273
After	the	analysis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .275

CHAPTER 14: Regression: Linear, Multiple, and  
the General Linear Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
The	Plot	of	Scatter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .277
Graphing	Lines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .279
Regression:	What	a	Line!   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .281

Using	regression	for	forecasting  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .283
Variation	around	the	regression	line   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .283
Testing	hypotheses	about	regression   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .285

Linear	Regression	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .290
Features	of	the	linear	model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .292
Making	predictions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .292
Visualizing	the	scatter	plot	and	regression line   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .293
Plotting	the	residuals   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .294

Juggling	Many	Relationships	at	Once:	Multiple	Regression .  .  .  .  .  .  .  .  .295
Multiple	regression	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .297
Making	predictions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .298
Visualizing	the	3D	scatter	plot	and	regression	plane  .  .  .  .  .  .  .  .  .  .  .298

ANOVA:	Another	Look  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .301
Analysis	of	Covariance:	The	Final	Component	of	the	GLM  .  .  .  .  .  .  .  .  .305

But	wait —	there’s	more  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .311



Table of Contents      xi

CHAPTER 15: Correlation: The Rise and Fall of Relationships  .  .  .  . 313
Scatter	plots	Again .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .313
Understanding	Correlation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .314
Correlation	and	Regression  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .316
Testing	Hypotheses	About	Correlation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .319

Is	a	correlation	coefficient	greater	than zero? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .319
Do	two	correlation	coefficients	differ?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .320

Correlation	in	R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .322
Calculating	a	correlation	coefficient  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .322
Testing	a	correlation	coefficient   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .322
Testing	the	difference	between	two	correlation	coefficients  .  .  .  .323
Calculating	a	correlation	matrix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .324
Visualizing	correlation	matrices   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .324

Multiple	Correlation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .326
Multiple	correlation	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .327
Adjusting	R-squared   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .328

Partial	Correlation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .329
Partial	Correlation	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .330
Semipartial	Correlation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .331
Semipartial	Correlation	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .332

CHAPTER 16: Curvilinear Regression: When Relationships  
Get Complicated  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
What	Is	a	Logarithm?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .336
What	Is	e?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .338
Power	Regression   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .341
Exponential	Regression   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .346
Logarithmic	Regression   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .350
Polynomial	Regression:	A	Higher	Power   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .354
Which	Model	Should	You	Use?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .358

PART 4: WORKING WITH PROBABILITY  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 359

CHAPTER 17: Introducing Probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 361
What	Is	Probability?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .361

Experiments,	trials,	events,	and	sample	spaces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .362
Sample	spaces	and	probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .362

Compound	Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .363
Union	and	intersection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .363
Intersection	again   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .364

Conditional	Probability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .365
Working	with	the	probabilities   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .366
The	foundation	of	hypothesis	testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .366



xii      Statistical Analysis with R For Dummies

Large	Sample	Spaces   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .366
Permutations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .367
Combinations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .368

R	Functions	for	Counting	Rules  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .369
Random	Variables:	Discrete	and	Continuous  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .371
Probability	Distributions	and	Density	Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .371
The	Binomial	Distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .374
The	Binomial	and	Negative	Binomial	in	R  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .375

Binomial	distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .375
Negative	binomial	distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .377

Hypothesis	Testing	with	the	Binomial	Distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .378
More	on	Hypothesis	Testing:	R	versus	Tradition   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .380

CHAPTER 18: Introducing Modeling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383
Modeling	a	Distribution   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .383

Plunging	into	the	Poisson	distribution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .384
Modeling	with	the	Poisson	distribution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .385
Testing	the	model’s	fit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .388
A	word	about	chisq.test()  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .391
Playing	ball	with	a	model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .392

A	Simulating	Discussion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .396
Taking	a	chance:	The	Monte	Carlo	method  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .396
Loading	the	dice   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .396
Simulating	the	central	limit	theorem  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .401

PART 5: THE PART OF TENS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 405

CHAPTER 19: Ten Tips for Excel Emigrés  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 407
Defining	a	Vector	in	R	Is	Like	Naming	a Range	in	Excel  .  .  .  .  .  .  .  .  .  .  .  .407
Operating	on	Vectors	Is	Like	Operating	on Named	Ranges  .  .  .  .  .  .  .  .408
Sometimes	Statistical	Functions	Work	the	Same	Way	. . .  .  .  .  .  .  .  .  .  .  .412
. . .	And	Sometimes	They	Don’t  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .412
Contrast:	Excel	and	R	Work	with	Different	Data	Formats  .  .  .  .  .  .  .  .  .  .413
Distribution	Functions	Are	(Somewhat)	Similar   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .414
A	Data	Frame	Is	(Something)	Like	a	Multicolumn	Named	Range  .  .  .  .416
The	sapply()	Function	Is	Like	Dragging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .417
Using	edit()	Is	(Almost)	Like	Editing	a	Spreadsheet .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .418
Use	the	Clipboard	to	Import	a	Table	from	Excel	into	R  .  .  .  .  .  .  .  .  .  .  .  .419

CHAPTER 20:	Ten	Valuable	Online	R Resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 421
Websites	for	R	Users  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .421

R-bloggers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .421
Microsoft	R	Application	Network   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .422
Quick-R   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .422



Table of Contents      xiii

RStudio	Online	Learning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .422
Stack	Overflow  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .422

Online	Books	and	Documentation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .423
R	manuals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .423
R	documentation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .423
RDocumentation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .423
YOU	CANanalytics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .423
The	R	Journal   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .424

INDEX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 425





Introduction      1

Introduction

So you’re holding a statistics book. In my humble (and absolutely biased) 
opinion, it’s not just another statistics book. It’s also not just another  
R book. I say this for two reasons.

First, many statistics books teach you the concepts but don’t give you an easy way 
to apply them. That often leads to a lack of understanding. Because R is ready-
made for statistics, it’s a tool for applying (and learning) statistics concepts.

Second, let’s look at it from the opposite direction: Before I tell you about one of 
R’s features, I give you the statistical foundation it’s based on. That way, you 
understand that feature when you use it — and you use it more effectively.

I didn’t want to write a book that only covers the details of R and introduces some 
clever coding techniques. Some of that is necessary, of course, in any book that 
shows you how to use a software tool like R. My goal was to go way beyond that.

Neither did I want to write a statistics “cookbook”: when-faced-with-problem-
category-#152-use-statistical-procedure-#346. My goal was to go way beyond 
that, too.

Bottom line: This book isn’t just about statistics or just about R — it’s firmly at 
the intersection of the two. In the proper context, R can be a great tool for teaching 
and learning statistics, and I’ve tried to supply the proper context.

About This Book
Although the field of statistics proceeds in a logical way, I’ve organized this book 
so that you can open it up in any chapter and start reading. The idea is for you to 
find the information you’re looking for in a hurry and use it immediately  — 
whether it’s a statistical concept or an R-related one.

On the other hand, reading from cover to cover is okay if you’re so inclined. If 
you’re a statistics newbie and you have to use R to analyze data, I recommend that 
you begin at the beginning.



2      Statistical Analysis with R For Dummies

Similarity with This Other  
For Dummies Book

You might be aware that I’ve written another book: Statistical Analysis with Excel For 
Dummies (Wiley). This is not a shameless plug for that book. (I do that 
elsewhere.)

I’m just letting you know that the sections in this book that explain statistical 
concepts are much like the corresponding sections in that one. I use (mostly) the 
same examples and, in many cases, the same words. I’ve developed that material 
during decades of teaching statistics and found it to be very effective. (Reviewers 
seem to like it, too.) Also, if you happen to have read the other book and you’re 
transitioning to R, the common material might just help you make the switch.

And, you know: If it ain’t broke. . . .

What You Can Safely Skip
Any reference book throws a lot of information at you, and this one is no excep-
tion. I intended for it all to be useful, but I didn’t aim it all at the same level. So if 
you’re not deeply into the subject matter, you can avoid paragraphs marked with 
the Technical Stuff icon.

As you read, you’ll run into sidebars. They provide information that elaborates on 
a topic, but they’re not part of the main path. If you’re in a hurry, you can breeze 
past them.

Foolish Assumptions
I’m assuming this much about you:

 » You know how to work with Windows or the Mac. I don’t describe the details 
of pointing, clicking, selecting, and other actions.

 » You’re able to install R and RStudio (I show you how in Chapter 2) and follow 
along with the examples. I use the Windows version of RStudio, but you 
should have no problem if you’re working on a Mac.



Introduction      3

How This Book Is Organized
I’ve organized this book into five parts and three appendixes (which you can 
find  on this book’s companion website at www.dummies.com/go/statistical 
analysiswithr).

Part 1: Getting Started with Statistical  
Analysis with R
In Part 1, I provide a general introduction to statistics and to R. I discuss important 
statistical concepts and describe useful R techniques. If it’s been a long time since 
your last course in statistics or if you’ve never even had a statistics course, start 
with Part 1. If you have never worked with R, definitely start with Part 1.

Part 2: Describing Data
Part of working with statistics is to summarize data in meaningful ways. In Part 2, 
you find out how to do that. Most people know about averages and how to com-
pute them. But that’s not the whole story. In Part 2, I tell you about additional 
statistics that fill in the gaps, and I show you how to use R to work with those 
statistics. I also introduce R graphics in this part.

Part 3: Drawing Conclusions from Data
Part 3 addresses the fundamental aim of statistical analysis: to go beyond the data 
and help you make decisions. Usually, the data are measurements of a sample 
taken from a large population. The goal is to use these data to figure out what’s 
going on in the population.

This opens a wide range of questions: What does an average mean? What does the 
difference between two averages mean? Are two things associated? These are only 
a few of the questions I address in Part 3, and I discuss the R functions that help 
you answer them.

Part 4: Working with Probability
Probability is the basis for statistical analysis and decision-making. In Part  4, 
I tell you all about it. I show you how to apply probability, particularly in the area 
of modeling. R provides a rich set of capabilities that deal with probability. Here’s 
where you find them.

http://www.dummies.com/go/statisticalanalysiswithr
http://www.dummies.com/go/statisticalanalysiswithr


4      Statistical Analysis with R For Dummies

Part 5: The Part of Tens
Part V has two chapters. In the first, I give Excel users ten tips for moving to R. In 
the second, I cover ten statistical- and R-related topics that wouldn’t fit in any 
other chapter.

Online Appendix A: More on Probability
This online appendix continues what I start in Part 4. The material is a bit on the 
esoteric side, so I’ve stashed it in an appendix.

Online Appendix B: Non-Parametric  
Statistics
Non-parametric statistics are based on concepts that differ somewhat from most 
of the rest of the book. In this appendix, you learn these concepts and see how to 
use R to apply them.

Online Appendix C: Ten Topics That Just 
Didn’t Fit in Any Other Chapter
This is the Grab Bag appendix, where I cover ten statistical- and R-related topics 
that wouldn’t fit in any other chapter.

Icons Used in This Book
Icons appear all over For Dummies books, and this one is no exception. Each one is 
a little picture in the margin that lets you know something special about the para-
graph it sits next to.

This icon points out a hint or a shortcut that can help you in your work (and per-
haps make you a finer, kinder, and more insightful human being).

This one points out timeless wisdom to take with you on your continuing quest for 
statistics knowledge.



Introduction      5

Pay attention to the information accompanied by this icon. It’s a reminder to 
avoid something that might gum up the works for you.

As I mention in the earlier section “What You Can Safely Skip,” this icon indicates 
material you can blow past if it’s just too technical. (I’ve kept this to a 
minimum.)

Where to Go from Here
You can start reading this book anywhere, but here are a couple of hints. Want to 
learn the foundations of statistics? Turn the page. Introduce yourself to R? That’s 
Chapter 2. Want to start with graphics? Hit Chapter 3. For anything else, find it in 
the table of contents or the index and go for it.

In addition to what you’re reading right now, this product comes with a free 
access-anywhere Cheat Sheet that presents a selected list of R functions and 
describes what they do. To get this Cheat Sheet, visit www.dummies.com and type 
Statistical Analysis with R For Dummies Cheat Sheet in the search box.

http://www.dummies.com




1Getting Started 
with Statistical 
Analysis with R



IN THIS PART . . .

Find out about R’s statistical capabilities

Explore how to work with populations and samples

Test your hypotheses

Understand errors in decision-making

Determine independent and dependent variables



CHAPTER 1  Data, Statistics, and Decisions      9

IN THIS CHAPTER

 » Introducing statistical concepts

 » Generalizing from samples to 
populations

 » Getting into probability

 » Testing hypotheses

 » Two types of error

Data, Statistics, 
and Decisions

Statistics? That’s all about crunching numbers into arcane-looking formulas, 
right? Not really. Statistics, first and foremost, is about decision-making. 
Some number-crunching is involved, of course, but the primary goal is to 

use numbers to make decisions. Statisticians look at data and wonder what the 
numbers are saying. What kinds of trends are in the data? What kinds of predic-
tions are possible? What conclusions can we make?

To make sense of data and answer these questions, statisticians have developed a 
wide variety of analytical tools.

About the number-crunching part: If you had to do it via pencil-and-paper (or 
with the aid of a pocket calculator), you’d soon get discouraged with the amount 
of computation involved and the errors that might creep in. Software like R helps 
you crunch the data and compute the numbers. As a bonus, R can also help you 
comprehend statistical concepts.

Developed specifically for statistical analysis, R is a computer language that 
implements many of the analytical tools statisticians have developed for decision-
making. I wrote this book to show how to use these tools in your work.

Chapter 1



10      PART 1  Getting Started with Statistical Analysis with R

The Statistical (and Related) Notions  
You Just Have to Know

The analytical tools that that R provides are based on statistical concepts I help 
you explore in the remainder of this chapter. As you’ll see, these concepts are 
based on common sense.

Samples and populations
If you watch TV on election night, you know that one of the main events is the 
prediction of the outcome immediately after the polls close (and before all the 
votes are counted). How is it that pundits almost always get it right?

The idea is to talk to a sample of voters right after they vote. If they’re truthful 
about how they marked their ballots, and if the sample is representative of the 
population of voters, analysts can use the sample data to draw conclusions about 
the population.

That, in a nutshell, is what statistics is all about — using the data from samples 
to draw conclusions about populations.

Here’s another example. Imagine that your job is to find the average height of 
10-year-old children in the United States. Because you probably wouldn’t have the 
time or the resources to measure every child, you’d measure the heights of a rep-
resentative sample. Then you’d average those heights and use that average as the 
estimate of the population average.

Estimating the population average is one kind of inference that statisticians make 
from sample data. I discuss inference in more detail in the upcoming section 
“Inferential Statistics: Testing Hypotheses.”

Here’s some important terminology: Properties of a population (like the popula-
tion average) are called parameters, and properties of a sample (like the sample 
average) are called statistics. If your only concern is the sample properties (like the 
heights of the children in your sample), the statistics you calculate are descriptive. 
If you’re concerned about estimating the population properties, your statistics are 
inferential.

Now for an important convention about notation: Statisticians use Greek letters 
(μ, σ, ρ) to stand for parameters, and English letters (X , s, r) to stand for statistics. 
Figure  1-1 summarizes the relationship between populations and samples, and 
between parameters and statistics.



CHAPTER 1  Data, Statistics, and Decisions      11

Variables: Dependent and independent
A variable is something that can take on more than one value — like your age, the 
value of the dollar against other currencies, or the number of games your favorite 
sports team wins. Something that can have only one value is a constant. Scientists 
tell us that the speed of light is a constant, and we use the constant π to calculate 
the area of a circle.

Statisticians work with independent variables and dependent variables. In any study 
or experiment, you’ll find both kinds. Statisticians assess the relationship between 
them.

For example, imagine a computerized training method designed to increase a per-
son’s IQ. How would a researcher find out if this method does what it’s supposed 
to do? First, he would randomly assign a sample of people to one of two groups. 
One group would receive the training method, and the other would complete 
another kind of computer-based activity — like reading text on a website. Before 
and after each group completes its activities, the researcher measures each per-
son’s IQ. What happens next? I discuss that topic in the upcoming section “Infer-
ential Statistics: Testing Hypotheses.”

For now, understand that the independent variable here is Type of Activity. The 
two possible values of this variable are IQ Training and Reading Text. The depen-
dent variable is the change in IQ from Before to After.

A dependent variable is what a researcher measures. In an experiment, an inde-
pendent variable is what a researcher manipulates. In other contexts, a researcher 
can’t manipulate an independent variable. Instead, he notes naturally occurring 
values of the independent variable and how they affect a dependent variable.

In general, the objective is to find out whether changes in an independent variable 
are associated with changes in a dependent variable.

FIGURE 1-1: 
The relationship 

between 
populations, 

samples, 
parameters, and 

statistics.



12      PART 1  Getting Started with Statistical Analysis with R

In the examples that appear throughout this book, I show you how to use R to 
calculate characteristics of groups of scores, or to compare groups of scores. 
Whenever I show you a group of scores, I’m talking about the values of a depen-
dent variable.

Types of data
When you do statistical work, you can run into four kinds of data. And when you 
work with a variable, the way you work with it depends on what kind of data it is. 
The first kind is nominal data. If a set of numbers happens to be nominal data, the 
numbers are labels – their values don’t signify anything. On a sports team, the 
jersey numbers are nominal. They just identify the players.

The next kind is ordinal data. In this data-type, the numbers are more than just 
labels. As the name “ordinal” might tell you, the order of the numbers is impor-
tant. If I ask you to rank ten foods from the one you like best (one), to the one you 
like least (ten), we’d have a set of ordinal data.

But the difference between your third-favorite food and your fourth-favorite food 
might not be the same as the difference between your ninth-favorite and your 
tenth-favorite. So this type of data lacks equal intervals and equal differences.

Interval data gives us equal differences. The Fahrenheit scale of temperature is a 
good example. The difference between 30o and 40o is the same as the difference 
between 90o and 100o. So each degree is an interval.

People are sometimes surprised to find out that on the Fahrenheit scale, a tem-
perature of 80o is not twice as hot as 40o. For ratio statements (“twice as much 
as”, “half as much as”) to make sense, “zero” has to mean the complete absence 
of the thing you’re measuring. A temperature of 0o F doesn’t mean the complete 
absence of heat – it’s just an arbitrary point on the Fahrenheit scale. (The same 
holds true for Celsius.)

The fourth kind of data, ratio, provides a meaningful zero point. On the Kelvin 
Scale of temperature, zero means “absolute zero,” where all molecular motion 
(the basis of heat) stops. So 200o Kelvin is twice as hot as 100o Kelvin. Another 
example is length. Eight inches is twice as long as four inches. “Zero inches” 
means “a complete absence of length.”

An independent variable or a dependent variable can be either nominal, ordinal, 
interval, or ratio. The analytical tools you use depend on the type of data you work 
with.



CHAPTER 1  Data, Statistics, and Decisions      13

A little probability
When statisticians make decisions, they use probability to express their confi-
dence about those decisions. They can never be absolutely certain about what they 
decide. They can only tell you how probable their conclusions are.

What do we mean by probability? Mathematicians and philosophers might give 
you complex definitions. In my experience, however, the best way to understand 
probability is in terms of examples.

Here’s a simple example: If you toss a coin, what’s the probability that it turns up 
heads? If the coin is fair, you might figure that you have a 50-50 chance of heads 
and a 50-50 chance of tails. And you’d be right. In terms of the kinds of numbers 
associated with probability, that’s 1 2.

Think about rolling a fair die (one member of a pair of dice). What’s the probabil-
ity that you roll a 4? Well, a die has six faces and one of them is 4, so that’s 1 6. Still 
another example: Select one card at random from a standard deck of 52 cards. 
What’s the probability that it’s a diamond? A deck of cards has four suits, so 
that’s 1 4.

These examples tell you that if you want to know the probability that an event 
occurs, count how many ways that event can happen and divide by the total num-
ber of events that can happen. In the first two examples (heads, 4), the event 
you’re interested in happens only one way. For the coin, we divide one by two. For 
the die, we divide one by six. In the third example (diamond), the event can hap-
pen 13 ways (Ace through King), so we divide 13 by 52 (to get 1 4).

Now for a slightly more complicated example. Toss a coin and roll a die at the 
same time. What’s the probability of tails and a 4? Think about all the possible 
events that can happen when you toss a coin and roll a die at the same time. 
You could have tails and 1 through 6, or heads and 1 through 6. That adds up to 
12 possibilities. The tails-and-4 combination can happen only one way. So the 
probability is 1 12.

In general, the formula for the probability that a particular event occurs is

Pr(event)
Number of ways the event can occur

Total number off possible events

At the beginning of this section, I say that statisticians express their confidence 
about their conclusions in terms of probability, which is why I brought all this up 
in the first place. This line of thinking leads to conditional probability — the prob-
ability that an event occurs given that some other event occurs. Suppose that I roll 
a die, look at it (so that you don’t see it), and tell you that I rolled an odd number. 
What’s the probability that I’ve rolled a 5? Ordinarily, the probability of a 5 is 1

6, 



14      PART 1  Getting Started with Statistical Analysis with R

but “I rolled an odd number” narrows it down. That piece of information elimi-
nates the three even numbers (2, 4, 6) as possibilities. Only the three odd numbers 
(1,3, 5) are possible, so the probability is 1

3.

What’s the big deal about conditional probability? What role does it play in statis-
tical analysis? Read on.

Inferential Statistics: Testing Hypotheses
Before a statistician does a study, he draws up a tentative explanation — a hypoth-
esis that tells why the data might come out a certain way. After gathering all the 
data, the statistician has to decide whether or not to reject the hypothesis.

That decision is the answer to a conditional probability question — what’s the 
probability of obtaining the data, given that this hypothesis is correct? Statisti-
cians have tools that calculate the probability. If the probability turns out to be 
low, the statistician rejects the hypothesis.

Back to coin-tossing for an example: Imagine that you’re interested in whether a 
particular coin is fair — whether it has an equal chance of heads or tails on any 
toss. Let’s start with “The coin is fair” as the hypothesis.

To test the hypothesis, you’d toss the coin a number of times — let’s say, a hun-
dred. These 100 tosses are the sample data. If the coin is fair (as per the hypoth-
esis), you’d expect 50 heads and 50 tails.

If it’s 99 heads and 1 tail, you’d surely reject the fair-coin hypothesis: The condi-
tional probability of 99 heads and 1 tail given a fair coin is very low. Of course, the 
coin could still be fair and you could, quite by chance, get a 99-1 split, right? Sure. 
You never really know. You have to gather the sample data (the 100 toss-results) 
and then decide. Your decision might be right, or it might not.

Juries make these types of decisions. In the United States, the starting hypothesis 
is that the defendant is not guilty (“innocent until proven guilty”). Think of the 
evidence as “data.” Jury-members consider the evidence and answer a condi-
tional probability question: What’s the probability of the evidence, given that the 
defendant is not guilty? Their answer determines the verdict.

Null and alternative hypotheses
Think again about that coin-tossing study I just mentioned. The sample data are 
the results from the 100 tosses. I said that we can start with the hypothesis that 



CHAPTER 1  Data, Statistics, and Decisions      15

the coin is fair. This starting point is called the null hypothesis. The statistical 
notation for the null hypothesis is H0. According to this hypothesis, any heads-
tails split in the data is consistent with a fair coin. Think of it as the idea that 
nothing in the sample data is out of the ordinary.

An alternative hypothesis is possible  — that the coin isn’t a fair one and it’s 
loaded to produce an unequal number of heads and tails. This hypothesis says that 
any heads-tails split is consistent with an unfair coin. This alternative hypothesis 
is called, believe it or not, the alternative hypothesis. The statistical notation for the 
alternative hypothesis is H1.

Now toss the coin 100 times and note the number of heads and tails. If the results 
are something like 90 heads and 10 tails, it’s a good idea to reject H0. If the results 
are around 50 heads and 50 tails, don’t reject H0.

Similar ideas apply to the IQ example I gave earlier. One sample receives the 
 computer-based IQ training method, and the other participates in a different 
computer-based activity — like reading text on a website. Before and after each 
group completes its activities, the researcher measures each person’s IQ. The null 
hypothesis, H0, is that one group’s improvement isn’t different from the other. If 
the improvements are greater with the IQ training than with the other activity — 
so much greater that it’s unlikely that the two aren’t different from one another — 
reject H0. If they’re not, don’t reject H0.

Notice that I did not say “accept H0.” The way the logic works, you never accept a 
hypothesis. You either reject H0 or don’t reject H0. In a jury trial, the verdict is 
either “guilty” (reject the null hypothesis of “not guilty”) or “not guilty” (don’t 
reject H0). “Innocent” (acceptance of the null hypothesis) is not a possible 
verdict.

Notice also that in the coin-tossing example I said “around 50 heads and 50 tails.” 
What does around mean? Also, I said that if it’s 90-10, reject H0. What about 85-15? 
80-20? 70-30? Exactly how much different from 50-50 does the split have to be 
for you to reject H0? In the IQ training example, how much greater does the IQ 
improvement have to be to reject H0?

I won’t answer these questions now. Statisticians have formulated decision rules 
for situations like this, and we’ll explore those rules throughout the book.

Two types of error
Whenever you evaluate data and decide to reject H0 or to not reject H0, you can 
never be absolutely sure. You never really know the “true” state of the world. In 
the coin-tossing example, that means you can’t be certain if the coin is fair or not. 



16      PART 1  Getting Started with Statistical Analysis with R

All you can do is make a decision based on the sample data. If you want to know 
for sure about the coin, you have to have the data for the entire population of 
tosses — which means you have to keep tossing the coin until the end of time.

Because you’re never certain about your decisions, you can make an error either 
way you decide. As I mention earlier, the coin could be fair and you just happen to 
get 99 heads in 100 tosses. That’s not likely, and that’s why you reject H0 if that 
happens. It’s also possible that the coin is biased, yet you just happen to toss 50 
heads in 100 tosses. Again, that’s not likely and you don’t reject H0 in that case.

Although those errors are not likely, they are possible. They lurk in every study 
that involves inferential statistics. Statisticians have named them Type I errors 
and Type II errors.

If you reject H0 and you shouldn’t, that’s a Type I error. In the coin example, that’s 
rejecting the hypothesis that the coin is fair, when in reality it is a fair coin.

If you don’t reject H0 and you should have, that’s a Type II error. It happens if you 
don’t reject the hypothesis that the coin is fair, and in reality it’s biased.

How do you know if you’ve made either type of error? You don’t — at least not 
right after you make the decision to reject or not reject H0. (If it’s possible to know, 
you wouldn’t make the error in the first place!) All you can do is gather more data 
and see if the additional data is consistent with your decision.

If you think of H0 as a tendency to maintain the status quo and not interpret any-
thing as being out of the ordinary (no matter how it looks), a Type II error means 
you’ve missed out on something big. In fact, some iconic mistakes are Type II 
errors.

Here’s what I mean. On New Year’s day in 1962, a rock group consisting of three 
guitarists and a drummer auditioned in the London studio of a major recording 
company. Legend has it that the recording executives didn’t like what they heard, 
didn’t like what they saw, and believed that guitar groups were on the way out. 
Although the musicians played their hearts out, the group failed the audition.

Who was that group? The Beatles!

And that’s a Type II error.



CHAPTER 2  R: What It Does and How It Does It      17

IN THIS CHAPTER

 » Getting R and RStudio

 » Working with RStudio

 » Learning R functions

 » Learning R structures

 » Working with packages

 » Forming R formulas

 » Reading and writing files

R: What It Does and 
How It Does It

R is a computer language. It’s a tool for doing the computation and number-
crunching that set the stage for statistical analysis and decision-making. 
An important aspect of statistical analysis is to present the results in a 

 comprehensible way. For this reason, graphics is a major component of R.

Ross Ihaka and Robert Gentleman developed R in the 1990s at the University of 
Auckland, New Zealand. Supported by the Foundation for Statistical Computing, 
R is getting more and more popular by the day.

RStudio is an open source integrated development environment (IDE) for creating 
and running R code. It’s available in versions for Windows, Mac, and Linux. 
Although you don’t need an IDE in order to work with R, RStudio makes life a lot 
easier.

Chapter 2



18      PART 1  Getting Started with Statistical Analysis with R

Downloading R and RStudio
First things first. Download R from the Comprehensive R Archive Network (CRAN). 
In your browser, type this address if you work in Windows:

cran.r-project.org/bin/windows/base/

Type this one if you work on the Mac:

cran.r-project.org/bin/macosx/

Click the link to download R. This puts the win.exe file in your Windows com-
puter, or the .pkg file in your Mac. In either case, follow the usual installation 
procedures. When installation is complete, Windows users see an R icon on their 
desktop, Mac users see it in their Application folder.

Both URLs provides helpful links to FAQs. The Windows-related URL also links to 
“Installation and other instructions.”

Now for RStudio. Here’s the URL:

www.rstudio.com/products/rstudio/download

Click the link for the installer for your computer, and again follow the usual 
installation procedures.

After the RStudio installation is finished, click the RStudio icon to open the win-
dow shown in Figure 2-1.

If you already have an older version of RStudio and you go through this installa-
tion procedure, the install updates to the latest version (and you don’t have to 
uninstall the older version).

The large Console pane on the left runs R code. One way to run R code is to type it 
directly into the Console pane. I show you another way in a moment.

The other two panes provide helpful information as you work with R. The Envi-
ronment and History pane is in the upper right. The Environment tab keeps track 
of the things you create (which R calls objects) as you work with R. The History tab 
tracks R code that you enter.

Get used to the word object. Everything in R is an object.

http://www.rstudio.com/products/rstudio/download


CHAPTER 2  R: What It Does and How It Does It      19

The Files, Plots, Packages, and Help tabs are in the pane in the lower right. The 
Files tab shows files you create. The Plots tab holds graphs you create from your 
data. The Packages tab shows add-ons (called packages) you downloaded as part of 
the R installation. Bear in mind that “downloaded” doesn’t mean “ready to use.” 
To use a package’s capabilities, one more step is necessary – and believe me –  
you’ll want to use packages.

Figure 2-2 shows the Packages tab. The packages are in either the user library 
(which you can see in the figure) or the system library (which you have to scroll 
down to). I discuss packages later in this chapter.

The Help tab, shown in Figure 2-3, provides links to a wealth of information about 
R and RStudio.

To tap into the full power of RStudio as an IDE, click the larger of the two icons in 
the upper right corner of the Console pane. That changes the appearance of 
RStudio so that it looks like Figure 2-4.

FIGURE 2-1: 
RStudio, 

immediately after 
you install it and 
click on its icon.



20      PART 1  Getting Started with Statistical Analysis with R

The top of the Console pane relocates to the lower left. The new pane in the upper 
left is the Scripts pane. You type and edit code in the Scripts pane and press Ctrl+R 
(Command+Enter on the Mac), and then the code executes in the Console pane.

Ctrl+Enter works just like Ctrl+R. You can also select

Code ➪ Run Selected Line(s)

FIGURE 2-2: 
The RStudio 

Packages tab.

FIGURE 2-3: 
The RStudio  

Help tab.



CHAPTER 2  R: What It Does and How It Does It      21

A Session with R
Before you start working, select

File ➪ Save As . . .

and then save as My First R Session. This relabels the tab in the Scripts pane with 
the name of the file and adds the .R extension. This also causes the filename 
(along with the .R extension) to appear on the Files tab.

The working directory
What exactly does R save, and where does R save it? What R saves is called the 
workspace, which is the environment you’re working in. R saves the workspace in 
the working directory. In Windows, the default working directory is

C:\Users\<User Name>\Documents

FIGURE 2-4: 
RStudio, after you 

click the larger 
icon in the upper 

right corner of 
the Console pane.



22      PART 1  Getting Started with Statistical Analysis with R

If you ever forget the path to your working directory, type

> getwd()

in the Console pane, and R returns the path onscreen.

In the Console pane, you don’t type the right-pointing arrowhead at the begin-
ning of the line. That’s a prompt.

My working directory looks like this:

> getwd()
[1] “C:/Users/Joseph Schmuller/Documents

Note which way the slashes are slanted. They’re opposite to what you typically see 
in Windows file paths. This is because R uses \ as an escape character, meaning that 
whatever follows the \ means something different from what it usually means. 
For example, \t in R means Tab key.

You can also write a Windows file path in R as

C:\\Users\\<User Name>\\Documents

If you like, you can change the working directory:

> setwd(<file path>)

Another way to change the working directory is to select

Session ➪ Set Working Directory ➪ Choose Directory

So let’s get started, already
And now for some R! In the Script window, type

x <- c(3,4,5)

and then Ctrl+R.

That puts the following line into the Console pane:

> x <- c(3,4,5)



CHAPTER 2  R: What It Does and How It Does It      23

As I mention in an earlier Tip, the right-pointing arrowhead (the greater-than 
sign) is a prompt that R supplies in the Console pane. You don’t see it in the 
Scripts pane.

What did R just do? The arrow sign says that x gets assigned whatever is to the 
right of the arrow sign. So the arrow-sign is R’s assignment operator.

To the right of the arrow sign, the c stands for concatenate, a fancy way of saying 
“Take whatever items are in the parentheses and put them together.” So the set 
of numbers 3, 4, 5 is now assigned to x.

R refers to a set of numbers like this as a vector. (I tell you more on this in the later 
“R Structures” section.)

You can read that line of R code as “x gets the vector 3, 4, 5.”

Type x into the Scripts pane and press Ctrl+R, and here’s what you see in the Con-
sole pane:

> x
[1] 3 4 5

The 1 in square brackets is the label for the first value in the line of output. Here you 
have only one value, of course. What happens when R outputs many values over 
many lines? Each line gets a bracketed numeric label, and the number corresponds 
to the first value in the line. For example, if the output consists of 21 values and the 
18th value is the first one on the second line, the second line begins with [18].

Creating the vector x causes the Environment tab to look like Figure 2-5.

Another way to see the objects in the environment is to type

> ls()

FIGURE 2-5: 
The RStudio 

Environment tab, 
after creating the 

vector x.



24      PART 1  Getting Started with Statistical Analysis with R

Now you can work with x. First, add all numbers in the vector. Typing

sum(x)

in the Scripts pane (remember to follow with Ctrl+R) executes the following line 
in the Console pane:

> sum(x)
[1] 12

How about the average of the numbers in the vector x?

That’s

mean(x)

in the Scripts pane, which (when followed by Ctrl+R) executes to

>  mean(x)
[1] 4

in the Console pane.

As you type in the Scripts pane or in the Console pane, you’ll notice that helpful 
information pops up. As you gain experience with RStudio, you’ll learn how to use 
that information.

As I show you in Chapter 5, variance is a measure of how much a set of numbers 
differs from their mean. What exactly is variance, and how do you calculate it? I’ll 
leave that for Chapter 5. For now, here’s how you use R to calculate variance:

> var(x)
[1] 1

In each case, you type a command and R evaluates it and displays the result.

Figure 2-6 shows what RStudio looks like after all these commands.

To end a session, select File ➪    Quit Session or press Ctrl+Q. As Figure 2-7 shows, 
a dialog box opens and asks what you want to save from the session. Saving the 
selections enables you to reopen the session where you left off the next time you 
open RStudio (although the Console pane doesn’t save your work).

Pretty helpful, this RStudio.



CHAPTER 2  R: What It Does and How It Does It      25

Moving forward, most of the time I don’t say “Type this R code into the Scripts 
pane and press Ctrl+Enter” whenever I take you through an example. I just show 
you the code and its output, as in the var() example.

Also, sometimes I show code with the > prompt, and sometimes without. Gener-
ally, I show the prompt when I want you to see R code and its results. I don’t show 
the prompt when I just want you to see R code that I create in the Scripts pane.

FIGURE 2-6: 
RStudio after 
creating and 
working with 

a vector.

FIGURE 2-7: 
The Quit R 

Session  
dialog box.



26      PART 1  Getting Started with Statistical Analysis with R

Missing data
In the statistical analysis examples I provide, I typically deal with best-case sce-
narios in which the data sets are in good shape and have all the data they’re sup-
posed to have.

In the real world, however, things don’t always go so smoothly. Oftentimes, you 
encounter data sets that have values missing for one reason or another. R denotes 
a missing value as NA (for Not Available).

For example, here is some data (from a much larger data set) on the luggage 
capacity, in cubic feet, of nine vehicles:

capacity <- c(14,13,14,13,16,NA,NA,20,NA)

Three of the vehicles are vans, and the term luggage capacity doesn’t apply to 
them — hence, the three instances of NA. Here’s what happens when you try to 
find the average of this group:

> mean(capacity)
[1] NA

To find the mean, you have to remove the NAs before you calculate:

> mean(capacity, na.rm=TRUE)
[1] 15

So the rm in na.rm means “remove” and =TRUE means “get it done.”

Just in case you ever have to check a set of scores for missing data, the is,na() 
function does that for you:

> is.na(capacity)
[1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE

R Functions
In the preceding section, I use c(), sum(), mean(), and var(). These are examples 
of functions built into R. Each one consists of a function name immediately fol-
lowed by parentheses. Inside the parentheses are the arguments. In this context, 
“argument” doesn’t mean “disagreement,” “confrontation,” or anything like 
that. It’s just the math term for whatever a function operates on.



CHAPTER 2  R: What It Does and How It Does It      27

Even if a function takes no arguments, you still include the parentheses.

The four R functions I’ve shown you are pretty simple in terms of their arguments 
and their output. As you work with R, however, you encounter functions that take 
more than one argument.

R provides a couple of ways for you to deal with multiargument functions. One 
way is to list the arguments in the order in which they appear in the function’s 
definition. R calls this positional matching.

Here’s what I mean. The function substr() takes three arguments. The first is a 
string of characters like “abcdefg”, which R refers to as a character vector. The 
second argument is a start position within the string (1 is the first position, 2 is the 
second position, and so on). The third is a stop position within the string (a num-
ber greater than or equal to the start position). In fact, if you type substr into the 
Scripts pane, you see a helpful pop-up message that looks like this:

substr(x, start, stop)
Extract or replace substrings in a character vector

where x stands for the character vector.

This function returns the substring, which consists of the characters between the 
start and stop positions.

Here’s an example:

> substr("abcdefg",2,4)
[1] "bcd"

What happens if you interchange the 2 and the 4?

> substr(“abcdefg”,4,2)
[1] “”

This result is completely understandable: No substring can start at the fourth 
position and stop at the second position.

But if you name the arguments, it doesn’t matter how you order them:

> substr(“abcdefg”,stop=4,start=2)
[1] “bcd”



28      PART 1  Getting Started with Statistical Analysis with R

Even this works:

> substr(stop=4, start=2,“abcdefg”)
[1] “bcd”

So when you use a function, you can place its arguments out of order, if you name 
them. R calls this keyword matching, which comes in handy when you use an R 
function that has many arguments. If you can’t remember their order, just use 
their names and the function works.

If you ever need help for a particular function — substr(), for example — type 
?substr and watch helpful information appear on the Help tab.

User-Defined Functions
Strictly speaking, this is not a book on R programming. For completeness, though, 
I thought I’d at least let you know that you can create your own functions in R, and 
show you the fundamentals of creating one.

The form of an R function is

myfunction <- function(argument1, argument2, ... ){ 
          statements 
          return(object) 
          }

Here’s a simple function for computing the sum of the squares of three 
numbers:

sumofsquares <- function(x,y,z){
  sumsq <- sum(c(x^2,y^2,z^2))
  return(sumsq)
}

Type that snippet into the Scripts pane and highlight it. Then press Ctrl+R. The 
following snippet appears in the Console pane:

> sumofsquares <- function(x,y,z ){
+   sumsq <- sum(c(x^2,y^2,z^2))
+   return(sumsq)
+ }



CHAPTER 2  R: What It Does and How It Does It      29

Each plus-sign is a continuation prompt. It just indicates that a line continues from 
the preceding line.

And here’s how to use the function:

> sumofsquares(3,4,5)
[1] 50

Comments
A comment is a way of annotating code. Begin a comment with the # symbol, which 
of course is an octothorpe. (What’s that you say? “Hashtag”? Surely you jest.) This 
symbol tells R to ignore everything to the right of it.

Comments are very helpful for someone who has to read code that you’ve written. 
For example:

sumofsquares <- function(x,y,z){ # list the arguments
  sumsq <- sum(c(x^2,y^2,z^2))  # perform the operations
  return(sumsq)    # return the value
}

Just a heads-up: I don’t add comments to lines of code in this book. Instead, I 
provide detailed descriptions. In a book like this, I feel that’s the most effective 
way to get the message across.

As you might imagine, writing R functions can encompass WAY more than I’ve 
laid out here. To learn more, check out R For Dummies, by Andrie de Vries and Joris 
Meys (John Wiley & Sons).

R Structures
I mention in the “R Functions” section, earlier in this chapter, that an R function 
can have many arguments. It’s also the case that an R function can have many 
outputs. To understand the possible outputs (and inputs, too), you must under-
stand the structures that R works with.



30      PART 1  Getting Started with Statistical Analysis with R

Vectors
The vector is R’s fundamental structure, and I showed it to you in earlier examples. 
It’s an array of data elements of the same type. The data elements in a vector are 
called components. To create a vector, use the function c(), as I did in the earlier 
example:

> x <- c(3,4,5)

Here, of course, the components are numbers.

In a character vector, the components are quoted text strings (“Moe,” “Larry,” 
“Curly”):

> stooges <- c("Moe","Larry", "Curly")

Strictly speaking, in the substr() example, “abcdefg” is a character vector with 
one element.

It’s also possible to have a logical vector, whose elements are TRUE and FALSE, or 
the abbreviations T and F:

> z <- c(T,F,T,F,T,T)

To refer to a specific component of a vector, follow the vector name with a brack-
eted number:

> stooges[2]
[1] "Larry"

Numerical vectors
In addition to c(), R provides seq() and rep() for shortcut numerical vector 
creation.

Suppose you want to create a vector of numbers from 10 to 30 but you don’t feel 
like typing all those numbers. Here’s how to do it:

> y <- seq(10,30)
> y
 [1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[18] 27 28 29 30



CHAPTER 2  R: What It Does and How It Does It      31

On my screen, and probably on yours too, all the elements in y appear on one line. 
The printed page, however, is not as wide as the Console pane. Accordingly,  
I separated the output into two lines. I do that throughout the book, where 
necessary.

R has a special syntax for a numerical vector whose elements increase by 1:

> y <- 10:30
> y
 [1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
[18] 27 28 29 30

If you want the elements to increase in steps of 2, use seq like this:

> w <- seq(10,30,2)
> w
 [1] 10 12 14 16 18 20 22 24 26 28 30

You might want to create a vector of repeating values. If so, rep() is the function 
to use:

> trifecta <- c(6,8,2)
> repeated_trifecta <- rep(trifecta,4)
> repeated_trifecta
 [1] 6 8 2 6 8 2 6 8 2 6 8 2

Another way to use rep() is to supply a vector as the second argument. Remember 
from the earlier example that x is the vector (3,4,5) What happens if you supply 
x as the second argument for rep()?

> repeated_trifecta <- rep(trifecta,x)
> repeated_trifecta
 [1] 6 6 6 8 8 8 8 2 2 2 2 2

The first element repeats three times; the second element, four times; and the 
third element, five times.

Matrices
A matrix is a 2-dimensional array of data elements of the same type. In statistics, 
matrices are useful as tables that hold data. (Advanced statistics has other appli-
cations for matrices, but that’s beyond the scope of this book.)



32      PART 1  Getting Started with Statistical Analysis with R

You can have a matrix of numbers:

5 30 55 80

10 35 60 85

15 40 65 90

20 45 70 95

25 50 75 100

or a matrix of character strings:

“Moe” “Larry” “Curly” “Shemp”

“Groucho” “Harpo” “Chico” “Zeppo”

“Ace” “King” “Queen” “Jack”

The numbers constitute a 5 (rows) X 4 (columns) matrix; the character strings 
matrix is 3 X 4.

To create the 5 X 4 numerical matrix, first you create the vector of numbers from 5 
to 100 in steps of 5:

> num_matrix <- seq(5,100,5)

Then you use the dim() function to turn the vector into a 2-dimensional matrix:

> dim(num_matrix) <-c(5,4)
> num_matrix
     [,1] [,2] [,3] [,4]
[1,]    5   30   55   80
[2,]   10   35   60   85
[3,]   15   40   65   90
[4,]   20   45   70   95
[5,]   25   50   75  100

Note how R displays the bracketed row numbers along the side, and the bracketed 
column numbers along the top.

Transposing a matrix interchanges the rows with the columns. In R, the t() func-
tion takes care of that:

> t(num_matrix)
     [,1] [,2] [,3] [,4] [,5]



CHAPTER 2  R: What It Does and How It Does It      33

[1,]    5   10   15   20   25
[2,]   30   35   40   45   50
[3,]   55   60   65   70   75
[4,]   80   85   90   95  100

The function matrix() provides another way to create matrices:

> num_matrix <- matrix(seq(5,100,5),nrow=5)
> num_matrix
     [,1] [,2] [,3] [,4]
[1,]    5   30   55   80
[2,]   10   35   60   85
[3,]   15   40   65   90
[4,]   20   45   70   95
[5,]   25   50   75  100

If you add the argument byrow=T, R fills the matrix by rows, like this:

> num_matrix <- matrix(seq(5,100,5),nrow=5,byrow=T)
> num_matrix
     [,1] [,2] [,3] [,4]
[1,]    5   10   15   20
[2,]   25   30   35   40
[3,]   45   50   55   60
[4,]   65   70   75   80
[5,]   85   90   95  100

How do you refer to a particular matrix component? you type the matrix name and 
then, in brackets, the row number, a comma, and the column number:

> num_matrix[5,4]
[1] 100

Factors
In Chapter 1, I describe four types of data: nominal, ordinal, interval, and ratio. In 
nominal data, numbers are just labels, and their magnitude has no significance.

Suppose you’re doing a survey of people’s eye color. As you record a person’s eye 
color, you record a number: 1 = amber, 2 = blue, 3 = brown, 4 = gray, 5 = green, 
and 6 = hazel. One way to think of this process is that eye color is a factor, and each 
color is a level of that factor. So in this case, the factor eye-color has six levels.



34      PART 1  Getting Started with Statistical Analysis with R

Factor is R’s term for a nominal variable (also known as categorical variable).

Now imagine that you’ve used the numeric code to tabulate the eye colors of 14 
people and then turned those codes into a vector:

> eye_color <- c(2,2,4,1,5,5,5,6,1,3,6,3,1,4)

Next, you use the factor() function to turn eye_color into a factor:

> feye_color <- factor(eye_color)

Finally, you assign the levels of the factor:

> levels(feye_color) <- c("amber","blue", "brown","gray","green",
"hazel")

Now, if you examine the eye color data in terms of the factor levels, it looks like 
this:

> feye_color
 [1] blue  blue  gray  amber green green green hazel amber
[10] brown hazel brown amber gray
Levels: amber blue brown gray green hazel

Lists
In R, a list is a collection of objects that aren’t necessarily of the same type. Sup-
pose that in addition to the eye color of each person in the example in the preced-
ing section, you collect an “empathy score” based on a personality test. The scale 
runs from 0 (least empathy) to 100 (most empathy). Here’s the vector for these 
people’s empathy data:

> empathy_score <- c(15,21,45,32,61,74,53,92,83,22,67,55,42,44)

You want to combine the eye color vector in coded form, the eye color vector in 
factor form, and the empathy score vector into one collection named eyes_and_
empathy. You use the list() function for this task:

> eyes_and_empathy <- list(eyes_code=eye_color, eyes=feye_color, 
empathy=empathy_score)

Note that you name each argument (eyes_code, eyes, and empathy). This causes 
R to use those names as the names of the list components.



CHAPTER 2  R: What It Does and How It Does It      35

Here’s what the list looks like:

> eyes_and_empathy
$eyes_code
 [1] 2 2 4 1 5 5 5 6 1 3 6 3 1 4

$eyes
 [1] blue  blue  gray  amber green green green hazel amber
[10] brown hazel brown amber gray
Levels: amber blue brown gray green hazel

$empathy
 [1] 15 21 45 32 61 74 53 92 83 22 67 55 42 44

As you can see, R uses the dollar sign ($) to indicate each component of the list. 
So, if you want to refer to a list component, you type the name of the list, the dol-
lar sign, and the component-name:

> eyes_and_empathy$empathy
 [1] 15 21 45 32 61 74 53 92 83 22 67 55 42 44

How about zeroing in on a particular score, like the fourth one? I think you can see 
where this is headed:

> eyes_and_empathy$empathy[4]
[1] 32

Lists and statistics
Lists are important because numerous statistical functions return lists of objects. 
One statistical function is t.test(). In Chapter  10, I explain this test and the 
theory behind it. For now, just concentrate on its output.

I use this test to see if the mean of the empathy scores differs from an arbitrary 
number — 30, for example. Here’s the test:

> t.result <- t.test(eyes_and_empathy$empathy, mu = 30)

Let’s examine the output:

> t.result

       One Sample t-test



36      PART 1  Getting Started with Statistical Analysis with R

data:  eyes_and_empathy$empathy
t = 3.2549, df = 13, p-value = 0.006269
alternative hypothesis: true mean is not equal to 30
95 percent confidence interval:
 36.86936 63.98778
sample estimates:
mean of x
 50.42857

Without getting into the details, understand that this output, t.result, is a list. 
To show this, you use $ to focus on some of the components:

> t.result$data.name
[1] "eyes_and_empathy$empathy"
> t.result$p.value
[1] 0.006269396
> t.result$statistic
       t
3.254853

Data frames
A list is a good way to collect data. A data frame is even better. Why? When you 
think of data for a group of individuals — like the 14 people in the example in the 
earlier section — you typically think in terms of columns that represent the data 
variables (like eyes_code, eyes, and empathy) and rows that represent the indi-
viduals. And that’s a data frame. If the terms data set or data matrix come to mind, 
you’ve pretty much got it.

The function data.frame() works with the existing vectors to get the job done:

> e <- data.frame(eye_color,feye_color,empathy_score)
> e
   eye_color feye_color empathy_score
1          2       blue            15
2          2       blue            21
3          4       gray            45
4          1      amber            32
5          5      green            61
6          5      green            74
7          5      green            53
8          6      hazel            92
9          1      amber            83



CHAPTER 2  R: What It Does and How It Does It      37

10         3      brown            22
11         6      hazel            67
12         3      brown            55
13         1      amber            42
14         4       gray            44

Want the empathy score for the seventh person? That’s

> e[7,3]
[1] 53

How about all the information for the seventh person:

> e[7,]
  eye_color feye_color empathy_score
7         5      green            53

Editing a data frame: Looks like  
a spreadsheet (but isn’t)
R provides a way to quickly modify a data frame. The edit() function opens a 
Data Editor window that looks much like a spreadsheet, and you can make changes 
in the cells. Figure 2-8 shows what happens when you type

> edit(e)

FIGURE 2-8: 
The edit() 

function opens a 
spreadsheet-like 

view of a data 
frame.



38      PART 1  Getting Started with Statistical Analysis with R

You have to close the Data Editor window in order to proceed.

For Mac users: The Mac version of RStudio requires the X Window system for some 
functions, like edit(), to work. Apple used to include this capability with the Mac, 
but not any more. Nowadays, you have to download and install XQuartz.

Extracting data from a data frame
Suppose you want to do a quick check on the average empathy scores for people 
with blue eyes versus people with green eyes versus people with hazel eyes.

The first task is to extract the empathy scores for each eye color and create 
vectors:

> e.blue <- e$empathy_score[e$feye_color=="blue"]
> e.green <- e$empathy_score[e$feye_color=="green"]
> e.hazel <- e$empathy_score[e$feye_color=="hazel"]

Note the double equal-sign (==) in brackets. This is a logical operator. Think of it as 
“if e$feye_color is equal to ‘blue.’”

The double equal-sign (a==b) distinguishes the logical operator (“if a equals b”) 
from the assignment operator (a=b; “set a equal to b”).

Next, you create a vector of the averages:

> e.averages <- c(mean(e.blue),mean(e.green),mean(e.hazel))

Then you use length() to create a vector of the number of scores in each eye-
color group:

> e.amounts <- c(length(e.blue), length(e.green), 
length(e.hazel))

And then you create a vector of the colors:

> colors <- c("blue","green","hazel")

Now you create a 3-column data frame with color in one column, the correspond-
ing average empathy in the next column, and the number of scores in each eye 
color group in the last column:

> e.averages.frame <- data.frame(color=colors,
  average=e.averages, n=e.amounts)



CHAPTER 2  R: What It Does and How It Does It      39

As was the case with lists, naming the arguments assigns the argument names to 
the data frame components (the vectors, which appear onscreen as columns).

And here’s what it all looks like:

> e.averages.frame
  color  average n
1  blue 18.00000 2
2 green 62.66667 3
3 hazel 79.50000 2

Packages
A package is a collection of functions and data that augments R. If you’re an aspir-
ing data scientist and you’re looking for data to work with, you’ll find data frames 
galore in R packages. If you’re looking for a specialized statistical function that’s 
not in the basic R installation, you can probably find it in a package.

R stores packages in a directory called the library. How do you get a package into 
the library? Click the Packages tab in the Files, Plots, Packages, and Help pane. 
(Refer to Figure  2-2.) In the upcoming example, I use the well-known MASS 
package, which contains over 150 data frames from a variety of fields.

If you want to see what’s in the MASS package, click on MASS in the Packages tab. 
(It’s in the System Library section of this tab.) That opens a page on the Help tab, 
which appears in Figure 2-9.

FIGURE 2-9: 
The Help tab, 

showing 
information 

about the MASS 
package.



40      PART 1  Getting Started with Statistical Analysis with R

Scrolling down shows the names of the data frames and functions. Clicking on the 
name of a data frame opens up a page of information about it.

Back on the Packages tab, you click the check box next to MASS to install the pack-
age. That causes this line to appear in the Console window:

> library(“MASS”, lib.loc=”C:/Program Files/R/R-3.3.1/library”)

And the MASS package is installed.

One of the data frames in MASS is named anorexia. It contains weight data for 72 
young female anorexia patients. Each patient completed one of three types of 
therapy. What does the data frame look like? You type this line into the Console 
pane:

> edit(anorexia)

to open the Data Editor window, shown in Figure 2-10.

Looks like it’s just waiting for you to analyze, doesn’t it? I haven’t discussed any 
statistical analysis yet, but you can work a bit on this data frame with what I’ve 
already shown you.

FIGURE 2-10: 
The anorexia 

data frame in the 
MASS package.



CHAPTER 2  R: What It Does and How It Does It      41

The data frame provides the pre-therapy weight (Prewt) and post-therapy weight 
(Postwt) for each patient. What about the weight change? Can R calculate that for 
each patient? Of course!

> anorexia$Postwt-anorexia$Prewt
 [1]  -0.5  -9.3  -5.4  12.3  -2.0 -10.2 -12.2  11.6  -7.1
[10]   6.2  -0.2  -9.2   8.3   3.3  11.3   0.0  -1.0 -10.6
[19]  -4.6  -6.7   2.8   0.3   1.8   3.7  15.9 -10.2   1.7
[28]   0.7  -0.1  -0.7  -3.5  14.9   3.5  17.1  -7.6   1.6
[37]  11.7   6.1   1.1  -4.0  20.9  -9.1   2.1  -1.4   1.4
[46]  -0.3  -3.7  -0.8   2.4  12.6   1.9   3.9   0.1  15.4
[55]  -0.7  11.4  11.0   5.5   9.4  13.6  -2.9  -0.1   7.4
[64]  21.5  -5.3  -3.8  13.4  13.1   9.0   3.9   5.7  10.7

Hmmm. . . . Remember that t-test I showed you earlier in this chapter? I use it 
here to see whether the pre-therapy/post-therapy weight change is different 
from 0. You would hope that, on average, the change is positive. Here’s the t-test:

> t.test(anorexia$Postwt-anorexia$Prewt, mu=0)

 One Sample t-test

data:  anorexia$Postwt&#x00A0;- anorexia$Prewt
t = 2.9376, df = 71, p-value = 0.004458
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.8878354 4.6399424
sample estimates:
mean of x
 2.763889

The t-test output shows that the average weight change was positive (2.763889 
lbs). The high value of t (2.9376), along with the low value of p (0.004458), indi-
cates that this change is statistically significant. (What does that mean?) If I tell 
you any more, I’ll be getting ahead of myself. (See Chapter 10 for the details.)

Here’s something else: I said that each patient completed one of three types of 
therapy. Was one therapy more effective than the others? Or were they about the 
same? Now I’d really be getting ahead of myself! (That explanation is in  Chapter 12, 
but see the section “R Formulas,” a little later in this chapter.)



42      PART 1  Getting Started with Statistical Analysis with R

More Packages
The R community is extremely active. Its members create and contribute useful 
new packages all the time to CRAN (the Comprehensive R Archive Network). So it’s 
not the case that every R package is on the RStudio Packages tab.

When you find out about a new package that you think might be helpful, it’s easy 
to install it into your library. I illustrate by installing ggplot2, a useful package 
that extends R’s graphics capabilities.

One way to install it is via the Packages tab. (Refer to Figure 2-2.) Click on the 
Install icon in the upper left corner of the tab. This opens the Install Packages 
dialog box, shown in Figure 2-11.

Another way to open the Install Packages dialog box is to select Install Packages 
from the Tools menu in the menu bar at the top of RStudio.

In the Packages field, I’ve typed ggplot2. Click Install, and the following line 
appears in the Console pane:

> install.packages(“ggplot2”)

It’s difficult to see this line, however, because lots of other things happen imme-
diately in the Console pane and in onscreen status bars. When all that has  finished, 
ggplot2 is on the Packages tab. The final step is to click the check box next to 
ggplot2 in order to put it in the library. Then you can use the package. Figure 2-12 
shows the Packages tab with ggplot2 and the checked box.

FIGURE 2-11: 
The Install 
Packages 

dialog box.



CHAPTER 2  R: What It Does and How It Does It      43

Clicking the check box puts the following line in the Console pane:

> library(“ggplot2”, lib.loc=”~/R/win-library/3.3”)

Another way to start the installation process is to type

> install.packages(“ggplot2”)

directly into the Console pane.

R Formulas
In Chapter 1, I discuss independent variables and dependent variables. I point out 
that, in an experiment, an independent variable is what a researcher manipulates 
and a dependent variable is what a researcher measures. In the earlier anorexia 
example, Treat (type of therapy) is the independent variable, and Postwt-Prewt 
(post-therapy weight minus pre-therapy weight) is the dependent variable. In 
practical terms, “manipulate” means that the researcher randomly assigned each 
anorexia patient to one of the three therapies.

In other kinds of studies, the researcher can’t manipulate an independent vari-
able. Instead, she notes naturally occurring values of the independent variable and 
assesses their effects on a dependent variable. In the earlier eye color and empathy 
example, eye color is the independent variable and empathy score is the depen-
dent variable.

FIGURE 2-12: 
The Packages tab 

after installing 
ggplot2 and 

putting it in the 
library.



44      PART 1  Getting Started with Statistical Analysis with R

The R formula incorporates these concepts and is the basis of many of R’s statisti-
cal functions and graphing functions. This is the basic structure of an R formula:

function(dependent_var ~ independent_var, data=data_frame)

Read the tilde operator (~) as “is dependent on.”

The anorexia data frame provides an example. To analyze the difference in the 
effectiveness of the three therapies for anorexia, I would use a technique called 
analysis of variance. (Here I go, getting ahead of myself!) The R function for this is 
named aov(), and here’s how to use it:

> aov(Postwt-Prewt ~ Treat, data=anorexia)

But this is just the beginning of the analysis. Chapter 12 has all the details, as well 
as the statistical thinking behind it.

Reading and Writing
Before I close out this chapter on R’s capabilities, I have to let you know how to 
import data from other formats as well as how to export data to those formats.

The general form of an R function for reading a file is

> read.<format>(“File Name”, arg1, arg2, ...)

The general form of an R function for writing data to a file is

> write.<format>(dataframe, “File Name”, arg1, arg2, ...)

In this section, I cover spreadsheets, CSV (comma-separated values) files, and 
text files. The <format> is either xlsx, csv, or table. The arguments after “File 
Name” are optional arguments that vary for the different formats.

Spreadsheets
The information in this section will be important to you if you’ve read my timeless 
classic, Statistical Analysis with Excel For Dummies (John Wiley & Sons). (Okay, so 
that was a shameless plug for my timeless classic.) If you have data on spread-
sheets and you want to analyze with R, pay close attention.



CHAPTER 2  R: What It Does and How It Does It      45

The first order of business is to download the xlsx package and put it in the 
library. Check out the section “More Packages,” earlier in this chapter, for more 
on how to do this.

On my drive C, I have a spreadsheet called Scores in a folder called Spreadsheets. 
It’s on Sheet1 of the worksheet. It holds math quiz scores and science quiz scores 
for ten students.

To read that spreadsheet into R, the code is

> scores_frame <- read.xlsx("C:/Spreadsheets/Scores.xlsx", 
sheetName="Sheet1")

Here’s that data frame:

> scores_frame
   Student Math_Score Science_Score
1        1         85            90
2        2         91            87
3        3         78            75
4        4         88            78
5        5         93            99
6        6         82            89
7        7         67            71
8        8         79            84
9        9         89            88
10      10         98            97

As is the case with any data frame, if you want the math score for the fourth stu-
dent, it’s just

> scores_frame$Math_Score[4]
[1] 88

The xlsx package enables writing to a spreadsheet, too. So, if you want your 
Excel-centric friends to look at the anorexia data frame, here’s what you do:

> write.xlsx(anorexia,"C:/Spreadsheets/anorexia.xlsx")

This line puts the data frame into a spreadsheet in the indicated folder on 
drive C. In case you don’t believe me, Figure 2-13 shows what the spreadsheet 
looks like.



46      PART 1  Getting Started with Statistical Analysis with R

CSV files
The functions for reading and writing CSV files and text files are in the R installa-
tion, so no additional packages are necessary. A CSV file looks just like a spread-
sheet when you open it in Excel. In fact, I created a CSV file for the Scores 
spreadsheet by saving the spreadsheet as a CSV file in the folder CSVFiles on 
drive  C. (To see all the commas, you have to open it in a text editor, like 
Notepad++.)

Here’s how to read that CSV file into R:

> read.csv("C:/CSVFiles/Scores.csv")
   Student Math_Score Science_Score
1        1         85            90
2        2         91            87
3        3         78            75
4        4         88            78
5        5         93            99
6        6         82            89
7        7         67            71
8        8         79            84
9        9         89            88
10      10         98            97

FIGURE 2-13: 
The anorexia 

data frame, 
exported to an 

Excel spread-
sheet.



CHAPTER 2  R: What It Does and How It Does It      47

To write the anorexia data frame to a CSV file,

> write.csv(anorexia,"C:/CSVFiles/anorexia.csv")

Text files
If you have some data stored in text files, R can import them into data frames. The 
read.table() function gets it done. I stored the Scores data as a text file in a 
directory called TextFiles. Here’s how R turns it into a data frame:

> read.table("C:/TextFiles/ScoresText.txt", header=TRUE)
   Student Math_Score Science_Score
1        1         85            90
2        2         91            87
3        3         78            75
4        4         88            78
5        5         93            99
6        6         82            89
7        7         67            71
8        8         79            84
9        9         89            88
10      10         98            97

The second argument (header=TRUE) lets R know that the first row of the file con-
tains column headers.

You use write.table() to write the anorexia data frame to a text file:

> write.table(anorexia, "C:/TextFiles/anorexia.txt", quote = 
FALSE, sep = "\t")

This puts the file anorexia.txt in the TextFiles folder on the drive C. The sec-
ond argument (quote = FALSE) ensures that no quotes appear, and the third 
argument (sep = “\t”) makes the file tab-delimited.

Figure 2-14 shows how the text file looks in Notepad. Full disclosure: In the first 
line of the text file, you have to press the Tab key once to position the headers 
correctly.



48      PART 1  Getting Started with Statistical Analysis with R

In each of these examples, you use the full file path for each file. That’s not neces-
sary if the files are in the working directory. If, for example, you put the Scores 
spreadsheet in the working directory, here’s all you have to do to read it into R:

> read.xlsx("Scores.xlsx","Sheet1")

FIGURE 2-14: 
The anorexia 

data frame  
as a tab-delimited 

text file.



2Describing Data



IN THIS PART . . .

Summarize and describe data

Work with R graphics

Determine central tendency and variability

Work with standard scores

Understand and visualize normal distributions



CHAPTER 3  Getting Graphic      51

IN THIS CHAPTER

 » Using graphs to find patterns

 » Learning base R graphics

 » Graduating to ggplot2

Getting Graphic

Data visualization is an important part of statistics. A good graph enables 
you to spot trends and relationships you might otherwise miss if you look 
only at numbers. Graphics are valuable for another reason: They help you 

present your ideas to groups.

This is especially important in the field of data science. Organizations rely on data 
scientists to make sense of huge amounts of data so that decision-makers can 
formulate strategy. Graphics enable data scientists to explain patterns in the data 
to managers and to nontechnical personnel.

Finding Patterns
Data often resides in long, complex tables. Often, you have to visualize only a por-
tion of the table to find a pattern or a trend. A good example is the Cars93 data 
frame, which resides in the MASS package. (In Chapter 2, I show you how to put 
this package into your R library.) This data frame holds data on 27 variables for 
93 car models that were available in 1993.

Figure 3-1 shows part of the data frame in the Data Editor window that opens after 
you type

> edit(Cars93)

Chapter 3



52      PART 2  Describing Data

Graphing a distribution
One pattern that might be of interest is the distribution of the prices of all the cars 
listed in the Cars93 data frame. If you had to examine the entire data frame to 
determine this, it would be a tedious task. A graph, however, provides the infor-
mation immediately. Figure 3-2, a histogram, shows what I mean.

The histogram is appropriate when the variable on the x-axis is an interval vari-
able or a ratio variable. (See Chapter 1.) With these types of variables, the numbers 
have meaning.

FIGURE 3-1: 
Part of the 

Cars93 data 
frame.

FIGURE 3-2: 
Histogram of 
prices of cars 
in the Cars93 

data frame.



CHAPTER 3  Getting Graphic      53

In Chapter  1, I distinguish between independent variables and dependent vari-
ables. Here, Price is the independent variable, and Frequency is the dependent 
variable. In most (but not all) graphs, the independent variable is on the x-axis, 
and the dependent variable is on the y-axis.

Bar-hopping
For nominal variables (again, see Chapter 1), numbers are just labels. In fact, the 
levels of a nominal variable (also called a factor — see Chapter 2) can be names. 
Case in point: Another possible point of interest is the frequencies of the different 
types of cars (sporty, midsize, van, and so on) in the data frame. So, “Type” is a 
nominal variable. If you looked at every entry in the data frame and created a table 
of these frequencies, it would look like Table 3-1.

The table shows some trends — more midsize and small car models than large 
cars and vans. Compact cars and sporty cars are in the middle.

Figure 3-3 shows this information in graphical form. This type of graph is a bar 
graph. The spaces between the bars emphasize that Type, on the x-axis, is a nomi-
nal variable.

Although the table is pretty straightforward, I think we’d agree that an audience 
would prefer to see the picture. As I’m fond of saying, eyes that glaze over when 
looking at numbers often shine brighter when looking at pictures.

TABLE 3-1	 Types and Frequencies of Cars in the Cars93 data frame
Type Frequency

Compact 16

Large 11

Midsize 22

Small 21

Sporty 14

Van 9



54      PART 2  Describing Data

Slicing the pie
The pie graph is another type of picture that shows the same data in a slightly 
 different way. Each frequency appears as a slice of a pie. Figure 3-4 shows what 
I mean. In a pie graph, the area of the slice represents the frequency.

FIGURE 3-3: 
Table 3-1 as  
a bar graph.

FIGURE 3-4: 
Table 3-1 as  
a pie graph.



CHAPTER 3  Getting Graphic      55

The plot of scatter
Another potential pattern of interest is the relationship between miles per gallon 
for city driving and horsepower. This type of graph is a scatter plot. Figure 3-5 
shows the scatter plot for these two variables.

PIE GRAPH GUIDELINES
Pardon me if you’ve heard this one before. It’s a cute anecdote that serves as a rule of 
thumb for pie graphs.

The late, great Yogi Berra often made loveable misstatements that became part of our 
culture. He once reputedly walked into a pizzeria and ordered a whole pizza.

“Should I cut that into four slices or eight?” asked the waitress.

“Better make it four,” said Yogi. “I’m not hungry enough to eat eight.”

The takeaway: If a factor has a lot of levels, resulting in a pie graph with a lot of slices, it’s 
probably information overload. The message would come across better in a bar graph.

(Did that Yogi incident really happen? It’s not clear. Summarizing a lifetime of sayings 
attributed to him, Mr. Berra said: “Half the lies they tell about me aren’t true.”)

FIGURE 3-5: 
MPG in city 
driving and 

horsepower for 
the data in 
Cars93.



56      PART 2  Describing Data

Each small circle represents one of the 93 cars. A circle’s position along the  
x-axis (its x-coordinate) is its horsepower, and its position along the y-axis (its 
y-coordinate) is its MPG for city driving.

A quick look at the shape of the scatter plot suggests a relationship: As horsepower 
increases, MPG-city seems to decrease. (Statisticians would say “MPG-city 
decreases with horsepower.”) Is it possible to use statistics to analyze this rela-
tionship and perhaps make predictions? Absolutely! (See Chapter 14.)

Of boxes and whiskers
What about the relationship between horsepower and the number of cylinders in 
a car’s engine? You would expect horsepower to increase with cylinders, and 
Figure  3-6 shows that this is indeed the case. Invented by famed statistician 
John Tukey, this type of graph is called a box plot, and it’s a nice, quick way to 
visualize data.

Each box represents a group of numbers. The leftmost box, for example, repre-
sents the horsepower of cars with three cylinders. The black solid line inside the 
box is the median — the horsepower-value that falls between the lower half of the 
numbers and the upper half. The lower and upper edges of the box are called 
hinges. The lower hinge is the lower quartile, the number below which 25 percent 
of the numbers fall. The upper hinge is the upper quartile, the number that exceeds 
75 percent of the numbers.(I discuss medians in Chapter  4 and percentiles in 
Chapter 6.)

FIGURE 3-6: 
Box plot of 

horsepower 
versus number of 

cylinders in the 
Cars93 data 

frame.



CHAPTER 3  Getting Graphic      57

The elements sticking out of the hinges are called whiskers (so you sometimes see 
this type of graph referred to as a box-and-whiskers plot). The whiskers include 
data values outside the hinges. The upper whisker boundary is either the maxi-
mum value or the upper hinge plus 1.5 times the length of the box, whichever is 
smaller. The lower whisker boundary is either the minimum value or the lower 
hinge minus 1.5 times the length of the box, whichever is larger. Data points out-
side the whiskers are outliers. The box plot shows that the data for four cylinders 
and for six cylinders have outliers.

Note that the graph shows only a solid line for “rotary,” an engine type that 
occurs just once in the data.

Base R Graphics
The capability to create the graphs like the ones I show you in earlier sections comes 
with your R installation, which makes these graphs part of base R graphics. I start 
with that. Then in the next section I show you the very useful ggplot2 package.

In base R, the general format for creating graphics is

graphics_function(data, arg1, arg2, ...)

After you create a graph in RStudio, click Zoom on the RStudio Plots tab to open 
the graph in a larger window. The graph is clearer in the Zoom window than it is 
on the Plots tab.

Histograms
Time to take another look at that Cars93 data frame I introduce in the “Finding 
Patterns” section, earlier in this chapter. To create a histogram of the distribution 
of prices in that data frame, you’d enter:

> hist(Cars93$Price)

which produces Figure 3-7.

You’ll note that this isn’t quite as spiffy-looking as Figure 3-2. How do you spruce 
it up? By adding arguments.



58      PART 2  Describing Data

One often-used argument in base R graphics changes the label of the x-axis from 
R’s default into something more meaningful. It’s called xlab. For the x-axis in 
Figure 3-2, I added

xlab= “Price (x $1,000)”

to the arguments. You can use ylab to change the y-axis label, but I left that 
alone here.

I wanted the x-axis to extend from a lower limit of 0 to an upper limit of 70, and 
that’s the province of the argument xlim. Because this argument works with a 
vector, I added

xlim = c(0,70)

I also wanted a different title, and for that I used main:

main = “Prices of 93 Models of 1993 Cars”

To produce the histogram in Figure 3-2, the whole megillah is

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70),  
         main = "Prices of 93 Models of 1993 Cars")

FIGURE 3-7: 
Initial histogram 

of the distribution 
of prices in 
Cars93.



CHAPTER 3  Getting Graphic      59

When creating a histogram, R figures out the best number of columns for a nice-
looking appearance. Here, R decided that 12 is a pretty good number. You can vary 
the number of columns by adding an argument called breaks and setting its value. 
R doesn’t always give you the value you set. Instead, it provides something close 
to that value and tries to maintain a nice-looking appearance. Add this argument, 
set its value (breaks =4, for example), and you’ll see what I mean.

Adding graph features
An important aspect of base R graphics is the ability to add features to a graph 
after you create it. To show you what I mean, I have to start with a slightly differ-
ent type of graph.

Another way of showing histogram information is to think of the data as probabil-
ities rather than frequencies. So instead of the frequency of a particular price 
range, you graph the probability that a car selected from the data is in that price 
range. To do this, you add

probability = True

to the arguments. Now the R code looks like this:

> hist(Cars93$Price, xlab="Price (x $1,000)", xlim = c(0,70),  
         main = "Prices of 93 Models of 1993 Cars",probability  
         = TRUE)

The result appears in Figure 3-8. The y-axis measures Density — a concept related 
to probability, which I discuss in Chapter 8. The graph is called a density plot.

The point of all this is what you do next. After you create the graph, you can use 
an additional function called lines() to add a line to the density plot:

> lines(density(Cars93$Price))

The graph now looks like Figure 3-9.

So in base R graphics, you can create a graph and then start adding to it after you 
see what the initial graph looks like. It’s something like painting a picture of a 
lake and then adding mountains and trees as you see fit.



60      PART 2  Describing Data

Bar plots
Back in the “Finding Patterns” section, earlier in the chapter, I showed you a bar 
graph illustrating the types and frequencies of cars, I also showed you Table 3-1. 
As it turns out, you have to make this kind of a table before you can use barplot() 
to create the bar graph.

FIGURE 3-9: 
Density plot with 

an added line.

FIGURE 3-8: 
Density plot of 

the distribution of 
prices in Cars93.



CHAPTER 3  Getting Graphic      61

To put Table 3-1 together, the R code is (appropriately enough)

> table(Cars93$Type)

Compact   Large Midsize   Small  Sporty     Van
     16      11      22      21      14       9

For the bar graph, then, it’s

> barplot(table(Cars93$Type))

which creates the graph in Figure 3-10.

Again, not as jazzy as the final product shown in Figure 3-3. Additional arguments 
do the trick. To put 0 through 25 on the y-axis, you use ylim, which, like xlim, 
works with a vector:

ylim = c(0,25)

For the x-axis label and y-axis label, you use

xlab = “Type”
ylab = “Frequency”

FIGURE 3-10: 
The initial bar 
plot of table 

(Cars93 
$Type).



62      PART 2  Describing Data

To draw a solid axis, you work with axis.lty. Think of this as “axis linetype” 
which you set to solid by typing

axis.lty = “solid”

The values dashed and dotted for axis.lty result in different looks for the x-axis.

Finally, you use space to increase the spacing between bars:

space = .05

Here’s the entire function for producing the graph in Figure 3-3:

> barplot(table(Cars93$Type),ylim=c(0,25), xlab="Type",  
          ylab="Frequency", axis.lty = "solid", space = .05)

Pie graphs
This type of graph couldn’t be more straightforward. The line

> pie(table(Cars93$Type))

takes you right to Figure 3-4.

Dot charts
Wait. What? Where did this one come from? This is yet another way of visualizing 
the data in Table  3-1. Noted graphics honcho William Cleveland believes that 
 people perceive values along a common scale (as in a bar plot) better than they 
perceive areas (as in a pie graph). So he came up with the dot chart, which I show 
you in Figure 3-11.

Looks a little like an abacus laid on its side, doesn’t it? This is one of those infre-
quent cases where the independent variable is on the y-axis and the dependent 
variable is on the x-axis.

The format for the function that creates a dot chart is

> dotchart(x, labels, arg1, arg2 ...)

The first two arguments are vectors, and the others are optional arguments for 
modifying the appearance of the dot chart. The first vector is the vector of values 
(the frequencies). The second is pretty self-explanatory — in this case, it’s labels 
for the types of vehicles.



CHAPTER 3  Getting Graphic      63

To create the necessary vectors, you turn the table into a data frame:

> type.frame <- data.frame(table(Cars93$Type))
> type.frame
     Var1 Freq
1 Compact   16
2   Large   11
3 Midsize   22
4   Small   21
5  Sporty   14
6     Van    9

After you have the data frame, this line produces the dot chart:

> dotchart(type.frame$Freq,type.frame$Var1)

The type.frame$Freq specifies that the Frequency column in the data frame is 
the x-axis, and type.frame$Var1 specifies that the Var1 column (which holds the 
car-types) is the y-axis.

This line works, too:

> dotchart(type.frame[,2],type.frame[,1])

Remember from Chapter  2 that [,2] means “column 2” and [,1] means  
“column 1.”

FIGURE 3-11: 
Dot chart for the 
data in Table 3-1.



64      PART 2  Describing Data

Bar plots revisited
In all the preceding graphs, the dependent variable has been frequency. Many 
times, however, the dependent variable is a data point rather than a frequency. 
Here’s what I mean.

Table 3-2 shows the data for commercial space revenues for the early 1990s. (The 
data, by the way, are from the U.S. Department of Commerce, via the Statistical 
Abstract of the U.S.)

The data are the numbers in the cells, which represent revenue in thousands of 
dollars. A base R bar plot of the data in this table appears in Figure 3-12.

TABLE 3-2	 U.S. Commercial Space Revenues 1990–1994 (In Millions  
 of Dollars)

Industry 1990 1991 1992 1993 1994

Commercial Satellites Delivered 1,000 1,300 1,300 1,100 1,400

Satellite Services 800 1,200 1,500 1,850 2,330

Satellite Ground Equipment 860 1,300 1,400 1,600 1,970

Commercial Launches 570 380 450 465 580

Remote Sensing Data 155 190 210 250 300

FIGURE 3-12: 
Bar plot of the 

data in Table 3-2.



CHAPTER 3  Getting Graphic      65

If you had to make a presentation about these data, I think you’d agree that your 
audience would prefer the graph to the table. Although the table is informative, it 
doesn’t hold people’s attention. It’s easier to see trends in the graph — Satellite 
Services rose fastest while Commercial Launches stayed fairly level, for example.

This graph is called a grouped bar plot. How do you create a plot like this one in 
base R?

The first thing to do is create a vector of the values in the cells:

rev.values <-  
        c(1000,1300,1300,1100,1400,800,1200,1500,1850,  
        2330,860,1300,1400,1600,1970,570,380,450,465,580,  
        155,190,210,250,300)

Although commas appear in the values in the table (for values greater than a 
thousand), you can’t have commas in the values in the vector! (For the obvious 
reason: Commas separate consecutive values in the vector.)

Next, you turn this vector into a matrix. You have to let R know how many rows 
(or columns) will be in the matrix, and that the values load into the matrix 
row-by-row:

space.rev <- matrix(rev.values,nrow=5,byrow = T)

Finally, you supply column names and row names to the matrix:

colnames(space.rev) <- 
          c("1990","1991","1992","1993","1994")

rownames(space.rev) <- c("Commercial Satellites  
         Delivered","Satellite Services","Satellite Ground  
         Equipment","Commercial Launches","Remote Sensing Data")

Let’s have a look at the matrix:

> space.rev
                                1990 1991 1992 1993 1994
Commercial Satellites Delivered 1000 1300 1300 1100 1400
Satellite Services               800 1200 1500 1850 2330
Satellite Ground Equipment       860 1300 1400 1600 1970
Commercial Launches              570  380  450  465  580
Remote Sensing Data              155  190  210  250  300

Perfect. It looks just like Table 3-2.



66      PART 2  Describing Data

With the data in hand, you move on to the bar plot. You create a vector of colors 
for the bars:

color.names = c("black","grey25","grey50","grey75","white")

A word about those color names: You can join any number from 0 to 100 with 
“grey” and get a color: “grey0” is equivalent to “black” and “grey100” is equiv-
alent to “white”. (Far more than fifty shades, if you know what I mean . . . )

And now for the plot:

> barplot(space.rev, beside = T, xlab= "Year",ylab= "Revenue  
        (X $1,000)", col=color.names)

beside = T means the bars will be, well, beside each other. (You ought to try this 
without that argument and see what happens.) The col = color.names argument 
supplies the colors you specified in the vector.

The resulting plot is shown in Figure 3-13.

What’s missing, of course, is the legend. You add that with the legend() function 
to produce Figure 3-12:

> legend(1,2300,rownames(space.rev), cex=0.7, fill = color.
names, bty = "n")

FIGURE 3-13: 
Initial bar plot of 

the data in 
Table 3-2.



CHAPTER 3  Getting Graphic      67

The first two values are the x- and y-coordinates for locating the legend. (That 
took a lot of tinkering!). The next argument shows what goes into the legend (the 
names of the industries). The cex argument specifies the size of the characters in 
the legend. The value, 0.7, indicates that you want the characters to be 70 percent 
of the size they would normally be. That’s the only way to fit the legend on the 
graph. (Think of “cex” as “character expansion,” although in this case it’s “char-
acter contraction.”) fill = color.names puts the color swatches in the legend, 
next to the row names. Setting bty (the “border type”) to “n” (“none”) is another 
little trick to fit the legend into the graph.

Scatter plots
To visualize the relationship between horsepower and MPG for city driving (as 
shown in Figure 3-5), you use the plot() function:

> plot(Cars93$Horsepower, Cars93$MPG.city,  
         xlab="Horsepower",ylab="MPG City", main ="MPG City vs  
         Horsepower")

As you can see, I added the arguments for labeling the axes, and for the title.

Another way to do this is to use the formula notation I show you in Chapter 2. So 
if you want the R code to show that MPG-city depends on horsepower, you type

> plot(Cars93$MPG.city ~ Cars93$Horsepower,  
          xlab="Horsepower",ylab="MPG City", main ="MPG City vs  
          Horsepower")

to produce the same scatter plot.

The tilde operator (~) means “depends on.”

A plot twist
R enables you to change the symbol that depicts the points in the graph. Figure 3-5 
shows that the default symbol is an empty circle. To change the symbol, which is 
called the plotting character, set the argument pch. R has a set of built-in numerical 
values (0–25) for pch that correspond to a set of symbols. The values 0–15 corre-
spond to unfilled shapes, and 16–25 are filled.

The default value is 1. To change the plotting character to squares, set pch to 0. For 
triangles, it’s 2, and for filled circles it’s 16:

> plot(Cars93$Horsepower,Cars93$MPG.city, xlab="Horsepower",  
          ylab="MPG City", main = "MPG City vs Horsepower",pch=16)



68      PART 2  Describing Data

Figure 3-14 shows the plot with the filled circles.

You can also set the argument col to change the color from “black” to “blue” or 
to a variety of other colors (which wouldn’t show up well on the black-and-white 
page you’re looking at).

You’re not limited to the built-in numerical values for pch. Here, for example, is 
an interesting touch: To help find patterns in the data, you can draw each point in 
the plot as the number of cylinders in the corresponding car, rather than as a 
symbol.

To do that, you have to be careful about how you set pch. You can’t just assign 
Cars93$.Cylinders as the value. You have to make sure that what you pass to pch 
is a character (like “3”, “4” or “8”) rather than a number (like 3, 4, or 8). Another 
complication is that the data contains “rotary” as one value for Cylinders. 
To  force the Cylinders-value to be a character, you apply as.character() to 
Cars93$Cylinders:

pch = as.character(Cars93$Cylinders)

and the plot() function is

> plot(Cars93$Horsepower,Cars93$MPG.city, xlab="Horsepower",  
          ylab="MPG City", main = "MPG City vs Horsepower", pch  
          = as.character(Cars93$Cylinders))

FIGURE 3-14: 
MPG City vs. 

Horsepower with 
filled-in circles 

(pch = 16).



CHAPTER 3  Getting Graphic      69

The result is the scatter plot in Figure 3-15. Interestingly, as.character() passes 
“rotary” as “r”.

In line with our intuitions about cars, this plot clearly shows that lower numbers 
of cylinders associate with lower horsepower and higher gas mileage, and that 
higher numbers of cylinders associate with higher horsepower and lower gas 
mileage. You can also quickly see where the rotary engine fits into all this (low gas 
mileage, high horsepower).

Scatter plot matrix
Base R provides a nice way of visualizing relationships among more than two 
variables. If you add price into the mix and you want to show all the pairwise rela-
tionships among MPG-city, price, and horsepower, you’d need multiple scatter 
plots. R can plot them all together in a matrix, as Figure 3-16 shows.

The names of the variables are in the cells of the main diagonal. Each off-diagonal 
cell shows the scatter plot for its row variable (on the y-axis) and its column vari-
able (on the x-axis). For example, the scatter plot in the first row, second column 
shows MPG-city on the y-axis and price on the x-axis. In the second row, first 
column, the axes are reversed: MPG city is on the x-axis, and price is on the y-axis.

The R function for plotting this matrix is pairs(). To calculate the coordinates for 
all scatter plots, this function works with numerical columns from a matrix or a 
data frame.

FIGURE 3-15: 
MPG City vs 

Horsepower with 
points plotted as 

number of 
cylinders.



70      PART 2  Describing Data

For convenience, you create a data frame that’s a subset of the Cars93 data frame. 
This new data frame consists of just the three variables to plot. The function  
subset() handles that nicely:

> cars.subset <- subset(Cars93, select = c(MPG. 
          city,Price,Horsepower))

The second argument to subset creates a vector of exactly what to select out of 
Cars93. Just to make sure the new data frame is the way you want it, use the 
head() function to take a look at the first six rows:

> head(cars.subset)
  MPG.city Price Horsepower
1       25  15.9        140
2       18  33.9        200
3       20  29.1        172
4       19  37.7        172
5       22  30.0        208
6       22  15.7        110

And now,

> pairs(cars.subset)

FIGURE 3-16: 
Multiple scatter 

plots for the 
relationships 

among MPG-city, 
price, and 

horsepower.



CHAPTER 3  Getting Graphic      71

creates the plot in Figure 3-16.

This capability isn’t limited to three variables, nor to continuous ones. To see 
what happens with a different type of variable, add Cylinders to the vector for 
select and then use the pairs() function on cars.subset.

Box plots
To draw a box plot like the one shown earlier, in Figure 3-6, you use a formula to 
show that Horsepower is the dependent variable and Cylinders is the indepen-
dent variable:

> boxplot(Cars93$Horsepower ~ Cars93$Cylinders, xlab="Cylinders", 
          ylab="Horsepower")

If you get tired of typing the $-signs, here’s another way:

> boxplot(Horsepower ~ Cylinders, data = Cars93,  
       xlab="Cylinders", ylab="Horsepower")

With the arguments laid out as in either of the two preceding code examples, 
plot() works exactly like boxplot().

Graduating to ggplot2
The Base R graphics toolset will get you started, but if you really want to shine at 
visualization, it’s a good idea to learn ggplot2. Created by R-megastar Hadley 
Wickham, the “gg” in the package name stands for “grammar of graphics” and 
that’s a good indicator of what’s ahead. That’s also the title of the book (by Leland 
Wilkinson) that is the source of the concepts for this package.

In general, a grammar is a set of rules for combining things. In the grammar we’re 
most familiar with, the things happen to be words, phrases, and clauses: The 
grammar of our language tells you how to combine these components to produce 
valid sentences.

So a “grammar of graphics” is a set of rules for combining graphics components 
to produce graphs. Wilkinson proposed that all graphs have underlying common 
components — like data, a coordinate system (the x- and y-axes you know so 
well, for example), statistical transformations (like frequency counts), and objects 
within the graph (e.g., dots, bars, lines, or pie slices), to name a few.



72      PART 2  Describing Data

Just as combining words and phrases produces grammatical sentences, combining 
graphics components produces graphs. And just as some sentences are grammati-
cal but make no sense (“Colorless green ideas sleep furiously.”), some ggplot2 
creations are beautiful graphs that aren’t always useful. It’s up to the speaker/
writer to make sense for his audience, and it’s up to the graphic developer to cre-
ate useful graphs for people who use them.

Histograms
In ggplot2, Wickham’s implementation of Wilkinson’s grammar is an easy-to- 
learn structure for R graphics code. To learn that structure, make sure you have 
ggplot2 in the library so that you can follow what comes next. (Find ggplot2 on the 
Packages tab and click its check box.)

A graph starts with ggplot(), which takes two arguments. The first argument is 
the source of the data. The second argument maps the data components of inter-
est into components of the graph. The function that does the job is aes().

To begin a histogram for Price in Cars93, the function is

> ggplot(Cars93, aes(x=Price))

The aes() function associates Price with the x-axis. In ggplot-world, this is 
called an aesthetic mapping. In fact, each argument to aes() is called an aesthetic.

This line of code draws Figure 3-17, which is just a grid with a gray background 
and Price on the x-axis.

Well, what about the y-axis? Does anything in the data map into it? No. That’s 
because this is a histogram and nothing explicitly in the data provides a y-value 
for each x. So you can’t say “y=” in aes(). Instead, you let R do the work to cal-
culate the heights of the bars in the histogram.

And what about that histogram? How do you put it into this blank grid? You have 
to add something indicating that you want to plot a histogram and let R take care 
of the rest. What you add is a geom function (“geom” is short for “geometric 
object”).

These geom functions come in a variety of types. ggplot2 supplies one for almost 
every graphing need, and provides the flexibility to work with special cases. To 
draw a histogram, the geom function to use is called geom_histogram().



CHAPTER 3  Getting Graphic      73

How do you add geom_histogram() to ggplot()? With a plus sign:

ggplot(Cars93, aes(x=Price)) +
  geom_histogram()

This produces Figure 3-18. The grammar rules tell ggplot2 that when the geomet-
ric object is a histogram, R does the necessary calculations on the data and 
 produces the appropriate plot.

FIGURE 3-17: 
Applying 

ggplot() and 
nothing else.

FIGURE 3-18: 
The initial 

histogram for 
Price in 
Cars93.



74      PART 2  Describing Data

At the bare minimum, ggplot2 graphics code has to have data, aesthetic map-
pings, and a geometric object. It’s like answering a logical sequence of questions: 
What’s the source of the data? What parts of the data are you interested in? Which 
parts of the data correspond to which parts of the graph? How do you want the 
graph to look?

Beyond those minimum requirements, you can modify the graph. Each bar is 
called a bin, and by default, ggplot() uses 30 of them. After plotting the histo-
gram, ggplot() displays an onscreen message that advises experimenting with 
binwidth (which, unsurprisingly, specifies the width of each bin) to change the 
graph’s appearance. Accordingly, you use binwidth = 5 as an argument in 
geom_histogram().

Additional arguments modify the way the bars look:

geom_histogram(binwidth=5, color = “black”, fill = “white”)

With another function, labs(), you modify the labels for the axes and supply a 
title for the graph:

labs(x = "Price (x $1000)", y="Frequency",title="Prices of 93  
         Models of 1993 Cars")

Altogether now:

ggplot(Cars93, aes(x=Price)) +
  geom_histogram(binwidth=5,color="black",fill="white") +
  labs(x = "Price (x $1000)", y="Frequency", title="Prices of  

        93 Models of 1993 Cars")

The result is Figure 3-19. (Note that it’s a little different from Figure 3-2. I’d have 
to tinker a bit with both of them to make them come out the same.)

Bar plots
Drawing a bar plot in ggplot2 is a little easier than drawing one in base R: It’s not 
necessary to first create a table like Table 3-1 in order to draw the graph. As in the 
example in the preceding section, you don’t specify an aesthetic mapping for y. 
This time, the geom function is geom_bar(), and the rules of the grammar tell 
ggplot2 to do the necessary work with the data and then draw the plot:

ggplot(Cars93, aes(x=Type))+
  geom_bar() +
  labs(y="Frequency", title="Car Type and Frequency in Cars93")



CHAPTER 3  Getting Graphic      75

Figure 3-20 shows the resulting bar plot.

Dot charts
Earlier in this chapter, I show you the dot chart as an alternative to the pie graph. 
In this section, I tell you how to use ggplot() to draw one.

FIGURE 3-19: 
The finished Price 

histogram.

FIGURE 3-20: 
Bar plot for Car 

Type.



76      PART 2  Describing Data

Why didn’t I lead with the pie graph and show you how to create one with the 
ggplot2 package? It’s a lot of work, and little bang for the buck. If you want to 
 create one, the base R pie() function is much easier to work with.

Making a dot chart begins much the same as in base R: You create a table for Type, 
and you turn the table into a data frame.

type.frame <- data.frame(table(Cars$93.Type))

To ensure that you have meaningful variable names for the aesthetic mapping, 
you apply the colnames() function to name the columns in this data frame. 
(That’s a step I didn’t do in base R.)

colnames(type.frame)<- c("Type","Frequency")

Now type.frame looks just like Table 3-1:

> type.frame
     Type Frequency
1 Compact        16
2   Large        11
3 Midsize        22
4   Small        21
5  Sporty        14
6     Van         9

On to the graph. To orient the dot chart as in Figure 3-11, you map Frequency to 
the x-axis and Type to the y-axis:

ggplot(type.frame, aes(x=Frequency,y= Type))

Again, usually the independent variable is on the x-axis and the dependent vari-
able is on the y-axis, but that’s not the case in this graph.

Next, you add a geom function.

A geom function called geom_dotplot() is available, but surprisingly, it’s not 
appropriate here. That one draws something else. In ggplot-world, a dot plot is 
different from a dot chart. Go figure.

The geom function for the dot chart is geom_point(). So this code

ggplot(type.frame, aes(x=Frequency,y=Type)) +
  geom_point()



CHAPTER 3  Getting Graphic      77

results in Figure 3-21.

A couple of modifications are in order. First, with a graph like this, it’s a nice 
touch to rearrange the categories on the y-axis with respect to how they order on 
what you’re measuring on the x-axis. That necessitates a slight change in the 
aesthetic mapping to the y-axis:

ggplot(type.frame, aes(x=Frequency,y=reorder(Type,Frequency))

Larger dots would make the chart look a little nicer:

geom_point(size =4)

Additional functions modify the graph’s overall appearance. One family of these 
functions is called themes. One member of this family, theme_bw(), removes the 
gray background. Adding theme() with appropriate arguments a) removes the 
vertical lines in the grid and b) blackens the horizontal lines and makes them 
dotted:

theme_bw() +
theme(panel.grid.major.x=element_blank(),
      panel.grid.major.y=element_line(color = "black",  

         linetype = "dotted"))

FIGURE 3-21: 
The initial dot 

chart for Type.



78      PART 2  Describing Data

Finally, labs() changes the y-axis label:

labs(y= “Type”)

Without that change, the y-axis label would be “reorder(Type,Frequency)”. 
Though picturesque, that label makes little sense to the average viewer.

Here’s the code from beginning to end:

ggplot(type.frame, aes(x=Frequency,y=reorder(Type,Frequency))) +
  geom_point(size = 4) +
  theme_bw() +
  theme(panel.grid.major.x=element_blank(),
        panel.grid.major.y=element_line(color = "black",linetype  

          = "dotted"))+
  labs(y="Type")

Figure 3-22 shows the dot chart.

Bar plots re-revisited
As was the case with the first few graphs in base R, the graphs I’ve shown so far 
in this section have frequencies (or “counts”) as the dependent variable. And, of 
course, as Table 3-2 shows, that’s not always the case.

FIGURE 3-22: 
The modified dot 

chart for Type.



CHAPTER 3  Getting Graphic      79

In the section on base R, I show you how to create a grouped bar plot. Here, I show 
you how to use ggplot() to create one from space.rev, the data set I created from 
the data in Table 3-2. The finished product will look like Figure 3-23.

The first order of business is to get the data ready. It’s not in the format that 
ggplot() uses. This format

> space.rev
                                1990 1991 1992 1993 1994
Commercial Satellites Delivered 1000 1300 1300 1100 1400
Satellite Services               800 1200 1500 1850 2330
Satellite Ground Equipment       860 1300 1400 1600 1970
Commercial Launches              570  380  450  465  580
Remote Sensing Data              155  190  210  250  300

is called wide format. ggplot(), however, works with long format, which looks 
like this:

Industry Year Revenue
1 Commercial Satellites Delivered 1990    1000
2              Satellite Services 1990     800
3      Satellite Ground Equipment 1990     860
4             Commercial Launches 1990     570
5             Remote Sensing Data 1990     155
6 Commercial Satellites Delivered 1991    1300

FIGURE 3-23: 
Bar plot for the 

data in Table 3-2, 
created with 
ggplot().



80      PART 2  Describing Data

Those are just the first six rows for this data set. The total number of rows is 25 
(because 5 rows and 5 columns are in the wide format).

Hadley Wickham (there’s that name again!) created a package called reshape2 
that provides everything for a seamless transformation. The function melt() 
turns wide format into long. Another function, cast(), does the reverse. These 
functions are a huge help because they eliminate the need to go schlepping around 
in spreadsheets to reshape a data set.

So, with reshape2 in the library (click its check box on the Packages tab), the 
code is

> space.melt <- melt(space.rev)

Yes, that’s really all there is to it. Here, I’ll prove it to you:

> head(space.melt)
                             Var1 Var2 value
1 Commercial Satellites Delivered 1990  1000
2              Satellite Services 1990   800
3      Satellite Ground Equipment 1990   860
4             Commercial Launches 1990   570
5             Remote Sensing Data 1990   155
6 Commercial Satellites Delivered 1991  1300

Next, you give meaningful names to the columns:

> colnames(space.melt) <- c("Industry","Year","Revenue")
> head(space.melt)
                         Industry Year Revenue
1 Commercial Satellites Delivered 1990    1000
2              Satellite Services 1990     800
3      Satellite Ground Equipment 1990     860
4             Commercial Launches 1990     570
5             Remote Sensing Data 1990     155
6 Commercial Satellites Delivered 1991    1300

And now you’re ready to roll. You start with ggplot(). The aesthetic mappings are 
straightforward:

ggplot(space.melt, aes(x=Year,y=Revenue,fill=Industry))

You add the geom function for the bar, and you specify three arguments:

geom_bar(stat = "identity", position = "dodge", color ="black")



CHAPTER 3  Getting Graphic      81

The first argument is absolutely necessary for a graph of this type. If left on its 
own, geom_bar defaults to the bar plot I showed you earlier — a graph based on 
frequencies. Because you defined an aesthetic mapping for y, and that type of 
graph is incompatible with an aesthetic for y, not setting this argument results in 
an error message.

Accordingly, you let ggplot() know that this is a graph based on explicit data 
values. So stat=“identity” means “use the given numbers as the data.”

The value for the next argument, position, is a cute name that means the bars 
“dodge” each other and line up side-by-side. (Omit this argument and see what 
happens.) It’s analogous to “beside =T” in base R.

The third argument sets the color of the borders for each bar. The fill-color scheme 
for the bars is the province of the next function:

scale_fill_grey(start = 0,end = 1)

As its name suggests, this function fills the bars with shades of gray (excuse me, 
“grey”). The start value, 0, is black, and the end value, 1, is white. (Reminiscent 
of “grey0” = “black” and “grey100” = “white.’) The effect is to fill the five bars 
with five shades from black to white.

You’d like to relabel the y-axis, so that’s

labs(y="Revenue (X $1,000)")

and then remove the gray background

theme_bw()

and, finally, remove the vertical lines from the grid

theme(panel.grid.major.x = element_blank())

The whole chunk for producing Figure 3-23 is

ggplot(space.melt, aes(x=Year,y=Revenue,fill=Industry)) +
  geom_bar(stat = "identity", position = "dodge", color="black") +
  scale_fill_grey(start = 0,end = 1)+
  labs(y="Revenue (X $1,000)")+
  theme_bw()+
  theme(panel.grid.major.x = element_blank())



82      PART 2  Describing Data

Scatter plots
As I describe earlier, a scatter plot is a great way to show the relationship between 
two variables, like horsepower and miles per gallon for city driving. And ggplot() 
is a great way to draw the scatter plot. If you’ve been following along, the gram-
mar of this will be easy for you:

ggplot(Cars93,aes(x=Horsepower,y=MPG.city))+
  geom_point()

Figure 3-24 shows the scatter plot. I’ll leave it to you to change the y-axis label to 
“Miles per Gallon (City)” and to add a descriptive title.

About that plot twist . . .
Take another look at Figure 3-15, the relationship between MPG.city and Horse-
power. In that one, the points in the plot aren’t dots. Instead, each data point is 
the number of cylinders, which is a label that appears as a text character.

How do you do make that happen in ggplot-world? First, you need an additional 
aesthetic mapping in aes(). That mapping is label, and you set it to Cylinders:

ggplot(Cars93, aes(x=Horsepower, y=MPG.city, label = Cylinders))

You add a geometric object for text and voilà:

FIGURE 3-24: 
MPG.city vs 

Horsepower in 
Cars93.



CHAPTER 3  Getting Graphic      83

ggplot(Cars93, aes(x = Horsepower,y = MPG.city,label = 
Cylinders)) +

 geom_text()

Figure 3-25 shows the graph this code produces. One difference from base R is 
“rotary” rather than “r” as a data point label.

Just for the heck of it, I used theme functions (see the earlier “Dot charts” section) 
to make the graph’s appearance look more like the one shown in Figure 3-15. As 
in the dot chart example, theme_bw() eliminates the gray background. The 
theme() function (with a specific argument) eliminates the grid:

theme(panel.grid=element_blank())

element_blank() is a function that draws a blank element.

Putting it all together

ggplot(Cars93, aes(x=Horsepower, y=MPG.city, label=Cylinders)) +
  geom_text() +
  theme_bw() +
  theme(panel.grid=element_blank())

produces Figure 3-26. Once again, I leave it to you to use labs() to change the 
y-axis label and to add a descriptive title.

FIGURE 3-25: 
The initial ggplot2 

scatter plot for 
MPG.city vs 

Horsepower with 
Cylinders as the 
data point label.



84      PART 2  Describing Data

Scatter plot matrix
A matrix of scatter plots shows the pairwise relationships among more than two 
variables. Figure 3-16 shows how the base R pairs() function draws this kind of 
matrix.

The ggplot2 package had a function called plotpairs() that did something simi-
lar, but not anymore. GGally, a package built on ggplot2, provides ggpairs() to 
draw scatter plot matrices, and it does this in a flamboyant way.

The GGally package isn’t on the Packages tab. You have to select Install and type 
GGally in the Install Packages dialog box. When it appears on the Packages tab, 
click the check box next to it.

Earlier, I created a subset of Cars93 that includes MPG.city, Price, and 
Horsepower:

> cars.subset <- subset(Cars93, select = c(MPG.
city,Price,Horsepower))

With the GGally package in your library, this code creates the scatter plot matrix 
in Figure 3-27:

> ggpairs(cars.subset)

FIGURE 3-26: 
Modified scatter 
plot for MPG.city 

vs Horsepower 
with Cylinders as 

the data point 
label.



CHAPTER 3  Getting Graphic      85

As Figure  3-27 shows, this one’s a beauty. The cells along the main diagonal 
present density plots of the variables. (See the earlier subsection “Adding graph 
features,” and also see Chapter 8.) One drawback is that the y-axis is visible for 
the variable MPG.city only in the first row and first column.

The three scatter plots are in the cells below the main diagonal. Rather than show 
the same scatter plots with the axes reversed in the cells above the main diagonal 
(like pairs() does), each above-the-diagonal cell shows a correlation coefficient 
that summarizes the relationship between the cell’s row variable and its column 
variable. (Correlation coefficients? No, I’m not going to explain them now. See 
Chapter 15.)

For a real visual treat, add Cylinders to cars.subset, and then apply ggpairs():

> cars.subset <- subset(Cars93, select = c(MPG.city,Price, 
          Horsepower,Cylinders))

> ggpairs(cars.subset)

Figure 3-28 shows the new scatter plot matrix, in all its finery.

FIGURE 3-27: 
Scatter plot 

matrix for MPG.
city, Price, and 

Horsepower.



86      PART 2  Describing Data

Cylinders is not a variable that lends itself to scatter plots, density plots, or cor-
relation coefficients. (Thought question: Why not?) Thus, the cell in the fourth 
column, fourth row, has a bar plot rather than a density plot. Bar plots relating 
Cylinders (on each y-axis) to the other three variables (on the x-axes) are in the 
remaining three cells in row 4. Box plots relating Cylinders (on each x-axis) 
to  the other three variables (on the y-axes) are in the remaining three cells in 
column 4.

Which brings me to the next graph type. . . .

Box plots
Statisticians use box plots to quickly show how groups differ from one another. As 
in the base R example, I show you the box plot for Cylinders and Horsepower. This 
is a replication of the graph in row 3, column 4 of Figure 3-28.

At this point, you can probably figure out the ggplot() function:

ggplot(Cars93, aes(x=Cylinders, y= Horsepower))

What’s the geom function? If you guessed geom_boxplot(), you’re right!

FIGURE 3-28: 
Adding Cylinders 

produces this 
scatter plot 

matrix.



CHAPTER 3  Getting Graphic      87

So the code is

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
  geom_boxplot()

And that gives you Figure 3-29.

Want to show all the data points in addition to the boxes? Add the geom function 
for points

ggplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
  geom_boxplot()+
  geom_point()

to produce the graph in Figure 3-30.

Remember that this is data for 93 cars. Do you see 93 data points? Neither 
do I. This, of course, is because many points overlap. Graphics gurus refer to this 
as overplotting.

One way to deal with overplotting is to randomly reposition the points so as to 
reveal them but not change what they represent. This is called jittering. And ggplot2 
has a geom function for that: geom_jitter(). Adding this function to the code

FIGURE 3-29: 
Box plot for 

Horsepower vs 
Cylinders.



88      PART 2  Describing Data

gplot(Cars93, aes(x=Cylinders,y=Horsepower)) +
  geom_boxplot()+
  geom_point()+
  geom_jitter()

draws Figure 3-31.

FIGURE 3-30: 
Box plot with 

data points.

FIGURE 3-31: 
Box plot with 
jittered data 

points.



CHAPTER 3  Getting Graphic      89

Wrapping Up
As far as graphics goes, I’ve just scratched the surface. R has a rich set of graphics 
tools and packages — way more than I could show you in this chapter. In the 
chapters to come, every time I show you an analytic technique, I also show you 
how to visualize its results. I’ll use what you’ve read in this chapter, along with 
new tools and packages as necessary.





CHAPTER 4  Finding Your Center      91

IN THIS CHAPTER

 » Working within your means

 » Meeting conditions

 » Understanding that the median is the 
message

 » Getting into the mode

Finding Your Center

If you’ve ever worked with a set of numbers and had to figure out how to sum-
marize them with a single number, you’ve faced a situation that statisticians 
deal with all the time. Where would this ideal “single number” come from?

A good idea might be to select a number from somewhere in the middle of the set. 
That number could then represent the entire set of numbers. When you’re looking 
around in the middle of the set, you’re looking at central tendency. You can address 
central tendency in a variety of ways.

Means: The Lure of Averages
We’ve all used averages. Statisticians refer to the average as the mean. The mean 
is an easy way to summarize your spending, your school grades, your perfor-
mance in a sport over time.

In the course of their work, scientists calculate means. When a researcher does a 
study, she applies some kind of treatment or procedure to a small sample of  people 
or things. Then she measures the results and estimates the effects of the proce-
dure on the population that produced the sample. Statisticians have shown that 
the sample mean is the estimate of the mean of the population.

Chapter 4



92      PART 2  Describing Data

I think you know how to calculate the mean, but I’ll go through it anyway. Then I 
show you the statistical formula. My objective is that you understand statistical 
formulas in general, and then I’ll show you how R calculates means.

A mean is just the sum of a set of numbers divided by how many numbers you 
added up. Suppose you measure the heights (in inches) of six 5-year-old children 
and find that their heights are

36, 42, 43, 37, 40, 45

The average height of these six children is

36 42 43 37 40 45
6

40 5.

The mean of this sample, then, is 40.5 inches.

A first attempt at a formula for the mean might be

Mean Sum of Numbers
Amount of Numbers You Added Up

Formulas, though, usually involve abbreviations. A common abbreviation for 
“Number” is X. Statisticians usually abbreviate “Amount of Numbers You Added 
Up” as N. So the formula becomes

Mean Sum of X
N

Statisticians also use an abbreviation for Sum of — the uppercase Greek letter for 
S. Pronounced “sigma,” it looks like this: Σ. So the formula with the sigma is

Mean
X

N

I’m not done yet. Statisticians abbreviate “mean,” too. You might think that M 
would be the abbreviation, and some statisticians agree with you, but most prefer 
a symbol that’s related to X. For this reason, the most popular abbreviation for the 
mean is X , which is pronounced “X bar.” And here’s the formula:

X
X

N

I have to tie up one more loose end. In Chapter 1, I discuss samples and popula-
tions. Symbols in formulas have to reflect the distinction between the two. The 
convention is that English letters, like X  , stand for characteristics of samples, and 
Greek letters stand for characteristics of populations. For the population mean, 



CHAPTER 4  Finding Your Center      93

the symbol is the Greek equivalent of M, which is μ. It’s pronounced like “you” but 
with “m” in front of it. The formula for the population mean, then, is

X
N

The Average in R: mean()
R provides an extremely straightforward way of calculating the mean of a set of 
numbers: mean(). I apply it to the example of the heights of six children.

First, I create a vector of the heights:

> heights <- c(36, 42, 43, 37, 40, 45)

Then I apply the function:

> mean(heights)
[1] 40.5

And there you have it.

What’s your condition?
When you work with a data frame, sometimes you want to calculate the mean of 
just the cases (rows) that meet certain conditions, rather than the mean of all the 
cases. This is easy to do in R.

For the discussion that follows, I use the same Cars93 data frame that I use in 
Chapter 3. It’s the one that has data for a sample of 93 cars from 1993. It’s in the 
MASS package. So make sure you have the MASS package in your library. (Find 
MASS on the Packages tab and click its check box.)

Suppose I’m interested in the average horsepower of the cars made in the 
USA. First I select those cars and put their horsepowers into a vector:

Horsepower.USA <- Cars93$Horsepower[Cars93$Origin == “USA”]

(If the right-hand part of that line looks strange to you, reread Chapter 2.)



94      PART 2  Describing Data

The average horsepower is then

> mean(Horsepower.USA)
[1] 147.5208

Hmm, I wonder what that average is for cars not made in the USA:

Horsepower.NonUSA <- Cars93$Horsepower[Cars93$Origin ==  
      "non-USA"]

> mean(Horsepower.NonUSA)
[1] 139.8889

So the averages differ a bit. (Can we examine that difference more closely? Yes we 
can, which is just what I do in Chapter 11.)

Eliminate $-signs forth with()
In the preceding R-code, the $-signs denote variables in the Cars93 data frame. 
R provides a way out of using the name of the data frame (and hence, the $-sign) 
each time you refer to one of its variables.

In Chapter 3, I show that graphics functions take, as their first argument, the data 
source. Then, in the argument list, it’s not necessary to repeat the source along 
with the $-sign to denote a variable to plot.

The function with() does this for other R functions. The first argument is the data 
source, and the second argument is the function to apply to a variable in that data 
source.

To find the mean horsepower of USA cars in Cars93:

> with(Cars93, mean(Horsepower[Origin == "USA"]))
[1] 147.5208

This also skips the step of creating the Horsepower.USA vector.

How about multiple conditions, like the average horsepower of USA 4-cylinder 
cars?

> with(Cars93, mean(Horsepower[Origin == "USA" & Cylinders ==4]))
[1] 104.0909



CHAPTER 4  Finding Your Center      95

R also provides the attach() function as a way of eliminating $-signs and key-
strokes. Attach the data frame (attach(Cars93), for example) and you don’t have 
to refer to it again when you use its variables. Numerous R authorities recommend 
against this, however, as it can lead to errors.

Exploring the data
Now that we’ve examined the horsepower means of USA and non-USA cars, how 
about the overall distributions?

That calls for a little data exploration. I use the ggplot2 package (see Chapter 3) to 
create side-by-side histograms from the Cars93 data frame so that I can compare 
them. (Make sure you have ggplot2 in the library.) Figure 4-1 shows what I mean.

To create the histograms in the figure, I begin the usual way:

ggplot(Cars93, aes(x=Horsepower))

and then add a geom function

geom_histogram(color="black", fill="white",binwidth = 10)

I tinkered around a little to arrive at that binwidth value.

FIGURE 4-1: 
Horsepower 

histograms for 
USA and Non-USA 

cars in Cars93.



96      PART 2  Describing Data

The code so far creates an ordinary histogram with Horsepower on the x-axis. How 
can I create Figure 4-1? To do that, I add a ggplot capability called faceting. Simply 
put, faceting splits the data according to a nominal variable — like Origin, which 
is either “USA” or “non-USA.” A couple of faceting functions are available. The 
one I use here is called facet_wrap(). To split the data according to Origin, it’s

facet_wrap(~Origin)

Just a reminder: The tilde operator (~) means “depends on,” so think of Origin as 
an independent variable. The full code for Figure 4-1 is

ggplot(Cars93, aes(x=Horsepower)) +
  geom_histogram(color="black", fill="white",binwidth = 10)+
  facet_wrap(~Origin)

As you can see, the distributions have different overall shapes. The USA cars seem 
to have a gap between the low 200s and the next-highest values, and the non-USA 
cars not so much. You also see higher maximum values for the USA cars. What 
other differences do you see? (I address those differences in Chapter 7.)

Outliers: The flaw of averages
An outlier is an extreme value in a data set. If the data set is a sample and you’re 
trying to estimate the population mean, the outlier might bias the estimate.

Statisticians deal with outliers by trimming the mean — eliminating extreme val-
ues at the low end and the high end before calculating the sample mean. The 
amount of trim is a percentage, like the upper and lower 5 percent of the scores.

For example, the histogram on the left of Figure 4-1 shows some extreme values. 
To trim the upper and lower 5 percent, I add the trim argument to mean():

> mean(Horsepower.USA, trim =.05)
[1] 144.1818

The result is a bit lower than the untrimmed mean.

What’s the appropriate percentage for trim? That’s up to you. It depends on what 
you’re measuring, how extreme your scores can be, and how well you know the 
area you’re studying. When you report a trimmed mean, let your audience know 
that you’ve done this and tell them the percentage you’ve trimmed.



CHAPTER 4  Finding Your Center      97

In the upcoming section about the median, I show you another way to deal with 
extreme scores.

Other means to an end
In this section, I tell you about two additional averages that are different from the 
mean you’re accustomed to working with.

The everyday, garden-variety mean is called the arithmetic (pronounced “arith- 
MET-ic”) mean.

How many different kinds of means are possible? Ancient Greek mathematicians 
came up with 11!

Geometric mean
Suppose you have a 5-year investment that yields these percentages: 10 percent, 
15 percent, 10 percent, 20 percent, and 5 percent. (Yes, yes. I know. This is fiction.) 
What’s the average annual rate of return?

Your first guess might be to average those percentages. That average is 12 percent. 
And it would be incorrect.

Why? It misses an important point. At the end of the first year, you multiply your 
investment by .10 — you don’t add 1.10 to it. At the end of the second year, you 
multiply the first-year result by 1.15, and so on.

The arithmetic mean won’t give you the average rate of return. Instead, you cal-
culate that average this way:

Average Rate of Return 1 10 1 15 1 10 1 20 1 05 1 1188475 . . . . . .

The average rate of return is a little less than 12 percent. This kind of average is 
called the geometric mean.

In this example, the geometric mean is the fifth root of the product of five num-
bers. Is it always the nth root of the product of n numbers? Yep.

Base R doesn’t provide a function for calculating the geometric mean, but it’s easy 
enough to calculate.

I begin by creating a vector of the numbers:

invest <- c(1.10,1.15,1.10,1.20,1.05)



98      PART 2  Describing Data

I use the prod() function to calculate the product of the numbers in the vector, 
and the length() function to calculate how many numbers are in the vector. The 
calculation is then

> gm.invest <- prod(invest)^(1/(length(invest)))
> gm.invest
[1] 1.118847

Harmonic mean
Here’s a situation you sometimes encounter in real life, but more often in algebra 
textbooks.

Suppose you’re in no hurry to get to work in the morning and you drive from your 
home to your job at a rate of 30 miles per hour. At the end of the day, on the other 
hand, you’d like to get home quickly. So on the return trip (over exactly the same 
distance), you drive from your job to your home at 50 miles per hour. What is the 
average rate for your total time on the road?

It’s not 40 miles per hour, because you’re on the road a different amount of time 
for each leg of the trip. Without going into this too deeply, the formula for figuring 
this out is

1 1
2

1
30

1
50

1
37 5Average .

The average is 37.5. This type of average is called a harmonic mean. This example 
consists of two numbers, but you can calculate it for any amount of numbers. Just 
put each number in the denominator of a fraction with 1 as the numerator. Math-
ematicians call this the reciprocal of a number. (So 1

30 is the reciprocal of 30.) Add 
all the reciprocals together and take their average. The result is the reciprocal of 
the harmonic mean.

Base R doesn’t have a function for the harmonic mean, but (again) it’s easy to 
calculate. You begin by creating a vector of the two speeds:

speeds <- c(30,50)

Taking the reciprocal of the vector results in a vector of reciprocals:

> 1/speeds
[1] 0.03333333 0.02000000



CHAPTER 4  Finding Your Center      99

So the harmonic mean is

> hm.speeds <- 1/mean(1/speeds)
> hm.speeds
[1] 37.5

Medians: Caught in the Middle
The mean is a useful way to summarize a group of numbers. One drawback (“the 
flaw of averages”) is that it’s sensitive to extreme values. If one number is out of 
whack, the mean is out of whack, too. When that happens, the mean might not be 
a good representative of the group.

Here, for example, are the reading speeds (in words per minute) for a group of 
children:

56, 78, 45, 49, 55, 62

The mean is

> reading.speeds <- c(56, 78, 45, 49, 55, 62)
> mean(reading.speeds)
[1] 57.5

Suppose the child who reads at 78 words per minute leaves the group and an 
exceptionally fast reader replaces him. Her reading speed is a phenomenal 180 
words per minute:

> reading.speeds.new <-  
          replace(reading.speeds,reading.speeds == 78,180)

> reading.speeds.new
[1]  56 180  45  49  55  62

Now the mean is

> mean(reading.speeds.new)
[1] 74.5

The new average is misleading. Except for the new child, no one else in the group 
reads nearly that fast. In a case like this, it’s a good idea to use a different measure 
of central tendency — the median.



100      PART 2  Describing Data

Median is a fancy name for a simple concept: It’s the middle value in a group of 
numbers. Arrange the numbers in order, and the median is the value below which 
half the scores fall and above which half the scores fall:

> sort(reading.speeds)
[1] 45 49 55 56 62 78
> sort(reading.speeds.new)
[1]  45  49  55  56  62 180

In each case, the median is halfway between 55 and 56, or 55.5.

The Median in R: median()
So it’s no big mystery how to use R to find the median:

> median(reading.speeds)
[1] 55.5
> median(reading.speeds.new)
[1] 55.5

With larger data sets, you might encounter replication of scores. In any case, 
the median is still the middle value. For example, here are the horsepowers for 
4-cylinder cars in Cars93:

> with(Cars93, Horsepower.Four <- Horsepower[Cylinders == 4])
> sort(Horsepower.Four)
 [1]  63  74  81  81  82  82  85  90  90  92  92  92  92  92
[15]  93  96 100 100 100 102 103 105 110 110 110 110 110 110
[29] 110 114 115 124 127 128 130 130 130 134 135 138 140 140
[43] 140 141 150 155 160 164 208

You see quite a bit of duplication in these numbers  — particularly around the 
middle. Count through the sorted values and you’ll see that 24 scores are equal to 
or less than 110, and 24 scores are greater than or equal to 110, which makes the 
median

> median(Horsepower.Four)
[1] 110



CHAPTER 4  Finding Your Center      101

Statistics à la Mode
One more measure of central tendency, the mode, is important. It’s the score that 
occurs most frequently in a group of scores.

Sometimes the mode is the best measure of central tendency to use. Imagine a 
small company that consists of 30 consultants and two high-ranking officers. 
Each consultant has an annual salary of $40,000. Each officer has an annual sal-
ary of $250,000. The mean salary in this company is $53,125.

Does the mean give you a clear picture of the company’s salary structure? If you 
were looking for a job with that company, would the mean influence your expec-
tations? You’re probably better off if you consider the mode, which in this case is 
$40,000 (unless you happen to be high-priced executive talent!).

Nothing is complicated about finding the mode. Look at the scores and find the 
one that occurs most frequently, and you’ve found the mode. Do two scores tie for 
that honor? In that case, your set of scores has two modes. (The technical name is 
bimodal.)

Can you have more than two modes? Absolutely.

If every score occurs equally often, you have no mode.

The Mode in R
Base R does not provide a function for finding the mode. It does have a function 
called mode(), but it’s for something much different. Instead, you need a package 
called modeest in your library. (On the Packages tab, select Install, and then in the 
Install dialog box, type modeest in the Packages box and click Install. Then check 
its check box when it appears on the Packages tab.)

One function in the modeest package is called mfv() (“most frequent value”), and 
that’s the one you need. Here’s a vector with two modes (2 and 4):

> scores <- c(1,2,2,2,3,4,4,4,5,6)
> mfv(scores)
[1] 2 4





CHAPTER 5  Deviating from the Average      103

IN THIS CHAPTER

 » Finding out what variation is all 
about

 » Working with variance and standard 
deviation

 » Exploring R functions that calculate 
variation

Deviating from 
the Average

Here’s a well-known statistician joke: Three statisticians go deer hunting 
with bows and arrow. They spot a deer and take aim. One shoots and his 
arrow flies off ten feet to the left. The second shoots and his arrow goes ten 

feet to the right. The third statistician happily yells out, “We got him!”

Moral of the story: Calculating the mean is a great way to summarize a set of 
numbers, but the mean might mislead you. How? By not giving you all the 
 information you typically need. If you rely only on the mean, you might miss 
something important about the set of numbers.

To avoid missing important information, another type of statistic is necessary —  
a statistic that measures variation. Think of variation as a kind of average of how 
much each number in a group of numbers differs from the group mean. Several 
statistics are available for measuring variation. They all work the same way: 
The larger the value of the statistic, the more the numbers differ from their mean. 
The smaller the value, the less they differ.

Chapter 5



104      PART 2  Describing Data

Measuring Variation
Suppose you measure the heights of a group of children and you find that their 
heights (in inches) are

48, 48, 48, 48, and 48

Then you measure another group and find that their heights are

50, 47, 52, 46, and 45

If you calculate the mean of each group, you’ll find they’re the same — 48 inches. 
Just looking at the numbers tells you the two groups of heights are different: 
The heights in the first group are all the same, whereas the heights in the second 
vary quite a bit.

Averaging squared deviations: Variance 
and how to calculate it
One way to show the dissimilarity between the two groups is to examine the devi-
ations in each one. Think of a “deviation” as the difference between a score and 
the mean of all the scores in a group.

Here’s what I’m talking about. Table 5-1 shows the first group of heights and their 
deviations.

One way to proceed is to average the deviations. Clearly, the average of the num-
bers in the Deviation column is zero.

Table 5-2 shows the second group of heights and their deviations.

TABLE 5-1	 The First Group of Heights and Their Deviations
Height Height-Mean Deviation

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0

48 48-48 0



CHAPTER 5  Deviating from the Average      105

What about the average of the deviations in Table 5-2? That’s . . . zero!

So now what?

Averaging the deviations doesn’t help you see a difference between the two 
groups, because the average of deviations from the mean in any group of numbers 
is always zero. In fact, veteran statisticians will tell you that’s a defining property 
of the mean.

The joker in the deck here is the negative numbers. How do statisticians deal 
with them?

The trick is to use something you might recall from algebra: A minus times a 
minus is a plus. Sound familiar?

So . . . does this mean that you multiply each deviation times itself and then 
 average the results? Absolutely. Multiplying a deviation times itself is called 
squaring a deviation. The average of the squared deviations is so important that it 
has a special name: variance.

Table 5-3 shows the group of heights from Table 5-2, along with their deviations 
and squared deviations.

TABLE 5-2	 The Second Group of Heights and Their Deviations
Height Height-Mean Deviation

50 50-48 2

47 47-48 –1

52 52-48 4

46 46-48 –2

45 45-48 –3

TABLE 5-3	 The Second Group of Heights and Their Squared Deviations
Height Height-Mean Deviation Squared Deviation

50 50-48 2 4

47 47-48 –1 1

52 52-48 4 16

46 46-48 –2 4

45 45-48 –3 9



106      PART 2  Describing Data

The variance  — the average of the squared deviations for this group  — is 
4 1 16 4 9 5 34 5 6 8/ / . . This, of course, is quite different from the first 

group, whose variance is zero.

To develop the variance formula for you and show you how it works, I use symbols 
to show all this. X represents the Height heading in the first column of the table, 
and X  represents the mean.

A deviation is the result of subtracting the mean from each number, so

X X

symbolizes a deviation. How about multiplying a deviation by itself? That’s

X X
2

To calculate variance, you square each deviation, add them up, and find the aver-
age of the squared deviations. If N represents the amount of squared deviations 
you have (in this example, five), the formula for calculating the variance is

X X

N

2

Σ is the uppercase Greek letter sigma, and it means “the sum of.”

What’s the symbol for variance? As I mention in Chapter 1, Greek letters represent 
population parameters, and English letters represent sample statistics. Imagine 
that our little group of five numbers is an entire population. Does the Greek alpha-
bet have a letter that corresponds to V in the same way that μ (the symbol for the 
population mean) corresponds to M?

Nope. Instead, you use the lowercase sigma! It looks like this: σ. And on top of that, 
because you’re talking about squared quantities, the symbol for population vari-
ance is σ2.

Bottom line: The formula for calculating population variance is

2

2
X X

N

A large value for the variance tells you the numbers in a group vary greatly from 
their mean. A small value for the variance tells you the numbers are very similar 
to their mean.



CHAPTER 5  Deviating from the Average      107

Sample variance
The variance formula I just showed you is appropriate if the group of five mea-
surements is a population. Does this mean that variance for a sample is different? 
It does, and here’s why.

If your set of numbers is a sample drawn from a large population, your objective 
is most likely to use the variance of the sample to estimate the variance of the 
population.

The formula in the preceding section doesn’t work as an estimate of the popula-
tion variance. Although the mean calculated in the usual way is an accurate esti-
mate of the population mean, that’s not the case for the variance, for reasons far 
beyond the scope of this book.

It’s pretty easy to calculate an accurate estimate of the population variance. All 
you have to do is use N-1 in the denominator rather than N. (Again, for reasons 
way beyond this book’s scope.)

And because you’re working with a characteristic of a sample (rather than of a 
population), you use the English equivalent of the Greek letter — s rather than σ. 
This means that the formula for the sample variance (as an estimate of the popu-
lation variance) is

s
X X

N
2

2

1

The value of s2, given the squared deviations in the set of five numbers, is

4 1 16 4 9 4 34 4 8 5/ / .

So if these numbers

50, 47, 52, 46, and 45

are an entire population, their variance is 6.8. If they’re a sample drawn from a 
larger population, the best estimate of that population’s variance is 8.5.

Variance in R
Calculating variance in R is simplicity itself. You use the var() function. But which 
variance does it give you? The one with N in the denominator or the one with N-1? 
Let’s find out:

> heights <- c(50, 47, 52, 46, 45)



108      PART 2  Describing Data

> var(heights)
[1] 8.5

It calculates the estimated variance (with N–1 in the denominator). To calculate 
that first variance I showed you (with N in the denominator), I have to multiply 
this number by (N–1)/N. Using length() to calculate N, that’s

> var(heights)*(length(heights)-1)/length(heights)
[1] 6.8

If I were going to work with this kind of variance frequently, I’d define a function 
var.p():

var.p = function(x){var(x)*(length(x)-1)/length(x)}

And here’s how to use it:

> var.p(heights)
[1] 6.8

For reasons that will become clear later, I’d like you to think of the denominator 
of a variance estimate (like N–1) as degrees of freedom. Why? Stay tuned.  (Chapter 12 
reveals all!)

Back to the Roots: Standard Deviation
After you calculate the variance of a set of numbers, you have a value whose units 
are different from your original measurements. For example, if your original 
measurements are in inches, their variance is in square inches. This is because you 
square the deviations before you average them. So the variance in the five-score 
population in the preceding example is 6.8 square inches.

It might be hard to grasp what that means. Often, it’s more intuitive if the variation 
statistic is in the same units as the original measurements. It’s easy to turn variance 
into that kind of statistic. All you have to do is take the square root of the variance.

Like the variance, this square root is so important that it is has a special name: 
standard deviation.

Population standard deviation
The standard deviation of a population is the square root of the population variance. 
The symbol for the population standard deviation is σ (sigma). Its formula is



CHAPTER 5  Deviating from the Average      109

2

2
X X

N

For this 5-score population of measurements (in inches):

50, 47, 52, 46, and 45

the population variance is 6.8 square inches, and the population standard devia-
tion is 2.61 inches (rounded off).

Sample standard deviation
The standard deviation of a sample — an estimate of the standard deviation of a 
population — is the square root of the sample variance. Its symbol is s and its 
formula is

s s
X X

N
2

2

1

For this sample of measurements (in inches):

50, 47, 52, 46, and 45

the estimated population variance is 8.4 square inches, and the estimated popula-
tion standard deviation is 2.92 inches (rounded off).

Standard Deviation in R
As is the case with variance, using R to compute the standard deviation is easy: You 
use the sd() function. And like its variance counterpart, sd() calculates s, not σ:

> sd(heights)
[1] 2.915476

For σ — treating the five numbers as a self-contained population, in other 
words — you have to multiply the sd() result by the square root of (N-1)/N:

> sd(heights)*(sqrt((length(heights)-1)/length(heights)))
[1] 2.607681

Again, if you’re going to use this one frequently, defining a function is a good idea:

sd.p=function(x){sd(x)*sqrt((length(x)-1)/length(x))}



110      PART 2  Describing Data

And here’s how you use this function:

> sd.p(heights)
[1] 2.607681

Conditions, Conditions, Conditions . . .
In Chapter 4, I point out that with larger data frames, you sometimes want to 
calculate statistics on cases (rows) that meet certain conditions, rather than on all 
the cases.

As in Chapters 3 and 4, I use the Cars93 data frame for the discussion that follows. 
That data frame has data for a sample of 93 cars from 1993. You’ll find it in the 
MASS package, so be sure you have the MASS package in your library. (Find MASS 
on the Packages tab and click its check box.)

I calculate the variance of the horsepowers of cars that originated in the USA. Using 
the with() function I show you in Chapter 4, that’s

> with(Cars93, var(Horsepower[Origin == "USA"]))
[1] 2965.319

How many of those cars are in this group?

> with(Cars93, length(Horsepower[Origin == "USA"]))
[1] 48

How about the non-USA cars?

> with(Cars93, var(Horsepower[Origin == "non-USA"]))
[1] 2537.283
> with(Cars93, length(Horsepower[Origin == "non-USA"]))
[1] 45

Can you compare those variances? Sure — but not until Chapter 11.

I’ll leave it as an exercise for you to compute the standard deviations for the USA 
cars and for the non-USA cars.



CHAPTER 6  Meeting Standards and Standings      111

IN THIS CHAPTER

 » Standardizing scores

 » Making comparisons

 » Working with ranks in files

 » Rolling in the percentiles

Meeting Standards 
and Standings

In my left hand, I hold 100 Philippine pesos. In my right, I hold 1,000 Colombian 
pesos. Which is worth more? Both are called pesos, right? So shouldn’t the 1,000 
be greater than the 100? Not necessarily. Peso is just a coincidence of names. 

Each one comes out of a different country, and each country has its own 
economy.

To compare the two amounts of money, you have to convert each currency into a 
standard unit. The most intuitive standard for U.S. citizens is our own currency. 
How much is each amount worth in dollars and cents? As I write this, 100 Philip-
pine pesos are worth over $2. One thousand Colombian pesos are worth 34 cents.

So when you compare numbers, context is important. To make valid comparisons 
across contexts, you often have to convert numbers into standard units. In this 
chapter, I show you how to use statistics to do just that. Standard units show you 
where a score stands in relation to other scores within a group. I also show you 
other ways to determine a score’s standing within a group.

Chapter 6



112      PART 2  Describing Data

Catching Some Z’s
A number in isolation doesn’t provide much information. To fully understand 
what a number means, you have to take into account the process that produced it. 
To compare one number to another, they have to be on the same scale.

When you’re converting currency, it’s easy to figure out a standard. When you 
convert temperatures from Fahrenheit to Celsius, or lengths from feet to meters, 
a formula guides you.

When it’s not so clear-cut, you can use the mean and standard deviation to stan-
dardize scores that come from different processes. The idea is to take a set of 
scores and use its mean as a zero point, and its standard deviation as a unit of 
measure. Then you make comparisons: You calculate the deviation of each score 
from the mean, and then you compare that deviation to the standard deviation. 
You’re asking, “How big is a particular deviation relative to (something like) an 
average of all the deviations?”

To make a comparison, you divide the score’s deviation by the standard deviation. 
This transforms the score into another kind of score. The transformed score is 
called a standard score, or a z-score.

The formula for this is

z X X
s

if you’re dealing with a sample, and

z X

if you’re dealing with a population. In either case, x represents the score you’re 
transforming into a z-score.

Characteristics of z-scores
A z-score can be positive, negative, or zero. A negative z-score represents a score 
that’s less than the mean, and a positive z-score represents a score that’s greater 
than the mean. When the score is equal to the mean, its z-score is zero.

When you calculate the z-score for every score in the set, the mean of the z-scores 
is 0, and the standard deviation of the z-scores is 1.



CHAPTER 6  Meeting Standards and Standings      113

After you do this for several sets of scores, you can legitimately compare a score 
from one set to a score from another. If the two sets have different means and 
different standard deviations, comparing without standardizing is like comparing 
apples with kumquats.

In the examples that follow, I show how to use z-scores to make comparisons.

Bonds versus the Bambino
Here’s an important question that often comes up in the context of serious meta-
physical discussions: Who is the greatest home run hitter of all time: Barry Bonds 
or Babe Ruth? Although this is a difficult question to answer, one way to get your 
hands around it is to look at each player’s best season and compare the two. Bonds 
hit 73 home runs in 2001, and Ruth hit 60 in 1927. On the surface, Bonds appears 
to be the more productive hitter.

The year 1927 was very different from 2001, however. Baseball (and everything 
else) went through huge, long-overdue changes in the intervening years, and 
player statistics reflect those changes. A home run was harder to hit in the 1920s 
than in the 2000s. Still, 73 versus 60? Hmmm. . . .

Standard scores can help decide whose best season was better. To standardize, I 
took the top 50 home run hitters of 1927 and the top 50 from 2001. I calculated the 
mean and standard deviation of each group and then turned Ruth’s 60 and Bonds’s 
73 into z-scores.

The average from 1927 is 12.68 homers with a standard deviation of 10.49. The 
average from 2001 is 37.02 homers with a standard deviation of 9.64. Although the 
means differ greatly, the standard deviations are pretty close.

And the z-scores? Ruth’s is

z 60 12 68
10 49

4 51.
.

.

Bonds’s is

z 73 37 02
9 64

3 73.
.

.

The clear winner in the z-score best-season home run derby is Babe Ruth. Period.

Just to show you how times have changed, Lou Gehrig hit 47 home runs in 1927 
(finishing second to Ruth) for a z-score of 3.27. In 2001, 47 home runs amounted 
to a z-score of 1.04.



114      PART 2  Describing Data

Exam scores
Getting away from sports debates, one practical application of z-scores is the 
assignment of grades to exam scores. Based on percentage scoring, instructors 
traditionally evaluate a score of 90 points or higher (out of 100) as an A, 80–89 
points as a B, 70–79 points as a C, 60–69 points as a D, and less than 60 points as 
an F. Then they average scores from several exams together to assign a course 
grade.

Is that fair? Just as a peso from the Philippines is worth more than a peso from 
Colombia, and a home run was harder to hit in 1927 than in 2001, is a “point” on 
one exam worth the same as a “point” on another? Like “pesos,” isn’t “points” 
just a coincidence?

Absolutely. A point on a difficult exam is, by definition, harder to come by than a 
point on an easy exam. Because points might not mean the same thing from one 
exam to another, the fairest thing to do is convert scores from each exam into 
z-scores before averaging them. That way, you’re averaging numbers on a level 
playing field.

I do that in the courses I teach. I often find that a lower numerical score on one 
exam results in a higher z-score than a higher numerical score from another exam. 
For example, on an exam where the mean is 65 and the standard deviation is 12, a 
score of 71 results in a z-score of .5. On another exam, with a mean of 69 and a 
standard deviation of 14, a score of 75 is equivalent to a z-score of .429. (Yes, it’s 
like Ruth’s 60 home runs versus Bonds’s 73.) Moral of the story: Numbers in isola-
tion tell you very little. You have to understand the process that produces them.

Standard Scores in R
The R function for calculating standard scores is called scale(). Supply a vector 
of scores, and scale() returns a vector of z-scores along with, helpfully, the 
mean and the standard deviation.

To show scale() in action, I isolate a subset of the Cars93 data frame. (It’s in the 
MASS package. On the Packages tab, check the box next to MASS if it’s unchecked.)

Specifically, I create a vector of the horsepowers of 8-cylinder cars from the USA:



CHAPTER 6  Meeting Standards and Standings      115

> Horsepower.USA.Eight <- Cars93$Horsepower[Origin ==  
        "USA" & Cylinders == 8]

> Horsepower.USA.Eight
[1] 200 295 170 300 190 210

And now for the z-scores:

> scale(Horsepower.USA.Eight)
           [,1]
[1,] -0.4925263
[2,]  1.2089283
[3,] -1.0298278
[4,]  1.2984785
[5,] -0.6716268
[6,] -0.3134259
attr(,"scaled:center")
[1] 227.5
attr(,"scaled:scale")
[1] 55.83458

That last value is s, not σ. If you have to base your z-scores on σ, divide each ele-
ment in the vector by the square root of (N-1)/N:

> N <- length(Horsepower.USA.Eight)
> scale(Horsepower.USA.Eight)/sqrt((N-1)/N)
           [,1]
[1,] -0.5395356
[2,]  1.3243146
[3,] -1.1281198
[4,]  1.4224120
[5,] -0.7357303
[6,] -0.3433408
attr(,"scaled:center")
[1] 227.5
attr(,"scaled:scale")
[1] 55.83458

Notice that scale() still returns s.



116      PART 2  Describing Data

CACHING SOME Z’S
Because negative z-scores might have connotations that are, well, negative, educators 
sometimes change the z-score when they evaluate students. In effect, they’re hiding the 
z-score, but the concept is the same — standardization with the standard deviation as 
the unit of measure.

One popular transformation is called the T-score. The T-score eliminates negative 
scores because a set of T-scores has a mean of 50 and a standard deviation of 10. The 
idea is to give an exam, grade all the tests, and calculate the mean and standard devia-
tion. Next, turn each score into a z-score. Then follow this formula:

T z 10 50

People who use the T-score often like to round to the nearest whole number.

Here’s how to transform the vector from the example into a set of T-scores:

T.Hp.USA.Eight <- round((10*scale(Horsepower.USA.Eight)+50), 
digits = 0)

The digits=0 argument in the round() function rounds off the result to the nearest 
whole number.

SAT scores are another transformation of the z-score. (Some refer to the SAT as a 
C-score.) Under the old scoring system, the SAT has a mean of 500 and a standard devi-
ation of 100. After the exams are graded, and their mean and standard deviation calcu-
lated, each exam score becomes a z-score in the usual way. This formula converts the 
z-score into a SAT score:

SAT z 100 50

Rounding to the nearest whole number is part of the procedure here, too.

The IQ score is still another transformed z. Its mean is 100, and its standard deviation 
is 15. What’s the procedure for computing an IQ score? You guessed it. In a group of 
IQ scores, calculate the mean and standard deviation, and then calculate the z-score. 
Then it’s

IQ z 15 100

As with the other two, IQ scores are rounded to the nearest whole number.



CHAPTER 6  Meeting Standards and Standings      117

Where Do You Stand?
Standard scores show you how a score stands in relation to other scores in the 
same group. To do this, they use the standard deviation as a unit of measure.

If you don’t want to use the standard deviation, you can show a score’s relative 
standing in a simpler way. You can determine the score’s rank within the group: 
In ascending order, the lowest score has a rank of 1, the second lowest has a rank 
of 2, and so on. In descending order, the highest score is ranked 1, the second 
highest 2, and so on.

Ranking in R
Unsurprisingly, the rank() function ranks the scores in a vector. The default order 
is ascending:

> Horsepower.USA.Eight
[1] 200 295 170 300 190 210
> rank(Horsepower.USA.Eight)
[1] 3 5 1 6 2 4

For descending order, put a minus sign (–) in front of the vector name:

> rank(-Horsepower.USA.Eight)
[1] 4 2 6 1 5 3

Tied scores
R handles tied scores by including the optional ties.method argument in rank(). 
To show you how this works, I create a new vector that replaces the sixth value 
(210) in Horsepower.USA.Eight with 200:

> tied.Horsepower <- replace(Horsepower.USA.Eight,6,200)
> tied.Horsepower
[1] 200 295 170 300 190 200

One way of dealing with tied scores is to give each tied score the average of the 
ranks they would have attained. So the two scores of 200 would have been ranked 
3 and 4, and their average 3.5 is what this method assigns to both of them:

> rank(tied.Horsepower, ties.method = "average")
[1] 3.5 5.0 1.0 6.0 2.0 3.5



118      PART 2  Describing Data

Another method assigns the minimum of the ranks:

> rank(tied.Horsepower, ties.method = "min")
[1] 3 5 1 6 2 3

And still another assigns the maximum of the ranks:

> rank(tied.Horsepower, ties.method = "max")
[1] 4 5 1 6 2 4

A couple of other methods are available. Type ?rank into the console window for 
the details (which appear on the Help tab).

Nth smallest, Nth largest
You can turn the ranking process inside out by supplying a rank (like second-
lowest) and asking which score has that rank. This procedure begins with the 
sort() function, which arranges the scores in increasing order:

> sort(Horsepower.USA.Eight)
[1] 170 190 200 210 295 300

For the second-lowest score, supply the index value 2:

> sort(Horsepower.USA.Eight)[2]
[1] 190

How about from the other end? Start by assigning the length of the vector to N:

> N <- length(Horsepower.USA.Eight)

Then, to find the second-highest score, it’s

> sort(Horsepower.USA.Eight)[N-1]
[1] 295

Percentiles
Closely related to rank is the percentile, which represents a score’s standing in the 
group as the percent of scores below it. If you’ve taken standardized tests like the 
SAT, you’ve encountered percentiles. An SAT score in the 80th percentile is higher 
than 80 percent of the other SAT scores.



CHAPTER 6  Meeting Standards and Standings      119

Sounds simple, doesn’t it? Not so fast. “Percentile” can have a couple of defini-
tions, and hence, a couple (or more) ways to calculate it. Some define percentile as 
“greater than” (as in the preceding paragraph), some define percentile as “greater 
than or equal to.” “Greater than” equates to “exclusive.” “Greater than or equal 
to” equates to “inclusive.”

The function quantile() calculates percentiles. If left to its own devices, it calcu-
lates the 0th, 25th, 50th, 75th, and 100th percentiles. It calculates the percentiles 
in a manner that’s consistent with “inclusive” and (if necessary) interpolates val-
ues for the percentiles.

I begin by sorting the Horsepower.USA.Eight vector so that you can see the scores 
in order and compare with the percentiles:

> sort(Horsepower.USA.Eight)
[1] 170 190 200 210 295 300

And now the percentiles:

>  quantile(Horsepower.USA.Eight)
    0%    25%    50%    75%   100%
170.00 192.50 205.00 273.75 300.00

Notice that the 25th, 50th, and 75th percentiles are values that aren’t in the 
vector.

To calculate percentiles consistent with “exclusive,” add the type argument and 
set it equal to 6:

> quantile(Horsepower.USA.Eight, type = 6)
    0%    25%    50%    75%   100%
170.00 185.00 205.00 296.25 300.00

The default type (the first type I showed you) is 7, by the way. Seven other types 
(ways of calculating percentiles) are available. To take a look at them, type ?quantile 
into the Console window (and then read the documentation on the Help tab.)

Moving forward, I use the default type for percentiles.

The 25th, 50th, 75th, and 100th percentiles are often used to summarize a group 
of scores. Because they divide a group of scores into fourths, they’re called 
quartiles.



120      PART 2  Describing Data

You’re not stuck with quartiles, however. You can get quantile() to return any 
percentile. Suppose you want to find the 54th, 68th, and 91st percentiles. Include 
a vector of those numbers (expressed as proportions) and you’re in business:

> quantile(Horsepower.USA.Eight, c(.54, .68, .91))
   54%    68%    91%
207.00 244.00 297.75

Percent ranks
The quantile() function gives you the scores that correspond to given percen-
tiles. You can also work in the reverse direction — find the percent ranks that 
correspond to given scores in a data set. For example, in Horsepower.USA.Eight, 
170 is lowest in the list of six, so its rank is 1 and its percent rank is 1/6, or 16.67 
percent.

Base R doesn’t provide a function for this, but it’s easy enough to create one:

percent.ranks <-  
        function(x){round((rank(x)/length(x))*100, digits = 2)}

The round() function with digits = 2 rounds the results to two decimal places.

Applying this function:

> percent.ranks(Horsepower.USA.Eight)
[1]  50.00  83.33  16.67 100.00  33.33  66.67

A NEAT TRICK
Sometimes, you might want to know only the percent rank of a single score in a set of 
scores — even if that score isn’t in the data set. For example, what is the percent rank of 
273 in Horsepower.USA.Eight?

To answer this question, you can harness mean(). Using this function along with logical 
operators yields interesting results. Here’s what I mean:

xx <- c(15,20,25,30,35,40,45,50)



CHAPTER 6  Meeting Standards and Standings      121

Summarizing
In addition to the functions for calculating percentiles and ranks, R provides a 
couple of functions that quickly summarize data and do a lot of the work I discuss 
in this chapter.

One is called fivenum(). This function, unsurprisingly, yields five numbers. 
They’re the five numbers that box plot creator John Tukey used to summarize a 
data set. Then he used those numbers in his box plots. (See Chapter 3.)

> fivenum(Horsepower.USA.Eight)
[1] 170 190 205 295 300

Here’s a result you’d expect:

> mean(xx)
[1] 32.5

But here’s one you might not:

> mean(xx > 15)
[1] 0.875

The result is the proportion of scores in xx that are greater than 15.

Here are a few more:

> mean(xx < 25)
[1] 0.25
> mean(xx <= 25)
[1] 0.375
> mean(xx <= 28)
[1] 0.375

That <= operator, of course, means “less than or equal to,” so that last one gives the 
proportion of scores in xx that are less than or equal to 28.

Are you catching my drift? To find the percent rank of a score (or a potential score) in a 
vector like Horsepower.USA.Eight, it’s

> mean(Horsepower.USA.Eight <= 273)*100
[1] 66.66667



122      PART 2  Describing Data

From left to right, that’s the minimum, lower hinge, median, upper hinge, and 
maximum. Remember the quantile() function and the nine available ways 
(types) to calculate quantiles? This function’s results are what type = 2 yields in 
quantile().

Another function, summary(), is more widely used:

> summary(Horsepower.USA.Eight)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  170.0   192.5   205.0   227.5   273.8   300.0

It provides the mean along with the quantiles (as the default type in quantile() 
calculates them).

The summary() function is versatile. You can use it to summarize a wide variety of 
objects, and the results can look very different from object to object. I use it quite 
a bit in upcoming chapters.



CHAPTER 7  Summarizing It All      123

IN THIS CHAPTER

 » Working with things great and small

 » Understanding symmetry, peaks, and 
plateaus

 » Experiencing special moments

 » Finding frequencies

 » Getting descriptive

Summarizing It All

The measures of central tendency and variability that I discuss in earlier 
chapters aren’t the only ways of summarizing a set of scores. These mea-
sures are a subset of descriptive statistics. Some descriptive statistics — like 

maximum, minimum, and range — are easy to understand. Some — like skew-
ness and kurtosis — are not.

This chapter covers descriptive statistics and shows you how to calculate them in R.

How Many?
Perhaps the fundamental descriptive statistic is the number of scores in a set of 
data. In earlier chapters, I work with length(), the R function that calculates this 
number. As in earlier chapters, I work with the Cars93 data frame, which is in the 
MASS package. (If it isn’t selected, click the check box next to MASS on the Pack-
ages tab.)

Cars93 holds data on 27 variables for 93 cars available in 1993. What happens 
when you apply length() to the data frame?

> length(Cars93)
[1] 27

Chapter 7



124      PART 2  Describing Data

So length() returns the number of variables in the data frame. The function 
ncol() does the same thing:

> ncol(Cars93)
[1] 27

I already know the number of cases (rows) in the data frame, but if I had to find 
that number, nrow() would get it done:

> nrow(Cars93)
[1] 93

If you want to know how many cases in the data frame meet a particular 
 condition — like how many cars originated in the USA — you have to take into 
account the way R treats conditions: R attaches the label “TRUE” to cases that 
meet a condition, and “FALSE” to cases that don’t. Also, R assigns the value 1 to 
“TRUE” and 0 to “FALSE.”

To count the number of USA-originated cars, then, you state the condition and 
then add up all the 1s:

> sum(Cars93$Origin == "USA")
[1] 48

To count the number of non-USA cars in the data frame, you can change the con-
dition to “non-USA”, of course, or you can use != — the “not equal to” operator:

> sum(Cars93$Origin != "USA")
[1] 45

More complex conditions are possible. For the number of 4-cylinder USA cars:

> sum(Cars93$Origin == "USA" & Cars93$Cylinders == 4)
[1] 22

Or, if you prefer no $-signs:

> with(Cars93, sum(Origin == "USA" & Cylinders == 4))
[1] 22

To calculate the number of elements in a vector, length(), as you may have  
read earlier, is the function to use. Here is a vector of horsepowers for 4-cylinder 
USA cars:



CHAPTER 7  Summarizing It All      125

> Horsepower.USA.Four <- Cars93$Horsepower[Origin ==  
"USA" & Cylinders == 4]

and here’s the number of horsepower values in that vector:

> length(Horsepower.USA.Four)
[1] 22

The High and the Low
Two descriptive statistics that need no introduction are the maximum and mini-
mum value in a set of scores:

> max(Horsepower.USA.Four)
[1] 155
> min(Horsepower.USA.Four)
[1] 63

If you happen to need both values at the same time:

> range(Horsepower.USA.Four)
[1]  63 155

Living in the Moments
In statistics, moments are quantities that are related to the shape of a set of num-
bers. By “shape of a set of numbers,” I mean “what a histogram based on the 
numbers looks like” — how spread out it is, how symmetric it is, and more.

A raw moment of order k is the average of all numbers in the set, with each number 
raised to the kth power before you average it. So the first raw moment is the arith-
metic mean. The second raw moment is the average of the squared scores. The 
third raw moment is the average of the cubed scores, and so on.

A central moment is based on the average of deviations of numbers from their mean. 
(Beginning to sound vaguely familiar?) If you square the deviations before you 
average them, you have the second central moment. If you cube the deviations 
before you average them, that’s the third central moment. Raise each one to the 
fourth power before you average them, and you have the fourth central moment.  
I could go on and on, but you get the idea.



126      PART 2  Describing Data

Two quick questions: 1. For any set of numbers, what’s the first central moment? 
2. By what other name do you know the second central moment?

Two quick answers: 1. Zero. 2. Population variance. Reread Chapter 5 if you don’t 
believe me.

A teachable moment
Before I proceed, I think it’s a good idea to translate into R everything I’ve said so 
far in this chapter. That way, when you get to the next R package to install (which 
calculates moments), you’ll know what’s going on behind the scenes.

Here’s a function for calculating a central moment of a vector:

cen.mom <-function(x,y){mean((x - mean(x))^y)}

The first argument, x, is the vector. The second argument, y, is the order (second, 
third, fourth . . .).

Here’s a vector to try it out on:

Horsepower.USA <- Cars93$Horsepower[Origin == "USA"]

And here are the second, third, and fourth central moments:

> cen.mom(Horsepower.USA,2)
[1] 2903.541
> cen.mom(Horsepower.USA,3)
[1] 177269.5
> cen.mom(Horsepower.USA,4)
[1] 37127741

Back to descriptives
What does all this about moments have to do with descriptive statistics? As I 
said . . . well . . . a moment ago, think of a histogram based on a set of numbers. 
The first raw moment (the mean) locates the center of the histogram. The second 
central moment indicates the spread of the histogram. The third central moment 
is involved in the symmetry of the histogram, which is called skewness. The fourth 
central moment figures into how fat or thin the tails (extreme ends) of the histo-
gram are. This is called kurtosis. Getting into moments of higher order than that is 
way beyond the scope of this book.



CHAPTER 7  Summarizing It All      127

But let’s get into symmetry and “tailedness.”

Skewness
Figure 7-1 shows three histograms. The first is symmetric; the other two are not. 
The symmetry and the asymmetry are reflected in the skewness statistic.

For the symmetric histogram, the skewness is 0. For the second histogram — the 
one that tails off to the right — the value of the skewness statistic is positive. It’s 
also said to be “skewed to the right.” For the third histogram (which tails off to 
the left), the value of the skewness statistic is negative. It’s also said to be “skewed 
to the left.”

Now for a formula. I’ll let Mk represent the kth central moment. To calculate skew-
ness, it’s

skewness
X X

N s

3

31

FIGURE 7-1: 
Three histograms, 

showing three 
kinds of 

skewness.



128      PART 2  Describing Data

In English, the skewness of a set of numbers is the third central moment divided 
by the second central moment raised to the three-halves power. With the R func-
tion I defined earlier, it’s easier done than said:

> cen.mom(Horsepower.USA,3)/cen.mom(Horsepower.USA,2)^1.5
[1] 1.133031

With the moments package, it’s easier still. On the Packages tab, click Install and 
type moments into the Install Packages dialog box, and click Install. Then on the 
Packages tab, click the check box next to moments.

Here’s its skewness() function in action:

> skewness(Horsepower.USA)
[1] 1.133031

So the skew is positive. How does that compare with the horsepower for non-USA 
cars?

> Horsepower.NonUSA <- Cars93$Horsepower[Origin == "non-USA"]
> skewness(Horsepower.NonUSA)
[1] 0.642995

The skew is more positive for USA cars than for non-USA cars. What do the two 
histograms look like?

I produced them side-by-side in Figure 4-1, over in Chapter 4. For convenience, I 
show them here as Figure 7-2.

The code that produces them is

ggplot(Cars93, aes(x=Horsepower)) +
  geom_histogram(color="black", fill="white",binwidth = 10)+
  facet_wrap(~Origin)

Consistent with the skewness values, the histograms show that in the USA cars, 
the scores are more bunched up on the left than they are in the non-USA cars.

It’s sometimes easier to see trends in a density plot rather than in a histogram. A 
density plot shows the proportions of scores between a given lower boundary and 
a given upper boundary (like the proportion of cars with horsepower between 100 
and 140). I discuss density in more detail in Chapter 8.



CHAPTER 7  Summarizing It All      129

Changing one line of code produces the density plots:

ggplot(Cars93, aes(x=Horsepower)) +
  geom_density() +
  facet_wrap(~Origin)

Figure 7-3 shows the two density plots.

FIGURE 7-2: 
Horsepower 

histograms for 
USA cars and 

non-USA cars.

FIGURE 7-3: 
Horsepower 

density plots for 
USA cars and 

non-USA cars.



130      PART 2  Describing Data

With the density plots, it seems to be easier (for me, anyway) to see the more 
leftward tilt (and hence, more positive skew) in the plot on the left.

Kurtosis
Figure 7-4 shows two histograms. The first has fatter tails than the second. The 
first is said to be leptokurtic. The second is platykurtic. The kurtosis for the first 
histogram is greater than for the second.

The formula for kurtosis is

kurtosis
X X

N s

2

41
3

where M4 is the fourth central moment and M2 is the second central moment. So 
kurtosis is the fourth central moment divided by the square of the second central 
moment.

Many statisticians subtract 3 from the result of the kurtosis formula. They refer to 
that value as excess kurtosis. By “excess,” they mean kurtosis that’s greater (or pos-
sibly less) than the kurtosis of something called the standard normal distribution, which 
I discuss in Chapter 8. Because of the subtraction, excess kurtosis can be negative. 
Why does 3 represent the kurtosis of the standard normal distribution? Don’t ask.

Using the function I defined earlier, the kurtosis of horsepower for USA cars is

> cen.mom(Horsepower.USA,4)/cen.mom(Horsepower.USA,2)^2
[1] 4.403952

FIGURE 7-4: 
Two histograms, 

showing two 
kinds of kurtosis.



CHAPTER 7  Summarizing It All      131

Of course, the kurtosis() function in the moments package makes this a snap:

> kurtosis(Horsepower.USA)
[1] 4.403952

The fatter tail in the left-side density plot in Figure 7-3 suggests that the USA cars 
have a higher kurtosis than the non-USA cars. Is this true?

> kurtosis(Horsepower.NonUSA)
[1] 3.097339

Yes, it is!

In addition to skewness() and kurtosis(), the moments package provides a func-
tion called moment() that does everything cen.mom() does and a bit more. I just 
thought it would be a good idea to show you a user-defined function that  illustrates 
what goes into calculating a central moment. (Was I being “momentous” . . . or 
did I just “seize the moment”? Okay. I’ll stop.)

Tuning in the Frequency
A good way to explore data is to find out the frequencies of occurrence for each 
category of a nominal variable, and for each interval of a numerical variable.

Nominal variables: table() et al
For nominal variables, like Type of Automobile in Cars93, the easiest way to get 
the frequencies is the table() function I use earlier:

> car.types <-table(Cars93$Type)
> car.types

Compact   Large Midsize   Small  Sporty     Van
     16      11      22      21      14       9

Another function, prop.table(), expresses these frequencies as proportions of 
the whole amount:

> prop.table(car.types)

   Compact      Large    Midsize      Small     Sporty        
Van



132      PART 2  Describing Data

0.17204301 0.11827957 0.23655914 0.22580645 0.15053763 
0.09677419

The values here appear out of whack because the page isn’t as wide as the Console 
window. If I round off the proportions to two decimal places, the output looks a lot 
better on the page:

> round(prop.table(car.types),2)

Compact   Large Midsize   Small  Sporty     Van
   0.17    0.12    0.24    0.23    0.15    0.10

Another function, margin.table(), adds up the frequencies:

> margin.table(car.types)
[1] 93

Numerical variables: hist()
Tabulating frequencies for intervals of numerical data is part and parcel of creat-
ing histograms. (See Chapter 3.) To create a table of frequencies, use the graphic 
function hist(), which produces a list of components when the plot argument is 
FALSE:

> prices <- hist(Cars93$Price, plot=F, breaks=5)
> prices
$breaks
[1]  0 10 20 30 40 50 60 70

$counts
[1] 12 50 19  9  2  0  1

$density
[1] 0.012903226 0.053763441 0.020430108 0.009677419 0.002150538 

0.000000000
[7] 0.001075269

$mids
[1]  5 15 25 35 45 55 65

$xname
[1] "Cars93$Price"

$equidist
[1] TRUE



CHAPTER 7  Summarizing It All      133

(In Cars93, remember, each price is in thousands of dollars.)

Although I specified five breaks, hist() uses a number of breaks that makes 
everything look “prettier.” From here, I can use mids (the interval-midpoints) 
and counts to make a matrix of the frequencies, and then a data frame:

> prices.matrix <- matrix(c(prices$mids,prices$counts), ncol = 2)
> prices.frame <- data.frame(prices.matrix)
> colnames(prices.frame) <- c("Price Midpoint (X 

$1,000)","Frequency")
> prices.frame
  Price Midpoint (X $1,000) Frequency
1                         5        12
2                        15        50
3                        25        19
4                        35         9
5                        45         2
6                        55         0
7                        65         1

Cumulative frequency
Another way of looking at frequencies is to examine cumulative frequencies: Each 
interval’s cumulative frequency is the sum of its own frequency and all frequen-
cies in the preceding intervals.

The cumsum() function does the arithmetic on the vector of frequencies:

> prices$counts
[1] 12 50 19  9  2  0  1
> cumsum(prices$counts)
[1] 12 62 81 90 92 92 93

To plot a cumulative frequency histogram, I substitute the cumulative frequencies 
vector for the original one:

> prices$counts <- cumsum(prices$counts)

and then apply plot():

> plot(prices, main = "Cumulative Histogram", xlab = "Price", 
ylab = "Cumulative Frequency")

The result is Figure 7-5.



134      PART 2  Describing Data

Step by step: The empirical cumulative  
distribution function
The empirical cumulative distribution function (ecdf) is closely related to cumulative 
frequency. Rather than show the frequency in an interval, however, the ecdf shows 
the proportion of scores that are less than or equal to each score. If this sounds 
familiar, it’s probably because you read about percentiles in Chapter 6.

In base R, it’s easy to plot the ecdf:

> plot(ecdf(Cars93$Price), xlab = "Price", ylab = "Fn(Price)")

This produces Figure 7-6.

The uppercase F on the y-axis is a notational convention for a cumulative distri-
bution. The Fn means, in effect, “cumulative function” as opposed to f or fn, 
which just means “function.” (The y-axis label could also be Percentile(Price).)

Look closely at the plot. When consecutive points are far apart (like the two on the 
top right), you can see a horizontal line extending rightward out of a point. (A line 
extends out of every point, but the lines aren’t visible when the points are bunched 
up.) Think of this line as a “step” and then the next dot is a step higher than the 
previous one. How much higher? That would be 1/N, where N is the number of 
scores in the sample. For Cars93, that would be 1/93, which rounds off to .011. 
(Now reconsider the title of this subsection. See what I did there?)

FIGURE 7-5: 
Cumulative 

frequency 
histogram of the 

price data in 
Cars93.



CHAPTER 7  Summarizing It All      135

Why is this called an “empirical” cumulative distribution function? Something 
that’s empirical is based on observations, like sample data. Is it possible to have a 
non-empirical cumulative distribution function (cdf)? Yes — and that’s the cdf of 
the population that the sample comes from. (See Chapter 1.) One important use of 
the ecdf is as a tool for estimating the population cdf.

So the plotted ecdf is an estimate of the cdf for the population, and the estimate is 
based on the sample data. To create an estimate, you assign a probability to each 
point and then add up the probabilities, point by point, from the minimum value 
to the maximum value. This produces the cumulative probability for each point. 
The probability assigned to a sample value is the estimate of the proportion of 
times that value occurs in the population. What is the estimate? That’s the afore-
mentioned 1/N for each point — .011, for this sample. For any given value, that 
might not be the exact proportion in the population. It’s just the best estimate 
from the sample.

I prefer to use ggplot() to visualize the ecdf. Because I base the plot on a vector 
(Cars93$Price), the data source is NULL:

ggplot(NULL, aes(x=Cars93$Price))

In keeping with the step-by-step nature of this function, the plot consists of 
steps, and the geom function is geom_step. The statistic that locates each step on 
the plot is the ecdf, so that’s

geom_step(stat="ecdf")

FIGURE 7-6: 
Empirical 

cumulative 
distribution 

function for the 
price data in 

Cars93.



136      PART 2  Describing Data

and I’ll label the axes:

labs(x= "Price X $1,000",y = "Fn(Price)")

Putting those three lines of code together

ggplot(NULL, aes(x=Cars93$Price)) +
  geom_step(stat="ecdf") +
  labs(x= "Price X $1,000",y = "Fn(Price)")

gives you Figure 7-7.

To put a little pizzazz in the graph, I add a dashed vertical line at each quartile. 
Before I add the geom function for a vertical line, I put the quartile information in 
a vector:

price.q <-quantile(Cars93$Price)

And now

geom_vline(aes(xintercept=price.q),linetype = "dashed")

adds the vertical lines. The aesthetic mapping sets the x-intercept of each line at 
a quartile value.

FIGURE 7-7: 
The ecdf for the 

price data in 
Cars93, plotted 
with ggplot().



CHAPTER 7  Summarizing It All      137

So these lines of code

ggplot(NULL, aes(x=Cars93$Price)) +
  geom_step(stat="ecdf") +
  labs(x= "Price X $1,000",y = "Fn(Price)") +
  geom_vline(aes(xintercept=price.q),linetype = "dashed")

result in Figure 7-8.

A nice finishing touch is to put the quartile-values on the x-axis. The function 
scale_x_continuous() gets that done. It uses one argument called breaks (which 
sets the location of values to put on the axis) and another called labels (which 
puts the values on those locations). Here’s where that price.q vector comes in 
handy:

scale_x_continuous(breaks = price.q,labels = price.q)

And here’s the R code that creates Figure 7-9:

ggplot(NULL, aes(x=Cars93$Price)) +
  geom_step(stat="ecdf") +
  labs(x= "Price X $1,000",y = "Fn(Price)") +
  geom_vline(aes(xintercept=price.q),linetype = "dashed")+
  scale_x_continuous(breaks = price.q,labels = price.q)

FIGURE 7-8: 
The ecdf for price 

data, with a 
dashed vertical 

line at each 
quartile.



138      PART 2  Describing Data

Numerical variables: stem()
Box plot creator John Tukey popularized the stem-and-leaf plot as a way to quickly 
visualize a distribution of numbers. It’s not a “plot” in the usual sense of a graph 
in the Plot window. Instead, it’s an arrangement of numbers in the Console win-
dow. With each score rounded off to the nearest whole number, each “leaf” is a 
score’s rightmost digit. Each “stem” consists of all the other digits.

An example will help. Here are the prices of the cars in Cars93, arranged in 
ascending order and rounded off to the nearest whole number (remember that 
each price is in thousands of dollars):

> rounded <- (round(sort(Cars93$Price),0))

I use cat() to display the rounded values on this page. (Otherwise, it would look 
like a mess.) The value of its fill argument limits the number of characters 
(including spaces) on each line:

> cat(rounded, fill = 50)
7 8 8 8 8 9 9 9 9 10 10 10 10 10 11 11 11 11 11
11 12 12 12 12 12 13 13 14 14 14 14 14 15 15 16
16 16 16 16 16 16 16 16 16 17 18 18 18 18 18 18
19 19 19 19 19 20 20 20 20 20 20 20 21 21 21 22
23 23 23 24 24 26 26 26 27 28 29 29 30 30 32 32
34 34 35 35 36 38 38 40 48 62

FIGURE 7-9: 
The ecdf for price 

data, with 
quartile values on 

the x-axis.



CHAPTER 7  Summarizing It All      139

The stem() function produces a stem-and-leaf plot of these values:

> stem(Cars93$Price)

  The decimal point is 1 digit(s) to the right of the |

  0 | 788889999
  1 | 00000111111222233344444556666666667788888999999
  2 | 00000001112333446667899
  3 | 00234455688
  4 | 08
  5 |
  6 | 2

In each row, the number to the left of the vertical line is the stem. The remaining 
numbers are the leaves for that row. The message about the decimal point means 
“multiply each stem by 10.” Then add each leaf to that stem. So the bottom row 
tells you that one rounded score in the data is 62. The next row up reveals that no 
rounded score is between 50 and 59. The row above that one indicates that one 
score is 40 and another is 48. I’ll leave it to you to figure out (and verify) the rest.

As I reviewed the leaves, I noticed that the stem plot shows one score of 32 and 
another of 33. By contrast, the rounded scores show two 32s and no 33s. Appar-
ently, stem() rounds differently than round() does.

Summarizing a Data Frame
If you’re looking for descriptive statistics for the variables in a data frame, the 
summary() function will find them for you. I illustrate with a subset of the Cars93 
data frame:

> autos <- subset(Cars93, select = c(MPG.city,Type, Cylinders, 
Price, Horsepower))

> summary(autos)
    MPG.city          Type     Cylinders      Price
 Min.   :15.00   Compact:16   3     : 3   Min.   : 7.40
 1st Qu.:18.00   Large  :11   4     :49   1st Qu.:12.20
 Median :21.00   Midsize:22   5     : 2   Median :17.70
 Mean   :22.37   Small  :21   6     :31   Mean   :19.51
 3rd Qu.:25.00   Sporty :14   8     : 7   3rd Qu.:23.30
 Max.   :46.00   Van    : 9   rotary: 1   Max.   :61.90
   Horsepower



140      PART 2  Describing Data

 Min.   : 55.0
 1st Qu.:103.0
 Median :140.0
 Mean   :143.8
 3rd Qu.:170.0
 Max.   :300.0

Notice the maxima, minima, and quartiles for the numerical variables and the 
frequency tables for Type and for Cylinders.

Two functions from the Hmisc package also summarize data frames. To use these 
functions, you need Hmisc in your library. (On the Packages tab, click Install and 
type Hmisc into the Packages box in the Install dialog box. Then click Install.)

One function, describe.data.frame(), provides output that’s a bit more exten-
sive than what you get from summary():

> describe.data.frame(autos)
autos

 5  Variables      93  Observations
-------------------------------------------------------------

MPG.city
      n missing  unique    Info    Mean     .05     .10
     93       0      21    0.99   22.37    16.6    17.0
    .25     .50     .75     .90     .95
   18.0    21.0    25.0    29.0    31.4

lowest : 15 16 17 18 19, highest: 32 33 39 42 46
-------------------------------------------------------------

Type
      n missing  unique
     93       0       6

          Compact Large Midsize Small Sporty Van
Frequency      16    11      22    21     14   9
%              17    12      24    23     15  10
-------------------------------------------------------------



CHAPTER 7  Summarizing It All      141

Cylinders
      n missing  unique
     93       0       6
          3  4 5  6 8 rotary
Frequency 3 49 2 31 7      1
%         3 53 2 33 8      1
-------------------------------------------------------------

Price
      n missing  unique    Info    Mean     .05     .10
     93       0      81       1   19.51    8.52    9.84
    .25     .50     .75     .90     .95
  12.20   17.70   23.30   33.62   36.74

lowest :  7.4  8.0  8.3  8.4  8.6
highest: 37.7 38.0 40.1 47.9 61.9
-------------------------------------------------------------

Horsepower
      n missing  unique    Info    Mean     .05     .10
     93       0      57       1   143.8    78.2    86.0
    .25     .50     .75     .90     .95
  103.0   140.0   170.0   206.8   237.0

lowest :  55  63  70  73  74, highest: 225 255 278 295 300
-------------------------------------------------------------

A value labeled Info appears in the summaries of the numerical variables. That 
value is related to the number of tied scores — the greater the number of ties, the 
lower the value of Info. (The calculation of the value is fairly complicated.)

Another Hmisc function, datadensity(), gives graphic summaries, as in 
Figure 7-10:

> datadensity(autos)

If you plan to use the datadensity() function, arrange for the first data frame 
variable to be numerical. If the first variable is categorical (and thus appears at the 
top of the chart), longer bars in its plot are cut off at the top.



142      PART 2  Describing Data

FIGURE 7-10: 
Chart created by 
datadensity 

(autos).



CHAPTER 8  What’s Normal?      143

IN THIS CHAPTER

 » Meeting the normal distribution 
family

 » Working with standard deviations 
and the normal distribution

 » Understanding R’s normal 
distribution functions

What’s Normal?

One of the main jobs of a statistician is to estimate characteristics of a 
population. The job becomes easier if the statistician can make some 
assumptions about the populations he or she studies.

Here’s an assumption that works over and over again: A specific attribute, ability, 
or trait is distributed throughout a population so that (1) most people have an 
average or near-average amount of the attribute, and (2) progressively fewer peo-
ple have increasingly extreme amounts of the attribute. In this chapter, I discuss 
this assumption and its implications for statistics. I also discuss R functions 
related to this assumption.

Hitting the Curve
Attributes in the physical world, like length or weight, are all about objects you 
can see and touch. It’s not that easy in the world of social scientists, statisticians, 
market researchers, and businesspeople. They have to be creative when they mea-
sure traits that they can’t put their hands around — like “intelligence,” “musical 
ability,” or “willingness to buy a new product.”

The assumption I mention in this chapter’s introduction — that most people are 
around the average and progressively fewer people are toward the extremes —  
seems to work out well for those intangible traits. Because this happens often, it’s 
become an assumption about how most traits are distributed.

Chapter 8



144      PART 2  Describing Data

It’s possible to capture this assumption in a graphical way. Figure 8-1 shows the 
well-known bell curve that describes the distribution of a wide variety of attri-
butes. The horizontal axis represents measurements of the ability under consid-
eration. A vertical line drawn down the center of the curve would correspond to 
the average of the measurements.

Assume that it’s possible to measure a trait like intelligence and assume that this 
curve represents the distribution of intelligence in the population: The bell curve 
shows that most people have about average intelligence, only a few have little 
intelligence, and only a few are geniuses. That seems to fit nicely with what we 
know about people, doesn’t it?

Digging deeper
On the horizontal axis of Figure 8-1 you see x, and on the vertical axis, f(x). What 
do these symbols mean? The horizontal axis, as I mention, represents measure-
ments, so think of each measurement as an x.

The explanation of f(x) is a little more involved. A mathematical relationship 
between x and f(x) creates the bell curve and enables you to visualize it. The rela-
tionship is rather complex, and I won’t burden you with it right now. (I discuss it 
in a little while.) Just understand that f(x) represents the height of the curve for a 
specified value of x. This means that you supply a value for x (and for a couple of 
other things), and then that complex relationship returns a value of f(x).

FIGURE 8-1: 
The bell curve.



CHAPTER 8  What’s Normal?      145

Let me get into specifics. The formal name for “bell curve” is normal distribution. 
The term f(x) is called probability density, so a normal distribution is an example of 
a probability density function. Rather than give you a technical definition of proba-
bility density, I ask you to think of probability density as something that allows 
you to think about area under the curve as probability. Probability of .  .  . what? 
That’s coming up in the next subsection.

Parameters of a normal distribution
You often hear people talk about “the normal distribution.” That’s a misnomer. It’s 
really a family of distributions. The members of the family differ from one another 
in terms of two parameters — yes, parameters because I’m talking about popula-
tions. Those two parameters are the mean (μ) and the standard deviation (σ). The 
mean tells you where the center of the distribution is, and the standard deviation 
tells you how spread out the distribution is around the mean. The mean is in the 
middle of the distribution. Every member of the normal distribution family is 
 symmetric  — the left side of the distribution is a mirror image of the right. 
(Remember skewness, from Chapter 7? “Symmetric” means that the skewness of 
a normal distribution is zero.)

The characteristics of the normal distribution family are well known to statisti-
cians. More important, you can apply those characteristics to your work.

How? This brings me back to probability. You can find some useful probabilities 
if you

 » Can lay out a line that represents the scale of the attribute you’re measuring 
(the x-axis, in other words)

 » Can indicate on the line where the mean of the measurements is

 » Know the standard deviation

 » Can assume that the attribute is normally distributed throughout the 
population

I’ll work with IQ scores to show you what I mean. Scores on the IQ test follow a 
normal distribution. The mean of the distribution of these scores is 100, and  
the standard deviation is 15. Figure  8-2 shows the probability density for this 
distribution.

You might have read elsewhere that the standard deviation for IQ is 16 rather 
than 15. That’s the case for the Stanford-Binet version of the IQ test. For other 
versions, the standard deviation is 15.



146      PART 2  Describing Data

As Figure 8-2 shows, I’ve laid out a line for the IQ scale (the x-axis). Each point 
on the line represents an IQ score. With the mean (100) as the reference point, I’ve 
marked off every 15 points (the standard deviation). I’ve drawn a dashed line from 
the mean up to f(100) (the height of the distribution where x = 100) and drawn a 
dashed line from each standard deviation point.

The figure also shows the proportion of area bounded by the curve and the hori-
zontal axis, and by successive pairs of standard deviations. It also shows the pro-
portion beyond three standard deviations on either side (55 and 145). Note that the 
curve never touches the horizontal. It gets closer and closer, but it never touches. 
(Mathematicians say that the curve is asymptotic to the horizontal.)

So between the mean and one standard deviation — between 100 and 115 — are 
.3413 (or 34.13 percent) of the scores in the population. Another way to say this: 
The probability that an IQ score is between 100 and 115 is .3413. At the extremes, 
in the tails of the distribution, .0013 (.13 percent) of the scores are on each side 
(less than 55 or greater than 145).

The proportions in Figure 8-2 hold for every member of the normal distribution 
family, not just for IQ scores. For example, in the “Caching Some z’s” sidebar in 
Chapter 6, I mention SAT scores, which have a mean of 500 and a standard devia-
tion of 100. They’re normally distributed, too. That means 34.13 percent of SAT 

FIGURE 8-2: 
The normal 

distribution of IQ, 
divided into 

standard 
deviations.



CHAPTER 8  What’s Normal?      147

scores are between 500 and 600, 34.13 percent between 400 and 500, and . . . well, 
you can use Figure 8-2 as a guide for other proportions.

Working with Normal Distributions
The complex relationship I told you about between x and f(x) is

f x e

x

1
2

2

22

If you supply values for μ (the mean), σ (the standard deviation), and x (a score), 
the equation gives you back a value for f(x), the height of the normal distribution 
at x. π and e are important constants in mathematics: π is approximately 3.1416 
(the ratio of a circle’s circumference to its diameter); e is approximately 2.71828. 
It’s related to something called natural logarithms (described in Chapter 16) and 
to numerous other mathematical concepts.

Distributions in R
The normal distribution family is one of many distribution families baked 
into R. Dealing with these families is intuitive. Follow these guidelines:

 » Begin with the distribution family’s name in R (norm for the normal family, 
for example).

 » To the beginning of the family name, add d to work with the probability 
density function. For the probability density function for the normal family, 
then, it’s dnorm() — which is equivalent to the equation I just showed you.

 » For the cumulative density function (cdf ), add p (pnorm(), for example).

 » For quantiles, add q (qnorm(), which in mathematical terms is the inverse of 
the cdf ).

 » To generate random numbers from a distribution, add r. So rnorm() 
generates random numbers from a member of the normal distribution family.

Normal density function
When working with any normal distribution function, you have to let the function 
know which member of the normal distribution family you’re interested in. You 
do that by specifying the mean and the standard deviation.



148      PART 2  Describing Data

So, if you happen to need the height of the IQ distribution for IQ = 100, here’s how 
to find it:

> dnorm(100,m=100,s=15)
[1] 0.02659615

This does not mean that the probability of finding an IQ score of 100 is .027. Prob-
ability density is not the same as probability. With a probability density function, it 
only makes sense to talk about the probability of a score between two boundaries —  
like the probability of a score between 100 and 115.

Plotting a normal curve
dnorm() is useful as a tool for plotting a normal distribution. I use it along with 
ggplot() to draw a graph for IQ that looks a lot like Figure 8-2.

Before I set up a ggplot() statement, I create three helpful vectors. The first

x.values <- seq(40,160,1)

is the vector I’ll give to ggplot() as an aesthetic mapping for the x-axis. This 
statement creates a sequence of 121 numbers, beginning with 40 (4 standard devi-
ations below the mean) to 160 (4 standard deviations above the mean).

The second

sd.values <- seq(40,160,15)

is a vector of the nine standard deviation-values from 40 to 160. This figures into 
the creation of the vertical dashed lines at each standard deviation in Figure 8-2.

The third vector

zeros9 <- rep(0,9)

will also be part of creating the vertical dashed lines. It’s just a vector of nine 
zeros.

On to ggplot(). Because the data is a vector, the first argument is NULL. The aes-
thetic mapping for the x-axis is, as I mentioned earlier, the x.values vector. 
What about the mapping for the y-axis? Well, this is a plot of a normal density 
function for mean = 100 and sd =15, so you’d expect the y-axis mapping to be 



CHAPTER 8  What’s Normal?      149

dnorm(x.values, m=100, s=15), wouldn’t you? And you’d be right! Here’s the 
ggplot() statement:

ggplot(NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15)))

Add a line geom function for the plot and labels for the axes, and here’s what I 
have:

ggplot(NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="f(IQ)")

And that draws Figure 8-3.

As you can see, ggplot() has its own ideas about the values to plot on the x-axis. 
Instead of sticking with the defaults, I want to place the sd.values on the x-axis. 
To change those values, I use scale_x_continuous() to rescale the x-axis. One of 
its arguments, breaks, sets the points on the x-axis for the values, and the other, 
labels, supplies the values. For each one, I supply sd.values:

scale_x_continuous(breaks=sd.values,labels = sd.values)

FIGURE 8-3: 
Initial plot of the 

normal density 
function for IQ.



150      PART 2  Describing Data

Now the code is

ggplot(NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="f(IQ)")+
  scale_x_continuous(breaks=sd.values,labels = sd.values)

and the result is Figure 8-4.

In ggplot world, vertical lines that start at the x-axis and end at the curve are 
called segments. So the appropriate geom function to draw them is geom_ 
segment(). This function requires a starting point for each segment and an end 
point for each segment. I specify those points in an aesthetic mapping within the 
geom. The x-coordinates for the starting points for the nine segments are in sd.
values. The segments start at the x-axis, so the nine y-coordinates are all 
zeros — which happens to be the contents of the zeros9 vector. The segments end 
at the curve, so the x-coordinates for the end-points are once again, sd.values. 
The y-coordinates? Those would be dnorm(sd.values, m=100,s=15). Adding a 
statement about dashed lines, the rather busy geom_segment() statement is

geom_segment((aes(x=sd.values,y=zeros9,xend =  
sd.values,yend=dnorm(sd.values,m=100,s=15))),  
linetype = "dashed")

FIGURE 8-4: 
The normal 

density function 
for IQ with 

standard 
deviations on the 

x-axis.



CHAPTER 8  What’s Normal?      151

The code now becomes

ggplot(NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="f(IQ)")+
  scale_x_continuous(breaks=sd.values,labels = sd.values) +
  geom_segment((aes(x=sd.values,y=zeros9,xend =  

sd.values,yend=dnorm(sd.values,m=100,s=15))),  
linetype = "dashed")

which produces Figure 8-5.

One more little touch and I’m done showing you how it’s done. I’m not all that 
crazy about the space between the x-values and the x-axis. I’d like to remove that 
little slice of the graph and move the values up closer to where (at least I think) 
they should be.

To do that, I use scale_y_continuous(), whose expand argument controls the 
space between the x-values and the x-axis. It’s a two-element vector with defaults 
that set the amount of space you see in Figure 8-5. Without going too deeply into 
it, setting that vector to c(0,0) removes the spacing.

FIGURE 8-5: 
The IQ plot with 
vertical dashed 

line segments at 
the standard 

deviations.



152      PART 2  Describing Data

These lines of code draw the aesthetically pleasing Figure 8-6:

ggplot(NULL,aes(x=x.values,y=dnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="f(IQ)")+
  scale_x_continuous(breaks=sd.values,labels = sd.values) +
  geom_segment((aes(x=sd.values,y=zeros9,xend =  

sd.values,yend=dnorm(sd.values,m=100,s=15))),  
linetype = "dashed")+

  scale_y_continuous(expand = c(0,0))

Cumulative density function
The cumulative density function pnorm(x,m,s) returns the probability of a score 
less than x in a normal distribution with mean m and standard deviation s.

As you’d expect from Figure 8-2 (and the subsequent plots I created):

> pnorm(100,m=100,s=15)
[1] 0.5

How about the probability of less than 85?

FIGURE 8-6: 
The finished 

product: The IQ 
plot with no 

spacing between 
the x-values and 

the x-axis.



CHAPTER 8  What’s Normal?      153

> pnorm(85,m=100,s=15)
[1] 0.1586553

If you want to find the probability of a score greater than 85, pnorm() can handle 
that, too. It has an argument called lower.tail whose default value, TRUE, returns 
the probability of “less than.” For “greater than,” set the value to FALSE:

> pnorm(85,m=100,s=15, lower.tail = FALSE)
[1] 0.8413447

It’s often the case that you want the probability of a score between a lower bound 
and an upper bound — like the probability of an IQ score between 85 and 100. 
Multiple calls to pnorm() combined with a little arithmetic will get that done.

That’s not necessary, however. A function called pnormGC() in a terrific package 
called tigerstats does that and more. The letters GC stand for graphical calcula-
tor, but they could also stand for Georgetown College (in Georgetown, Kentucky), 
the school from which this package originates. (On the Packages tab, click Install, 
and then in the Install Packages dialog box, type tigerstats and click Install. When 
you see tigerstats on the Packages tab, select its check box.)

Now watch closely:

>pnormGC(c(85,100),region="between",m=100,s=15,graph=TRUE)
[1] 0.3413447

In addition to the answer, the graph=TRUE argument produces Figure 8-7.

Plotting the cdf
Given that I’ve already done the heavy lifting when I showed you how to plot the 
density function, the R code for the cumulative density function is a snap:

ggplot(NULL,aes(x=x.values,y=pnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="Fn(IQ)")+
  scale_x_continuous(breaks=sd.values,labels = sd.values) +
  geom_segment((aes(x=sd.values,y=zeros9,xend =  

sd.values,yend=pnorm(sd.values,mean=100,sd=15))), 
linetype = "dashed")+

  scale_y_continuous(expand=c(0,0))

Yes, all you do is change dnorm to pnorm and edit the y-axis label. Code reuse — 
it’s a beautiful thing. And so (I hope you agree) is Figure 8-8.



154      PART 2  Describing Data

The line segments shooting up from the x-axis clearly show that 100 is at the 50th 
percentile (.50 of the scores are below 100). Which brings me to quantiles of nor-
mal distributions, the topic of the next section.

FIGURE 8-7: 
Visualizing the 

probability of an 
IQ score between 
85 and 100 (in the 

tigerstats 
package)

FIGURE 8-8: 
Cumulative 

density function 
of the IQ 

distribution.



CHAPTER 8  What’s Normal?      155

Quantiles of normal distributions
The qnorm() function is the inverse of pnorm(). Give qnorm() an area, and it 
returns the score that cuts off that area (to the left) in the specified normal 
distribution:

> qnorm(0.1586553,m=100,s=15)
[1] 85

The area (to the left), of course, is a percentile (described in Chapter 6).

To find a score that cuts off an indicated area to the right:

> qnorm(0.1586553,m=100,s=15, lower.tail = FALSE)
[1] 115

Here’s how qnormGC() (in the tigerstats package) handles it:

> qnormGC(.1586553, region = "below",m=100,s=15, graph=TRUE)
[1] 85

This function also creates Figure 8-9.

FIGURE 8-9: 
Plot created by 

qnormGC().



156      PART 2  Describing Data

You’re typically not concerned with the 15.86553rd percentile. Usually, it’s quar-
tiles that attract your attention:

> qnorm(c(0,.25,.50,.75,1.00),m=100,s=15)
[1]      -Inf  89.88265 100.00000 110.11735       Inf

The 0th and 100th percentiles (— Infinity and Infinity) show that the cdf never 
completely touches the x-axis nor reaches an exact maximum. The middle quar-
tiles are of greatest interest, and best if rounded:

> round(qnorm(c(.25,.50,.75),m=100,s=15))
[1]  90 100 110

Plotting the cdf with quartiles
To replace the standard deviation values in Figure  8-8 with the three quartile 
values, you begin by creating two new vectors:

> q.values <-round(qnorm(c(.25,.50,.75),m=100,s=15))
> zeros3 <- c(0,0,0)

Now all you have to do is put those vectors in the appropriate places in scale_x_
continuous() and in geom_segment():

ggplot(NULL,aes(x=x.values,y=pnorm(x.values,m=100,s=15))) +
  geom_line() +
  labs(x="IQ",y="Fn(IQ)")+
  scale_x_continuous(breaks=q.values,labels = q.values) +
  geom_segment((aes(x=q.values,y=zeros3,xend =  

q.values,yend=pnorm(q.values,mean=100,sd=15))),  
linetype = "dashed")+

  scale_y_continuous(expand=c(0,0))

The code produces Figure 8-10.

Random sampling
The rnorm() function generates random numbers from a normal distribution.

Here are five random numbers from the IQ distribution:

> rnorm(5,m=100,s=15)
[1] 127.02944  75.18125  66.49264 113.98305 103.39766

Here’s what happens when you run that again:



CHAPTER 8  What’s Normal?      157

> rnorm(5,m=100,s=15)
[1] 73.73596 91.79841 82.33299 81.59029 73.40033

Yes, the numbers are all different. (In fact, when you run rnorm(), I can almost 
guarantee your numbers will be different from mine.) Each time you run the func-
tion it generates a new set of random numbers. The randomization process starts 
with a number called a seed. If you want to reproduce randomization results, use the 
set.seed() function to set the seed to a particular number before randomizing:

> set.seed(7637060)
> rnorm(5,m=100,s=15)
[1]  71.99120  98.67231  92.68848 103.42207  99.61904

If you set the seed to that same number the next time you randomize, you get the 
same results:

> set.seed(7637060)
> rnorm(5,m=100,s=15)
[1]  71.99120  98.67231  92.68848 103.42207  99.61904

If you don’t, you won’t.

Randomization is the foundation of simulation, which comes up in Chapters 9 
and 19. Bear in mind that R (or most any other software) doesn’t generate “true” 
random numbers. R generates “pseudo-random” numbers which are sufficiently 
unpredictable for most tasks that require randomization — like the simulations I 
discuss later.

FIGURE 8-10: 
The normal 
cumulative 

density function 
with quartile 

values.



158      PART 2  Describing Data

A Distinguished Member of the Family
To standardize a set of scores so that you can compare them to other sets of 
scores, you convert each one to a z-score. (I discuss z-scores in Chapter 6.) The 
formula for converting a score to a z-score (also known as a standard score) is

z x

The idea is to use the standard deviation as a unit of measure. For example, the 
Wechsler version of the IQ test (among others) has a mean of 100 and a standard 
deviation of 15. The Stanford-Binet version has a mean of 100 and a standard 
deviation of 16. How does a Wechsler score of, say, 110, stack up against a 
 Stanford-Binet score of 110?

One way to answer this question is to put the two versions on a level playing field 
by standardizing both scores. For the Wechsler:

z 110 100
15

667.

For the Stanford-Binet:

z 110 100
16

625.

So 110 on the Wechsler is a slightly higher score than 110 on the Stanford-Binet.

Now, if you standardize all the scores in a normal distribution (such as either ver-
sion of the IQ), you have a normal distribution of z-scores. Any set of z-scores 
(normally distributed or not) has a mean of 0 and a standard deviation of 1. If a 
normal distribution has those parameters, it’s a standard normal distribution — a 
normal distribution of standard scores. Its equation is

f z e
z

1
2

2

2

Figure  8-11 shows the standard normal distribution. It looks like Figure  8-2, 
except that I’ve substituted 0 for the mean and I’ve entered standard deviation 
units in the appropriate places.

This is the member of the normal distribution family that most people are familiar 
with. It’s the one they remember most from statistics courses, and it’s the one 
that most people have in mind when they (mistakenly) say the normal distribu-
tion. It’s also what people think of when they hear about “z-scores.” This distri-
bution leads many to the mistaken idea that converting to z-scores somehow 
transforms a set of scores into a normal distribution.



CHAPTER 8  What’s Normal?      159

The standard normal distribution in R
Working with the standard normal distribution in R couldn’t be easier. The only 
change you make to the four norm functions is to not specify a mean and a stan-
dard deviation — the defaults are 0 and 1.

Here are some examples:

> dnorm(0)
[1] 0.3989423
> pnorm(0)
[1] 0.5
> qnorm(c(.25,.50,.75))
[1] -0.6744898  0.0000000  0.6744898
> rnorm(5)
[1] -0.4280188 -0.9085506  0.6746574  1.0728058 -1.2646055

This also applies to the tigerstats functions:

> pnormGC(c(-1,0),region="between")
[1] 0.3413447
> qnormGC(.50, region = "below")
[1] 0

FIGURE 8-11: 
The standard 

normal 
 distribution, 

divided up by 
standard 

deviations.



160      PART 2  Describing Data

Plotting the standard normal distribution
To plot the standard normal distribution, you create a couple of new vectors

z.values <-seq(-4,4,.01)
z.sd.values <- seq(-4,4,1)

and make a few changes to the code you use earlier to plot the IQ distribution:

ggplot(NULL,aes(x=z.values,y=dnorm(z.values))) +
  geom_line() +
  labs(x="z",y="f(z)")+
  scale_x_continuous(breaks=z.sd.values,labels=z.sd.values) +
  geom_segment((aes(x=z.sd.values,y=zeros9,xend =  

z.sd.values,yend=dnorm(z.sd.values))),linetype =  
"dashed")+

  scale_y_continuous(expand=c(0,0))

In addition to putting the new vectors into scale_x_continuous() and geom_
segment(), the notable change is to drop the mean and standard deviation argu-
ments from dnorm(). The code creates Figure 8-12.

I leave it to you as an exercise to plot the cumulative density function for the stan-
dard normal distribution.

FIGURE 8-12: 
The standard 

normal distribu-
tion, divided by 

standard 
deviations and 

plotted in 
ggplot().



3Drawing 
Conclusions 
from Data



IN THIS PART . . .

Create sampling distributions

Figure out confidence limits

Work with t-tests

Work with analysis of variance

Visualize t, chi-square, and F distributions

Understand correlation and regression

Understand non-parametric statistics



CHAPTER 9  The Confidence Game: Estimation      163

IN THIS CHAPTER

 » Introducing sampling distributions

 » Understanding standard error

 » Approximately simulating the 
sampling distribution of the mean

 » Attaching confidence limits to 
estimates

The Confidence Game: 
Estimation

“Population” and “sample” are pretty easy concepts to understand. A popu-
lation is a huge collection of individuals, and a sample is a group of indi-
viduals you draw from a population. Measure the sample-members on 

some trait or attribute, calculate statistics that summarize the sample, and you’re 
off and running.

In addition to those summary statistics, you can use the statistics to estimate the 
population parameters. This is a big deal: Just on the basis of a small percentage of 
individuals from the population, you can draw a picture of the entire population.

How definitive is that picture? In other words, how much confidence can you have 
in your estimates? To answer this question, you have to have a context for your 
estimates. How probable are they? How likely is the true value of a parameter to 
be within a particular lower bound and upper bound?

In this chapter, I introduce the context for estimates, show how that context plays 
into confidence in those estimates, and show you how to use R to calculate confi-
dence levels.

Chapter 9



164      PART 3  Drawing Conclusions from Data

Understanding Sampling Distributions
So you have a population, and you pull a sample out of this population. You mea-
sure the sample-members on some attribute and calculate the sample mean. 
Return the sample-members to the population. Draw another sample, assess the 
new sample-members, and then calculate their mean. Repeat this process again 
and again, always with same number of individuals as in the original sample. 
If you could do this an infinite amount of times (with the same sample size every 
time), you’d have an infinite amount of means. Those sample means form a 
 distribution of their own. This distribution is called the sampling distribution of 
the mean.

For a sample mean, this is the “context” I mention at the beginning of this 
 chapter. Like any other number, a statistic makes no sense by itself. You have to 
know where it comes from in order to understand it. Of course, a statistic comes 
from a calculation performed on sample data. In another sense, a statistic is part 
of a sampling distribution.

In general, a sampling distribution is the distribution of all possible values of a statistic 
for a given sample size.

I’ve italicized the definition for a reason: It’s extremely important. After many 
years of teaching statistics, I can tell you that this concept usually sets the bound-
ary line between people who understand statistics and people who don’t.

So . . . if you understand what a sampling distribution is, you’ll understand what 
the field of statistics is all about. If you don’t, you won’t. It’s almost that simple.

If you don’t know what a sampling distribution is, statistics will be a cookbook 
type of subject for you: Whenever you have to apply statistics, you’ll find yourself 
plugging numbers into formulas and hoping for the best. On the other hand, if 
you’re comfortable with the idea of a sampling distribution, you’ll grasp the big 
picture of inferential statistics.

To help clarify the idea of a sampling distribution, take a look at Figure 9-1. It 
summarizes the steps in creating a sampling distribution of the mean.

A sampling distribution — like any other group of scores — has a mean and a 
standard deviation. The symbol for the mean of the sampling distribution of the 
mean (yes, I know that’s a mouthful) is x .

The standard deviation of a sampling distribution is a pretty hot item. It has a 
special name: standard error. For the sampling distribution of the mean, the stan-
dard deviation is called the standard error of the mean. Its symbol is x N

.



CHAPTER 9  The Confidence Game: Estimation      165

An EXTREMELY Important Idea: 
The Central Limit Theorem

The situation I asked you to imagine never happens in the real world. You never 
take an infinite amount of samples and calculate their means, and you never actu-
ally create a sampling distribution of the mean. Typically, you draw one sample 
and calculate its statistics.

So if you have only one sample, how can you ever know anything about a sampling 
distribution — a theoretical distribution that encompasses an infinite number of 
samples? Is this all just a wild-goose chase?

No, it’s not. You can figure out a lot about a sampling distribution because of a 
great gift from mathematicians to the field of statistics: the central limit 
theorem.

According to the central limit theorem:

» The sampling distribution of the mean is approximately a normal distribution 
if the sample size is large enough.

Large enough means about 30 or more.

FIGURE 9-1: 
Creating the 

sampling 
distribution   

of the mean.



166      PART 3  Drawing Conclusions from Data

 » The mean of the sampling distribution of the mean is the same as the 
population mean.

In equation form, that’s

x

 » The standard deviation of the sampling distribution of the mean (also known 
as the standard error of the mean) is equal to the population standard 
deviation divided by the square root of the sample size.

The equation for the standard error of the mean is

x N

Notice that the central limit theorem says nothing about the population. All it says 
is that if the sample size is large enough, the sampling distribution of the mean is 
a normal distribution, with the indicated parameters. The population that sup-
plies the samples doesn’t have to be a normal distribution for the central limit 
theorem to hold.

What if the population is a normal distribution? In that case, the sampling distri-
bution of the mean is a normal distribution, regardless of the sample size.

Figure  9-2 shows a general picture of the sampling distribution of the mean, 
 partitioned into standard error units.

FIGURE 9-2: 
The sampling 

distribution  
of the mean, 
 partitioned.



CHAPTER 9  The Confidence Game: Estimation      167

(Approximately) Simulating the  
central limit theorem
It almost doesn’t sound right: How can a population that’s not normally distrib-
uted produce a normally distributed sampling distribution?

To give you an idea of how the central limit theorem works, I walk you through a 
simulation. This simulation creates something like a sampling distribution of the 
mean for a very small sample, based on a population that’s not normally distrib-
uted. As you’ll see, even though the population is not a normal distribution, and 
even though the sample is small, the sampling distribution of the mean looks 
quite a bit like a normal distribution.

Imagine a huge population that consists of just three scores — 1, 2, and 3, and 
each one is equally likely to appear in a sample. That kind of population is defi-
nitely not a normal distribution.

Imagine also that you can randomly select a sample of three scores from this 
population. Table 9-1 shows all possible samples and their means.

If you look closely at the table, you can almost see what’s about to happen in the 
simulation. The sample mean that appears most frequently is 2.00. The sample 
means that appear least frequently are 1.00 and 3.00. Hmmm. . . .

TABLE 9-1	 ALL Possible Samples of Three Scores (and Their Means)  
from a Population Consisting of the Scores 1, 2, and 3

Sample Mean Sample Mean Sample Mean

1,1,1 1.00 2,1,1 1.33 3,1,1 1.67

1,1,2 1.33 2,1,2 1.67 3,1,2 2.00

1,1,3 1.67 2,1,3 2.00 3,1,3 2.33

1,2,1 1.33 2,2,1 1.67 3,2,1 2.00

1,2,2 1.67 2,2,2 2.00 3,2,2 2.33

1,2,3 2.00 2,2,3 2.33 3,2,3 2.67

1,3,1 1.67 2,3,1 2.00 3,3,1 2.33

1,3,2 2.00 2,3,2 2.33 3,3,2 2.67

1,3,3 2.33 2,3,3 2.67 3,3,3 3.00



168      PART 3  Drawing Conclusions from Data

In the simulation, you randomly select a score from the population and then ran-
domly select two more. That group of three scores is a sample. Then you calculate 
the mean of that sample. You repeat this process for a total of 600 samples, result-
ing in 600 sample means. Finally, you graph the distribution of the sample means.

What does the simulated sampling distribution of the mean look like? I walk you 
through it in R. You begin by creating a vector for the possible scores, and another 
for the probability of sampling each score:

values <- c(1,2,3)
probabilities <- c(1/3,1/3,1/3)

One more vector will hold the 600 sample means:

smpl.means <- NULL

To draw a sample, you use the sample() function:

smpl <-sample(x=values,prob = probabilities, 
size=3,replace=TRUE)

The first two arguments, of course, provide the scores to sample and the probabil-
ity of each score. The third is the sample size. The fourth indicates that after you 
select a score for the sample, you replace it. (You put it back in the population, in 
other words.) This procedure (unsurprisingly called “sampling with  replacement”) 
simulates a huge population from which you can select any score at any time.

Each time you draw a sample, you take its mean and append it (add it to the end 
of) the smpl.means vector:

smpl.means <- append(smpl.means, mean(smpl))

I don’t want you to have to manually repeat this whole process 600 times. Fortu-
nately, like all computer languages, R has a way of handling this: Its for-loop 
does all the work. To do the sampling, the calculation, and the appending 600 
times, the for-loop looks like this:

for(i in 1:600){
    smpl <-sample(x = values,prob = probabilities,

        size = 3,replace=TRUE)
    smpl.means <- append(smpl.means, mean(smpl))
      }



CHAPTER 9  The Confidence Game: Estimation      169

As you can see, the curly brackets enclose what happens in each iteration of the 
loop, and i is a counter for how many times the loop occurs.

If you’d like to run this, here’s all the code preceding the for-loop, including the 
seed so that you can replicate my results:

> values <- c(1,2,3)
> probabilities <- c(1/3,1/3,1/3)
> smpl.means <- NULL
> set.seed(7637060)

Then run the for-loop. If you want to run the loop over and over again, make sure 
you reset smpl.means to NULL each time. If you want to get different results each 
time, don’t set the seed to the same number (or don’t set it at all).

What does the sampling distribution look like? Use ggplot() to do the honors. The 
data values (the 600 sample means) are in a vector, so the first argument is NULL. 
The smpl.means vector maps to the x-axis. And you’re creating a histogram, so 
the geom function is geom_histogram():

ggplot(NULL,aes(x=smpl.means)) +
  geom_histogram()

Figure 9-3 shows the histogram for the sampling distribution of the mean.

FIGURE 9-3: 
Sampling 

distribution of the 
mean based on 
600 samples of 

size 3 from a 
population 

consisting of the 
equally probable 

scores 1, 2, and 3.



170      PART 3  Drawing Conclusions from Data

Looks a lot like the beginnings of a normal distribution, right? I explore the dis-
tribution further in a moment, but first I’ll show you how to make the graph a bit 
more informative. Suppose you want the labeled points on the x-axis to reflect the 
values of the mean in the smpl.means vector. You can’t just specify the vector 
values for the x-axis, because the vector has 600 of them. Instead, you list the 
unique values:

> unique(smpl.means)
[1] 2.333333 1.666667 1.333333 2.000000 2.666667 3.000000
[7] 1.000000

They look better if you round them to two decimal places:

> round(unique(smpl.means),2)
[1] 2.33 1.67 1.33 2.00 2.67 3.00 1.00

Finally, you store these values in a vector called m.values, which you’ll use to 
rescale the x-axis:

> m.values <-round(unique(smpl.means),2)

For the rescaling, use a trick that I show you in Chapter 8:

scale_x_continuous(breaks=m.values,label=m.values)

Another trick from Chapter 8 eliminates the space between the x-axis values and 
the x-axis:

scale_y_continuous(expand = c(0,0))

One more trick uses R’s expression syntax to display X  as the x-axis label and 
frequency X  as the y-axis label:

labs(x=expression(bar(X)),y=expression(frequency(bar(X))))

Putting it all together gives the sampling distribution in Figure 9-4:

ggplot(NULL,aes(x=smpl.means)) +
  geom_histogram()+
  scale_x_continuous(breaks=m.values,label=m.values)+
  scale_y_continuous(expand = c(0,0)) +

  labs(x=expression(bar(X)),y=expression 
(frequency(bar(X))))



CHAPTER 9  The Confidence Game: Estimation      171

Predictions of the central limit theorem
How do the characteristics of the sampling distribution match up with what the 
central limit theorem predicts?

To derive the predictions, you have to start with the population. Think of each 
population value (1, 2, or 3) as an X, and think of each probability as pr(X). Mathe-
maticians would refer to X as a discrete random variable.

The mean of a discrete random variable is called its expected value. The notation for 
the expected value of X is E(X).

To find E(X), you multiply each X by its probability and then add all those products 
together. For this example, that’s

E X X pr X( ) 1 1
3

2 1
3

3 1
3

2

Or, if you prefer R:

> E.values<-sum(values*probabilities)
> E.values
[1] 2

FIGURE 9-4: 
The sampling 

distribution of the 
mean with the 
x-axis rescaled 

and cool axis 
labels.



172      PART 3  Drawing Conclusions from Data

To find the variance of X, subtract E(X) from each X, square each deviation, mul-
tiply each squared deviation by the probability of X, and add the products. For this 
example:

var .X X E X pr x
2 2 2 2

1 2 1
3

2 2 1
3

3 2 1
3

677

In R:

> var.values <- sum((values-E.values)^2*probabilities)
> var.values
[1] 0.6666667

As always, the standard deviation is the square root of the variance:

var . .X 67 82

Again, in R:

> sd.values<-sqrt(var.values)
> sd.values
[1] 0.8164966

So the population has a mean of 2 and a standard deviation of .82.

According to the central limit theorem, the mean of the sampling distribution 
should be

x 2

and the standard deviation should be

x N
. .82

3
4714

How do these predicted values match up with the characteristics of the sampling 
distribution?

> mean(smpl.means)
[1] 2.002222
> sd(smpl.means)
[1] 0.4745368

Pretty close! Even with a non-normally distributed population and a small sample 
size, the central limit theorem gives an accurate picture of the sampling distribu-
tion of the mean.



CHAPTER 9  The Confidence Game: Estimation      173

Confidence: It Has Its Limits!
I tell you about sampling distributions because they help answer the question I 
pose at the beginning of this chapter: How much confidence can you have in the 
estimates you create?

The procedure is to calculate a statistic and then use that statistic to establish 
upper and lower bounds for the population parameter with, say, 95 percent con-
fidence. (The interpretation of confidence limits is a bit more involved than that, 
as you’ll see.) You can do this only if you know the sampling distribution of the 
statistic and the standard error of the statistic. In the next section, I show how to 
do this for the mean.

Finding confidence limits for a mean
The FarBlonJet Corporation manufactures navigation systems. (Corporate motto: 
“Taking a trip? Get FarBlonJet.”) The company has developed a new battery to 
power its portable model. To help market this system, FarBlonJet wants to know 
how long, on average, each battery lasts before it burns out.

The FarBlonJet employees like to estimate that average with 95 percent confi-
dence. They test a sample of 100 batteries and find that the sample mean is 60 
hours, with a standard deviation of 20 hours. The central limit theorem, remem-
ber, says that with a large enough sample (30 or more), the sampling distribution 
of the mean approximates a normal distribution. The standard error of the mean 
(the standard deviation of the sampling distribution of the mean) is

x N

The sample size, N, is 100. What about σ? That’s unknown, so you have to estimate 
it. If you know σ, that would mean you know μ, and establishing confidence limits 
would be unnecessary.

The best estimate of σ is the standard deviation of the sample. In this case, that’s 20. 
This leads to an estimate of the standard error of the mean.

s s
Nx

20
100

20
10 2

The best estimate of the population mean is the sample mean: 60. Armed with this 
information — estimated mean, estimated standard error of the mean, normal 
distribution — you can envision the sampling distribution of the mean, which is 
shown in Figure 9-5. Consistent with Figure 9-2, each standard deviation is a 
standard error of the mean.



174      PART 3  Drawing Conclusions from Data

Now that you have the sampling distribution, you can establish the 95 percent 
confidence limits for the mean. Starting at the center of the distribution, how far 
out to the sides do you have to extend until you have 95 percent of the area under 
the curve? (For more on area under a normal distribution and what it means, see 
Chapter 8.)

One way to answer this question is to work with the standard normal distribution 
and find the z-score that cuts off 2.5 percent of the area in the upper tail. Then 
multiply that z-score by the standard error. Add the result to the sample mean to 
get the upper confidence limit; subtract the result from the mean to get the lower 
confidence limit.

Here’s how to do all that in R. First, the setup:

> mean.battery <- 60
> sd.battery <- 20
> N <- 100
> error <- qnorm(.025,lower.tail=FALSE)*sd.battery/sqrt(N)

Then the limits:

> lower <- mean.battery – error
> upper <- mean.battery + error
> lower
[1] 56.08007
> upper
[1] 63.91993

FIGURE 9-5: 
The sampling 

distribution of the 
mean for the 

FarBlonJet 
battery.



CHAPTER 9  The Confidence Game: Estimation      175

Figure 9-6 shows these bounds on the sampling distribution.

What does this tell you, exactly? One interpretation is that if you repeat this sam-
pling and estimation procedure many times, the confidence intervals you calcu-
late (which would be different every time you do it) would include the population 
mean 95 percent of the time.

Fit to a t
The central limit theorem specifies (approximately) a normal distribution for 
large samples. In the real world, however, you deal with smaller samples, and the 
normal distribution isn’t appropriate. What do you do?

First of all, you pay a price for using a smaller sample — you have a larger stan-
dard error. Suppose the FarBlonJet Corporation found a mean of 60 and a standard 
deviation of 20 in a sample of 25 batteries. The estimated standard error is

s s
Nx

20
25

20
5 4

which is twice as large as the standard error for N=100.

Second, you don’t get to use the standard normal distribution to characterize the 
sampling distribution of the mean. For small samples, the sampling distribution 
of the mean is a member of a family of distributions called the t-distribution. The 
parameter that distinguishes members of this family from one another is called 
degrees of freedom.

FIGURE 9-6: 
The 95 percent 

confidence limits 
on the FarBlonJet 

sampling 
 distribution.



176      PART 3  Drawing Conclusions from Data

As I said in Chapter 5, think of “degrees of freedom” as the denominator of your 
variance estimate. For example, if your sample consists of 25 individuals, the 
sample variance that estimates population variance is

s
x x

N
x x x x2

2 2 2

1 25 1 24

The number in the denominator is 24, and that’s the value of the degrees of free-
dom parameter. In general, degrees of freedom (df) = N–1 (N is the sample size) 
when you use the t-distribution the way I show you in this section.

Figure 9-7 shows two members of the t-distribution family (df = 3 and df = 10), 
along with the normal distribution for comparison. As the figure shows, the 
greater the df, the more closely t approximates a normal distribution.

To determine the lower and upper bounds for the 95 percent confidence level for 
a small sample, work with the member of the t-distribution family that has the 
appropriate df. Find the value that cuts off the upper 2.5 percent of the area in the 
upper tail of the distribution. Then multiply that value by the standard error.

Add the result to the mean to get the upper confidence limit; subtract the result 
from the mean to get the lower confidence limit.

R provides dt() (density function), pt() (cumulative density function), qt() 
(quantile), and rt() (random number generation) for working with the  
t-distribution. For the confidence intervals, I use qt().

In the FarBlonJet batteries example:

> mean.battery <- 60
> sd.battery <- 20

FIGURE 9-7: 
Some members 

of the  
t-distribution 

family.



CHAPTER 9  The Confidence Game: Estimation      177

> N <- 25
> error <- qt(.025,N-1,lower.tail=FALSE)*sd.battery/sqrt(N)
> lower <- mean.battery - error
> upper <- mean.battery + error
> lower
[1] 51.74441
> upper
[1] 68.25559

The lower and upper limits are 51.74 and 68.26. Notice that with the smaller sam-
ple, the range is wider than in the previous example.

If you have the raw data, you can use t.test() to generate confidence intervals:

> battery.data <- c(82,64,68,44,54,47,50,85,51,41,61,84,  
53,83,91,43,35,36,33,87,90,86,49,37,48)

Here’s how to use t.test() to generate the lower and upper bounds for 90 per-
cent confidence — the default value is .95:

> t.test(battery.data, conf.level=.90)

             One Sample t-test

data:  c(82, 64, 68, 44, 54, 47, 50, 85, 51, 41, 61, 84,  
53, 83, 91,  ...

t = 15, df = 24, p-value = 1.086e-13
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
 53.22727 66.93273
sample estimates:
mean of x
    60.08

The t.test() function is really more appropriate for the next chapter. . . .





CHAPTER 10  One-Sample Hypothesis Testing      179

IN THIS CHAPTER

 » Introducing hypothesis tests

 » Testing hypotheses about means

 » Testing hypotheses about variances

 » Visualizing distributions

One-Sample Hypothesis 
Testing

Whatever your occupation, you often have to assess whether something 
new and different has happened. Sometimes you start with a popula-
tion that you know a lot about (like its mean and standard deviation) 

and you draw a sample. Is that sample like the rest of the population, or does it 
represent something out of the ordinary?

To answer that question, you measure each individual in the sample and calculate 
the sample’s statistics. Then you compare those statistics with the population’s 
parameters. Are they the same? Are they different? Is the sample extraordinary in 
some way? Proper use of statistics helps you make the decision.

Sometimes, though, you don’t know the parameters of the population that the 
sample came from. What happens then? In this chapter, I discuss statistical tech-
niques and R functions for dealing with both cases.

Hypotheses, Tests, and Errors
A hypothesis is a guess about the way the world works. It’s a tentative explanation 
of some process, whether that process occurs in nature or in a laboratory.

Chapter 10



180      PART 3  Drawing Conclusions from Data

Before studying and measuring the individuals in a sample, a researcher formu-
lates hypotheses that predict what the data should look like.

Generally, one hypothesis predicts that the data won’t show anything new or 
out of the ordinary. This is called the null hypothesis (abbreviated H0). According 
to the  null hypothesis, if the data deviates from the norm in any way, that 
 deviation is due strictly to chance. Another hypothesis, the alternative hypothesis 
( abbreviated  H1), explains things differently. According to the alternative 
hypothesis, the data show something important.

After gathering the data, it’s up to the researcher to make a decision. The way the 
logic works, the decision centers around the null hypothesis. The researcher must 
decide to either reject the null hypothesis or to not reject the null hypothesis.

In hypothesis testing, you

 » Formulate null and alternative hypotheses

 » Gather data

 » Decide whether to reject or not reject the null hypothesis.

Nothing in the logic involves accepting either hypothesis. Nor does the logic involve 
making any decisions about the alternative hypothesis. It’s all about rejecting or 
not rejecting H0.

Regardless of the reject-don’t-reject decision, an error is possible. One type of 
error occurs when you believe that the data shows something important and you 
reject H0, but in reality the data are due just to chance. This is called a Type I error. 
At the outset of a study, you set the criteria for rejecting H0. In so doing, you set 
the probability of a Type I error. This probability is called alpha (α).

The other type of error occurs when you don’t reject H0 and the data is really due 
to something out of the ordinary. For one reason or another, you happened to miss 
it. This is called a Type II error. Its probability is called beta (β). Table  10-1 
summarizes the possible decisions and errors.

TABLE 10-1	 Decisions and Errors in Hypothesis Testing
“True State” of the World

H0 is True H1 is True

Reject H0 Type I Error Correct Decision

Decision

Do Not Reject H0 Correct Decision Type II Error



CHAPTER 10  One-Sample Hypothesis Testing      181

Note that you never know the true state of the world. (If you do, it’s not necessary 
to do the study!) All you can ever do is measure the individuals in a sample, cal-
culate the statistics, and make a decision about H0. (I discuss hypotheses and 
hypothesis testing in Chapter 1.)

Hypothesis Tests and Sampling 
Distributions

In Chapter 9, I discuss sampling distributions. A sampling distribution, remem-
ber, is the set of all possible values of a statistic for a given sample size.

Also in Chapter 9, I discuss the central limit theorem. This theorem tells you that 
the sampling distribution of the mean approximates a normal distribution if the 
sample size is large (for practical purposes, at least 30). This works whether or not 
the population is normally distributed. If the population is a normal distribution, 
the sampling distribution is normal for any sample size. Here are two other points 
from the central limit theorem:

 » The mean of the sampling distribution of the mean is equal to the population mean.

The equation for this is

x

 » The standard error of the mean (the standard deviation of the sampling 
distribution) is equal to the population standard deviation divided by the 
square root of the sample size.

This equation is

x N

The sampling distribution of the mean figures prominently into the type of 
hypothesis testing I discuss in this chapter. Theoretically, when you test a null 
hypothesis versus an alternative hypothesis, each hypothesis corresponds to a 
separate sampling distribution.

Figure  10-1 shows what I mean. The figure shows two normal distributions. 
I placed them arbitrarily. Each normal distribution represents a sampling distri-
bution of the mean. The one on the left represents the distribution of possible 
sample means if the null hypothesis is truly how the world works. The one on the 



182      PART 3  Drawing Conclusions from Data

right represents the distribution of possible sample means if the alternative 
hypothesis is truly how the world works.

Of course, when you do a hypothesis test, you never know which distribution pro-
duces the results. You work with a sample mean — a point on the horizontal axis. 
The reject-or-don’t reject decision boils down to deciding which distribution the 
sample mean is part of. You set up a critical value — a decision criterion. If the 
sample mean is on one side of the critical value, you reject H0. If not, you don’t.

In this vein, the figure also shows α and β. These, as I mention earlier in this chap-
ter, are the probabilities of decision errors. The area that corresponds to α is in the 
H0 distribution. I’ve shaded it in dark gray. It represents the probability that a 
sample mean comes from the H0 distribution, but it’s so extreme that you reject H0.

Where you set the critical value determines α. In most hypotheses testing, you set 
α at .05. This means that you’re willing to tolerate a Type I error (rejecting H0 
when you shouldn’t) 5 percent of the time. Graphically, the critical value cuts off 
5 percent of the area of the sampling distribution. By the way, if you’re talking 
about the 5 percent of the area that’s in the right tail of the distribution (refer to 
Figure 10-1), you’re talking about the upper 5 percent. If it’s the 5 percent in the 
left tail you’re interested in, that’s the lower 5 percent.

FIGURE 10-1: 
H0 and H1 each 
correspond to 

a sampling 
distribution.



CHAPTER 10  One-Sample Hypothesis Testing      183

The area that corresponds to β is in the H1 distribution. I’ve shaded it in light gray. 
This area represents the probability that a sample mean comes from the H1 distri-
bution, but it’s close enough to the center of the H0 distribution that you don’t 
reject H0 (but you should have). You don’t get to set β. The size of this area depends 
on the separation between the means of the two distributions, and that’s up to the 
world we live in — not up to you.

These sampling distributions are appropriate when your work corresponds to the 
conditions of the central limit theorem: if you know that the population you’re 
working with is a normal distribution or if you have a large sample.

Catching Some Z’s Again
Here’s an example of a hypothesis test that involves a sample from a normally 
distributed population. Because the population is normally distributed, any sam-
ple size results in a normally distributed sampling distribution. Because it’s a 
normal distribution, you use z-scores in the hypothesis test:

z x

N

One more “because”: Because you use the z-score in the hypothesis test, the 
z-score here is called the test statistic.

Suppose you think that people living in a particular zip code have higher-than- 
average IQs. You take a sample of nine people from that zip code, give them IQ 
tests, tabulate the results, and calculate the statistics. For the population of IQ 
scores, μ = 100 and σ = 15.

The hypotheses are

H0: μZIP code ≤ 100

H1: μZIP code > 100

Assume that α = .05. That’s the shaded area in the tail of the H0 distribution in 
Figure 10-1.

Why the ≤ in H0? You use that symbol because you’ll reject H0 only if the sample 
mean is larger than the hypothesized value. Anything else is evidence in favor of 
not rejecting H0.

Suppose the sample mean is 108.67. Can you reject H0?



184      PART 3  Drawing Conclusions from Data

The test involves turning 108.67 into a standard score in the sampling distribution 
of the mean:

z x

N

108 67 100
15

9

8 67
15

3

8 67
5

1 73. . . .

Is the value of the test statistic large enough to enable you to reject H0 with 
α = .05? It is. The critical value — the value of z that cuts off 5 percent of the area 
in a standard normal distribution — is 1.645. (After years of working with the 
standard normal distribution, I happen to know this. Read Chapter 8, find out 
about R’s qnorm() function, and you can have information like that at your fin-
gertips, too.) The calculated value, 1.73, exceeds 1.645, so it’s in the rejection 
region. The decision is to reject H0.

This means that if H0 is true, the probability of getting a test statistic value that’s 
at least this large is less than .05. That’s strong evidence in favor of rejecting H0.

In statistical parlance, any time you reject H0, the result is said to be statistically 
significant.

This type of hypothesis testing is called one-tailed because the rejection region is 
in one tail of the sampling distribution.

A hypothesis test can be one-tailed in the other direction. Suppose you have rea-
son to believe that people in that zip code have lower-than-average IQs. In that 
case, the hypotheses are

H0: μZIP code ≥ 100

H1: μZIP code < 100

For this hypothesis test, the critical value of the test statistic is –1.645 if α = .05.

A hypothesis test can be two-tailed, meaning that the rejection region is in both tails 
of the H0 sampling distribution. That happens when the hypotheses look like this:

H0: μZIP code = 100

H1: μZIP code ≠ 100

In this case, the alternative hypothesis just specifies that the mean is different 
from the null-hypothesis value, without saying whether it’s greater or whether 
it’s less. Figure  10-2 shows what the two-tailed rejection region looks like for 
α = .05. The 5 percent is divided evenly between the left tail (also called the lower 
tail) and the right tail (the upper tail).



CHAPTER 10  One-Sample Hypothesis Testing      185

For a standard normal distribution, incidentally, the z-score that cuts off 
2.5 percent in the right tail is 1.96. The z-score that cuts off 2.5 percent in the left 
tail is –1.96. (Again, I happen to know these values after years of working with the 
standard normal distribution.) The z-score in the preceding example, 1.73, does 
not exceed 1.96. The decision, in the two-tailed case, is to not reject H0.

This brings up an important point. A one-tailed hypothesis test can reject H0, 
while a two-tailed test on the same data might not. A two-tailed test indicates that 
you’re looking for a difference between the sample mean and the null-hypothesis 
mean, but you don’t know in which direction. A one-tailed test shows that you 
have a pretty good idea of how the difference should come out. For practical pur-
poses, this means you should try to have enough knowledge to be able to specify a 
one-tailed test: That gives you a better chance of rejecting H0 when you should.

Z Testing in R
An R function called z.test() would be great for doing the kind of testing I dis-
cuss in the previous section. One problem: That function does not exist in base R. 
Although you can find one in other packages, it’s easy enough to create one and 
learn a bit about R programming in the process.

FIGURE 10-2: 
The two-tailed 

rejection region 
for α = .05.



186      PART 3  Drawing Conclusions from Data

The function will work like this:

> IQ.data <- c(100,101,104,109,125,116,105,108,110)
> z.test(IQ.data,100,15)
 z = 1.733
 one-tailed probability = 0.042
 two-tailed probability = 0.084

Begin by creating the function name and its arguments:

z.test = function(x,mu,popvar){

The first argument is the vector of data, the second is the population mean, and 
the third is the population variance. The left curly bracket signifies that the 
remainder of the code is what happens inside the function.

Next, create a vector that will hold the one-tailed probability of the z-score you’ll 
calculate:

one.tail.p <- NULL

Then you calculate the z-score and round it to three decimal places:

z.score <- round((mean(x)-mu)/(popvar/sqrt(length(x))),3)

Without the rounding, R might calculate many decimal places, and the output 
would look messy.

Finally, you calculate the one-tailed probability (the proportion of area beyond the 
calculated z-score), and again round to three decimal places:

one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)

Why put abs() (absolute value) in the argument to pnorm? Remember that an 
alternative hypothesis can specify a value below the mean, and the data might 
result in a negative z-score.

The next order of business is to set up the output display. For this, you use the 
cat() function. I use this function in Chapter 7 to display a fairly sizable set of 
numbers in an organized way. The name cat is short for concatenate and print, 
which is exactly what I want you to do here: Concatenate (put together) strings 
(like one-tailed probability =) with expressions (like one.tail.p), and then 
show that whole thing onscreen. I also want you to start a new line for each con-
catenation, and \n is R’s way of making that happen.



CHAPTER 10  One-Sample Hypothesis Testing      187

Here’s the cat statement:

cat(" z =",z.score,"\n",
      "one-tailed probability =", one.tail.p,"\n",
      "two-tailed probability =", 2*one.tail.p )}

The space between the left quote and z lines up the first line with the next two 
onscreen. The right curly bracket closes off the function.

Here it is, all together:

z.test = function(x,mu,popvar){
  one.tail.p <- NULL
  z.score <- round((mean(x)-mu)/(popvar/sqrt(length(x))),3)
  one.tail .p <- round(pnorm(abs(z.score),lower.tail  

= FALSE),3)
  cat(" z =",z.score,"\n",
      "one-tailed probability =", one.tail.p,"\n",
      "two-tailed probability =", 2*one.tail.p )}

Running this function produces what you see at the beginning of this section.

t for One
In the preceding example, you work with IQ scores. The population of IQ scores is 
a normal distribution with a well-known mean and standard deviation. Thus, you 
can work with the central limit theorem and describe the sampling distribution of 
the mean as a normal distribution. You can then use z as the test statistic.

In the real world, however, you usually don’t have the luxury of working with 
well-defined populations. You usually have small samples, and you’re typically 
measuring something that isn’t as well-known as IQ. The bottom line is that you 
often don’t know the population parameters, nor do you know if the population is 
normally distributed.

When that’s the case, you use the sample data to estimate the population standard 
deviation, and you treat the sampling distribution of the mean as a member of a 
family of distributions called the t-distribution. You use t as a test statistic. In 
Chapter 9, I introduce this distribution and mention that you distinguish mem-
bers of this family by a parameter called degrees of freedom (df).



188      PART 3  Drawing Conclusions from Data

The formula for the test statistic is

t x
s

N

Think of df as the denominator of the estimate of the population variance. For the 
hypothesis tests in this section, that’s N–1, where N is the number of scores in the 
sample. The higher the df, the more closely the t-distribution resembles the nor-
mal distribution.

Here’s an example. FarKlempt Robotics, Inc., markets microrobots. The company 
claims that its product averages four defects per unit. A consumer group believes 
this average is higher. The consumer group takes a sample of nine FarKlempt 
microrobots and finds an average of seven defects, with a standard deviation of 
3.12. The hypothesis test is

H0: μ ≤ 4

H1: μ > 4

α = .05

The formula is

t x
s

N

7 4
3 12

9

3
3 12

3

2 88
. .

.

Can you reject H0? The R function in the next section tells you.

t Testing in R
I preview the t.test() function in Chapter 2 and talk about it in a bit more detail 
in Chapter 9. Here, you use it to test hypotheses.

Start with the data for FarKlempt Robotics:

> FarKlempt.data <- c(3,6,9,9,4,10,6,4,12)

Then apply t.test(). For the example, it looks like this:

t.test(FarKlempt.data,mu=4, alternative="greater")



CHAPTER 10  One-Sample Hypothesis Testing      189

The second argument specifies that you’re testing against a hypothesized mean 
of 4, and the third argument indicates that the alternative hypothesis is that the 
true mean is greater than 4.

Here it is in action:

> t.test(FarKlempt.data,mu=4, alternative="greater")

             One Sample t-test

data:  c(3, 6, 9, 9, 4, 10, 6, 4, 12)
t = 2.8823, df = 8, p-value = 0.01022
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:
 5.064521      Inf
sample estimates:
mean of x
        7

The output provides the t-value and the low p-value shows that you can reject the 
null hypothesis with α = .05.

This t.test() function is versatile. I work with it again in Chapter 11 when I test 
hypotheses about two samples.

Working with t-Distributions
Just as you can use d, p, q, and r prefixes for the normal distribution family, you 
can use dt() (density function), pt() (cumulative density function), qt() (quan-
tiles), and rt() (random number generation) for the t-distribution family.

Here are dt() and rt() at work for a t-distribution with 12 df:

> t.values <- seq(-4,4,1)
> round(dt(t.values,12),2)
[1] 0.00 0.01 0.06 0.23 0.39 0.23 0.06 0.01 0.00
> round(pt(t.values,12),2)
[1] 0.00 0.01 0.03 0.17 0.50 0.83 0.97 0.99 1.00

I show you how to use dt() more in the next section. (Way more. Trust me.)



190      PART 3  Drawing Conclusions from Data

For quantile information about the t-distribution with 12 df:

> quartiles <- c(0,.25,.50,.75,1)
> qt(quartiles,12)
[1]       -Inf -0.6954829  0.0000000  0.6954829        Inf

The –Inf and Inf tell you that the curve never touches the x-axis at either tail.

To generate eight (rounded) random numbers from the t-distribution with 12 df:

> round(rt(8,12),2)
[1]  0.73  0.13 -1.32  1.33 -1.27  0.91 -0.48 -0.83

All these functions give you the option of working with t-distributions not cen-
tered around zero. You do this by entering a value for ncp (the noncentrality param-
eter). In most applications of the t-distribution, noncentrality doesn’t come up. 
For completeness, I explain this concept in greater detail in Appendix 3 online.

Visualizing t-Distributions
Visualizing a distribution often helps you understand it. The process can be a bit 
involved in R, but it’s worth the effort. Figure 9-7 shows three members of the 
t-distribution family on the same graph. The first has df=3, the second has df=10, 
and the third is the standard normal distribution (df=infinity).

In this section, I show you how to create that graph in base R graphics and in ggplot2.

With either method, the first step is to set up a vector of the values that the den-
sity functions will work with:

t.values <- seq(-4,4,.1)

One more thing and I’ll get you started. After the graphs are complete, you’ll put the 
infinity symbol,  on the legends to denote the df for the standard normal 
distribution. To do that, you have to install a package called grDevices: On the 
Packages tab, click Install, and then in the Install Packages dialog box, type grDevices 
and click Install. When grDevices appears on the Packages tab, select its check box.

With grDevices installed, this adds the infinity symbol to a legend:

expression(infinity)

But I digress. . . .



CHAPTER 10  One-Sample Hypothesis Testing      191

Plotting t in base R graphics
Begin with the plot() function, and plot the t-distribution with 3 df:

plot(x = t. values,y = dt(t.values,3),  type = "l", lty = 
"dotted", ylim = c(0,.4), xlab = "t", ylab = "f(t)")

The first two arguments are pretty self-explanatory. The next two establish 
the type of plot — type = “l” means line plot (that’s a lowercase “L” not the 
 number 1), and lty = “dotted” indicates the type of line. The ylim argument sets 
the lower and upper limits of the y-axis — ylim = c(0,.4). A little tinkering 
shows that if you don’t do this, subsequent curves get chopped off at the top. The 
final two arguments label the axes. Figure 10-3 shows the graph so far:

The next two lines add the t-distribution for df=10, and for the standard normal 
(df = infinity):

lines(t.values,dt(t.values,10),lty = "dashed")
lines(t.values,dnorm(t.values))

The line for the standard normal is solid (the default value for lty). Figure 10-4 
shows the progress. All that’s missing is the legend that explains which curve is 
which.

FIGURE 10-3: 
t-distribution with 

3 df, base R.



192      PART 3  Drawing Conclusions from Data

One advantage of base R is that positioning and populating the legend is not 
difficult:

legend("top right", title = "df",legend =  
c(expression(infinity),"10","3"), lty = 
c("solid","dashed","dotted"), bty = "n")

The first argument positions the legend in the upper-right corner. The second 
gives the legend its title. The third argument is a vector that specifies what’s in 
the legend. As you can see, the first element is that infinity expression I showed 
you earlier, corresponding to the df for the standard normal. The second and third 
elements are the df for the remaining two t-distributions. You order them this 
way because that’s the order in which the curves appear at their centers. The lty 
argument is the vector that specifies the order of the linetypes (they correspond 
with the df). The final argument bty="n" removes the border from the legend.

And this produces Figure 10-5.

Plotting t in ggplot2
The grammar-of-graphics approach takes considerably more effort than base R. 
But follow along and you’ll learn a lot about ggplot2.

You start by putting the relevant numbers into a data frame:

FIGURE 10-4: 
Three distribu-

tions in search of 
a legend.



CHAPTER 10  One-Sample Hypothesis Testing      193

t.frame = data.frame(t.values,
                     df3 = dt(t.values,3),
                     df10 = dt(t.values,10),
                     std_normal = dnorm(t.values))

The first six rows of the data frame look like this:

> head(t.frame)
  t.values         df3        df10   std_normal
1     -4.0 0.009163361 0.002031034 0.0001338302
2     -3.9 0.009975671 0.002406689 0.0001986555
3     -3.8 0.010875996 0.002854394 0.0002919469
4     -3.7 0.011875430f 0.003388151 0.0004247803
5     -3.6 0.012986623 0.004024623 0.0006119019
6     -3.5 0.014224019 0.004783607 0.0008726827

That’s a pretty good-looking data frame, but it’s in wide format. As I point out in 
Chapter 3, ggplot() prefers long format — which is the three columns of density-
numbers stacked into a single column. To get to that format — it’s called reshaping 
the data — make sure you have the reshape2 package installed. Select its check 
box on the Packages tab and you’re ready to go.

Reshaping from wide format to long format is called melting the data, so the func-
tion is

t.frame.melt <- melt(t.frame,id="t.values")

FIGURE 10-5: 
The final graph, 

including the 
legend.



194      PART 3  Drawing Conclusions from Data

The id argument specifies that t.values is the variable whose numbers don’t get 
stacked with the rest. Think of it as the variable that stores the data. The first six 
rows of t.frame.melt are:

> head(t.frame.melt)
  t.values variable       value
1     -4.0      df3 0.009163361
2     -3.9      df3 0.009975671
3     -3.8      df3 0.010875996
4     -3.7      df3 0.011875430
5     -3.6      df3 0.012986623
6     -3.5      df3 0.014224019

It’s always a good idea to have meaningful column names, so . . .

> colnames(t.frame.melt)= c("t","df","density")
> head(t.frame.melt)
     t  df     density
1 -4.0 df3 0.009163361
2 -3.9 df3 0.009975671
3 -3.8 df3 0.010875996
4 -3.7 df3 0.011875430
5 -3.6 df3 0.012986623
6 -3.5 df3 0.014224019

Now for one more thing before I have you start on the graph. This is a vector that 
will be useful when you lay out the x-axis:

x.axis.values <- seq(-4,4,2)

Begin with ggplot():

ggplot(t.frame.melt, aes(x=t,y=f(t),group =df))

The first argument is the data frame. The aesthetic mappings tell you that t is on 
the x-axis, density is on the y-axis, and the data falls into groups specified by the 
df variable.

This is a line plot, so the appropriate geom function to add is geom_line:

geom_line(aes(linetype=df))

Geom functions can work with aesthetic mappings. The aesthetic mapping here 
maps df to the type of line.



CHAPTER 10  One-Sample Hypothesis Testing      195

Rescale the x-axis so that it goes from –4 to 4, by twos. Here’s where to use that 
x.axis.values vector:

scale_x_continuous(breaks=x.axis.values,labels=x.axis.values)

The first argument sets the breakpoints for the x-axis, and the second provides 
the labels for those points. Putting these three statements together

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
  geom_line(aes(linetype=df)) +
  scale_x_ continuous(breaks = x.axis.values,labels =  

x.axis.values)

results in Figure 10-6. One of the benefits of ggplot2 is that the code automatically 
produces a legend.

You still have some work to do. First of all, the default linetype assignments are 
not what you want, so you have to redo them:

scale_line type_manual(values =  
c("dotted","dashed","solid"),

labels = c("3","10", expression(infinity)))

FIGURE 10-6: 
Three 

t-distribution 
curves, plotted 

in ggplot2.



196      PART 3  Drawing Conclusions from Data

The four statements

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
  geom_line(aes(linetype=df)) +
  scale_x_ continuous(breaks = x.axis.values,labels =  

x.axis.values)+
  scale_lin etype_manual(values =  

c("dotted","dashed","solid"),
  labels = c("3","10", expression(infinity)))

produce Figure 10-7.

As you can see, the items in the legend are not in the order that the curves appear 
at their centers. I’m a stickler for that. I think it makes a graph more comprehen-
sible when the graph elements and the legend elements are in sync. ggplot2 pro-
vides guide functions that enable you to control the legend’s details. To reverse 
the order of the linetypes in the legend, here’s what you do:

  guides(linetype=guide_legend(reverse = TRUE))

Putting all the code together, finally, yields Figure 10-8.

ggplot(t.frame.melt, aes(x=t,y=density,group =df)) +
  geom_line(aes(linetype=df)) +

FIGURE 10-7: 
Three 

t-distribution 
curves, with 

the linetypes 
reassigned.



CHAPTER 10  One-Sample Hypothesis Testing      197

  scale_x_ continuous(breaks = x.axis.values,labels =  
x.axis.values)+

  scale_lin etype_manual(values =  
c("dotted","dashed","solid"),
labels = c("3","10", expression(infinity)))+

  guides(linetype=guide_legend(reverse = TRUE))

I leave it to you as an exercise to relabel the y-axis f(t).

Base R graphics versus ggplot2: It’s like driving a car with a standard transmis-
sion versus driving with an automatic transmission — but I’m not always sure 
which is which!

One more thing about ggplot2
I could have had you plot all this without creating and reshaping a data frame. An 
alternative approach is to set NULL as the data source, map t.values to the x-axis, 
and then add three geom_line statements. Each of those statements would map a 
vector of densities (created on the fly) to the y-axis, and each one would have its 
own linetype.

The problem with that approach? When you do it that way, the grammar does not 
automatically create a legend. Without a data frame, it has nothing to create a 
legend from. It’s something like using ggplot() to create a base R graph.

FIGURE 10-8: 
The final product, 

with the legend 
rearranged.



198      PART 3  Drawing Conclusions from Data

Is it ever a good idea to use this approach? Yes, it is — when you don’t want to 
include a legend but you want to annotate the graph in some other way. I provide 
an example in the later section “Visualizing Chi-Square Distributions.”

Testing a Variance
So far, I discuss one-sample hypothesis testing for means. You can also test 
hypotheses about variances.

This topic sometimes comes up in the context of manufacturing. Suppose 
 FarKlempt Robotics, Inc., produces a part that has to be a certain length with a 
very small variability. You can take a sample of parts, measure them, find the 
sample variability, and perform a hypothesis test against the desired variability.

The family of distributions for the test is called chi-square. Its symbol is χ2. I won’t 
go into all the mathematics. I’ll just tell you that, once again, df is the parameter 
that distinguishes one member of the family from another. Figure 10-9 shows two 
members of the chi-square family.

As the figure shows, chi-square is not like the previous distribution families I 
showed you. Members of this family can be skewed, and none of them can take a 
value less than zero.

FIGURE 10-9: 
Two members of 

the chi-square 
family.



CHAPTER 10  One-Sample Hypothesis Testing      199

The formula for the test statistic is

2
2

2

1N s

N is the number of scores in the sample, s2 is the sample variance, and σ2 is the 
population variance specified in H0.

With this test, you have to assume that what you’re measuring has a normal 
distribution.

Suppose the process for the FarKlempt part has to have, at most, a standard devi-
ation of 1.5 inches for its length. (Notice that I use standard deviation. This allows 
me to speak in terms of inches. If I use variance, the units would be square inches.) 
After measuring a sample of 10 parts, you find a standard deviation of 1.80 inches.

The hypotheses are

H0: σ
2 ≤ 2.25 (remember to square the “at-most” standard deviation of 1.5 inches)

H1: σ
2 > 2.25

α = .05

Working with the formula,

2
2

2

2

2

1 10 1 1 80

1 5

9 3 25
2 25

12 96
N s .

.

.
.

.

can you reject H0? Read on.

Testing in R
At this point, you might think that the function chisq.test() would answer the 
question. Although base R provides this function, it’s not appropriate here. As you 
can see in Chapters 18 and 20, statisticians use this function to test other kinds of 
hypotheses.

Instead, turn to a function called varTest, which is in the EnvStats package. On 
the Packages tab, click Install. Then type EnvStats into the Install Packages dialog 
box and click Install. When EnvStats appears on the Packages tab, select its 
check box.



200      PART 3  Drawing Conclusions from Data

Before you use the test, you create a vector to hold the ten measurements described 
in the example in the preceding section:

FarKlempt. data2 <- c(12.43, 11.71, 14.41, 11.05, 9.53,  
11.66, 9.33,11.71,14.35,13.81)

And now, the test:

varTest(Fa rKlempt.data2,alternative="greater",conf.level  
= 0.95,sigma.squared = 2.25)

The first argument is the data vector. The second specifies the alternative hypoth-
esis that the true variance is greater than the hypothesized variance, the third 
gives the confidence level (1–α), and the fourth is the hypothesized variance.

Running that line of code produces these results:

Results of Hypothesis Test
--------------------------

Null Hypothesis:          variance = 2.25

Alternative Hypothesis:   True variance is greater than 2.25

Test Name:                Chi-Squared Test on Variance

Estimated Parameter(s):   variance = 3.245299

Data:                     FarKlempt.data2

Test Statistic:           Chi-Squared = 12.9812

Test Statistic Parameter: df = 9

P-value:                  0.163459

95% Confidence Interval:  LCL = 1.726327
                          UCL =      Inf

Among other statistics, the output shows the chi-square (12.9812) and the p-value 
(0.163459). (The chi-square value in the previous section is a bit lower because of 
rounding.) The p-value is greater than .05. Therefore, you cannot reject the null 
hypothesis.

How high would chi-square (with df=9) have to be in order to reject? Hmmm. . . .



CHAPTER 10  One-Sample Hypothesis Testing      201

Working with Chi-Square Distributions
As is the case for the distribution families I’ve discussed in this chapter, R pro-
vides functions for working with the chi-square distribution family: dchisq() 
(for the density function), pchisq() (for the cumulative density function), 
qchisq() (for quantiles), and rchisq() (for random-number generation).

To answer the question I pose at the end of the previous section, I use qchisq():

> qchisq(.05,df=9,lower.tail = FALSE)
[1] 16.91898

The observed value missed that critical value by quite a bit.

Here are examples of the other chisq functions with df=9. For this set of values,

> chisq.values <- seq(0,16,2)

here are the densities

> round(dchisq(chisq.values,9),3)
[1] 0.000 0.016 0.066 0.100 0.101 0.081 0.056 0.036 0.021

and here are the cumulative densities

> round(pchisq(chisq.values,9),3)
[1] 0.000 0.009 0.089 0.260 0.466 0.650 0.787 0.878 0.933

Here are six random numbers selected from this chi-square distribution:

> round(rchisq(n=6,df=9),3)
[1] 13.231  5.674  7.396  6.170 11.806  7.068

Visualizing Chi-Square Distributions
Figure 10-9 nicely shows a couple of members of the chi-square family, with each 
member annotated with its degrees of freedom. In this section, I show you how to 
use base R graphics and ggplot2 to re-create that picture. You’ll learn some more 
about graphics, and you’ll know how to visualize any member of this family.



202      PART 3  Drawing Conclusions from Data

Plotting chi-square in base R graphics
To get started, you create a vector of values from which dchisq() calculates 
densities:

chi.values <- seq(0,25,.1)

Start the graphing with a plot statement:

plot(x=chi.values,
     y=dchisq(chi.values,df=4),
     type = "l",
     xlab=expression(chi^2),
     ylab="")

The first two arguments indicate what you’re plotting — the chi-square distribu-
tion with four degrees of freedom versus the chi.values vector. The third argu-
ment specifies a line (that’s a lowercase “L”, not the number 1). The third 
argument labels the x-axis with the Greek letter chi (χ) raised to the second power. 
The fourth argument gives the y-axis a blank label.

Why did I have you do that? When I first created the graph, I found that ylab 
locates the y-axis label too far to the left, and the label was cut off slightly. To fix 
that, I blank out ylab and then use mtext():

mtext(side = 2, text = expression(f(chi^2)), line = 2.5)

The side argument specifies the side of the graph to insert the label: bottom = 1, 
left = 2, top = 3, and right = 4. The text argument sets f 2  as the label for the 

axis. The line argument specifies the distance from the label to the y-axis: The 
distance increases with the value.

Next, you add the curve for chi-square with ten degrees of freedom:

lines(x=chi.values,y=dchisq(chi.values,df= 10))

Rather than add a legend, follow Figure  10-9 and add an annotation for each 
curve. Here’s how:

text(x=6,y=.15, label="df=4")
text(x=16, y=.07, label = "df=10")

The first two arguments locate the annotation, and the third one provides the 
content.



CHAPTER 10  One-Sample Hypothesis Testing      203

Putting it all together:

plot(x=chi.values,
     y=dchisq(chi.values,df=4),
     type = "l",
     xlab=expression(chi^2),
     ylab="")
mtext(side = 2, expression(f(chi^2)), line = 2.5)
lines(x=chi.values,y=dchisq(chi.values,df= 10))
text(x=6,y=.15, label="df=4")
text(x=16, y=.07, label = "df=10")

creates Figure 10-10.

Plotting chi-square in ggplot2
In this plot, I again have you use annotations rather than a legend, so you set NULL 
as the data source and work with a vector for each line. The first aesthetic maps 
chi.values to the x-axis:

ggplot(NULL, aes(x=chi.values))

Then you add a geom_line for each chi-square curve, with the mapping to the 
y-axis as indicated:

  geom_line(aes(y=dchisq(chi.values,4)))
  geom_line(aes(y=dchisq(chi.values,10)))

FIGURE 10-10: 
Two members of 

the chi-square 
family, plotted in 
base R graphics.



204      PART 3  Drawing Conclusions from Data

As I point out earlier in this chapter, this is like using ggplot2 to create a base R 
graph, but in this case it works (because it doesn’t create an unwanted legend).

Next, you label the axes:

  labs(x=expression(chi^2),y=expression(f(chi^2)))

And finally, the aptly named annotate() function adds the annotations:

  annotate(geom = "text",x=6,y=.15,label="df=4")
  annotate(geom = "text",x=16,y=.07,label="df=10")

The first argument specifies that the annotation is a text object. The next two 
locate the annotation in the graph, and the fourth provides the label.

So all of this

ggplot(NULL, aes(x=chi.values))+
  geom_line(aes(y=dchisq(chi.values,4))) +
  geom_line(aes(y=dchisq(chi.values,10))) +
  labs(x=expression(chi^2),y=expression(f(chi^2)))+
  annotate(geom = "text",x=6,y=.15,label = "df=4")+
  annotate(geom = "text",x=16,y=.07,label = "df=10")

draws Figure 10-11.

FIGURE 10-11: 
Two members of 

the chi-square 
family, plotted in 

ggplot2.



CHAPTER 11  Two-Sample Hypothesis Testing      205

IN THIS CHAPTER

 » Testing differences between means 
of two samples

 » Testing means of paired samples

 » Testing hypotheses about variances

 » Understanding F-distributions

Two-Sample Hypothesis 
Testing

In a variety of fields, the need often arises to compare one sample with another. 
Sometimes the samples are independent, and sometimes they’re matched in 
some way. Each sample comes from a separate population. The objective is to 

decide whether these populations are different from one another.

Usually, this involves tests of hypotheses about population means. You can also 
test hypotheses about population variances. In this chapter, I show you how to 
carry out these tests, and how to use R to get the job done.

Hypotheses Built for Two
As in the one-sample case (see Chapter 10), hypothesis testing with two samples 
starts with a null hypothesis (H0) and an alternative hypothesis (H1). The null 
hypothesis specifies that any differences you see between the two samples are due 
strictly to chance. The alternative hypothesis says, in effect, that any differences 
you see are real and not due to chance.

It’s possible to have a one-tailed test, in which the alternative hypothesis specifies 
the direction of the difference between the two means, or a two-tailed test in which 
the alternative hypothesis does not specify the direction of the difference.

Chapter 11



206      PART 3  Drawing Conclusions from Data

For a one-tailed test, the hypotheses look like this:

H0: μ1 - μ2 = 0

H1: μ1 - μ2 > 0

or like this:

H0: μ1 - μ2 = 0

H1: μ1 - μ2 < 0

For a two-tailed test, the hypotheses are:

H0: μ1 - μ2 = 0

H1: μ1 - μ2 ≠ 0

The zero in these hypotheses is the typical case. It’s possible, however, to test for 
any value — just substitute that value for zero.

To carry out the test, you first set α, the probability of a Type I error that you’re 
willing to live with. (See Chapter 10.) Then you calculate the mean and standard 
deviation of each sample, subtract one mean from the other, and use a formula to 
convert the result into a test statistic. Compare the test statistic to a sampling 
distribution of test statistics. If it’s in the rejection region that α specifies (again, 
see Chapter 10), reject H0. If it’s not, don’t reject H0.

Sampling Distributions Revisited
In Chapter 9, I introduce the idea of a sampling distribution — a distribution of all 
possible values of a statistic for a particular sample size. In that chapter, I describe 
the sampling distribution of the mean. In Chapter 10, I show its connection with 
one-sample hypothesis testing.

For two-sample hypothesis testing, another sampling distribution is necessary. 
This one is the sampling distribution of the difference between means.

The sampling distribution of the difference between means is the distribution of all 
possible values of differences between pairs of sample means with the sample 
sizes held constant from pair to pair. (Yes, that’s a mouthful.) Held constant from 
pair to pair means that the first sample in the pair always has the same size, and 
the second sample in the pair always has the same size. The two sample sizes are 
not necessarily equal.



CHAPTER 11  Two-Sample Hypothesis Testing      207

Within each pair, each sample comes from a different population. All samples are 
independent of one another so that picking individuals for one sample has no 
effect on picking individuals for another.

Figure 11-1 shows the steps in creating this sampling distribution. This is some-
thing you never do in practice. It’s all theoretical. As the figure shows, the idea is 
to take a sample out of one population and a sample out of another, calculate their 
means, and subtract one mean from the other. Return the samples to the popula-
tions, and repeat over and over and over. The result of the process is a set of dif-
ferences between means. This set of differences is the sampling distribution.

Applying the central limit theorem
Like any other set of numbers, this sampling distribution has a mean and a stan-
dard deviation. As is the case with the sampling distribution of the mean (see 
Chapters 9 and 10), the central limit theorem applies here.

According to the central limit theorem, if the samples are large, the sampling 
distribution of the difference between means is approximately a normal distribu-
tion. If the populations are normally distributed, the sampling distribution is a 
normal distribution even if the samples are small.

FIGURE 11-1: 
Creating the 

sampling 
 distribution  

of the difference 
between means.



208      PART 3  Drawing Conclusions from Data

The central limit theorem also has something to say about the mean and standard 
deviation of this sampling distribution. Suppose that the parameters for the first 
population are μ1 and σ1, and the parameters for the second population are μ2 and 
σ2. The mean of the sampling distribution is

x x1 2 1 2

The standard deviation of the sampling distribution is

x x N N1 2

1
2

1

2
2

2

N1 is the number of individuals in the sample from the first population, and N2 is 
the number of individuals in the sample from the second.

This standard deviation is called the standard error of the difference between means.

Figure 11-2 shows the sampling distribution along with its parameters, as specified 
by the central limit theorem.

Z’s once more
Because the central limit theorem says that the sampling distribution is approxi-
mately normal for large samples (or for small samples from normally distributed 

FIGURE 11-2: 
The sampling 

distribution of the 
difference 

between means, 
according to the 

central limit 
theorem.



CHAPTER 11  Two-Sample Hypothesis Testing      209

populations), you use the z-score as your test statistic. Another way to say “use 
the z-score as your test statistic” is “perform a z-test.” Here’s the formula:

z
x x

x x

1 2 1 2

1 2

The term (μ1-μ2) represents the difference between the means in H0.

This formula converts the difference between sample means into a standard score. 
Compare the standard score against a standard normal distribution — a normal 
distribution with μ = 0 and σ = 1. If the score is in the rejection region defined by 
α, reject H0. If it’s not, don’t reject H0.

You use this formula when you know the value of σ1
2 and σ2

2.

Here’s an example. Imagine a new training technique designed to increase 
IQ. Take a sample of nine people and train them under the new technique. Take 
another sample of nine people and give them no special training. Suppose that the 
sample mean for the new technique sample is 110.222, and for the no-training 
sample it’s 101. The hypothesis test is

H0: μ1 - μ2 ≤ 0

H1: μ1 - μ2 > 0

I’ll set α at .05.

The IQ is known to have a standard deviation of 15, and I assume that standard 
deviation would be the same in the population of people trained on the new tech-
nique. Of course, that population doesn’t exist. The assumption is that if it did, it 
should have the same value for the standard deviation as the regular population of 
IQ scores. Does the mean of that (theoretical) population have the same value as 
the regular population? H0 says it does. H1 says it’s larger.

The test statistic is

z
x x x x

N N
x x

1 2 1 2 1 2 1 2

1
2

1

2
2

2

1 2

107 101.. .
.

.
2

16
25

16
25

5 8
4 53

1 28
2 2

With α = .05, the critical value of z — the value that cuts off the upper 5 percent of 
the area under the standard normal distribution  — is 1.645. (You can use the 
qnorm() function from Chapter 8 to verify this.) The calculated value of the test 
statistic is less than the critical value, so the decision is to not reject H0. Figure 11-3 
summarizes this.



210      PART 3  Drawing Conclusions from Data

Z-testing for two samples in R
As is the case for one-sample testing (explained in Chapter 10), base R provides no 
function for a two-sample z-test. If this function existed, you’d probably want it 
to work like this for the example:

> sample1 <-c(100,118,97,92,118,125,136,95,111)
> sample2 <-c(91,109,83,88,115,108,127,102,86)
> z.test2(sample1,sample2,15,15)
 mean1 = 110.2222    mean2 = 101
 standard error = 7.071068
 z = 1.304
 one-tailed probability = 0.096
 two-tailed probability = 0.192

Because this function isn’t available, I’ll show you how to create one.

Begin with the function name and the arguments:

z.test2 = function(x,y,popsd1,popsd2){

FIGURE 11-3: 
The sampling 

distribution of the 
difference 

between means, 
along with the 

critical value for  
α = .05 and the 

obtained value of 
the test statistic 

in the IQ 
example.



CHAPTER 11  Two-Sample Hypothesis Testing      211

The first two arguments are data vectors, and the second two are the population 
standard deviations. The left curly bracket indicates that subsequent statements 
are what occurs inside the function.

Next, you initialize a vector that will hold the one-tailed probability:

one.tail.p <- NULL

Then you calculate the standard error of the difference between means

std.error <- sqrt((popsd1^2/length(x) + popsd2^2/length(y)))

and then the (rounded) z-score

z.score <- round((mean(x)-mean(y))/std.error,3)

Finally, you calculate the rounded one-tailed probability:

one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)

The abs() function (absolute value) ensures the appropriate calculation for a neg-
ative z-score.

Last but not least, a cat() (concatenate-and-print) statement displays the 
output:

cat(" mean1 =", mean(x),"  ", "mean2 =", mean(y), "\n",
      "standard error =", std.error, "\n",
      "z =", z.score,"\n",
      "one-tailed probability =", one.tail.p,"\n",
      "two-tailed probability =", 2*one.tail.p )}

I use a cat() function like this for the one-sample case in Chapter 10. The right 
curly bracket closes off the function.

Here’s the newly defined function:

z.test2 = function(x,y,popsd1,popsd2){
  one.tail.p <- NULL
  std.error <- sqrt((popsd1^2/length(x) + popsd2^2/length(y)))
  z.score <- round((mean(x)-mean(y))/std.error,3)
  one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)
  cat(" mean1 =", mean(x),"  ", "mean2 =", mean(y), "\n",
      "standard error =", std.error, "\n",



212      PART 3  Drawing Conclusions from Data

      "z =", z.score,"\n",
      "one-tailed probability =", one.tail.p,"\n",
      "two-tailed probability =", 2*one.tail.p )}

t for Two
The example in the preceding section involves a situation you rarely encounter — 
known population variances. If you know a population’s variance, you’re likely to 
know the population mean. If you know the mean, you probably don’t have to 
perform hypothesis tests about it.

Not knowing the variances takes the central limit theorem out of play. This means 
that you can’t use the normal distribution as an approximation of the sampling 
distribution of the difference between means. Instead, you use the t-distribution, 
a family of distributions I introduce in Chapter 9 and apply to one-sample hypoth-
esis testing in Chapter 10. The members of this family of distributions differ from 
one another in terms of a parameter called degrees of freedom (df). Think of df as 
the denominator of the variance estimate you use when you calculate a value of t 
as a test statistic. Another way to say “calculate a value of t as a test statistic” is 
“Perform a t-test.”

Unknown population variances lead to two possibilities for hypothesis testing. 
One possibility is that although the variances are unknown, you have reason to 
assume they’re equal. The other possibility is that you cannot assume they’re 
equal. In the sections that follow, I discuss these possibilities.

Like Peas in a Pod: Equal Variances
When you don’t know a population variance, you use the sample variance to esti-
mate it. If you have two samples, you average (sort of) the two sample variances 
to arrive at the estimate.

Putting sample variances together to estimate a population variance is called 
pooling. With two sample variances, here’s how you do it:

s
N s N s

N Np
2 1 1

2
2 2

2

1 2

1 1
1 1

In this formula, sp
2 stands for the pooled estimate. Notice that the denominator of 

this estimate is (N1–1) + (N2–1). Is this the df? Absolutely!



CHAPTER 11  Two-Sample Hypothesis Testing      213

The formula for calculating t is

t
x x

s
N Np

1 2 1 2

1 2

1 1

On to an example. FarKlempt Robotics is trying to choose between two machines 
to produce a component for its new microrobot. Speed is of the essence, so the 
company has each machine produce ten copies of the component, and time each 
production run. The hypotheses are

H0: μ1-μ2 = 0

H1: μ1-μ2 ≠ 0

They set α at .05. This is a two-tailed test because they don’t know in advance 
which machine might be faster.

Table 11-1 presents the data for the production times in minutes.

The pooled estimate of σ2 is

s
N s N s

N Np
2 1 1

2
2 2

2

1 2

2
1 1

1 1
10 1 2 71 10 1 2. ..

. .

79
10 1 10 1

9 2 71 9 2 79
9 9

66 70
18

2

2 2

77 56.

The estimate of σ is 2.75, the square root of 7.56.

The test statistic is

t
x x

s
N Np

1 2 1 2

1 2

1 1

23 20

2 75 1
10

1
10

3
1 23

2 44
. .

.

TABLE 11-1	 Sample Statistics from the FarKlempt Machine Study
Machine 1 Machine 2

Mean Production Time 23.00 20.00

Standard Deviation 2.71 2.79

Sample Size 10 10



214      PART 3  Drawing Conclusions from Data

For this test statistic, df = 18, the denominator of the variance estimate. In a  
t-distribution with 18 df, the critical value is 2.10 for the right-side (upper) tail 
and –2.10 for the left-side (lower) tail. If you don’t believe me, apply qt(). (See 
Chapter 10.) The calculated value of the test statistic is greater than 2.10, so the 
decision is to reject H0. The data provide evidence that Machine 2 is significantly 
faster than Machine 1. (You can use the word significant whenever you reject H0.)

t-Testing in R
Here are a couple of vectors for the sample data in the example in the preceding 
section:

machine1 <-c(24.58, 22.09, 23.70, 18.89, 22.02, 28.71, 24.44, 
20.91, 23.83, 20.83)

machine2 <- c(21.61, 19.06, 20.72, 15.77, 19, 25.88, 21.48, 
17.85, 20.86, 17.77)

R provides two ways for performing the t-test. Both involve t.test(), which I use 
in Chapters 9 and 10.

Working with two vectors
Here’s how to test the hypotheses with two vectors and the equal variances 
assumption:

t.test(machine1,machine2,var.equal = TRUE, alternative="two.
sided", mu=0)

The alternative=two-sided argument reflects the type of alternative hypothesis 
specified in the example, and the last argument indicates the hypothesized differ-
ence between means.

Running that function produces this output:

Two Sample t-test
data:  c(24.58, 22.09, 23.7, 18.89, 22.02, 28.71, 24.44, 20.91, 

23.83,  ... and c(21.61, 19.06, 20.72, 15.77, 19, 
25.88, 21.48, 17.85, 20.86,  ...

t = 2.4396, df = 18, p-value = 0.02528
alternative hypothesis: true difference in means is not  

equal to 0



CHAPTER 11  Two-Sample Hypothesis Testing      215

95 percent confidence interval:
 0.4164695 5.5835305
sample estimates:
mean of x mean of y
       23        20

The t-value and the low p-value indicate that you can reject the null hypothesis. 
Machine 2 is significantly faster than Machine 1.

Working with a data frame and a formula
The other way of carrying out this test is to create a data frame and then use a 
formula that looks like this:

prod.time ~ machine

The formula expresses the idea that production time depends on the machine you 
use. Although it’s not necessary to do the test this way, it’s a good idea to get 
accustomed to formulas. I use them quite a bit in later chapters.

The first thing to do is create a data frame in long format. First you create a vector 
for the 20 production times — machine1’s times first and then machine2’s:

prod.time <- c(machine1,machine2)

Next, you create a vector of the two machine names:

machine <-c("machine1","machine2")

Then you turn that vector into a vector of ten repetitions of "machine1" followed 
by ten repetitions of "machine2". It’s a little tricky, but here’s how:

machine <- rep(machine, times = c(10,10))

And the data frame is

FarKlempt.frame <-data.frame(machine,prod.time)

Its first six rows are

> head(FarKlempt.frame)
   machine prod.time
1 machine1     24.58
2 machine1     22.09
3 machine1     23.70



216      PART 3  Drawing Conclusions from Data

4 machine1     18.89
5 machine1     22.02
6 machine1     28.71

The t.test() function is then

with (FarKlempt.frame,t.test(prod.time~machine,
                             var.equal = TRUE,
                             alternative="two.sided",
                             mu=0))

This produces the same output as the two-vector version.

Visualizing the results
In studies like in the preceding section, two ways of presenting the results are 
boxplots and bar graphs.

Boxplots
Boxplots depict the data in each sample along with the sample median (as explained 
in Chapter 3). They’re easy to create in base R and in ggplot2. For base R graphics, 
the code looks quite a bit like the formula method for t.test():

with (FarKlempt.frame,boxplot(prod.time~machine, xlab = 
"Machine", ylab="Production Time (minutes)"))

The plot looks like Figure 11-4.

Figure 11-5 shows the boxplot rendered in ggplot2. The code that produces that 
boxplot is

ggplot(FarKlempt.frame, aes(x=machine, y=prod.time))+
  stat_boxplot(geom="errorbar", width =.5) +
  geom_boxplot()

The only new function is stat_boxplot(), which adds the perpendicular line to 
the end of each whisker. The default width of those lines is the width of the box. I 
added width =.5 to cut that width in half.

In ggplot2, stat is a way of summarizing the data so that a geom function can use it. 
The stat function used here calculates the components for the boxplot. You use it to 
override the default appearance of the boxplot — which is without the perpendicu-
lar line at the end of each whisker. In earlier examples (and in the next one), you use 
stat= "identity" to instruct geom_bar() to use table data rather than counts.



CHAPTER 11  Two-Sample Hypothesis Testing      217

Bar graphs
Traditionally, researchers report and plot sample means and standard errors. It’s 
easy to do that in ggplot2. Figure 11-6 shows what I mean.

The t-shaped bars that extend above and below the top of each bar are the error 
bars that denote the standard error of the mean.

FIGURE 11-4: 
Boxplot of 
FarKlempt 

Machines data  
in base R.

FIGURE 11-5: 
Boxplot of 
FarKlempt 

Machines data in 
ggplot2.



218      PART 3  Drawing Conclusions from Data

To use ggplot2, you have to create a data frame of machine names, mean times, 
and standard errors. The three vectors that will constitute the data frame are

machine.names <-c("machine1","machine2")
mean.times <- c(mean(machine1),mean(machine2))
se.times <- c(sd(machine1)/sqrt(length(machine1)),      

sd(machine2)/sqrt(length(machine2)))

The data frame is then

FKmeans.frame <-data.frame(machine.names,mean.times,se.times)

It looks like this:

> FKmeans.frame
  machine.names mean.times  se.times
1      machine1         23 0.8570661
2      machine2         20 0.8818339

The code to create Figure 11-6 is

ggplot(FKmeans.frame, aes(x=machine.names, y=mean. 
times))+

FIGURE 11-6: 
FarKlempt 

Machine means 
and standard 

errors.



CHAPTER 11  Two-Sample Hypothesis Testing      219

  geom_bar(stat="identity", width=.4,color="black", 
fill="white")+

  geom_errorbar(aes(ymin=mean.times-se.times, ymax=mean.
times+se.times),width=.1)

The first function sets the stage with the aesthetic mappings, and the second plots 
the bars. The stat = identity argument instructs geom_bar to use the tabled 
statistics rather than to count instances of machine1 and machine2. The other 
arguments set the appearance of the bars.

The third function is the geom that plots the error bars. The aesthetic mappings set 
the minimum point and maximum point for each error bar. The width argument 
sets the width for the perpendicular line at the end of each error bar.

In most scientific publications, you see graphs like this with only the positive 
error bar — the one extending above the mean. To graph it that way in this exam-
ple, set ymin=mean.times rather than ymin=mean.times-se.times.

Like p’s and q’s: Unequal variances
The case of unequal variances presents a challenge. As it happens, when variances 
are not equal, the t-distribution with (N1–1) + (N2–1) degrees of freedom is not as 
close an approximation to the sampling distribution as statisticians would like.

Statisticians meet this challenge by reducing the degrees of freedom. To accom-
plish the reduction, they use a fairly involved formula that depends on the sample 
standard deviations and the sample sizes.

Because the variances aren’t equal, a pooled estimate is not appropriate. So you 
calculate the t-test in a different way:

t
x x

s
N

s
N

1 2 1 2

1
2

1

2
2

2

You evaluate the test statistic against a member of the t-distribution family that 
has the reduced degrees of freedom.

Here’s what t.test() produces for the FarKlempt example if I assume the vari-
ances are not equal:

with (FarKlempt.frame,t.test(prod.time~machine,
                             var.equal = FALSE,
                             alternative="two.sided",
                             mu=0))



220      PART 3  Drawing Conclusions from Data

Welch Two Sample t-test
data:  prod.time by machine
t = 2.4396, df = 17.985, p-value = 0.02529
alternative hypothesis: true difference in means is not  

equal to 0
95 percent confidence interval:
 0.4163193 5.5836807
sample estimates:
mean in group machine1 mean in group machine2
                    23                     20

You can see the slight reduction in degrees of freedom. The variances are so close 
that little else changes.

A Matched Set: Hypothesis Testing  
for Paired Samples

In the hypothesis tests I describe so far, the samples are independent of one 
another. Choosing an individual for one sample has no bearing on the choice of an 
individual for the other.

Sometimes, the samples are matched. The most obvious case is when the same 
individual provides a score under each of two conditions — as in a before-after 
study. Suppose ten people participate in a weight-loss program. They weigh in 
before they start the program and again after one month on the program. The 
important data is the set of before-after differences. Table 11-2 shows the data:

The idea is to think of these differences as a sample of scores and treat them as 
you would in a one-sample t-test. (See Chapter 10.)

You carry out a test on these hypotheses:

H0: μd ≤ 0

H1: μd > 0

The d in the subscripts stands for “difference.” Set α = .05.



CHAPTER 11  Two-Sample Hypothesis Testing      221

The formula for this kind of t-test is

t d
s

d

d

In this formula, d  is the mean of the differences. To find sd , you calculate the 
standard deviation of the differences and divide by the square root of the number 
of pairs:

s s
Nd

The df is N 1 (where N is the number of pairs).

From Table 11-2,

t d
s

d

d

2 9
3 25

10

2 82.
.

.

With df = 9 (Number of pairs – 1), the critical value for α = .05 is 1.83. (Use qt() to 
verify.) The calculated value exceeds this value, so the decision is to reject H0.

TABLE 11-2	 Data for the Weight-Loss Example
Person Weight Before Program Weight After One Month Difference

1 198 194 4

2 201 203 -2

3 210 200 10

4 185 183 2

5 204 200 4

6 156 153 3

7 167 166 1

8 197 197 0

9 220 215 5

10 186 184 2

Mean 2.9

Standard Deviation 3.25



222      PART 3  Drawing Conclusions from Data

Paired Sample t-testing in R
For paired sample t-tests, it’s the same formula as for independent samples 
t-tests. As you’ll see, you add an argument. Here’s the data from Table 11-2:

before <-c(198,201,210,185,204,156,167,197,220,186)
after <- c(194,203,200,183,200,153,166,197,215,184)

And the t-test:

t.test(before,after,alternative = "greater",paired=TRUE)

That last argument, of course, specifies a paired-samples test. The default value 
for that one is FALSE.

Running that test yields

            Paired t-test

data:  before and after
t = 2.8241, df = 9, p-value = 0.009956
alternative hypothesis: true difference in means is greater  

than 0
95 percent confidence interval:
 1.017647      Inf
sample estimates:
mean of the differences
                    2.9

Because of the very low p-value, you reject the null hypothesis.

Testing Two Variances
The two-sample hypothesis testing I describe in this chapter pertains to means. 
It’s also possible to test hypotheses about variances.

In this section, I extend the one-variance manufacturing example I use in Chap-
ter 10. FarKlempt Robotics, Inc., produces a part that has to be a certain length 
with a very small variability. The company is considering two machines to pro-
duce this part, and it wants to choose the one that results in the least variability. 
FarKlempt Robotics takes a sample of parts from each machine, measures them, 
finds the variance for each sample, and performs a hypothesis test to see whether 
one machine’s variance is significantly greater than the other’s.



CHAPTER 11  Two-Sample Hypothesis Testing      223

The hypotheses are:

H0: σ1
2 = σ2

2

H1: σ1
2 ≠ σ2

2

As always, an α is a must-have item. As usual, I set it to .05.

When you test two variances, you don’t subtract one from the other. Instead, you 
divide one by the other to calculate the test statistic. Sir Ronald Fisher is a famous 
statistician who worked out the mathematics and the family of distributions for 
working with variances in this way. The test statistic is named in his honor. It’s 
called an F-ratio and the test is the F-test. The family of distributions for the test 
is called the F-distribution.

Without going into all the mathematics, I’ll just tell you that, once again, df is the 
parameter that distinguishes one member of the family from another. What’s dif-
ferent about this family is that two variance estimates are involved, so each mem-
ber of the family is associated with two values of df, rather than one as in the 
t-test. Another difference between the F-distribution and the others you’ve seen 
is that the F cannot have a negative value. Figure 11-7 shows two members of the 
F-distribution family.

The test statistic is

F s
s

larger 
smaller 

2

2

FIGURE 11-7: 
Two members of 
the F-distribution 

family.



224      PART 3  Drawing Conclusions from Data

Suppose FarKlempt Robotics produces 10 parts with Machine 1 and finds a sample 
variance of .81 square inches. It produces 15 parts with Machine 2 and finds a 
sample variance of .64 square inches. Can the company reject H0?

Calculating the test statistic,

F .
.

.81
64

1 27

The df’s are 9 and 14: The variance estimate in the numerator of the F-ratio is based 
on 10 cases, and the variance estimate in the denominator is based on 15 cases.

When the df’s are 9 and 14 and it’s a two-tailed test at α = .05, the critical value of 
F is 3.21. (In a moment, I show you an R function that calculates this.) The calcu-
lated value is less than the critical value, so the decision is to not reject H0.

It makes a difference which df is in the numerator and which df is in the denomina-
tor. The F-distribution for df = 9 and df = 14 is different from the F-distribution for 
df = 14 and df = 9. For example, the critical value in the latter case is 3.80, not 3.21.

F-testing in R
R provides a function for testing hypotheses like the one in the FarKlempt Robot-
ics two-machines example. It’s called var.test(). Should it have been called 
F.test()? Well, maybe.

The important point is to not confuse this function with varTest(), which I use 
in Chapter 10 to test hypotheses about a single sample variance (with chi-square). 
That function is in the EnvStats package.

To apply var.test(), you first create the vectors that hold the data for the parts 
that machine 1 and machine 2 produce:

> var.test(m1.parts,m2.parts,ratio=1,alternative="two.sided")

Results of Hypothesis Test

--------------------------

Null Hypothesis:                 ratio of variances = 1

Alternative Hypothesis:          True ratio of variances is not equal to 1

Test Name:                       F test to compare two variances



CHAPTER 11  Two-Sample Hypothesis Testing      225

Estimated Parameter(s):          ratio of variances = 1.26482

Data:                            m1.parts and m2.parts

Test Statistic:                  F = 1.26482

Test Statistic Parameters:       num df   =  9

                                 denom df = 14

P-value:                         0.6690808

95% Confidence Interval:         LCL = 0.3941108

                                 UCL = 4.8037262

The low F-ratio and high p-value indicate that you cannot reject the null hypoth-
esis. (The slight discrepancy between this F-ratio and the one calculated in the 
example is due to rounding.)

F in conjunction with t
One use of the F-distribution is in conjunction with the t-test for independent 
samples. Before you do the t-test, you use F to help decide whether to assume 
equal variances or unequal variances in the samples.

In the equal variances t-test example I show you earlier, the standard deviations 
are 2.71 and 2.79. The variances are 7.34 and 7.78. The F-ratio of these variances is

F 7 78
7 34

1 06.
.

.

Each sample is based on ten observations, so df = 9 for each sample variance. An 
F-ratio of 1.06 cuts off the upper 47 percent of the F-distribution whose df are 9 
and 9, so it’s safe to use the equal variances version of the t-test for these data.

How does all this play out in the context of hypothesis testing? On rare occasions, 
H0 is a desirable outcome and you’d rather not reject it. In that case, you stack the 
deck against not rejecting by setting α at a high level so that small differences 
cause you to reject H0.

This is one of those rare occasions. It’s more desirable to use the equal variances 
t-test, which typically provides more degrees of freedom than the unequal vari-
ances t-test. Setting a high value of α (.20 is a good one) for the F-test enables you 
to be confident when you assume equal variances.



226      PART 3  Drawing Conclusions from Data

Working with F-Distributions
Just like the other distribution-families I cover earlier (normal, t, chi-square), R 
provides functions for dealing with F-distributions: qf() gives quantile informa-
tion, df() provides the density function, pf() provides the cumulative density 
function, and rf() generates random numbers.

Note that throughout this section, I spell out “degrees of freedom” rather than 
use the abbreviation “df” as I do elsewhere. That’s to avoid confusion with the 
density function df().

That critical value I refer to earlier for a two-tailed F-test with 9 and 14 degrees 
of freedom is

> qf(.025,9,14,lower.tail = FALSE)
[1] 3.2093

It’s a two-tailed test at α = .05, so .025 is in each tail.

To watch df() and pf() in action, you create a vector for them to operate on:

F.scores <-seq(0,5,1)

With 9 and 14 degrees of freedom, the (rounded) densities for these values are

> round(df(F.scores,9,14),3)
[1] 0.000 0.645 0.164 0.039 0.011 0.004

The (rounded) cumulative densities are

> round(pf(F.scores,9,14),3)
[1] 0.000 0.518 0.882 0.968 0.990 0.996

To generate five random numbers from this member of the F-family:

> rf(5,9,14)
[1] 0.6409125 0.4015354 1.1601984 0.6552502 0.8652722

Visualizing F-Distributions
As I’ve said, visualizing distributions helps you learn them. F-distributions are no 
exception, and with density functions and ggplot2, it’s easy to plot them. My 



CHAPTER 11  Two-Sample Hypothesis Testing      227

objective in this section is to show you how to use ggplot2 to create a graph that 
looks like Figure 11-7, which depicts an F-distribution with 5 and 15 degrees of free-
dom and another with 10 and 20 degrees of freedom. To make the graph look like the 
figure, I have to add annotations with arrows pointing to the appropriate curves.

Begin with a vector of values for df() to do its work on:

F.values <-seq(0,5,.05)

Then create a vector of densities for an F-distribution with 5 and 15 degrees of 
freedom:

F5.15 <- df(F.values,5,15)

and another for an F-distribution with 10 and 20 degrees of freedom:

F10.20 <- df(F.values,10,20)

Now for a data frame for ggplot2:

F.frame <- data.frame(F.values,F5.15,F10.20)

This is what the first six rows of F.frame look like:

> head(F.frame)
  F.values      F5.15      F10.20
1     0.00 0.00000000 0.000000000
2     0.05 0.08868702 0.001349914
3     0.10 0.21319965 0.015046816
4     0.15 0.33376038 0.053520748
5     0.20 0.43898395 0.119815721
6     0.25 0.52538762 0.208812406

This is in wide format. As I point out earlier, ggplot() prefers long format, in 
which the data values are stacked on top of one another in one column. This is 
called melting the data and is part and parcel of the reshape2 package. (On the 
Packages tab, find the check box next to reshape2. If it’s unchecked, click on it.)

To appropriately reshape the data,

F.frame.melt <- melt(F.frame,id="F.values")

The id argument tells melt() what not to include in the stack. (F.values is the 
“identifier,” in other words.) Next, assign meaningful column names:

colnames(F.frame.melt)=c("F","deg.fr","density")



228      PART 3  Drawing Conclusions from Data

The first six rows of the melted data frame are

> head(F.frame.melt)
     F deg.fr    density
1 0.00  F5.15 0.00000000
2 0.05  F5.15 0.08868702
3 0.10  F5.15 0.21319965
4 0.15  F5.15 0.33376038
5 0.20  F5.15 0.43898395
6 0.25  F5.15 0.52538762

To begin the visualizing, the first statement, as always, is ggplot():

ggplot(F.frame.melt,aes(x=F,y=density,group=deg.fr))

The first argument is the data frame. The first two aesthetic mappings associate F 
with the x-axis, and density with the y-axis. The third mapping forms groups 
based on the deg.fr variable.

Next, you add a geom_line:

geom_line(stat="identity",aes(linetype=deg.fr))

The stat argument tells the geom function to use the tabled data. The aesthetic 
mapping associates the linetype (“solid” and “dotted” are the default values) 
with deg.fr.

If you prefer “solid” and “dashed,” as in Figure 11-7, you have to change things 
manually:

scale_linetype_manual(values = c("solid","dashed"),  
labels = c("5,15","10,20"))

The values and labels will appear in the legend that the grammar automatically 
creates.

Here’s the code so far:

ggplot(F.frame.melt,aes(x=F,y=density,group=deg.fr)) +
  geom_line(stat="identity",aes(linetype=deg.fr))+
  scale_linetype_manual(values = c("solid","dashed"),  

labels = c("5,15","10,20"))

Figure 11-8 shows the progress.



CHAPTER 11  Two-Sample Hypothesis Testing      229

But the objective is to create a graph without a legend, just like Figure 11-7. You 
use guides() to manipulate the legend, and the legend is based on linetype. So 
here’s how to remove the legend:

guides(linetype=FALSE)

Finally, add a couple of annotations that show the degrees of freedom for each 
curve. The annotation for the curve with 10 and 20 degrees of freedom is

annotate(geom="text",x=1.98,y=.78,label="df=10,20")

The first argument specifies a text geom, the next two position the text geom 
within the graph (centered on the indicated coordinates), and the fourth sets what 
the annotation says.

Now for the arrow that points from the annotation to the curve. It consists of a line 
segment and an arrowhead. The line-segment part of the arrow is a segment geom. 
The arrowhead part of the arrow is the product of a function called arrow(), which is 
in the grid package. On the Packages tab, find the check box next to grid, and click it.

Another annotate() function sets the arrow:

  annotate(geom="segment",x=2.0,xend=1.15,y=0.75,yend = .6, 
arrow=arrow())

The four arguments after the geom function locate the start-point and the end-
point for the segment. The final argument plots the arrowhead.

FIGURE 11-8: 
Two members of 
the F-distribution 

family in 
ggplot2 —  

 intermediate 
graph.



230      PART 3  Drawing Conclusions from Data

Finding the values for the start point and the end-point can involve some trial and 
error. It’s not a bad idea to plot the arrow first and then the text.

Here’s the code for everything, including the two annotate() functions for the 
other curve:

ggplot(F.frame.melt,aes(x=F,y=density,group=deg.fr)) +
  geom_line(stat="identity",aes(linetype=deg.fr))+
  scale_linetype_manual(values = c("solid","dashed"), 

labels = c("5,15","10,20")) +
  guides(linetype=FALSE) +
  annotate(geom="text",x=1.98,y=.78,label="df=10,20")+
  annotate(geom="segment",y=0.75,yend=.6, 

arrow=arrow())+
  annotate(geom="text",x=3.3,y=.28,label="df=5,15")+
  annotate(geom="segment",x = 3.35, xend=2.45,y =0.25, 

yend=.1,arrow=arrow())

And Figure 11-9 is the result.

Experiment with other values for degrees of freedom and see what the curves  
look like.

FIGURE 11-9: 
Two members of 
the F-distribution 

family in 
ggplot2 — final 

product.



CHAPTER 12  Testing More than Two Samples      231

IN THIS CHAPTER

 » Understanding why multiple t-tests 
won’t work

 » Analyzing variance

 » Taking the next step after an ANOVA

 » Working with repeated measures

 » Performing a trend analysis

Testing More than 
Two Samples

Statistics would be limited if you could only make inferences about one or two 
samples. In this chapter, I discuss the procedures for testing hypotheses 
about three or more samples. I show what to do when samples are indepen-

dent of one another, and what to do when they’re not. In both cases, I discuss 
what to do after you test the hypotheses. I also discuss R functions that do the 
work for you.

Testing More Than Two
Imagine this situation. Your company asks you to evaluate three different meth-
ods for training its employees to do a particular job. You randomly assign 30 
employees to one of the three methods. Your plan is to train them, test them, 
tabulate the results, and make some conclusions. Before you can finish the study, 
three people leave the company — one from the Method 1 group and two from the 
Method 3 group.

Table 12-1 shows the data.

Chapter 12



232      PART 3  Drawing Conclusions from Data

Do the three methods provide different results, or are they so similar that you 
can’t distinguish among them? To decide, you have to carry out a hypothesis test

H0: μ1 = μ2 = μ3

H1: Not H0

with α = .05.

A thorny problem
Finding differences among three groups sounds pretty easy, particularly if you’ve 
read Chapter  11. Take the mean of the scores from Method 1, the mean of the 
scores from Method 2, and do a t-test to see whether they’re different. Follow the 
same procedure for Method 1 versus Method 3, and for Method 2 versus Method 3. 
If at least one of those t-tests shows a significant difference, reject H0. Nothing to 
it, right? Wrong. If your α is .05 for each t-test, you’re setting yourself up for a 
Type I error with a probability higher than you planned on. The probability that at 
least one of the three t-tests results in a significant difference is way above .05. In 
fact, it’s .14, which is way beyond acceptable. (The mathematics behind calculat-
ing that number is a little involved, so I won’t elaborate.)

TABLE 12-1	 Data from Three Training Methods
Method 1 Method 2 Method 3

95 83 68

91 89 75

89 85 79

90 89 74

99 81 75

88 89 81

96 90 73

98 82 77

95 84

80

Mean 93.44 85.20 75.25

Variance 16.28 14.18 15.64

Standard Deviation 4.03 3.77 3.96



CHAPTER 12  Testing More than Two Samples      233

With more than three samples, the situation gets even worse. Four groups require 
six t-tests, and the probability that at least one of them is significant is .26. 
Table 12-2 shows what happens with increasing numbers of samples.

Carrying out multiple t-tests is clearly not the answer. What do you do?

A solution
It’s necessary to take a different approach. The idea is to think in terms of vari-
ances rather than means.

I’d like you to think of variance in a slightly different way. The formula for esti-
mating population variance, remember, is

s
x x

N
2

2

1

Because the variance is almost a mean of squared deviations from the mean, stat-
isticians also refer to it as mean-square. In a way, that’s an unfortunate nickname: 
It leaves out “deviation from the mean,” but there you have it.

The numerator of the variance — excuse me, mean-square — is the sum of squared 
deviations from the mean. This leads to another nickname, sum of squares. The 
denominator, as I say in Chapter 10, is degrees of freedom (df). So, the slightly dif-
ferent way to think of variance is

Mean Square Sum of Squares
df

TABLE 12-2	 The Incredible Increasing Alpha
Number of Samples t Number of Tests Pr (At Least One Significant t)

3 3 .14

4 6 .26

5 10 .40

6 15 .54

7 21 .66

8 28 .76

9 36 .84

10 45 .90



234      PART 3  Drawing Conclusions from Data

You can abbreviate this as

MS SS
df

Now, on to solving the thorny problem. One important step is to find the mean-
squares hiding in the data. Another is to understand that you use these mean-
squares to estimate the variances of the populations that produced these samples. 
In this case, assume that those variances are equal, so you’re really estimating one 
variance. The final step is to understand that you use these estimates to test the 
hypotheses I show you at the beginning of the chapter.

Three different mean-squares are inside the data in Table  12-1. Start with the 
whole set of 27 scores, forgetting for the moment that they’re divided into three 
groups. Suppose that you want to use those 27 scores to calculate an estimate of 
the population variance. (A dicey idea, but humor me.) The mean of those 27 scores 
is 85. I’ll call that mean the grand mean because it’s the average of everything.

So the mean-square would be

95 85 91 85 73 85 77 85
27 1

68 08
2 2 2 2

...
.

The denominator has 26 (27 – 1) degrees of freedom. I refer to that variance as the 
total variance, or in the new way of thinking about this, the MSTotal. It’s often 
abbreviated as MST.

Here’s another variance to consider. In Chapter 11, I describe the t-test for two sam-
ples with equal variances. For that test, you put together the two sample variances 
to create a pooled estimate of the population variance. The data in Table 12-1 pro-
vides three sample variances for a pooled estimate: 16.28, 14.18, and 15.64. Assum-
ing that these numbers represent equal population variances, the pooled estimate is

s
N s N s N s

N N Np
2 1 1

2
2 2

2
3 3

2

1 2 3

1 1 1
1 1 1

9 1 16 28 10 1 14 18 8 1 15 64
9 1 10 1 8 1

. . .
15 31.

Because this pooled estimate comes from the variance within the groups, it’s 
called MSWithin, or MSW.

One more mean-square to go — the variance of the sample means around the 
grand mean. In this example, that means the variance in these numbers 93.44, 
85.20, and 75.25 — sort of. I say “sort of” because these are means, not scores. 
When you deal with means, you have to take into account the number of scores 
that produced each mean. To do that, you multiply each squared deviation by the 
number of scores in that sample.



CHAPTER 12  Testing More than Two Samples      235

So this variance is

9 93 44 85 10 85 20 85 8 75 25 85
3 1

701 34
2 2 2

. . .
.

The df for this variance is 2 (the number of samples – 1).

Statisticians, not known for their crispness of usage, refer to this as the variance 
between sample means. (Among is the correct word when you’re talking about 
more than two items.) This variance is known as MSBetween, or MSB.

So you now have three estimates of population variance: MST, MSW, and MSB. 
What do you do with them?

Remember that the original objective is to test a hypothesis about three means. 
According to H0, any differences you see among the three sample means are due 
strictly to chance. The implication is that the variance among those means is the 
same as the variance of any three numbers selected at random from the 
population.

If you could somehow compare the variance among the means (that’s MSB, 
remember) with the population variance, you could see if that holds up. If only 
you had an estimate of the population variance that’s independent of the differ-
ences among the groups, you’d be in business.

Ah . . . but you do have that estimate. You have MSW, an estimate based on pooling 
the variances within the samples. Assuming that those variances represent equal 
population variances, this is a solid estimate. In this example, it’s based on 24 
degrees of freedom.

The reasoning now becomes: If MSB is about the same as MSW, you have evidence 
consistent with H0. If MSB is significantly larger than MSW, you have evidence 
that’s inconsistent with H0. In effect, you transform these hypotheses

H0: μ1 = μ2 = μ3

H1: Not H0

into these

H0: σB
2 ≤ σW

2

H1: σB
2 > σW

2

Rather than perform multiple t-tests among sample means, you perform a test of 
the difference between two variances.



236      PART 3  Drawing Conclusions from Data

What is that test? In Chapter  11, I show you the test for hypotheses about two 
 variances. It’s called the F-test. To perform this test, you divide one variance by 
the other. You evaluate the result against a family of distributions called the 
F-distribution. Because two variances are involved, two values for degrees of free-
dom define each member of the family.

For this example, F has df = 2 (for the MSB) and df = 24 (for the MSW). Figure 12-1 
shows what this member of the F family looks like. For our purposes, it’s the dis-
tribution of possible f-values if H0 is true. (See the section in Chapter  11 about 
visualizing F-distributions.)

The test statistic for the example is

F 701 34
15 31

45 82.
.

.

What proportion of area does this value cut off in the upper tail of the  
F-distribution? From Figure 12-1, you can see that this proportion is microscopic, 
as the values on the horizontal axis only go up to 5. (And the proportion of area 
beyond 5 is tiny.) It’s way less than .05.

This means that it’s highly unlikely that differences among the means are due to 
chance. It means that you reject H0.

This whole procedure for testing more than two samples is called the analysis of 
variance, often abbreviated as ANOVA. In the context of an ANOVA, the denomina-
tor of an F-ratio has the generic name error term. The independent variable is 
sometimes called a factor. So this is a single-factor or (1-factor) ANOVA.

FIGURE 12-1: 
The F-distribution 

with 2 and 24 
degrees of 

freedom.



CHAPTER 12  Testing More than Two Samples      237

In this example, the factor is Training Method. Each instance of the independent 
variable is called a level. The independent variable in this example has three 
levels.

More complex studies have more than one factor, and each factor can have many 
levels.

Meaningful relationships
Take another look at the mean-squares in this example, each with its sum of 
squares and degrees of freedom. Before, when I calculated each mean-square for 
you, I didn’t explicitly show you each sum of squares, but here I include them:

MS SS
dfB

B

B

1402 68
2

701 34. .

MS SS
dfW

W

W

367 32
24

15 31. .

MS SS
dfT

T

T

1770
26

68 08.

Start with the degrees of freedom: dfB = 2, dfW = 24, and dfT = 26. Is it a coinci-
dence that they add up? Hardly. It’s always the case that

df df dfB W T

How about those sums of squares?

1402 68 367 32 1770. .

Again, this is no coincidence. In the analysis of variance, this always happens:

SS SS SSB W T

In fact, statisticians who work with the analysis of variance speak of partitioning 
(read “breaking down into non-overlapping pieces”) the SST into one portion for 
the SSB and another for the SSW, and partitioning the dfT into one amount for the 
dfB and another for the dfW.

ANOVA in R
In this section, I walk you through the previous section’s example and show you 
how straightforward an analysis of variance is in R. In fact, I start at the finish line 
so that you can see where I’m heading.



238      PART 3  Drawing Conclusions from Data

The R function for ANOVA is aov(). Here’s how it looks generically:

aov(Dependent_variable ~ Independent_variable, data)

In the example, the scores are the dependent variable and the method is the inde-
pendent variable. So you need a 2-column data frame with Method in the first 
column and Score in the second. (This is equivalent to the “long-form” data for-
mat, which I discuss in Chapters 10 and 11.)

Start with a vector for each column in Table 12-1:

method1.scores <- c(95,91,89,90,99,88,96,98,95)
method2.scores <- c(83,89,85,89,81,89,90,82,84,80)
method3.scores <- c(68,75,79,74,75,81,73,77)

Then create a single vector that consists of all these scores:

Score <- c(method1.scores, method2.scores, method3.scores)

Next, create a vector consisting of the names of the methods, matched up against 
the scores. In other words, this vector has to consist of “method1” repeated nine 
times, followed by “method2” repeated ten times, followed by “method3” repeated 
eight times:

Method <- rep(c("method1", "method2", "method3"), 
times=c(length(method1.scores),  
length(method2.scores), length(method3.scores)))

The data frame is then

Training.frame <- data.frame(Method,Score)

And the ANOVA is

analysis <-aov(Score ~ Method,data = Training.frame)

For a table of the analysis, use summary().

> summary(analysis)
            Df Sum Sq Mean Sq F value   Pr(>F)
Method       2 1402.7   701.3   45.82 6.38e-09 ***
Residuals   24  367.3    15.3
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



CHAPTER 12  Testing More than Two Samples      239

The first column consists of Method and Residuals, which map onto Between and 
Within from the preceding section. A residual, in this context, is a score’s deviation 
from its group mean. (I have more to say about residuals in Chapter 14.) The next 
columns provide degrees of freedom, SS, MS, F, and p.

The high value of F and the tiny value of p (listed here as Pr(>F)) tell you to reject 
the null hypothesis. The significance codes tell you that F is so high that you can 
reject the null hypothesis even if α is .0001.

Visualizing the results
One way of plotting the findings is to show them as a boxplot. Here’s how to plot 
one in ggplot2.

The first statement maps variables to the axes:

ggplot(Training.frame, aes(x=Method, y=Score))

The next sets up the crossbars for the whiskers:

stat_boxplot(geom="errorbar", width =.5)

And the last plots the appropriate geom function:

geom_boxplot()

So these lines of R code

ggplot(Training.frame, aes(x=Method, y=Score))+
  stat_boxplot(geom="errorbar", width =.5) +
  geom_boxplot()

produce Figure 12-2.

After the ANOVA
The analysis ANOVA enables you to decide whether or not to reject H0. After you 
decide to reject, then what? All you can say is that somewhere within the set of 
means, something is different from something else. The analysis doesn’t specify 
what those “somethings” are.



240      PART 3  Drawing Conclusions from Data

Planned comparisons
In order to get more specific, you have to do some further tests. Not only that, you 
have to plan those tests in advance of carrying out the ANOVA.

These post-ANOVA tests are called planned comparisons. Some statisticians refer to 
them as a priori tests or contrasts. I illustrate by following through with the exam-
ple. Suppose that before you gathered the data, you had reason to believe that 
Method 2 would result in higher scores than Method 3 and that Method 1 would 
result in higher scores than Method 2 and Method 3 averaged together. In that 
case, you plan in advance to compare the means of those samples in the event 
your ANOVA-based decision is to reject H0.

As I mention earlier, the overall analysis partitions the SST into the SSB and the 
SSW, and the dfT into the dfB and the dfW. Planned comparisons further partition 
the SSB and the dfB. Each contrast (remember, that’s another name for “planned 
comparison”) has its own SS along with 1 df. I refer to Method 2 versus Method 3 
as Contrast1 and Method 1 versus the average of Method 2 and 3 as Contrast2. For 
this example,

SS SS SSContrast Contrast B1 2

and

df df dfContrast Contrast B1 2

Because each SS has 1 df, it’s equal to its corresponding MS. Dividing the SS for the 
contrast by MSW yields an F-ratio for the contrast. The F has df=1 and dfW. If that 

FIGURE 12-2: 
Boxplot of the 

sample results.



CHAPTER 12  Testing More than Two Samples      241

F cuts off less than .05 in the upper tail of its F-distribution, reject the null hypoth-
esis for that contrast (and you can refer to the contrast as “statistically 
significant”).

It’s possible to set up a contrast between two means as an expression that involves 
all three of the sample means. For example, to compare Method 2 versus Method 
3, I can write the difference between them as

0 1 11 2 3x x x

The 0, +1, and –1 are comparison coefficients. I refer to them, in a general way, as c1, 
c2, and c3. To compare Method 1 versus the average of Method 2 and Method 3, it’s

2 1 11 2 3x x x

The important point is that the coefficients add up to 0. How do you use the com-
parison coefficients and the means to calculate a SS for a contrast? For this exam-
ple, here’s SSContrast1:

SSContrast1

2

2

0 93 44 1 85 20 1 75 25

0
9

1

. . .
2 2

10
1
8

358 5.

And here’s SSContrast2:

SSContrast2

2

2

2 93 44 1 85 20 1 75 25

2
9

1

. . .
2 2

10
1
8

1044 2.

In general, the formula is

SS
c x

c
n

Contrast
j j

j

j

2

in which the j subscript stands for “level of the independent variable” (for Method 
1, j=1, for example).

For Contrast 1

F SS
MS

Contrast

Within
1 24

1 358 5
15 3

23 42,
.

.
.

and for Contrast 2

F SS
MS

Contrast

Within
1 24

2 1044 2
15 3

68 22,
.

.
.



242      PART 3  Drawing Conclusions from Data

Are these contrasts significant? Yes they are  — meaning that Method 2 yields 
significantly higher learning than Method 3, and that Method 1 results in signifi-
cantly higher learning than the average of Methods 2 and 3. You can use pf() to 
verify (or wait until the upcoming subsection “Contrasts in R.”)

Another word about contrasts
Earlier, I say that the important thing about a contrast is that its coefficients add 
up to 0. Another important thing is the relationship between the coefficients in a 
set of contrasts. In the two contrasts I show you, the sum of the products of cor-
responding coefficients is 0:

0 2 1 1 1 1 0

When this happens, the contrasts are orthogonal. This means they have no overlap-
ping information. It doesn’t mean that other contrasts aren’t possible. It’s just that 
other contrasts would be part of a different set (or sets) of orthogonal contrasts.

The two other sets of orthogonal contrasts for this example are: (1) Method 1 ver-
sus Method 2, and Method 3 versus the average of Method 1 and Method 2; (2) 
Method 1 versus Method 3, and Method 2 versus the average of Method 1 and 
Method 3.

Contrasts in R
The objective here is to create a table of the ANOVA that shows the contrasts par-
titioning the SSB and will show the associated F-ratios and p-values. It will look 
like this:

                     Df Sum Sq Mean Sq F value   Pr(>F)
Method                2 1402.7   701.3   45.82 6.38e-09 ***
  Method: 2 vs 3      1  358.5   358.5   23.42 6.24e-05 ***
  Method: 1 vs 2 & 3  1 1044.2  1044.2   68.22 1.78e-08 ***
Residuals            24  367.3    15.3
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

To set up for the contrasts, you first create a matrix of the coefficients in the set 
of orthogonal contrasts:

contrasts(Training.frame$Method) <- matrix(c(0,1,-1,2,-1,-1),3,2)

On the left, the term inside the parentheses specifies what to contrast — the levels 
of the independent variable Method in the Training.frame. On the right, the 
matrix() function creates a matrix with the coefficients in the columns:



CHAPTER 12  Testing More than Two Samples      243

> contrasts(Training.frame$Method)
        [,1] [,2]
method1    0    2
method2    1   -1
method3   -1   -1

Next, you run the analysis of variance, but this time with a contrasts argument:

Anova.w.Contrasts <-aov(Score ~ Method,data=Training.frame,
contrasts = contrasts(Training.frame$Method))

How do you create the table at the beginning of this subsection? With a summary() 
statement that adds a little twist:

summary(Anova.w.Contrasts,split=list(Method=list("2 vs 3"= 1,
  "1 vs 2 & 3" = 2)))

The little twist (a little “split,” actually) is in the second argument. The goal is to 
partition Method into two pieces — one that corresponds to the first contrast and 
one that corresponds to the second. You do that with split, which divides a list 
into the indicated number of components and reassembles the list with a name 
assigned to each component. In this case, the list is Method split into a list with two 
components. The name of each component corresponds to what’s in the contrast.

Running that summary statement produces the table at the top of this subsection.

Unplanned comparisons
Things would get boring if your post-ANOVA testing is limited to comparisons you 
have to plan in advance. Sometimes you want to snoop around your data and see 
whether anything interesting reveals itself. Sometimes, something jumps out at 
you that you didn’t anticipate.

When this happens, you can make comparisons you didn’t plan on. These com-
parisons are called a posteriori tests, post hoc tests, or simply unplanned comparisons. 
Statisticians have come up with a wide variety of these tests, many of them with 
exotic names and many of them dependent on special sampling distributions.

The idea behind these tests is that you pay a price for not having planned them in 
advance. That price has to do with stacking the deck against rejecting H0 for the 
particular comparison.

One of the best-known members of the post-hoc world is Tukey’s HSD (Honest 
Significant Difference) test. This test performs all possible pairwise comparisons 
among the sample means.



244      PART 3  Drawing Conclusions from Data

Wait. What? In the earlier section “A thorny problem,” I discuss why multiple 
pairwise t-tests don’t work — if each test has α = .05, the overall probability of a 
Type I error increases with the number of means.

So what’s the story? The story is that Tukey’s test adjusts for the number of sam-
ple means and compares the differences not to the t-distribution but to the Stu-
dentized Range distribution. The overall effect is to make it more difficult to reject 
the null hypothesis about any pairwise comparison than it would be if you com-
pare the difference against the t-distribution. (I haven’t heard multiple t-tests 
referred to as “Dishonestly Significant Differences,” but maybe someday. . . .)

This test is easy to do in R:

> TukeyHSD(analysis)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Score ~ Method, data = Training.frame)

$Method
                      diff       lwr        upr     p adj
method2-method1  -8.244444 -12.73337  -3.755523 0.0003383
method3-method1 -18.194444 -22.94172 -13.447166 0.0000000
method3-method2  -9.950000 -14.58423  -5.315769 0.0000481

The table shows each pairwise comparison along with the difference, lower and 
upper 95 percent confidence limits, and adjusted probability. Each probability is 
way lower than .05, so the conclusion is that each difference is statistically 
significant.

Another Kind of Hypothesis,  
Another Kind of Test

The preceding ANOVA works with independent samples. As Chapter 11 explains, 
sometimes you work with matched samples. For example, sometimes a person 
provides data in a number of different conditions. In this section, I introduce the 
ANOVA you use when you have more than two matched samples.

This type of ANOVA is called repeated measures. You’ll see it called other names, 
too, like randomized blocks or within subjects.



CHAPTER 12  Testing More than Two Samples      245

Working with repeated measures ANOVA
To show how this works, I extend the example from Chapter 11. In that example, 
ten men participate in a weight-loss program. Table 12-3 shows their data over a 
three-month period.

Is the program effective? This question calls for a hypothesis test:

H0: μBefore = μ1 = μ2 = μ3

H1: Not H0

Once again, you set α = .05

As in the previous ANOVA, start with the variances in the data. The MST is the 
variance in all 40 scores from the grand mean, which is 187.525:

MST

198 187 525 201 187 525 175 187 525
40 1

2 2 2
. . ... .

318 20.

TABLE 12-3	 Data for the Weight-Loss Example
Person Before One Month Two Months Three Months Mean

Al 198 194 191 188 192.75

Bill 201 203 200 196 200.00

Charlie 210 200 192 188 197.50

Dan 185 183 180 178 181.50

Ed 204 200 195 191 197.50

Fred 156 153 150 145 151.00

Gary 167 166 167 166 166.50

Harry 197 197 195 192 195.25

Irv 220 215 209 205 212.25

Jon 186 184 179 175 181.00

Mean 192.4 189.5 185.8 182.4 187.525



246      PART 3  Drawing Conclusions from Data

The people participating in the weight-loss program also supply variance. Each 
one’s overall mean (his average over the four measurements) varies from the 
grand mean. Because these data are in the rows, I call this MSRows:

MSRows

192 75 187 525 200 187 525 181 187 525
2 2 2

. . . ... .
110 1

1292 41.

The means of the columns also vary from the grand mean:

MSColumns

192 4 187 525 189 5 187 525 185 8 187 525
2 2

. . . . . .
2 2

182 4 187 525

4 1

189 69

. .

.

One more source of variance is in the data. Think of it as the variance left over 
after you pull out the variance in the rows and the variance in the columns from 
the total variance. Actually, it’s more correct to say that it’s the sum of squares 
that’s left over when you subtract the SSRows and the SSColumns from the SST.

This variance is called MSError. As I say earlier, in the ANOVA the denominator of 
an F is called an error term. So the word error here gives you a hint that this MS is 
a denominator for an F.

To calculate MSError, you use the relationships among the sums of squares and 
among the df.

MS SS
df

SS SS SS
df df dfError

Error

Error

T Rows Columns

T Rows Collumns

209 175
27

7 75. .

Here’s another way to calculate the dfError:

dfError number of rows - 1 number of columns - 1

To perform the hypothesis test, you calculate the F:

F MS
MS

Columns

Error

189 69
7 75

24 49.
.

.

With 3 and 27 degrees of freedom, the critical F for α = .05 is 2.96. (Use qf() to 
verify.) The calculated F is larger than the critical F, so the decision is to reject H0.

What about an F involving MSRows? That one doesn’t figure into H0 for this exam-
ple. If you find a significant F, all it shows is that people are different from one 
another with respect to weight and that doesn’t tell you much.



CHAPTER 12  Testing More than Two Samples      247

Repeated measures ANOVA in R
To set the stage for the repeated measures analysis, put the columns of Table 12-3 
into vectors:

Person <-c("Al", "Bill", "Charlie", "Dan", "Ed", "Fred", 
"Gary","Harry","Irv","Jon")

Before <- c(198,201,210,185,204,156,167,197,220,186)
OneMonth <- c(194,203,200,183,200,153,166,197,215,184)
TwoMonths <- c(191,200,192,180,195,150,167,195,209,179)
ThreeMonths <- c(188,196,188,178,191,145,166,192,205,175)

Then create a data frame:

Weight.frame <- data.frame(Person, Before, OneMonth,   
TwoMonths, ThreeMonths)

The data frame looks like this:

> Weight.frame
    Person Before OneMonth TwoMonths ThreeMonths
1       Al    198      194       191         188
2     Bill    201      203       200         196
3  Charlie    210      200       192         188
4      Dan    185      183       180         178
5       Ed    204      200       195         191
6     Fred    156      153       150         145
7     Gary    167      166       167         166
8    Harry    197      197       195         192
9      Irv    220      215       209         205
10     Jon    186      184       179         175

It’s in wide format, and you have to reshape it. With the reshape2 package 
installed (on the Packages tab, select the check box next to reshape2), melt the 
data into long format:

Weight.frame.melt <- melt(Weight.frame,id="Person")

Next, assign column names to the melted data frame:

colnames(Weight.frame.melt) = c("Person","Time","Weight")



248      PART 3  Drawing Conclusions from Data

And now, the first six rows of the new data frame are

> head(Weight.frame.melt)
   Person   Time Weight
1      Al Before    198
2    Bill Before    201
3 Charlie Before    210
4     Dan Before    185
5      Ed Before    204
6    Fred Before    156

In addition to Person, you now have Time as an independent variable.

I’m going to use R as a teaching tool: To give you an idea of how this analysis 
works, I’ll start by pretending that it’s an independent samples analysis, like the 
first one in this chapter. Then I’ll run it as a repeated measures analysis so that 
you can see the differences and perhaps better understand what a repeated mea-
sures analysis does.

As independent samples:

> ind.anova <- aov(Weight ~ Time, data=Weight.frame.melt)
> summary(ind.anova)
            Df Sum Sq Mean Sq F value Pr(>F)
Time         3    569   189.7   0.577  0.634
Residuals   36  11841   328.9

This analysis shows no significant differences among the levels of the Time. The 
key is to tease out the effects of having each row represent the data from one per-
son. That will break down the SS for Residuals into two components — one SS for 
Person (which has nine degrees of freedom) and another SS that has the remain-
ing 27 degrees of freedom. Divide that second SS by its degrees of freedom, and 
you have the MSError I mention earlier (although R doesn’t refer to it that way).

Here’s how to get that done:

rm.anova <- aov(Weight ~ Time + Error(Person/Time),
                data = Weight.frame.melt)

The new term indicates that Weight depends not only on Time but also on Person, 
and that each Person experiences all levels of Time. The effect of Time —  
decreasing body weight over the four levels of Time — is evident within each  
Person. (It’s easier to see that in the wide format than in the long.)



CHAPTER 12  Testing More than Two Samples      249

In some fields, the word subject means person: That’s why a repeated measures 
analysis is also called a within-subjects analysis, as I point out earlier.

And now for the table

> summary(rm.anova)

Error: Person
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals  9  11632    1292

Error: Person:Time
          Df Sum Sq Mean Sq F value  Pr(>F)
Time       3  569.1  189.69   24.48 7.3e-08 ***
Residuals 27  209.2    7.75
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Now the analysis shows the significant effect of Time.

Visualizing the results
One way to visualize the results is to plot the mean weight loss on the y-axis and 
the month (0, 1, 2, 3) on the x-axis. Notice I use 0-3 to represent the levels of Time 
(Before, OneMonth, TwoMonths, ThreeMonths).

Figure 12-3 shows the plot, along with the standard error of the mean (reflected 
in the error bars).

The foundation for the plot is a data frame that holds time (for convenience, as a 
numerical variable), mean weight, and standard error:

time <- c(0,1,2,3)

mean.weight <- c(mean(Before),mean(OneTime),  
mean(TwoTimes),mean(ThreeTimes))

se.weight <- c(sd(Before), sd(OneTime), sd(TwoTimes), 
sd(ThreeTimes))/sqrt(length(Person))

wt.means.frame <- data.frame(time,mean.weight,se.weight)

> wt.means.frame
  time mean.weight se.weight



250      PART 3  Drawing Conclusions from Data

1     0       192.4  6.144917
2     1       189.5  5.856146
3     2       185.8  5.466667
4     3       182.4  5.443038

Plotting in ggplot2:

ggplot(wt.means.frame,aes(x=time,y=mean.weight)) +
  geom_point(size=3)+
  geom_errorbar(aes(ymin=mean.weight-se.weight,     

ymax=mean.weight+se.weight),width=.1)

The first statement maps the independent variable into the x-axis, and the depen-
dent variable into the y-axis. The second statement specifies a point as the geo-
metric object and sets its size. The third statement gives the boundaries and size 
for the error-bars.

Getting Trendy
In situations like the one in the weight-loss example, you have an independent 
variable that’s quantitative — its levels are numbers (0 months, 1 month, 2 months, 
3 months). Not only that, but in this case, the intervals are equal.

FIGURE 12-3: 
The means and 
standard errors 
for the weight-
loss example.



CHAPTER 12  Testing More than Two Samples      251

With that kind of an independent variable, it’s often a good idea to look for trends 
in the data rather than just plan comparisons among means. As Figure 12-3 shows, 
the means in the weight-loss example seem to fall along a line.

Trend analysis is the statistical procedure that examines that pattern. The objective 
is to see whether the pattern contributes to the significant differences among the 
means.

A trend can be linear, as it apparently is in this example, or nonlinear (in which 
the means fall on a curve). The two nonlinear types of curves for four means are 
called quadratic and cubic. If the means show a quadratic trend, they align in a pat-
tern that shows one change of direction. Figure 12-4 shows what I mean.

If the means show a cubic trend, they align in a pattern that shows two changes 
of direction. Figure 12-5 shows what a cubic trend looks like.

The three components are orthogonal, so

SS SS SS SSLinear Quadratic Cubic Time

and

df df df dfLinear Quadratic Cubic Time

To analyze a trend, you use comparison coefficients — those numbers you use in 
contrasts. You use them in a slightly different way than you did before. The for-
mula for computing a SS for a trend component is

SS
N cx

cComponent

2

2

In this formula, N is the number of people and c represents the coefficients.

FIGURE 12-4: 
A quadratic trend 
with four means.



252      PART 3  Drawing Conclusions from Data

So you start by using comparison coefficients to find a sum of squares for linear 
trend. I abbreviate that as SSLinear.

The comparison coefficients are different for different numbers of samples. For 
four samples, the linear coefficients are –3, –1, 1, and 3.

The easiest way to get the coefficients is to look them up in a stat textbook or on 
the Internet!

For this example, the SSLinear is

SS
N cx

cLinear

2

2

10 3 192 4 1 189 5 1 185 8 3. . . 182 4

3 1 3 1
567 845

2

2 2 2 2

.
.

After you calculate SSLinear, you divide it by dfLinear to produce MSLinear. This is 
extremely easy because dfLinear = 1. Divide MSLinear by MSError and you have an F. If 
that F is higher than the critical value of F with df = 1 and dfError at your α, then 
weight is decreasing in a linear way over the period of the weight-loss program. 
The F-ratio here is

F MS
MS

Linear

Error

567 85
7 75

73 30.
.

.

The critical value for F with 1 and 27 degrees of freedom and α = .05 is 4.21. Because 
the calculated value is larger than the critical value, statisticians would say the 
data shows a significant linear component. This, of course, verifies what you see in 
Figure 12-3.

The linear component of SSTime is so large that the other two components are very 
small. I’ll walk you through the computations anyway.

FIGURE 12-5: 
A cubic trend with 

four means.



CHAPTER 12  Testing More than Two Samples      253

The coefficients for the quadratic component are 1,-1,-1,1. So the SSQuadratic is

SS
N cx

cQuadratic

2

2

10 1 192 4 1 189 5 1 185 8. . . 1 182 4

1 1 1 1
0 6

2

2 2 2 2

.
.

The coefficients for the cubic component are -1,3,-3,1, and the SSCubic is

SS
N cx

cCubic

2

2

10 1 192 4 3 189 5 3 185 8 1. . . 182 4

1 3 3 1
0 6

2

2 2 2 2

.
.

Rather than complete the final calculations to get the microscopic F-ratios, I’ll let 
R do the work for you in the next subsection.

A LITTLE MORE ON TREND
Linear, quadratic, and cubic are as far as you can go with four means. With five means, 
you can look for those three plus a quartic component (three direction changes), and 
with six you can try to scope out all the preceding plus a quintic component (four direc-
tion changes). What do the coefficients look like?

For five means, they’re:

Linear: –2, –1, 0, 1, 2

Quadratic: 2, –1, –2, –1, 2

Cubic: -1, 2, 0, –2, 1

Quartic: 1, –4, 6, –4, 1

And for six means. They’re:

Linear: –5, –3, –1, 1, 3, 5

Quadratic: 5, –1, –4, –4, –1, 5

Cubic: –5, 7, 4, –4, –7, 5

Quartic: 1, –3, 2, 2, –3, 1

Quintic: –1, 5, –10, 10, –5, 1

I could go on with more means, coefficients, and exotic component names (hextic? 
septic?), but enough already. This should hold you for a while.



254      PART 3  Drawing Conclusions from Data

Trend Analysis in R
I treat this analysis pretty much the same way as contrasts for the independent 
samples example. I begin by creating a matrix of the coefficients for the three 
trend components:

contrasts(Weight.frame.melt$Time) <- matrix(c(-3,-1,1,3,1,-1, 
-1,1,-1,3,-3,1), 4, 3)

Then I run the ANOVA, adding the contrasts argument:

rm.anova <- aov(Weight ~ Time + Error(factor(Person)/Time), 
data=Weight.frame.melt,
contrasts = contrasts(Weight.frame.melt$Time))

Finally, I apply summary() (including the split of Time into three components) to 
print the table of the analysis:

summary(rm.anova,split=list(Time=list("Linear" =1, 
"Quadratic"=2,"Cubic" =3)))

Running this statement produces this table:

Error: factor(Person)
          Df Sum Sq Mean Sq F value Pr(>F)
Residuals  9  11632    1292

Error: factor(Person):Time
                  Df Sum Sq Mean Sq F value   Pr(>F)
Time               3  569.1   189.7  24.485 7.30e-08 ***
  Time: Linear     1  567.8   567.8  73.297 3.56e-09 ***
  Time: Quadratic  1    0.6     0.6   0.081    0.779
  Time: Cubic      1    0.6     0.6   0.078    0.782
Residuals         27  209.2     7.7
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Once again, you can see the overwhelming linearity of the trend — just as we 
would expect from Figure 12-3.



CHAPTER 13  More Complicated Testing      255

IN THIS CHAPTER

 » Working with two variables

 » Working with replications

 » Understanding interactions

 » Mixing variable types

 » Working with multiple dependent 
variables

More Complicated 
Testing

In Chapter 11, I show you how to test hypotheses with two samples. In Chapter 12, 
I show you how to test hypotheses when you have more than two samples. The 
common thread in both chapters is one independent variable (also called a 

factor).

Many times, you have to test the effects of more than one factor. In this chapter, 
I show how to analyze two factors within the same set of data. Several types of 
situations are possible, and I describe R functions that deal with each one.

Cracking the Combinations
Imagine that a company has two methods of presenting its training information: 
One is via a person who presents the information orally, and the other is via a text 
document. Imagine also that the information is presented in either a humorous 
way or a technical way. I refer to the first factor as Presentation Method and to the 
second as Presentation Style.

Chapter 13



256      PART 3  Drawing Conclusions from Data

Combining the two levels of Presentation Method with the two levels of Presenta-
tion Style gives four combinations. The company randomly assigns 4 people to 
each combination, for a total of 16 people. After providing the training, they test 
the 16 people on their comprehension of the material.

Figure 13-1 shows the combinations, the four comprehension scores within each 
combination, and summary statistics for the combinations, rows, and columns.

With each of two levels of one factor combined with each of two levels of the other 
factor, this kind of study is called a 2 X 2 factorial design.

Here are the hypotheses:

H0: μSpoken = μText

H1: Not H0

and

H0: μHumorous = μTechnical

H1: Not H0

Because the two presentation methods (Spoken and Text) are in the rows, I refer 
to Presentation Type as the row factor. The two presentation styles (Humorous and 
Technical) are in the columns, so Presentation Style is the column factor.

FIGURE 13-1: 
Combining 

the levels of 
Presentation 
Method with 
the levels of 

Presentation 
Style.



CHAPTER 13  More Complicated Testing      257

Interactions
When you have rows and columns of data and you’re testing hypotheses about the 
row factor and the column factor, you have an additional consideration. Namely, 
you have to be concerned about the row-column combinations. Do the combina-
tions result in peculiar effects?

For the example I present, it’s possible that combining Spoken and Text with 
Humorous and Technical yields an unexpected result. In fact, you can see that in 
the data in Figure 13-1: For Spoken presentation, the Humorous style produces a 
higher average than the Technical style. For Text presentation, the Humorous 
style produces a lower average than the Technical style.

A situation like that is called an interaction. In formal terms, an interaction occurs 
when the levels of one factor affect the levels of the other factor differently. The 
label for the interaction is row factor × column factor, so for this example, that’s 
Method × Type.

The hypotheses for this are

H0: Presentation Method does not interact with Presentation Style

H1: Not H0

The analysis
The statistical analysis is, once again, an analysis of variance (ANOVA). As is the 
case with the ANOVAs I show you earlier, it depends on the variances in the data. 
It’s called a two-factor ANOVA, or a two-way ANOVA.

The first variance is the total variance, labeled MST. That’s the variance of all 16 
scores around their mean (the grand mean), which is 44.81:

MST

57 45 31 56 45 31 72 45 31
16 1

5885 43
15

2 2 2
. . ... . . 3392 36.

The denominator tells you that df = 15 for MST.

The next variance comes from the row factor. That’s MSMethod, and it’s the vari-
ance of the row means around the grand mean:

MSMethod

8 41 75 45 31 8 48 88 45 31
2 1

203 06
1

20
2 2

. . . . . 33 06.



258      PART 3  Drawing Conclusions from Data

The 8 in the equation multiplies each squared deviation because you have to take 
into account the number of scores that produced each row mean. The df for 
MSMethod is the number of rows – 1, which is 1.

Similarly, the variance for the column factor is

MS Style

8 43 25 45 31 8 46 38 45 31
2 1

18 06
1

18 0
2 2

. . . . . . 66

The df for MSStyle is 1 (the number of columns – 1).

Another variance is the pooled estimate based on the variances within the four 
row-column combinations. It’s called the MSWithin, or MSW. (For details on MSw 
and pooled estimates, see Chapter 12.). For this example,

MSW

4 1 12 92 4 1 12 92 4 1 12 25 4 1 12 33
4 1

. . . .
4 1 4 1 4 1

151 25
12

12 60. .

This one is the error term (the denominator) for each F you calculate. Its denomi-
nator tells you that df = 12 for this MS.

The last variance comes from the interaction between the row factor and the col-
umn factor. In this example, it’s labeled MSMethod X Type. You can calculate this in a 
couple of ways. The easiest way is to take advantage of this general relationship:

SS SS SS SS SSRow X Column T Row Factor Column Factor W

And this one:

df df df df dfRow X Column T Row Factor Column Factor W

Another way to calculate this is

dfRow X Column number of rows - 1 number of columns - 1

The MS is

MS SS
dfRow X Column

Row X Column

Row X Column

For this example,

MS
SS
dfMethod X Style

Method X Style

Method X Style

5885 43. 2203 06 18 06 151 25
15 12 1 1

5513 06
1

5513 06

. . .

. .



CHAPTER 13  More Complicated Testing      259

To test the hypotheses, you calculate three Fs:

F
MS
MS

F MS
MS

Style

W

Method

W

18 06
12 60

1 43

203 06
12 60

16 1

.

.
.

.
.

. 22

5513 06
12 60

437 54F
MS

MS
Method X Style

W

.
.

.

For df = 1 and 12, the critical F at α = .05 is 4.75. (You can use qf() to verify). The 
decision is to reject H0 for the Presentation Method and the Method X Style inter-
action, and to not reject H0 for the Presentation Style.

It’s possible, of course, to have more than two levels of each factor. It’s also pos-
sible to have more than two factors. In that case, things (like interactions) become 
way more complex.

Two-Way ANOVA in R
As in any analysis, the first step is to get the data in shape, and in R that means 
getting the data into long format.

Start with vectors for the scores in each of the columns in Figure 13-1:

humorous <- c(57,56,60,64,33,25,28,31)
technical <- c(22,21,29,25,66,65,71,72)

Then combine them to produce a vector of all scores:

Score = c(humorous,technical)

Next, create vectors for Method and for Style:

Method =rep(c("spoken","text"),each=4,2)
Style =rep(c("humorous","technical"),each=8)

And then put everything into a data frame:

pres.frame <-data.frame(Method,Style,Score)



260      PART 3  Drawing Conclusions from Data

which looks like this:

> pres.frame
   Method     Style Score
1  spoken  humorous    57
2  spoken  humorous    56
3  spoken  humorous    60
4  spoken  humorous    64
5    text  humorous    33
6    text  humorous    25
7    text  humorous    28
8    text  humorous    31
9  spoken technical    22
10 spoken technical    21
11 spoken technical    29
12 spoken technical    25
13   text technical    66
14   text technical    65
15   text technical    71
16   text technical    72

And here’s the two-way analysis of variance:

> two.way <- aov(Score ~ Style*Method,
 data = pres.frame)

The Style*Method expression indicates that all levels of Style (humorous and 
technical) combine with all levels of Method (spoken and text).

Here’s the ANOVA table:

> summary(two.way)
             Df Sum Sq Mean Sq F value   Pr(>F)
Style         1     18      18   1.433  0.25438
Method        1    203     203  16.111  0.00172 **
Style:Method  1   5513    5513 437.400 8.27e-11 ***
Residuals    12    151      13
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again, the f-values and p-values indicate rejection of the null hypothesis for 
Method and for the Style X Method interaction, but not for Style.

With just two levels of each factor, no post-analysis tests are necessary to explore 
a significant result.



CHAPTER 13  More Complicated Testing      261

Visualizing the two-way results
The best way to show the results of a study like this one is with a grouped bar plot 
that shows the means and the standard errors. The foundation for the plot is a 
data frame that holds these statistics for each combination of levels of the inde-
pendent variables:

> mse.frame
  Method     Style  Mean       SE
1 spoken  humorous 59.25 1.796988
2   text  humorous 29.25 1.750000
3 spoken technical 24.25 1.796988
4   text technical 68.50 1.755942

To create this data frame, start by creating four vectors:

Score.spk.hum <- with(pres.frame, Score[Method=="spoken" &  
       Style=="humorous"])

Score.txt.hum <- with(pres.frame, Score[Method=="text" &  
       Style=="humorous"])

Score.spk.tec <- with(pres.frame, Score[Method=="spoken" &  
        Style=="technical"])

Score.txt.tec <- with(pres.frame, Score[Method=="text" &  
        Style=="technical"])

Then concatentate the vector means into another vector:

mean.Scores <- c(mean(Score.spk.hum), mean(Score.txt.hum),  
       mean(Score.spk.tec), mean(Score.txt.tec))

and concatenate the standard errors into still another vector:

se.Scores <- c(sd(Score.spk.hum), sd(Score.txt.hum), sd(Score. 
       spk.tec), sd(Score.txt.tec))/2

In dividing by 2, I cheated a bit on that last one. Each combination consists of four 
scores, and the square root of 4 is 2.

Create a vector for the levels of Method and another for the levels of Style:

mse.Method =rep(c("spoken","text"),2)
mse.Style =rep(c("humorous","technical"),each=2)



262      PART 3  Drawing Conclusions from Data

Then create the data frame:

mse.frame <- data.frame(mse.Method,mse.Style,mean.Scores,se.Scores)

Finally, make the column-names a little nicer-looking:

colnames(mse.frame)=c("Method","Style","Mean","SE")

On to the visualization. In ggplot2, begin with a ggplot() statement that maps 
the components of the data to the components of the graph:

ggplot(mse.frame,aes(x=Method,y=Mean,fill=Style))

Now use a geom_bar that takes the given mean as its statistic:

  geom_bar(stat = "identity", position = "dodge",
        color = "black", width = .5)

The position argument sets up this plot as a grouped bar plot, the color argu-
ment specifies “black” as the border color, and width sets up a size for nice-
looking bars. You might experiment a bit to see whether another width is more to 
your liking.

If you don’t change the colors of the bars, they appear as light red and light blue, 
which are pleasant enough but would be indistinguishable on a black-and-white 
page. Here’s how to change the colors:

scale_fill_grey(start = 0,end = .8)

In the grey scale, 0 corresponds to black and 1 to white. Finally, the geom_ 
errorbar adds the bars for the standard errors:

geom_errorbar(aes(ymin=Mean,ymax=Mean+SE), width=.2,  
        position=position_dodge(width=.5))

Using Mean as the value of ymin ensures that you plot only the upper error bar, 
which is what you typically see in published bar plots. The position argument 
uses the position_dodge() function to center the error bars.

So, these lines of code

ggplot(mse.frame,aes(x=Method,y=Mean,fill=Style)) +
  geom_bar(stat = "identity", position = "dodge",
           color = "black", width = .5)+



CHAPTER 13  More Complicated Testing      263

  scale_fill_grey(start = 0,end = .8)+
  geom_errorbar(aes(ymin=Mean,ymax=Mean+SE), width=.2,  

          position=position_dodge(width=.5))

produce Figure 13-2.

This graph clearly shows the Method X Style interaction. For the spoken presen-
tation, humorous is more effective than technical, and it’s the reverse for the text 
presentation.

Two Kinds of Variables . . . at Once
What happens when you have a Between Groups variable and a Within Groups 
variable . . . at the same time? How can that happen?

Very easily. Here’s an example. Suppose you want to study the effects of presenta-
tion media on the reading speeds of fourth-graders. You randomly assign the 
fourth-graders (I’ll call them subjects) to read either books or e-readers. So 
“Medium” is the Between Groups variable.

Let’s say you’re also interested in the effects of font. So you assign each subject to 
read each of these fonts: Haettenschweiler, Arial, and Calibri. (I’ve never seen a 

FIGURE 13-2: 
Means and 

standard 
errors of the 
presentation 

study.



264      PART 3  Drawing Conclusions from Data

document in Haettenschweiler, but it’s my favorite font because “Haettenschwei-
ler” is fun to say. Try it. Am I right?) Because each subject reads all the fonts, 
“Font” is the Within Groups variable. For completeness, you have to randomly 
order the fonts for each subject.

Table  13-1 shows data that might result from a study like this. The dependent 
variable is the score on a reading comprehension test.

Because this kind of analysis mixes a Between Groups variable with a Within 
Groups variable, it’s called a Mixed ANOVA.

To show you how the analysis works, I present the kind of table that results from 
a Mixed ANOVA. It’s a bit more complete than the output of an ANOVA in R, but 
bear with me. Table 13-2 shows it to you in a generic way. It’s categorized into a 
set of sources that make up Between Groups variability and a set of sources that 
make up Within Groups (also known as Repeated Measures) variability.

In the Between category, A is the name of the Between Groups variable. (In the 
example, that’s Medium.) Read “S/A” as “Subjects within A.” This just says that 
the people in one level of A are different from the people in the other levels of A.

In the Within category, B is the name of the Within Groups variable. (In the exam-
ple, that’s Font.) A X B is the interaction of the two variables. B X S/A is something 
like the B variable interacting with subjects within A. As you can see, anything 
associated with B falls into the Within Groups category.

TABLE 13-1	 Data for a Study of Presentation Media (Between Groups  
variable) and Font (Within Groups variable)

Medium Subject Haettenschweiler Arial Calibri

Book Alice 48 40 38

Brad 55 43 45

Chris 46 45 44

Donna 61 53 53

e-reader Eddie 43 45 47

Fran 50 52 54

Gil 56 57 57

Harriet 53 53 55



CHAPTER 13  More Complicated Testing      265

The first thing to note is the three F-ratios. The first one tests for differences 
among the levels of A, the second for differences among the levels of B, and the 
third for the interaction of the two. Notice also that the denominator for the first 
F-ratio is different from the denominator for the other two. This happens more 
and more as ANOVAs increase in complexity.

Next, it’s important to be aware of some relationships. At the top level:

SSBetween + SSWithin = SSTotal

dfBetween + dfWithin = dfTotal

The Between component breaks down further:

SSA + SSS/A = SSBetween

dfA + dfS/A = dfBetween

The Within component breaks down, too:

SSB + SSA X B + SSB X S/A = SSWithin

dfB + dfA X B + dfB X S/A = dfWithin

It’s possible to have more than one Between Groups factor and more than one 
repeated measure in a study.

On to the analysis. . . .

TABLE 13-2	 The ANOVA Table for the Mixed ANOVA
Source SS df MS F

Between SSBetween dfBetween

A SSA dfA SSA/dfA MSA/MSS/A

S/A SSS/A dfS/A SSS/A/dfS/A

Within SSWithin dfWithin

B SSB dfB SSB/dfB MSB/MSB X S/A

A X B SSA X B dfA X B SSA X B /dfA X B MSA X B/MSB X S/A

B X S/A SSB X S/A dfB XS/A SSB X S/A/dfB X S/A

Total SSTotal dfTotal



266      PART 3  Drawing Conclusions from Data

Mixed ANOVA in R
First, I show you how to use the data from Table 13-1 to build a data frame in long 
format. When finished, it looks like this:

> mixed.frame
     Medium             Font Subject Score
1      Book Haettenschweiler   Alice    48
2      Book Haettenschweiler    Brad    55
3      Book Haettenschweiler   Chris    46
4      Book Haettenschweiler   Donna    61
5      Book            Arial   Alice    40
6      Book            Arial    Brad    43
7      Book            Arial   Chris    45
8      Book            Arial   Donna    53
9      Book          Calibri   Alice    38
10     Book          Calibri    Brad    45
11     Book          Calibri   Chris    44
12     Book          Calibri   Donna    53
13 E-reader Haettenschweiler   Eddie    43
14 E-reader Haettenschweiler    Fran    50
15 E-reader Haettenschweiler     Gil    56
16 E-reader Haettenschweiler Harriet    53
17 E-reader            Arial   Eddie    45
18 E-reader            Arial    Fran    52
19 E-reader            Arial     Gil    57
20 E-reader            Arial Harriet    53
21 E-reader          Calibri   Eddie    47
22 E-reader          Calibri    Fran    54
23 E-reader          Calibri     Gil    57
24 E-reader          Calibri Harriet    55

I begin with a vector for the Book scores and a vector for the e-reader scores:

BkScores <- c(48,55,46,61,40,43,45,53,38,45,44,53)
ErScores <- c(43,50,56,53,45,52,57,53,47,54,57,55)

Then I combine them into a vector:

Score <-c(BkScores,ErScores)



CHAPTER 13  More Complicated Testing      267

I complete a similar process for the subjects: one vector for the Book subjects and 
another for the e-reader subjects. Note that I have to repeat each list three times:

BkSubjects <- rep(c("Alice","Brad","Chris","Donna"),3)
ErSubjects <- rep(c("Eddie","Fran","Gil","Harriet"),3)

Then I combine the two:

Subject <- c(BkSubjects,ErSubjects)

Next up is a vector for Book versus e-reader, and note that I repeat that list 12 
times:

Medium <- rep(c("Book","E-reader"),each=12)

The vector for Font is a bit tricky. I have to repeat each font name four times and 
then repeat that again:

Font <- rep(c("Haettenschweiler","Arial","Calibri"), 
        each=4,2)

I can now create the data frame:

mixed.frame <-data.frame(Medium,Font,Subject,Score)

The analysis is

mixed.anova <- aov(Score ~ Medium*Font + Error(Subject/Font), 
        data=mixed.frame)

The arguments show that Score depends on Medium and Font and that Font is 
repeated throughout each Subject.

To see the table:

> summary(mixed.anova)

Error: Subject
          Df Sum Sq Mean Sq F value Pr(>F)
Medium     1  108.4  108.37   1.227   0.31
Residuals  6  529.9   88.32



268      PART 3  Drawing Conclusions from Data

Error: Subject:Font
            Df Sum Sq Mean Sq F value   Pr(>F)
Font         2  40.08   20.04   5.681 0.018366 *
Medium:Font  2 120.25   60.13  17.043 0.000312 ***
Residuals   12  42.33    3.53
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can reject the null hypothesis about Font and about the interaction of Medium 
and Font, but not about Medium.

Visualizing the Mixed ANOVA results
You use ggplot() to create a bar plot of the means and standard errors. Begin by 
creating this data frame, which contains the necessary information:

> mse.frame
    Medium             Font  Mean       SE
1     Book Haettenschweiler 52.50 3.427827
2     Book            Arial 45.25 2.780138
3     Book          Calibri 45.00 3.082207
4 E-reader Haettenschweiler 50.50 2.783882
5 E-reader            Arial 51.75 2.495830
6 E-reader          Calibri 53.25 2.174665

To create this data frame, follow the same steps as in the earlier “Visualizing the 
two-way results” section, with appropriate changes. The ggplot code is also the 
same as in that earlier section, with changes to variable names:

ggplot(mse.frame,aes(x=Medium,y=Mean,fill=Font)) +
  geom_bar(stat = "identity", position =  

         "dodge",color="black",width = .5) +
  scale_fill_grey(start = 0,end = .8) +
  geom_errorbar(aes(ymin=Mean,ymax=Mean+SE),  

          width=.2,position=position_dodge(width=.5))

The result is Figure 13-3. The figure shows the Between Groups variable on the 
x-axis and levels of the repeated measure in the bars — but that’s just my prefer-
ence. You might prefer vice versa. In this layout, the different ordering of the 
heights of the bars from Book to e-reader reflects the interaction.



CHAPTER 13  More Complicated Testing      269

After the Analysis
As I point out in Chapter 12, a significant result in an ANOVA tells you that an 
effect is lurking somewhere in the data. Post-analysis tests tell you where. Two 
types of tests are possible: planned or unplanned. Chapter 12 provides the details.

In this example, the Between Groups variable has only two levels. For this reason, 
if the result is statistically significant, no further test would be necessary. The 
Within Groups variable, Font, is significant. Ordinarily, the test would proceed as 
described in Chapter 12. In this case, however, the interaction between Media and 
Font necessitates a different path.

With the interaction, post-analysis tests can proceed in either (or both) of two 
ways. You can examine the effects of each level of the A variable (the Between 
Groups variable) on the levels of the B variable (the repeated measure), or you can 
examine the effects of each level of the B variable on the levels of the A variable. 
Statisticians refer to these as simple main effects.

For this example, the first way examines the means for the three fonts in a book 
and the means for the three fonts in the e-reader. The second way examines the 
means for the book versus the mean for the e-reader with Haettenschweiler font, 
with Arial, and with Calibri.

FIGURE 13-3: 
Means and 

standard errors 
for the Book- 

versus-e-reader 
study.



270      PART 3  Drawing Conclusions from Data

Statistics texts provide complicated formulas for calculating these analyses. 
R makes them easy. To analyze the three fonts in the book, do a repeated mea-
sures ANOVA for Subjects 1–4. To analyze the three fonts in the e-reader, do a 
repeated measures ANOVA for Subjects 5–8.

For the analysis of the book versus the e-reader in the Haettenschweiler font, 
that’s a single-factor ANOVA for the Haettenschweiler data. You’d complete a 
similar procedure for each of the other fonts.

Multivariate Analysis of Variance
The examples thus far in this chapter involve a dependent variable and more than 
one independent variable. Is it possible to have more than one dependent variable? 
Absolutely! That gives you MANOVA  — the abbreviation for the title of this 
section.

When might you encounter this type of situation? Suppose you’re thinking of 
adopting one of three textbooks for a basic science course. You have 12 students, 
and you randomly assign four of them to read Book 1, another four to read Book 2, 
and the remaining four to read Book 3. You’re interested in how each book pro-
motes knowledge in physics, chemistry, and biology, so after the students read 
the books, they take a test of fundamental knowledge in each of those three 
sciences.

The independent variable is Book, and the dependent variable is multivariate — 
it’s a vector that consists of Physics score, Chemistry score, and Biology score. 
Table 13-3 shows the data.

TABLE 13-3	 Data for the Science Textbook MANOVA Study
Student Book Physics Chemistry Biology

Art Book 1 50 66 71

Brenda Book 1 53 45 56

Cal Book 1 52 48 65

Dan Book 1 54 51 68

Eva Book 2 75 55 88

Frank Book 2 72 58 85



CHAPTER 13  More Complicated Testing      271

The dependent variable for the first student in the Book 1 sample is a vector con-
sisting of 50, 66, and 71.

What are the hypotheses in a case like this? The null hypothesis has to take all 
components of the vector into account, so here are the null and the alternative:

H
Book Phys

Book Chem

Book Bio

Book Phys

0

1

1

1

2

:
,

,

,

,

BBook Chem

Book Bio

Book Phys

Book Chem

Boo

2

2

3

3,

,

,

,

kk Bio

H Not H

3

1 0

,

:  

I don’t go into the same depth on MANOVA in this chapter as I did on ANOVA. I 
don’t discuss SS, MS, and df. That would require knowledge of math (matrix alge-
bra) and other material that’s beyond the scope of this chapter. Instead, I dive 
right in and show you how to get the analysis done.

MANOVA in R
The data frame for the MANOVA looks just like Table 13-3:

> Textbooks.frame
   Student  Book Physics Chemistry Biology
1      Art Book1      50        66      71
2   Brenda Book1      53        45      56
3      Cal Book1      52        48      65
4      Dan Book1      54        51      68
5      Eva Book2      75        55      88
6    Frank Book2      72        58      85
7     Greg Book2      64        59      79
8     Hank Book2      76        59      82
9     Iris Book3      68        67      55

Student Book Physics Chemistry Biology

Greg Book 2 64 59 79

Hank Book 2 76 59 82

Iris Book 3 68 67 55

Jim Book 3 61 56 59

Kendra Book 3 62 66 63

Lee Book 3 64 78 61



272      PART 3  Drawing Conclusions from Data

10     Jim Book3      61        56      59
11  Kendra Book3      62        66      63
12     Lee Book3      64        78      61

In ANOVA, the dependent variable for the analysis is a single column. In MANOVA, 
the dependent variable for the analysis is a matrix. In this case, it’s a matrix with 12 
rows (one for each student) and three columns (Physics, Chemistry, and Biology).

To create the matrix, use the cbind() function to bind the appropriate columns 
together. You can do this inside the manova() function that performs the 
analysis:

m.analysis <- manova(cbind(Physics,Chemistry,Biology) ~ Book, 
        data = Textbooks.frame)

The formula inside the parentheses shows the 12 X 3 matrix (the result of cbind()) 
depending on Book, with Textbooks.frame as the source of the data.

As always, apply summary() to see the table:

> summary(m.analysis)
          Df Pillai approx F num Df den Df    Pr(>F)
Book       2 1.7293   17.036      6     16 3.922e-06 ***
Residuals  9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The only new item is Pillai, a test statistic that results from a MANOVA. It’s a 
little complicated, so I’ll leave it alone. Suffice to say that R turns Pillai into an 
F-ratio (with 6 and 16 df) and that’s what you use as the test statistic. The high F 
and exceptionally low p-value indicate rejection of the null hypothesis.

Pillai is the default test. In the summary statement, you can specify other 
MANOVA test statistics. They’re called "Wilks", "Hotelling-Lawley", and "Roy". 
For example:

> summary(m.analysis, test = "Roy")
          Df    Roy approx F num Df den Df    Pr(>F)
Book       2 10.926   29.137      3      8 0.0001175 ***
Residuals  9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The different tests result in different values for F and df, but the overall decision 
is the same.



CHAPTER 13  More Complicated Testing      273

This example is a MANOVA extension of an ANOVA with just one factor. It’s pos-
sible to have multiple dependent variables with more complex designs (like the 
ones I discuss earlier in this chapter).

Visualizing the MANOVA results
The objective of the study is to show how the distribution of Physics, Chemistry, 
and Biology scores differs from book to book. A separate set of boxplots for each 
book visualizes the differences. Figure 13-4 shows what I’m talking about.

The ggplot2 faceting capability splits the data by Book and creates the three side- 
by-side graphs. Each graph is called a facet. (See the “Exploring the data” section 
in Chapter 4.)

To set this all up, you have to reshape the Textbooks.frame into long format. 
With the reshape2 package installed (on the Packages tab, select the check box 
next to reshape2), apply the melt() function:

Textbooks.frame.melt = melt(Textbooks.frame)

FIGURE 13-4: 
Three boxplots 

show the 
distribution 

of scores for 
Physics, 

Chemistry, 
and Biology 

for each book.



274      PART 3  Drawing Conclusions from Data

After assigning column names:

colnames(Textbooks.frame.melt) = c("Student", "Book", "Science", 
          "Score")

the first six rows of the melted frame are

> head(Textbooks.frame.melt)
  Student  Book Science Score
1     Art Book1 Physics    50
2  Brenda Book1 Physics    53
3     Cal Book1 Physics    52
4     Dan Book1 Physics    54
5     Eva Book2 Physics    75
6   Frank Book2 Physics    72

To create Figure 13-4 in ggplot2, begin with

ggplot(Textbooks.frame.melt,(aes(x=Science,y=Score)))

which indicates the data frame and aesthetically maps Science to the x-axis and 
Score to the y-axis.

Next, use stat_boxplot() to calculate the perpendicular lines for the whiskers:

stat_boxplot(geom="errorbar", width =.5)

Then, a geom function for the boxplot:

geom_boxplot()

And, finally, the statement that splits the data by Book and creates a row of three 
graphs (excuse me — facets):

facet_grid(. ~ Book)

The dot followed by the tilde (~) followed by Book arranges the facets side-by- 
side. To put the three graphs in a column, it’s

facet_grid(Book ~ .)



CHAPTER 13  More Complicated Testing      275

Putting it all together, the code for creating Figure 13-4 is

ggplot(Textbooks.frame.melt,(aes(x=Science,y=Score)))+
  stat_boxplot(geom="errorbar", width =.5) +
  geom_boxplot() +
  facet_grid(. ~ Book)

After the analysis
When a MANOVA results in rejection of the null hypothesis, one way to proceed is 
to perform an ANOVA on each component of the dependent variable. The results 
tell you which components contribute to the significant MANOVA.

The summary.aov() function does this for you. Remember that m.analysis holds 
the results of the MANOVA in this section’s example:

> summary.aov(m.analysis)
 Response Physics :
            Df Sum Sq Mean Sq F value    Pr(>F)
Book         2 768.67  384.33  27.398 0.0001488 ***
Residuals    9 126.25   14.03
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response Chemistry :
            Df Sum Sq Mean Sq F value  Pr(>F)
Book         2  415.5 207.750  3.6341 0.06967 .
Residuals    9  514.5  57.167
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response Biology :
            Df Sum Sq Mean Sq F value    Pr(>F)
Book         2 1264.7  632.33  27.626 0.0001441 ***
Residuals    9  206.0   22.89
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



276      PART 3  Drawing Conclusions from Data

These analyses show that Physics and Biology contribute to the overall effect, 
and Chemistry just misses significance.

Notice the word Response in these tables. This is R-terminology for “dependent 
variable.”

This separate-ANOVAs procedure doesn’t consider the relationships among pairs 
of components. The relationship is called correlation, which I discuss in 
Chapter 15.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      277

IN THIS CHAPTER

 » Summarizing a relationship

 » Working with regression

 » Taking another look at ANOVA

 » Exploring analysis of covariance

 » Examining the general linear model

Regression: Linear, 
Multiple, and the 
General Linear Model

One of the main things you do when you work with statistics is make pre-
dictions. The idea is to use data from one or more variables to predict the 
value of another variable. To do this, you have to understand how to sum-

marize relationships among variables, and to test hypotheses about those 
relationships.

In this chapter, I introduce regression, a statistical way to do just that. Regression 
also enables you to use the details of relationships to make predictions. First, 
I  show you how to analyze the relationship between one variable and another. 
Then I show you how to analyze the relationship between a variable and two oth-
ers. Finally, I let you in on the connection between regression and ANOVA.

The Plot of Scatter
FarMisht Consulting, Inc., is a consulting firm with a wide range of specialties. It 
receives numerous applications from people interested in becoming FarMisht 
consultants. Accordingly, FarMisht Human Resources has to be able to predict 

Chapter 14



278      PART 3  Drawing Conclusions from Data

which applicants will succeed and which ones will not. They’ve developed a Per-
formance measure that they use to assess their current employees. The scale is 
0–100, where 100 indicates top performance.

What’s the best prediction for a new applicant? Without knowing anything about 
an applicant, and knowing only their own employees’ Performance scores, the 
answer is clear: It’s the average Performance score among their employees. 
Regardless of who the applicant is, that’s all the Human Resources team can say 
if its members’ knowledge is limited.

With more knowledge about the employees and about the applicants, a more 
accurate prediction becomes possible. For example, if FarMisht develops an 
 aptitude test and assesses its employees, Human Resources can match up every 
employee’s Performance score with their Aptitude score and see whether the two 
pieces of data are somehow related. If they are, an applicant can take the FarMisht 
aptitude test, and Human Resources can use that score (and the relationship 
between Aptitude and Performance) to help make a prediction.

Figure 14-1 shows the Aptitude-Performance matchup in a graphical way. Because 
the points are scattered, it’s called a scatter plot. By convention, the vertical axis (the 
y-axis) represents what you’re trying to predict. That’s also called the dependent 
variable, or the y-variable. In this case, that’s Performance. Also by convention, the 
horizontal axis (the x-axis) represents what you’re using to make your prediction. 
That’s also called the independent variable, or x-variable. Here, that’s Aptitude.

Each point in the graph represents an individual’s Performance and Aptitude. In a 
scatter plot for a real-life corporation, you’d see many more points than I show 
here. The general tendency of the set of points seems to be that high Aptitude 

FIGURE 14-1: 
Aptitude and 

Performance at 
FarMisht 

Consulting.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      279

scores are associated with high Performance scores and that low Aptitude scores 
are associated with low Performance scores.

I’ve singled out one of the points. It shows a FarMisht employee with an Aptitude 
score of 54 and a Performance score of 58. I also show the average Performance 
score, to give you a sense that knowing the Aptitude-Performance relationship 
provides an advantage over knowing only the mean.

How do you make that advantage work for you? You start by summarizing the 
relationship between Aptitude and Performance. The summary is a line through 
the points. How and where do you draw the line?

I get to that in a minute. First, I have to tell you about lines in general.

Graphing Lines
In the world of mathematics, a line is a way to picture a relationship between an 
independent variable (x) and a dependent variable (y). In this relationship,

y x4 2

If you supply a value for x, you can figure out the corresponding value for y. The 
equation says to multiply the x-value by 2 and then add 3.

If x 1, for example, y 6. If x y2 8,  . Table 14-1 shows a number of x-y pairs in 
this relationship, including the pair in which x 0.

TABLE 14-1	 x-y Pairs in y x4 2

x y

0 4

1 6

2 8

3 10

4 12

5 14

6 16



280      PART 3  Drawing Conclusions from Data

Figure 14-2 shows these pairs as points on a set of x-y axes, along with a line 
through the points. Each time I list an x-y pair in parentheses, the x-value is first.

As the figure shows, the points fall neatly onto the line. The line graphs the equa-
tion y x4 2 . In fact, whenever you have an equation like this, where x isn’t 
squared or cubed or raised to any power higher than 1, you have what mathemati-
cians call a linear equation. (If x is raised to a higher power than 1, you connect the 
points with a curve, not a line.)

A couple of things to keep in mind about a line: You can describe a line in terms of 
how slanted it is, and where it runs into the y-axis.

The how-slanted-it-is part is the slope. The slope tells you how much y changes 
when x changes by one unit. In the line shown in Figure 14-2, when x changes by 
one (from 4 to 5, for example), y changes by two (from 12 to 14).

The where-it-runs-into-the-y-axis part is called the y-intercept (or sometimes 
just the intercept). That’s the value of y when x 0. In Figure 14-2, the y-intercept 
is 4.

You can see these numbers in the equation. The slope is the number that multi-
plies x, and the intercept is the number you add to x. In general,

y a bx

where a represents the intercept and b represents the slope.

The slope can be a positive number, a negative number, or 0. In Figure 14-2, the 
slope is positive. If the slope is negative, the line is slanted in a direction opposite 
to what you see in Figure  14-2. A negative slope means that y decreases as x 

FIGURE 14-2: 
The graph for 

y x4 2 .



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      281

increases. If the slope is 0, the line is parallel to the horizontal axis. If the slope 
is 0, y doesn’t change as x changes.

The same applies to the intercept — it can be a positive number, a negative num-
ber, or 0. If the intercept is positive, the line cuts off the y-axis above the x-axis. 
If the intercept is negative, the line cuts off the y-axis below the x-axis. If the 
intercept is 0, it intersects with the y-axis and the x-axis, at the point called the 
origin.

And now, back to what I was originally talking about.

Regression: What a Line!
I mention earlier that a line is the best way to summarize the relationship in the 
scatter plot in Figure  14-1. It’s possible to draw an infinite amount of straight 
lines through the scatter plot. Which one best summarizes the relationship?

Intuitively, the “best fitting” line ought to be the one that passes through the 
maximum number of points and isn’t too far away from the points it doesn’t pass 
through. For statisticians, that line has a special property: If you draw that line 
through the scatter plot, then draw distances (in the vertical direction) between 
the points and the line, and then square those distances and add them up, the sum 
of the squared distances is a minimum.

Statisticians call this line the regression line, and they indicate it as

y a bx

Each y' is a point on the line. It represents the best prediction of y for a given value 
of x.

To figure out exactly where this line is, you calculate its slope and its intercept. 
For a regression line, the slope and intercept are called regression coefficients.

The formulas for the regression coefficients are pretty straightforward. For the 
slope, the formula is

b
x x y y

x x
2

The intercept formula is

a y bx



282      PART 3  Drawing Conclusions from Data

I illustrate with an example. To keep the numbers manageable and comprehen-
sible, I use a small sample instead of the hundreds (or perhaps thousands) of 
employees you’d find in a scatter plot for a corporation. Table 14-2 shows a sample 
of data from 16 FarMisht consultants.

For this set of data, the slope of the regression line is

b
45 72 81 56 70 63 81 72 81 74 70 63 74 72 81. . . . ... . 666 70 63

45 72 81 81 72 81 74 72 81

0 654

2 2 2

.

. . ... .

.

TABLE 14-2	 Aptitude Scores and Performance Scores for  
16 FarMisht Consultants

Consultant Aptitude Performance

1 45 56

2 81 74

3 65 56

4 87 81

5 68 75

6 91 84

7 77 68

8 61 52

9 55 57

10 66 82

11 82 73

12 93 90

13 76 67

14 83 79

15 61 70

16 74 66

Mean 72.81 70.63

Variance 181.63 126.65

Standard Deviation 13.48 11.25



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      283

The intercept is

a y bx 70 63 0 654 72 81 23 03. . . .

So the equation of the best-fitting line through these 16 points is

y x23 03 0 654. .

Or, in terms of Performance and Aptitude, it’s

Predicted Performance Aptitude 23 03 0 654. .

The slope and the intercept of a regression line are generically called regression 
coefficients.

Using regression for forecasting
Based on this sample and this regression line, you can take an applicant’s Apti-
tude score — say, 85 — and predict the applicant’s Performance:

Predicted Performance 23 03 0 654 85 78 59. . .

Without this regression line, the only prediction is the mean Performance, 70.63.

Variation around the regression line
In Chapter 5, I describe how the mean doesn’t tell the whole story about a set of 
data. You have to show how the scores vary around the mean. For that reason,  
I introduce the variance and standard deviation.

You have a similar situation here. To get the full picture of the relationship in a 
scatter plot, you have to show how the scores vary around the regression line. 
Here, I introduce the residual variance and standard error of estimate, which are 
analogous to the variance and the standard deviation.

The residual variance is sort of an average of the squared deviations of the observed 
y-values around the predicted y-values. Each deviation of a data point from a 
predicted point (y - y′) is called a residual; hence, the name. The formula is

s
y y

Nyx
2

2

2

I say “sort of” because the denominator is N-2 rather than N. Telling you the rea-
son for the –2 is beyond the scope of this discussion. As I mention earlier, the 
denominator of a variance estimate is degrees of freedom (df), and that concept 
comes in handy in a little while.



284      PART 3  Drawing Conclusions from Data

The standard error of estimate is

s s
y y

Nyx yx
2

2

2

To show you how the residual error and the standard error of estimate play out for 
the data in the example, here’s Table 14-3. This table extends Table 14-2 by show-
ing the predicted Performance score for each given Aptitude score:

TABLE 14-3	 Aptitude Scores, Performance Scores, and Predicted  
Performance Scores for 16 FarMisht Consultants

Consultant Aptitude Performance
Predicted  
Performance

1 45 56 52.44

2 81 74 75.98

3 65 56 65.52

4 87 81 79.90

5 68 75 67.48

6 91 84 82.51

7 77 68 73.36

8 61 52 62.90

9 55 57 58.98

10 66 82 66.17

11 82 73 76.63

12 93 90 83.82

13 76 67 72.71

14 83 79 77.28

15 61 70 62.90

16 74 66 71.40

Mean 72.81 70.63

Variance 181.63 126.65

Standard Deviation 13.48 11.25



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      285

As the table shows, sometimes the predicted Performance score is pretty close, 
and sometimes it’s not.

For these data, the residual variance is

s
y y

Nyx
2

2 2 2 2

2
56 5                              2 44 74 7                              5 98 66 7                              1 40

16
. . ... .

2
735 65

14
52 54

.

.

The standard error of estimate is

s syx yx
2 52 54 7 25. .

If the residual variance and the standard error of estimate are small, the regres-
sion line is a good fit to the data in the scatter plot. If the residual variance and the 
standard error of estimate are large, the regression line is a poor fit.

What’s “small”? What’s “large”? What’s a “good” fit?

Keep reading.

Testing hypotheses about regression
The regression equation you are working with:

y a bx

summarizes a relationship in a scatter plot of a sample. The regression coefficients 
a and b are sample statistics. You can use these statistics to test hypotheses about 
population parameters, and that’s what you do in this section.

The regression line through the population that produces the sample (like the 
entire set of FarMisht consultants) is the graph of an equation that consists of 
parameters rather than statistics. By convention, remember, Greek letters stand 
for parameters, so the regression equation for the population is

y x

The first two Greek letters on the right are α (alpha) and β (beta), the equivalents 
of a and b. What about that last one? It looks something like the Greek equivalent 
of e. What’s it doing there?

That last term is the Greek letter epsilon. It represents “error” in the population. 
In a way, error is an unfortunate term. It’s a catchall for “things you don’t know 
or things you have no control over.” Error is reflected in the residuals — the 
deviations from the predictions. The more you understand about what you’re 
measuring, the more you decrease the error.



286      PART 3  Drawing Conclusions from Data

You can’t measure the error in the relationship between Aptitude and Performance, 
but it’s lurking there. Someone might score low on the Aptitude, for example, and 
then go on to have a wonderful consulting career with a higher-than-predicted 
Performance. On a scatter plot, this person’s Aptitude-Performance point looks 
like an error in prediction. As you find out more about that person, you might 
discover that she was sick on the day of the Aptitude, and that explains the “error.”

You can test hypotheses about α, β, and ε, and that’s what you do in the upcoming 
subsections.

Testing the fit
You begin with a test of how well the regression line fits the scatter plot. This is a 
test of ε, the error in the relationship.

The objective is to decide whether or not the line really does represent a relation-
ship between the variables. It’s possible that what looks like a relationship is just 
due to chance and the equation of the regression line doesn’t mean anything 
(because the amount of error is overwhelming) — or it’s possible that the vari-
ables are strongly related.

These possibilities are testable, and you set up hypotheses to test them:

H0: No real relationship

H1: Not H0

Although those hypotheses make nice light reading, they don’t set up a statistical 
test. To set up the test, you have to consider the variances. To consider the vari-
ances, you start with the deviations. Figure 14-3 focuses on one point in a scatter 
plot and its deviation from the regression line (the residual) and from the mean of 
the y-variable. It also shows the deviation between the regression line and the 
mean.

As the figure shows, the distance between the point and the regression line and 
the distance between the regression line and the mean add up to the distance 
between the point and the mean:

y y y y y y

This sets the stage for some other important relationships.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      287

Start by squaring each deviation. That gives you y y
2
, y y

2
, and y y

2
. 

If you add up each of the squared deviations, you have

y y
2

You just saw this one. That’s the numerator for the residual variance. It represents 
the variability around the regression line — the “error” I mention earlier. In the 
terminology of Chapter 12, the numerator of a variance is called a sum of squares, 
or SS. So this is SSResidual.

y y
2

This one is new. The deviation y y represents the gain in prediction due to 
using the regression line rather than the mean. The sum reflects this gain and is 
called SSRegression.

y y
2

I show you this one in Chapter 5 — although I use x rather than y. That’s the 
numerator of the variance of y. In Chapter 12 terms, it’s the numerator of total 
variance. This one is SSTotal.

This relationship holds among these three sums:

SS SS SSRegression TotalResidual

Each one is associated with a value for degrees of freedom — the denominator of 
a variance estimate. As I point out in the preceding section, the denominator for 

FIGURE 14-3: 
The deviations in 

a scatter plot.



288      PART 3  Drawing Conclusions from Data

SSResidual is N–2. The df for SSTotal is N–1. (See Chapters 5 and 12.) As with the SS, 
the degrees of freedom add up:

df df dfRegression TotalResidual

This leaves one degree of freedom for Regression.

Where is this all headed, and what does it have to do with hypothesis testing? 
Well, since you asked, you get variance estimates by dividing SS by df. Each vari-
ance estimate is called a mean-square, abbreviated MS (again, see Chapter 12):

MS
SS
dfRegression

Regression

Regression

MS SS
dfResidual

Residual

Residual

MS SS
dfTotal

Total

Total

Now for the hypothesis part. If H0 is true and what looks like a relationship 
between x and y is really no big deal, the piece that represents the gain in predic-
tion because of the regression line (MSRegression) should be no greater than the vari-
ability around the regression line (MSResidual). If H0 is not true, and the gain in 
prediction is substantial, then MSRegression should be a lot bigger than MSResidual.

So the hypotheses now set up as

H0: σ
2

Regression ≤ σ2
Residual

H1: σ
2

Regression > σ2
Residual

These are hypotheses you can test. How? To test a hypothesis about two variances, 
you use an F test. (See Chapter 11.) The test statistic here is

F
MS
MS

Regression

Residual

To show you how it all works, I apply the formulas to the FarMisht example. The 
MSResidual is the same as syx2 from the preceding section, and that value is 18.61. 
The MSRegression is

MSRegression

59 64 70 63 71 40 70 63 66 17 70 63
2 2

. . . . ... . .
2

1
1164 1.

This sets up the F:

F
MS
MS

Regression

Residual

1164 1
52 55

22 15.
.

.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      289

With 1 and 14 df and α = .05, the critical value of F is 4.60. (Use qf() to verify.) The 
calculated F is greater than the critical F, so the decision is to reject H0. That means 
the regression line provides a good fit to the data in the sample.

Testing the slope
Another question that arises in linear regression is whether the slope of the 
regression line is significantly different from zero. If it’s not, the mean is just as 
good a predictor as the regression line.

The hypotheses for this test are

H0: β ≤ 0

H1: β > 0

The statistical test is t, which I discuss in Chapters 9, 10, and 11 in connection with 
means. The t-test for the slope is

t b
sb

with df = N–2. The denominator estimates the standard error of the slope. This 
term sounds more complicated than it is. The formula is

s
s

s N
b

yx

x 1

where sx is the standard deviation of the x-variable. For the data in the example,

s
s

s N
b

yx

x 1
7 25

13 48 16 1
139.

.
.

t
b

sb

.
.

.654 0
139

4 71

This is larger than the critical value of t for 14 df and α = .05 (2.14), so the decision 
is to reject H0.

Testing the intercept
Finally, here’s the hypothesis test for the intercept. The hypotheses are

H0: α = 0

H1: α ≠ 0



290      PART 3  Drawing Conclusions from Data

The test, once again, is a t-test. The formula is

t a
sa

The denominator is the estimate of the standard error of the intercept. Without 
going into detail, the formula for sa is

s s
N

x
N sa yx

x

1
1

2

2

where sx is the standard deviation of the x-variable, sx
2 is the variance of the 

x-variable, and x 2 is the squared mean of the x-variable. Applying this formula to 
the data in the example,

s s
N

x
N sa yx

x

1
1

10 27
2

2 .

The t-test is

t a
sa

23 03
10 27

2 24.
.

.

With 15 degrees of freedom, and the probability of a Type I error at .05, the critical 
t is 2.13 for a two-tailed test. It’s a two-tailed test because H1 is that the intercept 
doesn’t equal zero — it doesn’t specify whether the intercept is greater than zero 
or less than zero. Because the calculated value is greater than the critical value, 
the decision is to reject H0.

Linear Regression in R
Time to see how R handles linear regression. To start the analysis for this exam-
ple, create a vector for the Aptitude scores and another for the Performance scores:

Aptitude <- c(45, 81, 65, 87, 68, 91, 77, 61, 55, 66, 82, 93,  
     76, 83, 61, 74)

Performance <- c(56, 74, 56, 81, 75, 84, 68, 52, 57, 82, 73, 90,  
     67, 79, 70, 66)

Then use the two vectors to create a data frame

FarMisht.frame <- data.frame(Aptitude,Performance)



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      291

The lm() (linear model) function performs the analysis:

FM.reg <-lm(Performance ~ Aptitude, data=FarMisht.frame)

As always, the tilde (~) operator signifies “depends on,” so this is a perfect exam-
ple of a dependent variable and an independent variable.

Applying summary() to FM.reg produces the regression information:

> summary(FM.reg)

Call:
lm(formula = Performance ~ Aptitude, data = FarMisht.frame)

Residuals:
     Min       1Q   Median       3Q      Max
-10.9036  -5.3720  -0.4379   4.2111  15.8281

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  23.0299    10.2732   2.242 0.041697 *
Aptitude      0.6537     0.1389   4.707 0.000337 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.249 on 14 degrees of freedom
Multiple R-squared:  0.6128,   Adjusted R-squared:  0.5851
F-statistic: 22.15 on 1 and 14 DF,  p-value: 0.0003368

The first couple of lines provide summary information about the residuals. The 
coefficients table shows the intercept and slope of the regression line. If you divide 
each number in the Estimate column by the adjoining number in the Std. Error 
column, you get the number in the t value column. These t-values, of course, are 
the significance tests I mention earlier for the intercept and the slope. The 
extremely low p-values indicate rejection of the null hypothesis (that a coefficient 
= 0) for each coefficient.

The bottom part of the output shows the info on how well the line fits the scatter 
plot. It presents the standard error of the residual, followed by Multiple 
R-squared and Adjusted R-squared. These last two range from 0 to 1.00 (the 
higher the value, the better the fit). I discuss them in Chapter 15, but for now I’ll 
leave them alone. The F-statistic corresponds to the F-ratio I show you earlier. 



292      PART 3  Drawing Conclusions from Data

Its high value and low associated p-value indicate that the line is a great fit to the 
scatter plot.

I refer to the result of the linear regression analysis as “the linear model.”

Features of the linear model
The linear model produced by lm() is an object that provides information, if you 
ask for it in the right way. As I already showed you, applying summary() gives all 
the information you need about the analysis.

You can also zero in on the coefficients:

> coefficients(FM.reg)
(Intercept)    Aptitude
  23.029869    0.653667

and on their confidence intervals:

> confint(FM.reg)
                2.5 %     97.5 %
(Intercept) 0.9961369 45.0636002
Aptitude    0.3558034  0.9515307

Applying fitted(FM.reg) produces the fitted values, and residuals(FM.reg) 
gives the residuals.

Making predictions
The value of linear regression is that it gives you the ability to predict, and R pro-
vides a function that does just that: predict() applies a set of x-values to the 
linear model and returns the predicted values. Imagine two applicants with Apti-
tude scores of 85 and 62:

predict(FM.reg,data.frame(Aptitude=c(85,62)))

The first argument is the linear model, and the second makes a data frame out of 
the vector of values for the independent variable. Running this function produces 
these predicted values:

       1        2
78.59157 63.55723



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      293

Visualizing the scatter plot and 
regression line
With the ggplot2 package, you can visualize a scatter plot and its regression line 
in three statements. The first statement, as always, indicates the data source and 
maps the components of the data to components of the plot:

ggplot(FarMisht.frame,aes(x=Aptitude,y=Performance))

The second statement plots points in the graph

geom_point()

and the third specifies a geom function that adds the regression line (as indicated 
by the method = lm argument):

geom_smooth(method=lm)

Putting all three together

ggplot(FarMisht.frame,aes(x=Aptitude,y=Performance)) +
  geom_point()+
  geom_smooth(method=lm)

produces Figure 14-4.

FIGURE 14-4: 
Scatter plot and 

regression line 
for the 16 
FarMisht 

consultants.



294      PART 3  Drawing Conclusions from Data

The shaded area represents the 95 percent confidence interval around the regres-
sion line.

Plotting the residuals
After a regression analysis, it’s a good idea to plot the residuals against the pre-
dicted values. If the residuals form a random pattern around a horizontal line at 
zero, that’s evidence in favor of a linear relationship between the independent 
variable and the dependent variable.

Figure  14-5 shows the residual plot for the example. The pattern of residuals 
around the line is consistent with a linear model.

The plot is based on FM.reg, the linear model. Here’s the ggplot() statement:

ggplot(FM.reg, aes(x=fitted(FM.reg), y=residuals(FM.reg)))

The x and y mappings are based on information from the analysis. As you might 
guess, fitted(FM.reg) retrieves the predicted values, and residuals(FM.reg) 
retrieves the residuals.

To plot points, add the appropriate geom function:

geom_point()

FIGURE 14-5: 
Residuals plot for 

the FarMisht 
example.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      295

and then a geom function for the dashed horizontal line whose y-intercept is 0:

geom_hline(yintercept = 0, linetype = "dashed" )

So the code for Figure 14-5 is

ggplot(FM.reg, aes(x=fitted(FM.reg), y=residuals(FM.reg)))+
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed" )

Juggling Many Relationships at Once: 
Multiple Regression

Linear regression is a great tool for making predictions. When you know the slope 
and the intercept of the line that relates two variables, you can take a new x-value 
and predict a new y-value. In the example you’ve been working through in this 
chapter, you take an Aptitude score and predict a Performance score for a FarMisht 
applicant.

What if you knew more than just the Aptitude score for each applicant? For exam-
ple, imagine that the FarMisht management team decides that a particular per-
sonality type is ideal for their consultants. So they develop the FarMisht Personality 
Inventory, a 20-point scale in which a higher score indicates greater compatibility 
with the FarMisht corporate culture and, presumably, predicts better perfor-
mance. The idea is to use that data along with Aptitude scores to predict 
performance.

Table  14-4 shows the Aptitude, Performance, and Personality scores for the 16 
current consultants. Of course, in a real-life corporation, you might have many 
more employees in the sample.

TABLE 14-4	 Aptitude, Performance, and Personality Scores for 16  
FarMisht Consultants

Consultant Aptitude Performance Personality

1 45 56 9

2 81 74 15

3 65 56 11

(continued)



296      PART 3  Drawing Conclusions from Data

When you work with more than one independent variable, you’re in the realm of 
multiple regression. As in linear regression, you find regression coefficients. In the 
case of two independent variables, you’re looking for the best-fitting plane 
through a three-dimensional scatter plot. Once again, “best-fitting” means that 
the sum of the squared distances from the data points to the plane is a 
minimum.

Here’s the equation of the regression plane:

standard residual residual - average residual
syx

For this example, that translates to

y a b x b x1 1 2 2

You can test hypotheses about the overall fit, and about all three of the regression 
coefficients.

Consultant Aptitude Performance Personality

4 87 81 15

5 68 75 14

6 91 84 19

7 77 68 12

8 61 52 10

9 55 57 9

10 66 82 14

11 82 73 15

12 93 90 14

13 76 67 16

14 83 79 18

15 61 70 15

16 74 66 12

Mean 72.81 70.63 13.63

Variance 181.63 126.65 8.65

Standard Deviation 13.48 11.25 2.94

TABLE	14-4	(continued)



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      297

I don’t walk you through all the formulas for finding the coefficients, because that 
gets really complicated. Instead, I go right to the R analysis.

Here are a few things to bear in mind before I proceed:

 » You can have any number of x-variables. (I use two in this example.)

 » Expect the coefficient for Aptitude to change from linear regression to 
multiple regression. Expect the intercept to change, too.

 » Expect the standard error of estimate to decrease from linear regression to 
multiple regression. Because multiple regression uses more information than 
linear regression, it reduces the error.

Multiple regression in R
I begin by adding a vector for the personality scores in Column 4 of Table 14-4:

Personality <- c(9, 15, 11, 15, 14, 19, 12, 10, 9, 14, 15, 14,  
     16, 18, 15, 12)

And then I add that vector to the data frame:

FarMisht.frame["Personality"] = Personality

Applying lm() produces the analysis:

FM.multreg <- lm(Performance ~ Aptitude + Personality,      
     data = FarMisht.frame)

And applying summary() gives the information:

> summary(FM.multreg)

Call:
lm(formula = Performance ~ Aptitude + Personality, data  

      = FarMisht.frame)

Residuals:
   Min     1Q Median     3Q    Max
-8.689 -2.834 -1.840  2.886 13.432



298      PART 3  Drawing Conclusions from Data

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  20.2825     9.6595   2.100   0.0558 .
Aptitude      0.3905     0.1949   2.003   0.0664 .
Personality   1.6079     0.8932   1.800   0.0951 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.73 on 13 degrees of freedom
Multiple R-squared:   0.69,    Adjusted R-squared:  0.6423
F-statistic: 14.47 on 2 and 13 DF,  p-value: 0.0004938

So the generic equation for the regression plane is

Predicted GPA a b SAT b High School Average   1 2

Or, in terms of this example

y a x x. .0025 0431 2

Again, the high F-value and low p-value indicate that the regression plane is an 
excellent fit for the scatter plot.

Making predictions
Once again, predict() enables predictions of Performance. This time, I use it 
with the multiple regression model: FM.multreg. Imagine two applicants: One has 
Aptitude and Personality scores of 85 and 14, and the other has Aptitude and Per-
sonality scores of 62 and 17. This requires two vectors — one for the Aptitude 
scores and one for the Personality scores:

> predict(FM.multreg, data.frame(Aptitude = c(85,62),  
     Personality=c(14,17)))

       1        2
75.98742 71.82924

Visualizing the 3D scatter plot and 
regression plane
The ggplot2 package, for all its wonderful features, does not provide a way to 
draw 3-dimensional graphics — like a scatter plot for a dependent variable and 
two independent variables. Never fear, however: R has a number of other ways to 
do this. In this section, I show you two of them.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      299

The scatterplot3d package
If you want to make a nifty three-dimensional scatter plot like the one shown in 
Figure 14-6 — a figure that looks good on a printed page, the scatterplot3d() 
function is for you.

First, install the scatterplot3d package. On the Packages tab, find scatter-
plot3d and select its check box.

Next, write a statement that creates the plot:

with (FarMisht.frame,
(splot <- scatterplot3d(Performance ~ Aptitude +  

     Personality, type = "h", pch = 19)))

If you use with you don’t have to repeat the name of the data frame three times. 
The first argument to scatterplot3d() is the formula for setting up the linear 
model. The second argument adds the vertical lines from the x-y plane to the data 
points. Those vertical lines aren’t absolutely necessary, but I think they help the 
viewer understand where the points are in the plot. The third argument specifies 
what the plot characters look like.

The function produces an object that you can use to embellish the plot. For exam-
ple, here’s how to add the regression plane and produce Figure 14-7:

splot$plane3d(FM.multreg,lty="dashed")

FIGURE 14-6: 
Scatter plot for 

the FarMisht 
multiple 

regression 
example, 

rendered in 
scatter plot3d().



300      PART 3  Drawing Conclusions from Data

car and rgl: A package deal
If you have to present a 3D scatter plot to an audience and you want to dazzle them 
with an interactive plot, the next method is for you.

The plot-creating function is called scatter3d(), and it lives in the car package. 
On the Packages tab, click Install. In the Install Packages dialog box, type car and 
click Install. When car appears on the Packages tab, select its check box.

This function works with the rgl package, which uses tools from the Open Graph-
ics Library (OpenGL), a toolset for creating 2D and 3D graphics. You’ll find OpenGL 
tools at work in virtual reality, computer-aided design, flight simulation, and a 
number of other applications.

On the Packages tab, find rgl and select its check box.

With those two packages installed, run this function:

scatter3d(Performance ~ Aptitude + Personality,  
     data=FarMisht.frame)

This opens an RGL window with the 3D scatter plot shown in Figure 14-8. As you 
can see, the scatter plot shows the regression plane and the residuals.

You can move the mouse inside this plot, press the left mouse button, and rotate 
the plot to present different angles. You can also use the scroll wheel to zoom in 
or out of the plot. Try it!

FIGURE 14-7: 
Scatter plot for 

the FarMisht 
multiple 

regression 
example, 

complete with 
regression plane.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      301

ANOVA: Another Look
Here’s a statement you might find radical: Analysis of variance and linear regres-
sion are really the same thing.

They’re both part of what’s called the General Linear Model (GLM). In linear 
regression, the objective is to predict a value of a dependent variable given a value 
of an independent variable. In ANOVA, the objective is to decide whether several 
sample means differ enough from one another to enable you to reject the null 
hypothesis about levels of the independent variable.

How are they similar? It’s easier to see the connection if you rethink ANOVA: 
Given the data, imagine that the objective is to predict the dependent variable 
given the level of the independent variable. What would be the best prediction? For 
any level of the independent variable, that would be the mean of the sample for 
that level — also known as the “group mean.” This means that deviations from 
the group mean (the best predicted value) are residuals, and this is why, in an R 
ANOVA, the MSError is called MSResiduals.

It goes deeper than that. To show you how, I revisit the ANOVA example from 
Chapter 12. For convenience, here’s Table 12-1 reproduced as Table 14-5.

FIGURE 14-8: 
Scatter plot for 

the FarMisht 
multiple 

regression 
example, 

rendered in 
scatter3d().



302      PART 3  Drawing Conclusions from Data

You have to test

H0: μ1 = μ2 = μ3

H1: Not H0

To use the aov() function to produce an analysis of variance, set up the data in 
long format. Here are the first six rows:

> head(Training.frame)
   Method Score
1 method1    95
2 method1    91
3 method1    89
4 method1    90
5 method1    99
6 method1    88

The result of the analysis is

TABLE 14-5	 Data from Three Training Methods (ANOVA Example from  
Chapter 12)

Method 1 Method 2 Method 3

95 83 68

91 89 75

89 85 79

90 89 74

99 81 75

88 89 81

96 90 73

98 82 77

95 84

80

Mean 93.44 85.20 75.25

Variance 16.28 14.18 15.64

Standard Deviation 4.03 3.77 3.96



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      303

> analysis <-aov(Score~Method,data = Training.frame)
> summary(analysis)
            Df Sum Sq Mean Sq F value   Pr(>F)
Method       2 1402.7   701.3   45.82 6.38e-09 ***
Residuals   24  367.3    15.3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What if you tried a linear regression analysis on the data?

> reg.analysis <-lm(Score~Method,data = Training.frame)
> summary(reg.analysis)

Call:
lm(formula = Score ~ Method, data = Training.frame)

Residuals:
   Min     1Q Median     3Q    Max
-7.250 -2.822 -0.250  3.775  5.750

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)     93.444      1.304  71.657  < 2e-16 ***
Methodmethod2   -8.244      1.798  -4.587 0.000119 ***
Methodmethod3  -18.194      1.901  -9.571 1.15e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.912 on 24 degrees of freedom
Multiple R-squared:  0.7925,   Adjusted R-squared:  0.7752
F-statistic: 45.82 on 2 and 24 DF,  p-value: 6.381e-09

You see a good bit more information than in the ANOVA table, but the bottom line 
shows the same F-ratio and associated information as the analysis of variance. 
Also, the coefficients provide the group means: The intercept (93.444) is the mean 
of Method 1, the intercept plus the second coefficient (–8.244) is the mean of 
Method 2 (85.20), and the intercept plus the third coefficient (–18.194) is the 
mean of Method 3 (75.25). Check the Means in Table 14-1, if you don’t believe me.

A bit more on the coefficients: The Intercept represents Method 1, which is a base-
line against which to compare each of the others. The t-value for Method 2 (along 
with its associated probability, which is much less than .05) shows that Method 2 
differs significantly from Method 1. It’s the same story for Method 3, which also 
differs significantly from Method 1.



304      PART 3  Drawing Conclusions from Data

Here’s a question that should be forming in your mind: How can you perform a 
linear regression when the independent variable (Method) is categorical rather 
than numerical?

Glad you asked.

To form a regression analysis with categorical data, R (and other statistical software 
packages) recode the levels of a variable like Method into combinations of numeric 
dummy variables. The only values a dummy variable can take are 0 or 1: 0 indicates 
the absence of a categorical value; 1 indicates the presence of a categorical value.

I’ll do this manually. For the three levels of Method (Method 1, Method 2, and 
Method 3), I need two dummy variables. I’ll call them D1 and D2. Here’s how 
I (arbitrarily) assign the values:

 » For Method 1, D1 = 0 and D2 = 0

 » For Method 2, D1 = 1, and D2 = 0

 » For Method 3, D1 = 0, and D2 = 1

To illustrate further, here’s a data frame called Training.frame.w.Dummies. 
Ordinarily, I wouldn’t show you all 27 rows of a data frame, but here I think it’s 
instructive:

> Training.frame.w.Dummies
    Method D1 D2 Score
1  method1  0  0    95
2  method1  0  0    91
3  method1  0  0    89
4  method1  0  0    90
5  method1  0  0    99
6  method1  0  0    88
7  method1  0  0    96
8  method1  0  0    98
9  method1  0  0    95
10 method2  1  0    83
11 method2  1  0    89
12 method2  1  0    85
13 method2  1  0    89
14 method2  1  0    81
15 method2  1  0    89
16 method2  1  0    90
17 method2  1  0    82
18 method2  1  0    84



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      305

19 method2  1  0    80
20 method3  0  1    68
21 method3  0  1    75
22 method3  0  1    79
23 method3  0  1    74
24 method3  0  1    75
25 method3  0  1    81
26 method3  0  1    73
27 method3  0  1    77

These lines of code

model.w.Dummies <- lm(Score ~ D1 + D2,
            data= Training.frame.w.Dummies)
summary(model.w.Dummies)

produce the same result as the analysis of variance and the linear regression 
I showed you earlier. The only difference is that the coefficients are expressed in 
terms of the dummy variables:

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   93.444      1.304  71.657  < 2e-16 ***
D1            -8.244      1.798  -4.587 0.000119 ***
D2           -18.194      1.901  -9.571 1.15e-09 ***

So, dummy variables enable a linear regression model with categorical indepen-
dent variables. In fact, linear regression with categorical independent variables is 
the analysis of variance.

Analysis of Covariance: The Final 
Component of the GLM

In this chapter, I’ve shown you how linear regression works with a numeric inde-
pendent (predictor) variable, and with a categorical independent (predictor) vari-
able. Is it possible to have a study with both a numeric predictor variable and a 
categorical predictor variable?

Absolutely! The analytical tool for this type of study is called the Analysis of Cova-
riance (ANCOVA). It’s the third and final component of the General Linear Model. 
(Linear regression and ANOVA are the first two.) The easiest way to describe it is 
with an example.



306      PART 3  Drawing Conclusions from Data

Make sure you have the MASS package installed. On the Packages tab, find its check 
box and select it, if it isn’t already. In the MASS package is a data frame called 
anorexia. (I use it in Chapter  2.) This data frame contains data for 72 young 
women randomly selected for one of three types of treatment for anorexia: Cont 
(a control condition with no therapy), CBT (cognitive behavioral therapy), or FT 
(family treatment).

Here are the first six rows:

> head(anorexia)
  Treat Prewt Postwt
1  Cont  80.7   80.2
2  Cont  89.4   80.1
3  Cont  91.8   86.4
4  Cont  74.0   86.3
5  Cont  78.1   76.1
6  Cont  88.3   78.1

Prewt is the weight before treatment, and Postwt is the weight after treatment. 
What you need, of course, is a variable that indicates the amount of weight gained 
during treatment. I’ll call it WtGain, and here’s how to add it to the data frame:

anorexia["WtGain"]=anorexia["Postwt"]-anorexia["Prewt"]

Now:

> head(anorexia)
  Treat Prewt Postwt WtGain
1  Cont  80.7   80.2   -0.5
2  Cont  89.4   80.1   -9.3
3  Cont  91.8   86.4   -5.4
4  Cont  74.0   86.3   12.3
5  Cont  78.1   76.1   -2.0
6  Cont  88.3   78.1  -10.2

Figure 14-9 plots the data points for this data frame.

Here’s the code for this plot, in case you’re curious:

ggplot(anorexia,aes(x=Treat,y=WtGain))+
  geom_point()



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      307

An analysis of variance or a linear regression analysis would be appropriate to test 
these:

H0: μCont = μCBT = μFT

H1: Not H0

Here’s the linear regression model:

> anorexia.linreg <-lm(WtGain ~ Treat, data=anorexia)
> summary(anorexia.linreg)

Call:
lm(formula = WtGain ~ Treat, data = anorexia)

Residuals:
    Min      1Q  Median      3Q     Max
-12.565  -4.543  -1.007   3.846  17.893

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)    3.007      1.398   2.151   0.0350 *
TreatCont     -3.457      2.033  -1.700   0.0936 .
TreatFT        4.258      2.300   1.852   0.0684 .
---

FIGURE 14-9: 
Weight Gain 

versus Treat in 
the anorexia 
data frame.



308      PART 3  Drawing Conclusions from Data

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.528 on 69 degrees of freedom
Multiple R-squared:  0.1358,   Adjusted R-squared:  0.1108
F-statistic: 5.422 on 2 and 69 DF,  p-value: 0.006499

The F-ratio and p-value in the bottom line tell you that you can reject the null 
hypothesis.

Let’s look at the coefficients. The intercept represents CBT. This is the baseline 
against which you compare the other treatments. The t-values and associated 
probabilities (greater than .05) tell you that neither of those levels differs from 
CBT. The significant F-ratio must result from some other comparisons.

Also, check the coefficients against the treatment means. Here’s a quick and easy 
way to find the treatment means: Use the function tapply() to apply mean() and 
find the mean WtGain in the levels of Treat:

> with (anorexia, tapply(WtGain,Treat,mean))
      CBT      Cont        FT
 3.006897 -0.450000  7.264706

The intercept, remember, is the mean for CBT. Add the intercept to the next coef-
ficient to calculate the mean for Cont, and add the intercept to the final coefficient 
to calculate the mean for FT.

If you prefer to see the F-ratio and associated statistics in an ANOVA table, you can 
apply the anova() function to the model:

> anova(anorexia.linreg)
Analysis of Variance Table

Response: WtGain
          Df Sum Sq Mean Sq F value   Pr(>F)
Treat      2  614.6 307.322  5.4223 0.006499 **
Residuals 69 3910.7  56.677
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can dig a little deeper. Suppose weight gain depends not only on type of treat-
ment but also on a person’s initial weight (which is called a covariate). Taking 
PreWt into consideration might yield a more accurate picture. Treat is a categori-
cal variable, and Prewt is a numerical variable. Figure 14-10 shows a plot based on 
the two variables.



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      309

The code for this plot is

ggplot(anorexia, aes(x=Prewt,y=WtGain, shape = Treat)) +
  geom_point(size=2.5)

The first statement maps Prewt to the x-axis, WtGain to the y-axis, and Treat to 
shape. Thus, the shape of a data point reflects its treatment group. The second 
statement specifies that points appear in the plot. Its size argument enlarges the 
data points and makes them easier to see.

For the analysis of covariance, I use the lm() function to create a model based on 
both Treat and Prewt:

> anorexia.T.and.P <- lm(WtGain ~ Treat + Prewt, data=anorexia)
> summary(anorexia.T.and.P)

Call:
lm(formula = WtGain ~ Treat + Prewt, data = anorexia)

Residuals:
     Min       1Q   Median       3Q      Max
-14.1083  -4.2773  -0.5484   5.4838  15.2922

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  49.7711    13.3910   3.717 0.000410 ***

FIGURE 14-10: 
Weight Gain 
versus Treat 
and Prewt in 
the anorexia 
data frame.



310      PART 3  Drawing Conclusions from Data

TreatCont    -4.0971     1.8935  -2.164 0.033999 *
TreatFT       4.5631     2.1333   2.139 0.036035 *
Prewt        -0.5655     0.1612  -3.509 0.000803 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.978 on 68 degrees of freedom
Multiple R-squared:  0.2683,   Adjusted R-squared:  0.236
F-statistic: 8.311 on 3 and 68 DF,  p-value: 8.725e-05

Note in the last line that the degrees of freedom have changed from the first 
analysis: Adding Prewt takes a degree of freedom from the df Residual and adds 
it to the df for Treat. Note also that the F-ratio is higher and the p-value consid-
erably lower than in the first analysis.

And now look at the coefficients. Unlike the original analysis, the t-values and 
associated probabilities (less than .05) for Cont and FT show that each one differs 
significantly from CBT.

So it seems that adding Prewt to the analysis has helped uncover treatment differ-
ences. Bottom line: The ANCOVA shows that when evaluating the effect of an 
anorexia treatment, it’s important to also know an individual’s pretreatment weight.

But “it seems” is not really enough for statisticians. Can you really be sure that 
the ANCOVA adds value? To find out, you have to compare the linear regression 
model with the ANCOVA model. To make the comparison, use the anova() func-
tion, which does double-duty: In addition to creating an ANOVA table for a model 
(which is the way you saw it used earlier), you can use it to compare models. 
Here’s how:

> anova(anorexia.linreg,anorexia.T.and.P)
Analysis of Variance Table

Model 1: WtGain ~ Treat
Model 2: WtGain ~ Treat + Prewt
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)
1     69 3910.7
2     68 3311.3  1    599.48 12.311 0.0008034 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What do the numbers in the table mean? The RSS indicates the residual sums of 
squares from each model. They’re next to their degrees of freedom in the Res.DF 
column. In the Df column, 1 is the difference between the two Res.Dfs. In the Sum 
of Sq column, 599.48 is the difference between the two RSS. The F-ratio is the 



CHAPTER 14  Regression: Linear, Multiple, and the General Linear Model      311

result of dividing two mean squares: The mean square for the numerator is 599.48 
divided by its df (1), and the mean square for the denominator is 3311.3 divided by 
its df (68). The high F-ratio and low Pr(>F) (probability of a Type 1 error) tell you 
that adding Prewt significantly lowered the residual sum of squares. In English, 
that means it was a good idea to add Prewt to the mix.

Statisticians would say that this analysis statistically controls for the effects of the 
covariate (Prewt).

But wait — there’s more
In an analysis of covariance, it’s important to ask whether the relationship 
between the dependent variable and the numerical predictor variable is the same 
across the levels of the categorical variable. In this example, that’s the same as 
asking if the slope of the regression line between WtGain and Prewt is the same 
for the scores in Cont as it is for the scores in CBT and for the scores in FT. If the 
slopes are the same, that’s called homogeneity of regression. If not, you have an 
interaction of Prewt and Treat, and you have to be careful about how you state 
your conclusions.

Adding the regression lines to the plot in Figure 14-10 is helpful. To do this, I add 
this line to the code that produced Figure 14-10:

geom_smooth(method = lm,se = FALSE, aes(linetype=Treat))

This instructs ggplot to add a separate line that “smoothes” the data within each 
treatment group. The method argument specifies lm (linear modelling) so that 
each line is a regression line. The next argument, se=FALSE, prevents the plotting 
of the confidence interval around each line. Finally, the aesthetic mapping indi-
cates that the line for each level of Treat will look different. So the full code is

ggplot(anorexia, aes(x=Prewt,y=WtGain, shape = Treat)) +
  geom_point(size=2.5) +
  geom_smooth(method = lm,se = FALSE, aes(linetype=Treat))

and the result is Figure 14-11.

As you can see, the three negatively sloped regression lines are not parallel. The 
line for CBT parallels the line for FT, but the line for Cont (the control condition) 
has a much greater negative slope. Assuming that patients in the control group 
received no treatment, this sounds fairly intuitive: Because they received no treat-
ment, many of these anorexic patients (the heavier ones) continued to lose weight 
(rather than gain weight), resulting in the highly negative slope for that line.



312      PART 3  Drawing Conclusions from Data

Apparently, we have a Treat X Prewt interaction. Does analysis bear this out?

To include the interaction in the model, I have to add Treat*Prewt to the 
formula:

anorexia.w.interaction <- lm(WtGain ~ Treat + Prewt +  
     Treat*Prewt, data=anorexia)

Does adding the interaction make a difference?

> anova(anorexia.T.and.P,anorexia.w.interaction)
Analysis of Variance Table

Model 1: WtGain ~ Treat + Prewt
Model 2: WtGain ~ Treat + Prewt + Treat * Prewt
  Res.Df    RSS Df Sum of Sq      F   Pr(>F)
1     68 3311.3
2     66 2844.8  2    466.48 5.4112 0.006666 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It sure does! In your conclusions about this study, you have to include the caveat 
that the relationship between pre-weight and weight-gain is different for the 
control than it is for the cognitive-behavioral treatment and for the family 
treatment.

FIGURE 14-11: 
Weight Gain 
versus Treat 
and Prewt in 
the anorexia 
data frame, 

with a regression 
line for the scores 

in each level 
of Treat.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      313

IN THIS CHAPTER

 » Understanding what correlation is all 
about

 » Discovering how correlation connects 
to regression

 » Drawing conclusions from 
correlations

 » Analyzing items

Correlation: The Rise and 
Fall of Relationships

In Chapter 14, I introduce the concepts of regression, a tool for summarizing and 
testing relationships between (and among) variables. In this chapter, I intro-
duce you to the ups and downs of correlation, another tool for looking at rela-

tionships. I use the example of employee aptitude and performance from 
Chapter 14 and show how to think about the data in a slightly different way. The 
new concepts connect to what I show you in Chapter 14, and you’ll see how those 
connections work. I also show you how to test hypotheses about relationships and 
how to use R functions for correlation.

Scatter plots Again
A scatter plot is a graphical way of showing a relationship between two variables. 
In Chapter  14, I show you a scatter plot of the data for employees at FarMisht 
Consulting, Inc. I reproduce that scatter plot here as Figure 15-1. Each point rep-
resents one employee’s score on a measure of Aptitude (on the x-axis) and on a 
measure of Performance (on the y-axis).

Chapter 15



314      PART 3  Drawing Conclusions from Data

Understanding Correlation
In Chapter 14, I refer to Aptitude as the independent variable and to Performance as 
the dependent variable. The objective in Chapter  14 is to use Aptitude to predict 
Performance.

Although I use scores on one variable to predict scores on the other, I do not mean 
that the score on one variable causes a score on the other. “Relationship” doesn’t 
necessarily mean “causality.”

Correlation is a statistical way of looking at a relationship. When two things are 
correlated, it means that they vary together. Positive correlation means that high 
scores on one are associated with high scores on the other, and that low scores on 
one are associated with low scores on the other. The scatter plot in Figure 15-1 is 
an example of positive correlation.

Negative correlation, on the other hand, means that high scores on the first thing 
are associated with low scores on the second. Negative correlation also means that 
low scores on the first are associated with high scores on the second. An example 
is the correlation between body weight and the time spent on a weight-loss pro-
gram. If the program is effective, the higher the amount of time spent on the 
program, the lower the body weight. Also, the lower the amount of time spent on 
the program, the higher the body weight.

Table 15-1, a repeat of Table 14-2, shows the data for 16 FarMisht consultants.

FIGURE 15-1: 
Aptitude and 

Performance at 
FarMisht 

Consulting.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      315

In keeping with the way I use Aptitude and Performance in Chapter 14, Aptitude is 
the x-variable and Performance is the y-variable.

The formula for calculating the correlation between the two is

r N
x x y y

s sx y

1
1

The term on the left, r, is called the correlation coefficient. It’s also called Pearson’s 
product-moment correlation coefficient, after its creator, Karl Pearson.

TABLE 15-1	 Aptitude Scores and Performance Scores  
for 16 FarMisht Consultants

Consultant Aptitude Performance

1 45 56

2 81 74

3 65 56

4 87 81

5 68 75

6 91 84

7 77 68

8 61 52

9 55 57

10 66 82

11 82 73

12 93 90

13 76 67

14 83 79

15 61 70

16 74 66

Mean 72.81 70.63

Variance 181.63 126.65

Standard Deviation 13.48 11.25



316      PART 3  Drawing Conclusions from Data

The two terms in the denominator on the right are the standard deviation of the 
x-variable and the standard deviation of the y-variable. The term in the numera-
tor is called the covariance. Another way to write this formula is

r
x y

s sx y

cov ,

The covariance represents x and y varying together. Dividing the covariance by the 
product of the two standard deviations imposes some limits. The lower limit of the 
correlation coefficient is –1.00, and the upper limit is +1.00.

A correlation coefficient of –1.00 represents perfect negative correlation (low 
x-scores associated with high y-scores, and high x-scores associated with 
low y-scores). A correlation of +1.00 represents perfect positive correlation 
(low x-scores associated with low y-scores and high x-scores associated with 
high y-scores). A correlation of 0.00 means that the two variables are not related.

Applying the formula to the data in Table 15-1,

r N
x x y y

s sx y

1
1

1
16 1

45 72 81 56 70 63. . ... . .

. .
.

74 72 81 66 70 83

13 48 11 25
783

What, exactly, does this number mean? I’m about to tell you.

Correlation and Regression
Figure 15-2 shows the scatter plot of just the 16 employees in Table 15-1 with the 
line that “best fits” the points. It’s possible to draw an infinite number of lines 
through these points. Which one is best?

To be the best, a line has to meet a specific standard: If you draw the distances in 
the vertical direction between the points and the line, and you square those dis-
tances, and then you add those squared distances, the best-fitting line is the one 
that makes the sum of those squared distances as small as possible. This line is 
called the regression line.

The regression line’s purpose in life is to enable you to make predictions. As 
I mention in Chapter 14, without a regression line, the best predicted value of the 
y-variable is the mean of the y's. A regression line takes the x-variable into 
account and delivers a more precise prediction. Each point on the regression line 



CHAPTER 15  Correlation: The Rise and Fall of Relationships      317

represents a predicted value for y. In the symbology of regression, each predicted 
value is a y'.

Why do I tell you all this? Because correlation is closely related to regression. 
Figure 15-3 focuses on one point in the scatter plot, and on its distance to the 
regression line and to the mean. (This is a repeat of Figure 14-3.)

Notice the three distances laid out in the figure. The distance labeled (y-y') is the 
difference between the point and the regression line’s prediction for where the 
point should be. (In Chapter 14, I call that a residual.) The distance labeled (y-y) 

FIGURE 15-2: 
Scatter plot of 16 

FarMisht 
consultants, 

including the 
regression line.

FIGURE 15-3: 
One point in the 
scatter plot and 

its associated 
distances



318      PART 3  Drawing Conclusions from Data

is the difference between the point and the mean of the y's. The distance labeled 
(y'-y) is the gain in prediction capability that you get from using the regression 
line to predict the point instead of using the mean to predict the point.

Figure 15-3 shows that the three distances are related like this:

y y y y y y

As I point out in Chapter 14, you can square all the residuals and add them, square 
all the deviations of the predicted points from the mean and add them, and square 
all the deviations of the actual points from the mean and add them, too.

It turns out that these sums of squares are related in the same way as the devia-
tions I just showed you:

SS SS SSResidual Regression Total

If SSRegression is large in comparison to SSResidual, the relationship between the 
x-variable and the y-variable is a strong one. It means that, throughout the  scatter 
plot, the variability around the regression line is small.

On the other hand, if SSRegression is small in comparison to SSResidual, the relationship 
between the x-variable and the y-variable is weak. In this case, the variability 
around the regression line is large throughout the scatter plot.

One way to test SSRegression against SSResidual is to divide each by its degrees of free-
dom (1 for SSRegression and N–2 for SSResidual) to form variance estimates (also known 
as mean-squares, or MS), and then divide one by the other to calculate an F. If 
MSRegression is significantly larger than MSResidual, you have evidence that the x-y 
relationship is strong. (See Chapter 14 for details.)

Here’s the clincher, as far as correlation is concerned: Another way to assess the 
size of SSRegression is to compare it with SSTotal. Divide the first by the second. If the 
ratio is large, this tells you the x-y relationship is strong. This ratio has a name. 
It’s called the coefficient of determination. Its symbol is r2. Take the square root of 
this coefficient, and you have . . . the correlation coefficient!

r r 2 SS
SS

Regression

Total

The plus-or-minus sign (±) means that r is either the positive or negative square 
root, depending on whether the slope of the regression line is positive or 
negative.

So, if you calculate a correlation coefficient and you quickly want to know 
what  its  value signifies, just square it. The answer  — the coefficient of 



CHAPTER 15  Correlation: The Rise and Fall of Relationships      319

determination — lets you know the proportion of the SSTotal that’s tied up in the 
relationship between the x-variable and the y-variable. If it’s a large proportion, 
the correlation coefficient signifies a strong relationship. If it’s a small propor-
tion, the correlation coefficient signifies a weak relationship.

In the Aptitude-Performance example, the correlation coefficient is .783. The 
coefficient of determination is

r 2 2
783 613. .

In this sample of 16 consultants, the SSRegression is 61.3 percent of the SSTotal. Sounds 
like a large proportion, but what’s large? What’s small? Those questions scream 
out for hypothesis tests.

Testing Hypotheses About Correlation
In this section, I show you how to answer important questions about correlation. 
Like any other kind of hypothesis testing, the idea is to use sample statistics to 
make inferences about population parameters. Here, the sample statistic is r, the 
correlation coefficient. By convention, the population parameter is ρ (rho), the 
Greek equivalent of r. (Yes, it does look like the letter p, but it really is the Greek 
equivalent of r.)

Two kinds of questions are important in connection with correlation: (1) Is a cor-
relation coefficient greater than 0? (2) Are two correlation coefficients different 
from one another?

Is a correlation coefficient greater 
than zero?
Returning once again to the Aptitude-Performance example, you can use the 
sample r to test hypotheses about the population ρ — the correlation coefficient 
for all consultants at FarMisht Consulting.

Assuming that you know in advance (before you gather any sample data) that 
any correlation between Aptitude and Performance should be positive, the 
hypotheses are

H0: ρ ≤ 0

H1: ρ > 0



320      PART 3  Drawing Conclusions from Data

Set α = .05.

The appropriate statistical test is a t-test. The formula is

t
r

sr

This test has N–2 df.

For the example, the values in the numerator are set: r is .783 and ρ (in H0) is 0. 
What about the denominator? I won’t burden you with the details. I’ll just tell you 
that’s

1
2

2r
N

With a little algebra, the formula for the t-test simplifies to

t r N
r

2
1 2

For the example,

t r N
r

2
1

783 16 2
1 783

4 707
2 2

.
.

.

With df 14 and .05 (one-tailed), the critical value of t is 1.76. Because the cal-
culated value is greater than the critical value, the decision is to reject H0.

Do two correlation coefficients differ?
FarKlempt Robotics has a consulting branch that assesses aptitude and perfor-
mance with the same measurement tools that FarMisht Consulting uses. In a 
sample of 20 consultants at FarKlempt Robotics, the correlation between Aptitude 
and Performance is .695. Is this different from the correlation (.783) at FarMisht 
Consulting? If you have no way of assuming that one correlation should be higher 
than the other, the hypotheses are

H0: ρFarMisht = ρFarKlempt

H1: ρFarMisht ≠ ρFarKlempt

Again, .05.

For highly technical reasons, you can’t set up a t-test for this one. In fact, you 
can’t even work with .783 and .695, the two correlation coefficients.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      321

Instead, what you do is transform each correlation coefficient into something else 
and then work with the two “something elses” in a formula that gives you — 
believe it or not — a z-test.

The transformation is called Fisher’s r to z transformation. Fisher is the statistician 
who is remembered as the F in F-test. He transforms the r into a z by doing this:

z r rr e e
1
2

1 1log log

If you know what loge means, fine. If not, don’t worry about it. (I explain it in 
Chapter 16.) R takes care of all of this for you, as you see in a moment.

Anyway, for this example

z

z

e e

e

.

.

log . log . .

log

783

695

1
2

1 783 1 783 1 0530

1
2

1 .. log . .695 1 695 0 8576e

After you transform r to z, the formula is

Z z z
z z

1 2

1 2

The denominator turns out to be easier than you might think. It’s

z z N N1 2

1
3

1
31 2

For this example,

z z N N1 2

1
3

1
3

1
16 3

1
20 3

368
1 2

.

The whole formula is

Z z z
z z

1 2

1 2

1 0530 0 8576
368

531. .
.

.

The next step is to compare the calculated value to a standard normal distribution. 
For a two-tailed test with α = .05, the critical values in a standard normal distri-
bution are 1.96 in the upper tail and –1.96 in the lower tail. The calculated value 
falls between those two, so the decision is to not reject H0.



322      PART 3  Drawing Conclusions from Data

Correlation in R
In this section, I work with the FarMisht example. The data frame, FarMisht.
frame, holds the data points shown over in Table 14-4. Here’s how I created it:

Aptitude <- c(45, 81, 65, 87, 68, 91, 77, 61, 55, 66, 82, 93,  
         76, 83, 61, 74)

Performance <- c(56, 74, 56, 81, 75, 84, 68, 52, 57, 82, 73, 90,  
         67, 79, 70, 66)

Personality <- c(9, 15, 11, 15, 14, 19, 12, 10, 9, 14, 15, 14,  
         16, 18, 15, 12)

FarMisht.frame <- data.frame(Aptitude, Performance, Personality)

Calculating a correlation coefficient
To find the correlation coefficient for the relationship between Aptitude and Per-
formance, I use the function cor():

> with(FarMisht.frame, cor(Aptitude,Performance))
[1] 0.7827927

The Pearson product-moment correlation coefficient that cor() calculates in this 
example is the default for its method argument:

cor(Farmisht.frame, method = “pearson”)

Two other possible values for method are “spearman” and “kendall”, which 
I cover in Appendix B.

Testing a correlation coefficient
To find a correlation coefficient, and test it at the same time, R provides cor.
test(). Here is a one-tailed test (specified by alternative = “greater”):

> with(FarMisht.frame, cor.test(Aptitude,Performance,  
         alternative = "greater"))

          Pearson's product-moment correlation

data:  Aptitude and Performance
t = 4.7068, df = 14, p-value = 0.0001684
alternative hypothesis: true correlation is greater than 0



CHAPTER 15  Correlation: The Rise and Fall of Relationships      323

95 percent confidence interval:
 0.5344414 1.0000000
sample estimates:
      cor
0.7827927

As is the case with cor(), you can specify “spearman” or “kendall” as the method 
for cor.test().

Testing the difference between  
two correlation coefficients
In the earlier section “Do two correlation coefficients differ?” I compare the 
Aptitude-Performance correlation coefficient (.695) for 20 consultants at 
FarKlempt Robotics with the correlation (.783) for 16 consultants at FarMisht 
Consulting.

The comparison begins with Fisher’s r to z transformation for each coefficient. 
The test statistic (Z) is the difference of the transformed values divided by the 
standard error of the difference.

A function called r.test() does all the work if you provide the coefficients and 
the sample sizes. This function lives in the psych package, so on the Packages tab, 
click Insert. Then in the Insert Packages dialog box, type psych. When psych 
appears on the Packages tab, select its check box.

Here’s the function, and its arguments:

r.test(r12=.783, n=16, r34=.695, n2=20)

This one is pretty particular about how you state the arguments. The first argu-
ment is the first correlation coefficient. The second is its sample size. The third 
argument is the second correlation coefficient, and the fourth is its sample size. 
The 12 label for the first coefficient and the 34 label for the second indicate that 
the two coefficients are independent.

If you run that function, this is the result:

Correlation tests
Call:r.test(n = 16, r12 = 0.783, r34 = 0.695, n2 = 20)
Test of difference between two independent correlations
 z value 0.53    with probability  0.6



324      PART 3  Drawing Conclusions from Data

Calculating a correlation matrix
In addition to finding a single correlation coefficient, cor() can find all the pair-
wise correlation coefficients for a data frame, resulting in a correlation matrix:

> cor(FarMisht.frame)
             Aptitude Performance Personality
Aptitude    1.0000000   0.7827927   0.7499305
Performance 0.7827927   1.0000000   0.7709271
Personality 0.7499305   0.7709271   1.0000000

Visualizing correlation matrices
In Chapter 3, I describe a couple of ways to visualize a matrix like the one in the 
preceding section. Here’s how to do it with base R graphics:

pairs(FarMisht.frame)

This function produces Figure 15-4.

FIGURE 15-4: 
The correlation 

matrix for 
Aptitude, 

Performance, and 
Personality, 

rendered in base 
R graphics.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      325

The main diagonal, of course, holds the names of the variables. Each off-diagonal 
cell is a scatter plot of the pair of variables named in the row and the column. For 
example, the cell to the immediate right of Aptitude is the scatter plot of Aptitude 
(y-axis) and Performance (x-axis). The cell just below Aptitude is the reverse — 
it’s the scatter plot of Performance (y-axis) and Aptitude (x-axis).

As I also mention in Chapter 3, a package called GGally (built on ggplot2) provides 
ggpairs(), which produces a bit more. Find GGally on the Packages tab and select 
its check box. Then

ggpairs(FarMisht.frame)

draws Figure 15-5.

The main diagonal provides a density function for each variable, the upper off-
diagonal cells present the correlation coefficients, and the remaining cells show 
pairwise scatter plots.

More elaborate displays are possible with the corrgram package. On the Packages 
tab, click Install, and in the Install dialog box, type corrgram and click Install. (Be 
patient. This package installs a lot of items.) Then, on the Packages tab, find cor-
rgram and select its check box.

FIGURE 15-5: 
The correlation 

matrix for 
Aptitude, 

Performance, 
and Personality, 

rendered in 
GGally 

(a ggplot2-based 
package).



326      PART 3  Drawing Conclusions from Data

The corrgram() function works with a data frame and enables you to choose 
options for what goes into the main diagonal (diag.panel) of the resulting matrix, 
what goes into the cells in the upper half of the matrix (upper.panel), and what 
goes into the cells in the lower half of the matrix (lower.panel). For the main 
diagonal, I chose to show the minimum and maximum values for each variable. 
For the upper half, I specified a pie chart to show the value of a correlation coef-
ficient: The filled-in proportion represents the value. For the lower half, I’d like a 
scatter plot in each cell:

corrgram(FarMisht.frame, diag.panel=panel.minmax,
                        upper.panel = panel.pie,
                        lower.panel = panel.pts)

The result is Figure 15-6.

Multiple Correlation
The correlation coefficients in the correlation matrix described in the preceding 
section combine to produce a multiple correlation coefficient. This is a number that 

FIGURE 15-6: 
The correlation 

matrix for 
Aptitude, 

Performance, and 
Personality, 

rendered in the 
corrgram 

package.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      327

summarizes the relationship between the dependent variable — Performance, in 
this example — and the two independent variables (Aptitude and Personality).

To show you how these correlation coefficients combine, I abbreviate Performance 
as P, Aptitude as A, and Personality as F (FarMisht Personality Inventory). So rPA is 
the correlation coefficient for Performance and Aptitude (.7827927), rPF is the cor-
relation coefficient for Performance and Personality (.7709271), and rAF is the cor-
relation coefficient for Aptitude and Personality (.7499305).

Here’s the formula that puts them all together:

R r r r r r
rP AF

PA PF PA PF AF

AF
.

2 2

2

2
1

The uppercase R on the left indicates that this is a multiple correlation coefficient, 
as opposed to the lowercase r, which indicates a correlation between two variables. 
The subscript P.AF means that the multiple correlation is between Performance 
and the combination of Aptitude and Personality.

For this example,

RP AF.

. . . . .7827927 27709271 7827927 7709271 749930
2 2

55

7499305
8306841

1
2

.
.

If you square this number, you get the multiple coefficient of determination. In Chap-
ter 14, you met Multiple R-Squared, and that’s what this is. For this example, that 
result is

RP AF. . .2 2
830641 6900361

Multiple correlation in R
The easiest way to calculate a multiple correlation coefficient is to use lm() and 
proceed as in multiple regression:

> FarMisht.multreg <- lm(Performance ~ Aptitude + Personality,  
         data = FarMisht.frame)

> summary(FarMisht.multreg)

Call:
lm(formula = Performance ~ Aptitude + Personality, data =  

          FarMisht.frame)



328      PART 3  Drawing Conclusions from Data

Residuals:
   Min     1Q Median     3Q    Max
-8.689 -2.834 -1.840  2.886 13.432

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  20.2825     9.6595   2.100   0.0558 .
Aptitude      0.3905     0.1949   2.003   0.0664 .
Personality   1.6079     0.8932   1.800   0.0951 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.73 on 13 degrees of freedom
Multiple R-squared:   0.69,   Adjusted R-squared:  0.6423
F-statistic: 14.47 on 2 and 13 DF,  p-value: 0.0004938

In the next-to-last line, Multiple R-squared is right there, waiting for you.

If you have to work with that quantity for some reason, that’s

> summary(FarMisht.multreg)$r.squared
[1] 0.6900361

And to calculate R:

> Mult.R.sq <- summary(FarMisht.multreg)$r.squared
> Mult.R <- sqrt(Mult.R.sq)
> Mult.R
[1] 0.8306841

Adjusting R-squared
In the output of lm(), you see Adjusted R-squared. Why is it necessary to “adjust” 
R-squared?

In multiple regression, adding independent variables (like Personality) some-
times makes the regression equation less accurate. The multiple coefficient of 
determination, R-squared, doesn’t reflect this. Its denominator is SSTotal (for the 
dependent variable), and that never changes. The numerator can only increase or 
stay the same. So any decline in accuracy doesn’t result in a lower R-squared.



CHAPTER 15  Correlation: The Rise and Fall of Relationships      329

Taking degrees of freedom into account fixes the flaw. Every time you add an 
independent variable, you change the degrees of freedom, and that makes all the 
difference. Just so you know, here’s the adjustment:

Adjusted R R
N

N k
 2 21 1

1

1

The k in the denominator is the number of independent variables.

If you ever have to work with this quantity (and I’m not sure why you would), 
here’s how to retrieve it:

> summary(FarMisht.multreg)$adj.r.squared
[1] 0.6423494

Partial Correlation
Performance and Aptitude are associated with Personality (in the example). Each 
one’s association with Personality might somehow hide the true correlation 
between them.

ANOTHER LOOK AT MULTIPLE 
CORRELATION
Now I’m going to use R (the statistics software) as a teaching tool to show you what I 
said earlier about R (the multiple correlation coefficient): R (the coefficient) is the corre-
lation between the dependent variable and the combination of the two independent 
variables.

You would never do this in practice, but here goes: I set up a correlation between 
Performance and the combination of Aptitude and Personality. The important thing is 
to weight these variables by their coefficients (as determined by lm()):

> with(FarMisht.frame, cor(Performance, .390519*Aptitude + 
1.607918*Personality))
[1] 0.8306841

Again, you’d never do this — you have to run lm() in order to calculate the coefficients, 
and after you’ve done that, you already have everything you need. I just thought this 
might help you understand multiple R.



330      PART 3  Drawing Conclusions from Data

What would their correlation be if you could remove that association? Another way 
to ask this: What would be the Performance-Aptitude correlation if you could hold 
Personality constant?

One way to hold Personality constant is to find the Performance-Aptitude correla-
tion for a sample of consultants who have one Personality score — 17, for exam-
ple. In a sample like this, the correlation of each variable with Personality is 0. 
This usually isn’t feasible in the real world, however.

Another way is to find the partial correlation between Performance and Aptitude. 
This is a statistical way of removing each variable’s association with Personality 
in your sample. You use the correlation coefficients in the correlation matrix to do 
this:

r r r r

r r
PA F

PA PF AF

PF AF

.
1 12 2

Once again, P stands for Performance, A for Aptitude, and F for Personality. The 
subscript PA.F means that the correlation is between Performance and Aptitude 
with Personality “partialled out.”

For this example,

rPA F.

. . .

. .

7827927 7709271 7499305

7709271 74993051 1
2 2

.4857198

Partial Correlation in R
A package called ppcor holds the functions for calculating partial correlation and 
for calculating semipartial correlation, which I cover in the next section.

On the Packages tab, click Install. In the Install Packages dialog box, type ppcor 
and then click Install. Next, find ppcor in the Packages dialog box and select its 
check box.

The function pcor.test() calculates the correlation between Performance and 
Aptitude with Personality partialled out:

> with (FarMisht.frame, pcor.test(x=Performance, y=Aptitude,  
          z=Personality))

   estimate    p.value statistic  n gp  Method
1 0.4857199 0.06642269    2.0035 16  1 pearson



CHAPTER 15  Correlation: The Rise and Fall of Relationships      331

In addition to the correlation coefficient (shown below estimate), it calculates a 
t-test of the correlation with N–3 df (shown below statistic) and an associated 
p-value.

If you prefer to calculate all the possible partial correlations (and associated 
p-values and t-statistics) in the data frame, use pcor():

> pcor(FarMisht.frame)
$estimate
             Aptitude Performance Personality
Aptitude    1.0000000   0.4857199   0.3695112
Performance 0.4857199   1.0000000   0.4467067
Personality 0.3695112   0.4467067   1.0000000

$p.value
              Aptitude Performance Personality
Aptitude    0.00000000  0.06642269  0.17525219
Performance 0.06642269  0.00000000  0.09506226
Personality 0.17525219  0.09506226  0.00000000

$statistic
            Aptitude Performance Personality
Aptitude    0.000000    2.003500    1.433764
Performance 2.003500    0.000000    1.800222
Personality 1.433764    1.800222    0.000000

Each cell under $estimate is the partial correlation of the cell’s row variable with 
the cell’s column variable, with the third variable partialled out. If you have more 
than three variables, each cell is the row-column partial correlation with every-
thing else partialled out.

Semipartial Correlation
It’s possible to remove the correlation with Personality from just Aptitude without 
removing it from Performance. This is called semipartial correlation. The formula 
for this one also uses the correlation coefficients from the correlation matrix:

r r r r

r
P A F

PA PF AF

AF
.

1 2

The subscript P(A.F) means that the correlation is between Performance and Apti-
tude with Personality partialled out of Aptitude only.



332      PART 3  Drawing Conclusions from Data

Applying this formula to the example,

rP A F.

. . .

.
.

7827927 7709271 7499305

74993051
2

30936633

Some statistics textbooks refer to semipartial correlation as part correlation.

Semipartial Correlation in R
As I mention earlier in this chapter, the ppcor package has the functions for 
 calculating semipartial correlation. To find the semipartial correlation between 
Performance and Aptitude with Personality partialled out of Aptitude only, use 
spcor.test():

> with (FarMisht.frame, spcor.test(x=Performance, y=Aptitude,  
          z=Personality))

   estimate   p.value statistic  n gp  Method
1 0.3093664 0.2618492  1.172979 16  1 pearson

As you can see, the output is similar to the output for pcor.test(). Again, 
estimate is the correlation coefficient and statistic is a t-test of the correlation 
coefficient with N–3 df.

To find the semipartial corrleations for the whole data frame, use spcor():

> spcor(FarMisht.frame)
$estimate
             Aptitude Performance Personality
Aptitude    1.0000000   0.3213118   0.2299403
Performance 0.3093664   1.0000000   0.2779778
Personality 0.2353503   0.2955039   1.0000000

$p.value
             Aptitude Performance Personality
Aptitude    0.0000000   0.2429000   0.4096955
Performance 0.2618492   0.0000000   0.3157849
Personality 0.3984533   0.2849315   0.0000000

$statistic
             Aptitude Performance Personality
Aptitude    0.0000000    1.223378   0.8518883



CHAPTER 15  Correlation: The Rise and Fall of Relationships      333

Performance 1.1729794    0.000000   1.0433855
Personality 0.8730923    1.115260   0.0000000

Notice that, unlike the matrices in the output for pcor(), in these matrices the 
numbers above the diagonal are not the same as the numbers below the 
diagonal.

The easiest way to explain is with an example. In the $estimate matrix, the value 
in the first column, second row (0.3093364) is the correlation between Perfor-
mance (the row variable) and Aptitude (the column variable) with Personality 
partialled out of Aptitude. The value in the second column, first row (0.3213118) 
is the correlation between Aptitude (which is now the row variable) and Perfor-
mance (which is now the column variable) with Personality partialled out of 
Performance.

What happens when you have more than three variables? In that case, each cell 
value is the row-column correlation with everything else partialled out of the 
column variable.





CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      335

IN THIS CHAPTER

 » Understanding exponents

 » Connecting logarithms to regression

 » Pursuing polynomials

Curvilinear Regression: 
When Relationships Get 
Complicated

In Chapters  14 and  15, I describe linear regression and correlation  — two 
 concepts that depend on the straight line as the best-fitting summary of a 
scatterplot.

But a line is isn’t always the best fit. Processes in a variety of areas, from biology 
to business, conform more to curves than to lines.

For example, think about when you learned a skill — like tying your shoelaces. 
When you first tried it, it took quite a while didn’t it? And then whenever you tried 
it again, it took progressively less time for you to finish, right? Until finally, you 
can tie your shoelaces very quickly but you can’t really get any faster — you’re 
now doing it is as efficiently as you can.

If you plotted shoelace-tying-time (in seconds) on the y-axis and trials (occa-
sions when you tried to tie your shoes) on the x-axis, the graph might look 
 something like Figure 16-1. A straight line is clearly not the best summary of a 
plot like this.

Chapter 16



336      PART 3  Drawing Conclusions from Data

How do you find the best-fitting curve? (Another way to say this: “How do you 
formulate a model for these data?”) I’ll be happy to show you, but first I have to 
tell you about logarithms, and about an important number called e.

Why? Because those concepts form the foundation of three kinds of nonlinear 
regression.

What Is a Logarithm?
Plainly and simply, a logarithm is an exponent — a power to which you raise a 
number. In the equation

10 1002

2 is an exponent. Does that mean that 2 is also a logarithm? Well . . . yes. In terms 
of logarithms,

log10 100 2

That’s really just another way of saying 10 1002 . Mathematicians read it as “the 
logarithm of 100 to the base 10 equals 2.” It means that if you want to raise 10 to 
some power to get 100, that power is 2.

How about 1,000? As you know

10 10003

so

log10 1000 3

FIGURE 16-1: 
Hypothetical plot 

of learning a 
skill — like tying 
your shoelaces.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      337

How about 763? Uh. . . . Hmm. . . . That’s like trying to solve

10 763x

What could that answer possibly be? 102 means 10 × 10 and that gives you 100. 
103 means 10 10 10 and that’s 1,000. But 763?

Here’s where you have to think outside the dialog box. You have to imagine expo-
nents that aren’t whole numbers. I know, I know: How can you multiply a number 
by itself a fraction at a time? If you could, somehow, the number in that 763 equa-
tion would have to be between 2 (which gets you to 100) and 3 (which gets you 
to 1,000).

In the 16th century, mathematician John Napier showed how to do it, and loga-
rithms were born. Why did Napier bother with this? One reason is that it was a 
great help to astronomers. Astronomers have to deal with numbers that are, well, 
astronomical. Logarithms ease computational strain in a couple of ways. One way 
is to substitute small numbers for large ones: The logarithm of 1,000,000 is 6, and 
the logarithm of 100,000,000 is 8. Also, working with logarithms opens up a help-
ful set of computational shortcuts. Before calculators and computers appeared on 
the scene, this was a very big deal.

Incidentally,

10 7632 882525.

which means that

log .10 763 2 882525

You can use R’s log10() function to check that out:

> log10(763)
[1] 2.882525

If you reverse the process, you’ll see that

> 10^2.882525
[1] 763.0008

So, 2.882525 is a tiny bit off, but you get the idea.

A bit earlier, I mentioned “computational shortcuts” that result from logarithms. 
Here’s one: If you want to multiply two numbers, add their logarithms, and then 



338      PART 3  Drawing Conclusions from Data

find the number whose logarithm is the sum. That last part is called “finding the 
antilogarithm.” Here’s a quick example: To multiply 100 by 1,000:

log log

,

10 10

10
5

100 1000

2 3 5

5 10 100 000antilog

Here’s another computational shortcut: Multiplying the logarithm of a number x 
by a number b corresponds to raising x to the b power.

Ten, the number that’s raised to the exponent, is called the base. Because it’s also the 
base of our number system and everyone is familiar with it, logarithms of base 10 are 
called common logarithms. And, as you just saw, a common logarithm in R is log10.

Does that mean you can have other bases? Absolutely. Any number (except 0 or 1 
or a negative number) can be a base. For example,

7 8 60 842. .

So

log ..7 8 60 84 2

And you can use R’s log() function to check that out:

> log(60.84,7.8)
[1] 2

In terms of bases, one number is special . . .

What Is e?
Which brings me to e, a constant that’s all about growth.

Imagine the princely sum of $1 deposited in a bank account. Suppose that the 
interest rate is 2 percent a year. (Yes, this is just an example!) If it’s simple inter-
est, the bank adds $.02 every year, and in 50 years you have $2.

If it’s compound interest, at the end of 50 years you have 1 02
50

.  — which is just 
a bit more than $2.68, assuming that the bank compounds the interest once a 
year.

Of course, if the bank compounds interest twice a year, each payment is $.01, and 

after 50 years the bank has compounded it 100 times. That gives you 1 01
100

. , or 



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      339

just over $2.70. What about compounding it four times a year? After 50 years — 

200 compoundings — you have 1 005
200

. , which results in the don’t-spend-it- 
all-in-one-place amount of $2.71 and a tiny bit more.

Focusing on “just a bit more” and “a tiny bit more,” and taking it to extremes, 
after 100,000 compoundings, you have $2.718268. After 100 million, you have 
$2.718282.

If you could get the bank to compound many more times in those 50 years, your 
sum of money approaches a limit — an amount it gets ever so close to, but never 
quite reaches. That limit is e.

The way I set up the example, the rule for calculating the amount is

1 1
n

n

where n represents the number of payments. Two cents is 1/50th of a dollar and I 
specified 50 years — 50 payments. Then I specified two payments a year (and 
each year’s payments have to add up to 2 percent) so that in 50 years you have 
100 payments of 1/100th of a dollar, and so on.

To see this concept in action,

x <- c(seq(1,10,1),50,100,200,500,1000,10000,100000000)
> y <- (1+(1/x))^x
> data.frame(x,y)
       x        y
1  1e+00 2.000000
2  2e+00 2.250000
3  3e+00 2.370370
4  4e+00 2.441406
5  5e+00 2.488320
6  6e+00 2.521626
7  7e+00 2.546500
8  8e+00 2.565785
9  9e+00 2.581175
10 1e+01 2.593742
11 5e+01 2.691588
12 1e+02 2.704814
13 2e+02 2.711517
14 5e+02 2.715569
15 1e+03 2.716924
16 1e+04 2.718146
17 1e+08 2.718282



340      PART 3  Drawing Conclusions from Data

So e is associated with growth. Its value is 2.718282 . . . The three dots mean that 
you never quite get to the exact value (like π, the constant that enables you to find 
the area of a circle).

The number e pops up in all kinds of places. It’s in the formula for the normal 
distribution (along with π; see Chapter 8), and it’s in distributions I discuss in 
Chapter 18 and in Appendix A). Many natural phenomena are related to e.

It’s so important that scientists, mathematicians, and business analysts use it as 
a base for logarithms. Logarithms to the base e are called natural logarithms. In 
many textbooks, a natural logarithm is abbreviated as ln. In R, it’s log.

Table 16-1 presents some comparisons (rounded to three decimal places) between 
common logarithms and natural logarithms.

One more thing: In many formulas and equations, it’s often necessary to raise e to 
a power. Sometimes the power is a fairly complicated mathematical expression. 
Because superscripts are usually printed in a small font, it can be a strain to have 
to constantly read them. To ease the eyestrain, mathematicians have invented a 
special notation: exp. Whenever you see exp followed by something in parentheses, 
it means to raise e to the power of whatever’s in the parentheses. For example,

exp . ..1 6 4 9530321 6e

R’s exp() function does that calculation for you:

> exp(1.6)
[1] 4.953032

TABLE 16-1	 Some Common Logarithms (Log10)  
and Natural Logarithms (Log)

Number Log10 Log

e 0.434 1.000

10 1.000 2.303

50 1.699 3.912

100 2.000 4.605

453 2.656 6.116

1000 3.000 6.908



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      341

Applying the exp() function with natural logarithms is like finding the antilog 
with common logarithms.

Speaking of raising e, when executives at Google, Inc., filed its IPO, they said they 
wanted to raise $2,718,281,828, which is e times a billion dollars rounded to the 
nearest dollar.

And now . . . back to curvilinear regression.

Power Regression
Biologists have studied the interrelationships between the sizes and weights  
of parts of the body. One fascinating relationship is the relation between body 
weight and brain weight. One way to study this is to assess the relationship across 
different species. Intuitively, it seems like heavier animals should have heavier 
brains — but what’s the exact nature of the relationship?

In the MASS package, you’ll find a data frame called Animals that contains the 
body weights (in kilograms) and brain weights (in grams) of 28 species. (To follow 
along, on the Package tab click Install. Then, in the Install Packages dialog box, 
type MASS. When MASS appears on the Packages tab, select its check box.)

The first six rows of Animals are:

> head(Animals)
                    body brain
Mountain beaver     1.35   8.1
Cow               465.00 423.0
Grey wolf          36.33 119.5
Goat               27.66 115.0
Guinea pig          1.04   5.5
Dipliodocus     11700.00  50.0

Have you ever seen a dipliodocus? No? Outside of a natural history museum, no 
one else has, either. In addition to this dinosaur in row 6, Animals has triceratops 
in row 16 and brachiosaurus in row 26. Here, I’ll show you:

> Animals[c(6,16,26),]
               body brain
Dipliodocus   11700  50.0
Triceratops    9400  70.0
Brachiosaurus 87000 154.5



342      PART 3  Drawing Conclusions from Data

To confine your work to living species, create

> Animals.living <- Animals[-c(6,16,26),]

which causes those three dinosaurs to vanish from the data frame as surely as 
they have vanished from the face of the earth.

Let’s take a look at the data points. This code snippet

ggplot(Animals.living, aes(x=body, y=brain))+
  geom_point()

produces Figure 16-2. Note that the idea is to use body weight to predict brain 
weight.

Doesn’t look much like a linear relationship, does it? In fact, it’s not. Relation-
ships in this field often take the form

y ax b

Because the independent (predictor) variable x (body weight, in this case) is raised 
to a power, this type of model is called power regression.

FIGURE 16-2: 
The relationship 

between body 
weight and brain 

weight for 25 
animal species.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      343

R doesn’t have a specific function for creating a power regression model. Its lm() 
function creates linear models, as described in Chapter 14. But you can use lm() in 
this situation if you can somehow transform the data so that the relationship 
between the transformed body weight and the transformed brain weight is 
linear.

And this is why I told you about logarithms.

You can “linearize” the scatterplot by working with the logarithm of the body 
weight and the logarithm of the brain weight. Here’s some code to do just that. For 
good measure, I’ll throw in the animal name for each data point:

ggplot(Animals.living, aes(x=log(body), y=log(brain)))+
  geom_point()+
  geom_text(aes(label=rownames(Animals.living)))

Figure 16-3 shows the result.

I’m surprised by the closeness of donkey and gorilla, but maybe my concept of 
gorilla comes from King Kong. Another surprise is the closeness of horse and 
giraffe.

FIGURE 16-3: 
The relationship 
between the log 

of body weight 
and the log of 

brain weight for 
25 animal 

species.



344      PART 3  Drawing Conclusions from Data

Anyway, you can fit a regression line through this scatterplot. Here’s the code for 
the plot with the line and without the animal names:

ggplot(Animals.living, aes(x=log(body), y=log(brain)))+
  geom_point()+
  geom_smooth(method = "lm",se=FALSE)

The first argument in the last statement (method = “lm”) fits the regression line 
to the data points. The second argument (se=FALSE) prevents ggplot from plotting 
the 95 percent confidence interval around the regression line. These lines of code 
produce Figure 16-4.

This procedure — working with the log of each variable and then fitting a regres-
sion line — is exactly what to do in a case like this. Here’s the analysis:

powerfit <- lm(log(brain) ~ log(body), data = Animals.living)

As always, lm() indicates a linear model, and the dependent variable is on the left 
side of the tilde (~) with the predictor variable on the right side. After running the 
analysis,

FIGURE 16-4: 
The relationship 
between the log 

of body weight 
and the log of 

brain weight for 
25 animal 

species, with a 
regression line.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      345

> summary(powerfit)

Call:
lm(formula = log(brain) ~ log(body), data = Animals.living)

Residuals:
    Min      1Q  Median      3Q     Max
-0.9125 -0.4752 -0.1557  0.1940  1.9303

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  2.15041    0.20060   10.72 2.03e-10 ***
log(body)    0.75226    0.04572   16.45 3.24e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7258 on 23 degrees of freedom
Multiple R-squared:  0.9217,  Adjusted R-squared:  0.9183
F-statistic: 270.7 on 1 and 23 DF,  p-value: 3.243e-14

The high value of F (270.7) and the extremely low p-value let you know that the 
model is a good fit.

The coefficients tell you that in logarithmic form, the regression equation is

log log

log log . .

y a bx

brainweight bodyw2 15041 75226 eeeight

For the power regression equation, you have to take the antilog of both sides. As I 
mention earlier, when you’re working with natural logarithms, that’s the same as 
applying the exp() function:

exp log exp log

exp

y a bx

y a x b

brainweight exp(2.1555041) bodyweight

brainweight bodyweight

.

..

75226

758 588397 22226

All this is in keeping with what I say earlier in this chapter:

» Adding the logarithms of numbers corresponds to multiplying the numbers.

» Multiplying the logarithm of x by b corresponds to raising x to the b power.



346      PART 3  Drawing Conclusions from Data

Here’s how to use R to find the exp of the intercept:

> a <- exp(powerfit$coefficients[1])
> a
(Intercept)
   8.588397

You can plot the power regression equation as a curve in the original scatterplot:

ggplot(Animals.living, aes(x=body, y=brain))+
  geom_point()+
  geom_line(aes(y=exp(powerfit$fitted.values)))

That last statement is the business end, of course: powerfit$fitted.values con-
tains the predicted brain weights in logarithmic form, and applying exp() to those 
values converts those predictions to the original units of measure. You map them 
to y to position the curve. Figure 16-5 shows the plot.

Exponential Regression
As I mention earlier, e figures into processes in a variety of areas. Some of those 
processes, like compound interest, involve growth. Others involve decay.

FIGURE 16-5: 
Original plot of 

brain weights and 
body weights of 
25 species, with 

the power 
regression curve.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      347

Here’s an example. If you’ve ever poured a glass of beer and let it stand, you might 
have noticed that the head gets smaller and smaller (it “decays,” in other words) 
as time passes. You haven’t done that? Okay. Go ahead and pour a tall, cool one 
and watch it for six minutes. I’ll wait.

. . . And we’re back. Was I right? Notice that I didn’t ask you to measure the height 
of the head as it decayed. Physicist Arnd Leike did that for us for three brands 
of beer.

He measured head-height every 15 seconds from 0 to 120 seconds after pouring 
the beer, then every 30 seconds from 150 seconds to 240 seconds, and, finally, at 
300 seconds and 360 seconds. (In the true spirit of science, he then drank the 
beer.) Here are those intervals as a vector:

seconds.after.pour <- c(seq(0,120,15), seq(150,240,30),  
c(300,360))

and here are the measured head-heights (in centimeters) for one of those brands:

head.cm <- c(17, 16.1, 14.9, 14, 13.2, 12.5, 11.9, 11.2,  
           10.7, 9.7, 8.9, 8.3, 7.5, 6.3, 5.2)

I combine these vectors into a data frame:

beer.head <- data.frame(seconds.after.pour,head.cm)

Let’s see what the plot looks like. This code snippet

ggplot(beer.head, aes(x=seconds.after.pour,y=head.cm))+
  geom_point()

produces Figure 16-6.

This one is crying out (in its beer?) for a curvilinear model, isn’t it?

One way to linearize the plot (so that you can use lm() to create a model) is to 
work with the log of the y-variable:

ggplot(beer.head, aes(x=  
         seconds.after.pour,y=log(head.cm)))+

  geom_point()+
  geom_smooth(method="lm",se=FALSE)

The last statement adds the regression line (method = “lm”) and doesn’t draw 
the  confidence interval around the line (se = FALSE). You can see all this in 
Figure 16-7.



348      PART 3  Drawing Conclusions from Data

As in the preceding section, creating this plot points the way for carrying out the 
analysis. The general equation for the resulting model is

y aebx

Because the predictor variable appears in an exponent (to which e is raised), this 
is called exponential regression.

FIGURE 16-6: 
How beer 

head-height 
(head.cm) decays 

over time.

FIGURE 16-7: 
How log(head.cm) 
decays over time, 

including the 
regression line.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      349

And here’s how to do the analysis:

expfit <- lm(log(head.cm) ~ seconds.after.pour,
             data = beer.head)

Once again, lm() indicates a linear model, and the dependent variable is on the 
left side of the tilde (~), with the predictor variable on the right side. After running 
the analysis,

> summary(expfit)

Call:
lm(formula = log(head.cm) ~ seconds.after.pour, data = beer. 

         head)

Residuals:
      Min        1Q    Median        3Q       Max
-0.031082 -0.019012 -0.001316  0.017338  0.047806

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)         2.785e+00  1.110e-02  250.99  < 2e-16 ***
seconds.after.pour -3.223e-03  6.616e-05  -48.72  4.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02652 on 13 degrees of freedom
Multiple R-squared:  0.9946,  Adjusted R-squared:  0.9941
F-statistic:  2373 on 1 and 13 DF,  p-value: 4.197e-16

The F and p-value show that this model is a phenomenally great fit. The R-squared 
is among the highest you’ll ever see. In fact, Arnd did all this to show his students 
how an exponential process works. [If you want to see his data for the other two 
brands, check out Leike, A. (2002), “Demonstration of the exponential decay law 
using beer froth,” European Journal of Physics, 23(1), 21–26.]

According to the coefficients, the regression equation in logarithmic form is

log

log . .

y a bx

head.cm’ seconds.after.p2 785 003223 oour



350      PART 3  Drawing Conclusions from Data

For the exponential regression equation, you have to take the exponential of both 
sides — in other words, you apply the exp() function:

exp log exp

exp

y a bx

y a e

e

bx

head.cm exp(2.785) .0003223seconds.after.pour

.003223secondshead.cm 16 20642. e ..after.pour

Analogous to what you did in the preceding section, you can plot the exponential 
regression equation as a curve in the original scatterplot:

ggplot(beer.head, aes(x= seconds.after.pour,y=head.cm))+
  geom_point()+
  geom_line(aes(y=exp(expfit$fitted.values)))

In the last statement, expfit$fitted.values contains the predicted beer head-
heights in logarithmic form, and applying exp() to those values converts those 
predictions to the original units of measure. Mapping them to y positions the 
curve. Figure 16-8 shows the plot.

Logarithmic Regression
In the two preceding sections, I explain how power regression analysis works with 
the log of the x-variable and the log of the y-variable, and how exponential 

FIGURE 16-8: 
The decay of 

head.cm over 
time, with the 

exponential 
regression curve.



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      351

regression analysis works with the log of just the y-variable. As you might imag-
ine, one more analytic possibility is available to you — working with just the log 
of the x-variable. The equation of the model looks like this:

y a b xlog

Because the logarithm is applied to the predictor variable, this is called logarithmic 
regression.

Here’s an example that uses the Cars93 data frame in the MASS package. (Make 
sure you have the MASS package installed. On the Packages tab, find the MASS check 
box and if it’s not selected, click it.)

This data frame, featured prominently in Chapter 3, holds data on a number of 
variables for 93 cars in the model year 1993. Here, I focus on the relationship 
between Horsepower (the x-variable) and MPG.highway (the y-variable).

This is the code to create the scatterplot in Figure 16-9:

ggplot(Cars93, aes(x=Horsepower,y=MPG.highway))+
  geom_point()

FIGURE 16-9: 
MPG.highway and 

Horsepower in 
the Cars93 data 

frame.



352      PART 3  Drawing Conclusions from Data

For this example, linearize the plot by taking the log of Horsepower. In the plot, 
include the regression line, and here’s how to draw it:

ggplot(Cars93, aes(x=log(Horsepower),y=MPG.highway))+
  geom_point()+
  geom_smooth(method="lm",se=FALSE)

Figure 16-10 shows the result.

With log(Horsepower) as the x-variable, the analysis is

logfit <- lm(MPG.highway ~ log(Horsepower), data=Cars93)

After carrying out that analysis, summary() provides the details:

> summary(logfit)

Call:
lm(formula = MPG.highway ~ log(Horsepower), data = Cars93)

Residuals:
     Min       1Q   Median       3Q      Max
-10.3109  -2.2066  -0.0707   2.0031  14.0002

Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)       80.003      5.520  14.493  < 2e-16 ***
log(Horsepower)  -10.379      1.122  -9.248 9.55e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.849 on 91 degrees of freedom
Multiple R-squared:  0.4845,  Adjusted R-squared:  0.4788
F-statistic: 85.53 on 1 and 91 DF,  p-value: 9.548e-15

The high value of F and the very low value of p indicate an excellent fit.

From the coefficients, the regression equation is

MPG.highway Horsepower’ . . log80 03 10 379



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      353

As in the preceding sections, I plot the regression curve in the original plot:

ggplot(Cars93, aes(x=Horsepower,y=MPG.highway))+
  geom_point()+
  geom_line(aes(y=logfit$fitted.values))

Figure 16-11 shows the plot with the regression curve.

FIGURE 16-10: 
MPG.highway and 
Log(Horsepower) 

in Cars93, along 
with the 

regression line.

FIGURE 16-11: 
MPG.highway and 
Horsepower, with 

the logarithmic 
regression curve.



354      PART 3  Drawing Conclusions from Data

Polynomial Regression: A Higher Power
In all the types of regression I describe earlier in this chapter, the model is a line 
or a curve that does not change direction. It is possible, however, to create a model 
that incorporates a direction-change. This is the province of polynomial 
regression.

I touch on direction-change in Chapter  12, in the context of trend analysis. To 
model one change of direction, the regression equation has to have an x-term 
raised to the second power:

y a b x b x1 2
2

To model two changes of direction, the regression equation has to have an x-term 
raised to the third power:

y a b x b x b x1 2
2

3
3

and so forth.

I illustrate polynomial regression with another data frame from the MASS package. 
(On the Packages tab, find MASS. If its check box isn’t selected, click it.)

This data frame is called Boston. It holds data on housing values in the Boston 
suburbs. Among its 14 variables are rm (the number of rooms in a dwelling) and 
medv (the median value of the dwelling). I focus on those two variables in this 
example, with rm as the predictor variable.

Begin by creating the scatterplot and regression line:

ggplot(Boston, aes(x=rm,y=medv))+
  geom_point()+
  geom_smooth(method=lm, se=FALSE)

Figure 16-12 shows what this code produces.

The linear regression model is

linfit <- lm(medv ~ rm, data=Boston)

> summary(linfit)

Call:
lm(formula = medv ~ rm, data = Boston)



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      355

Residuals:
    Min      1Q  Median      3Q     Max
-23.346  -2.547   0.090   2.986  39.433

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -34.671      2.650  -13.08   <2e-16 ***
rm             9.102      0.419   21.72   <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.616 on 504 degrees of freedom
Multiple R-squared:  0.4835,  Adjusted R-squared:  0.4825
F-statistic: 471.8 on 1 and 504 DF,  p-value: < 2.2e-16

The F and p-value show that this is a good fit. R-squared tells you that about 
48 percent of the SSTotal for medv is tied up in the relationship between rm and 
medv. (Check out Chapter 15 if that last sentence sounds unfamiliar.)

The coefficients tell you that the linear model is

medv rm34 671 9 102. .

FIGURE 16-12: 
Scatterplot of 
median value 

(medv) vs rooms 
(rm) in the Boston 

data frame, with 
the regression 

line.



356      PART 3  Drawing Conclusions from Data

But perhaps a model with a change of direction provides a better fit. To set this up 
in R, create a new variable rm2 — which is just rm squared:

rm2 <- Boston$rm^2

Now treat this as a multiple regression analysis with two predictor variables: rm 
and rm2:

polyfit2 <-lm(medv ~ rm + rm2, data=Boston)

You can’t just go ahead and use rm^2 as the second predictor variable: lm() won’t 
work with it in that form.

After you run the analysis, here are the details:

> summary(polyfit2)

Call:
lm(formula = medv ~ rm + rm2, data = Boston)

Residuals:
    Min      1Q  Median      3Q     Max
-35.769  -2.752   0.619   3.003  35.464

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  66.0588    12.1040   5.458 7.59e-08 ***
rm          -22.6433     3.7542  -6.031 3.15e-09 ***
rm2           2.4701     0.2905   8.502  < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.193 on 503 degrees of freedom
Multiple R-squared:  0.5484,  Adjusted R-squared:  0.5466
F-statistic: 305.4 on 2 and 503 DF,  p-value: < 2.2e-16

Looks like a better fit than the linear model. The F-statistic here is higher, and this 
time R-squared tells you that almost 55 percent of the SSTotal for medv is due to the 
relationship between medv and the combination of rm and rm^2. The increase in 
F and in R-squared comes at a cost  — the second model has 1 less df (503 
versus 504).

The coefficients indicate that the polynomial regression equation is

medv rm rm66 0588 22 6433 2 4701 2. . .



CHAPTER 16  Curvilinear Regression: When Relationships Get Complicated      357

Is it worth the effort to add rm^2 to the model? To find out, I use anova() to com-
pare the linear model with the polynomial model:

> anova(linfit,polyfit2)
Analysis of Variance Table

Model 1: medv ~ rm
Model 2: medv ~ rm + rm2
  Res.Df   RSS Df Sum of Sq      F    Pr(>F)
1    504 22062
2    503 19290  1    2772.3 72.291 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The high F-ratio (72.291) and extremely low Pr(>F) indicate that adding rm^2 is a 
good idea.

Here’s the code for the scatterplot, along with the curve for the polynomial model:

ggplot(Boston, aes(x=rm,y=medv))+
  geom_point()+
  geom_line(aes(y=polyfit2$fitted.values))

The predicted values for the polynomial model are in polyfit2$fitted.values, 
which you use in the last statement to position the regression curve in 
Figure 16-13.

FIGURE 16-13: 
Scatterplot of 
median value 
(medv) versus 

rooms (rm) in the 
Boston data 

frame, with the 
polynomial 

regression curve.



358      PART 3  Drawing Conclusions from Data

The curve in the figure shows a slight downward trend in the dwelling’s value as 
rooms increase from fewer than four to about 4.5, and then the curve trends more 
sharply upward.

Which Model Should You Use?
I present a variety of regression models in this chapter. Deciding on the one that’s 
right for your data is not necessarily straightforward. One superficial answer 
might be to try each one and see which one yields the highest F and R-squared.

The operative word in that last sentence is “superficial.” The choice of model 
should depend on your knowledge of the domain from which the data comes and 
the processes in that domain. Which regression type allows you to formulate a 
theory about what might be happening in the data?

For instance, in the Boston example, the polynomial model showed that dwelling-
value decreases slightly as the number of rooms increases at the low end, and then 
value steadily increases as the number of rooms increases. The linear model 
couldn’t discern a trend like that. Why would that trend occur? Can you come up 
with a theory? Does the theory make sense?

I’ll leave you with an exercise. Remember the shoelace-tying example at the 
beginning of this chapter? All I gave you was Figure  16-1, but here are the 
numbers:

trials <-seq(1,18,1)
time.sec <- c(230, 140, 98, 75, 66, 54, 45, 31, 20, 15,  

10, 9, 9, 9, 8, 8, 8, 8)

What model can you come up with? And how does it help you explain the data?



4Working with 
Probability



IN THIS PART . . .

Work with random variables

Understand counting rules

Work with conditional probability

Visualize probability distributions

Model and simulate



CHAPTER 17  Introducing Probability      361

IN THIS CHAPTER

 » Defining probability

 » Working with probability

 » Dealing with random variables and 
their distributions

 » Focusing on the binomial distribution

 » Learning probability-related R 
functions

Introducing Probability

P 
robability is the basis of hypothesis testing and inferential statistics, so I use 
this concept throughout the book. (Seems like a fine time to introduce it!)

Most of the time I represent probability as the proportion of area under part of a 
distribution. For example, the probability of a Type I error (also known as α) is the 
area in a tail of the standard normal distribution, or in a tail of the t distribution.

It’s time to examine probability in greater detail, including random variables, 
permutations, and combinations. I show you some fundamentals and applications 
of probability, and then I focus on a couple of specific probability distributions and 
also tell you about some probability-related R functions.

What Is Probability?
Most of us have an intuitive idea of probability. Toss a fair coin, and you have a 
50–50 chance that it comes up heads. Toss a fair die (one of a pair of dice) and you 
have a 1-in-6 chance that it comes up displaying a 2.

Chapter 17



362      PART 4  Working with Probability

If you wanted to be more formal in your definition, you’d most likely say some-
thing about all the possible things that could happen, and the proportion of those 
things you care about. Two things can happen when you toss a coin, and if you 
only care about one of them (heads), the probability of that event happening is 
one out of two. Six things can happen when you toss a die, and if you only care 
about one of them (2), the probability of that event happening is one out of six.

Experiments, trials, events,  
and sample spaces
Statisticians and others who work with probability refer to a process like tossing 
a coin or throwing a die as an experiment. Each time you go through the process, 
that’s a trial.

This might not fit your personal definition of an experiment (or of a trial, for that 
matter), but for a statistician, an experiment is any process that produces one of at 
least two distinct results (like heads or tails).

Here’s another piece of the definition of an experiment: You can’t predict the 
result with certainty. Each distinct result is called an elementary outcome. Put a 
bunch of elementary outcomes together and you have an event. For example, with 
a die the elementary outcomes 2, 4, and 6 make up the event “even number.”

Put all the possible elementary outcomes together and you’ve got yourself a sam-
ple space. The numbers 1, 2, 3, 4, 5, and 6 make up the sample space for a die. 
Heads and tails make up the sample space for a coin.

Sample spaces and probability
How do events, outcomes, and sample spaces play into probability? If each ele-
mentary outcome in a sample space is equally likely, the probability of an event is

pr Event
Number of Elementary Outcomes in the Event

Number  of Elementary Outcomes in the Sample Space

So the probability of tossing a die and getting an even number is

pr Even Number Number of Even-Numbered Elementary Outcomess
Number of Possible Outcomes of a Die

3
6

5.

If the elementary outcomes are not equally likely, you find the probability of an 
event in a different way. First, you have to have some way to assign a probability 
to each one. Then you add up the probabilities of the elementary outcomes that 
make up the event.



CHAPTER 17  Introducing Probability      363

A couple of things to bear in mind about outcome probabilities:

 » Each probability has to be between 0 and 1.

 » All the probabilities of elementary outcomes in a sample space have to add up 
to 1.00.

How do you assign those probabilities? Sometimes you have advance information — 
such as knowing that a coin is biased toward coming up heads 60 percent of the 
time. Sometimes you just have to think through the situation to figure out the prob-
ability of an outcome.

Here’s a quick example of “thinking through the situation.” Suppose a die is biased 
so that the probability of an outcome is proportional to the numerical label of the 
outcome: A 6 comes up six times as often as a 1, a 5 comes up five times as often as 
a 1, and so on. What is the probability of each outcome? All the probabilities have to 
add up to 1.00, and all the numbers on a die add up to 21 (1 2 3 4 5 6 21), so 
the probabilities are: pr  pr  pr1 1 21 2 2 21 6 6 21/ , / , , / .

Compound Events
Some rules for dealing with compound events help you “think through.” A com-
pound event consists of more than one event. It’s possible to combine events by 
either union or intersection (or both).

Union and intersection
On the toss of a fair die, what’s the probability of getting a 1 or a 4? Mathemati-
cians have a symbol for or. It’s called union, and it looks like this: ∪. Using this 
symbol, the probability of a 1 or a 4 is pr(1 ∪ 4).

In approaching this kind of probability, it’s helpful to keep track of the elementary 
outcomes. One elementary outcome is in each event, so the event “1 or 4” has two 
elementary outcomes. With a sample space of six outcomes, the probability is 2/6, 
or 1/3. Another way to calculate this is

pr pr pr1 1 4 1
6

1
6

2
6

1
3

Here’s a slightly more involved one: What’s the probability of getting a number 
between 1 and 3 or a number between 2 and 4?



364      PART 4  Working with Probability

Just adding the elementary outcomes in each event won’t get it done this time. 
Three outcomes are in the event “between 1 and 3” and three are in the event 
“between 2 and 4.” The probability can’t be 3 3 divided by the six outcomes in 
the sample space, because that’s 1.00, leaving nothing for pr(5) and pr(6). For the 
same reason, you can’t just add the probabilities.

The challenge arises in the overlap of the two events. The elementary outcomes in 
“between 1 and 3” are 1, 2, and 3. The elementary outcomes in “between 2 and 4” 
are 2, 3, and 4. Two outcomes overlap: 2 and 3. In order to not count them twice, 
the trick is to subtract them from the total.

A couple of things will make life easier as I proceed. I abbreviate “between 1 and 
3” as A and “between 2 and 4” as B. Also, I use the mathematical symbol for 
“overlap.” The symbol is ∩ and it’s called intersection.

Using the symbols, the probability of “between 1 and 3” or “between 2 and 4” is

pr A B

Number of Outcomes in A Number of Outcomes in B Nummber of Outcomes in A B
Number of Outcomes in the Sample  Space

pr A B 3 3 2
6

4
6

2
3

You can also work with the probabilities:

pr A B 3
6

3
6

2
6

4
6

2
3

The general formula is

pr A B pr A pr B pr A B

Why was it okay to just add the probabilities together in the earlier example? 
Because pr(1 ∩ 4) is zero: It’s impossible to get a 1 and a 4 in the same toss of a die. 
Whenever pr(A ∩ B) = 0, A and B are said to be mutually exclusive.

Intersection again
Imagine throwing a coin and rolling a die at the same time. These two experi-
ments are independent, because the result of one has no influence on the result of 
the other.

What’s the probability of getting heads and a 4? You use the intersection symbol 
and write this as pr(heads ∩ 4):

pr Heads
Number of Elementary Outcomes in Heads  4

Numb
4

eer of Elementary Outcomes in the Sample Space



CHAPTER 17  Introducing Probability      365

Start with the sample space. Table 17-1 lists all the elementary outcomes.

As the table shows, 12 outcomes are possible. How many outcomes are in the event 
“heads and 4”? Just one. So

pr Heads
Number of Elementary Outcomes in Heads  4

Numb
4

eer of Elementary Outcomes in the Sample Space
1

12

You can also work with the probabilities:

pr Heads pr Heads pr 44 1
12

In general, if A and B are independent,

pr A B pr A pr B

Conditional Probability
In some circumstances, you narrow the sample space. For example, suppose I toss 
a die and I tell you the result is greater than 2. What’s the probability that it’s a 5?

Ordinarily, the probability of a 5 would be 1/6. In this case, however, the sample 
space isn’t 1, 2, 3, 4, 5, and 6. When you know the result is greater than 2, the 
sample space becomes 3, 4, 5, and 6. The probability of a 5 is now 1/4.

This is an example of conditional probability. It’s “conditional” because I’ve given 
a “condition” — the toss resulted in a number greater than 2. The notation for 
this is

pr Greater than 25|

TABLE 17-1	 The Elementary Outcomes in the Sample Space  
for Throwing a Coin and Rolling a Die

Heads, 1 Tails, 1

Heads, 2 Tails, 2

Heads, 3 Tails, 3

Heads, 4 Tails, 4

Heads, 5 Tails, 5

Heads, 6 Tails, 6



366      PART 4  Working with Probability

The vertical line (|) is shorthand for the word “given,” and you read that notation 
as “the probability of a 5 given greater than 2.”

Working with the probabilities
In general, if you have two events A and B,

pr A B
pr A B

pr B
|

( )
( )

as long as pr(B) isn’t zero.

For the intersection in the numerator on the right, this is not a case where you just 
multiply probabilities together. In fact, if you could do that, you wouldn’t have a 
conditional probability, because that would mean A and B are independent. If 
they’re independent, one event can’t be conditional on the other.

You have to think through the probability of the intersection. In a die, how many 
outcomes are in the event “5 ∩ Greater than 2”? Just one, so pr(5 ∩ Greater than 
2) is 1/6, and

pr Greater than 2
pr Greater than 2

pr Greater than 2
5

5
|

1
6

4
6

1
4

The foundation of hypothesis testing
All the hypothesis testing I discuss in previous chapters involves conditional 
probability. When you calculate a sample statistic, compute a statistical test, and 
then compare the test statistic against a critical value, you’re looking for a condi-
tional probability. Specifically, you’re trying to find

pr obtained test statistic or a more extreme value|H  is tr0 uue

If that conditional probability is low (less than .05 in all the examples I show you 
in hypothesis-testing chapters), you reject H0.

Large Sample Spaces
When dealing with probability, it’s important to understand the sample space. In 
the examples I’ve shown you so far in this chapter, the sample spaces are small. 
With a coin or a die, it’s easy to list all the elementary outcomes.



CHAPTER 17  Introducing Probability      367

The world, of course, isn’t that simple. In fact, even the probability problems that 
live in statistics textbooks aren’t that simple. Most of the time, sample spaces are 
large and it’s not convenient to list every elementary outcome.

Take, for example, rolling a die twice. How many elementary outcomes are in the 
sample space consisting of both tosses? You can sit down and list them, but it’s 
better to reason it out: Six possibilities for the first toss, and each of those six can 
pair up with six possibilities on the second. So the sample space has 6 6 36 pos-
sible elementary outcomes.

This is similar to the coin-and-die sample space in Table 17-1, where the sample 
space consists of 2 6 12 elementary outcomes. With 12 outcomes, it was easy to 
list them all in a table. With 36 outcomes it starts to get, well, dicey. (Sorry.)

Events often require some thought, too. What’s the probability of rolling a die 
twice and totaling 5? You have to count the number of ways the two tosses can 
total 5, and then divide by the number of elementary outcomes in the sample 
space (36). You total a 5 by getting any of these pairs of tosses: 1 and 4, 2 and 3, 3 
and 2, or 4 and 1. That totals four ways, and they don’t overlap (excuse me —  
intersect), so

pr 5
Number of Ways of Rolling a 5

Number of Possible Outcoomes of Two Tosses
4
36

11.

Listing all the elementary outcomes for the sample space is often a nightmare. 
Fortunately, shortcuts are available, as I show in the upcoming subsections. 
Because each shortcut quickly helps you count a number of items, another name 
for a shortcut is a counting rule.

Believe it or not, I just slipped one counting rule past you. A couple of paragraphs 
ago, I say that in two tosses of a die you have a sample space of 6 6 36 possible 
outcomes. This is the product rule: If N1 outcomes are possible on the first trial of 
an experiment, and N2 outcomes are possible on the second trial, the number of 
possible outcomes is N1N2. Each possible outcome on the first trial can associate 
with all possible outcomes on the second. What about three trials? That’s N1N2N3.

Now for a couple more counting rules.

Permutations
Suppose you have to arrange five objects into a sequence. How many ways can you 
do that? For the first position in the sequence, you have five choices. After you 
make that choice, you have four choices for the second position. Then you have 
three choices for the third, two for the fourth, and one for the fifth. The number 
of ways is 5 4 3 2 1 120.



368      PART 4  Working with Probability

In general, the number of sequences of N objects is N(N–1)(N–2).  .  .(2)(1). This 
kind of computation occurs fairly frequently in the probability world, and it has its 
own notation: N! You don’t read this by screaming out “N” in a loud voice. Instead, 
it’s “N factorial.” By definition, 1 1! , and 0 1! .

Now for the good stuff. If you have to order the 26 letters of the alphabet, the 
number of possible sequences is 26!, a huge number. But suppose the task is to 
create five-letter sequences so that no letter repeats in the sequence. How many 
ways can you do that? You have 26 choices for the first letter, 25 for the second, 
24 for the third, 23 for the fourth, 22 for the fifth, and that’s it. So that’s (26)(25)
(24)(23)(22). Here’s how that product is related to 26!:

26
21

!
!

Each sequence is called a permutation. In general, if you take permutations of N 
things r at a time, the notation is NPr (the P stands for permutation). The formula is

N rP N
N r

!
!

Just for completeness, here’s another wrinkle. Suppose that I allow repetitions in 
these sequences of 5. That is, aabbc is a permissible sequence. In that case, the 
number of sequences is 26 26 26 26 26, or as mathematicians would say, “26 
raised to the fifth power.” Or as mathematicians would write, “265.”

Combinations
In the preceding example, these sequences are different from one another: abcde, 
adbce, dbcae, and on and on and on. In fact, you could come up with 5! = 120 of 
these different sequences just for the letters a, b, c, d, and e.

Suppose I add the restriction that one of these sequences is no different from 
another, and all I’m concerned about is having sets of five nonrepeating letters in 
no particular order. Each set is called a combination. For this example, the number 
of combinations is the number of permutations divided by 5!:

26
5 21

!
! !

In general, the notation for combinations of N things taken r at a time is NCr (the C 
stands for combination). The formula is

N rC N
r N r

!
! !



CHAPTER 17  Introducing Probability      369

I touch on this topic in Appendix B. In the context of a statistical test called the 
Wilcoxon rank sum test, I use as an example the number of combinations of eight 
things taken four at a time:

8 4
8

4 4
70C !

! !

Now for that completeness wrinkle again. Suppose I allow repetitions in these 
sequences. How many sequences would I have? It turns out to be equivalent to 
N+r–1 things taken N–1 at a time, or N+r+1CN–1. For this example, that would be 30C25.

R Functions for Counting Rules
R provides factorial() for finding the factorial of a number:

> factorial(6)
[1] 720

You can also use this function to find the factorial of each number in a vector:

> xx <- c(2,3,4,5,6)
> factorial(xx)
[1]   2   6  24 120 720

For combinations, R provides a couple of possibilities. The choose() function cal-
culates NCr — the number of combinations of N things taken r at a time. So, for 8 
things taken 4 at a time (refer to the example from Appendix B), that’s

> choose(8,4)
[1] 70

To list all the combinations, use combn(). I illustrate with 4C2. I have a vector con-
taining the names of four of the Marx Brothers

Marx.Bros <- c("Groucho","Chico","Harpo","Zeppo")

and I want to list all possible combinations of them taken two at a time:

> combn(Marx.Bros,2)
     [,1]      [,2]      [,3]      [,4]    [,5]    [,6]
[1,] "Groucho" "Groucho" "Groucho" "Chico" "Chico" "Harpo"
[2,] "Chico"   "Harpo"   "Zeppo"   "Harpo" "Zeppo" "Zeppo"



370      PART 4  Working with Probability

This matrix tells me that six such combinations are possible, and the two rows in 
each column show the two names in each combination.

In my view, the best functions for dealing with combinations and permutations are 
in the gtools package. On the Packages tab, find gtools and select its check box.

Here are the combinations() and permutations() functions from gtools at 
work:

> combinations(4,2,v=Marx.Bros)
     [,1]      [,2]
[1,] "Chico"   "Groucho"
[2,] "Chico"   "Harpo"
[3,] "Chico"   "Zeppo"
[4,] "Groucho" "Harpo"
[5,] "Groucho" "Zeppo"
[6,] "Harpo"   "Zeppo"

> permutations(4,2,v=Marx.Bros)
      [,1]      [,2]
 [1,] "Chico"   "Groucho"
 [2,] "Chico"   "Harpo"
 [3,] "Chico"   "Zeppo"
 [4,] "Groucho" "Chico"
 [5,] "Groucho" "Harpo"
 [6,] "Groucho" "Zeppo"
 [7,] "Harpo"   "Chico"
 [8,] "Harpo"   "Groucho"
 [9,] "Harpo"   "Zeppo"
[10,] "Zeppo"   "Chico"
[11,] "Zeppo"   "Groucho"
[12,] "Zeppo"   "Harpo"

For each function, the first argument is N, the second is r, and the third is the vec-
tor containing the items. Without the vector, here’s what happens:

> combinations(4,2)
     [,1] [,2]
[1,]    1    2
[2,]    1    3
[3,]    1    4
[4,]    2    3
[5,]    2    4
[6,]    3    4



CHAPTER 17  Introducing Probability      371

If all you want to do is solve for the number of combinations:

> nrow(combinations(4,2))
[1] 6

Of course, you can do the same for permutations.

Random Variables: Discrete  
and Continuous

Let me go back to tosses of a fair die, where six elementary outcomes are possible. 
If I use x to refer to the result of a toss, x can be any whole number from 1 to 6. 
Because x can take on a set of values, it’s a variable. Because x’s possible values 
correspond to the elementary outcomes of an experiment (meaning you can’t pre-
dict its values with absolute certainty), x is called a random variable.

Random variables come in two varieties. One variety is discrete, of which die- 
tossing is a good example. A discrete random variable can only take on what 
mathematicians like to call a countable number of values — like the numbers 1 
through 6. Values between the whole numbers 1 through 6 (like 1.25 and 3.1416) 
are impossible for a random variable that corresponds to the outcomes of 
die-tosses.

The other kind of random variable is continuous. A continuous random variable can 
take on an infinite number of values. Temperature is an example. Depending on 
the precision of a thermometer, having temperatures like 34.516 degrees is 
possible.

Probability Distributions  
and Density Functions

Back again to die-tossing. Each value of the random variable x (1–6, remember) 
has a probability. If the die is fair, each probability is 1/6. Pair each value of a dis-
crete random variable like x with its probability, and you have a probability 
distribution.

Probability distributions are easy enough to represent in graphs. Figure  17-1 
shows the probability distribution for x.



372      PART 4  Working with Probability

A random variable has a mean, a variance, and a standard deviation. Calculating 
these parameters is pretty straightforward. In the random-variable world, the 
mean is called the expected value, and the expected value of random variable x is 
abbreviated as E(x). Here’s how you calculate it:

E x x pr x

For the probability distribution in Figure 17-1, that’s

E x x pr x 1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 11
6

3 5.

The variance of a random variable is often abbreviated as V(x), and the formula is

V x x pr x E x2 2

Working with the probability distribution in Figure 17-1 once again,

V x 1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 1
6

2 2 2 2 2 2 3 5 2 917
2

. .

The standard deviation is the square root of the variance, which in this case  
is 1.708.

For continuous random variables, things get a little trickier. You can’t pair a value 
with a probability, because you can’t really pin down a value. Instead, you associ-
ate a continuous random variable with a mathematical rule (an equation) that 
generates probability density, and the distribution is called a probability density 

FIGURE 17-1: 
The probability 

distribution for x, 
a random 

variable based on 
the tosses of a 

fair die.



CHAPTER 17  Introducing Probability      373

 function. To calculate the mean and variance of a continuous random variable, you 
need calculus.

In Chapter 8, I show you a probability density function — the standard normal 
distribution. I reproduce it here as Figure 17-2.

In the figure, f(x) represents the probability density. Because probability density 
can involve some heavyweight mathematical concepts, I won’t go into it. As I 
mention in Chapter 8, think of probability density as something that turns the 
area under the curve into probability.

Although you can’t speak of the probability of a specific value of a continuous 
random variable, you can work with the probability of an interval. To find the 
probability that the random variable takes on a value within an interval, you find 
the proportion of the total area under the curve that’s inside that interval. 
 Figure 17-2 shows this concept. The probability that x is between 0 and 1σ is .3413.

For the rest of this chapter, I deal just with discrete random variables. A specific 
one is up next.

FIGURE 17-2: 
The standard 

normal 
 distribution: a 

probability 
density function.



374      PART 4  Working with Probability

The Binomial Distribution
Imagine an experiment that has these five characteristics:

 » The experiment consists of N identical trials.

A trial could be the toss of a die or the toss of a coin.

 » Each trial results in one of two elementary outcomes.

It’s standard to call one outcome a success and the other a failure. For die-
tossing, a success might be a toss that comes up 3, in which case a failure is 
any other outcome.

 » The probability of a success remains the same from trial to trial.

Again, it’s pretty standard to use p to represent the probability of a success 
and to use 1–p (or q) to represent the probability of a failure.

 » The trials are independent.

 » The discrete random variable x is the number of successes in the N trials.

This type of experiment is called a binomial experiment. The probability distribu-
tion for x follows this rule:

pr x N
x n x

p px N x!
! !

1

On the extreme right, px(1–p)N–x is the probability of one combination of x suc-
cesses in N trials. The term to its immediate left is NCx, the number of possible 
combinations of x successes in N trials.

This is called the binomial distribution. You use it to find probabilities like the prob-
ability you’ll get four 3s in ten tosses of a die:

pr 4 10
4 6

1
6

5
6

054
4 6!

! !
.

The negative binomial distribution is closely related. In this distribution, the ran-
dom variable is the number of trials before the xth success. For example, you use 
the negative binomial to find the probability of five tosses that result in anything 
but a 3 before the fourth time you roll a 3.

For this to happen, in the eight tosses before the fourth 3, you have to get five 
non-3s and three successes (tosses when a 3 comes up). Then the next toss results 
in a 3. The probability of a combination of four successes and five failures is 



CHAPTER 17  Introducing Probability      375

p4(1–p)5. The number of ways you can have a combination of five failures and 
four-to-one successes is 5+4-1C4–1. So the probability is

pr 5 failures before the th success4
5 4 1
4 1 5

1
6

!
! !

4 55
6

017.

In general, the negative binomial distribution (sometimes called the Pascal 
 distribution) is

pr f x
f x

x f
p x failures before the th success

1
1

!
! !

11 p
f

The Binomial and Negative Binomial in R
R provides binom functions for the binomial distribution, and nbinom functions 
for the negative binomial distribution. For both distributions, I work with die-
tosses so that p (the probability of a success) = 1/6.

Binomial distribution
As is the case for other built-in distributions, R provides these functions for  
the binomial distribution: dbinom() (density function), pbinom() (cumulative 
distribution function), qbinom() (quantiles), and rbinom() (random number 
generation).

To show you a binomial distribution, I use dbinon() to plot the density function 
for the number of successes in ten tosses of a fair die. I begin by creating a vector 
for the number of successes:

successes <- seq(0,10)

and then a vector for the associated probabilities:

probability <- dbinom(successes,10,1/6)

The first argument, of course, is the vector of successes, the second is the number 
of trials, and the third (1/6) is the probability of a success with a fair six-sided die.

To plot this density function:

ggplot(NULL,aes(x=successes,y=probability))+
  geom_bar(stat="identity",width=1,color="white")



376      PART 4  Working with Probability

The NULL argument in ggplot() indicates that I haven’t created a data frame — 
I’m just using the successes and probability vectors. In geom_bar(), the stat= 
“identity” argument indicates that the values in the probability vector set the 
heights of the bars, width = 1 widens the bars a bit from the default width, and 
color = “white” adds clarity by putting a white border around each bar. The code 
creates Figure 17-3.

Next, I use pbinom() to show you the cumulative distribution for the number of 
successes in ten tosses of a fair die:

cumulative <-pbinom(successes,10,1/6)

And here’s the code for the plot:

ggplot(NULL,aes(x=successes,y=cumulative))+
  geom_step()

The second statement produces the stepwise function you see in Figure 17-4:

Each step represents the probability of getting x or fewer successes in ten tosses.

FIGURE 17-3: 
Binomial 

distribution  
of the number  
of successes in 

ten tosses  
of a fair die.



CHAPTER 17  Introducing Probability      377

The qbinom() function computes quantile information. For every fifth quantile 
from the 10th through the 95th in the binomial distribution with N = 10 and  
p = 1/6:

> qbinom(seq(.10,.95,.05),10,1/6)
 [1] 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4

To sample 5 random numbers from this binomial distribution

> rbinom(5, 10, 1/6)
[1] 4 3 3 0 2

Negative binomial distribution
For the negative binomial functions, dnbinom() provides the density function, 
pnbinom() gives you the cumulative distribution function, qnbinom() gives quan-
tile information, and rnbinom() produces random numbers.

The example I show you earlier involves the number of failures before the fourth 
success of a die-toss. That case was the probability of 5 failures before the fourth 
toss, and I use dnbinom() to calculate that probability:

> dnbinom(5,4,1/6)
[1] 0.01736508

FIGURE 17-4: 
Cumulative 
distribution  

of the number  
of successes  
in ten tosses  
of a fair die.



378      PART 4  Working with Probability

The first argument to dnbinom() is the number of failures, the second is the num-
ber of successes, and the third is the probability of a success.

If I want to know the probability of five or fewer failures before the fourth 
success:

> pnbinom(5,4,1/6)
[1] 0.04802149

which is the same as

> sum(dnbinom(seq(0,5),4,1/6))
[1] 0.04802149

For every fifth quantile from the 10th through 95th of the number of failures 
before four successes (with p = 1/6):

> qnbinom(seq(.10,.95,.05),4,1/6)
 [1]  8  9 11 12 13 14 16 17 18 20 21 22 24 26 28 31 35 41

And to sample five random numbers from the negative binomial with 4 successes 
and p = 1/6:

> rnbinom(5, 4, 1/6)
[1] 10  5  4 23  7

Hypothesis Testing with the  
Binomial Distribution

Hypothesis tests sometimes involve the binomial distribution. Typically, you have 
some idea about the probability of a success, and you put that idea into a null 
hypothesis. Then you perform N trials and record the number of successes. Finally, 
you compute the probability of getting that many successes or a more extreme 
amount if your H0 is true. If the probability is low, reject H0.

When you test in this way, you’re using sample statistics to make an inference 
about a population parameter. Here, that parameter is the probability of a success 
in the population of trials. By convention, Greek letters represent parameters. 
Statisticians use π (pi), the Greek equivalent of p, to stand for the probability of a 
success in the population.



CHAPTER 17  Introducing Probability      379

Continuing with the die-tossing example, suppose you have a die and you want to 
test whether or not it’s fair. You suspect that if it’s not, it’s biased toward 3. Define 
a toss that results in 3 as a success. You toss it ten times. Five tosses are successes. 
Casting all this into hypothesis-testing terms:

H0: π ≤ 1/6

H1: π > 1/6

As I usually do, I set .05.

To test these hypotheses, you have to find the probability of getting at least  
four successes in ten tosses with p = 1/6. That probability is 
pr pr pr pr pr pr5 6 7 8 9 10 . If the total is less than .05,  
reject H0.

Once upon a time, that would have been a lot of calculating. With R, not so much. 
The function binom.test() does all the work:

binom.test(5,10,1/6, alternative="greater")

The first argument is the number of successes, the second is the number of tosses, 
the third is π, and the fourth is the alternative hypothesis. Running this function 
produces

> binom.test(5,10,1/6, alternative="greater")

Exact binomial test

data:  5 and 10
number of successes = 5, number of trials = 10,
p-value = 0.01546
alternative hypothesis: true probability of success is greater 

than 0.1666667
95 percent confidence interval:
 0.2224411 1.0000000
sample estimates:
probability of success
                   0.5

The p-value (0.01546) is much less than .05, and that tells me to reject the null 
hypothesis. Also, note the additional information about confidence intervals and 
the estimated probability of a success (the number of obtained successes divided 
by number of trials).



380      PART 4  Working with Probability

If you’ve been following the discussion about the binomial distribution, you know 
that two other ways of calculating that p-value are

> sum(dbinom(seq(5,10),10,1/6))
[1] 0.01546197

and

> 1-pbinom(4,10,1/6)
[1] 0.01546197

Any way you slice it, the decision is to reject the null hypothesis.

More on Hypothesis Testing:  
R versus Tradition

When N 5 (Number of trials × the hypothesized probability of a success) and 
N 1 5 (number of trials × the hypothesized probability of a failure) are both 
greater than 5, the binomial distribution approximates the standard normal 
 distribution. In those cases, statistics textbooks typically tell you to use the statis-
tics of the normal distribution to answer questions about the binomial distribu-
tion. For the sake of tradition, let’s carry that through and then compare with 
binom.test().

Those statistics involve z-scores, which means that you have to know the mean 
and the standard deviation of the binomial. Fortunately, they’re easy to compute. 
If N is the number of trials and π is the probability of a success, the mean is

N

the variance is

2 1N

and the standard deviation is

N 1

When you test a hypothesis, you’re making an inference about π and you have to 
start with an estimate. You run N trials and get x successes. The estimate is

P x
N



CHAPTER 17  Introducing Probability      381

To create a z-score, you need one more piece of information — the standard error 
of P. This sounds harder than it is, because this standard error is just

P N
1

Now you’re ready for a hypothesis test.

Here’s an example. The CEO of FarKlempt Robotics, Inc., believes that 50 percent 
of FarKlempt robots are purchased for home use. A sample of 1,000 FarKlempt 
customers indicates that 550 of them use their robots at home. Is this significantly 
different from what the CEO believes? The hypotheses:

H0: π = .50

H1: π ≠ .50

I set .05

N 500, and N 1 500, so the normal approximation is appropriate.

First, calculate P:

P x
N

550
1000

55.

Now create a z-score

z P

N
1

55 50
50 1 50

1000

05
25

1000

3 162. .
. .

.
.

.

With .05, is 3.162 a large enough z-score to reject H0?

> pnorm(3.162,lower.tail = FALSE)*2
[1] 0.001566896

This is much less than .05, so the decision is to reject H0.

With a little thought, you can see why statisticians recommended this procedure 
back in the day. To compute the exact probability, you have to calculate the 
 probability of at least 550 successes in 1,000 trials. That would be 
pr pr pr550 551 1000 , so an approximation based on a well-known 
distribution was most welcome — particularly in statistics textbooks.



382      PART 4  Working with Probability

But now

> binom.test(550,1000,.5,alternative="two.sided")

Exact binomial test

data:  550 and 1000
number of successes = 550, number of trials = 1000,
p-value = 0.001731
alternative hypothesis: true probability of success is not  

equal to 0.5
95 percent confidence interval:
 0.5185565 0.5811483
sample estimates:
probability of success
                  0.55

Voilà! The binom.test() function calculates the exact probability in the blink of 
an eye. As you can see, the exact probability (0.001731) differs slightly from the 
normally approximated p-value but the conclusion (reject H0) is the same.



CHAPTER 18  Introducing Modeling      383

IN THIS CHAPTER

 » Discovering models

 » Modeling and fitting

 » Working with the Monte Carlo 
method

Introducing Modeling

A model is something you know and can work with that helps you under-
stand something you know little about. A model is supposed to mimic, in 
some way, the thing it’s modeling. A globe, for example, is a model of the 

earth. A street map is a model of a neighborhood. A blueprint is a model of a 
building.

Researchers use models to help them understand natural processes and 
phenomena. Business analysts use models to help them understand business 
processes. The models these people use might include concepts from mathematics 
and statistics  — concepts that are so well known they can shed light on the 
unknown. The idea is to create a model that consists of concepts you understand, 
put the model through its paces, and see if the results look like real-world results.

In this chapter, I discuss modeling. My goal is to show how you can harness R to 
help you understand processes in your world.

Modeling a Distribution
In one approach to modeling, you gather data and group them into a distribution. 
Next, you try to figure out a process that results in that kind of a distribution. 
Restate that process in statistical terms so that it can generate a distribution, and 

Chapter 18



384      PART 4  Working with Probability

then see how well the generated distribution matches up with the real one. This 
“process you figure out and restate in statistical terms” is the model.

If the distribution you generate matches up well with the real data, does this mean 
your model is “right”? Does it mean that the process you guessed is the process 
that produces the data?

Unfortunately, no. The logic doesn’t work that way. You can show that a model is 
wrong, but you can’t prove that it’s right.

Plunging into the Poisson distribution
In this section, I walk you through an example of modeling with the Poisson dis-
tribution. I discuss this distribution in Appendix A, where I tell you it seems to 
characterize an array of processes in the real world. By “characterize a process,” I 
mean that a distribution of real-world data looks a lot like a Poisson distribution. 
When this happens, it’s possible that the kind of process that produces a Poisson 
distribution is also responsible for producing the data.

What is that process? Start with a random variable x that tracks the number of 
occurrences of a specific event in an interval. In Appendix A, the “interval” is a 
sample of 1,000 universal joints, and the specific event is “defective joint.” Pois-
son distributions are also appropriate for events occurring in intervals of time, 
and the event can be something like “arrival at a toll booth.”

Next, I outline the conditions for a Poisson process and use both defective joints and 
toll booth arrivals to illustrate:

 » The numbers of occurrences of the event in two non-overlapping intervals are 
independent.

The number of defective joints in one sample is independent of the number 
of defective joints in another. The number of arrivals at a toll booth during 
one hour is independent of the number of arrivals during another.

 » The probability of an occurrence of the event is proportional to the size of the 
interval.

The chance that you’ll find a defective joint is larger in a sample of 10,000 than 
it is in a sample of 1,000. The chance of an arrival at a toll booth is greater for 
one hour than it is for a half-hour.

 » The probability of more than one occurrence of the event in a small interval is 
0 or close to 0.



CHAPTER 18  Introducing Modeling      385

In a sample of 1,000 universal joints, you have an extremely low probability of 
finding two defective ones right next to one another. At any time, two vehicles 
don’t arrive at a toll booth simultaneously.

As I show you in Appendix A, the formula for the Poisson distribution is

pr x
e
x

x

!

In this equation, μ represents the average number of occurrences of the event in 
the interval you’re looking at, and e is the constant 2.781828 (followed by infi-
nitely many more decimal places).

Modeling with the Poisson distribution
Time to use the Poisson in a model. At the FarBlonJet Corporation, web designers 
track the number of hits per hour on the intranet home page. They monitor the 
page for 200 consecutive hours and group the data, as listed in Table 18-1.

The first column shows the variable Hits per Hour. The second column, Observed 
Hours, shows the number of hours in which each value of hits per hour occurred. 
In the 200 hours observed, 10 of those hours went by with no hits, 30 hours had one 
hit, 44 had two hits, and so on. These data lead the web designers to use a Poisson 
distribution to model hits per hour. Here’s another way to say this: They believe 
that a Poisson process produces the number of hits per hour on the web page.

TABLE 18-1	 Hits Per Hour on the FarBlonJet Intranet Home Page
Hits per Hour Observed Hours Hits/Hour X Observed Hours

0 10 0

1 30 30

2 44 88

3 44 132

4 36 144

5 18 90

6 10 60

7 8 56

Total 200 600



386      PART 4  Working with Probability

Multiplying the first column by the second column results in the third column. 
Summing the third column shows that in the 200 observed hours, the intranet 
page received 600 hits. So the average number of hits per hour is 3.00.

Applying the Poisson distribution to this example,

pr x
e
x

e
x

x x

! !
3 3

Figure 18-1 shows the density function for the Poisson distribution with 3.

The axis labels in the figure hint at how to create it.

Start with a vector of values for the x-axis.

x.values <- seq(0,7)

Then, work with the density function for the Poisson distribution (see 
Appendix A):

dpois(x.values,3)

FIGURE 18-1: 
The Poisson 

distribution with 
3.



CHAPTER 18  Introducing Modeling      387

That’s the function to use for the aesthetic mapping of y in ggplot():

ggplot(NULL,aes(x=x.values,y=dpois(x.values,3)))+
  geom_bar(stat="identity",width=.5)+
  scale_x_continuous(breaks=seq(0,7))

The second statement plots the bars. Its first argument (stat="identity") speci-
fies that the height of each bar is the corresponding density function value mapped 
to y. The indicated width (.5) in its second argument narrows the bars a bit from 
the default value (.9). The third statement puts 0–7 on the x-axis.

The purpose of a model is to predict. For this model, you want to use the Poisson 
distribution to predict the distribution of hits per hour. To do this, multiply each 
Poisson probability by 200 — the total number of hours:

Predicted <- dpois(x.values,3)*200

Here are the predictions:

> Predicted
[1]  9.957414 29.872241 44.808362 44.808362 33.606271  

20.163763 10.081881  4.320806

To work with the observed values (Column 2 in Table 18-1), create a vector:

Observed <- c(10,30,44,44,36,18,10,8)

You want to use ggplot to show how close the predicted hours are to the observed, 
so create a data frame. This involves three more vectors:

Category <-c(rep("Observed",8),rep("Predicted",8))
Hits.Hr <- c(x.values,x.values)
Hours <- c(Observed,Predicted)

And now you can create

FBJ.frame <-data.frame(Category,Hits.Hr,Hours)

which looks like this

> FBJ.frame
    Category Hits.Hr     Hours
1   Observed       0 10.000000
2   Observed       1 30.000000
3   Observed       2 44.000000



388      PART 4  Working with Probability

4   Observed       3 44.000000
5   Observed       4 36.000000
6   Observed       5 18.000000
7   Observed       6 10.000000
8   Observed       7  8.000000
9  Predicted       0  9.957414
10 Predicted       1 29.872241
11 Predicted       2 44.808362
12 Predicted       3 44.808362
13 Predicted       4 33.606271
14 Predicted       5 20.163763
15 Predicted       6 10.081881
16 Predicted       7  4.320806

To plot it all out:

ggplot(FBJ.frame,aes(x=Hits.Hr,y=Hours,fill=Category))+
  geom_bar(stat="identity", position="dodge", color="black", 

width=.6)+
  scale_x_continuous(breaks=x.values)+
  scale_fill_grey()+
  theme_bw()

The first statement uses the data frame, with the indicated aesthetic mappings to 
x, y, and fill. The second statement plots the bars. The position= "dodge" 
argument puts the two categories of bars side-by-side, and color = "black" 
draws a black border around the bars (which won’t show up on the black-filled 
bars, of course). As before, the third statement puts the values in the x.values 
vector on the x-axis.

The fourth statement changes the fill-colors of the bars to colors that show up on 
the page you’re reading, and the final statement removes the default gray back-
ground. (That makes the bars easier to see.)

Figure  18-2 shows the plot. The observed and the predicted look pretty close, 
don’t they?

Testing the model’s fit
Well, “looking pretty close” isn’t enough for a statistician. A statistical test is a 
necessity. As is the case with all statistical tests, this one starts with a null hypoth-
esis and an alternative hypothesis. Here they are:



CHAPTER 18  Introducing Modeling      389

H0: The distribution of observed hits per hour follows a Poisson distribution.

H1: Not H0

The appropriate statistical test involves an extension of the binomial distribution. 
It’s called the multinomial distribution — “multi” because it encompasses more 
categories than just “success” and “failure.” This is a difficult distribution to 
work with.

Fortunately, pioneering statistician Karl Pearson (inventor of the correlation 
coefficient) noticed that χ2 (“chi-square”), a distribution I show you in  Chapter 10, 
approximates the multinomial. Originally intended for one-sample hypothesis 
tests about variances, χ2 has become much better known for applications like the 
one I’m about to show you.

Pearson’s big idea was this: If you want to know how well a hypothesized distri-
bution (like the Poisson) fits a sample (like the observed hours), use the distribu-
tion to generate a hypothesized sample (your predicted hours, for instance), and 
work with this formula:

2 Observed Predicted
Predicted

2

FIGURE 18-2: 
FarBlonJet 

intranet home 
page hits per 

hour, observed 
and Poisson-

predicted ( 3).



390      PART 4  Working with Probability

Usually, the formula is written with Expected rather than Predicted, and both 
Observed and Expected are abbreviated. The usual form of this formula is

2

2
O E

E

For this example,

2

2 2 2
10 9 9574

9 9574
30 29 8722

29 8722
8O E

E
.

.
.

.
...

44 3208
4 3208

2
.

.

what does that total up to? You can use R as a calculator to figure this out — I’ve 
already called the vector of predicted values Predicted, and I don’t feel like chang-
ing the name to Expected:

> chi.squared <- sum(((Observed-Predicted)^2)/Predicted)
> chi.squared
[1] 3.566111

Okay. Now what? Is 3.566111 high, or is it low?

To find out, you evaluate chi.squared against the χ2 distribution. The goal is to 
find the probability of getting a value at least as high as the calculated value, 
3.566111. The trick is to know how many degrees of freedom (df) you have. For a 
goodness-of-fit application like this one

df k m 1

where k = the number of categories and m = the number of parameters estimated 
from the data. The number of categories is 8 (0 Hits per Hour through 7 Hits per 
Hour). The number of parameters? I used the observed hours to estimate the 
parameter μ, so m in this example is 1. That means df = 8–1–1 = 6.

To find the probability of obtaining a value of chi.squared (3.566111) or more, I 
use pchisq() with 6 degrees of freedom:

> pchisq(chi.squared,6,lower.tail = FALSE)
[1] 0.7351542

The third argument, lower.tail = FALSE, indicates that I want the area to the 
right of 3.56111  in the distribution (because I’m looking for the probability of a 
value that extreme or higher). If α = .05, the returned probability (.7351542) tells 
me to not reject H0 — meaning you can’t reject the hypothesis that the observed 
data come from a Poisson distribution.

This is one of those infrequent times when it’s beneficial to not reject H0 — if you 
want to make the case that a Poisson process is producing the data. A low value of 



CHAPTER 18  Introducing Modeling      391

χ2 indicates a close match between the data and the Poisson predictions. If the 
probability had been just a little greater than .05, not rejecting H0 would look sus-
picious. The high probability, however, makes it reasonable to not reject H0 — and 
to think that a Poisson process might account for the data.

A word about chisq.test()
R provides the function chisq.test(), which by its name suggests that you can 
use it instead of the calculation I show you in the preceding section. You can, but 
you have to be careful.

This function can take up to eight arguments, but I discuss only three:

chisq.test(Observed,p=dpois(x.values,3),rescale.p=TRUE)

The first argument is the vector of data — the observed values. The second is the 
vector of Poisson-predicted probabilities. I have to include p= because it’s not 
really the second argument in the list of arguments the function takes.

For the same reason, I include rescale.p= in the third argument, which tells the 
function to “rescale” the vector of probabilities. Why is that necessary? One 
requirement for this function is that the probabilities have to add up to 1.00, and 
these probabilities do not:

> sum(dpois(x.values,3))
[1] 0.9880955

“Rescaling” changes the values so that they do add up to 1.00.

When you run that function, this happens:

> chisq.test(Observed,p=dpois(x.values,3),rescale.p=TRUE)

   Chi-squared test for given probabilities

data:  Observed
X-squared = 3.4953, df = 7, p-value = 0.8357

Warning message:
In chisq.test(Observed, p = dpois(x.values, 3), rescale.p = 

TRUE) :
  Chi-squared approximation may be incorrect



392      PART 4  Working with Probability

Let’s examine the output. In the line preceding the warning message, notice the 
use of X2 rather than χ2. This is because the calculated value approximates χ2, and 
the shape and appearance of X approximate the shape and appearance of χ. The 
X-squared value is pretty close to the value I calculated earlier, but it’s off because 
of the rescaled probabilities.

But another problem lurks. Note that df equals 7 rather than the correct value, 6, 
and thus the test against the wrong member of the χ2 family. Why the discrep-
ancy? Because chisq.test() doesn’t know how you arrived at the probabilities. It 
has no idea that you had to use the data to estimate one parameter (μ), and thus 
lose a degree of freedom. So in addition to the warning message about the chi-
squared approximation, you have to also be aware that the degrees of freedom 
aren’t correct for this type of example.

When would you use chisq.test()? Here’s a quick example: You toss a coin 100 
times and it comes up Heads 65 times. The null hypothesis is that the coin is fair. 
Your decision?

> chisq.test(c(65,35), p=c(.5,.5))

   Chi-squared test for given probabilities

data:  c(65, 35)
X-squared = 9, df = 1, p-value = 0.0027

The low p-value tells you to reject the null hypothesis.

In Chapter 20 I show you another application of chisq.test().

Playing ball with a model
Baseball is a game that generates huge amounts of statistics — and many people 
study these statistics closely. The Society for American Baseball Research (SABR) 
has sprung from the efforts of a band of dedicated fan-statisticians (fantasti-
cians?) who delve into the statistical nooks and crannies of the Great American 
Pastime. They call their work sabermetrics. (I made up “fantasticians.” They call 
themselves “sabermetricians.”)

The reason I mention this is that sabermetrics supplies a nice example of model-
ing. It’s based on the obvious idea that during a game, a baseball team’s objective 
is to score runs and to keep its opponent from scoring runs. The better a team does 
at both tasks, the more games it wins. Bill James, who gave sabermetrics its name 
and is its leading exponent, discovered a neat relationship between the number of 



CHAPTER 18  Introducing Modeling      393

runs a team scores, the number of runs the team allows, and its winning percent-
age. He calls it the Pythagorean percentage:

Pythagorean Percentage
Runs Scored

Runs Scored Runs A

2

2
lllowed

2

The squares in the expression reminded James of the Pythagorean theorem, hence 
the name “Pythagorean percentage.” Think of it as a model for predicting games 
won. (This is James’ original formula, and I use it throughout. Over the years, 
sabermetricians have found that 1.83 is more accurate than 2.)

Calculate this percentage and multiply it by the number of games a team plays. 
Then compare the answer to the team’s wins. How well does the model predict the 
number of games each team won during the 2016 season?

To find out, I found all the relevant data (number of games won and lost, runs 
scored, and runs allowed) for every National League (NL) team in 2016. (Thank 
you, www.baseball-reference.com.) I put the data into a data frame called 
NL2016.

> NL2016
   Team Won Lost Runs.scored Runs.allowed
1   ARI  69   93         752          890
2   ATL  68   93         649          779
3   CHC 103   58         808          556
4   CIN  68   94         716          854
5   COL  75   87         845          860
6   LAD  91   71         725          638
7   MIA  79   82         655          682
8   MIL  73   89         671          733
9   NYM  87   75         671          617
10  PHI  71   91         610          796
11  PIT  78   83         729          758
12  SDP  68   94         686          770
13  SFG  87   75         715          631
14  STL  86   76         779          712
15  WSN  95   67         763          612

The three-letter abbreviations in the Team column alphabetically order the NL 
teams from ARI (Arizona Diamondbacks) to WSN (Washington Nationals). (I 
strongly feel that a much higher number to the immediate right of NYM would 
make the world a better place, but that’s just me.)

http://www.baseball-reference.com


394      PART 4  Working with Probability

The next step is to find the Pythagorean percentage for each team:

pythag <- with(NL2016,
Runs.scored^2/(Runs.scored^2 + Runs.allowed^2))

I use with(), to avoid having to type expressions like NL2016$Runs.scored^2.

Then, I find the predicted numbers of wins:

Predicted.wins <- with(NL2016, pythag*(Won + Lost))

The expression Won + Lost, of course, gives the number of games each team 
played. Don’t they all play the same number of games? Nope. Sometimes a game 
is rained out and then not rescheduled if the outcome wouldn’t affect the final 
standings.

All that remains is to find χ2 and test it against a chi-squared distribution:

> chi.squared <- with(NL2016,
sum((Won-Predicted.wins)^2/Predicted.wins))

> chi.squared
[1] 3.402195

I didn’t use the Won data in Column 2 to estimate any parameters, like a mean or 
a variance, and then apply those parameters to calculate predicted wins. Instead, 
the predictions came from other data — the Runs Scored and the Runs Allowed. 
For this reason, df = k–m–1= 15–0–1 = 14. The test is

> pchisq(chi.squared,14,lower.tail=FALSE)
[1] 0.9981182

As in the previous example, lower.tail=FALSE indicates that I want the area to 
the right of 3.40215 in the distribution (because I’m looking for the probability of 
a value that extreme or higher).

The very high p-value tells you that with 14 degrees of freedom, you have a huge 
chance of finding a value of χ2 at least as high as the X2 you’d calculate from these 
observed values and these predicted values. Another way to say this: The calcu-
lated value of X2 is very low, meaning that the predicted wins are close to the 
actual wins. Bottom line: The model fits the data extremely well.

If you’re a baseball fan (as I am), it’s fun to match up Won with Predicted.wins 
for each team. This gives you an idea of which teams overperformed and which 



CHAPTER 18  Introducing Modeling      395

ones underperformed given how many runs they scored and how many they 
allowed. These two expressions

NL2016["Predicted"]<-round(Predicted.wins)
NL2016["W-P"] <- NL2016["Won"]-NL2016["Predicted"]

create a column for Predicted and a column for W-P (Won-Predicted), respec-
tively, in the data frame. These are the sixth and seventh columns.

This expression

NL2016 <-NL2016[,c(1,2,6,7,3,4,5)]

puts the sixth and seventh columns next to Won, for easy comparison. (Don’t for-
get that first comma in the bracketed expression on the right.)

The data frame is now

> NL2016
   Team Won Predicted W-P Lost Runs.scored Runs.allowed
1   ARI  69        67   2   93         752          890
2   ATL  68        66   2   93         649          779
3   CHC 103       109  -6   58         808          556
4   CIN  68        67   1   94         716          854
5   COL  75        80  -5   87         845          860
6   LAD  91        91   0   71         725          638
7   MIA  79        77   2   82         655          682
8   MIL  73        74  -1   89         671          733
9   NYM  87        88  -1   75         671          617
10  PHI  71        60  11   91         610          796
11  PIT  78        77   1   83         729          758
12  SDP  68        72  -4   94         686          770
13  SFG  87        91  -4   75         715          631
14  STL  86        88  -2   76         779          712
15  WSN  95        99  -4   67         763          612

The W-P column shows that PHI (the Philadelphia Phillies) outperformed their 
prediction by 11 games  — and that was the biggest overperformance in the 
National League in 2016.

Who was the biggest underperformer? Interestingly enough, that would be CHC 
(the Chicago Cubs — six games worse than their prediction). If you followed the 
2016 postseason, however, you know they more than made up for this. . . .



396      PART 4  Working with Probability

A Simulating Discussion
Another approach to modeling is to simulate a process. The idea is to define as 
much as you can about what a process does and then somehow use numbers to 
represent that process and carry it out. It’s a great way to find out what a process 
does in case other methods of analysis are very complex.

Taking a chance: The Monte Carlo method
Many processes contain an element of randomness. You just can’t predict the 
outcome with certainty. To simulate this type of process, you have to have some 
way of simulating the randomness. Simulation methods that incorporate ran-
domness are called Monte Carlo simulations. The name comes from the city in 
Monaco whose main attraction is gambling casinos.

In the next few sections, I show you a couple of examples. These examples aren’t 
so complex that you can’t analyze them. I use them for just that reason: You can 
check the results against analysis.

Loading the dice
In Chapter 17, I talk about a die (one member of a pair of dice) that’s biased to 
come up according to the numbers on its faces: A 6 is six times as likely as a 1, a 5 
is five times as likely, and so on. On any toss, the probability of getting a number 
n is n/21.

Suppose you have a pair of dice loaded this way. What would the outcomes of 
2,000 tosses of these dice look like? What would be the average of those 2,000 
tosses? What would be the variance and the standard deviation? You can use R to 
set up Monte Carlo simulations and answer these questions.

I begin by writing an R function to calculate the probability of each possible out-
come. Before I develop the function, I’ll trace the reasoning for you. For each 
outcome (2–12), I have to have all the ways of producing the outcome. For exam-
ple, to roll a 4, I can have a 1 on the first die and a 3 on the second, 2 on the first 
die and 2 on the second, or 3 on the first and 1 on the second. The probability (I 
call it loaded.pr) of a 4, then, is

loaded pr. ( )4 1
21

3
21

2
21

2
21

3
21

1
21

1 3 2 2 3 1

21
022675742 .



CHAPTER 18  Introducing Modeling      397

Rather than enumerate all possibilities for each outcome and then calculate the 
probability, I create a function called loaded.pr() to do the work. I want it to 
work like this:

> loaded.pr(4)
[1] 0.02267574

First, I set up the function:

loaded.pr <-function(x){

Next, I want to stop the whole thing and print a warning if x is less than 2 or 
greater than 12:

if(x <2 | x >12) warning("x must be between 2 and 12, 
inclusive")

Then I set a variable called first that tracks the value of the first die, depending 
on the value of x. If x is less than 7, I set first to 1. If x is 7 or more, I set first 
to 6 (the maximum value of a die-toss):

if(x < 7) first=1
    else first=6

The variable second (the value of the second die), of course, is x-first:

second = x-first

I’ll want to keep track of the sum for the numerator (as in the equation I just 
showed you), so I start the value at zero:

sum = 0

Now comes the business end: a for loop that does the calculating given the values 
of first (the toss of the first die) and second (the toss of the second die):

for(first in first:second){
    second = x-first
    sum = sum + (first*second)
  }

Because of the preceding if statement, if x is less than 7, first increases from 1 
to x–1 with each iteration of the for loop (and second decreases). If x is 7 or 
greater, first decreases from 6 to x–6 with each iteration (and second increases).



398      PART 4  Working with Probability

Finally, when the loop is finished, the function returns the sum divided by 212:

}
  return(sum/21^2)
}

Here it is all together:

loaded.pr <- function(x){
  if(x < 2 | x > 12) warning("x must be between 2 and 12, 

inclusive")
  if(x < 7) first=1
    else first=6
  second = x-first
  sum = 0
  for(first in first:second){
    second = x-first
    sum=sum + (first*second)
  }
  return(sum/21^2)
}

To set up the probability distribution, I create a vector for the outcomes

outcome <- seq(2,12)

and use a for loop to create a vector pr.outcome to hold the corresponding 
probabilities:

pr.outcome <- NULL
for(x in outcome){pr.outcome <- c(pr.outcome,loaded.pr(x))}

In each iteration of the loop, the curly-bracketed statement on the right appends 
a calculated probability to the vector.

Here are the probabilities rounded to three decimal places so that they look good 
on the page:

> round(pr.outcome,3)
 [1] 0.002 0.009 0.023 0.045 0.079 0.127 0.159 0.172 0.166  

0.136 0.082



CHAPTER 18  Introducing Modeling      399

And now I’m ready to randomly sample 2,000 times from this discrete probability 
distribution — the equivalent of 2,000 tosses of a pair of loaded dice.

Randomization functions in R are really “pseudorandom.” They start from a 
“seed” number and work from there. If you set the seed, you can determine the 
course of the randomization; if you don’t set it, the randomization takes off on its 
own each time you run it.

So I start by setting a seed:

set.seed(123)

This isn’t necessary, but if you want to reproduce my results, start with that func-
tion and that seed number. If you don’t, your results won’t look exactly like mine 
(which is not necessarily a bad thing).

For the random sampling, I use the sample() function and assign the results to 
results:

results <- sample(outcome,size = 2000,replace = TRUE,  
prob=pr.outcome)

The first argument, of course, is the set of values for the variable (the possible 
dice-tosses), the second is the number of samples, the third specifies sampling 
with replacement, and the fourth is the vector of probabilities I just calculated.

To reproduce the exact results, remember to set that seed before every time you 
use sample().

Here’s a quick look at the distribution of the results:

> table(results)
results
  2   3   4   5   6   7   8   9  10  11  12
  3  28  39  79 154 246 335 356 311 284 165

The first row is the possible outcomes, and the second is the frequencies of the 
outcomes. So 39 of the 2,000 tosses resulted in 4, and 165 of them came up 12. 
I leave it as an exercise for you to graph these results.



400      PART 4  Working with Probability

What about the statistics for these simulated tosses?

> mean(results)
[1] 8.6925
> var(results)
[1] 4.423155
> sd(results)
[1] 2.10313

How do these values match up with the parameters of the random variable? This 
is what I meant earlier by “checking against analysis.” In Chapter 17, I show how 
to calculate the expected value (the mean), the variance, and the standard devia-
tion for a discrete random variable.

The expected value is

E x x pr x

I can calculate that easily enough in R:

> E.outcome = sum(outcome*pr.outcome)
> E.outcome
[1] 8.666667

The variance is

V x x pr x E x2 2

In R, that’s

> Var.outcome <- sum(outcome^2*pr.outcome)-E.outcome^2
> Var.outcome
[1] 4.444444

The standard deviation is, of course

> sd.outcome <- sqrt(Var.outcome)
> sd.outcome
[1] 2.108185

Table 18-2 shows that the results from the simulation match up closely with the 
parameters of the random variable. You might try repeating the simulation with a 
lot more simulated tosses — 10,000, perhaps. Will increased tosses pull the simu-
lation statistics closer to the distribution parameters?



CHAPTER 18  Introducing Modeling      401

Simulating the central limit theorem
This might surprise you, but statisticians often use simulations to make determi-
nations about some of their statistics. They do this when mathematical analysis 
becomes very difficult.

For example, some statistical tests depend on normally distributed populations. If 
the populations aren’t normal, what happens to those tests? Do they still do what 
they’re supposed to? To answer that question, statisticians might create non-
normally distributed populations of numbers, simulate experiments with them, 
and apply the statistical tests to the simulated results.

In this section, I use simulation to examine an important statistical item: the cen-
tral limit theorem. In Chapter 9, I introduce this theorem in connection with the 
sampling distribution of the mean. In fact, I simulate sampling from a population 
with only three possible values to show you that even with a small sample size, 
the sampling distribution starts to look normally distributed.

Here, I set up a normally distributed population and draw 10,000 samples of 
25 scores each. I calculate the mean of each sample and then set up a distribution 
of those 10,000 means. The idea is to see how that distribution’s statistics match 
up with the central limit theorem’s predictions.

The population for this example has the parameters of the population of scores on 
the IQ test, a distribution I use for examples in several chapters. It’s a normal 
distribution with 100 and 15. According to the central limit theorem, the 
mean of the distribution of means (the sampling distribution of the mean) should 
be 100, and the standard deviation (the standard error of the mean) should be 3 — 
the population standard deviation (15) divided by the square root of the sample 
size (5). The central limit theorem also predicts that the sampling distribution of 
the mean is normally distributed.

TABLE 18-2	 Statistics from the Loaded-Dice-Tossing Simulation and  
the Parameters of the Discrete Distribution

Simulation Statistic Distribution Parameter

Mean 8.6925 8.666667

Variance 4.423155 4.444444

Standard Deviation 2.10313 2.108185



402      PART 4  Working with Probability

The rnorm() function does the sampling. For one sample of 25 numbers from a 
normally distributed population with a mean of 100 and a standard deviation of 15, 
the function is

rnorm(25,100,15)

and if I want the sample mean, it’s

mean(rnorm(25,100,15))

I’ll put that function inside a for loop that repeats 10,000 times and appends each 
newly calculated sample mean to a vector called sampling.distribution, which 
I initialize:

sampling.distribution <- NULL

The for loop is

for(sample.count in 1:10000){
  set.seed(sample.count)
  sample.mean <- mean(rnorm(25,100,15))
  sampling.distribution <- c(sampling.distribution,sample.mean)
}

Again, the set.seed() statement is necessary only if you want to reproduce my 
results.

How about the statistics of the sampling distribution?

> mean(sampling.distribution)
[1] 100.029
> sd(sampling.distribution)
[1] 3.005007

Pretty close to the predicted values!

Be sure to reset sampling.distribution to NULL before each time you run the for 
loop.

What does the sampling distribution look like? To keep things looking clean, 
I round off the sample means in sampling.distribution and then create a table:

table(round(sampling.distribution))



CHAPTER 18  Introducing Modeling      403

I’d show you the table, but the numbers get all scrambled up on the page. Instead, 
I’ll go ahead and use ggplot() to graph the sampling distribution.

First, I create a data frame

sampling.frame <- data.frame(table(round(sampling.
distribution)))

and specify its column names:

colnames(sampling.frame) <- c("Sample.Mean","Frequency")

Now for the plot:

ggplot(sampling.frame,aes(x=Sample.Mean,y=Frequency))+
  geom_bar(stat="identity")

The result is shown in Figure 18-3, a plot that closely approximates the shape and 
symmetry of a normal distribution.

FIGURE 18-3: 
Sampling 

distribution of the 
mean (N 25) 

based on 10,000 
samples from a 

normal distribu-
tion with 100 

and 15.





5The Part of Tens



IN THIS PART . . .

Learn similarities and differences between R and Excel

Use the clipboard to import data from Excel into R

Explore online resources for learning R



CHAPTER 19  Ten Tips for Excel Emigrés      407

IN THIS CHAPTER

 » Defining a vector and naming a range

 » Operating on vectors and ranges

 » Importing a table from Excel into R

Ten Tips for Excel 
Emigrés

Excel, the most widely used spreadsheet program, has an impressive array of 
statistical analysis tools. Although some have characterized Excel as the 
Rodney Dangerfield of analysis software (“don’t get no respect!”), a lot of 

people use Excel’s analysis tools. (And believe me, no one is happier about that 
than I am!)

If you’re one of those people and you need a bit of help transitioning to R, this 
chapter is for you. I point out similarities and differences that might help you 
make the leap.

Defining a Vector in R Is Like Naming 
a Range in Excel

Here’s a standard, everyday garden-variety vector in R:

x <- c(15,16,17,18,19,20)

Chapter 19



408      PART 5  The Part of Tens

If you’re used to naming arrays in Excel, you’ve already done something like this. 
Figure 19-1 shows a spreadsheet with these numbers in cells F2 through F7 and 
headed by x in F1. The figure also shows the New Name dialog box that opens 
when I highlight that range, right-click, and select Define Name from the menu 
that pops up. Clicking OK defines x as the name of that range, just as the R state-
ment creates the vector x.

What? You don’t name ranges in Excel? Don’t make me shamelessly plug that 
other book again. . . . I mean it!

Operating on Vectors Is Like Operating 
on Named Ranges

I can multiply the vector x by a constant:

> 5*x
[1]  75  80  85  90  95 100

FIGURE 19-1: 
A range in Excel, 

about to be 
named x.



CHAPTER 19  Ten Tips for Excel Emigrés      409

Back to the spreadsheet with the named range x. I select a range of cells with the 
same length as x — say, G2 through G —, and type

= 5*x

in G2. Figure 19-2 shows this.

Pressing the key-combination Ctrl+Shift+Enter puts the results in G2 through G7, 
as Figure 19-3 shows. That key combination is for an array function in Excel — a 
function that returns answers in an array of cells rather than in a single cell.

Of course, another way to do the multiplication is to type =5*x into G2, press 
Enter, and then autofill to G7.

The similarities abound. In R,

> sum(x)
[1] 105

adds up the numbers in x, as does =SUM(x) typed into a selected cell.

FIGURE 19-2: 
Multiplying  
the named  

range x by 5.



410      PART 5  The Part of Tens

To sum the squares of the numbers in x:

> sum(x^2)
[1] 1855

In the spreadsheet, select a cell and type =SUMSQ(x).

If I have another vector y

y <- c(42,37,28,44,51,49)

then

> x*y
[1] 630 592 476 792 969 980

On the spreadsheet, I can have another named range called y in cells G2 through 
G7, as in Figure 19-4.

Selecting a range like H2 through H7, typing =x*y, and pressing Ctrl+Shift+Enter 
puts the answers in the selected array, as Figure 19-5 shows.

FIGURE 19-3: 
The results of the 

multiplication 
come back in 

an array.



CHAPTER 19  Ten Tips for Excel Emigrés      411

FIGURE 19-4: 
A spreadsheet 

with two named 
arrays, x and y.

FIGURE 19-5: 
The result of 

multiplying two 
named arrays.



412      PART 5  The Part of Tens

Sometimes Statistical Functions  
Work the Same Way . . .

To find the correlation between the vectors x and y in R:

> cor(x,y)
[1] 0.5900947

For the named ranges x and y in the spreadsheet, select a cell and enter

=CORREL(x,y)

The answer appears in the selected cell.

. . . And Sometimes They Don’t
If x and y represent data from two groups, a t-test is appropriate for testing the 
difference between the means. (See Chapter 11.)

If I carry out that test in R:

> t.test(x,y,alternative="two.sided",var.equal=FALSE)

          Welch Two Sample t-test

data:  x and y
t = -6.9071, df = 5.492, p-value = 0.000663
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -33.15068 -15.51598
sample estimates:
mean of x mean of y
 17.50000  41.83333

The third argument to t.test specifies a two-tailed test, and the fourth indicates 
that the two variances are not equal. (Those values for the last two arguments are 
the default conditions, so it’s not necessary to state them.) As you can see, R’s 
t.test() function gives you a full report.



CHAPTER 19  Ten Tips for Excel Emigrés      413

Not so in Excel. Select a cell and enter

=T.TEST(x,y,2,3)

The third argument, 2, means this is a two-tailed test. The fourth argument, 3, 
specifies unequal variances. Press Enter and all you get is the p-value.

Contrast: Excel and R Work with  
Different Data Formats

Throughout the book, I differentiate between wide format

> wide.format
   x  y
1 15 42
2 16 37
3 17 28
4 18 44
5 19 51
6 20 49

and long format

> long.format
   Group Score
1      x    15
2      x    16
3      x    17
4      x    18
5      x    19
6      x    20
7      y    42
8      y    37
9      y    28
10     y    44
11     y    51
12     y    49

Excel works with wide format.



414      PART 5  The Part of Tens

If you worked with Excel 2011 for the Mac (or earlier Mac versions), you might 
have installed StatPlus:mac LE, a third party add-in that provides numerous 
statistical analysis tools for the Mac version of Excel. StatPlus works with long-
format data.

R, for the most part, uses long format. For example, the t.test() function I just 
showed you can also work like this:

> t.test(Score ~ Group, alternative="two.sided", var.
equal=FALSE, data=long.format)

          Welch Two Sample t-test

data:  Score by Group
t = -6.9071, df = 5.492, p-value = 0.000663
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -33.15068 -15.51598
sample estimates:
mean in group x mean in group y
       17.50000        41.83333

Notice that the output is the same except for data: Score by Group rather than 
data: x and y as in the earlier example. The next-to-last line is also slightly 
different.

Distribution Functions Are  
(Somewhat) Similar

Both Excel and R have built-in functions that work with distribution families (like 
the normal and the binomial). Because R is specialized for statistical work, it has 
functions for more distribution families than Excel does.

I’ll show you how both work with the normal family, and you’ll see the 
similarities.

In a normal distribution with mean = 100 and standard deviation = 15, if I want to 
find the density associated with 110 in Excel, that’s



CHAPTER 19  Ten Tips for Excel Emigrés      415

=NORM.DIST(110,100,15,FALSE)

The fourth argument, FALSE, indicates the density function.

In R, you’d use

> dnorm(110,100,15)
[1] 0.02129653

For the cumulative probability of 110 in that distribution

=NORM.DIST(110,100,15,TRUE)

Here, TRUE indicates the cumulative distribution function.

The R version is

> pnorm(110,100,15)
[1] 0.7475075

To find the score at the 25th percentile in Excel, I use the NORM.INV function:

=NORM.INV(0.25,100,15)

And in R:

> qnorm(.25,100,15)
[1] 89.88265

One difference: R has a function for generating random numbers from this 
distribution:

> rnorm(5,100,15)
[1] 85.06302 84.40067 99.73030 98.01737 61.75986

To do this in Excel, you have to use the Random Number Generation tool in an 
add-in called the Data Analysis ToolPak.



416      PART 5  The Part of Tens

A Data Frame Is (Something) Like a 
Multicolumn Named Range

For this section and the next, I use a spreadsheet that holds a multicolumn array 
corresponding to the NL2016 data frame in Chapter 20. Here’s the data frame:

> NL2016
   Team Won Lost Runs.scored Runs.allowed
1   ARI  69   93         752          890
2   ATL  68   93         649          779
3   CHC 103   58         808          556
4   CIN  68   94         716          854
5   COL  75   87         845          860
6   LAD  91   71         725          638
7   MIA  79   82         655          682
8   MIL  73   89         671          733
9   NYM  87   75         671          617
10  PHI  71   91         610          796
11  PIT  78   83         729          758
12  SDP  68   94         686          770
13  SFG  87   75         715          631
14  STL  86   76         779          712
15  WSN  95   67         763          612

Figure  19-6 shows the spreadsheet. I’ve defined NL_2016 as the name for the 
entire table (cells A2 through E16).

In R, I can find the average of Runs.scored this way

> mean(NL2016[,4])
[1] 718.2667

Runs.scored is in column 4, and the comma in the square brackets specifies all 
the rows in that column.

On the spreadsheet, I select a cell and enter

=AVERAGE(INDEX(NL_2016,,4))

The two commas in the parentheses specifies all the rows in column 4.

I know, I know. You can do that in several other ways in both R and Excel. I’m just 
trying to show you the commonalities.



CHAPTER 19  Ten Tips for Excel Emigrés      417

The “several other ways” make things fall apart. For example, Excel has nothing 
analogous to

> mean(NL2016$Runs.scored)
[1] 718.2667

The sapply() Function Is Like Dragging
To find all the column means in NL_2016 in Excel, I can select cell B17 at the bot-
tom of the second column and enter

=AVERAGE(B2:B16)

and then drag through the third, fourth, and fifth columns. Figure 19-7 shows the 
results of dragging.

To calculate those column means in R:

> sapply(NL2016[,2:5],mean)
         Won         Lost  Runs.scored Runs.allowed
    79.86667     81.86667    718.26667    725.86667

FIGURE 19-6: 
The NL2016 data 

frame in a 
spreadsheet. Its 

Excel name is 
NL_2016.



418      PART 5  The Part of Tens

Using edit() Is (Almost) Like  
Editing a Spreadsheet

In Chapter  2, I mention that edit() opens a spreadsheet-like (“spreadshee-
tesque”?) view of a data frame. This seems like a good place to bring that up again, 
particularly if you’re used to spreadsheets and you’re finding it hard to make 
changes to data frames in R.

To change a data frame, I assign it another name and open it with edit():

> NL2016.changed <- edit(NL2016)

This opens up the Data Editor window in Figure 19-8.

Now I can make changes. For example, to indulge my wishful thinking, I change 
NYM’s Won from 87 to 107, and Lost from 75 to 55. To do that, I double-click the 
appropriate cells, make the changes, and choose File ➪   Close from the main menu.

FIGURE 19-7: 
Averaging across 

columns by 
dragging from the 

first column.



CHAPTER 19  Ten Tips for Excel Emigrés      419

When I open the ninth row of the newly named data frame, I see data that is emi-
nently more palatable, although regrettably unrealistic:

> NL2016.changed[9,]
  Team Won Lost Runs.scored Runs.allowed
9  NYM 107   55         671          617

Use the Clipboard to Import a  
Table from Excel into R

So you want to use R to analyze your data, but your data resides mostly in spread-
sheets. What do you do?

In Chapter 2, I describe the xlsx package. This package provides read.xlsx(), 
which enables you to read a spreadsheet into R. To use this function, you have to 
know which directory the spreadsheet is in and which page of the spreadsheet you 
want to import.

But here’s the easiest way to import an Excel table into an R data frame: Copy the 
table (onto the clipboard) and then use

read.table(“clipboard”, header = TRUE)

FIGURE 19-8: 
R’s Data Editor 

window.



420      PART 5  The Part of Tens

The second argument specifies that the first row of the table contains column 
headers.

For this technique to work, you have to have no spaces in the names in your col-
umn headers.

Suppose I want to bring the table in Figure 19-4 into R. I select cells F1 through G7 
and press Ctrl+C to copy the selected cells to the clipboard.

Then in R:

> clip.frame <-read.table("clipboard", header = TRUE)
> clip.frame
   x  y
1 15 42
2 16 37
3 17 28
4 18 44
5 19 51
6 20 49

and you have yourself a data frame.

How can you be sure it’s a data frame? The function is.data.frame() returns 
TRUE if its argument is a data frame; FALSE, if not:

> is.data.frame(clip.frame)
[1] TRUE



CHAPTER 20  Ten Valuable Online R Resources      421

IN THIS CHAPTER

 » Finding websites for R users

 » Learning from online documents

Ten Valuable Online 
R Resources

One reason for the rapid rise of R is the supportive R community. It seems 
that as soon as someone becomes proficient in R, they immediately want 
to share their knowledge with others — and the web is the place to do it. 

This chapter points you to some of the helpful web-based resources the R com-
munity has created.

Websites for R Users
As you work with R, you might run into a situation or two that requires some 
expert help. The websites in this section can provide the assistance you need.

R-bloggers
As I write this, the R-bloggers website comprises the efforts of 750 R bloggers. By 
the time you visit www.r-bloggers.com/, this number will surely be larger.

Chapter 20

https://www.r-bloggers.com/


422      PART 5  The Part of Tens

Statistics Ph.D. candidate Tal Galili runs the show. As he says, his objective is to 
empower R bloggers to empower R users. In addition to the blogs, you’ll find links 
to courses, conferences, and job opportunities.

Microsoft R Application Network
Once upon a time, a terrific site called Inside-R provided a variety of resources for 
R users. Recently, Microsoft acquired Inside-R’s parent company Revolution 
Analytics.

One result of this acquisition is the Microsoft R Application Network, (MRAN) 
which is where you’ll find all the blogs and links that used to reside on Inside-R.

To visit the MRAN, point your browser to https://mran.microsoft.com/.

Another result of the acquisition is Microsoft R Open, which Microsoft bills as an 
“enhanced” distribution of R. You can download Microsoft R Open from the MRAN 
website.

Quick-R
Wesleyan University professor Rob Kabacoff created this website to introduce 
you  to R and its application to statistical concepts, both introductory and 
advanced. You’ll find the extremely well-written content (and neat graphics!) at 
www.statmethods.net/.

RStudio Online Learning
The great folks behind RStudio have created an online learning page that links to 
tutorials and examples to help you master R and related tools — and you get to 
learn the basics of data science as well. The URL is www.rstudio.com/
online-learning/.

Stack Overflow
Not limited to R, Stack Overflow is a multimillion-member community of pro-
grammers dedicated to helping each other. You can search their Q&A base for help 
with a problem, or you can ask a question. To ask a question, however, you have 
to be a member (it’s free) and log in.

The site also provides links to jobs, documentation, and more. Unsurprisingly, the 
website is at http://stackoverflow.com/.

https://mran.microsoft.com/
http://www.statmethods.net/
https://www.rstudio.com/online-learning/
https://www.rstudio.com/online-learning/
http://stackoverflow.com/


CHAPTER 20  Ten Valuable Online R Resources      423

Online Books and Documentation
The web has a wealth of books and documents that will help get you up to speed 
when it comes to R. One way to link to them is to click the Home button of the Help 
tab in RStudio.

Here are a few more resources.

R manuals
If you want to go directly to the source, visit the R manuals page at https://
cran.r-project.org/manuals.html.

That’s where you’ll find links to the R Language Definition and other 
documentation.

R documentation
For links to even more R documentation, try https://www.r-project.org/
other-docs.html.

RDocumentation
Wait. Didn’t I just use this title? Yes, well . . . the Canadian Football League once 
had a team named the Rough Riders and another named the Roughriders. It’s 
something like that.

The RDocumentation page at www.rdocumentation.org/ is quite a bit different 
from the web page in the previous section. This one doesn’t link to manuals and 
other documents. Instead, this website enables you to search for R packages and 
functions that suit your needs.

How many packages are available? Over 12,000!

YOU CANanalytics
The brainchild of Roopham Upadhyay, the YOU CANanalytics website provides a 
number of helpful blogs and case studies, and could have gone into the first main 
section.

https://cran.r-project.org/manuals.html
https://cran.r-project.org/manuals.html
https://www.r-project.org/other-docs.html
https://www.r-project.org/other-docs.html
https://www.rdocumentation.org/


424      PART 5  The Part of Tens

Why is it in this one? Because this page

http://ucanalytics.com/blogs/learn-r-12-books-and-online-resources/

enables you to download classic R books in PDF format. Some of the titles are at 
the introductory level, some are advanced, and all of them are free!

A book in PDF format is a very long document. If you’re reading it on a tablet, it’s 
user-friendlier to turn the PDF file into an e-book. To do this, upload your PDF 
document into an e-reader like Google Playbooks, and voilà  — your PDF file 
becomes an e-book.

The R Journal
I saved this one for last, because it’s at an advanced level. Like academic publica-
tions, The R Journal is refereed — experts in the field decide whether a submitted 
article is worthy of publication.

Take a look at the articles at https://journal.r-project.org/ and you’ll see 
what’s in store for you when you become one of those experts!

http://ucanalytics.com/blogs/learn-r-12-books-and-online-resources/
https://journal.r-project.org/


Index      425

Index
A
a posteriori tests, 243–244
a priori tests, 240–242
a==b (double equal-sign), 38
abs() function, 186, 211
Adjusted R-squared, 328
aes() function, 72, 82
alpha, 180, 285
alternative hypothesis, 14–15, 180
analysis of covariance (ANCOVA), 305–312
analysis of variance (ANOVA)

about, 44, 236
mixed, 264–269
multivariate (MANOVA), 270–276
in R, 237–244
regression and, 301–305
two-factor/two-way, 257–263

ANCOVA (analysis of covariance), 305–312
annotate() function, 204, 229, 230
ANOVA (analysis of variance)

about, 44, 236
mixed, 264–269
multivariate (MANOVA), 270–276
in R, 237–244
regression and, 301–305
two-factor/two-way, 257–263

anova() function, 308, 310, 357
aov() function, 44, 238, 302
arguments, 26
arithmetic mean, 97
arrange() function, C17
array function, 409
arrow() function, 229
as.character() function, C12
assignment operator, 23
asymptotic curve, 146
attach() function, 95
attributes, 143

B
bar graphs, 53–54, 217–219
bar plots, 60–62, 64–67
barplot() function, 60–61
base, 338
base R graphics

about, 57
adding graph features, 59–60
bar plots, 60–62, 64–67
box plots, 71
dot charts, 62–63
histograms, 57–59
pie graphs, 62
scatter plots, 67–71

bell curve
about, 143–144
probability density (f(x)), 144–145
x, 144–145

beta, 180, 285, A1–A4
bimodal, 101
binom functions, 375
binomial distribution, 374–377
binom.test() function, 379, 380–382
box plots, 56–57, 71, 86–88, 216–217
box-and-whiskers plot, 57
boxplot() function, 71
breaks argument, 59, 137, 149

C
c() function, 26, 30
cards() function, C17
cast() function, 80
cat() function, 138, 186, 211
categorical variables, 34
cbind() function, 272
CDF (cumulative density function)

about, 147, 152–153



426      Statistical Analysis with R For Dummies

CDF (cumulative density function) (continued)

plotting, 153–154, 156
plotting with quartiles, 156

cen.mom() function, 131
central limit theorem

about, 165–172
applying, 207–208
predictions of, 171–172
simulating, 167–171, 401–403

central moment, 125
central tendency

about, 91
mean, 91–93
mean(), 93–99
median, 99–100
median(), 100
mode, 101
mode(), 101

character strings, 32
Cheat Sheet (website), 5
Chernoff faces, C19–C22
chisq.test() function, 199–200, 391–392, C1–C4
chi-square, 198–199
chi-square distributions, 201–204
choose() function, 369, B3
Clipboard, 419–420
cochrane.qtest() function, B15
Cochran's Q, B13–B16
coefficient of determination, 318
col argument, 68
colnames() function, 76
combinations, 368–369
combinations() function, 370
combn() function, 369
comments, 29
common logarithm, 338
comparison coefficients, 241
compound events, 363–365
Comprehensive R Archive Network (CRAN), 18, 42
concatenate, 23
concordant pairs, B18
conditional probability, 13–14, 365–366
conditions, 110

confidence limits
about, 173
finding for a mean, 173–175

constant, 11
contingency table, C1–C2
continuation prompt, 29
continuous random variables, 371
contrasts, 240–243
contrasts argument, 243
cor() function, 322–323, 324
correlation

about, 313, 314–316
hypothesis testing about, 319–321
multiple, 326–329
partial, 329–331
in R, 322–326
regression and, 316–319
scatterplots, 313–314
semipartial, 331–333

correlation coefficient, 85, 315–316
correlation matrix, 324–326
corrgram() function, 326
cor.test() function, 322–323, B18, B20
covariance, 316
covariate, 308
CRAN (Comprehensive R Archive Network), 18, 42
critical value, 182
CSV files, 46–47
cubic curves, 251
cumsum() function, 133
cumulative density function (CDF)

about, 147, 152–153
plotting, 153–154, 156
plotting with quartiles, 156

cumulative frequency, 133–134
curvilinear regression

about, 335–336, 358
e, 338–341
exponential regression, 346–350
logarithm, 336–338
logarithmic regression, 350–353
polynomial regression, 354–358
power regression, 341–346



Index      427

D
data

exploring, 95–96
extracting from data frames, 38–39
formats for, 413–414
missing, 26
types of, 12

data frames
about, 36–39, 416–417
editing, 37–38
extracting data from, 38–39
summarizing, 139–142
working with, 215–216

datadensity() function, 141–142
data.frame() function, 36–37
dbeta() function, A2
dbinom() function, 375
dchisq() function, 201, 202–203
de Vries, Andrie (author)

R For Dummies, 29
degrees of freedom (df), 107, 175–177, 187–188, 212, 

233, 283
density functions, 371–373
density plot, 59
dependent variables, 11–12, 278
describe.data.frame() function, 140
descriptive statistics

about, 10, 123
frequency, 131–139
kurtosis, 130–131
maximum value, 125
minimum value, 125
moments, 125–131
nominal variables, 131–132
numerical variables, 132–139
quantity, 123–125
skewness, 127–130
summarizing data frames, 139–142

dexp() function, A9
df (degrees of freedom), 107, 175–177, 187–188, 212, 

233, 283
df() function, 226, 227
dgamma() function, A8

dim() function, 32
discordant pairs, B18
discrete random variables, 171, 371
distribution functions, 414–415
distributions

binomial, 374–377
chi-square, 201–204
graphing, 52–53
modeling, 383–395
normal, 145–157
Poisson, 384–388, A4–A6
probability, 371–373
sampling, 164–165, 181–183, 206–212
standard normal, 130, 158, 159, 160
t-distributions, 175–177, 189–198

dnbinom() function, 377
dnorm() function, 147, 148, 153–154, 160
dollar sign ($), 35
dot charts, 62–63
double equal-sign (a==b), 38
downloading

R, 18–21
RStudio, 18–21

dplyr package, C16–C17
dpois() function, A5–A6
dt() function, 176, 189–190
Dummies (website), 5
dummy variables, 304

E
e, 338–341
ecdf (empirical cumulative distribution function), 

134–135
edit() function, 37–38, 418–419
elementary outcome, 362
element_blank() function, 83
empirical cumulative distribution function (ecdf), 

134–135
epsilon, 285
equal variances, two-sample hypothesis testing and, 

212–214
Erlang distribution, A7
error term, 236, 246



428      Statistical Analysis with R For Dummies

error types, 15–16
estimates

about, 163
central limit theorem, 165–172
confidence limits, 173–175
degrees of freedom, 175–177
sampling distributions, 164–165
t-distribution, 175–177

event, 362
Excel (Microsoft), 407–420
excess kurtosis, 130
exp() function, 341, 346, 350
expand argument, 151
expected value, 171
exponent, 336
exponential, A9–A10
exponential regression, 346–350

F
F distributions, 226–230
faces() function, C20–C22
faceting, 96, 273
facet_wrap() function, 96
factor, 236–237
factor() function, 34
factorial() function, 369
factors, 33–34
F-distribution, 223, 225
files

CSV, 46–47
text, 47–48

Files tab (RStudio), 19
filter() function, C16–C17
Fisher, Ronald (statistician), 223
Fisher's r to z transformation, 321
fit, testing, 286–289
fivenum() function, 121–122
for loop, 168–169, 397
forecasting, using regression for, 283
formulas

probability, 13
R, 43–44
working with, 215–216

F-ratio, 223
frequency

about, 131
cumulative, 133–134
nominal variables, 131–132
numerical variables, 132–139

Friedman Two-Way ANOVA, B10–B13
friedman.test() function, B15
functions
abs(), 186, 211
aes(), 72, 82
annotate(), 204, 229, 230
anova(), 308, 310, 357
aov(), 44, 238, 302
arrange(), C17
array, 409
arrow(), 229
as.character(), C12
attach(), 95
barplot(), 60–61
binom, 375
binom.test(), 379, 380–382
boxplot(), 71
c(), 26, 30
cards(), C17
cast(), 80
cat(), 138, 186, 211
cbind(), 272
cen.mom(), 131
chisq.test(), 199–200, 391–392, C1–C4
choose(), 369, B3
cochrane.qtest(), B15
colnames(), 76
combinations(), 370
combn(), 369
cor(), 322–323, 324
corrgram(), 326
cor.test(), 322–323, B18, B20
cumsum(), 133
datadensity(), 141–142
data.frame(), 36–37
dbeta(), A2
dbinom(), 375



Index      429

dchisq(), 201, 202–203
density, 371–373
describe.data.frame(), 140
dexp(), A9
df(), 226, 227
dgamma(), A8
dim(), 32
distribution, 414–415
dnbinom(), 377
dnorm(), 147, 148, 153–154, 160
dpois(), A5–A6
dt(), 176, 189–190
edit(), 37–38, 418–419
element_blank(), 83
exp(), 341, 346, 350
faces(), C20–C22
facet_wrap(), 96
factor(), 34
factorial(), 369
filter(), C16–C17
fivenum(), 121–122
friedman.test(), B15
gamma, A6–A7
geocode(), C12
geom, 72, 76, 80, 86, 95, 135, 149, 194, 219, 228, 

229, 274, 293, 294–295
geom_bar(), 74, 81, 216, 219, 376
geom_boxplot(), 86
geom_dotplot(), 76
geom_histogram(), 169
geom_jitter(), 87
geom_line, 194, 197, 203–204
geom_point(), 76
geom_segment(), 150, 156, 160
geom_step, 135
ggpairs(), 85, 325
ggplot(), 72–76, 79–82, 86, 135, 148–149, 169, 

193, 197, 227–228, 268–269, 294–295, 376, 403, 
C5–C8, C10

guides(), 229
head(), 70
hist(), 132–138
kurtosis(), 131
labs(), 74, 78, 83

legend(), 66–67
length(), 38, 98, 107, 123–124
lines(), 59
list(), 34–35
lm(), 291, 292, 297, 309, 327–328, 343–345, 347, 

349, 356
loaded.pr(), 397
manova(), 272
map_data(), C11
margin.table(), 132
matrix(), 33, 242–243
mean(), 26, 93–99, 120–121, 308
median(), 100
melt(), 80, 227
mfv(), 101
mode(), 101
moment(), 131
mtext(), 202
nbinom, 375
ncol(), 124
norm(), 147, 159
normal density, 147–152
nrow(), 124
pairs(), 69, 71, 84, 85
pbeta(), A4
pbinom(), 375, 376
pchisq(), 201, 390, B6, B14
pcor(), 331, 333
pcor.test(), 330–331
permutations(), 370
pexp(), A9, A10
pf(), 226
pgamma(), A8
phyper(), C4–C5
pie(), 76
plot(), 67, 68, 133, 191–192
plotpairs(), 84
pnbinom(), 377
pnorm(), 147, 152–153, 153–154, 155–156, 186
pnormGC(), 153
position_dodge(), 262–263
predict(), 292, 298
prod(), 98
prop.table(), 131–132



430      Statistical Analysis with R For Dummies

functions (continued)

pt(), 176, 189–190, B17
qbinom(), 375, 377
qchisq(), 201
qexp(), A9
qf(), 226
qhyper(), C4–C5
qnbinom(), 377
qnorm(), 155–156, 184, 209–210
qnormGC(), 155–156
qt(), 176, 189–190
quantile(), 119–120, 121
R, 26–28, 369–371
rank(), 117
rbinom(), 375
rchisq(), 201
read.table(), 47
rep(), 30–31
rexp(), A9
rf(), 226
rhyper(), C4–C5
rnbinom(), 377
rnorm(), 147, 156–157, 402
rolldie(), C18
round(), 120, 139
rt(), 176, 189–190
r.test(), 323
sample(), 399
sample_n(), C18
sapply(), 417–418
scale(), 114–115
scale_x_continuous(), 137, 149, 151, 156, 160
scatter3d(), 300
sd(), 109–110
select(), C16–C17
seq(), 30–31
set.seed(), 157, 402
skewness(), 128, 131
slice(), C17
sort(), 118
spcor(), 332
spcor.test(), 332
stat, 216, 228
stat_(), C5–C8, C10

stat_boxplot(), 216, 274
statistical, 412–413, C5–C8
stem(), 138–139
subset(), 70
substr(), 30
sum(), 26
summary(), 122, 139–140, 238, 254, 291, 292,  

297, 351
summary.aov(), 275
t(), 32
table(), 131, C4
tapply(), 308
theme(), 77, 83
tigerstats, 159
t.test(), 35, 177, 188–189, 214–220, 412–414
user-defined, 28–29
var(), 26, 106–107, 109–110
varTest(), 224
var.test(), 224–225
wilcox.test(), B10
with(), 110
write.table(), 47
z.test(), 185–187

f(x) (probability density), 144–145

G
gamma, A6–A9
gamma distribution, A7–A9
gamma function, A6–A7
Gentleman, Robert (statistician), 17
geocode() function, C12
geom function, 72, 76, 80, 86, 95, 135, 149, 194, 219, 

228, 229, 274, 293, 294–295
geom_bar() function, 74, 81, 216, 219, 376
geom_boxplot() function, 86
geom_dotplot() function, 76
geometric mean, 97–98
geom_histogram() function, 169
geom_jitter() function, 87
geom_line function, 194, 197, 203–204
geom_point() function, 76
geom_segment() function, 150, 156, 160
geom_step function, 135



Index      431

ggpairs() function, 85, 325
ggplot() function, 72–76, 79–82, 86, 135, 148–149, 

169, 193, 197, 227–228, 268–269, 294–295, 376, 
403, C5–C8, C10

ggplot2
about, 71–72, 197–198
box plots, 86–88
histograms, 72–74
installing, 42
plotting chi-square in, 203–204
plotting t in, 192–197
scatter plot matrix, 84–86
scatter plots, 82–86

grammar, 71
Grammar of Graphics (Wilkinson), 71
graphics

about, 51
bar graph, 53–54
base R, 57–71
box plot, 56–57
box-and-whiskers plot, 57
finding patterns, 51–57
ggplot2, 71–88
pie graph, 54–55
scatter plot, 55–56

graphing
distributions, 52–53
lines, 279–281

grouped bar plot, 65
guides() function, 229

H
harmonic mean, 98–99
head() function, 70
heat maps, drawing, C12–C15
Help tab (RStudio), 19, 20
hist() function, 132–138
histograms, 57–59, 72–74
homogeneity of regression, 311
hypotheses, 14–15, 179–181
hypothesis testing. See also one-sample hypothesis 

testing; two-sample hypothesis testing
about correlation, 319–321

about regression, 285–290
with binomial distribution, 378–380
foundation of, 366
R compared with traditional, 380–382
sampling distributions and, 181–183

I
icons, explained, 4–5
Ihaka, Ross (mathematician), 17
independence, testing, C1–C4
independent samples, B2–B8
independent variables, 11–12, 278
inferential statistics

about, 10, 14
alternative hypothesis, 14–15
null hypothesis, 14–15

Install Packages dialog box, 84
installing ggplot2, 42
interactions, 257
intercept, testing, 289–290
Internet resources

Cheat Sheet, 5
Dummies, 5
Microsoft R Application Network, 422
Quick-R, 422
R, 18
R documentation, 423
R Journal, 424
R manuals, 423
for R users, 421–422
R-bloggers, 421–422
RDocumentation, 423
RStudio, 18
RStudio Online Learning, 422
Stack Overflow, 422
YOU CANanalytics, 423–424

intersection, 363–365
interval data, 12

J
jittering, 87



432      Statistical Analysis with R For Dummies

K
Kendall's Tau, B18–B21
Kruskal-Wallis One-Way ANOVA, B5–B8
kurtosis, 126, 130–131
kurtosis() function, 131

L
labels argument, 137
labs() function, 74, 78, 83
lattice package, C19
legend() function, 66–67
length() function, 38, 98, 107, 123–124
leptokurtic, 130
line plot, 191
linear equation, 280
linear regression, 290–295
lines, graphing, 279–281
lines() function, 59
list() function, 34–35
lists, 34–36
lm() function, 291, 292, 297, 309, 327–328, 343–345, 

347, 349, 356
loaded.pr() function, 397
logarithm, 336–338
logarithmic regression, 350–353
logical vector, 30
lower tail, 184

M
manova() function, 272
map_data() function, C11
maps, drawing, C10–C13
margin.table() function, 132
matched samples, B8–B16
matrices, 31–33
matrix() function, 33, 242–243
maximum value, 125
mean

about, 91–93
arithmetic, 97
finding confidence limits for a, 173–175

geometric, 97–98
harmonic, 98–99
trimming the, 96

mean() function
about, 26, 93, 120–121, 308
arithmetic mean, 97
conditions, 93–94
exploring data, 95–96
geometric mean, 97–98
harmonic mean, 98–99
outliers, 96–97
$-sign, 94–95

median, 99–100
median() function, 100
melt() function, 80, 227
melting data, 193, 227
Meys, Joris (author)

R For Dummies, 29
mfv() function, 101
Microsoft Excel, 407–420
Microsoft R Application Network, 422
minimum value, 125
minus sign (-), 117
missing data, 26
mixed ANOVA, 264–269
mode, 101
mode() function, 101
modeling

about, 383
distributions, 383–395
simulating a process, 396–403

moment() function, 131
moments

about, 125–126
kurtosis, 130–131
skewness, 127–130

Monte Carlo method, 396
mtext() function, 202
multiple correlation, 326–329
multiple regression, 295–301
multivariate analysis of variance (MANOVA),  

270–276



Index      433

N
Napier, John (mathematician), 337
natural logarithm, 340
nbinom function, 375
ncol() function, 124
negative binomial distribution, 377–378
nominal data, 12
nominal variables
margin.table() function, 132
prop.table() function, 131–132
table() function, 131

noncentrality, C8–C10
non-parametric statistics

about, B1
independent samples, B2–B8
Kendall's Tau, B18–B21
matched samples, B8–B16
Spearman's correlation coefficient, B16–B18

norm() function, 147, 159
normal

bell curve, 143–147
distributions, 147–157
standardizing scores, 158–160

normal curves, plotting, 148–152
normal density function, 147–152
normal distributions

about, 145
parameters of, 145–147
quantiles of, 155–156
working with, 147–157

nrow() function, 124
null hypothesis, 14–15, 180
numerical variables
hist() function, 132–138
stem() function, 138–139

numerical vectors, 30–31

O
one-sample hypothesis testing

about, 179
chi-square distributions, 201
degrees of freedom (df), 187–188
hypothesis tests and sampling distributions, 181–183

t-distributions, 189–190
testing variances, 198–200
t.test() function, 188–189
visualizing chi-square distributions, 201–204
visualizing t-distributions, 190–198
z-scores, 183–185
z.test() function, 185–187

one-tailed hypothesis testing, 184–185, 205–206
online resources, 421–424
ordinal data, 12
outliers, 96–97
overplotting, 87

P
packages, 19, 39–43
Packages dialog box, 42
Packages tab (RStudio), 19, 20
paired sample t-tests, two-sample hypothesis testing 

and, 222
paired samples, two-sample hypothesis testing for, 

220–221
pairs() function, 69, 71, 84, 85
parameters

defined, 10
of normal distribution, 145–147

partial correlation, 329–331
Pascal distribution, 375
patterns, finding, 51–57
pbeta() function, A4
pbinom() function, 375, 376
pchisq() function, 201, 390, B6, B14
pcor() function, 331, 333
pcor.test() function, 330–331
Pearson, Karl (statistician), 315, 389
Pearson product-moment correlation coefficient, 

315–316, 322
percent ranks, 120
percentiles, 118–120
permutations, 367–368
permutations() function, 370
pexp() function, A9, A10
pf() function, 226
pgamma() function, A8
phyper() function, C4–C5



434      Statistical Analysis with R For Dummies

pie() function, 76
pie graphs, 54–55, 62
planned comparisons, 240–242
platykurtic, 130
plot argument, 132
plot() function, 67, 68, 133, 191–192
plotpairs() function, 84
Plots tab (RStudio), 19
plotting

CDF with quartiles, 156
chi-square in ggplot2, 203–204
cumulative density function (CDF), 153–154
normal curves, 148–152
residuals, 294–295
standard normal distribution, 160
t in ggplot2, 192–197

plus sign (+), 73
pnbinom() function, 377
pnorm() function, 147, 152–153, 153–154,  

155–156, 186
pnormGC() function, 153
Poisson, Siméon-Denis (mathematician), A5
Poisson distribution, 384–388, A4–A6
polynomial regression, 354–358
pooling, 212–214, 234
population mean, 92
population standard deviation, 107–109
populations, 10–11, 163, C4–C5
positional matching, 27
position_dodge() function, 262–263
post hoc tests, 243–244
power regression, 341–346
predict() function, 292, 298
predictions

of central limit theorem, 171–172
making, 292, 298

Presentation Method/Style
about, 255–256
interactions, 257
two-factor ANOVA/two-way ANOVA, 257–263
variables, 263–269

prob package, C17–C19

probability
about, 13–14, 361–362, A1
beta, A1–A4
binomial distributions, 374–375, 375–377
compound events, 363–365
conditional, 13–14, 365–366
distributions and density functions, 371–373
exponential, A9–A10
gamma, A6–A9
hypothesis testing, 380–382
hypothesis testing with binomial distribution, 

378–380
large sample spaces, 366–369
negative binomial distribution, 377–378
Poisson, A4–A6
R functions, 369–371
random variables, 371
sample spaces and, 362–363

probability density (f(x)), 144–145
prod() function, 98
prop.table() function, 131–132
pt() function, 176, 189–190, B17
Pythagorean percentage, 392–393

Q
qbinom() function, 375, 377
qchisq() function, 201
qexp() function, A9
qf() function, 226
qhyper() function, C4–C5
qnbinom() function, 377
qnorm() function, 155–156, 184, 209–210
qnormGC() function, 155–156
qt() function, 176, 189–190
quadratic curves, 251
quantile() function, 119–120, 121
quantiles, of normal distributions, 155–156
quantity, descriptive statistics and, 123–125
quartic component, 253
quartiles, plotting CDF with, 156
Quick-R, 422
quintic component, 253



Index      435

R
R. See also specific topics

about, 17
comments, 29
defining vectors in, 407–408
distributions in, 147
documentation for, 423
downloading, 18–21
formulas, 43–44
functions, 26–28, 369–371
manuals for, 423
packages, 39–43
ranking in, 117
sessions in, 21–26
standard normal distribution in, 159
standard scores in, 114–115
structures, 29–39
user-defined functions, 28–29
website, 18
working directory, 21–22

R For Dummies (de Vries and Meys), 29
R Journal, 424
random sampling, 156–157
random variables, 371
randomized blocks. See repeated measures
randomiztion, 157
rank() function, 117
ranking

percent ranks, 120
percentiles, 118–120
in R, 117
sort() function, 118
tied scores, 117–118

ratio data, 12
raw moment, 125
rbinom() function, 375
R-bloggers, 421–422
rchisq() function, 201
RDocumentation, 423
read.table() function, 47
reciprocal, of a number, 98
regression. See also curvilinear regression

about, 277

analysis of covariance (ANCOVA), 305–312
analysis of variance (ANOVA), 301–305
correlation and, 316–319
exponential, 346–350
graphing lines, 279–281
linear, 290–295
logarithmic, 350–353
multiple, 295–301
polynomial, 354–358
power, 341–346
regression line, 281–290
scatterplots, 277–279

regression coefficients, 281
regression line

about, 281–290
correlation and, 316
variation around, 283–285
visualizing, 293–294

regression plane, visualizing, 298–301
Remember icon, 4
rep() function, 30–31
repeated measures

about, 244
in R, 247–249
visualizing results, 249–250
working with, 245–246

residuals, 239, 283, 294–295, 317
resources, online, 421–424. See also websites
rexp() function, A9
rf() function, 226
rhyper() function, C4–C5
rnbinom() function, 377
rnorm() function, 147, 156–157, 402
rolldie() function, C18
round() function, 120, 139
row factor, 256
RStudio

about, 17
downloading, 18–21
website, 18

RStudio Online Learning, 422
rt() function, 176, 189–190
r.test() function, 323



436      Statistical Analysis with R For Dummies

S
sabermetrics, 392
sample() function, 399
sample space, 362–363, 366–369
sample standard deviation, 109
sample variance, 106
sample_n() function, C18
samples

about, 10–11
defined, 163
independent, B2–B8
matched, B8–B16
testing more than two, 231–254

sampling distribution of the mean, 164
sampling distributions

about, 164–165
hypothesis tests and, 181–183
two-sample hypothesis testing and, 206–212

sapply() function, 417–418
scale() function, 114–115
scale_x_continuous() function, 137, 149, 151, 

156, 160
scatter plot matrix, 69–71, 84–86
scatter3d() function, 300
scatterplots

about, 55–56, 67–71, 82–84
correlation and, 313–314
regression and, 277–279
visualizing, 293–294

Schmuller, Joseph (author)
Statistical Analysis with Excel For Dummies, 2, 44

scores, standardizing, 158–160
sd() function, 109–110
seed, 157
segments, 150
select() function, C16–C17
semipartial correlation, 331–333
seq() function, 30–31
set.seed() function, 157, 402
$-sign, 94–95
significant linear component, 252
simple main effects, 269
skewness, 127–130

skewness() function, 128, 131
slice() function, C17
slope, testing, 289
sort() function, 118
spcor() function, 332
spcor.test() function, 332
Spearman's correlation coefficient, B16–B18
spreadsheets, 44–46
squaring a deviation, 105
Stack Overflow, 422
standard deviation

about, 107, 199
population, 107–109
sample, 109

standard error, 164
standard error of the mean, 164
standard normal distribution, 130, 158, 159, 160
standard score. See z-score
standards

about, 111
ranking, 117–121
scale() function, 114–115
summarizing, 121–122
z-score, 112–114, 116

Stanford-Binet score, 158
stat function, 216, 228
stat_boxplot() function, 216, 274
stat_function() function, C5–C8, C10
Statistical Analysis with Excel For Dummies (Schmuller), 

2, 44
statistical functions, 412–413, C5–C8
statistically significant, 184
statistics

about, 9
data types, 12
descriptive. See descriptive statistics
error types, 15–16
inferential, 10, 14–16
lists and, 35–36
non-parametric, B1–B21
populations, 10–11
probability, 13–14
samples, 10–11
variables, 11–12



Index      437

stem() function, 138–139
stem-and-leaf plot, 138–139
structures

data frames, 36–39
factors, 33–34
lists, 34–36
matrices, 31–33
numerical vectors, 30–31
R, 29–39
statistics, 35–36
vectors, 30

Studentized Range distribution, 244
subset() function, 70
substr() function, 30
sum() function, 26
Sum of (∑), 92
sum of squares, 233
summary() function, 122, 139–140, 238, 254, 291, 

292, 297, 351
summary.aov() function, 275

T
t() function, 32
table() function, 131, C4
tables, importing from Excel into R, 419–420
tapply() function, 308
t-distributions, 175–177, 189–198
TeachingDemos package, C19–C22
Technical Stuff icon, 5
test statistic, 183
text files, 47–48
theme() function, 77, 83
themes, 77
3d scatterplot, visualizing, 298–301
tied scores, 117–118
ties.method argument, 117–118
tigerstats function, 159
tilde operator (), 67
Tip icon, 4
trend analysis, 250–254
trial, 362
trim argument, 96

trimming the mean, 96
T-score, 116
t.test() function, 35, 177, 188–189, 214–220,  

412–414
Tukey, John (boxplot creator), 121
2 x 2 factorial design, 256
two-factor ANOVA/two-way ANOVA, 257–263
two-sample hypothesis testing

about, 205–206
degrees of freedom (df), 212
equal variances, 212–214
F distributions, 226
paired sample t-tests, 222
for paired samples, 220–221
sampling distributions, 206–212
testing two variances, 222–225
t.test() function, 214–220
visualizing F distributions, 226–230

two-tailed hypothesis testing, 184–185, 205–206
Type I/II errors, 16, 180

U
unequal variances, 219–220
union, 363–364
unplanned comparisons, 243–244
upper tail, 184
user-defined functions, 28–29

V
var() function, 26, 106–107, 109–110
variables

about, 11–12
categorical, 34
continuous random, 371
dependent, 11–12, 278
discrete random, 171, 371
independent, 11–12, 278
nominal, 131–132
numerical, 132–139
Presentation Method/Style and, 263–269
random, 371



438      Statistical Analysis with R For Dummies

variances
about, 24
equal, 212–214
sample, 106
testing, 198–200
testing two, 222–225
unequal, 219–220

variation
about, 103
conditions, 110
measuring, 104–108
sd() function, 109–110
standard deviation, 108–109

var.test() function, 224–225
varTest() function, 224
vectors

about, 30
defining in R, 407–408
logical, 30
numerical, 30–31
operating on, 408–411
working with two, 214–215

W
Warning icon, 4
websites

Cheat Sheet, 5
Dummies, 5
Microsoft R Application Network, 422
Quick-R, 422
R, 18
R documentation, 423
R Journal, 424
R manuals, 423
for R users, 421–422
R-bloggers, 421–422
RDocumentation, 423
RStudio, 18

RStudio Online Learning, 422
Stack Overflow, 422
YOU CANanalytics, 423–424

Wechsler score, 158
Wickham, Hadley (R developer), 71
Wilcoxon matched-pairs signed ranks, B8–B10
Wilcoxon Rank Sum Test, B2–B5
wilcox.test() function, B10
Wilkinson, Leland (author)

Grammar of Graphics, 71
with() function, 110
within subjects. See repeated measures
working directory, 21–22
write.table() function, 47

X
x, 144–145
xlab argument, 58
xlim argument, 61

Y
ylab argument, 58
ylim argument, 61
YOU CANanalytics, 423–424

Z
z-scores

about, 112, 158–160
characteristics of, 112–113
exam scores, 114
example of, 113
one-sample hypothesis testing and, 183–185
T-score, 116
two-sample hypothesis testing and, 208–210

z-test, 210–212
z.test() function, 185–187



About the Author
Joseph Schmuller, PhD is a veteran of academia and corporate Information Tech-
nology. He is the author of several books on computing, including the three edi-
tions of Teach Yourself UML in 24 Hours (SAMS), and the four editions of Statistical 
Analysis with Excel For Dummies (Wiley). He has created online coursework for 
Lynda.com, and he has written numerous articles on advanced technology. From 
1991 through 1997, he was Editor-in-Chief of PC AI magazine.

He is a former member of the American Statistical Association, and he has taught 
statistics at the undergraduate and graduate levels. He holds a B.S. from Brooklyn 
College, an M.A. from the University of Missouri-Kansas City, and a Ph.D. from 
the University of Wisconsin, all in psychology. He and his family live in  Jacksonville, 
Florida, where he is a Research Scholar at the University of North Florida.



Dedication
For my wonderful mentor, Al Hillix  — with eternal thanks for his timeless  
wisdom, his sage guidance, and his lasting friendship.

Author’s Acknowledgments
Writing a For Dummies book is one of the most fun things an author can do. You 
get to express yourself in a friendly, conversational way, and you get to throw in 
some humor, too.

As a former magazine editor, I appreciate what editors do, but never more so than 
on this project. The Wiley team was terrific from start to finish. Acquisitions 
 Editor Katie Mohr initiated this effort. Project Editor Paul Levesque tightened up 
my writing and did a marvelous job coordinating all the myriad things that go into 
a book like this. Copy Editor Becky Whitney also contributed valuable insights that 
make the book you’re holding easier to read. Technical Editor Russ Mullen made 
sure the code and other technical aspects were correct. Any errors that remain are 
under the ownership and sole proprietorship of the author.

My thanks to David Fugate of Launchbooks.com for representing me in this effort.

I could never have written this book without the mentors in college and graduate 
school who helped shape my statistical knowledge: Mitch Grossberg (Brooklyn 
College); Al Hillix, Jerry Sheridan, the late Mort Goldman, and the late Larry 
 Simkins (University of Missouri-Kansas City); and Cliff Gillman and the late 
John Theios (University of Wisconsin-Madison). I hope this book is an appropriate 
testament to my mentors who have passed on.

As always, my thanks to Kathryn for her inspiration and support.



Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Technical Editor: Russ Mullen

Editorial Assistant: Serena Novosel

Sr. Editorial Assistant: Cherie Case

Production Editor: Tamilmani Varadharaj

Cover Image: © jastrijebphoto/iStockphoto


